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Abstract

Hundreds of anomaly variables have been proposed, claiming explanatory power

to the cross-section of average returns in equity market. Cochrane (2011) dubs this

phenomenon the ”factor zoo” and further argues that the characteristic related

factors to explain the average returns are in disarray. This paper introduces a

newly developed machine learning tool, ordered and weighted L1 norm regularisa-

tion (OWL) to ”regularise” this chaotic ”factor zoo”. The innovation of OWL is

that high correlations among explanatory variables are permitted. Highly correlated

variables will be identified simultaneously and grouped together. This is important

because factor correlation prevails in high dimensionality and biases standard es-

timators (Fama-MacBeth regression, LASSO, etc.) yet it has not been discussed

extensively in the literature.

Empirical evidence suggests that ’liquidity’ related factors play an important

role in explaining the cross-section of average returns. Further robustness check

shows that OWL selected factors have superior performance in a broad range of

criteria. Out-of-sample Sharpe ratio of hedge portfolio, formed using OWL selected

factors as predictors in the past two decades, is around 3.5 (annualised) considering

all stocks, and above 2.2 when excluding micro stocks.
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1 Introduction

In the past few decades, hundreds of anomaly variables have been proposed, claiming

to have explanatory power to the cross section of average returns. Harvey et al. (2015)

documented 316 anomaly variables and raised the concern that many new factors are as

a result of data snooping. Hou et al. (2017) replicate 447 anomaly variables and find

64% or 85% of which are insignificant depending on the choices of cut-off level. Mclean

and Pontiff (2016) find many anomalies vanish once they are discovered and published.

Cochrane (2011) dubs this phenomenon the ”factor zoo” and he further argues that

the characteristics related factors to explain the cross section of average returns are in

disarray. He emphasises the importance of finding (useful) factors that can provide inde-

pendent information about average returns, and distinguishing (redundant) factors that

can be summarised by others or (useless) factors that have no explanatory powers to the

cross section of average returns. Fama and French (2008) survey that portfolio sorting

and Fama-MacBeth regression are traditionally employed to measure and test for factor’s

ability to explain the cross section of average return. However, in high dimensionality,

portfolio sorting will encounter the curse of dimensionality while Fama MacBeth regres-

sion will suffer from multicollinearity. Cochrane (2011) points out: ”How to address these

questions in the zoo of new variables, I suspect we will have to use different methods.”

This paper introduces a newly developed machine learning tool, ordered and weighted

L1 norm regularisation (OWL) to regularise the ”factor zoo” which, to my best knowl-

edge, is the first time applied in Finance. OWL is an extension of the LASSO family,

studied by Zeng and Figueiredo (2015), Figueiredo and Nowak (2016) and applied in

electronic engineering, for instance, to de-noise a satellite picture. The innovation of

OWL, compared to other regularisers, is that it permits high correlation among explana-

tory variables. Correlation is important because it can bias estimators severely if left

neglected (see more details in section 2 and 3). Kozak et al. (2017), for instance, point

out that the LASSO estimator will ignore correlations, and tends to pick one characteris-

tic and disregard the rest. DeMiguel et al. (2017) state that correlation between factors

matters in a portfolio perspective and find six factors selected through their procedure

are correlated. Asness et al. (2013) also find the negative correlation between ’momen-
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tum’ and ’value’ factors, and achieve superior portfolio performance by exploring this

correlation.

Factor correlations are common, especially in high dimensional big data (see section

4 for a detailed illustration). Cochrane (2011) shows that in term of determining which

factors are useful to explain the cross section of average returns, we need to check whether

expected returns line up with the covariances of returns with factors. In other words, we

want to check the regression of average returns on the covariance matrix of asset returns

and anomaly factors in an SDF setting, or the regression of average returns on factor

loadings (the sensitivities of factors with test assets) in a Fama-MacBeth framework.

Kleibergen (2009) cautions that the estimation of risk premium that results from a Fama

MacBeth two-pass regression is sensitive to collinearity of factor loadings. Factor corre-

lation structure measured by factor loadings is usually much higher than that measured

by its times series in the first-pass regression.

The main empirical question of this paper is, under highly correlated anomaly factors,

how to select useful factors and shrink off useless and redundant ones? OWL provides

a unified solution to the question above. I will show analytically that when two useful

factors are highly correlated, OWL estimator will assign similar coefficients to them.

This statistical property allows one to identify highly correlated factors and ranking their

contributions to explaining the cross section of average returns. Meanwhile, OWL can

simultaneously shrink off useless and redundant factors.

Like other shrinkage based estimators, it is, however, challenging to make direct sta-

tistical inferences on OWL estimator. Following DeMiguel et al. (2017), Feng et al.

(2017), I adopt a two stage (select and test) procedure to find factors that statistically

contribute to explaining the cross section of average returns. In the first stage, I employ

OWL to obtain a sparse set of useful factors. In the second stage, I propose a bootstrap

based testing procedure to infer factor significance. In order to deal with high correlation

among factors after the first stage, I modify bootstrap design to bypass multicollinearity

issues: instead of bootstrapping the distribution of true parameters, I bootstrap the null

hypothesis that all factors have zero explanatory power. This method is in line with

Harvey and Liu (2017) in which they design a step-wise bootstrap testing method to
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select useful factors. However, I test factors jointly rather than step-wisely, because I am

interested in the joint factor inference.

DeMiguel et al. (2017) point out that firm characteristics based long-short returns

and factors have different implications. Firm characteristics are computed using firm

specific data, for instance, accounting data or historical stock returns. Stocks are then

sorted into decile portfolios according to their characteristics. Anomaly variables are

obtained by computing the spread return between the top and bottom decile portfolios.

Factors, on the other hand, command a common source of risk, for instance, the market

return. Yet, they are closely related. Fama and French (1996) reckon that the return of

a long-short hedging portfolio is a proxy for an underlying unknown risk. Kozak et al.

(2018) argues there is no clear distinction between risk-factor pricing and behavioural as-

set pricing. The goal of this paper is to search for useful anomaly variables that explain

the cross section of average returns. I make no distinction between risk-bearing factors

and firm-specific characteristics based anomaly variables, and I refer to them all as factors.

In a Monte Carlo experiment, where some candidate factors are highly correlated and

have the same true coefficients, I find OWL estimators can successfully group correlated

factors together, while benchmark estimators like LASSO and adaptive LASSO assign

random coefficients to highly correlated factors and give a very noisy estimation of true

parameters. In terms of shrinking off useless and redundant factors while factors are

correlated, OWL performs well while LASSO fails to set all useless factors’ coefficients to

zeros. In a different setting of the Monte Carlo experiment where the number of candidate

factors are close to the number of assets available (K ≈ N) , OWL can successfully group

together highly correlated factors by assigning similar coefficients to them, while LASSO

and adaptive LASSO assign random and noisy coefficients to factors: the noise (distance

between the highest and lowest estimator) doubles the oracle value. This Monte Carlo

experiment shows that OWL has superior performance to other estimators when high

correlation is present among factors.

To illustrate, I give an example of applying OWL on some well known data sets. I

choose 12 popular and prominent factors from well known models including Fama and

4



French (2015) 5 factors, Hou et al. (2014) q4 factors, ’momentum’, ’quality-minus-junk’,

’bet-against-beta’, and ’hmldevil’ from AQR’s on-line data library. I consider these fac-

tors, because they are well established in the literature, and have available data libraries

that have been intensively used and verified by many researchers. I also consider 7 sets

of Fama French bi-variate sorted 25 portfolios plus the 49 industrial portfolios as test

portfolios. I find, first of all, market factor is shown as the primary factor to explain the

cross section of average returns in 8 out of 10 test portfolios I considered. This finding

is consistent with Harvey and Liu (2017) in which they employ a statistical method on

individual stocks and find market factor is a dominating factor. Second, when using bi-

variate sorted 25 portfolios as test portfolios, very often the same characteristics used to

forge anomaly factors are selected. This has been criticised in various papers, see Harvey

et al. (2015)), Lewellen et al. (2010) and Ecker (2013). However, if we pool together all

25 portfolios (Feng et al. (2017)) as a single set of test portfolios, OWL estimators are

less biased towards a small set of characteristics.

For completeness, I initially consider 100 firm characteristics documented in Green

et al. (2017), using data set from CRSP and Compustat, from January 1980 to December

2017. I first construct anomaly factors of each characteristic according to Fama and

French (1992) and Fama and French (2015), while deleting characteristics that have

insufficient data to form sorted decile portfolios 1. I obtain 80 anomaly factors which

are spread returns between the top and bottom decile portfolios 2. For test portfolios, I

follow suggestions of Cochrane (2011), Lewellen et al. (2010) and Feng et al. (2017) by

forming bi-variate sorted portfolios, and then combine them together as the grand set of

test portfolios. Considering the possible combination of any two of 80 characteristics is

large, I single out ’size’ as a common characteristic to form bi-variate sorted portfolios

1I first discard any characteristics having more than 40% missing data. I then use non-micro stocks
to form decile portfolios at each point of time. If at any point of time, there is insufficient stocks to form
the decile portfolios, I delete the characteristic.

2Note that the sorting is always from high to low according to characteristics, and the anomaly
variables are top decile return minus the bottom decile return. That will end up with some slight
difference with some familiar notations. For instance, the famous size factor ’small-minus-big’ in my
factor library would be ’big-minus-samll’, however, they are essentially the same after giving a negative
sign. In estimation, we only care about the coefficient magnitude. The interpretation of the sign of
coefficients, should be looked at together with the sorting order when forming anomaly variables.
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with the remaining ones (also see Feng et al. (2017)). I deem ’size’ is an important factor

in explaining the cross section of average stock returns since ’size’ is included in many

models like Fama and French (2015) 5-factor, Carhart (1997) 4-factor and Hou et al.

(2014) q4-factor models. Asness et al. (2018) also shows ’size’ matters when controlling

other characteristics.

For a robustness check, I also consider different methods of sorting, including uni-

variate sorting and all combinations of bi-variate 2 by 2 sorting, finding the OWL esti-

mation is consistent in picking anomaly factors.

The empirical results complement and challenge some common stances in asset pricing

literature.

First, within 80 anomaly factors, I find strong correlation among some factors, mea-

sured by their time series. For instance, some beta related anomalies are highly correlated

with other anomalies, including accruals, profitability, volatility and liquidities. 15% of

the correlation coefficient matrix of all anomaly factors, measured by their time series,

exhibit correlation coefficient higher than 0.5 (absolute value) and raises to 68% when

factor correlation is measured by their factor loadings (important for second stage of

Fama-MacBeth regression). This casts doubts about the validity of employing Fama-

MacBeth regression to infer factor premiums. These alarmingly high correlations among

factors echo Cochrane (2011)’s outcry: in the high dimensional setting, we need to con-

sider new methods.

