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Abstract

This paper shows that stocks’ CAPM alphas are negatively related to CAPM

betas if investors demand compensation for negative skewness. Thus, high (low)

beta stocks appear to underperform (outperform). This apparent anomaly merely

reflects compensation for residual coskewness ignored by the CAPM. Empirically,

we find that option-implied ex-ante skewness is strongly related to ex-post resid-

ual coskewness and alphas. Beta- and volatility-based low risk anomalies are

largely driven by a single principal component, which is in turn largely explained

by skewness. Controlling for skewness renders the alphas of betting-against-beta

and -volatility insignificant.
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1 Introduction

Empirical findings that low-beta stocks outperform high beta stocks and that (idiosyncratic)

volatility negatively predicts equity returns have spurred a large literature on ‘low risk anoma-

lies’ (e.g., Haugen and Heins, 1975; Ang et al., 2006b; Baker et al., 2011; Frazzini and Peder-

sen, 2014). This paper shows that the returns to trading such anomalies can be rationalized

when accounting for the skewness of equity returns, which is ignored by standard measures

of market and idiosyncratic risk.

Our theoretical analysis starts from a generic arbitrage-free economy in which investors

demand a premium for stocks that exhibit negative coskewness (e.g., Kraus and Litzenberger,

1976; Harvey and Siddique, 2000). We show that the standard CAPM systematically mises-

timates a firm’s market risk because it does not explicitly account for return coskewness. The

resulting bias is contained in the CAPM pricing errors and leads to predictable excess returns

relative to the CAPM, i.e. to alphas, that are directly connected to the firm’s coskewness.

High-beta and high volatility stocks have more highly (i.e. less negatively) coskewed CAPM

residuals than low-beta and low volatility stocks. Hence, the alphas of betting-against-risk

strategies do not reflect anomalous returns but merely compensation for coskewness, and we

document precisely the same pattern in empirical data on low risk anomalies (LRAs). We

then employ an asset pricing model that uses the market as systematic risk factor, nests

the standard CAPM as an approximation, but also allows for higher moments of the return

distribution. With this model, we simulate (i) a world with a CAPM pricing kernel and find

no LRAs, (ii) a skew-aware world and find that LRAs appear and are driven by coskewness,

and (iii) a world where all moments higher than skewness are also accounted for, and we find

that these higher moments contribute much less towards explaining LRAs. These simula-

tion results suggest that skewness is the main driver of LRAs. Importantly, the model also

demonstrates that there is a direct link between a firm’s ex-ante skewness and its realized

coskewness. This result motivates our empirical approach of using equity option-implied firm

ex-ante skewness to construct skewness factors for our study of LRAs.

We establish our empirical results for a cross-section of approximately 5,000 US firms for

the period from January 1996 to August 2014, covering all CRSP firms for which data on

common stock and equity options are available. To comprehensively capture asymmetries

in the return distribution, we compute three measures of ex-ante skewness from portfolios

of out-of-the-money (OTM) options: upper skewness from OTM call options, covering the

right part of the distribution; to account for the left part of the distribution, we compute

lower skewness from a portfolio that is short in OTM put options, and hence by definition
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negative; total skewness, which is the sum of upper and lower skewness. Thus, total skewness

becomes more negative, the more expensive put options are relative to call options, i.e. if

investors are willing to pay high premia for protection against downside risk.

Our empirical analysis starts by showing that in the data ex-ante skewness is related to

residual coskewness and alphas in the same way as in our simulated skew-aware world: The

more extreme a firm’s ex-ante skewness, the higher its residual coskewness and the lower

its CAPM alpha. The results are almost identical when we compute alphas and residual

coskewness relative to the Fama-French three factor model (FF3, Fama and French, 1993).

When we additionally control for momentum (FF4, following Carhart, 1997), the results

become quantitatively less pronounced but the qualitative patterns remain the same for

lower and upper ex-ante skewness. These findings suggest that ex-ante skewness is linked

to residual coskewness and alphas in a way that is consistent with skew-aware asset pricing

and empirically not captured by standard risk factors.

Having established that ex-ante skewness is a forward-looking proxy for residual coskew-

ness, we study the main prediction of our model: Controlling for skewness should eliminate

positive alphas and negative residual coskewness of beta- and volatility-related LRAs. Since

the different anomalies have been established as mostly unrelated asset pricing puzzles in

the literature, we proceed in three steps. First, we show that the anomalies based on CAPM

betas, idiosyncratic volatility, and options-implied variance all have a common driver, using

principal component analyses of anomaly returns. We find that the first principal component

explains more than 90% of the variation in anomaly excess returns and more than 70% of

the variation in FF4 residual returns. Second, we show that the first principal component is

related to the returns of skewness factors, constructed from decile portfolios sorted by dif-

ferent measures of firms’ ex-ante skewness. When we regress the first principal component

on skew factor returns, we find R2s of up to 95% for excess returns and up to 80% for FF4

residual returns. These results provide strong evidence that LRAs have a common driver

which is driven by skewness.

Third, we reconsider LRAs when controlling for skewness. Using several specifications

of skewness factors, we find that anomaly alphas decrease substantially and are not statis-

tically different from zero. For instance, using our most flexible specification, we find for

betting-against-beta that the CAPM-alpha drops from 125 to 33 basis points per month,

the FF3-alpha from 109 to 21 basis points, and the FF4-alpha from 73 to 21 basis points.

Furthermore, all alphas become statistically insignificant. For all anomalies, the reduction

in alphas goes in lockstep with a reduction in the strategies’ negative coskewness. These

results suggest that controlling for ex-ante skewness indeed renders alphas insignificant be-
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cause it captures coskewness risk. This is confirmed by cross-sectional regressions of alphas

on residual coskewness for 80 beta- and volatility-sorted portfolios. Without controlling for

skewness, the regression R2s are 73%, 73%, and 48% when using CAPM-, FF3-, and FF4-

alphas and residual coskewness, respectively. Once we control for skewness, the R2 for the

CAPM-based regression drops to 29%, for the FF3- and FF4-based regressions the R2s drop

to zero.

In essence, our theoretical and empirical results imply that empirical patterns labeled as

‘low risk anomalies’ may not necessarily pose asset pricing puzzles. Taking into account that

stock returns exhibit higher moments, our findings suggest that the CAPM beta may not

be a sufficient metric to measure a firm’s market risk, and that equity returns - reflecting

the firm’s true market risk - may only appear anomalous when benchmarked against the

CAPM. These arguments also provide an understanding for the seemingly anomalous rela-

tions of (idiosyncratic) volatility to stock returns. Our results provide evidence that all these

empirical patterns can be directly connected to skewness.

Various robustness checks confirm our findings and corroborate our conclusions. For

instance, we show that controlling for skewness also leads to a substantial decrease in the

alpha of the BaB-factor returns of Frazzini and Pedersen (2014), even though their factor is

constructed from a broader cross-section that does not require options data. Other checks

verify that our results are robust to variations in the portfolio-weighting schemes, including

other control factors, and over subsample periods. We also provide preliminary evidence for

a time-series prediction of our model, namely that alphas of betting-against-beta/volatility

strategies should be related to the skewness of the market. Finally, we show that the model-

implied relations between ex-ante skewness and credit spreads are strongly supported by

empirical data using credit ratings and CDS spreads. Taken together with our equity results,

our findings may also provide new insights on the ‘distress puzzle’.

Related Literature. While the capital asset pricing model (CAPM, see Sharpe, 1964;

Lintner, 1965; Mossin, 1966) postulates a positive relation between beta and return, there

is a large body of research documenting that the empirical relation is flatter than implied

by the CAPM or even negative. Early studies providing such evidence and attempting to

explain the empirical failure of the CAPM include Brennan (1971), Black (1972), Black et al.

(1972), and Haugen and Heins (1975). Recent research confirms these puzzling patterns. Ang

et al. (2006b, 2009) show that (idiosyncratic) volatility negatively predicts equity returns and

that stocks with high sensitivities to aggregate volatility risk earn low returns. While Fu

(2009) finds that the sign of the relation between idiosyncratic risk and returns depends
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on the specific risk measure employed, other papers argue that a negative relation can be

understood when accounting for leverage (e.g. Johnson, 2004) or differences in beliefs and

short-selling constraints (e.g. Boehme et al., 2009). Related, Stambaugh et al. (2015) argue

that the sign of the relation between idiosyncratic risk and returns depends on whether stocks

are over- or underpriced and that arbitrage asymmetry explains why the overall relation is

negative. Campbell et al. (2017) show that the low returns of stocks with high sensitivities

to aggregate volatility risk are consistent with the intertemporal CAPM (Campbell, 1993)

that allows for stochastic volatility.

To rationalize the profitability of betting against beta (BaB) strategies, Frazzini and

Pedersen (2014) build on the idea of Black (1972) that restrictions to borrowing affect the

shape of the security market line (SML). They present a model where leverage constrained

investors bid up high-beta assets which in turn generate low risk-adjusted returns. Jylhä

(2017) provides further evidence for the role of leverage constraints by showing that the

SML-slope is connected to margin requirements. Baker et al. (2011) argue that institutional

investors’ mandates to beat a fixed benchmark discourages arbitrage activity and thereby

contributes to the anomaly. Building on their insights, Wang (2014) claims that mandated

investors with financial constraints contribute to the beta- but mitigate the idiosyncratic

volatility-anomaly. Hong and Sraer (2016) present a model with short-sale constrained in-

vestors in which high beta assets are more prone to speculative overpricing because they

are more sensitive to macro-disagreement. Bali et al. (2011) find that accounting for the

lottery characteristics of stocks reverses the relation between idiosyncratic volatility and

equity returns, and Bali et al. (2017) argue that the BaB anomaly is consistent with in-

vestors’ preference for lottery stocks. Other papers study the properties of BaB returns,

e.g., Baker et al. (2014) decompose these returns into micro and macro components. The re-

sults of Novy-Marx (2016) suggest that the performance of LRA-strategies is linked to firms’

size, profitability, and book-to-market. Moreover, recent evidence suggests similar patterns

in other asset classes (e.g. Frazzini and Pedersen, 2014) and in international markets (e.g.

Walkshäusl, 2014). Huang et al. (2016) find that BaB activity itself affects the profitability

of the strategy. Cederburg and O’Doherty (2016) study BaB returns through the lense of the

conditional CAPM and argue that positive alphas reported in prior research are attributable

to biases in unconditional performance measures.

This paper takes a different approach by directly linking LRAs to return skewness. Specif-

ically, we build on the insight of Rubinstein (1973) and Kraus and Litzenberger (1976) that

the empirical failure of the CAPM may be due to ignoring the effect of skewness on asset

returns. Friend and Westerfield (1980) also find that coskewness with the market entails
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information for stock returns beyond covariance, Sears and Wei (1985) discuss the inter-

action of skewness and the market risk premium in asset pricing tests, and Harvey and

Siddique (2000) show that conditional skewness helps to explain the cross-section of equity

returns.1 With the widespread availability of equity options data, recent papers explore the

relation of option-implied ex-ante skewness on subsequent equity returns but provide mixed

evidence (e.g. Bali and Hovakimian, 2009; Xing et al., 2010; Rehman and Vilkov, 2012; Bali

and Murray, 2013; Conrad et al., 2013), with differences in results driven by differences in

skew-measure construction.2 Bali et al. (2015) provide complementary evidence by showing

that ex-ante skewness is positively related to ex-ante stock returns estimated from analyst

price targets. Other recent papers suggesting that skewness matters for the cross-section of

equity returns are Amaya et al. (2015), who find a negative relation between realized skew-

ness and subsequent equity returns, and Chang et al. (2013), who show that stocks that are

most sensitive to changes in the market’s ex-ante skewness, exhibit lowest returns. Buss and

Vilkov (2012) apply the measure of Chang et al. (2013) to individual stocks, but do not find

a pronounced relation to equity returns, whereas they do find that betas constructed from

option-implied correlations exhibit a positive relation to subsequent stock returns. This pa-

per differs from all of the literature above since our focus is on the relation between skewness

and low risk anomalies. We show that options-implied ex-ante skewness of LRA portfolios

is informative about their future residual coskewness and thus about CAPM mispricing.

The remainder of this paper is organized as follows. Section 2 presents the theoretical

framework that guides our empirical analysis. We describe the data and construction of

variables in Section 3 and present the empirical results in Section 4. Section 5 discusses

additional results and robustness checks. Section 6 concludes. The Appendix describes

technical details and the separate Internet Appendix reports additional results.

1Our approach, thus, builds on the idea that firms’ skewness matters for asset prices through their
coskewness component. This is conceptually very different from work that studies how idiosyncratic skewness
can be priced in stock returns (e.g., Brunnermeier et al., 2007; Mitton and Vorkink, 2007; Barberis and Huang,
2008; Boyer et al., 2010). The pricing of coskewness is conceptually and empirically also different from the
pricing of downside risk (e.g. Ang et al., 2006a; Lettau et al., 2014) and Ang et al. (2006a) elaborate in
detail.

2For instance, Rehman and Vilkov (2012) and Conrad et al. (2013) both use the ex-ante skew measure of
Bakshi et al. (2003) but find a positive and negative relation to subsequent returns, respectively. Apparently,
this difference in results stems from Rehman and Vilkov (2012) measuring ex-ante skew from the latest
option-data only whereas Conrad et al. (2013) compute ex-ante skew measures for every day over the past
quarter and then take the average, thereby smoothing out recent changes in skewness. In preceding work,
Bali and Hovakimian (2009) show that the spread between near-the-money call and put option implied
volatility positively predicts stock returns. Similarly, Xing et al. (2010) find that stocks with steep implied
volatility smirks, defined as the difference between OTM put minus ATM call implied volatility, underperform
stocks with less pronounced smirks. Bali and Murray (2013) construct a skewness asset as a combination of
positions in equity options and the underlying stock and and find that its returns are negatively related to
the option-implied skewness measure of Bakshi et al. (2003).
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2 Theoretical Framework

In this Section, we present the theory to guide our analysis of low risk anomalies (LRAs),

such as the finding that high CAPM beta stocks underperform relative to low beta stocks.

Kraus and Litzenberger (1976) are the first to note that the lack of empirical support for the

CAPM may be due to the model ignoring the effect of skewness on asset prices. Building

on this insight, Harvey and Siddique (2000) show that conditional skewness indeed helps to

explain the cross-section of equity returns. Therefore, skewness appears to be a plausible

candidate to provide insights for beta- and volatility-based LRAs that receive considerable

attention in the recent literature (e.g., Ang et al., 2006b; Frazzini and Pedersen, 2014).

To motivate our analysis, Table 1 reports the alphas of LRAs, computed as Low-minus-

High returns of decile portfolios sorted by CAPM beta, idiosyncratic volatility, and option-

implied variance. These results suggest that the strategies’ positive alphas come at the

cost of their residual returns being negatively coskewed with the market. Figure 1 plots the

alphas of the decile portfolios against their residual coskewness, illustrating a strong negative

relation, with R2s of 48% to 73% in regressions of alphas on residual coskewness across 80

portfolios. This negative relation is in line with Kraus and Litzenberger (1976), Harvey and

Siddique (2000), and others who argue that investors demand compensation for accepting

negative coskewness.

In what follows, we show that the empirical properties of LRAs are consistent with

the implications of skew-aware asset pricing models. In particular, we show that alphas

that appear ‘anomalous’ from the perspective of the CAPM indeed reflect compensation for

skewness. Moreover, we discuss how betting-against-beta arises in the skew-aware CAPM

and provide further evidence for the link between coskewness and LRA alphas in a simulation

study of a skew-aware world populated by Merton-type firms, where (co)skewness arises

endogenously from leverage and stochastic asset volatility. Within this framework, we also

study the link between firms’ coskewness and their implied skewness. These insights will

later guide our empirical approach of constructing factors based on option-implied skewness.