Second, OWL identifies ’market’ as the primary factor to explain the cross section

of 1927 bi-variate sorted portfolios using combinations of ’size’ and other firm charac-

teristics. This finding confirms the empirical evidence by Harvey and Liu (2017), and is

consistent when I use either the valued weighted or equal weighted method, excluding

micro stocks. However, when micro stocks are included, the importance of market factor

drops several ranks. This is due to the fact that micro stocks, although only taking up

less than 10% of market value, it constitutes 56% of all stocks in the database. It rings

alarms about methodologies that may be biased by micro/small stocks, for instance, us-

ing individual stocks as test portfolios (even excluding micro stocks) or including micro

stocks in portfolio sorting.
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Third, liquidity related factors are the main contributors to the variation of cross sec-

tional average returns. ’illiquidity’ (Amihud (2002)) has the highest (absolute) coefficients

among anomaly factors using value weighted method excluding micro stocks, followed by

’standard deviation of traded dollar volume’ (Chordia et al. (2001)), ’percentage change

of current ratio’, consisting of the top 3 important anomaly factors. Then it is followed

by ’return on invested capital’, ’equity growth rate’, ’percentage change of capital expen-

diture’ and ’cash’, which are related to ’profitability’, ’investment’ and ’growth’. This

finding coincides with Hou et al. (2018) in which they update their q4-factor model into

a q5-factor model by adding an asset growth factor.

Fourth, as the two stage procedure identifies a set of important anomaly factors, it

is of interest to compare it with some well established factors in the literature. I first

consider a wide range of in-sample comparison criteria including Sharpe ratio, Hansen

Jagannathan distance, cross sectional R2, and GRS statistics (see Gibbons et al. (1989)).

First, I compare the first 3 most important OWL-selected-factors (including ’market’),

call it ”owl3” to compare it with the well known Fama and French (1992) 3-factor model,

and similarly, ”owl4” with Carhart (1997) 4-factor and Hou et al. (2014) q4-factor, ”owl5”

with Fama and French (2015) 5-factor, and ”owl6” with Fama and French (2018) 6-factor

(plus a momentum factor). I find that OWL selected factors dominate benchmarks in

terms of performance score, achieving Sharpe ratios that are 3 to 5 times benchmark

factors; HJ distance is also the smallest; cross sectional R2 is about 20% to 40% higher;

and GRS statistics are 40% to 50% lower.

Fifth, from an out-of-sample (OOS) perspective, OWL selected factors achieve im-

pressive OOS Sharpe ratio for hedge portfolios using OWL selected factors as predictors.

I follow a similar procedure of Freyberger et al. (2017) to conduct the OOS exercise and

find that for the full sample selected factors, annualised OOS Sharpe ratio is around 3.13

when considering all stocks and around 1 once excluding micro-stocks, implying that mi-

cro stocks are main contributors to high OOS Sharpe ratio. However, the OOS Sharpe

ratio is much higher once we split full sample into two parts (before 2000 and after) and

estimate each sub-sample with OWL separately. OWL selects different factors within

these two sub-samples, indicating a shift in economic characteristics. The liquidity re-

lated factors are essential after the 2000 internet bubble burst, but insignificant before
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2000. On the contrary, momentum and profitability related factors drive asset prices pri-

marily before 2000. Considering each sub-sample with unique OWL selected factors, the

annualised OOS Sharpe ratio is above 3.5 for all stocks, and once removing micro-stocks,

around 2 for the first sub-sample, and above 2.3 for the second sub-sample.

1.1 Related literature

This paper naturally builds on a series of papers devoted to identifying pricing factors.

Fama and French (1992) propose the three-factor model consisting of a market return

factor, a size, and a value factor that achieves enormous success. Carhart (1997) adds the

momentum factor in Fama-French’s three factor model that makes it the new standard

among practitioners. Hou et al. (2014) explode the investment perspectives and propose

the q-theory model which includes an investment factor, a profitability factor, a size fac-

tor along with the market factor. Fama and French (2015) develop their own version of

investment and profitability factors and expand the three-factor model to a five-factor

model. Fama and French (2018) argue that an extra ”momentum” factor increases Sharpe

ratio according to Barillas and Shanken (2018), and they suggest a six-factor model. Now

after over half a century since the CAPM of Sharpe (1964) and Lintner (1965), hundreds

of anomaly factors have been proposed, claiming explanatory power to the cross section

of average returns. Harvey et al. (2015) document 316 factors and find most of them are

results of data-snooping. Hou et al. (2017) try to replicate 447 anomaly factors, and find

64% to 85% of them are not replicable.

This paper also relates to a series of econometric papers devoted to asset pricing model

testing. Fama and Macbeth (1973) put forward the two-pass regression method that has

now become a standard practice in finance. Green et al. (2017) use Fama MacBeth

regression to find significant factors for the US stock market. Lewellen (2015) studies the

cross sectional properties of return forecasts derived from the Fama-MacBeth regression

and finds forecasts vary substantially across stocks and have strong predictive power for

actual returns. Kan and Zhang (1999) caution that the presence of useless factors bias test

results, leading to a lower than normal threshold to accept priced factors. Gospodinov

et al. (2014) develop model misspecification robust test to tackle spurious factors, using a
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step-wise test to remove useless factors one by one. Fama and French (2018) use Sharpe

ratio and employ the Right-Hand-Side method of Barillas and Shanken (2018) to ”choose

factors”. Harvey and Liu (2017) suggest a step-wise bootstrap method to test for factors.

In particular, at each step they pick a factor that has the best statistics (for instance,

the t-stat), before testing for significance. They bootstrap the null hypothesis that factor

coefficient is zero by orthogonalising the factor with asset returns. Pukthuanthong et al.

(2018) propose a protocol to select factors: all factors should be correlated with principal

components of test assets covariance matrix.

However, this paper differs from the literature in several ways: I resort to an SDF

setting instead of Fama-Macbeth regression to identify useful factors. It has important

implications in terms of redundant factors: redundant factors are not priced but corre-

lated with some priced factors and they usually have non-zero risk premiums. Under this

circumstance, Fama-MacBeth would be ill-positioned to identify priced factors. Second,

I restrict my test portfolios to sorted portfolios rather than individual stocks. The latter

may suffer from missing data issues over a long period which could lead to imprecise esti-

mation of covariances, particularly in an out-of-sample framework. Besides, micro/small

stocks may dominate the result. Although they only take up less than 10% of the mar-

ket capitalisation, they consist of 56% of all stocks. Third and most importantly, to

deal with high dimensionality with potential correlation among factors, which has not

yet been discussed much in literature, my shrinkage based estimator can identify highly

correlated factors and group them together while removing useless/redundant factors si-

multaneously.

This paper also contributes to the vast growing literature using machine learning

techniques to solve financial problems. Tibshirani (1996) proposed LASSO (L1 norm

regularisation) that achieves dimension reduction within a convex optimisation problem.

Since then, many modifications and improvement have been made to achieve various

targets. The LASSO family evolves rapidly. Yuan and Lin (2006) allow LASSO to shrink

variables as groups by introducing the group LASSO. Freyberger et al. (2017) employ the

adaptive group LASSO to find pervasive factors to explain the cross section of average

returns. Zou (2006) introduces the adaptive LASSO by adding a consistent estimator as
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the weight of LASSO which makes the adaptive LASSO estimator consistent and enjoys

the oracle property. Bryzgalova (2015) modifies the adaptive LASSO by replacing the

consistent estimator (OLS estimator of risk premium) with factor loadings from the first

pass of Fama-MacBeth regression. Feng et al. (2017) adopt the double selection LASSO

of Belloni et al. (2014). In the first step they use LASSO to choose controlling factors with

test assets; in the second step they use LASSO again to choose controlling factors with

candidate factors yet to be tested; in the third step, they run OLS regression of test assets

on the union of candidate and controlling factors selected from the first two steps. They

make statistical inferences on the candidate factors in the third step. Fan and Li (2001)

propose the smoothly clipped absolute deviation (SCAD) so that it bridges the hard-

thresholding and soft-thresholding. Ando and Bai (2015) employ SCAD to find Chinese

stock predictors. Zou and Hastie (2005) combine the L1 and L2 norm and propose the

elastic net (EN), which achieves clustering selection of correlated variables. Kozak et al.

(2017) employ EN in a Bayesian framework and find sparse principle components can

largely explain the cross section of the average returns.

Bondell and Reich (2008) propose the octagonal shrinkage and clustering algorithm

for regression (OSCAR) by exploring the L∞ norm of parameters pair-wisely to achieve

clustered selection when variables are highly correlated. This paper is closely related

to Zeng and Figueiredo (2015), Figueiredo and Nowak (2016) in which they study the

ordered and weighted L1 regularisation (OWL) and reveal the close connection between

OWL and OSCAR: by adopting a linear decreasing weighting scheme for the penalty

term, OWL encompasses the OSCAR regularisation. Zeng and Figueiredo (2015) apply

OWL on image processing and attain significant noise deduction.

2 Methodology

To study which factors jointly explain the cross section of average returns, I adopt the

SDF method in Cochrane (2005). Section 2.1 explores the relation between risk price and

risk premium and explains which one should be used to identify factor inferences; section

2.2 points out limitations of traditional methods when facing high-dimensionality, and

section 2.3 offers a remedy by imposing sparsity. Sections 2.4 - 2.6 introduce OWL and
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discuss its statistical properties. Section 2.7 proposes a two stage testing procedure to

validate selected factors.

2.1 Risk price or risk premium?

Let mt denote the stochastic discount factor (SDF). A linear SDF:

mt = r−1
0 (1− b′(f − E(f))) (1)

where r0 is the zero beta rate which is a constant, f (K × 1) is a vector of K factor

returns, which can be either traded factors or mimic portfolio returns of non-traded

factors. f−E(f) is the demeaned factor return. b (K×1) is the SDF coefficient, referred

to as the risk price, it reflects whether a factor is priced or not.

I want to draw inferences on the risk prices of factors. Finding useful factors is the

goal of this paper, that is factors with risk prices which are non-zero and directly drive

the variation of SDF and contain pricing information. More specifically, they reflect the

marginal utility of factors to explain the cross-section of average returns. Factors can

also be useless or redundant. Useless factors are those whose risk prices are zero and

are uncorrelated with test assets. Redundant factors also have zero risk prices but they

are correlated with some useful factors. In other words, they can be subsumed by other

useful factors.

Risk premium refers to the free parameter in the second pass Fama-MacBeth regres-

sion: first pass obtains the factor loadings by running time-series regressions of each asset;

second pass runs cross-sectional regressions of asset returns on factor loadings at each

time. Risk price and risk premium are directly related through the covariance matrix of

factors, yet they differ substantially in their interpretation. Cochrane (2005) shows that

b (risk price) and λ (risk premium) are related by

λ = E(ff ′)b (2)

Risk premium of a factor infers how much an investor demands to pay for bearing a

11



certain risk. Risk price implies whether a factor is useful to explain the cross-section of

average asset returns. When factors are uncorrelated with each other, that is, E(ff ′)

is a diagonal matrix, in which case bi = 0 (the ith factor is not priced) implies λi = 0,

and vice verse. However, this is not true when factors are correlated. Risk premium of

a factor can be non-zero while the factor is not priced. A factor can earn positive risk

premium by being correlated with a useful factor, even though its risk price is indeed

zero. To give an example, suppose we have two factors f1 and f2, the covariance matrix

is E(ff ′) =

 10 1

1 10

 , and the first factor is priced and the second is not, that is

b1 = 1 6= 0 and b2 = 0, according to (2), λ1 = 10, λ2 = 1. Although factor f2 is not

priced it earns non-zero risk premium by simply being correlated with a useful factor

f1. As discussed before, if factors are uncorrelated it is interchangeable to use either risk

price or risk premium to select factors. However, factors are likely correlated in a high

dimensional setting, and our goal is to find useful factors to explain the cross-section of

average returns, so we should infer on risk price rather than risk premium.