2.1 Skew-Aware Asset Pricing

The results in Figure 1 are consistent with the interpretation that investors care about

skewness and that excess returns appear ‘abnormal’ only because the factor-based risk ad-

justments fail to account for investors’ aversion towards negative skewness. To study the

effect of skewness on asset prices and LRAs in more depth, we draw on the ideas of Kraus

and Litzenberger (1976, KL), Harvey and Siddique (2000, HS), Chabi-Yo et al. (2014) and
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Schneider (2015). KL are the first to propose a three moment CAPM to account for skew

preferences in asset pricing. HS provide a conditional version of their skew-aware CAPM.

Schneider (2015) argues that any pricing kernel can be projected onto polynomials (or any

other basis) of the market return and this projection implies an error which contains higher-

order information by construction. Chabi-Yo et al. (2014) show that this projection error can

have important asset pricing implications, and we argue along these lines. By construction,

models with a linear approximation of the pricing kernel, such as the CAPM and standard

linear factor models, ignore these implications.

For now, we assume that the world complies with a skew-aware CAPM in the spirit of

KL and HS; as we show in Appendix A, starting from a general pricing kernel and projecting

it on basis functions ultimately leads to the same result. In the skew-aware world that we

assume here, the (true) pricing kernel is given by

M := a2 + b2RT + c2R
2
T (1)

where RT is the market excess return from time t to T , with b2 < 0 and c2 > 0. This

implies that investors accept lower (demand higher) expected returns on assets with positive

(negative) coskewness.3 Building on the results of Schneider (2015), for details see Appendix

A, we can express stock excess returns from time t to T for a generic firm i to follow

Ri,T = βskewi,t ·RT + εskewi,T (2)

with

βskewi,t =
b2 · σi,m,t + c2 · σi,m2,t

b2 · σ2
m,t + c2 · σm,m2,t

, (3)

where σi,m,t is the covariance between stock i and market excess returns, σi,m2,t is the covari-

ance between stock i and squared market excess returns, σ2
m,t is the variance of market excess

returns, and σm,m2,t is the covariance between market and squared market excess returns (i.e.

the skewness of the market). Finally, in a world that complies with this skew-aware CAPM,

we have that EP
t

[
εskewi,T

]
= 0 and that the expected stock excess return is given by

EP
t [Ri,T ] = βskewi,t · EP

t [RT ] . (4)

3 While b2 and c2 may change over time, we omit time subscripts for the sake of simpler notation. We note
that the signs of b2 and c2 could be different in incomplete markets but the empirical analysis of Schneider
and Trojani (2017) suggests that this is not the case in the period from 1990 to 2016. Similarly, other recent
evidence confirms that the market price of coskewness risk is negative, e.g. Christoffersen et al. (2016).
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It is obvious that using the standard CAPM to assess market risk and to evaluate whether

returns are ‘abnormal’ is inaccurate in such a skew-aware world. Ignoring the last term in

equation (1), the CAPM postulates that

Ri,T = βcapmi,t ·RT + εcapmi,T , (5)

where

βcapmi,t =
σi,m,t
σ2
m,t

, (6)

thereby ignoring skewness-related pricing implications. As a consequence, EP
t

[
εcapmi,T

]
is gener-

ally not zero and the CAPM suffers from systematic pricing errors.4 Following the convention

to refer to returns unexplained by the CAPM as alphas, we write

αi,T : = εcapmi,T

= Ri,T − βcapmi,t ·RT

=
(
βskewi,t − βcapmi,t

)
·RT + εskewi,T . (7)

Using the above equations, we can compute firm i’s expected alpha and its residual coskew-

ness, σαi,m2,t, i.e. the covariance of excess returns not explained by the CAPM with squared

market returns, as

EP
t [αi,T ] =

(
βskewi,t − βcapmi,t

)
· EP

t [RT ] , (8)

σαi,m2,t = σi,m2,t − βcapmi,t · σm,m2,t. (9)

Combining equation (8) with the skew-aware beta from equation (3), we can rewrite the

expected alpha to make its relation to CAPM beta more explicit:

EP
t [αi,T ] = (σi,m2,t − βcapmi,t · σm,m2,t) ·Bt · EP

t [RT ] , (10)

where

Bt =
c2

b2 · σ2
m,t + c2 · σm,m2,t

. (11)

4 The condition EP
t

[
εcapm1,T

]
= · · · = EP

t

[
εcapmn,T

]
= 0 would imply that

σ1,m

σ1,m2
= · · · = σn,m

σn,m2
= C, where C

depends on market moments. This follows from equating βcapmi,T = βskewi,T .
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Market skew, σm,m2,t, is typically negative, i.e. times of high volatility are usually as-

sociated with market declines – in our sample, σm,m2,t = −0.000052. Thus, equation (9)

implies that, ceteris paribus, stocks with higher CAPM betas exhibit more positively (or

less negatively) coskewed residual returns. Furthermore, in a skew-aware world Bt < 0.5

Hence, equation (10) reveals that, ceteris paribus, stocks with higher CAPM betas exhibit

less positive (or more negative) alphas.

Finally, to derive the relation between expected alpha and residual coskewness, we com-

bine equation (10) with equation (9):

EP
t [αi,T ] = σαi,m2,t ·Bt · EP

t [RT ] . (12)

Given the negative sign of Bt, equation (12) shows that expected alphas are negatively related

to residual coskewness. The negative relation between factor model alphas and residual

coskewness in Figure 1 is indeed consistent with this implication from skew-preferences.6

With these results suggesting that the world behaves more in line with a skew-aware

CAPM rather than the standard CAPM, we study the role of skewness specifically for LRAs

in the next subsection. Our focus will be on betting-against-beta, starting from the ob-

servation that equation (9) implies a direct connection between CAPM betas and residual

coskewness.

2.2 Implications for Cross-Sectional Trading Strategies

In a betting-against-beta (BaB) strategy, investors buy stocks with low CAPM betas (L)

and sell stocks with high CAPM betas (H), generating a positive alpha when the CAPM

underestimates expected excess returns on L and/or overestimates returns on H,7

EP
t [αBaB,T ] = EP

t [αL,T ]− EP
t [αH,T ] . (13)

In a world that complies with the CAPM, the alpha of betting-against-beta is zero by

definition. In a skew-aware world, the alpha can be nonzero and depends on the residual

5We have that Bt < 0 because b2 < 0 and c2 > 0, as discussed above for equation (1) and in Footnote 3,
and, moreover,

∣∣b2 · σ2
m,t

∣∣ is larger than
∣∣c2 · σm,m2,t

∣∣ by several orders of magnitude except for pathological
market distributions.

6The cross-sectional regression of alphas on residual coskewness, indicated by the solid lines in Figure 1,
can be directly interpreted in terms of equations (12) and (11). The slope coefficient of this regression is the

sample estimate for Bt · EP
t [Rt+1] given by B̂t ·Rt+1.

7Positive alphas would also arise when the returns of L are less overestimated than returns of H or when
returns of L are more underestimated than returns of H.
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coskewness of low compared to high CAPM beta stocks. Using equation (12), we can write

EP
t [αBaB,T ] =

(
σαL,m2,t − σαH ,m2,t

)
·Bt · EP

t [RT ] . (14)

From equation (9) we know that a firm’s residual coskewness is directly related to its

CAPM beta, and we can express the BaB-alpha as

EP
t [αBaB,T ] =

(
(σL,m2,t − σH,m2,t)−

(
βcapmL,t − β

capm
H,t

)
· σm,m2,t

)
·Bt · EP

t [RT ] . (15)

In equation (15), the first term in the outer parentheses represents the difference in the

return coskewness of low and high CAPM beta firms, whereas the second represents the

difference in CAPM beta-related coskewness for low and high beta firms. The sign of this

second term depends on market skewness, σm,m2,t, which is typically negative, as discussed

above. Hence, should high and low beta firms be equally coskewed (i.e. σH,m2,t = σL,m2,t),

BaB delivers a positive expected alpha whenever market returns are negatively skewed. In

other words, if risk is measured via the CAPM beta and the market is skewed, then this

mechanically links a stock’s implied coskewness to its beta. For a negative market skew,

high-beta stocks inherit more negatively coskewed returns via the linear mapping than low-

beta stocks, irrespective of the stocks’ true coskewness. Thus, for the case in which low-beta

portfolios are equally coskewed as high-beta portfolios, i.e. when σL,m2,t − σH,m2,t = 0, the

measured betting against beta strategy alpha is positive.

In general, however, the term in the first inner bracket in equation (15) will not be zero,

i.e. the coskewness of low and high beta portfolios will not be the same. In fact, Panel

A of Figure 2 shows that, in our sample, firms with high CAPM beta are typically more

negatively coskewed than low beta firms. In other words, stocks that appear most risky in

terms of CAPM betas also exhibit the worst coskewness properties, delivering comparably

low returns when market volatility is high. While this effect tends to reduce the alpha

measured according to equation (15), the effect from the mismeasured coskewness due to

beta-mapping in the second inner bracket in equation (15) dominates. This can be seen

from the analysis of the coskewness of the residual returns defined in equation (9), i.e. the

coskewness of returns after controlling for CAPM market risk. Panel B of Figure 2 shows

that the firms with the highest CAPM betas have the highest residual coskewness. Thus,

mapping stocks linearly on a negatively skewed market in a linear CAPM representation,

prices in too much coskewness risk in high beta stocks and too little in low beta stocks.

Therefore, the high beta stocks appear to underperform in a CAPM representation whereas

10



low-beta stocks appear to outperform.8

The results in Figures 1 and 2 show that the empirical patterns for other volatility-based

LRAs are in accordance with this intuition, i.e. the skewness implications for these LRAs

resemble those for BaB. Sorting firms by volatility leads to portfolios that on average have

similar CAPM betas as beta-sorted portfolios, and as a consequence the coskew implications

through equation (15) apply accordingly.9 Hence, our results suggest that excess returns of

LRA strategies should have a common driver that is linked to coskewness and that controlling

for coskewness, we should find alphas to become insignificant.

While these predictions for the empirical analysis appear straight-forward, an empirical

challenge is to measure ex-ante coskewness as already stressed by, e.g., Harvey and Siddique

(2000) and Christoffersen et al. (2016). Previous research has developed methods for mea-

suring ex-ante moments for individual firms from equity options data, however, it is not

possible to implement an analogous approach to measure co-moments due to the lack of

derivatives having both the market and the stock as underlying. However, if a firm’s skew-

ness is related to its coskewness, then measures of ex-ante skewness are informative about

the coskewness of the firm’s future returns. In the next section, we present a simulation

study on the link between skewness and LRAs and we also use this simulation to show that

the link between measures of a firm’s ex-ante skewness and its residual coskewness is strong

in a skew-aware world. We will rely on these insights to guide our empirical approach of

constructing skewness factors based on equity options data.

2.3 Simulation of a Skew-Aware World with Merton-Type Firms

To provide further support for the notion that skewness matters for LRAs, we show that

the properties of LRAs in a simulated skew-aware world populated with Merton-type firms

are qualitatively identical to those that we observe in the empirical data. In this framework,

skewness and coskewness arise endogenously from firms’ leverage, stochastic asset volatility,

and the skewness of the market. For details on the setup of the simulation study, see

8As a concrete example, consider the equally-weighted BaB strategy in the first column of Panel A in Table
1 that delivers a CAPM alpha of around 92 basis points. Multiplying all coskewness quantities by 10,000,
we have σL,m2 = −0.39 , σH,m2 = −0.69, βcapmH = 2.24, βcapmL = 0.56, and σm,m2 = −0.52. Therefore, as
discussed above, the second term in the brackets of equation (15) dominates the first one. Since Bt ·EP

t [rm]
is negative, the resulting αBaB,T is positive.

9Moreover, note that empirical measures of idiosyncratic volatility are also directly linked to CAPM beta,
as these measures are typically computed as the volatility of CAPM or factor model regression residuals. In
our skew-aware world, volatility that is idiosyncratic from a CAPM perspective is given by

σ2
αi,t

= σ2
i,t + (βcapmi,t )2 · σ2

m,t − 2 · βcapmi,t · σi,m,t.
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Appendix B. In this Appendix, we also discuss alternative model specifications, such as

including jumps in the asset process or allowing a firm to default before debt reaches its

maturity, for which we present results in the Internet Appendix.

The simulation evidence in Figure 3 illustrates the relation between alphas and residual

coskewness for a population of 2,000 (levered) firms for three different pricing kernel specifi-

cations. Analogous to Figure 1, we also illustrate the long and short positions of an investor

who bets against beta, idiosyncratic volatility, or total volatility. We first show that if the

world were governed by a CAPM pricing kernel, there would be no alphas to betting against

beta or volatility (see Panel A); investors do not care about coskewness and all CAPM alphas

are zero. Second, we simulate a skew-aware CAPM world and Panel B illustrates the relation

between alphas and residual coskewness discussed above. These patterns are qualitatively

identical to those in the empirical data, i.e. low beta stocks generate higher alphas than

high beta stocks and, hence, betting against beta delivers a positive alpha.10 Finally, we

simulate a world in which investors also care about moments higher than (co)skewness. The

cross-sectional pattern in CAPM alphas and residual coskewness in Panel C is very similar

to that in the skew-aware CAPM world (Panel B) which suggests that coskewness is the

main driver of LRA alphas. To make this point more explicit, we also plot (in grey circles)

skew-adjusted alphas, i.e. the expected excess returns of firms beyond the skew-beta; these

are close to zero, indicating that moments beyond skewness matter much less. The results

are essentially the same when we allow for jumps in firms’ assets and for defaults prior to

debt maturity (see Figures IA.1 and IA.2 in the Internet Appendix).

Moreover, we can use this simulation framework to study the relation between a firm’s

skewness to its coskewness. As mentioned above, ideally, we would like to control for the role

of coskewness on LRAs by using forward-looking information on a stock’s return co-moments.

Due to lack of data that allows for measuring ex-ante coskewness we will rely on measures

of firms’ ex-ante skewness, i.e. the firm’s implied skewness under the Q-measure. In the

simulation analysis, we can study how measures of implied skewness as well as measures of

10In the simulations, betting-against-beta is mostly driven by the short position in high beta stocks and
less by the long position in low beta stocks. Empirically, the relative contribution of the long position can
be somewhat higher. This can be seen from the fitted lines of regressing alphas on residual coskewness being
on a higher level in the empirical data illustrated in Figure 1 compared to the simulated data in Figure
3. We have experimented with different parameter values for the stochastic volatility market model and
found that we can reduce this level-difference when we make the market variance less persistent (explosive).
Given that our main goal is to show the negative relation between LRA alphas and residual coskewness, we
only show this relation for standard model parametrizations established in the literature (e.g. Aı̈t-Sahalia
and Kimmel, 2007) as we discuss in Appendix B.2. For future research, it will be interesting to explore the
quantitative implications in more detail building on ongoing research efforts that aim for modeling a more
realistic interplay between the cross-section of firms and the pricing kernel (e.g. Gourier, 2016; Boloorforoosh
et al., 2017).
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expected realized skewness (under the P-measure) are related to each other as well as to

residual coskewness and alphas.

We evaluate three dimensions of skewness to comprehensively capture asymmetries in

the return distribution. First, we measure implied skewness that originates from the upper

part of the distribution; this upper skewness is defined to be positive and can be measured

from prices of out-of-the-money (OTM) call options. Second, we measure implied skewness

from the lower part of the distribution, which is defined to be negative; this lower skewness

can be measured as the price of a portfolio that is short in OTM put options. Third, we

measure the firm’s overall skewness, defined as the sum of upper and lower skewness, which

can be positive or negative and quantifies the overall asymmetry of the distribution.11

Bearing in mind that our empirical objective will be to construct factors based on equity

option-implied skew measures, Figure 4 reports the residual coskewness and the alphas of

decile portfolios sorted by implied and expected realized lower skewness, upper skewness,

and skewness; portfolios P1 and P10 contain the firms with the lowest and highest values

of the conditioning variables, respectively. The left column shows that firms with low (i.e.

most negative) lower skewness have highest residual coskewness and lowest alphas, and that

residual coskewness decreases whereas alphas increase when moving towards portfolio P10

containing firms with the highest lower skewness (i.e. close to zero). Conversely, we see in

the middle column that residual coskewness increases from firms with lowest (i.e. closest to

zero) upper skewness in P1 to firms with highest (i.e. most positive) upper skewness in P10.

Accordingly, the alphas decrease from P1 to P10. In other words, the higher implied lower

or upper skewness in absolute terms, the higher the portfolio’s residual coskewness and the

more negative its alpha. In line with these patterns, we find that portfolios sorted by implied

skewness (i.e. the sum of lower and upper semi-skew) exhibit a U-shaped relation towards

coskewness and an inversely U-shaped relation to alphas. These findings remain unchanged

when we allow for jumps in firms’ assets and for default prior to debt maturity (Figures IA.3

and IA.4 in the Internet Appendix).

These results suggest a strong link of implied skewness measures to residual coskewness

and alphas in our simulated world. In our empirical analysis, we find qualitatively very

similar relations in the data.

11Considering upper and lower skewness separately besides total skewness can be useful, because identical
values of total skewness can arise from different combinations of values for lower and upper skewness. This
can be easily illustrated by two firms with total skewness close to zero. For one firm both upper and lower
skewness may be close to zero, whereas for the other firm upper skewness takes high positive value (e.g. due
to growth options) which is offset by a large negative value of lower skewness (e.g. due to leverage).
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3 Setup of Empirical Analysis

This Section details the data used in the empirical analysis, describes the computation of ex-

ante skewness and ex-ante variance from equity option data, and discusses the construction

of beta-, volatility-, and coskewness-measures from stock and market returns.

3.1 Data

The data set for our empirical analysis of US firms is constructed as follows. The minimum

requirement for firms to be included is that options data and equity data are available at a

daily frequency, with sufficient historical data for stocks to construct the beta and volatility

measures as described below. We start with volatility surface data from OptionMetrics and

keep the firms for which we find corresponding stock returns in CRSP (common stocks with

share code 10 or 11) and firm data in COMPUSTAT to compute market capitalizations and

book-to-market ratios. The merged data set contains 400,449 monthly observations across

4,967 firms from January 1996 to August 2014. Additionally, we obtain daily return data for

the CRSP value-weighted market index as well as daily and monthly market, size, book-to-

market, momentum factor and riskfree returns from Ken French’s data library. Other data

we use in further robustness checks are described in the corresponding sections.

3.2 Measuring Ex-Ante Moments from Prices of Stock Options

Harvey and Siddique (2000) measure coskewness from historical stock returns, but also

discuss the limitations of evaluating ex-ante moments using historical data. Recent research

shows that model-free measures of a firm’s higher equity moments implied by stock options

are more accurate. While option-implied ex-ante moments can be measured on an individual

firm level, options on the cross-moments of stock returns generally do not exist. However,

our simulation study in Section 2.3 suggests that firms’ ex-ante skewness is closely linked to

firms’ coskewness and we draw on this insight in our empirical analysis. We therefore use

option-implied information (rather than historical data) in a model-free way (rather than

assuming a parametric correlation framework) to explore how firms’ ex-ante skewness relates

to the joint distribution of their stock returns with the market and the prevalence of LRAs.

Building on the concepts of Breeden and Litzenberger (1978) and Neuberger (1994), re-

cent research proposes to assess ex-ante moments of the equity return distribution based

on equity option prices. The fundamental idea is that differential pricing of a firm’s equity

options across different strike prices reveals information about the shape of the risk-neutral
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return distribution (see, e.g., Bakshi and Madan, 2000). By now, a large literature discusses

options-implied measures of ex-ante moments as well as corresponding realizations and asso-

ciated risk premia (e.g., Bakshi et al., 2003; Carr and Wu, 2009; Todorov, 2010; Neuberger,

2013; Kozhan et al., 2013; Martin, 2013; Schneider and Trojani, 2014; Andersen et al., 2015).

The common theme across these papers is to measure ex-ante skewness as an options

portfolio that takes long positions in out-of-the-money (OTM) calls and short positions

in OTM puts. Differences in approaches arise from the associated portfolio weights and

the behavior of moment measures when the underlying reaches a value of zero.12 In these

respects, the approach of Schneider and Trojani (2014) is most suitable for our objective

of studying higher moments of individual firms. First, their portfolio weights specification

complies with the notion of put-call symmetry developed by Carr and Lee (2009); this is

important because this concept connects the observable slope of the implied volatility surface

to the unobservable underlying distribution. Second, their measures are well-defined when

the stock price reaches zero, a feature that is essential for individual firms which can default.

Schneider and Trojani (2014) suggest to measure skewness as follows.13 Denote the price

of a zero coupon bond with maturity at time T by pt,T , the forward price of the stock

(contracted at time t for delivery at time T ) by Ft,T , and the prices of European put and

call options with strike price K by Pt,T (K) and Ct,T (K), respectively. The portfolio of OTM

put and OTM call options that measures option-implied skewness (SKEWQ
t,T ) is given by

SKEWQ
t,T =

6

pt,T

∫ ∞
Ft,T

log

(
K

Ft,T

) √ K
Ft,T

Ct,T (K)

K2
dK −

∫ Ft,T

0

(
log

Ft,T
K

) √ K
Ft,T

Pt,T (K)

K2
dK

 ,

which is constructed precisely to measure deviations from put-call symmetry in the sense

of Carr and Lee (2009). To comprehensively capture asymmetries in the return distribution,

we decompose SKEWQ
t,T into upper skewness and lower skewness, to separately account for

12With respect to the latter, see for instance the discussion in Martin (2013). The contract underlying
the VIX implied volatility index, for example, becomes infinite as soon as the price of the underlying S&P
500 touches zero. Also OTC variance swaps which pay squared log returns have been reported to cause
difficulties in particular in the single-name market.

13The exposition below rests on the assumption that options markets are complete, but only for notational
convenience. In our empirical analysis we use the ‘tradable’ counterparts which are computed from available
option data only; see Schneider and Trojani (2014). In other words, they account for market incompleteness
and do not require interpolation or extrapolation schemes to satisfy an assumption that a continuum of
option prices is available.
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the left part and the right part of the distribution,

upperSKEWQ
t,T =

6

pt,T

∫ ∞
Ft,T

log

(
K

Ft,T

) √ K
Ft,T

Ct,T (K)

K2
dK

 ,

lowerSKEWQ
t,T = − 6

pt,T

∫ Ft,T

0

(
log

Ft,T
K

) √ K
Ft,T

Pt,T (K)

K2
dK

 ,

i.e. we have that SKEWQ
t,T = upperSKEWQ

t,T + lowerSKEWQ
t,T . While upper skewness

is by definition positive and lower skewness is by definition negative, the sign of overall

ex-ante skewness depends on the relative prices of OTM put and OTM call options. As

already mentioned above (in footnote 11), considering upper and lower skewness separately

besides total skewness can be useful, because identical values of total skewness can arise from

different combinations of values for lower and upper skewness.

Moreover, we use options data to measure ex-ante variance. One of the low risk anomalies

that we study in this paper is that options-implied variance negatively predicts stock returns

(e.g., Conrad et al., 2013). We again follow Schneider and Trojani (2014) and compute

V ARQ
t,T =

2

pt,T

∫ Ft,T

0

√
K
Ft,T

Pt,T (K)

K2
dK +

∫ ∞
Ft,T

√
K
Ft,T

Ct,T (K)

K2
dK

 .

In our empirical analysis, we measure ex-ante skewness and variance from equity options

with a maturity of 30 days, thereby matching the monthly horizon of equity returns.

3.3 Construction of Variables from Stock Returns

In our empirical analysis of beta- and idiosyncratic volatility-related low risk anomalies, we

apply exactly the same measures that were used in the studies originally documenting the

anomalies; therefore, we delegate the details of how these measures are constructed to Ap-

pendix C. First, we estimate CAPM betas as described in Frazzini and Pedersen (2014), using

the CRSP value-weighted market index. Second, we use the residuals of this CAPM estima-

tion to construct our measure of idiosyncratic volatility relative to the CAPM (Ivol CAPM).

Third, we estimate idiosyncratic volatility following Ang et al. (2006b) from the residuals

of Fama French three factor model regressions (Ivol FF3). Using the CAPM residuals is

conceptually closer to our theoretical setup as these residuals can be directly interpreted as

pricing errors of the CAPM approximation to our asset pricing model in Section 2. In related

research on the idiosyncratic volatility puzzle, Ivol FF3 is the measure commonly used and
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empirically the results are very similar using either estimate of idiosyncratic volatility.

To measure coskewness and residual coskewness, we compute the covariance of (portfolio)

excess returns and residual returns with squared excess returns of the CRSP value-weighted

market index.

4 Empirical Analysis

Our theoretical results in Section 2 suggest that the positive alphas of betting-against-beta

and -volatility strategies may be driven by compensation required by skew-aware investors.

In this case the excess returns of low risk anomalies (LRAs) should have a common driver

that is related to skewness. Controlling for skewness should reduce the negative residual

coskewness of LRA strategies and, as a consequence, render LRA alphas insignificant. In

this section we provide strong support for these predictions.

4.1 Implied Skewness, Residual Coskewness, and Alphas

To study the importance of skewness for LRAs, we use stock options-implied measures of a

firm’s ex-ante skewness. In a skew-aware world in the spirit of Kraus and Litzenberger (1976)

and Harvey and Siddique (2000) such measures of ex-ante skewness are directly related to

the residual coskewness and the CAPM alpha of the firm’s stock. Figure 5 shows that the

empirical links between skewness, residual coskewness, and alpha are qualitatively identical

to those in the simulations presented in Figure 4.

The empirical results in Figure 5 are based on decile portfolios sorted by three measures

of options-implied skewness, as defined in Section 3.2: lower skewness (left column), upper

skewness (middle column), and skewness computed as the sum of lower and upper skew-

ness (right column). Panel A presents the portfolios’ CAPM residual coskewness, i.e. the

coskewness of excess returns after controlling for the market factor, and Panel B plots the

corresponding CAPM alphas. In all plots, blue lines with bullets represent value-weighted

portfolios and the green lines with diamonds depict results for equally-weighted portfolios.

The results accord very well with those from the simulation study: firms with low (i.e. most

negative) lower skewness have highest residual coskewness and lowest alphas. The residual

coskewness decreases whereas alpha increases when moving towards portfolio P10 containing

firms with the highest lower skewness (i.e. close to zero). Conversely, we see in the middle

column that residual coskewness increases from firms with lowest (i.e. closest to zero) upper

skewness in P1 to firms with highest (i.e. most positive) upper skewness in P10. Accordingly,
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alphas decrease from P1 to P10. In other words, the higher the implied lower skewness or

implied upper skewness in absolute terms, the higher the portfolio’s residual coskewness and

the more negative its alpha. In line with these patterns, we find that portfolios sorted by

implied skewness, computed as the sum of lower and upper skewness, exhibit a U-shaped

relation towards residual coskewness and tend to show an inversely U-shaped relation to

alphas. Descriptive statistics for the skewness measures, betas and volatilities, as well as size

and book-to-market of the equally- and value-weighted portfolios are summarized in Tables

IA.1 and IA.2 in the Internet Appendix.

Encouragingly, these empirical results show that in the data ex-ante skewness is indeed

as informative for future CAPM residual coskewness and alphas as it is in our simulated

world. The results are very similar when we also control for the small-minus-big (SMB)

and high-minus-low (HML) factors of Fama and French (1993, FF3); see Figure IA.5 in the

Internet Appendix. When we additionally control for momentum (FF4, following Carhart,

1997), we find the same patterns in the relation of residual coskewness and alphas to upper

skewness and lower skewness (see Figure IA.6). We also find the U-shaped relation between

skewness and residual coskewness whereas the link between skewness and alphas is mostly

increasing and the inverse U-shape is less pronounced. As a robustness check, we repeat

the analysis with the equity-option implied skewness measure of Kozhan et al. (2013) which

gives very similar results (see Figure IA.7).14 All these results are consistent with the notion

that alphas reflect compensation for residual coskewness.

4.2 Skewness as a Common Driver of LRA Returns

With the above results suggesting that measures of ex-ante skewness are indeed informative

for stocks’ future residual coskewness and alphas, we now proceed to study whether LRAs

have a common driver, and in turn, to what extent this common driver is related to skewness.

We start by performing a principal components analysis on the LRA excess returns as

well as on their CAPM-, FF3-, and FF4-residual returns. In the main text, we present results

for Low-minus-High returns of value-weighted decile portfolios in Table 2. Panel A shows

that the first principal component (PC1) explains around 91% of the variation in LRA excess

returns. After controlling for the market and other risk factors (size, value, and momentum),

14We choose to use the skewness measure of Kozhan et al. (2013) for the robustness check because similar
to our measure it represents a measure of skewness which is not standardized by variance, whereas for
instance the measure by Bakshi et al. (2003) is such a standardized measure. Since we explicitly study
the interaction between (co)skewness and (co)variance, our analysis focuses on non-standardized measures
of skewness. Additionally, we decompose the skewness measure of Kozhan et al. (2013) in separate upper
skewness and lower skewness components and find results that very similar to the ones reported above.
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PC1 still explains around 72% of variation in the LRA residual returns. In turn, when we

regress the individual LRA’s (residual) returns on PC1, we find that all LRAs load on PC1

with a positive sign with coefficients in the range from 0.37 to 0.58 (across all LRAs and all

specifications). The explanatory power of PC1 for the individual LRA returns is high, with

R2s in the range of 85% to 95% for excess returns and in the range of 61% to 80% for four

factor residual returns. For equally- and rank-weighted portfolios the same analysis suggests

an even higher degree of comovement among LRAs and the results are very similar when

additionally controlling for liquidity, profitability, and investment factors.15

Thus, LRAs have a common driver that explains a large part of their variation in returns.

To explore whether this common driver is related to (co)skewness, we construct skew factors

based on portfolios sorted by ex-ante skewness, i.e. using the portfolios presented in Figure

5. We start by computing the high-minus-low returns of portfolios sorted by lower skewness

(LSK) as well as by upper skewness (USK). When we regress PC1 on these factor returns,

we find that LSK and USK individually explain more than 93% of the variation in PC1

estimated from LRA excess returns and more than 75% when PC1 is estimated from LRA

four factor residual returns. The signs of the regression coefficients are consistent with

compensation for skewness. Across all specifications the coefficient on LSK is positive. This

implies that positive alphas of LRAs, delivered through their positive loading on PC1, are

associated with negative residual coskewness, because we know from Figure 5 that firms with

high (low) values of lower skewness have low (high) residual coskewness. Accordingly, the

regression coefficients on USK are always negative.