I observe a T × N matrix of test assets, denoted by Rt as excess returns. The

fundamental asset pricing equation states: E(mtRt) = 0 for any admissible SDF, mt.

However, when mt is unknown and estimated from a model, the fundamental equation

no longer holds. The deviation from the equation is regarded as the pricing error. Let

mt(b) be the unknown SDF which depends on the unknown risk price b. Pricing error

e(b) can be written and simplified as:

e(b) = E[Rtmt(b)] = E(Rt)E(mt(b)) + cov(Rt,mt(b)) (3)

= E(Rt)E(mt(b)) + r−1
0 cov(Rt, 1− b(f − E(f))) (4)

= r−1
0 (µR − Cb) (5)

where C = cov(Rt, f) is the covariance matrix (N ×K) of excess return and factors; µR

(N × 1) are the expectations of excess returns of test assets.

A quadratic form of the pricing error measures how far the candidate model deviates

from the true model. Let Q(b) be the distance measure, we can recover b by minimising
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Q(b):

b̂ = argmin
b

Q(b) = argmin
b

1

2
(µR − Cb)′WT (µR − Cb) (6)

gives

b̂ = (C ′WTC)−1C ′WTµR (7)

where WT is a weighting matrix. r0 is a constant, so it can be dropped out.

Ludvigson (2013) offers two choices of the weighting matrix WT when comparing

models. First, E(RR′)−1, the inverse of the second moment of test assets returns, which

corresponds to the well known Hansen-Jaganathen (HJ) distance. The use of HJ distance

is more appealing when facing limited asset choices (small N). The weighting matrix

E(RR′)−1 accounts for and offsets the variations of test assets. Hence it produces stable

estimators regardless of the choice of limited test assets. However, when facing a large

universe of test assets (large N), we need a large number of time series observations (T )

to estimate the second moment of returns. In practice, the length of T is limited, so the

estimation of sample covariance will be near singular matrix. Ludvigson (2013) advocates

the second choice of WT : the identity matrix, if we have large N . Additionally, when test

portfolios represent particular economic interests, for instance, firm characteristic sorted

portfolios, the identity matrix will be a better choice, because identity matrix does not

re-weight test portfolios and each characteristic sorted portfolios will be treated equally.

We are interested to see which candidate factors can explain the entire test portfolios

containing all anomaly information.

2.2 Challenges of high-dimensionality

Cochrane (2011) points out that traditional methods like portfolio sorting to identify use-

ful factors, has fallen short in the high-dimensional world. Following Fama and French

(1992), Fama and French (2008) to construct 5 by 5 portfolios and suppose n characteris-

tics based anomaly factors need to be tested, we have to sort all stocks into 5n portfolios.

When n is small, for instance n = 2, it is handy to sort portfolios, and check the marginal

distribution of returns on each characteristic. However, when n is large, for instance,

n = 100, it is impossible to sort stocks into so many portfolios.

For the Fama-MacBeth regression, there are several complications in high dimensional
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setting too. First, the convergence rate of the risk premium estimator is O(
√
K/N),

where N is the number of test assets and K is the number of factors. When K diverges

(K > N), the Fama-MacBeth regression becomes infeasible. Secondly, when many factors

are included as explanatory variable in a regression, it is likely variables will be correlated.

As discussed in section 2.1, when factors are correlated, unpriced factors can earn positive

risk premium if they are correlated with priced factors (redundant factors). Employing

Fama-MacBeth regression in an environment where factors are correlated will be likely

to pick up redundant factors which are unpriced but can be subsumed by other priced

factors. Apart from that, Kleibergen (2009) cautions Fama-MacBeth regression faces

multicollinearity issues in a high dimensional setting where factors are likely correlated.

2.3 Remedy through Sparsity

Empirical finance research has demonstrated strong evidence that many of the proposed

factors are actually useless or redundant to explain the cross section of average returns, see

Harvey et al. (2015), Mclean and Pontiff (2016) and Hou et al. (2017). In this paper, I am

going to impose a sparsity assumption on K candidate factors: there are only at most S

useful factors, and S << K. With this assumption, the convergence rate of the estimator

becomes
√

S logK
N

, which greatly alleviates the high-dimensionality problem, and makes

it feasible even in the case when K > N , see section 2.6 for a detailed discussion.

Sparsity has been widely used in the machine learning literature. Tibshirani (1996)

proposed the LASSO estimator which is a milestone to achieving sparsity. The LASSO

penalty term takes the form of L1 norm of parameters and it would set many coeffi-

cients to zero. Since Tibshirani (1996)’s ground-breaking work, many researchers have

improved and extended LASSO to meet specific requirements. Zou (2006) added an

adaptive weight (usually a first stage OLS estimator) for L1 norm to derive the adaptive

LASSO. Bryzgalova (2015) modified the adaptive LASSO to shrink off spurious factors by

casting the adaptive LASSO in the Fama-MacBeth framework and use the factor loadings

as adaptive weights to estimate risk premiums.

However, (adaptive) LASSO is derived from the assumption of orthogonal matrix

design, which requires that factors are uncorrelated with each other. Thus, it is difficult to
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implement in high-dimensional setting, in which factors usually exhibit strong correlation

( see section 4.2 for a detailed discussion).

Kozak et al. (2017) employed the ridge shrinkage and the elastic net in a Bayesian

framework, which allows factors to be correlated. They found a small number of principal

components of characteristics based factors can approximate the SDF well.

The goal of this paper is to find a small subset of factors, potentially highly correlated,

to explain the cross-section of average returns. To interpret that goal, I am interested

in selecting factors that deliver good model-fit measures such as Hansen-Jagannathan

distance, cross-sectional R2, GRS statistics, etc, as well as out-of-sample Sharpe ratios.

For that, I allow for correlation among factors and introduce the ordered and weighted

L1 norm (OWL) regularisation to circumvent the curse of high dimensionality.

2.4 The Ordered and Weighted L1 (OWL) regularisation

In this subsection, I define OWL and explain the algorithm to solve the OWL optimisation

problem. OWL estimator is achieved by adding a penalty term in equation (6):

b̂ = argmin
b

1

2
(µR − Cb)′WT (µR − Cb) + Ωω(b) (8)

where Ωω(b) = ω′|b|↓ , and ω is a K×1 weighting vector, and ω ∈ κ, where κ is a mono-

tone non-negative cone, defined as κ := {x ∈ Rn : x1 ≥ x2 ≥ ... ≥ xn ≥ 0}, ω1 > ωK. |b|↓
is the absolute value of risk price, decreasingly ordered by its magnitude.

The weighting vector ω is restricted in a monotone non-negative cone, which makes the

optimisation problem in (8) convex. The weighting vector ω is set to be linearly decreasing

from factor 1 to K: ωi = λ1 + (K − i)λ2, i = 1, 2, ..., K. Zeng and Figueiredo (2015),

Figueiredo and Nowak (2016) show that by adopting a linearly decreasing weighting

scheme, OWL maps to OSCAR (Bondell and Reich (2008)) setting, which has appealing

properties to group highly correlated variables.

In order to solve (8), I use the proximal gradient descent algorithm. First define the
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proximal function as

ProxΩω(b) = argminx
1

2
||x− b||22 + Ωω(x) (9)

With the definition of Ωω(b), we have:

Ωω(b) = Ωω(|b|) (10)

It is easy to show that

||b− sign(b)� |x|||22 ≤ ||b− x||22 (11)

where sign(.) is a function to retrieve signs from a vector, with elements in {1,−1, 0}. �

is a point-wise production operator.

(10) and (11) infer:

ProxΩω(b) = sign(b)� ProxΩω(|b|) (12)

Let P be a permutation matrix that order a vector decreasingly, we have ||P (x−b)||22 =

||x−b||22, and with the definition of Ωω(b), we have: Ωω(b) = Ωω(Pb) . These two equations

imply:

ProxΩω(b) = sign(b)� P ′(|b|)ProxΩω(|b|↓) (13)

where |b|↓ is a vector of decreasingly ordered absolute value of coefficients. and P ′(|b|) is

the transpose of the permutation matrix, which recovers the order of |b|.

For any |b|↓ ∈ κ, where κ is a monotone non-negative cone, defined above:

1

2
||x− |b|↓||22 + Ωω(x) =

1

2
||x||22 +

1

2
|||b|↓||22 − |b|′↓x+ Ωω(x)

≥ 1

2
||x∗||22 +

1

2
|||b|↓||22 − |b|′↓x∗ + Ωω(x∗)

where x∗ ∈ κ. It infers: ProxΩω(|b|↓) ∈ κ, and Ωω(x) = ω′x,
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Further, we have:

argminx∈κ
1

2
||x− |b|↓||22 + ω′x = argminx∈κ

1

2
||x− (|b|↓ − ω)||22

which is the projection of (|b|↓ − ω) onto κ, Then equation (13) can be written as:

ProxΩω(b) = sign(b)� (P ′(|b|)Projκ(|b|↓ − ω)) (14)

where Projκ(.) is the projection operator onto κ. 3

After solving the proximal function, we can employ the iterative soft-thresholding

algorithm.

First initialise b(0), then repeat:

b(k+1) = proxΩω(b(k) − szk 5 g(b(k))) (15)

until convergence. where k = 1, 2, 3, ... is step of each iteration; g(b) = 1
2
(µR−Cb)′WT (µR−

Cb) and szk is step size at each iteration k.

To achieve the optimal convergence rate, I consider the accelerated proximal gradient

method, also regarded as the fast iterative soft-thresholding algorithm (FISTA, see ap-

pendix).

First initialise b(0) = b(−1) and t0 = t1 = 1, repeat:

tk+1 = (1 +
√

1 + 4t2k)/2

uk+1 = bk +
tk−1

tk+1

(bk − bk−1)

b(k+1) = ProxΩω(uk + szk 5 g(b(k−1)))

until convergence.

3 The projection onto κ can be obtained by using the Pool-Adjacent-Violators algorithm. see de Leeuw
et al. (2009).
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2.5 Tuning parameters and cross-validation

OWL estimator is sensitive to the choice of the weighting vector ω. So finding appropriate

values for tuning parameter λ1 and λ2, which pins down the weighting vector, is crucial.

Following the machine learning literature, I use a five-fold cross-validation method to

find tuning parameters. Given the grid values of λ1 and λ2, at each point on the grid,

I first divide sample into five equal parts in their time series dimension. I use four

parts to estimate the model with OWL regulariser. After obtaining the estimated model,

I forecast the returns of the fifth part, and compute the out-of-sample root of mean

squared forecast error (RMSE). I then repeat the same procedure five times by rotating

the training samples and testing samples, and compute the average RMSE. Turning

parameters are determined by the smallest RMSE on each point on the grid.