Next, we construct a skew factor from portfolios sorted by ex-ante skewness (shown in

the right column of Figure 5). To capture the U-shaped relation between ex-ante skewness

and residual coskewness, we compute the returns of going long the extreme portfolios (P1

and P10) and going short the middle portfolios (P5 and P6). Regressing the LRAs’ first

principal component on the returns of this factor (SK1+10 − SK5+6), we find a regression-R2

of around 83% when PC1 is estimated from excess returns and 52% when using FF4-residual

returns, respectively. A potential advantage of this factor is that it embeds information

from lower and upper skewness, however, the comparably lower, but still high, R2 reflects

that it is more difficult to construct factors from a U-shaped relation. To analyze whether

15In the Internet Appendix, Tables IA.3 and IA.4 report results for equally- and rank-weighted portfolios,
respectively. Table IA.5 presents results when we augment the FF4 specification with the liquidity factor of
Pástor and Stambaugh (2003, FF4 LIQU) and when computing residuals relative to the five factor model
of Fama and French (2015, FF5), i.e. augmenting the FF3 specification with profitability and investment
factors. Since all these results are qualitatively identical to the results reported in the paper and the LRA
literature typically reports CAPM-, FF3, and FF4-alphas, we focus on these specifications in the remainder
of our empirical analysis. Very similar to the results reported below, we find that controlling for skewness
also reduces the FF4 LIQU- and FF5-alphas and the negative residual coskewness of LRAs, respectively.
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incorporating information on both lower and upper skewness increases the explanatory power

we regress PC1 on LSK and USK. We find that the R2 increases to over 80% for the PCA

based on FF4 residuals. Finally, we construct a factor as the difference between USK and

LSK, which corresponds to a restricted version of the regression on both factors that imposes

the coefficients to have the same magnitudes in absolute terms but with opposing signs. For

this USK−LSK-factor the explanatory power is in the range of 95% for the PC1 estimated

from excess returns to 80% for the PC1 estimated from FF4 residual returns.

Summarizing, 72% of the variation in the FF4 residual returns of LRAs, i.e. excess

returns after controlling for the market, SMB, HML, and momentum, are driven by a single

component. In turn, up to 80% of this common component can be explained by the returns

of factors constructed from portfolios sorted by ex-ante skewness. The signs of the loadings

of LRA returns on PC1 and the signs of the loadings of PC1 on skewness factor returns are

consistent with predictions based on our theoretical analysis where investors require positive

alpha as compensation for negative coskewness. Accordingly, we should find that once we

control for skewness, LRA strategies should exhibit less negatively coskewed returns and

that alphas become less significant. In the next section, we show that this is indeed the case.

4.3 Skew-Adjusted Returns of Betting-Against-Beta and -Volatility

We now show that controlling for skewness reduces, both, the alphas as well as the negative

coskewness of LRAs, which is in line with the notion that investors require compensation

for negative coskewness. We use the skewness factors constructed in the previous subsection

based on information in lower and upper skewness and run factor model regressions that

include either the (SK1+10 − SK5+6)-factor, the (USK−LSK)-factor, or both the LSK- and

the USK-factor. From these regressions we compute the LRA strategies’ skew-adjusted

alphas and residual coskewness.

Figure 6 shows that any of the skew-adjustments leads to a substantial decrease in alphas

compared to the alphas without skew-adjustments reported in Table 1 above. Figure 7

reveals that these reductions in alpha are associated with the residual coskewness of the

LRA strategies becoming much less negative and closer to zero. These results are consistent

with the predictions developed in Section 2: First, measures of ex-ante skewness contain

information about future residual coskewness, which can be seen from the fact that skew-

adjusted LRA have less negative residual coskewness. Second, controlling for coskewness

largely eliminates the alphas. The reductions in alphas are economically large and in fact

mostly render alphas of betting-against-beta and -volatility statistically insignificant, as we
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report in more detail in Table 3. The only alphas that remain borderline significant are

the CAPM alphas of betting-against-beta when we use the (SK1+10 − SK5+6)-factor or the

(USK−LSK)-factor as control variable, with the t-statistics being 1.87 and 1.70, respectively.

But even for those alphas there is a large reduction in the magnitude from an unadjusted 125

basis points (with t-statistic of 2.87) to 66 basis points and 56 basis points, respectively. All

other alphas are insignificant, with all three skew-adjustments producing quite similar results;

in most cases the skew-adjustment using both LSK and USK leads to the largest reduction

in alphas and residual coskewness; the difference compared to the other skew-adjustments is

not too big, though. All these results remain qualitatively unchanged when we use equally-

weighted and rank-weighted portfolios (see Figures IA.8 to IA.11 in the Internet Appendix).

Finally, we revisit the link between alphas and residual coskewness at the portfolio level,

as we did at the outset of the theory section in Figure 1. In Figure 8, we illustrate the

relation between alphas and residual coskewness when controlling for skewness (using LSK

and USK) at the portfolio level. The results show that after accounting for skewness, there

is much less dispersion in the 80 portfolios’ alphas and residual coskewness. Compared to

the results without skew-adjustment in Figure 1, the R2s of the cross-sectional regressions

of alphas on coskewness decreases from 73% to 29% for CAPM residuals, from 73% to 0%

for FF3-residuals, and from 48% to 0% for FF4-residuals.

All these results strongly support the view that the positive alphas of betting-against-

beta and -volatility represent compensation for coskewness risk, rather than representing

anomalous returns. In the next section, we summarize further robustness checks that support

this conclusion. We show, for instance, that our results are not driven by any particular sub-

sample period and that they also apply to broader cross-sections by directly using the returns

of the BaB-factor of Frazzini and Pedersen (2014).

5 Additional Results and Further Robustness Checks

Throughout the paper, we have referred to several robustness results in the Internet Ap-

pendix, such as replicating the value-weighted portfolio analysis using equally- or rank-

weighted portfolios. In this Section, we summarize additional results, for which we delegate

Tables and Figures to the Internet Appendix.
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5.1 Subsample Evidence: Cumulative Alphas

To show that our results are not driven by a particular subsample period, we plot the

cumulative alphas and cumulative skew-adjusted alphas of the four LRA strategies in Figures

IA.12 to IA.15. We compute the cumulative CAPM-, FF3-, and FF4-alphas by cumulating

the intercept and the residuals of the corresponding regressions over time, i.e. the final values

of the cumulative alpha series divided by the number of periods correspond to the unadjusted

alpha values reported in Table 1 and the skew-adjusted alphas in Table 3, respectively.

5.2 Skewness and Frazzini and Pedersen (2014)’s BaB-factor

The construction of the skew factors restricts our analysis to the cross-section of firms for

which options data are available, i.e. on average around 1,800 firms per month. Many

studies of LRAs use broader cross-sections such as the CRSP universe.16 To explore whether

coskewness also plays a role for betting-against-beta in the broader CRSP sample, we apply

our skew factors to the returns of the BaB-factor provided by Frazzini and Pedersen (2014).

The overlapping sample period is from 01/1996 to 03/2012, and we use the most flexible

skew-adjustment with LSK and USK, based on rank-weighted returns.17

While the cross-section underlying the BaB-factor is much broader than that used to

construct the skewness factors, we still find that controlling for skewness leads to a substantial

reduction in the BaB strategy’s alpha and its negative coskewness. Figure IA.16 and Table

IA.6 show that the skew-adjustment decreases the CAPM-alpha from 92 to 48 basis points,

the FF3-alpha from 75 to 11 basis points, and the FF4-alpha from 61 to 12 basis points.

The plots of cumulative alphas in Figure IA.17 suggest that our findings are not driven by

particular subsample periods.

5.3 Market Skewness and LRA Alphas

Our theoretical framework in Section 2 also provides time-series predictions for the excess

returns of LRAs. While we think that an in-depth study warrants a separate paper, we

provide preliminary evidence for a prediction based on equation (15): other things equal,

LRAs should generate higher alphas when market skew is low (more negative) compared

to periods when market skew is high (less negative or positive). We split our sample’s

16Typically anomalies are even more pronounced in cross-sections that also include the smallest firms (e.g.
Novy-Marx, 2016).

17Frazzini and Pedersen (2014) also use rank-weighted portfolios. Furthermore, they rescale the long and
short portfolios to have a beta of one at portfolio formation. We have verified that any such rescaling of our
skew factors hardly affects the results below.
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time-series of market skewness (simply measured as rolling covariances between market and

squared market returns over the past 250 days) into low and high market skewness periods

and find support for this prediction. Figure IA.18 shows that CAPM-, FF3-, and FF4-alphas

of all four LRAs are substantially higher in times of low market skewness than in times of

high market skewness; the only exception is the FF4-alpha of betting against idiosyncratic

volatility based on the FF3 model.

5.4 Skewness and Corporate Credit Risk

While the main goal of this paper is to study the skewness implications for equity returns,

we now also provide some evidence on the link between skewness and credit risk. In the

conceptual framework of our simulation study, we follow Merton (1974) to model levered

firms, which implies that credit risk and equity option-implied skewness are related (e.g.

Geske, 1979; Hull et al., 2005).

First, we illustrate the link between skewness and credit risk in our simulated skew-

aware world from Section 2.3; we compute the Merton-implied credit spreads as discussed

in more detail in Appendix B.2. Panel A of Figure IA.19 shows that credit spreads increase

as absolute lower and upper skewness increase, and we find a U-shaped relation to total

skewness. The patterns are qualitatively very similar when we use empirical data for CDS

spreads (Panel B) and credit ratings (Panel C).18 We find that firms with high absolute values

of lower and upper skewness are the firms with highest CDS spreads and worst ratings. The

closer firms’ lower and upper skewness are to zero, the lower their CDS spreads and the

better their credit ratings. Accordingly, we find a U-shaped relation of CDS spreads and

credit ratings to total skewness. Thus, our model does not only capture the relation between

skewness and equity returns but also the link to credit spreads and ratings.

Taking together the credit and equity results, the findings of this paper may also shed light

on another low risk anomaly, namely the distress puzzle. Previous research finds that firms

with high distress risk underperform relative to firms with low distress risk. For instance,

Campbell et al. (2008) show that distressed stocks have low returns, high loadings on risk

factors, and negative alphas. Within our framework, these results appear consistent with the

notion of skew-aware asset pricing. Our findings suggest that firms with high credit spreads

18The analyses involving CDS data and credit ratings are conducted on subsamples of our original data
set due to data availability. For the analysis of CDS spreads, we use the dataset compiled by Friewald
et al. (2014), which contains Markit CDS data for 573 firms from 01/2001 to 03/2010 with a total of 37,514
observations. For the analysis of credit ratings, we obtain the S&P long-term credit ratings vie Compustat
whenever available for firms in our sample. This results in a subsample of 2,066 firms with a total of 179,816
observations over our full sample period.
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(bad ratings) are firms with high residual coskewness and hence should earn negative alphas.

6 Conclusion

This paper provides a novel perspective on beta- and (idiosyncratic) volatility-based low

risk anomalies established in previous research. We show that these apparently anomalous

empirical patterns may not necessarily pose asset pricing puzzles when accounting for the

skewness of the equity return distribution. In our theoretical framework of a skew-aware

world in which investors demand compensation for negative coskewness, we show that the

pricing errors of the Capital Asset Pricing Model (CAPM) exhibit residual coskewness. This

residual coskewness is directly linked to a stock’s CAPM beta and is compensated through

excess returns relative to the CAPM, i.e. alpha. In the cross-section, a betting-against-beta

strategy that buys low and sells high CAPM-beta stocks generates an alpha commensurate

to the difference in their residual coskewness.

Our empirical results confirm the model predictions for betting-against-beta and -

volatility. We document that these strategies’ positive alphas relative to the CAPM and other

factor models are associated with negative residual coskewness. Once we control for skew-

ness, using portfolio factors based on equity option-implied skewness, the low risk anomalies

disappear. None of the strategies delivers a positive alpha and their residual coskewness

becomes substantially less negative.
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Appendix

A Skew-Aware Asset Pricing

The pricing kernel is likely to depend not only on the market, but also on additional risk

factors. To relate such a multi-factor pricing kernel to the traditional asset pricing literature,

one can work with its expectation conditional on RT , the market return from time t to T > t,

M(RT ) := EP [M | RT ] . (A.1)

In the absence of arbitrage, the stochastic discount factor prices all risky asset payoffs in

the economy. The t-expected return on asset i from time t to T , EP
t [Ri,T ], is given by the

expected excess return on the market, scaled by asset i’s covariation with the pricing kernel

relative to the market’s covariation with M(RT ),19

EP
t [Ri,T ] =

CovPt
(
M, Ri,T

)
CovPt

(
M(RT ), RT

)︸ ︷︷ ︸
‘true beta’

EP
t [RT ] , (A.2)

where we refer to the ratio of pricing kernel covariances as the ‘true beta’. To bring this

no-arbitrage relation into the context of linear asset pricing models, we use in the following

the first-order approximation M1(RT ) := a1 + b1RT , and the second-order approximation

M2(RT ) := a2 + b2RT + c2R
2
T , for both M and M(RT ) in equation (A.2), respectively.20

This yields

EP
t [Ri,T ] ≈ CovPt (a1 + b1RT , Ri,T )

CovPt (a1 + b1RT , RT )
EP

0 [RT ]

=
CovPt (RT , Ri,T )

V P
t [RT ]︸ ︷︷ ︸

CAPM beta ( βCAPM
i )

EP
t [RT ] ,

(A.3)

19Under mild technical conditions it can be shown that M(RT ) =
∑∞
i=0 fiR

i
T , where the coefficients f

depend on conditional P and Q moments.
20Here we are exposed to two sources of errors. The first is the error from using the finite-order projection
Mj(RT ) rather than M∞(RT ) =M(RT ). The second error arises from using the projection instead of the
true kernel in the covariance in the numerator of (A.2).
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and

EP
t [Ri,T ] =

CovPt (a2 + b2RT + c2R
2
T , Ri,T )

CovPt (a2 + b2RT + c2R2
T , RT )

EP
t [RT ]

=
b2Cov

P
t (RT , Ri,T ) + c2Cov

P
t (R2

T , Ri,T )

b2V P
t [RT ] + c2CovPt (RT , R2

T )︸ ︷︷ ︸
‘skew-adjusted beta’ (βskew

i )

EP
0 [RT ] .

(A.4)

B Simulation study

This Section presents details on the simulation study for which we report results in Section

2.3 of the paper. We describe (i) how we model the market, (ii) how we model firms, and

(iii) the general setup of the simulation study.

B.1 Market Model

To gauge how higher moments such as skewness matter for asset pricing, consider a represen-

tative power-utility investor who is exposed to stochastic volatility. We model the dynamics

of the forward market price Mt,T , contracted at time t for delivery at T , as 21

dMt,T

Mt,T

= ηt dt+ κt (ξdW 1P
t +

√
1− ξ2dW 2P

t ),

dκ2t = (ν0 + ν1κ
2
t )dt+ κtϑdW

1P
t .

(B.5)

With γ denoting the coefficient of constant relative risk aversion, ηt = γκ2t is the instanta-

neous market return in excess of the risk-free rate and κt is the associated market volatility.

Campbell et al. (2017) develop an empirically successful asset pricing model with stochastic

volatility in a similar way.22 We define the discrete market excess return RT :=
MT,T

Mt,T
− 1,

where we suppress time subscripts here and subsequently for notational convenience, and set

Mt,T = 1. Given the agent’s local risk aversion γ, we obtain the forward pricing kernel as

M :=
(RT + 1)−γ

e1/2(γ−γ
2)

∫ T
0 κ2sds

. (B.6)

21We choose to specify the dynamics of the forward price (rather than the spot price) because this naturally
accounts for interest rates and ensures that the forward price is a martingale under the forward measure
(QT ) with the T -period zero coupon bond as numeraire.

22The less realistic but more parsimonious case of modeling the market by a geometric Brownian motion
only leads to qualitatively the same asset pricing implications as the stochastic volatility dynamics in equation
(B.5). In other words, higher moments of the return distribution matter for asset prices even if the market
does not exhibit skewness; this point is also stressed by Kraus and Litzenberger (1976).
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This kernel is one example with stochastic volatility generating the true beta in equation

(A.2), such that the kernel is not measurable with respect to the market alone. Stochastic

volatility greatly impacts the signs and magnitudes of the coefficients in the projections

M1(RT ) and M2(RT ) in Section 2.1.

In the next Section we introduce a cross-section of firms into the economy that exhibits

skewness in returns through both stochastic volatility and default risk.

B.2 Model for Levered Firms

Previous research shows that skewness of stock returns may originate from different sources

such as credit risk (Merton, 1974), sentiment (e.g., Han, 2008), demand pressure in options

markets (Gârleanu et al., 2009), or differences in beliefs (Buraschi et al., 2014); the latter also

discuss the interaction of disagreement and credit risk. In contrast to the aggregate market,

the skewness of individual firms’ stock returns is often positive; recent studies providing

evidence on the properties of skewness across firms and in the aggregate market include

Albuquerque (2012) and Engle and Mistry (2014).

To parsimoniously model both positive and negative skewness, we specify a firm’s asset

process A to incorporate jumps and stochastic volatility,

d logAt =

(
µ− σ2

t

2

)
dt+ σt

(
ρdW P

t +
√

1− ρ2dBP
t

)
+ ηdJP

t ,

dσ2
t = (ν2 + ν3σ

2
t + ν4κ

2
t )dt+ ψσtdB

P
t ,

(B.7)

where J is a pure jump process with intensity ω and η is a constant, W P
t = ξW 1P

t +√
1− ξ2W 2P

t and κ2t is the stochastic market variance from equation (B.5). We consider

two different default specifications for this setup for a level of debt D0 ≤ A0. The first with

a Merton (1974)-style default at maturity T , if AT < D0. The second allows for default prior

to maturity if At < D0, for at least one t ∈ [0, T ]. Equity (E) represents the forward price

of a European call option on the firm’s assets with strike equal to D0. The corresponding

forward price F0,T := EP
0 [M(AT −D0)

+], so that the forward gross return on equity is

(AT −D0)
+

EP
0 [M(AT −D0)+]

.
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The model-implied credit spreads for Merton-style default, i.e. when AT < D0, are given by

csT := EP
0

M D0 − AT
D0︸ ︷︷ ︸

loss rate conditional on default

11(D0 ≥ AT )︸ ︷︷ ︸
default probability

 , (B.8)

and when we allow the firm to default before maturity, i.e. as soon as At < D0, by

csearly default
T := EP

0

M D0 − AT
D0︸ ︷︷ ︸

loss rate conditional on default

11(D0 ≥ At; 0 ≤ t ≤ T )︸ ︷︷ ︸
default probability

 . (B.9)

With the asset value dynamics accounting for systematic and idiosyncratic shocks, we ex-

plore the impact of higher moments on expected equity returns within the market framework

discussed above in Section B.1. In the paper, we report results for the baseline specification

without jumps (i.e. we set the jump intensity ω = 0) and for Merton-style default at matu-

rity. In the Internet Appendix, we also present results for specifications that include jumps

and early defaults.

B.3 Setup for the Simulation Study

Our simulation study is designed to generate data that matches the properties of our empir-

ical data along several dimensions. In what follows, we sketch the most important steps of

this procedure.

To simulate an economy according to the joint model for the market and asset prices

from Sections B.1 and B.2, we first generate sets of parameters with plausible values. To

model the dynamics of the market, we fix the coefficient of relative risk aversion γ at 2,

the instantaneous correlation between forward market returns and stochastic variance ξ is

set to the value of −0.85, the unconditional mean of index variance to −ν0/ν1 = 0.048 and

the mean reversion of market variance ν1 = −1.23 From these parameters we discretize the

stochastic differential equation (B.5) and simulate a market time series of 320 months from

daily increments.

In a second step, we generate 2,000 firms for which we draw the parameters from distri-

butions reflecting the observed cross section. We draw ρ ∼ U(0, 1), a uniform distribution

on the unit interval, leverage D ∼ B(2, 5), a Beta distribution, the asset drift µ ∼ Γ(2, 0.01),

from a Gamma distribution, same as the volatility of asset variance ψ, which is taken as

23These are parameter values similar to those in Aı̈t-Sahalia and Kimmel (2007).
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the square-root of a Γ(2, 0.01) random variable. The parameters ν2, ν3, ν4 are drawn from

Gamma distributions Γ(2, 0.01),−Γ(2, 0.5), and Γ(2, 0.25), respectively, so that the uncon-

ditional mean EP [σ2
t ] exists. To better reflect the cross section of US corporations we set

additionally 25% of the population’s leverage to zero (see, e.g., Strebulaev and Yang, 2013).

When simulating the asset value processes, we keep the trajectory of the forward market

fixed to ensure it is identical for all assets. Given these sample paths for firm assets, we then

compute the sample paths of corporate equity values, expected equity returns, implied and

expected realized skewness, CAPM betas, etc.

C Variables Constructed from Stock Returns

In our empirical analysis we explore whether accounting for skewness improves our under-

standing of low risk anomalies. This Section summarizes how we estimate CAPM betas and

idiosyncratic volatility from past equity returns.

CAPM betas. We estimate ex-ante CAPM betas exactly as described in Frazzini and

Pedersen (2014). For security i, the beta estimate is given by

ˆβTSi = ρ̂i
σ̂i
σ̂m

(C.1)

where σ̂m and σ̂i denote the volatilities for stock i and the market excess returns, and

ρi denotes their correlation with the market. We estimate volatilities as one-year rolling

standard deviations of one-day log returns and correlations using a five-year rolling window

of overlapping three-day log returns. As a minimum, we require 120 and 750 trading days

of non-missing data, respectively. To reduce the influence of outliers, Frazzini and Pedersen

(2014) follow previous research and shrink the time-series estimate ˆβTSi to the cross-sectional

beta mean (β̂XS),

β̂i = w × β̂tsi + (1− w)× β̂XS, (C.2)

where they set w = 0.6 and β̂XS = 1. Following this procedure, we generate end-of-month

estimates of CAPM betas for the period January 1996 to July 2014.

Idiosyncratic volatility. For our empirical analysis, we estimate two series of idiosyn-

cratic volatility. First, we estimate idiosyncratic volatility following Ang et al. (2006b) as the

square root of the residual variance from regressing daily equity excess returns of firm i on

the daily returns of the three Fama French factors (market, size, and value) over the previous
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month. As a second estimate, we use the square root of the residual variance resulting from

the CAPM beta estimation following Frazzini and Pedersen (2014) as described above.
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Gârleanu, N., Pedersen, L. H., and Poteshman, A. M. (2009). Demand-Based Option Pricing.
Review of Financial Studies, 22:4259–4299.

Geske, R. (1979). The valuation of compound options. Journal of Financial Economics,
7(1):63 – 81.

Gourier, E. (2016). Pricing of idiosyncratic equity and variance risks. Working Paper, Queen
Mary University London.

Han, B. (2008). Investor sentiment and option prices. Review of Financial Studies, 21:387–
414.

Harvey, C. and Siddique, A. (2000). Conditional skewness in asset pricing tests. Journal of
Finance, 55:1263–1295.

Haugen, R. and Heins, A. (1975). Risk and the rate of return on financial assets: Some old
wine in new bottles. Journal of Financial and Quantitative Analysis, 10:775–784.

33



Hong, H. and Sraer, D. A. (2016). Speculative betas. The Journal of Finance, 71(5):2095–
2144.

Huang, S., Lou, D., and Polk, C. (2016). The booms and busts of beta arbitrage. Technical
report, Working paper.

Hull, J. C., Nelken, I., and White, A. D. (2005). Merton’s model, credit risk and volatility
skews. Journal of Credit Risk, 1(1):3–26.

Johnson, T. C. (2004). Forecast dispersion and the cross section of expected returns. The
Journal of Finance, 59(5):1957–1978.
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Table 1: Low Risk Anomalies: Alphas and Residual Coskewness

This Table reports excess returns, factor model alphas, and residual coskewness of low risk anomalies (LRAs) using
value- and equally-weighted decile portfolios (Panels A and B, respectively). At the end of every month, we sort
firms into decile portfolios based one their CAPM beta, idiosyncratic volatility (measured from the residual variance
of CAPM and Fama French three factor model regressions), or their equity option-implied ex-ante variance. From
these portfolios, we compute Low-minus-High returns generated by betting-against-beta/volatility strategies, and
report raw excess returns as well as alphas of CAPM-, Fama-French three- (FF3), and four-factor- (FF4) regressions.
We also report the corresponding coskewness of residual returns, i.e. the covariance of residual returns with squared
market excess returns. Values in square brackets are t-statistics based on standard errors following Newey and West
(1987) where we choose the optimal truncation lag as suggested by Andrews (1991). The data covers 4,967 US
firms, is sampled at a monthly frequency over the period January 1996 to August 2014, and contains a total of
400,449 observations.

Panel A. Low-minus-High-returns of value-weighted portfolios

CAPM Beta Ivol (CAPM) IVol (FF3) Ex-ante Var

Excess return 20.43 30.18 33.44 31.12
[0.27] [0.40] [0.54] [0.37]

Coskewness 0.49 0.34 0.28 0.44

CAPM alpha 125.06 123.79 109.02 133.17
[2.87] [2.52] [2.43] [2.49]

Coskewness -0.39 -0.45 -0.35 -0.41

FF3 alpha 109.07 121.31 112.05 132.34
[2.82] [2.91] [2.53] [3.00]

Coskewness -0.38 -0.47 -0.37 -0.44

FF4 alpha 72.98 60.61 52.04 68.11
[1.58] [1.50] [1.78] [1.69]

Coskewness -0.28 -0.31 -0.21 -0.26

Panel B. Low-minus-High-returns of equally-weighted portfolios

CAPM Beta Ivol (CAPM) IVol (FF3) Ex-ante Var

Excess return -7.58 32.21 28.65 5.83
[-0.10] [0.46] [0.49] [0.08]

Coskewness 0.30 0.47 0.32 0.38

CAPM alpha 91.80 121.56 102.27 96.97
[1.87] [2.47] [2.27] [1.79]

Coskewness -0.54 -0.29 -0.30 -0.39

FF3 alpha 79.47 116.71 98.29 91.24
[2.23] [4.31] [3.72] [2.81]

Coskewness -0.54 -0.31 -0.32 -0.41

FF4 alpha 39.04 78.55 56.77 38.91
[0.87] [2.33] [2.26] [1.09]

Coskewness -0.43 -0.21 -0.20 -0.27
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Table 2: Skewness as a Common Driver of Low Risk Anomalies

This Table presents evidence that skewness is a common driver of beta- and volatility-based low risk anomalies
(LRAs). We compute LRA returns as Low-minus-High returns of value-weighted decile portfolios that we sort by
CAPM beta, idiosyncratic volatility (measured from the residual variance of CAPM and Fama French three factor
model regressions), or their equity option-implied ex-ante variance at the end of every month. We compute the
LRAs’ excess returns as well as alphas of CAPM-, Fama-French three- (FF3), and four-factor- (FF4) regressions
and Panel A presents results for principal component analyses of the corresponding residual returns. The left part
of Panel A reports the return variation explained by each of the four principal components (PCs). The right part
reports the coefficients as well as the associated R2s of regressing LRA returns on PC1. Panel B shows that the
LRAs’ PC1 is related to skewness by reporting results from regressing PC1 of excess returns as well as CAPM,
FF3, and FF4 residual returns on skew factor returns. We compute skew factor returns as the High-minus-Low
returns of value-weighted decile portfolios sorted by ex-ante skewness and consider the following specifications:
we use lower skewness to construct the LSK-factor, upper skewness for the USK-factor, and total skewness to
construct the (SK1+10 − SK5+6)-factor. We report results for regressions using these skew factors and additionally
for regressions where we use the difference between USK and LSK as skew factor and a regression in which we
include both USK and LSK returns. Values in square brackets are t-statistics based on standard errors following
Newey and West (1987) where we choose the optimal truncation lag as suggested by Andrews (1991). The data
covers 4,967 US firms, is sampled at a monthly frequency over the period January 1996 to August 2014, and
contains a total of 400,449 observations.

Panel A. Principal Components of Low Risk Anomalies

Variation explained by PCs Anomaly return loadings on PC1
PC1 PC2 PC3 PC4 CAPM Beta Ivol (CAPM) Ivol (FF3) Ex-ante Var

Excess returns 91.05 4.67 2.24 2.04 0.47 0.54 0.43 0.56
[36.70] [40.67] [22.88] [46.74]

R2 (%) 84.60 94.08 88.76 94.68

CAPM residual returns 85.41 6.94 3.96 3.69 0.37 0.57 0.45 0.58
[20.05] [31.62] [17.96] [36.68]

R2 (%) 66.94 91.55 83.09 91.29

FF3 residual returns 81.34 8.80 5.08 4.77 0.39 0.55 0.49 0.56
[16.69] [27.76] [19.92] [34.17]

R2 (%) 64.06 87.34 81.50 87.21

FF4 residual returns 72.43 12.64 7.71 7.21 0.46 0.55 0.44 0.54
[14.01] [23.62] [17.26] [25.00]

R2 (%) 61.09 80.46 67.54 78.42

Panel B. Skew Factor Returns and the First Principal Component of Low Risk Anomalies

Excess returns CAPM residuals FF3 residuals FF4 residuals

Lower skewness (LSK) 1.74 1.65 1.61 1.48
[44.09] [37.57] [23.54] [16.59]

R2 (%) 94.66 90.76 86.61 77.77

Upper skewness (USK) -1.65 -1.52 -1.45 -1.32
[-42.57] [-38.85] [-24.92] [-18.26]

R2 (%) 93.13 89.35 85.18 75.35

Skewness (SK1+10 − SK5+6) -1.24 -1.06 -0.96 -0.89
[-16.87] [-15.58] [-22.76] [-12.43]

R2 (%) 82.82 71.92 71.40 51.83

Upper minus lower skewness (USK − LSK) -0.86 -0.81 -0.78 -0.73
[-47.74] [-44.30] [-27.88] [-21.34]

R2 (%) 94.98 91.85 88.25 79.96

Lower skewness (LSK) 1.18 1.00 0.95 0.90
[8.48] [7.20] [6.36] [6.95]

Upperskewness (USK) -0.55 -0.63 -0.64 -0.58
[-4.19] [-5.11] [-5.19] [-4.94]

R2 (%) 95.13 91.95 88.34 80.14
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Table 3: Low Risk Anomalies: Controlling for Skewness

This Table reports skew-adjusted factor model alphas and residual coskewness of low risk anomalies (LRAs) using
value-weighted decile portfolios. At the end of every month, we sort firms into decile portfolios based one their
CAPM beta, idiosyncratic volatility (measured from the residual variance of CAPM and Fama French three factor
model regressions), or their equity option-implied ex-ante variance. From these portfolios, we compute Low-minus-
High returns generated by betting-against-beta/volatility strategies, and report alphas of CAPM-, Fama-French
three-, and four-factor regressions that additionally include controls for skewness. To adjust for skewness, we use
either the (SK1+10 − SK5+6)-factor (Panel A), the (USK−LSK)-factor (Panel B), or both the LSK- and the USK-
factor (Panel C). We also report the corresponding coskewness of residual returns, i.e. the covariance of residual
returns with squared market excess returns. Values in square brackets are t-statistics based on standard errors
following Newey and West (1987) where we choose the optimal truncation lag as suggested by Andrews (1991).
The data covers 4,967 US firms, is sampled at a monthly frequency over the period January 1996 to August 2014,
and contains a total of 400,449 observations.