2.6 Statistical Properties

This section discusses OWL’s statistic properties which distinguish it from other LASSO

based shrinkage methods, and make OWL suitable in a highly correlated setting.

Theorem 2.1 (grouping). Let b̂(K× 1) be a solution of (8), fi and fj (both T × 1)be the

ith and jth factors, so bi and bj are the coefficients in the SDF specification associated

with the ith and jth factors. Let µR(N × 1) be a vector of test asset means, and λ2 be the

tuning parameter in the weighting vector, if

σfi−fj <
λ2

||µR||2||σR||2

then b̂i = b̂j.

Proof: see appendix.

This property implies that when factors are highly correlated, they are more likely to

be grouped together by assigning them with the same coefficients. However, in standard

estimators (Fama-MacBeth regression, LASSO, etc.) with orthogonal designs, that is as-

suming factors are uncorrelated, it may yield inconsistent estimators and bias economic
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interpretations. The grouping theorem safeguards correlated variables from being ne-

glected and distorted. In the meanwhile, there are other elements that affect the grouping

property. First, the weighting parameter λ2 which controls the distance of neighbouring

weights. A big gap between weights (large λ2) encourages grouping. From a geometric

perspective (more detailed geometric interpretation, see Zeng and Figueiredo (2015)),

that is because a large λ2 makes the atomic norm of OWL regulariser more pointy, thus

more likely to intersect with the contour coming from the unregularised quadratic min-

imisation solution. Second, the mean (µR) and standard deviation (σR) of test assets. A

set of less informative assets (small µR and/or small σR) would result in factor clusterings:

all factors assigned with the same (and small) coefficients. This is because factors, even if

they are not highly correlated, are equally inadequate to explain a set of less informative

test assets.

The grouping property is a major contribution of this paper and distinguishes it

from other common approaches. Other orthogonal-design based estimators, for instance

LASSO, will neglect factor correlation and distort factor interpretations. Fama-MacBeth

regression will face multi-collinearity issues. For that, factor-trimming is usually required.

Deleting factors with high correlations (for instance, see Green et al. (2017)) is a common

practice among researchers. However, it is difficult to define a cut-off level of correlation

to decide which factors to remove due to high correlation. Furthermore, it is difficult to

decide which one to remove if they are highly correlated. Factors can be highly correlated

due to common underlying risk.

OWL provides a unified solution to the issues faced by other estimators. No factor-

trimming is required and factors with high correlation will be simultaneously identified

and grouped together, while useless/redundant factors will be shrunk off.

Figueiredo and Nowak (2016) also show that the OWL estimator error is bounded by

E||b̂− b∗||2 = O(||b∗||2
ω1

ω̄

√
SlogK

N
)

where ω1 is the first element of the weighting vector ω, and ω̄ is the mean of all elements
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of ω; b∗ is the true value of risk price.

With the convergence rate of
√

S logK
N

, it is possible to estimate models with large

numbers of factors, which alleviates the high-dimensionality problem greatly. However,

OWL, like other shrinkage based estimators, is a biased estimator. The bias is propor-

tional to the true parameter values. Informally, OWL shrinks more of prominent factors

and less of weaker factors. This observation is of great importance: weak factors are

shrunk less and thus likely to be retained after shrinkage. Following a similar approach

by DeMiguel et al. (2017) and Feng et al. (2017), I propose a two-stage selection procedure

to select and test factors.

2.7 Two-stage selection procedure

This section explains steps to test for factor significance after OWL selection. Since

it is challenging to infer economic testing from OWL estimators, I propose a two-stage

procedure to test for factor significance: in the first stage, OWL selects a sparse number

of factors; in the second stage, a bootstrap testing procedure will be implemented to infer

factor significance.

Considering high correlation between OWL selected factors, I design a bootstrap test

that is robust in collinearity. Instead of testing the slope coefficients by bootstrapping

their standard errors, I bootstrap the null hypothesis, that is each of these factors have

no explanatory power. This method is in line with Harvey and Liu (2017) in which

they use an orthogonal bootstrap method to select factors step by step. However, their

step-wise selection method usually yields very conservative result: only 2 or 3 factors are

tested as significant to explain the cross section of average returns. Instead, I test factor

significance jointly, because I am interested in joint factor inferences.

In particular, suppose I obtain a sparse number of factors from OWL (after the first

stage), I first compute the covariance of survival factors and test assets: let’s denote this

covariance matrix as C. Let µR denote the average returns of test assets. I first regress µR

on C to obtain tstat of estimated slopes and the residual series e. I then draw sub-samples

with replacement from C and e, call them C∗ and e∗. Regress e∗ on C∗, compute and

save t∗stat. Since e is orthogonal to C, t∗stat represents the tstat distribution under the null

hypothesis, that is factors can not explain the correspondent variable. I then compare
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tstat estimated from real data with t∗stat distribution. If tstat exceeds 95 percentile (two

sides) of t∗stat distribution, I then declare the associated coefficient is significant.

3 Simulation and example for application

This section studies the finite sample performance of OWL estimator together with other

benchmarks in a Monte Carlo simulation experiment, where factors can be highly cor-

related. After simulation, I illustrate a simple application of OWL on some well known

datasets.

3.1 Simulation design

Consider K candidate factors, 2K/3 of them are useful factors, that is they are priced,

i.e. b 6= 0, and K/3 of them are useless or redundant factors (b = 0). Within these useful

factors, K/3 are highly correlated, and K/3 are uncorrelated.

Let ρ (K × K) denote the correlation coefficient matrix of the covariance matrix of

asset return and factors C = cov(R, f). Let ρ1, ρ2, ρ3 ∈ (−1, 1) and ρ is divided into 3

blocks such that:

bk1 =


1 . . . ρ1

...
. . .

...

ρ1 . . . 1


︸ ︷︷ ︸

K/3

; bk2 =


1 . . . ρ2

...
. . .

...

ρ2 . . . 1


︸ ︷︷ ︸

K/3

; bk3 =


1 . . . ρ3

...
. . .

...

ρ3 . . . 1


︸ ︷︷ ︸

K/3

and

ρ =


bk1 0

bk2

0 bk3


In bk1 (block 1) the diagonal of matrix are ones, elsewhere are ρ1; similarly for bk2

and bk3 where off-diagonal elements are ρ2 and ρ3, respectively. Then these three blocks

constitute the diagonal direction of matrix ρ, and elsewhere is filled with zeros.

This setting implies three blocks of factors. Within themselves they are correlated

with a correlation coefficient ρ1, ρ2 or ρ3, but factors in different blocks are uncorrelated
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with each other.

I specify the values of ρ1, ρ2 and ρ3 (some are zeros and some are non-zeros), and

randomly generate an N×K matrix using the i.i.d. Gaussian distribution. Then multiply

it with the Choleski decomposition of ρ to obtain the covariance matrix C, denoted as

simC.

I further specify an oracle value for b (risk price). Then I simulate the cross-section

of average returns as µR = simC ∗ b + e, where e is a N × 1 i.i.d. error vector with the

scale about 10% of simC.

Finally, I estimate risk price with simulated data simC and µR using OWL, LASSO,

adaptive LASSO and naive OLS. Then I compare these estimators with the oracle value

of b, pre-specified.

3.2 Simulation result

In the first experiment I simulate an environment where the number of test assets is

abundant (N >> K). Block 1 and 3 are useful factors (oracle value of the risk prices

are non-zeros); block 2 are useless/redundant factors (oracle value of the risk prices are

zeros); and ρ1 = 0.9; ρ2 = 0.9; ρ3 = 0, so useful factors in block 1 and useless/redundant

factors in block 2 are highly correlated and useful factors in block 3 are uncorrelated.

[Figure 1 about here.]

In figure (1), the upper left panel displays the overall plot of risk price estimators

using all methods for all factors. The remaining three panels are plots for each of these

three blocks.

The upper right panel displays the plot of all estimators of useful factors with high

correlation. The bottom left panel displays the plot of all estimators of useless factors

with high correlation. The bottom right panel displays the plot of all estimators of

useful factors without correlation. In each plot, OWL estimator (red) is displayed along

with LASSO, adaptive LASSO, naive OLS estimators and the oracle value of risk prices

(black).

It suggests that OWL estimator can successfully group highly correlated variables by

assigning the same coefficients to them, while other estimations failed to identify this
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feature. Furthermore, OWL estimator has the smallest estimation error and is the most

efficient estimator compared to others. On the contrary, LASSO and adaptive LASSO

neglect factor correlations and yield inefficient estimators. For useless/redundant factors,

OWL and adaptive LASSO successfully set all risk price to zero but LASSO failed to

shrink off all useless/redundant factors. For uncorrelated useful factors, OWL behaves

similarly to LASSO and adaptive LASSO.

In the second experiment, I study the behaviour of OWL where only limited test

assets are available. In particular, N = 25 and K = 15, and all the rest are the same as

in the first experiment.

[Figure 2 about here.]

Figure (2) shows that in limited sample size, OWL replicates the performance in

the first (larger sample size) experiment well, while LASSO and adaptive LASSO suffer

greatly from a smaller sample size: the noise (deviation from the oracle value) of LASSO

and adaptive LASSO estimators has increased more than 10 times compared to the first

experiment.

These two Monte Carlo simulation experiments show that in a highly correlated en-

vironment, LASSO and adaptive LASSO fail to identify any correlations between highly

correlated factors. The presence of correlation also makes these estimators inefficient

(highly volatile). LASSO is also unfit to shrink off useless/redundant factors when fac-

tors are correlated. On the contrary, OWL estimator performs consistently well to identify

highly correlated factors and shrink off useless/redundant factors, both in large and small

sample sizes.

3.3 OWL application: an example

This section illustrates an example of OWL application on some well established datasets.

I choose 12 popular factors, including ’market’, ’momentum’, ’smb’, ’hml’, ’rmw’, ’cma’

(Fama and French (2018)); ’me’, ’ia’, ’roe’ (Hou et al. (2014)), ’qmj’, ’bab’ and ’hmldevil’.

The first six factors are from Kenneth French’s on-line data library, and the last three
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factors are from AQR’s website 4. I use 10 different sets of test portfolios. The first 7 sets

of test portfolios are Fama French’s bi-variate sorted 25 portfolios using different sorting

characteristics; the 8th test portfolio is the 49 industrial portfolio; the 9th test portfolio

is the combined 7 sets of 25 portfolios, amounting to 175 portfolios; the last set of test

portfolios is the combined 175 portfolios and 49 industrial portfolio. All data are from

Kenneth French’s on-line data library.

3.3.1 Preliminary statistics

First of all, I present the correlation coefficient matrix of 12 factors, measured by their

time series and their factor loadings, respectively.

[Figure 3 about here.]

In figure (3), left panel shows the heat map of correlation coefficients of factors mea-

sured by factor time series. High correlation is observed between the well known value

factor ’hml’ and investment factors (’cma’ and ’ia’). ’qmj’ is highly correlated with prof-

itability and size factors. ’momentum’ is negatively correlated with value factors. In the

meanwhile, many other factors exhibit low correlation coefficients.