Panel A. Controlling for Skewness using the (SK1+10 − SK5+6)-factor

CAPM Beta Ivol (CAPM) IVol (FF3) Ex-ante Var

CAPM alpha 66.45 30.80 32.70 34.01
[1.87] [0.85] [1.08] [1.23]

Coskewness -0.15 -0.06 -0.03 0.00

FF3 alpha 43.70 29.17 29.91 31.37
[1.34] [0.82] [0.92] [1.15]

Coskewness -0.12 -0.11 -0.05 -0.04

FF4 alpha 44.85 27.41 26.32 30.23
[1.41] [0.78] [0.96] [1.15]

Coskewness -0.12 -0.11 -0.06 -0.04

Panel B. Controlling for Skewness using the (USK−LSK)-factor

CAPM Beta Ivol (CAPM) IVol (FF3) Ex-ante Var

CAPM alpha 56.47 11.60 19.18 7.53
[1.70] [0.39] [0.66] [0.80]

Coskewness -0.18 -0.10 -0.07 -0.02

FF3 alpha 40.35 19.29 19.38 10.16
[1.26] [0.74] [0.68] [1.09]

Coskewness -0.15 -0.14 -0.06 -0.03

FF4 alpha 40.16 16.06 14.42 9.80
[1.29] [0.59] [0.56] [1.04]

Coskewness -0.15 -0.13 -0.06 -0.03

Panel C. Controlling for Skewness using the LSK- and the USK-factor

CAPM Beta Ivol (CAPM) IVol (FF3) Ex-ante Var

CAPM alpha 33.02 12.33 10.93 3.72
[1.06] [0.37] [0.39] [0.31]

Coskewness -0.16 -0.10 -0.06 -0.02

FF3 alpha 21.27 24.21 8.80 7.43
[0.64] [0.73] [0.31] [0.61]

Coskewness -0.14 -0.14 -0.06 -0.03

FF4 alpha 21.11 21.06 3.99 7.09
[0.60] [0.61] [0.16] [0.62]

Coskewness -0.14 -0.14 -0.05 -0.03
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Figure 1: Low Risk Anomalies: Alphas and Residual Coskewness

This Figure reports results for the equally-weighted and value-weighted decile portfolios used to compute the low
risk anomaly (LRA) returns in Table 1. At the end of every month, we sort firms into decile portfolios based
one their CAPM beta, idiosyncratic volatility (measured from the residual variance of CAPM and Fama French
three factor model regressions), or their equity option-implied ex-ante variance. In total, we have 80 portfolios: 10
portfolios for each of the four LRAs, both, equally- and value-weighted. We plot CAPM-, Fama-French three-, and
four-factor-alphas against their corresponding residual coskewness. Blue circles mark the low risk portfolios that
a betting-against-beta/volatility strategy goes long. Red diamonds mark the high risk portfolios that a betting-
against-beta/volatlity strategy goes short. Each figure header reports the R2 of a cross-sectional regression of
alphas on coskewness and the dashed lines represent the regression-fitted values. The data covers 4,967 US firms,
is sampled at a monthly frequency over the period January 1996 to August 2014, and contains a total of 400,449
observations.
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Figure 2: Low Risk Anomalies: Beta, Coskewness, and Residual Coskewness

This Figure reports results for the equally-weighted and value-weighted decile portfolios used to compute the low
risk anomaly (LRA) returns in Table 1. At the end of every month, we sort firms into decile portfolios based
one their CAPM beta, idiosyncratic volatility (measured from the residual variance of CAPM and Fama French
three factor model regressions), or their equity option-implied ex-ante variance. In total, we have 80 portfolios:
10 portfolios for each of the four LRAs, both, equally- and value-weighted. We plot the portfolios’ market beta
(x-axis) against the portfolios’ return coskewness (y-axis) in Panel A and against the portfolios’ residual return
coskewness computed from excess returns after controlling for the market factor in Panel B. Blue circles mark
the low risk portfolios that a betting-against-beta/volatility strategy goes long. Red diamonds mark the high risk
portfolios that a betting-against-beta/volatlity strategy goes short. The blue dashed line (in Panel A) plots the
average market skewness (σm,m2) over our sample period. The data covers 4,967 US firms, is sampled at a monthly
frequency over the period January 1996 to August 2014, and contains a total of 400,449 observations.
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Figure 3: Alphas and Residual Coskewness: Simulation Evidence

This Figure presents results for the relation between CAPM alphas and residual coskewness in simulated worlds
with 2,000 Merton-type firms. The three plots are based on different pricing kernel specifications: a CAPM world
(Panel A), a skew-aware world (Panel B), and a world where also moments higher than skewness are accounted for
(Panel C). The figure also reports results for LRA strategies based on equally-weighted decile portfolios, betting
against CAPM beta, idiosyncratic volatility, and implied volatility. Blue circles mark the low risk portfolios that
a betting-against-risk strategy goes long. Red diamonds mark the high risk portfolios that a betting-against-risk
strategy goes long. Each figure header reports the R2 of a cross-sectional regression of alphas on coskewness. In
Panel C, the grey circles mark the alphas after additionally controlling for skewness.
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Figure 4: Implied Skewness, Residual Coskewness, and Alphas: Simulation Evidence

This Figure presents results for the relation between firms’ skewness, CAPM residual coskewness, and CAPM
alphas in a simulated skew-aware world with 2,000 Merton-type firms. For each firm, we compute measures of
implied skewness (under the Q-measure) and expected realized skewness (under the P-measure). We compute
lower skewness (by definition always negative), upper skewness (by definition always positive), and skewness which
is the sum of lower and upper skewness. We sort firms into decile portfolios based on the three Q-, and on the
three P-skew measures, and compute the portfolios’ CAPM alphas and residual coskewness. Portfolios P1 and
P10 contain the firms with the lowest and highest values of the sort variables, respectively. Panel A reports the
portfolios’ CAPM residual coskewness when using measures of Q-skew (blue line with bullets) and P-skew (green
line with diamonds) using lower skewness (left), upper skewness (middle), and skewness (right). Panel B plots the
portfolios’ corresponding CAPM alphas.
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Figure 5: Option-Implied Ex-Ante Skewness, Residual Coskewness, and Alphas

This Figure presents results for the relation between firms’ equity-option implied ex-ante skewness, CAPM residual
coskewness, and CAPM alphas. For each firm, we compute option-implied lower skewness (by definition always
negative), upper skewness (by definition always positive), and skewness which is the sum of upper and lower
skewness. We sort firms into decile portfolios based on the three option-implied skew measures and compute the
portfolios’ CAPM alphas and residual coskewness. Portfolios P1 and P10 contain the firms with the lowest and
highest values of the sort variables, respectively. Panel A reports the portfolios’ CAPM residual coskewness for
equally-weighted portfolios (blue line with bullets) and value-weighted portfolios (green line with diamonds) using
lower skewness (left), upper skewness (middle), and skewness (right). Panel B plots the portfolios’ corresponding
CAPM alphas. The data covers 4,967 US firms, is sampled at a monthly frequency over the period January 1996
to August 2014, and contains a total of 400,449 observations.
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Figure 6: Alphas and Skew-Adjusted Alphas

This Figure reports alphas and skew-adjusted alphas of low risk anomalies (LRAs). At the end of every month,
we sort firms into value-weighted decile portfolios based on their CAPM beta, idiosyncratic volatility (measured
from the residual variance of CAPM and Fama French three factor model regressions), or their equity option-
implied ex-ante variance. From these portfolios, we compute Low-minus-High returns generated by betting-against-
beta/volatility strategies, and report alphas of CAPM-, Fama-French three-, and four-factor regressions (black bars
in Panels A, B, and C, respectively) as well as alphas that additionally include controls for skewness. To adjust for
skewness, we use either the (SK1+10 − SK5+6)-factor (dark grey bars), the (USK−LSK)-factor (light grey bars),
or both the LSK- and the USK-factor (white bars). The data covers 4,967 US firms, is sampled at a monthly
frequency over the period January 1996 to August 2014, and contains a total of 400,449 observations.
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Figure 7: Residual Coskewness associated with Alphas and Skew-Adjusted Alphas

This Figure reports the residual coskewness associated with alphas and skew-adjusted alphas of low risk anomalies
(LRAs). At the end of every month, we sort firms into value-weighted decile portfolios based on their CAPM
beta, idiosyncratic volatility (measured from the residual variance of CAPM and Fama French three factor model
regressions), or their equity option-implied ex-ante variance. From these portfolios, we compute Low-minus-High
returns generated by betting-against-beta/volatility strategies, and report the coskewness associated with residual
returns of CAPM-, Fama-French three-, and four-factor regressions (black bars in Panels A, B, and C, respectively)
as well as the residual coskewness when additionally including controls for skewness. To adjust for skewness, we
use either the (SK1+10 − SK5+6)-factor (dark grey bars), the (USK−LSK)-factor (light grey bars), or both the
LSK- and the USK-factor (white bars). The data covers 4,967 US firms, is sampled at a monthly frequency over
the period January 1996 to August 2014, and contains a total of 400,449 observations.
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Figure 8: Low Risk Anomalies: Skew-Adjusted Alphas and Residual Coskewness

This Figure reports results for the equally-weighted and value-weighted decile portfolios used to compute the
skew-adjusted low risk anomaly (LRA) returns in Table 3. At the end of every month, we sort firms into decile
portfolios based one their CAPM beta, idiosyncratic volatility (measured from the residual variance of CAPM and
Fama French three factor model regressions), or their equity option-implied ex-ante variance. In total, we have
80 portfolios: 10 portfolios for each of the four LRAs, both, equally- and value-weighted. We plot skew-adjusted
CAPM-, Fama-French three-, and four-factor-alphas against their corresponding residual coskewness. To adjust
for skewness, we add the LSK- and the USK-factor to the factor model regressions. Blue circles mark the low risk
portfolios that a betting-against-beta/volatility strategy goes long. Red diamonds mark the high risk portfolios
that a betting-against-beta/volatlity strategy goes short. Each figure header reports the R2 of a cross-sectional
regression of alphas on coskewness and the dashed lines represent the regression-fitted values. The data covers
4,967 US firms, is sampled at a monthly frequency over the period January 1996 to August 2014, and contains a
total of 400,449 observations.
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Table IA.1: Descriptives Statistics for Skew-Sorted Portfolios: EW Means

This Table presents descriptives statistcis for the equally-weighted decile portfolios sorted by measures of ex-ante
skewness, for which we report CAPM alphas and residual coskewness in Figure 5. For each firm, we compute
option-implied lower skewness (by definition always negative), upper skewness (by definition always positive),
and skewness which is the sum of upper and lower skewness. We sort firms into decile portfolios based on the
three option-implied skew measures and compute equally-weighted portfolio means of the variables indicated in
the rownames. Portfolios P1 and P10 contain the firms with the lowest and highest values of the sort variables,
respectively. We report results for portfolios sorted by lower skewness (Panel A), upper skewness (Panel B), and
skewness (Panel C). The data covers 4,967 US firms, is sampled at a monthly frequency over the period January
1996 to August 2014, and contains a total of 400,449 observations.

Panel A. Portfolios sorted by lower skewness

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Lower skewness (LSK) [%] -13.63 -5.05 -3.34 -2.39 -1.75 -1.30 -0.97 -0.71 -0.49 -0.26
Upper skewness (USK) [%] 17.36 6.35 3.95 2.79 1.97 1.40 1.05 0.75 0.53 0.33
Skewness (SK) [%] 3.73 1.30 0.61 0.40 0.22 0.10 0.08 0.04 0.05 0.07

CAPM Beta 1.31 1.27 1.21 1.15 1.08 1.04 0.99 0.95 0.89 0.80
Ivol (CAPM) [%] 4.62 3.85 3.39 3.00 2.65 2.34 2.09 1.83 1.60 1.35
Ivol (FF3) [%] 3.98 3.12 2.71 2.40 2.13 1.89 1.69 1.49 1.29 1.08
Ex-ante Var [%] 82.69 43.96 32.65 25.68 20.50 16.50 13.40 10.69 8.26 5.48

Market cap [in logs] 20.83 21.08 21.30 21.54 21.78 22.12 22.44 22.83 23.25 23.83
Book-to-market 0.47 0.50 0.51 0.51 0.50 0.49 0.48 0.47 0.45 0.43

Panel B. Portfolios sorted by upper skewness

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Lower skewness (LSK) [%] -0.37 -0.60 -0.83 -1.09 -1.45 -1.93 -2.62 -3.59 -5.33 -12.08
Upper skewness (USK) [%] 0.19 0.38 0.58 0.84 1.18 1.68 2.43 3.60 5.84 19.77
Skewness (SK) [%] -0.18 -0.22 -0.25 -0.25 -0.27 -0.25 -0.19 0.01 0.51 7.69

CAPM Beta 0.81 0.90 0.95 0.99 1.04 1.09 1.14 1.21 1.26 1.31
Ivol (CAPM) [%] 1.36 1.60 1.83 2.08 2.35 2.65 3.00 3.40 3.86 4.62
Ivol (FF3) [%] 1.08 1.29 1.48 1.68 1.88 2.12 2.40 2.71 3.13 4.00
Ex-ante Var [%] 5.42 8.23 10.66 13.33 16.47 20.40 25.61 32.67 43.95 83.12

Market cap [in logs] 23.90 23.26 22.81 22.39 22.05 21.76 21.45 21.17 20.90 20.62
Book-to-market 0.42 0.44 0.47 0.48 0.49 0.50 0.51 0.51 0.52 0.48

Panel C. Portfolios sorted by skewness

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Lower skewness (LSK) [%] -7.32 -2.34 -1.57 -1.19 -1.02 -1.04 -1.38 -2.18 -3.53 -8.29
Upper skewness (USK) [%] 4.03 1.76 1.24 0.98 0.90 1.02 1.50 2.60 4.73 17.70
Skewness (SK) [%] -3.30 -0.59 -0.33 -0.21 -0.12 -0.02 0.12 0.42 1.21 9.42

CAPM Beta 1.17 1.11 1.06 1.01 0.97 0.94 0.97 1.06 1.15 1.24
Ivol (CAPM) [%] 3.34 2.66 2.33 2.10 1.97 1.97 2.19 2.69 3.32 4.18
Ivol (FF3) [%] 2.70 2.09 1.85 1.67 1.58 1.60 1.79 2.19 2.70 3.58
Ex-ante Var [%] 40.95 21.51 16.53 13.70 12.42 12.73 15.91 23.03 34.11 68.85

Market cap [in logs] 21.75 22.27 22.67 22.91 23.11 23.25 22.99 21.99 21.03 20.47
Book-to-market 0.52 0.49 0.46 0.45 0.45 0.44 0.46 0.50 0.53 0.52
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Table IA.2: Descriptives Statistics for Skew-Sorted Portfolios: VW Means

This Table presents descriptives statistcis for the value-weighted decile portfolios sorted by measures of ex-ante
skewness, for which we report CAPM alphas and residual coskewness in Figure 5. For each firm, we compute option-
implied lower skewness (by definition always negative), upper skewness (by definition always positive), and skewness
which is the sum of upper and lower skewness. We sort firms into decile portfolios based on the three option-implied
skew measures and compute value-weighted portfolio means of the variables indicated in the rownames. Portfolios
P1 and P10 contain the firms with the lowest and highest values of the sort variables, respectively. We report
results for portfolios sorted by lower skewness (Panel A), upper skewness (Panel B), and skewness (Panel C). The
data covers 4,967 US firms, is sampled at a monthly frequency over the period January 1996 to August 2014, and
contains a total of 400,449 observations.

Panel A. Portfolios sorted by lower skewness

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Lower skewness (LSK) [%] -13.00 -4.98 -3.30 -2.37 -1.74 -1.29 -0.96 -0.70 -0.48 -0.26
Upper skewness (USK) [%] 14.05 5.20 3.28 2.21 1.54 1.09 0.79 0.55 0.36 0.28
Skewness (SK) [%] 1.05 0.22 -0.03 -0.16 -0.20 -0.20 -0.16 -0.15 -0.11 0.03

CAPM Beta 1.42 1.38 1.34 1.27 1.21 1.15 1.08 1.03 0.95 0.81
Ivol (CAPM) [%] 4.24 3.58 3.17 2.80 2.48 2.20 1.97 1.74 1.54 1.26
Ivol (FF3) [%] 3.77 2.98 2.56 2.27 2.03 1.78 1.60 1.43 1.25 1.00
Ex-ante Var [%] 75.54 41.18 30.84 24.18 19.37 15.62 12.64 10.08 7.69 5.02

Market cap [in logs] 22.88 23.44 23.63 23.90 24.09 24.41 24.62 24.86 25.00 25.35
Book-to-market 0.41 0.43 0.41 0.41 0.40 0.39 0.40 0.38 0.36 0.33

Panel B. Portfolios sorted by upper skewness

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Lower skewness (LSK) [%] -0.30 -0.55 -0.79 -1.09 -1.47 -1.98 -2.69 -3.71 -5.51 -12.07
Upper skewness (USK) [%] 0.18 0.37 0.57 0.83 1.17 1.67 2.41 3.56 5.75 19.04
Skewness (SK) [%] -0.12 -0.18 -0.22 -0.26 -0.29 -0.31 -0.28 -0.15 0.23 6.97

CAPM Beta 0.82 0.97 1.03 1.09 1.16 1.22 1.28 1.35 1.39 1.41
Ivol (CAPM) [%] 1.27 1.56 1.78 2.02 2.27 2.55 2.86 3.27 3.68 4.34
Ivol (FF3) [%] 1.01 1.27 1.47 1.65 1.85 2.08 2.36 2.68 3.09 3.89
Ex-ante Var [%] 5.10 8.12 10.63 13.40 16.62 20.63 25.85 32.92 44.03 80.92

Market cap [in logs] 25.37 25.02 24.85 24.54 24.23 24.09 23.75 23.41 23.17 22.76
Book-to-market 0.33 0.37 0.39 0.40 0.40 0.40 0.41 0.42 0.44 0.40

Panel C. Portfolios sorted by skewness

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Lower skewness (LSK) [%] -5.28 -1.76 -1.10 -0.78 -0.63 -0.70 -0.98 -1.77 -3.25 -7.76
Upper skewness (USK) [%] 2.83 1.19 0.78 0.58 0.52 0.67 1.09 2.16 4.41 16.78
Skewness (SK) [%] -2.46 -0.57 -0.33 -0.20 -0.12 -0.02 0.11 0.40 1.16 9.02

CAPM Beta 1.21 1.17 1.10 1.02 0.96 0.92 0.93 1.05 1.19 1.32
Ivol (CAPM) [%] 2.76 2.27 1.96 1.76 1.62 1.60 1.77 2.26 2.97 3.83
Ivol (FF3) [%] 2.29 1.79 1.55 1.41 1.32 1.32 1.50 1.90 2.50 3.40
Ex-ante Var [%] 32.10 17.23 12.75 10.24 8.91 9.36 11.97 19.12 31.01 64.24

Market cap [in logs] 24.07 24.46 24.67 24.77 24.95 25.06 24.96 24.21 23.25 22.79
Book-to-market 0.46 0.41 0.39 0.38 0.37 0.35 0.35 0.41 0.46 0.44
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Table IA.3: Skewness as a Common Driver of Low Risk Anomalies: EW Portfolios

This Table presents evidence that skewness is a common driver of beta- and volatility-based low risk anomalies
(LRAs). We compute LRA returns as Low-minus-High returns of equally-weighted decile portfolios that we sort by
CAPM beta, idiosyncratic volatility (measured from the residual variance of CAPM and Fama French three factor
model regressions), or their equity option-implied ex-ante variance at the end of every month. We compute the
LRAs’ excess returns as well as alphas of CAPM-, Fama-French three- (FF3), and four-factor- (FF4) regressions
and Panel A presents results for principal component analyses of the corresponding residual returns. The left part
of Panel A reports the return variation explained by each of the four principal components (PCs). The right part
reports the coefficients as well as the associated R2s of regressing LRA returns on PC1. Panel B shows that the
LRAs’ PC1 is related to skewness by reporting results from regressing PC1 of excess returns as well as CAPM, FF3,
and FF4 residual returns on skew factor returns. We compute skew factor returns as the High-minus-Low returns
of equally-weighted decile portfolios sorted by ex-ante skewness and consider the following specifications: we use
lower skewness to construct the LSK-factor, upper skewness for the USK-factor, and total skewness to construct the
(SK1+10 − SK5+6)-factor. We report results for regressions using these skew factors and additionally for regressions
where we use the difference between USK and LSK as skew factor and a regression in which we include both USK
and LSK returns. Values in square brackets are t-statistics based on standard errors following Newey and West
(1987) where we choose the optimal truncation lag as suggested by Andrews (1991). The data covers 4,967 US
firms, is sampled at a monthly frequency over the period January 1996 to August 2014, and contains a total of
400,449 observations.

Panel A. Principal components of Low Risk Anomalies

Variation explained by PCs Anomaly return loadings on PC1
PC1 PC2 PC3 PC4 CAPM Beta Ivol (CAPM) Ivol (FF3) Ex-ante Var

Excess returns 96.28 2.74 0.57 0.42 0.49 0.52 0.44 0.54
[25.97] [38.00] [67.89] [71.02]

R2 (%) 91.94 97.90 97.13 98.07

CAPM residual returns 94.16 4.07 1.02 0.75 0.43 0.53 0.46 0.56
[19.15] [31.37] [79.01] [56.88]

R2 (%) 84.39 96.77 95.87 97.39

FF3 residual returns 89.62 6.87 1.93 1.58 0.52 0.48 0.43 0.55
[18.90] [37.29] [31.26] [32.05]

R2 (%) 83.22 92.50 89.99 93.58

FF4 residual returns 84.98 10.04 2.58 2.40 0.56 0.51 0.40 0.52
[25.49] [33.74] [31.25] [32.29]

R2 (%) 79.63 89.79 82.85 88.77

Panel B. Skew Factor Returns and the First Principal Component of Low Risk Anomalies

Excess returns CAPM residuals FF3 residuals FF4 residuals

Lower skewness (LSK) 1.88 1.80 1.77 1.77
[77.80] [67.46] [33.35] [30.32]

R2 (%) 98.03 97.20 93.15 88.14

Upper skewness (USK) -1.85 -1.77 -1.69 -1.67
[-64.24] [-46.37] [-26.71] [-22.82]

R2 (%) 97.74 96.72 92.32 86.77

Skewness (SK1+10 − SK5+6) -1.71 -1.55 -1.30 -1.26
[-29.79] [-19.51] [-18.06] [-17.16]

R2 (%) 91.15 86.53 78.08 63.94

Upper minus lower skewness (USK − LSK) -0.94 -0.90 -0.88 -0.88
[-72.91] [-55.66] [-30.25] [-26.53]

R2 (%) 98.18 97.46 93.76 89.10

Lower skewness (LSK) 1.17 1.12 1.07 1.08
[8.57] [9.82] [9.62] [9.80]

Upperskewness (USK) -0.71 -0.68 -0.69 -0.68
[-5.16] [-5.97] [-6.18] [-5.68]

R2 (%) 98.20 97.49 93.81 89.18
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Table IA.4: Skewness as a Common Driver of Low Risk Anomalies: RW Portfolios

This Table presents evidence that skewness is a common driver of beta- and volatility-based low risk anomalies
(LRAs). We compute LRA returns as Low-minus-High returns of rank-weighted decile portfolios that we sort by
CAPM beta, idiosyncratic volatility (measured from the residual variance of CAPM and Fama French three factor
model regressions), or their equity option-implied ex-ante variance at the end of every month. We compute the
LRAs’ excess returns as well as alphas of CAPM-, Fama-French three- (FF3), and four-factor- (FF4) regressions
and Panel A presents results for principal component analyses of the corresponding residual returns. The left part
of Panel A reports the return variation explained by each of the four principal components (PCs). The right part
reports the coefficients as well as the associated R2s of regressing LRA returns on PC1. Panel B shows that the
LRAs’ PC1 is related to skewness by reporting results from regressing PC1 of excess returns as well as CAPM, FF3,
and FF4 residual returns on skew factor returns. We compute skew factor returns as the High-minus-Low returns
of rank-weighted decile portfolios sorted by ex-ante skewness and consider the following specifications: we use
lower skewness to construct the LSK-factor, upper skewness for the USK-factor, and total skewness to construct
the (SK1+10 − SK5+6)-factor. We report results for regressions using these skew factors and additionally for
regressions where we use the difference between USK and LSK as skew factor and a regression in which we include
both USK and LSK returns. Values in square brackets are t-statistics based on standard errors following Newey
and West (1987) where we choose the optimal truncation lag as suggested by Andrews (1991). The data covers
4,967 US firms, is sampled at a monthly frequency over the period January 1996 to August 2014, and contains a
total of 400,449 observations.

Panel A. Principal components of Low Risk Anomalies

Variation explained by PCs Anomaly return loadings on PC1
PC1 PC2 PC3 PC4 CAPM Beta Ivol (CAPM) Ivol (FF3) Ex-ante Var

Excess returns 97.57 2.07 0.19 0.17 0.48 0.52 0.45 0.54
[21.69] [41.15] [53.04] [196.78]

R2 (%) 93.40 98.75 98.56 99.24

CAPM residual returns 96.47 2.90 0.33 0.29 0.43 0.54 0.47 0.55
[19.17] [38.90] [53.20] [129.79]

R2 (%) 88.29 98.41 98.15 98.93

FF3 residual returns 93.68 4.86 0.76 0.71 0.54 0.49 0.43 0.54
[37.74] [49.38] [37.40] [59.79]

R2 (%) 88.65 95.76 94.55 96.85

FF4 residual returns 90.86 7.18 1.05 0.91 0.55 0.51 0.42 0.51
[33.24] [57.28] [39.87] [55.25]

R2 (%) 84.58 94.31 91.46 95.11

Panel B. Skew Factor Returns and the First Principal Component of Low Risk Anomalies

Excess returns CAPM residuals FF3 residuals FF4 residuals

Lower skewness (LSK) 1.87 1.83 1.86 1.89
[151.03] [166.66] [63.68] [56.49]

R2 (%) 99.27 99.00 97.07 95.39

Upper skewness (USK) -1.87 -1.82 -1.78 -1.82
[-117.12] [-64.11] [-44.04] [-37.41]

R2 (%) 98.82 98.29 95.22 92.56

Skewness (SK1+10 − SK5+6) -0.94 -0.91 -0.92 -0.94
[-166.83] [-105.36] [-52.92] [-45.08]

R2 (%) 99.19 98.88 96.69 94.83

Upper minus lower skewness (USK − LSK) -0.94 -0.91 -0.92 -0.94
[-166.83] [-105.36] [-52.92] [-45.08]

R2 (%) 99.19 98.88 96.69 94.83

Lower skewness (LSK) 1.69 1.61 1.71 1.71
[9.61] [11.23] [9.60] [9.99]

Upperskewness (USK) -0.18 -0.22 -0.15 -0.18
[-1.04] [-1.52] [-0.86] [-1.02]

R2 (%) 99.28 99.01 97.09 95.42
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Table IA.5: Skewness as a Common Driver of Low Risk Anomalies: Additional Controls

This Table presents evidence that skewness is a common driver of beta- and volatility-based low risk anomalies
(LRAs). We compute LRA returns as Low-minus-High returns of value-weighted decile portfolios that we sort by
CAPM beta, idiosyncratic volatility (measured from the residual variance of CAPM and Fama French three factor
model regressions), or their equity option-implied ex-ante variance at the end of every month. From the LRAs’
excess returns, we compute alphas relative to the Fama-French five factor model as well as relative to the Fama-
French four factor model extended with the liquidity factor of Pástor and Stambaugh (2003). Panel A presents
results for principal component analyses of the corresponding residual returns. The left part of Panel A reports
the residual return variation explained by each of the four principal components (PCs). The right part reports
the coefficients as well as the associated R2s of regressing LRA residual returns on PC1. Panel B shows that the
LRAs’ PC1 is related to skewness by reporting results from regressing PC1 of FF5 and FF4 LIQU residual returns
on skew factor returns. We compute skew factor returns as the High-minus-Low returns of value-weighted decile
portfolios sorted by ex-ante skewness and consider the following specifications: we use lower skewness to construct
the LSK-factor, upper skewness for the USK-factor, and total skewness to construct the (SK1+10 − SK5+6)-factor.
We report results for regressions using these skew factors and additionally for regressions where we use the difference
between USK and LSK as skew factor and a regression in which we include both USK and LSK returns. Values
in square brackets are t-statistics based on standard errors following Newey and West (1987) where we choose the
optimal truncation lag as suggested by Andrews (1991). The data covers 4,967 US firms, is sampled at a monthly
frequency over the period January 1996 to August 2014, and contains a total of 400,449 observations.

Panel A. Principal components of Low Risk Anomalies

Variation explained by PCs Anomaly return loadings on PC1
PC1 PC2 PC3 PC4 CAPM Beta Ivol (CAPM) Ivol (FF3) Ex-ante Var

FF5 residual returns 78.55 10.25 5.78 5.41 0.39 0.55 0.49 0.55
[16.04] [25.24] [17.91] [32.46]

R2 (%) 58.89 85.68 78.94 85.06

FF4 LIQU residual returns 72.22 12.82 7.82 7.15 0.46 0.55 0.45 0.54
[13.21] [22.38] [17.58] [25.74]

R2 (%) 60.81 80.09 68.18 77.96

Panel B. Skew Factor Returns and the First Principal Component of Low Risk Anomalies

FF5 residuals FF4 LIQU residuals

Lower skewness (LSK) 1.59 1.48
[23.23] [17.26]

R2 (%) 83.90 77.31

Upper skewness (USK) -1.41 -1.32
[-22.63] [-18.51]

R2 (%) 82.87 74.87

Skewness (SK1+10 − SK5+6) -0.90 -0.89
[-27.35] [-12.45]

R2 (%) 68.04 50.97

Upper minus lower skewness (USK − LSK) -0.77 -0.73
[-28.00] [-22.11]

R2 (%) 86.08 79.53

Lower skewness (LSK) 0.90 0.90
[6.18] [6.90]

Upperskewness (USK) -0.66 -0.57
[-5.57] [-4.93]

R2 (%) 86.14 79.71
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Table IA.6: Alphas and Skew-Adjusted Alphas of the BaB-factor

This Table reports alphas and skew-adjusted alphas for the BaB factor of Frazzini and Pedersen (2014). We report
alphas of CAPM-, Fama-French three-, and four-factor regressions as well as alphas of the same regressions when we
additionally include controls for skewness. To adjust for skewness, we use both the LSK- and the USK-factor. We
also report the corresponding coskewness of residual returns, i.e. the covariance of residual returns with squared
market excess returns. Values in square brackets are t-statistics based on standard errors following Newey and
West (1987) where we choose the optimal truncation lag as suggested by Andrews (1991). The overlapping period
of our sample and the data of Frazzini and Pedersen (2014) is from 01/1996 to 03/2012.