Right panel shows the heat map of correlation coefficients measured by factor load-

ings. Cochrane (2011) emphasises that ”we want to check whether the mean function

of test assets lines up with the covariance function of factors”, indicating that the factor

correlation measured by its covariance with test assets (factor loadings) really matters,

because testing an asset pricing model usually ends up with testing the regression of

cross-sectional mean returns on factor loadings. Compared to the left panel, high corre-

lation prevails among factors once correlation is measured by factor loadings: more than

half correlation coefficients exceed 0.5 in absolute values.

This finding cautions against the methodologies for testing asset pricing models in a

high dimensional setting where correlation is ignored.

3.3.2 Estimation result

[Figure 4 about here.]

4I thank Lu Zhang for providing the q4 factor data.
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Figure (4) reports the heat map of estimated risk prices by OWL, in which all 12

factors enter as candidate factors in the penalised regression. The horizontal axis lists

10 sets of test portfolios, each column represents the OWL estimation result using a

particular set of test portfolios.

Figure (4) suggests that market factor is a dominating factor, with largest magnitude

in 8 out of 10 test portfolios and second largest in the rest. This is consistent with Harvey

and Liu (2017), in which they employed an orthogonalised bootstrap method to select

factors step-wisely. Second, when using Fama French 25 bi-variate sorted portfolios as test

assets, OWL often selects the same characteristics that are used to sort test portfolios, a

tautology criticised by Harvey et al. (2015). However, the combined 175 bi-variate sorted

portfolios (as test assets, see also Feng et al. (2017)) suggests, when including large sets

of portfolios, the bias towards some particular characteristics vanishes.

This example shows the limitations of using a small set of test portfolios to choose

factors. Following suggestions of Lewellen et al. (2010) and Feng et al. (2017), I will

consider a large set of combined portfolios as test assets in empirical analysis.

4 Empirical analysis

This section applies the two stage select-and-test procedure on 80 anomaly factors to infer

which are priced and can explain the cross section of average returns in stock market. I

first introduce the datasets I consider, followed by a detailed account of the construction

of anomaly factors and test portfolios. I consider value weighted and equal weighted

methods, controlling firm sizes (removing small stocks), to gauge anomaly spread port-

folios. Following a similar line of Feng et al. (2017), I construct pooled bi-variate sorted

portfolios as test assets.

4.1 Data

I use the U.S. stock data from the Center for Research in Security Prices (CRSP) and

Compustat database 5 to construct anomaly variables and test portfolios, because of their

5downloaded from the Wharton Research Data Services
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availability and better data quality. The period spans from January 1980 to December

2017, total 456 months on all NYSE and NASDAQ listed stocks.

I consider 100 firm characteristics initially described in Green et al. (2017) 6, while

deleting characteristics that have more than 40% missing data. Then, for each remaining

characteristic, I sort portfolios into deciles at each month, according to Fama and French

(1992), Fama and French (2015). Mirco stocks, defined as market capitalisation smaller

than the 20 percentile of NYSE listed stocks, are removed. Although micro-stocks only

account for less than 10% of aggregated market capitalisation, they constitute about

56% of all stocks in the database, implying that small stocks should be treated with

caution. Then, anomaly factors are computed as the spread returns between the top

and the bottom decile portfolios. Characteristics that having clustered missing data and

are insufficient to construct decile portfolios at every month will be dropped. Overall, I

obtain 80 anomaly factors 7.

There is a debate in the literature about using either individual stocks or sorted

portfolios as test assets. Harvey and Liu (2017) use individual stocks with bootstrap

method to test for predictability of anomaly factors, and they find only 2-3 anomaly

factors can significantly predict asset returns. Lewellen (2015) employed Fama-MacBeth

to test for anomaly factors with individual stocks. However, others argue that individual

stocks will introduce errors in variables (EIV). When regression is made on estimated

variables, i.e. factor loadings, the pre-estimated factor loadings would incur estimation

errors. Shanken (1992) modified the estimator by introducing the ”Shanken’s correction”

term in the estimator to mitigate EIV. However, empirical work shows that ”Shanken’s

correction” is minimal in small samples. From another stream, Fama and French (2008),

Hou et al. (2014), Feng et al. (2017) advocate sorted portfolios as test assets. Individual

stocks are usually noisy and exhibit outliers, which are the main source of EIV. On the

other hand, sorted portfolios are mean returns of a group of stocks sharing some similar

characteristics, which would mitigate the EIV problem. Hence, using sorted portfolios as

test assets is an alternative way to avoid EIV.

6I am grateful to Prof. Green for providing SAS code to compute firm characteristics. I modified the
SAS code to cope with only CRSP and Compustat database.

7see appendix for a detailed description.
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However, the biggest drawback of using individual stocks stems from missing data

and micro stocks. It is inevitable, over a long period, to have new firms entering and old

firms exiting, that will result in continuous missing data. Discontinuity of data can bias

the estimation of covariance matrix of factors and test assets, which is essential for factor

inference. A possible remedy could be deleting all stocks with any missing data. However,

that will leave only 375 stocks during the period between January 1980 and December

2017, which is insufficient to represent the stock market. A less extreme treatment could

be setting up a threshold for missing data: first, delete stocks with many missing data

while keeping stocks with a few (depending on the threshold) missing data then, when

estimating covariance matrix, delete rows with any missing data. However this treatment

will lead to imprecise estimation of covariance matrix. It is also challenging to implement

in an out-of-sample framework.

On the other hand, using sorted portfolios can circumvent this shortcoming. Portfolios

are formed at each point of time according to certain characteristics, then portfolio returns

are weighted averages of (varying) stocks in each portfolio, that will guarantee continuity

of portfolio returns, hence no missing data problem.

Micro-stocks bring up another concern of using individual stocks as test assets. Small

stocks take up the majority of all stocks while only a few big stocks constitute a large

share of total market capitalisation. If using individual stocks to gauge factor impact, it

is inevitable to distort the market implications. Micro stocks, as long as individual stocks

are concerned for test assets, will dominate the estimation result. Big stocks which have

much larger impact on market price fluctuation will be out-weighted by a large number

of small stocks.

On the other hand, portfolio sorting can circumvent this issue by using value weighted

method, that is, returns of each sorted portfolio can be computed by the weighted average

of stocks returns where the weights reflect their market capitalisations.

Fama and French (1992), Fama and French (2008), Fama and French (2015), used

bi-variate sorting to create the 5 by 5 test portfolios and they have now become popular

choices of test assets. However, Harvey et al. (2015) caution that when only a small set

of sorted portfolios are considered, for instance, the bi-variate sorted 25 portfolios, factor
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selection is biased towards the same characteristics forming test portfolios. Lewellen et al.

(2010) argue that the 25 size and value sorted portfolios are too low as a threshold to

test factors. They recommend adding other portfolios in test assets. Feng et al. (2017)

construct a large set of combined portfolios as test assets. In particular, they single out

’size’ characteristic and combine it with the remaining characteristics to form 5 by 5 bi-

variate sorted portfolios and pool them together. ’Size’ has been widely acknowledge as an

important characteristic in asset pricing literature. Fama and French (1992), Fama and

French (2015), Hou et al. (2014), Carhart (1997) all include the ’size’ and the ’market’

factors in their models. Asness et al. (2018) find size matters while controlling other

variables.

To strike a balance between using sorted portfolios and individual stocks as test as-

sets, I follow Feng et al. (2017) by singling ’size’ out as a common characteristic, together

with the remaining characteristics to form bi-variate sorted 25 portfolios. I drop any test

portfolios which have insufficient stocks (due to missing data) to sort. Finally, I group

them together, which amounts to 1927 test portfolios.

Risk-free rate and market excess returns are downloaded from Kenneth French’s on-

line data library. All anomaly variables are demeaned and scaled to have the same

standard deviation with the market factor.

4.2 Factor correlation

[Figure 5 about here.]

[Figure 6 about here.]

Figure (5) displays the heat map of factor correlation coefficients matrix measured

by their time series. It suggests that there are 16% factors whose correlation coefficients

(absolute value) are greater than 0.5. In particular, beta related characteristics are highly

correlated with factors associated with liquidity, profitability, investment, and other fi-

nancial ratios. Green et al. (2017) excluded beta related factors in candidate factors

because of its high correlation profile with other factors.
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Figure (6) displays the heat map of factor correlation coefficients matrix measured by

factor loadings, which exhibits much higher correlation compared to figure (5): 64% corre-

lation coefficients (absolute value) are greater than 0.5, implying serious multicollinearity

issues if standard Fama-MacBeth regression is employed.

4.3 Which factors matter?

Facing high correlation among factors, I apply the two-stage procedure to select useful

factors from the 80 candidate factors. I first employ OWL to shrink off useless/redundant

factors, obtaining a sparse number of survival factors. In the second stage I use bootstrap

method described in section 2 to test survival factors.

[Table 1 about here.]

Table (1) reports the result of the two-stage procedure to find factors that explain the

cross section of average returns. The first 5 columns are estimated with the full sample,

ranging from January 1980 to December 2017; columns 6-7 report results from 1980 to

2000, and columns 8-9 from 2001-2017. Both the value weighted (vw) and equal weighted

(ew) methods are considered. In order to gauge the impact of small stocks, I consider

three thresholds for micro stocks. Before sorting test portfolios, I screen out stocks with

market capitalisation smaller than 20, 30 or 40 percentile of all NYSE listed stocks. This

table lists all anomaly factors selected by the two-stage procedure in each estimation.

It also reports the ordinal number after each factor selected by OWL (in the bracket),

indicating the importance of each factor (smaller number implies bigger impact).

’size’ (mve) has been selected as the most important factor in most of these estima-

tions, which is not surprising. ’size’ characteristic has multiple entries in forming test

portfolios, thus ’size’ impact prevails in test portfolios. For this reason I exclude ’size’

factor as a competing factor, yet I include it in the table to show that OWL can correctly

identify relevant factors.

Amihud (2002)’s ’illiquidity’ (ill) is the most important factor that drives variations

of test asset returns. Its explanatory power is particularly evident with smaller stocks.

Portfolios sorted with size greater than 20 or 30 percentile (i.e. removing stocks that

are smaller than 20 or 30 percentile) of NYSE listed stocks exhibit higher importance of
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’illiquidity’ (smaller ordinal number after OWL selection) than those with 40 percentile.

That implies small firms face severer liquidity constraints, and demand risk premiums to

compensate for bearing the risk.

’Standard deviation of dollar volume’ (std dolvol) follows ’illiquidity’, becoming the

second most important anomaly factor. ’Standard deviation of dollar volume’ is strongly

correlated with ’illiquidity’. Both are proxies for liquidity risk. Recognising their high

correlation, OWL groups them together by assigning them with similar coefficients. In

the next subsection, I will show that portfolios can achieve high Sharpe ratios by taking

advantage of their correlation.

’Asset growth rate’ (agr) follows ’illiquidity’ and ’standard deviation of dollar volume’

as the third most important anomaly factor. This finding coincides with Hou et al.

(2018)’s new q5 model, in which they add ’asset growth rate’ as a fifth factor after their

famous q4 model (see Hou et al. (2014)). I also find ’asset growth rate’ is more prominent

with smaller stocks, with equal weighted method showing stronger impact of ’asset growth

rate’ on stock returns.

Other anomaly factors that have been selected multiple times include ’beta’, ’beta

squared’ (betasq), ’cash to debt ratio’, and ’percentage change in current ratio’ (pchcur-

rat), which are also related to liquidity risk. Beyond that, ’Return on invested capital’

(roic), and ’return on assets’ (roaq) are profitability related factors and are also significant

to explain the cross section of average stock returns.

Column 6 and 7 report estimations using the 1980-2000 sub-sample and column 8

and 9 report estimations using the 2001-2017 sub-sample. I find liquidity constraint only

appears in the second sub-sample (2001-2017), where liquidity related factors (’baspread’,

’standard deviation of dollar volume’, ’change in quick ratio’, etc...) play an important

role to explain the cross section of average returns. However, in the first sub-sample (1980-

2000) market shows no strong evidence of liquidity related factors to drive asset prices.

On the contrary, ’momentum’ and ’profitability’ are the most important factors during

1980 and 2000. Interestingly, during 1980 and 2000 and with 20-percentile-micro-stocks

excluded, I find ’size’ (mve) is not selected by OWL, which makes it the only exception

from all estimations. This phenomenon is well documented in the literature (see Amihud

(2002), van Dijk (2011) and Asness et al. (2018)): the size effect weakened after its
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discovery in the early 1980s. However, when removing 40 percentile micro stocks, size

effect was evident again, which implies the vanishing of size effect is likely to be caused

by some small ”junk” stocks. When removing these junk stocks, size effect resurfaces

again, which echoes the discovery by Asness et al. (2018): size matters, if you control

your junk.

4.4 Robustness check

In this section, I want to check whether liquidity related factors are robust in explaining

the cross section of average returns of alternative test portfolios formed by different sorting

methods.

First, I apply the uni-variate sorting method to sort all non-micro stocks into decile

portfolios using each 80 characteristics, and combine them together to obtain 800 test

portfolios. Compared to the test portfolio in empirical analysis, all characteristics are

treated equally. In other words, ’size’, like any other anomaly factor, is a candidate

anomaly factor.

Second, I consider bi-variate sorting, but with all possible combinations of 80 charac-

teristics, that is 3240 possible combinations. To reduce the dimension of test portfolios,

I consider the 2 by 2 (instead of 5 by 5) sorting, that is I sort all stocks into high and

low groups where the threshold is the median of each characteristics. I obtain 3240×4,

total 12960 test portfolios.

Third, I consider a similar method in empirical analysis, that is singling out ’size’

as a common characteristic, and use it with the remaining characteristics to form bi-

variate sorted portfolios; however, instead of forming the 5 by 5 portfolios, I form 3 by 3

portfolios.

[Table 2 about here.]

Table (2) reports the two-stage procedure result using four different sets of test assets

(including the one used in empirical analysis). Factors selected by OWL are listed in

descenting order by their coefficient magnitude. First, ’market’ factor is a prominent

factor in all estimations. Second, liquidity related factors (i.e. ’illiquidity’, ’standard

deviation of dollar volume’) are consistently chosen as top anomaly factors to explain
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the cross section of stock returns. Amihud (2002)’s ’illiquidity’ tops ’market’ factor as

the most prominent factor to explain the bi-variate sorted portfolios where all possible

bi-variate combinations are considered.

Table (2) shows that singling out ’size’ to form bi-variate sorted portfolios will not

alter the result that liquidity related factors are primary factors to explain the cross

section of average stock returns.

4.5 Liquidity as a risk factor

Liquidity as a risk source for stocks that commands risk premiums has been documented

extensively in the literature. Pástor and Stambaugh (2003) show that market-wide liq-

uidity is a state variable important for asset pricing. Average returns on stocks with high

sensitivities to liquidity exceed that for stocks with low sensitivities by 7.5%, while con-

trolling for ’market’, ’size’, ’value’ and ’momentum’ factors. Acharya and Pedersen (2005)

unified several empirical findings on liquidity in an equilibrium model, where illiquidity

is modelled by per-share cost of selling security. They decompose liquidity risk premium

into three components: 1) the covariance of individual stock’s illiquidity to the aggre-

gated market illiquidity. That implies an investor requires risk premium for a stock that

is illiquid while the market is illiquid. 2) the covariance between individual stock’s return

and market-wide illiquidity, which is consistent with Pástor and Stambaugh (2003). 3)

the covariance between individual stock’s illiquidity and market returns, which implies

investors are willing to pay a premium for stock that is liquid while the market return is

low.

4.6 Comparison between OWL selected factors and alternatives

In this section, I will investigate the performance of OWL selected factors compared with

some popular benchmarks such as Fama and French (2015) 5 factors and Hou et al. (2014)

q4 factors.

I consider several criteria for in-sample comparison. I first compare Sharpe ratios of

the long-short portfolios given a set of factors throughout the full sample size. Second,

I compare the Hansen-Jagannathan distances of competing factors, which measure how
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far a model deviates from its true one. Third, I consider the cross sectional R2, which

is a conventional measure of model fit. Lastly, I consider the GRS statistic (see Gibbons

et al. (1989)) which is based on model alphas and measures the degree of model misspec-

ification. Test statistics are defined as follow:

SR =
√
µ′fΩ

−1
f µf (16)

HJD =
√

(m−m∗)′E(RR′)−1(m−m∗) (17)

CSR2
OLS = 1− RSS

TSS
(18)

GRS =
T

N

T −N −K
T −K − 1

α′Σ−1α

1 + µ′fΩ
−1
f µf

(19)

where µf is the mean of factors, and Ωf is factor covariance matrix, m − m∗ is the

deviation from an admissible SDF, E(RR′) is the second moment of test asset returns, α

is the intercept of a regression of test assets on a set of factors, and Σ is the covariance

of α.

[Table 3 about here.]

In table (3), I compare the first 3 factors selected by OWL with Fama and French

(1992) 3 factors (FF3); likewise, I then compare the same number of factors selected

by OWL with Carhart (1997) 4 factors , Hou et al. (2014) Q-theory factors, Fama and

French (2015) 5 factors and Fama and French (2018) 6 factor. For robust results, not

only do I consider the dataset constructed following Green et al. (2017), I also compare

authors’ original dataset downloaded from the authors’ websites. 8

Table (3) shows that OWL selected factors outperform benchmarks in all criteria.

Sharpe ratio is between 3 and 5 times that of benchmark models, despite using either

the authors’ own dataset or the 80-anomaly-factor dataset. Note that performance scores

8Note that in order to compute HJ distance and GRS statistics, inverse of covariance matrix is needed,
which requires T > N to obtain non-singular inverse matrix. Under this case, I consider a 2 by 2 sorting
method rather than a 5 by 5 sorting method in the empirical analysis, which brings down the dimension
of N .
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of benchmarks between these two datasets are similar, with Hou et al. (2014) Q-theory

factors differ more than the Fama French factors. A possible explanation is that these

80 anomaly factors are sorted following Fama and French (1992) and Fama and French

(2015), while Hou et al. (2014) employ a different sorting method. However, despite

the score difference between two datasets while computing Hou et al. (2014)’s Q-theory

factors, they are both underperformed by OWL selected factors. Incremental score by

including more factors is minimal after 4 factors. Sharpe ratio, CSR R2, and GRS

statistics reach a plateau when OWL4 is considered. Including more factors increases

GRS statistics (degree of model misspecification) and the incremental gain in Sharpe

ratio and cross sectional R2 are also minimal after OWL4. HJ distance is a measure

of model misspecification. First, note that HJ distances of benchmarks using the 80-

anomaly-factor dataset are smaller than that using the authors’ own datasets, indicating

the 80-anomaly-factor dataset is a better candidate to describe the test asset returns.

Compared to benchmarks, OWL selected factors exhibit smallest HJ distances in all

comparisons. Cross-sectional R2 of OWL selected factors is typically 20% to 40% higher

than benchmarks. The incremental score between ’owl3’ and ’owl4’ is highest, around

35%, while the incremental score between ’owl4’ and ’owl5’ (and between ’owl5’ and

’owl6’) is less than 1%. GRS statistic of OWL selected factors is around 40% to 50%

smaller than that in benchmarks using either dataset.

Table (3) shows that OWL selected factors have superior in-sample performance to

benchmarks. In the next subsection, I will investigate their out-of-sample performance.

4.7 Out-Of-Sample Sharpe ratio

In this subsection, I will evaluate the performance of OWL selected factors in an out-of-

sample (OOS) context. OOS method is less prone to data mining and gains robustness

against in-sample overfit. Freyberger et al. (2017) point out that OOS exercise ensures

that in-sample overfit does not explain superior performance. Although the 5-fold cross

validation method used for evaluating OWL hyper parameters 9 ensures an OOS metric

by construction, the choice of factors are based on the overall sample. It is possible that

factors selected to explain the cross-sectional returns for one period do not hold well for

9use 4 folds to estimate the model and 1 fold to evaluate the model performance OOS.
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another period.

I follow a similar procedure of Freyberger et al. (2017) to form hedge portfolios using a

rolling window scheme, to predict returns of each test assets, that is the bi-variate sorted

portfolios, OOS. Rolling window size is 120 months (10 years). Specifically, at the end

of the estimation window, I regress each test asset on factors selected by the two-stage

procedure, but one period back. For instance, at time t, I regress each test asset return

from t − 120 − 1 to t on selected factors from t − 120 − 2 to t − 1, and obtain β̂. I

then forecast each test asset’s next period return (at t+ 1) by multiplying β̂ and selected

factors at t. I then sort stocks by their predicted returns into decile portfolios. I then

long the top decile and short the bottom decile. At the next period (t+ 1), when returns

are realised, I can compute the spread portfolio return. Then roll the window one period

forward and repeat the steps until the end of period. In the end I compute the Sharpe

ratio based on the OOS returns.

For the fact that OWL selects some different factors for some sub-periods, I also

evaluate the OOS performance for two sub-samples. OWL selected factors may differ in

each sub-period. In particular, in the 1980 to 2000 sub-sample, 10 the top 3 OWL selected

factors are ’momentum’, ’return on asset’ and ’sales cash ratio’ which are distinguished

from other periods. The second sub-sample estimation suggests ’illiquidity’ related factors

are most important to explain the cross section of average returns.

[Table 4 about here.]

Table 4, panel A reports that annualised OOS Sharpe ratio of all stocks is 3.1340,

where OWL selected factors are ’illiquidity’ related factors. But when excluding small

stocks, OOS Sharpe ratio declines drastically: excluding stocks smaller than 20 percentile

of NYSE listed stocks, OOS Sharpe ratio drops by around half; and drops a further third

when excluding stocks smaller than 40 percentile of NYSE listed stocks. This finding is

consistent with Freyberger et al. (2017) and Lewellen (2015).

Panel B shows that in the first sub-sample, where prevailing factors are ’momentum’

and ’profitability’ related factors, annualised OOS Sharpe ratio is 3.7603 for all stocks.

10 excluding stocks whose size are less than 20 percentile of NYSE listed stocks
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OOS Sharpe ratios for stocks larger than 20 or 40 percentile of NYSE listed stocks did

not drop as much as in the full sample, which are 1.9714 and 1.8294 respectively.

Panel C shows in the second sub-sample, where ’illiquidity’ related factors mainly

drive the cross-sectional asset returns, annualised OOS Sharpe ratio is 3.5763 for all

stocks, and declines even less for larger stocks: 2.2309 and 2.3701 for stocks larger than

20 and 40 percentile of NYSE listed stocks, respectively.

Prevailing factors may change over time. A shift in economy may drive factors’

contribution to explaining the cross section of stock returns varying. ’Profitability’ factors

drive asset returns in the first sub-period and ’liquidity’ factors dominate the second sub-

period, after the 2000 internet bubble burst. In a full sample estimation, prevailing factors

in the first sub-sample are suppressed by ’liquidity’ related factors which are essential to

explain the second half of sample. That explains why the OOS Sharpe ratio increases

dramatically after splitting into two sub-samples.

5 Conclusion

In the zoo of factors, traditional methods to find useful factors that can explain the cross

section of stock average returns face tremendous challenges. Correlation in the factor

zoo makes the challenge even harsher. Yet, factor correlation should not be neglected,

as it causes severe consequences in standard analytical tools. For instance, (Adaptive)

LASSO ignores factor correlation and picks up a small set of highly correlated variables

randomly while discarding the rest. LASSO also fails to shrink off useless/redundant

factors when factors are highly correlated. In a high-dimensional setting, Fama-MacBeth

faces multicollinearity issues when regressing on factor loadings. Among 80 anomaly fac-

tors I considered, I find more than 60% are highly correlated (absolute value of correlation

coefficient is greater than 0.5) when investigating factor loadings.

I introduce a newly developed machine learning tool, the ordered and weighted L1

norm (OWL) regularisation, which is designed to cope with high correlations among

explanatory variables. OWL groups together highly correlated variables by assigning

them with similar coefficients.
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Empirical analysis shows that ’illiquidity’ related factors play an important role in

explaining the cross section of average stock returns. A small set of (3 or 4) OWL

selected factors, usually highly correlated, explains a bulk of the cross section of average

returns, demonstrating strong Sharpe ratios (in-sample and out-of-sample), high cross

sectional R2, small HJ distance and GRS statistics. Out-of-sample Sharpe ratio of hedge

portfolios formed by using OWL selected factors as predictors is around 3.5 (annualised)

for all stocks, and above 2.2 for non-micro stocks in the past two decades.

However, it is worth stressing the importance of using sorted portfolios rather than

individual stocks as test assets. Many papers have argued that error-in-variables (EIV)

will bias the result of testing a hypothesis that some particular factors are priced if

individual stocks are used. For that, Shanken (1992) proposed the Shanken’s correction.

However, there are two other major shortcomings while using individual stocks as test

assets.

First, micro stocks (market capitalisation smaller than 20 percentile of NYSE listed)

will dominate the estimation result. Although micro stocks comprise less than 10 percent

of all stocks (all NYSE and NASDAQ listed stocks) in terms of market capitalisation,

they constitute 56% of all stocks. For that reason, if individual stocks are used, estimation

will primarily explain only a small fraction of the market value.

Second, individual stocks face tremendous challenges of missing data. The typical

treatment is to delete stocks with many missing data. For example, deleting stocks with

any missing data will lead to only a handful of stocks surviving over a long period. Al-

ternatively, a threshold of missing data is set to determine which stocks to keep, for

instance, deleting stocks with more than 20% missing data. Then when evaluating his-

torical covariance matrix, delete rows with any missing data. This treatment, however,

would have extra challenge within an out-of-sample estimation framework. With a smaller

(than full sample) rolling window, after deleting rows with missing data, the estimation

of covariance matrix is inaccurate, and very often leads to non-invertible covariance ma-

trix. Sorted portfolios, on the contrary, bypass all the shortcomings of individual stocks.

Sorting portfolios at each point of time avoids missing data issues. Before sorting, mi-

cro stocks can be removed (or set up thresholds to control the effect of small stocks) to

mitigate the issue with small stocks. Additionally, value weighted method can further
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alleviate small stock impact. Fama and French (2008) has already shown how sorted

portfolios can alleviate the error-in-variables.

Finally, note that the purpose of this paper is not to find a parsimonious asset pricing

model (since OWL selected factors are usually highly correlated), but to identify a set

of sparse factors to explain the cross section of average returns. With that in mind, my

procedure is particularly useful for factor investing: OWL can identify correlated factors

that jointly drive stock returns, which can be utilised to form portfolio strategies. Asness

et al. (2013) find ’momentum’ and ’value’ are negatively correlated, and this correlation

can be further exploited to achieve high-performance portfolio strategies. DeMiguel et al.

(2017) use firm characteristics as factors to form mean variance efficient portfolios, that

is, instead of looking at the average returns, they investigate jointly the first two moments

of asset returns. DeMiguel et al. (2014) employed a VAR(1) model to explore the cor-

relation among stocks, and find consistent superior out-of-sample performance. Ordered

and weighted L1 norm regularisation is a general tool useful for sparsity selection. It

can be extended to explore portfolio selection strategies, where individual stock weights

are regularised by OWL. Considering that correlations among stocks can be harnessed

to achieve superior portfolio performance (see DeMiguel et al. (2014)), OWL will be

particularly useful for forming portfolio selection strategies.
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6 Appendix

6.1 A1: Anomaly names

[Table 5 about here.]

6.2 A2: FISTA algorithm

Algorithm 1: FISTA for OWL

1 Input: µR, C, ω

2 Output: b̂ in (8)

3 Initialisation:b0 = b̂OLS, t0 = t1 = 1, u1 = b0, k = 1, η ∈ (0, 1), τ0 ∈ (0, 1/L) a

4 while some stopping criterion not met do

5 τk = τk−1;

6 bk = ProxΩω(uk + τ ∗ C ′ ∗ (µR − Cb))

7 while 1
2
||µR − Cbk||22 > Q(bk, uk)

b do

8 τk = η ∗ τk;

9 bk = ProxΩω(uk + τ ∗ C ′ ∗ (µR − Cb))

10 end

11 tk+1 = (1 +
√

1 + 4t2k)/2

12 uk+1 = bk + tk−1

tk+1
(bk − bk−1)

13 k ← k + 1

14 end

15 Return: bk−1

a L is a Lipschitz constant.
b Q(bk, uk) = 1

2 ||µR − Cuk||
2
2 − (bk − uk)′C ′(µR − Cuk) + 1

2τk
||bk − uk||22
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6.3 A3: proof of Theorem (2.1)

The proof of theorem (2.1) relies on the Pigou-Dalton-transfer and directional derivative

lemma.

Lemma 6.1 (Pigou-Dalton-Transfer(P.D.T)). A vector x ∈ Rp
+, and its two components

xi, xj such that xi > xj; let ε ∈ (0, (xi − xj)/2), zi = xi − ε, zj = xj + ε, and zk = xk,

∀k 6= i, j, then

Ωω(x)− Ωω(z) ≥ ∆ωε

where Ωω(.) is the OWL norm defined in 8, and ∆ω is the smallest gap in weighting vector

ω.

Lemma 6.2. The directional derivative of a real valued convex function f at x ∈ dom(f),

f(x) 6=∞, is:

f ′(x, u) = lim
α→0+

[f(x+ αu)− f(x)]/α

then x∗ ∈ argmin(f), if and only if f ′(x∗, u) ≥ 0 for any u.

Denote the objection function as Q = 1
2
(µR − Cb)′WT (µR − Cb) + Ωω(b). let b̂ be a

solution of (8).

Suppose

σfi−fj <
λ2

||µR||2||σR||2

and

b̂i 6= b̂j

assume b̂i > b̂j without loss of the generality (we want to find a condition that this

assumption is violated, and thus we have a contradiction between the implied condition

and the assumption).

The directional derivative of Q at b̂ with ui = −1, uj = 1, uk = 0,∀k 6= i, j, is:

Q′(b̂, u) = lim
α→0+

||µR − Cb̂+ α(Ci − Cj)||22 − ||µR − Cb̂||22
2α

+ lim
α→0+

Ωω(b̂+ αu)− Ωω(b̂)

α

= (µR − Cb̂)(Ci − Cj) + lim
α→0+

Ωω(b̂+ αu)− Ωω(b̂)

α
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Apply the Pigou-Dalton-transfer on the OWL norm, we have:

Q′(b̂, u) ≤ (µR − Cb̂)(Ci − Cj)− lim
α→0+

∆ωα

α

= (µR − Cb̂)(Ci − Cj)−∆ω

= (µR − Cb̂)(Ci − Cj)− λ2

In the linear weighting scheme of OWL, each neighbouring weights has the same distance,

that is ∆ω = λ2.

Using Cauchy-Schwarz inequality that is for any vector u and v, and < u, v > is the

inner product of vector u and v, we have:

| < u, v > | ≤ ||u||2||v||2

And since µR − Cb̂ is a pricing error, we can establish ||µR − Cb̂||2 ≤ ||µR||2. We have:

Q′(b̂, u) ≤ ||µR − Cb̂||2||Ci − Cj||2 − λ2

≤ ||µR||2||cov(R, fi − fj)||2 − λ2

Using the Cauchy-Schwarz inequality again on the covariance term:

Q′(b̂, u) ≤ ||µR||2||σR||2σfi−fj − λ2

≤ 0

which violates the directional derivative lemma. Hence there is a contradiction. So if

b̂ is an optimiser of Q(b̂, u) we must have:

b̂i = b̂j
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Figure 1. N = 200, K = 15, ρ1 = 0.9, ρ2 = 0.9, ρ3 = 0
This figure reports the plot of OWL estimator along with other benchmark estimators. There are 200

test assets, 15 candidate factors, which are divided into 3 equal block, where their correlation within

each blocks are ρ1 = 0.9, ρ2 = 0.9, ρ3 = 0. The upper left panel displays the plots of risk price

estimators using all methods for all factors. The remaining three panels are detailed plot for each of

these three blocks. The upper right panel displays the plot of all estimators of useful factors that

exhibit high correlation. The bottom left panel displays the plot of all estimators of useless factors that

are also highly correlated. The bottom right panel displays the plot of all estimators of useful factors

but exhibits no correlation. In each plot, OWL estimator (red) is displayed along with LASSO,

adaptive LASSO, native OLS estimators and the oracle value of risk prices (black).
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Figure 2. N = 25, K = 15, ρ1 = 0.9, ρ2 = 0.9, ρ3 = 0
This figure reports the plot of OWL estimator along with other benchmark estimators. There are 25

test assets, 15 candidate factors, which are divided into 3 equal block, where their correlation within

each blocks are ρ1 = 0.9, ρ2 = 0.9, ρ3 = 0. The upper left panel displays the plots of risk price

estimators using all methods for all factors. The remaining three panels are detailed plot for each of

these three blocks. The upper right panel displays the plot of all estimators of useful factors that

exhibit high correlation. The bottom left panel displays the plot of all estimators of useless factors that

are also highly correlated. The bottom right panel displays the plot of all estimators of useful factors

but exhibits no correlation. In each plot, OWL estimator (red) is displayed along with LASSO,

adaptive LASSO, native OLS estimators and the oracle value of risk prices (black).
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Figure 3. Correlation of factors
This figure reports the correlation coefficient matrix of factors. Left panel shows the heat map of

correlation of factors measured by their time series; right panel shows the factor correlation measured

by the covariance function with test assets (factor loadings). The test assets are the Fama-French 25

bi-variate sorted portfolios using size and value as sorting characteristics.
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Figure 4. OWL estimation result
This figure reports OWL estimation on 10 sets of test assets, each column represents one set of test

portfolios. Each row represents estimates of one particular factor. The first 1-7 sets of test assets

are bi-variate sorted 25 portfolios using different sorting characteristics. the 8th test portfolio is the

49 industrial portfolio, the 9th test portfolio is the combined 7 sets of 25 portfolios, amounting 175

portfolios, the last set of test portfolio is the combined 175 portfolios and 49 industrial portfolio. All

data are from Kenneth French’s on-line data library. The estimates of risk prices are presented in head

map where scale of coefficients maps to the scale of colours bar. The light blue exhibits at large area of

the matrix are zeros.
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Figure 5. Factor correlation measured by times series
This heat map displays the correlation coefficients of all 80 anomaly factors, measured by factor times

series from January 1980 to December 2017. Dark red or deep blue indicates of high correlation (positive

or negative), while light colours indicate of low correlation.
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Figure 6. Factor correlation measured by factor loadings
This heat map displays the correlation coefficients of all 80 anomaly factors, measured by factor loadings,

which is the covariance function between 80 anomaly factors and 1927 test portfolios. Dark red or deep

blue indicates of high correlation (positive or negative), while light colours indicate of low correlation.
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Table 1. Robust estimation of Two-step selection procedure

This table reports the two-stage select-and-test procedure to find anomaly factors that explains the cross section of average stock returns. I consider

the full sample size from 1980 to 2017 and two sub sample sizes breaks on year 2000. equal weighted (ew) and valued weighted (vw) methods are both

considered. Three measures of micro stock impact are employed: I remove stocks that is smaller than 20 (30 and 40 ) percentile of NYSE listed stocks.

Within each estimation I list all selected factors, where in the bracket is the ordinal number it selected by OWL (smaller means more important).

Sample size full full full full full 1980:2000 1980:2000 2001:2017 2001:2017
Weighting vw vw vw ew ew vw vw vw vw
Micro stock 20 prctile 30 prctile 40 prctile 20 prctile 40 prctile 20 prctile 40 prctile 20 prctile 40 prctile

# selected
agr 5 agr (8) agr (8) agr (5) agr (4) agr (5)
baspread 1 baspread (7) baspread (4)
beta 2 beta (1) beta (1)
betasq 3 betasq (4) betasq (2) betasq (2)
cash 3 cash (6) cash (7) cash (6)
cashdebt 4 cashdebt (6) cashdebt (2) cashdebt (7) cashdebt (2)
dolvol 3 dolvol (10) dolvol (6) dolvol (6)
egr 3 egr (4) egr (3) egr (9)
ill 7 ill (2) ill (2) ill (6) ill (2) ill (5) ill (2) ill (6)
invest 2 invest (7) invest (10)
mom12m 1 mom12m (3)
mom6m 2 mom6m (1) mom6m (4)
mve 8 mve (1) mve (1) mve (1) mve (1) mve (3) mve (1) mve (1) mve (5)
pchcapx ia 1 pchcapx ia (5)
pchcurrat 4 pchcurrat (4) pchcurrat (3) pchcurrat (9) pchcurrat (4)
pchquick 2 pchquick (11) pchquick (4)
retvol 1 retvol (3)
roaq 2 roaq (2) roaq (7)
roic 3 roic (5) roic (7) roic (5)
salecash 1 salecash (3)
saleinv 1 saleinv (5)
sp 1 sp (6)
std dolvol 6 std dolvol (3) std dolvol (5) std dolvol (4) std dolvol (3) std dolvol (7) std dolvol (3)
stdcf 1 stdcf (7)
turn 1 turn (8)
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Table 2. OWL estimation using different test portfolios

Panel A: Decile portfolios / uni-variate sorting

mkt dolvol ill std dolvol mve ia

0.072628 -0.02676 0.025792 0.0062255 -0.005078

Panel B: 2 by 2 bi-variate sorted portfolios using all combination of 80 characteristics

ill mkt dolvol mve bm

0.050849 0.045298 -0.01955 -0.004 0.0004368

Panel C: 3 by 3 bi-variate sorted portfolios using ”size” and remaining characteristics

mkt mve ill std dolvol pchcurrat cashdebt

0.098621 0.066555 0.045616 0.035292 -0.029545 -0.013478

Panel D: 5 by 5 bi-variate sorted portfolios using ”size” and remaining characteristics

mve mkt ill std dolvol pchcurrat roic

0.1189 0.1015 0.0987 0.0491 -0.0327 -0.0198
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Table 3. Comparison between OWL selected factors and alternatives

’owln’ indicates the first n factors selected by OWL using VW,excluding micro
stocks. ’*’ indicates using the author’s own data set. ’SR’ and ’CSR2’ are using
the 1927 bi-variate sorted portfolios with 5 by 5 sorting. ’HJ’ and ’GRS stat’
are using 2 by 2 sorting to enable invertible covariance matrix.

SR HJ CSR2
ols GRS stat

owl3 1.0486 21.6959 0.3984 5.2038
FF3 0.1819 22.2079 0.1116 11.0327
FF3* 0.2137 23.1159 0.1569 9.0409

owl4 1.0616 21.6958 0.5384 5.1939
Carhart 0.1903 22.2036 0.1317 10.9881
Carhart* 0.2881 23.0676 0.1606 8.6685
Q-theory 0.1905 22.1539 0.3302 11.1928
Q-theory* 0.4211 22.9701 0.1762 7.9677

owl5 1.0616 21.5298 0.542 5.2924
FF5 0.2038 22.1535 0.3379 11.0664
FF5* 0.352 23.0554 0.242 8.5287

owl6 1.0665 21.4658 0.5431 5.6632
FF5+mom 0.2117 22.1469 0.3398 11.0304
FF5+mom* 0.3767 23.0261 0.2421 8.3609
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Table 4. Out-of-sample Sharpe ratio of OWL selected factors

This table reports the out-of-sample (OOS) Sharpe ratio of portfolios using a rolling window scheme.
Rolling window size is of 120 months, at the end of estimation window, I regress each test asset

(bi-variate sorted portfolios) on factors selected by the two-stage procedure, but one period back.
Suppose at time t, I regress each test asset return from t− 120− 1 to t on selected factors from

t− 120− 2 to t− 1, and obtain estimated β. I then forecast each test asset’s next period return (at
t+ 1) by multiply estimated β and selected factors at t. I then sort test assets by their predicted

returns into decile portfolios, I long the top decile and short the bottom decile, at next period (t+ 1)
when returns are realised, I can compute the OOS portfolio returns and its Sharpe ratio. Panel A

reports the full sample estimation. Panel B and Panel C reports two sub-sample estimations.

Panel A

Sample 1980:01 - 2017:12
OOS period 1990:01 - 2017:12
Stocks All stocks >20 prctile >40 prctile
Annualised OOS SR 3.1340 1.2086 0.8757

Panel B

Sample 1980:01 - 2000:12
OOS period 1990:01 - 2000:12
Stocks All stocks >20 prctile >40 prctile
Annualised OOS SR 3.7603 1.9714 1.8294

Panel C

Sample 2001:01 - 2017:12
OOS period 2011:01 - 2017:12
Stocks All stocks > 20 prctile > 40 prctile
Annualised OOS SR 3.5763 2.2309 2.3701
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Table 5. Anomaly factors and their acronyms

Acronym Firm Characteristics Acronym Firm Characteristics

’absacc’ absolute accruals ’mom1m’ 1 month momentum
’acc’ working capital accruals ’mom36m’ 36 month momentum
’aeavol’ abnormal earnings announcement volume ’mom6m’ 6 month momentum
’agr’ asset growth ’ms’ financial statement score
’baspread’ bid-ask spread ’mve’ size
’beta’ beta ’mve ia’ industry adjusted size
’betasq’ beta squared ’nincr’ number of earnings increases
’bm’ book-to-market ’operprof’ operating profitability
’bm ia’ industry adjusted book-to-market ’pchcapx ia’ i.a. %change in capital expenditures
’cash’ cash holding ’pchcurrat’ % change in current ratio
’cashdebt’ cash flow to debt ’pchdepr’ % change in depreciation
’cashpr’ cash productivity ’pchgm pchsale’ % change in gross margin - %change in sales
’cfp’ cash flow to price ratio ’pchquick’ %change in quick ratio
’cfp ia’ industry adjusted cfp ’pchsale pchinvt’ % change in sale - % change in inventory
’chatoia’ industry adjusted change in asset turnover ’pchsale pchrect’ % change in sale - % change in A/R
’chcsho’ change in share outstanding ’pchsale pchxsga’ % change in sale - % change in SG&A
’chempia’ industry adjusted change in employees ’pchsaleinv’ % change in sales-to-inventory
’chinv’ change in inventory ’pctacc’ percent accruals
’chmom’ change in 6-month momentum ’pricedelay’ price delay
’chpmia’ industry adjusted change in profit margin ’ps’ financial statement score
’chtx’ change in tax expense ’quick’ quick ratio
’cinvest’ corporate investment ’retvol’ return volatility
’currat’ current ratio ’roaq’ return on assets
’depr’ depreciation ’roavol’ earning volatility
’dolvol’ dollar trading volume ’roeq’ return on equity
’dy’ dividend to price ’roic’ return on invested capital
’ear’ earnings announcement return ’rsup’ revenue surprise
’egr’ growth in common shareholder equity ’salecash’ sales to cash
’ep’ earnings to price ’saleinv’ sales to inventory
’gma’ gross profitability ’salerec’ sales to receivables
’grcapx’ growth in capital expenditure ’sgr’ sales growth
’grltnoa’ growth in long term net operating assets ’sp’ sales to price
’hire’ employee growth rate ’std dolvol’ volatility of liquidity (dollar trading volume)
’idiovol’ idiosyncratic return volatility ’std turn’ volatility of liquidity (share turnover)
’ill’ illiquidity ’stdacc’ accrual volatility
’invest’ capital expenditure and inventory ’stdcf’ cash flow volatility
’lev’ leverage ’tang’ debt capacity/firm tangibility
’lgr’ growth in long term debt ’tb’ Tax income to book income
’maxret’ max daily return ’turn’ share turnover
’mom12m’ 12 month momentum ’zerotrade’ zero trading days
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