Without skew-adjustment With skew-adjustment

CAPM alpha 91.69 47.89
[2.34] [1.19]

Coskewness -0.44 -0.33

FF3 alpha 74.66 10.85
[2.17] [0.29]

Coskewness -0.41 -0.23

FF4 alpha 60.68 12.32
[1.69] [0.42]

Coskewness -0.36 -0.23
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Figure IA.1: Alphas and Residual Coskewness: Simulation Evidence with Asset Jumps

This Figure presents results for the relation between CAPM alphas and residual coskewness in a simulated world
with 2,000 Merton-type firms where we additionally allow for jumps in the firms’ asset processes. The pricing
kernel is specified to account for skewness and moments higher than skewness. The black crosses mark CAPM
alphas and the grey circles mark alphas after additionally controlling for skewness. The figure also reports results
for LRA strategies based on equally-weighted decile portfolios, betting against CAPM beta, idiosyncratic volatility,
and implied volatility. Blue circles mark the low risk portfolios that a betting-against-risk strategy goes long. Red
diamonds mark the high risk portfolios that a betting-against-risk strategy goes long. The figure header reports
the R2 of a cross-sectional regression of alphas on coskewness.
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Figure IA.2: Alphas and Residual Coskewness: Simulation Evidence with Early Defaults

This Figure presents results for the relation between CAPM alphas and residual coskewness in a simulated world
with 2,000 Merton-type firms where we additionally allow for early defaults, i.e. before debt maturity. The pricing
kernel is specified to account for skewness and moments higher than skewness. The black crosses mark CAPM
alphas and the grey circles mark alphas after additionally controlling for skewness. The figure also reports results
for LRA strategies based on equally-weighted decile portfolios, betting against CAPM beta, idiosyncratic volatility,
and implied volatility. Blue circles mark the low risk portfolios that a betting-against-risk strategy goes long. Red
diamonds mark the high risk portfolios that a betting-against-risk strategy goes long. The figure header reports
the R2 of a cross-sectional regression of alphas on coskewness.
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Figure IA.3: Implied Skewness, Residual Coskewness, and Alphas: Simulation Evidence with
Asset Jumps

This Figure presents results for the relation between firms’ skewness, CAPM residual coskewness, and CAPM
alphas in a simulated skew-aware world with 2,000 Merton-type firms where we additionally allow for jumps in
the firms’ asset processes. For each firm, we compute measures of implied skewness (under the Q-measure) and
expected realized skewness (under the P-measure). We compute lower skewness (by definition always negative),
upper skewness (by definition always positive), and skewness which is the sum of lower and upper skewness. We sort
firms into decile portfolios based on the three Q-, and on the three P-skew measures, and compute the portfolios’
CAPM alphas and residual coskewness. Portfolios P1 and P10 contain the firms with the lowest and highest
values of the sort variables, respectively. Panel A reports the portfolios’ CAPM residual coskewness when using
measures of Q-skew (blue line with bullets) and P-skew (green line with diamonds) using lower skewness (left),
upper skewness (middle), and skewness (right). Panel B plots the portfolios’ corresponding CAPM alphas.

Panel A. CAPM Residual Coskewness

●

●

●

●

● ●
●

● ●
●

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

Lower skewness

R
es

id
ua

l C
os

ke
w

ne
ss

● Implied
Expected realized

Low P2 P3 P4 P5 P6 P7 P8 P9 High

●
●

●
●

●
●

●

●

●

●

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

Upper skewness

R
es

id
ua

l C
os

ke
w

ne
ss

● Implied
Expected realized

Low P2 P3 P4 P5 P6 P7 P8 P9 High

●

●

● ●

● ● ●
●

●

●
0.

00
00

0.
00

05
0.

00
10

0.
00

15
0.

00
20

0.
00

25

Skewness

R
es

id
ua

l C
os

ke
w

ne
ss

● Implied
Expected realized

Low P2 P3 P4 P5 P6 P7 P8 P9 High

Panel B. CAPM Alphas
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Figure IA.4: Implied Skewness, Residual Coskewness, and Alphas: Simulation Evidence with
Early Defaults

This Figure presents results for the relation between firms’ skewness, CAPM residual coskewness, and CAPM alphas in a
simulated skew-aware world with 2,000 Merton-type firms where we additionally allow for early defaults, i.e. before debt
maturity. For each firm, we compute measures of implied skewness (under the Q-measure) and expected realized skewness
(under the P-measure). We compute lower skewness (by definition always negative), upper skewness (by definition always
positive), and skewness which is the sum of lower and upper skewness. We sort firms into decile portfolios based on the three Q-,
and on the three P-skew measures, and compute the portfolios’ CAPM alphas and residual coskewness. Portfolios P1 and P10
contain the firms with the lowest and highest values of the sort variables, respectively. Panel A reports the portfolios’ CAPM
residual coskewness when using measures of Q-skew (blue line with bullets) and P-skew (green line with diamonds) using lower
skewness (left), upper skewness (middle), and skewness (right). Panel B plots the portfolios’ corresponding CAPM alphas.
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Figure IA.5: Option-Implied Ex-Ante Skewness, FF3 Residual Coskewness, and FF3 Alphas

This Figure presents results for the relation between firms’ equity-option implied ex-ante skewness, FF3 residual
coskewness, and FF3 alphas. For each firm, we compute option-implied lower skewness (by definition always
negative), upper skewness (by definition always positive), and skewness which is the sum of upper and lower
skewness. We sort firms into decile portfolios based on the three option-implied skew measures and compute the
portfolios’ FF3 alphas and residual coskewness. Portfolios P1 and P10 contain the firms with the lowest and
highest values of the sort variables, respectively. Panel A reports the portfolios’ FF3 residual coskewness for
equally-weighted portfolios (blue line with bullets) and value-weighted portfolios (green line with diamonds) using
lower skewness (left), upper skewness (middle), and skewness (right). Panel B plots the portfolios’ corresponding
FF3 alphas. The data covers 4,967 US firms, is sampled at a monthly frequency over the period January 1996 to
August 2014, and contains a total of 400,449 observations.
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Figure IA.6: Option-Implied Ex-Ante Skewness, FF4 Residual Coskewness, and FF4 Alphas

This Figure presents results for the relation between firms’ equity-option implied ex-ante skewness, FF4 residual coskewness,
and FF4 alphas. For each firm, we compute option-implied lower skewness (by definition always negative), upper skewness (by
definition always positive),and skewness which is the sum of upper and lower skewness. We sort firms into decile portfolios
based on the three option-implied skew measures and compute the portfolios’ FF4 alphas and residual coskewness. Portfolios
P1 and P10 contain the firms with the lowest and highest values of the sort variables, respectively. Panel A reports the
portfolios’ FF4 residual coskewness for equally-weighted portfolios (blue line with bullets) and value-weighted portfolios (green
line with diamonds) using lower skewness (left), upper skewness (middle), and skewness (right). Panel B plots the portfolios’
corresponding FF4 alphas. The data covers 4,967 US firms, is sampled at a monthly frequency over the period January 1996 to
August 2014, and contains a total of 400,449 observations.
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Figure IA.7: Option-Implied Ex-Ante Skewness, Residual Coskewness, and Alphas: Alter-
native Ex-Ante Skew Measure

This Figure presents results for the relation between firms’ equity-option implied ex-ante skewness, factor model residual coskew-
ness, and factor model alphas. For each firm, we compute the option-implied skewness measure of Kozhan et al. (2013). We
sort firms into decile portfolios based on option-implied skewness and compute the portfolios alphas and residual coskewness.
Portfolios P1 and P10 contain the firms with the lowest and highest values of the sort variables, respectively. Panel A reports
the portfolios’ CAPM (left), FF3 (middle), and FF4 (right) residual coskewness for equally-weighted portfolios (blue line with
bullets) and value-weighted portfolios (green line with diamonds). Panel B plots the portfolios’ corresponding CAPM, FF3, and
FF4 alphas. The data covers 4,967 US firms, is sampled at a monthly frequency over the period January 1996 to August 2014,
and contains a total of 400,449 observations.
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Figure IA.8: Alphas and Skew-Adjusted Alphas: EW Portfolios

This Figure reports alphas and skew-adjusted alphas of low risk anomalies (LRAs). At the end of every month,
we sort firms into equally-weighted decile portfolios based on their CAPM beta, idiosyncratic volatility (measured
from the residual variance of CAPM and Fama French three factor model regressions), or their equity option-
implied ex-ante variance. From these portfolios, we compute Low-minus-High returns generated by betting-against-
beta/volatility strategies, and report alphas of CAPM-, Fama-French three-, and four-factor regressions (black bars
in Panels A, B, and C, respectively) as well as alphas that additionally include controls for skewness. To adjust for
skewness, we use either the (SK1+10 − SK5+6)-factor (dark grey bars), the (USK−LSK)-factor (light grey bars),
or both the LSK- and the USK-factor (white bars). The data covers 4,967 US firms, is sampled at a monthly
frequency over the period January 1996 to August 2014, and contains a total of 400,449 observations.
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Figure IA.9: Residual Coskewness associated with Alphas and Skew-Adjusted Alphas: EW
Portfolios

This Figure reports the residual coskewness associated with alphas and skew-adjusted alphas of low risk anomalies
(LRAs). At the end of every month, we sort firms into equally-weighted decile portfolios based on their CAPM
beta, idiosyncratic volatility (measured from the residual variance of CAPM and Fama French three factor model
regressions), or their equity option-implied ex-ante variance. From these portfolios, we compute Low-minus-High
returns generated by betting-against-beta/volatility strategies, and report the coskewness associated with residual
returns of CAPM-, Fama-French three-, and four-factor regressions (black bars in Panels A, B, and C, respectively)
as well as the residual coskewness when additionally including controls for skewness. To adjust for skewness, we
use either the (SK1+10 − SK5+6)-factor (dark grey bars), the (USK−LSK)-factor (light grey bars), or both the
LSK- and the USK-factor (white bars). The data covers 4,967 US firms, is sampled at a monthly frequency over
the period January 1996 to August 2014, and contains a total of 400,449 observations.
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Figure IA.10: Alphas and Skew-Adjusted Alphas: RW Portfolios

This Figure reports alphas and skew-adjusted alphas of low risk anomalies (LRAs). At the end of every month, we
sort firms into rank-weighted decile portfolios based on their CAPM beta, idiosyncratic volatility (measured from the
residual variance of CAPM and Fama French three factor model regressions), or their equity option-implied ex-ante
variance. From these portfolios, we compute Low-minus-High returns generated by betting-against-beta/volatility
strategies, and report alphas of CAPM-, Fama-French three-, and four-factor regressions (black bars in Panels A,
B, and C, respectively) as well as alphas that additionally include controls for skewness. To adjust for skewness,
we use either the (SK1+10 − SK5+6)-factor (dark grey bars), the (USK−LSK)-factor (light grey bars), or both the
LSK- and the USK-factor (white bars). The data covers 4,967 US firms, is sampled at a monthly frequency over
the period January 1996 to August 2014, and contains a total of 400,449 observations.
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Figure IA.11: Residual Coskewness associated with Alphas and Skew-Adjusted Alphas: RW
Portfolios

This Figure reports the residual coskewness associated with alphas and skew-adjusted alphas of low risk anomalies
(LRAs). At the end of every month, we sort firms into rank-weighted decile portfolios based on their CAPM
beta, idiosyncratic volatility (measured from the residual variance of CAPM and Fama French three factor model
regressions), or their equity option-implied ex-ante variance. From these portfolios, we compute Low-minus-High
returns generated by betting-against-beta/volatility strategies, and report the coskewness associated with residual
returns of CAPM-, Fama-French three-, and four-factor regressions (black bars in Panels A, B, and C, respectively)
as well as the residual coskewness when additionally including controls for skewness. To adjust for skewness, we
use either the (SK1+10 − SK5+6)-factor (dark grey bars), the (USK−LSK)-factor (light grey bars), or both the
LSK- and the USK-factor (white bars). The data covers 4,967 US firms, is sampled at a monthly frequency over
the period January 1996 to August 2014, and contains a total of 400,449 observations.
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Figure IA.12: Cumulative Alphas of Betting-against-Beta

This Figure reports cumulative alphas and cumulative skew-adjusted alphas for betting-against-beta. At the end of
every month, we sort firms into value-weighted decile portfolios based on their CAPM beta. From these portfolios,
we compute Low-minus-High returns and report cumulative alphas and skew-adjusted of CAPM (Panel A), FF3
(Panel B), and FF4 (Panel C) regressions. To adjust for skewness, we use both the LSK- and the USK-factor.
We compute cumulative alphas by cumulating the intercept and the residuals of the corresponding regressions
over time, i.e. the final values of the cumulative alpha series divided by the number of periods correspond to the
unadjusted alpha values reported in Table 1 and the skew-adjusted alpha values in Table 3, respectively. The
data covers 4,967 US firms, is sampled at a monthly frequency over the period January 1996 to August 2014, and
contains a total of 400,449 observations.
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Figure IA.13: Cumulative Alphas of Betting-against-CAPM Idiosyncratic Volatility

This Figure reports cumulative alphas and cumulative skew-adjusted alphas for betting-against-idiosyncratic volatil-
ity. At the end of every month, we sort firms into value-weighted decile portfolios based on their CAPM idiosyn-
cratic volatility. From these portfolios, we compute Low-minus-High returns and report cumulative alphas and
skew-adjusted of CAPM (Panel A), FF3 (Panel B), and FF4 (Panel C) regressions. To adjust for skewness, we use
both the LSK- and the USK-factor. We compute cumulative alphas by cumulating the intercept and the residuals
of the corresponding regressions over time, i.e. the final values of the cumulative alpha series divided by the number
of periods correspond to the unadjusted alpha values reported in Table 1 and the skew-adjusted alpha values in
Table 3, respectively. The data covers 4,967 US firms, is sampled at a monthly frequency over the period January
1996 to August 2014, and contains a total of 400,449 observations.
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Figure IA.14: Cumulative Alphas of Betting-against-FF3 Idiosyncratic Volatility

This Figure reports cumulative alphas and cumulative skew-adjusted alphas for betting-against-idiosyncratic volatil-
ity. At the end of every month, we sort firms into value-weighted decile portfolios based on their FF3 idiosyncratic
volatility. From these portfolios, we compute Low-minus-High returns and report cumulative alphas and skew-
adjusted of CAPM (Panel A), FF3 (Panel B), and FF4 (Panel C) regressions. To adjust for skewness, we use both
the LSK- and the USK-factor. We compute cumulative alphas by cumulating the intercept and the residuals of
the corresponding regressions over time, i.e. the final values of the cumulative alpha series divided by the number
of periods correspond to the unadjusted alpha values reported in Table 1 and the skew-adjusted alpha values in
Table 3, respectively. The data covers 4,967 US firms, is sampled at a monthly frequency over the period January
1996 to August 2014, and contains a total of 400,449 observations.
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Figure IA.15: Cumulative Alphas of Betting-against-Ex-Ante Variance

This Figure reports cumulative alphas and cumulative skew-adjusted alphas for betting-against-ex-ante variance.
At the end of every month, we sort firms into value-weighted decile portfolios based on their equity option-implied
ex-ante variance. From these portfolios, we compute Low-minus-High returns and report cumulative alphas and
skew-adjusted of CAPM (Panel A), FF3 (Panel B), and FF4 (Panel C) regressions. To adjust for skewness, we use
both the LSK- and the USK-factor. We compute cumulative alphas by cumulating the intercept and the residuals
of the corresponding regressions over time, i.e. the final values of the cumulative alpha series divided by the number
of periods correspond to the unadjusted alpha values reported in Table 1 and the skew-adjusted alpha values in
Table 3, respectively. The data covers 4,967 US firms, is sampled at a monthly frequency over the period January
1996 to August 2014, and contains a total of 400,449 observations.
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Figure IA.16: Alphas, Skew-Adjusted Alphas, and Residual Coskewness of the BaB-factor

This Figure reports alphas and skew-adjusted alphas of the BaB-factor returns of Frazzini and Pedersen (2014) and
the associated residual coskewness. We report alphas of CAPM-, Fama-French three-, and four-factor regressions
(black bars) as well as alphas that additionally include controls for skewness (white bars). To adjust for skewness,
we use both the LSK- and the USK-factor. Panel B reports the associated residual coskewness. The overlapping
period of our sample and the data of Frazzini and Pedersen (2014) is from 01/1996 to 03/2012.
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Figure IA.17: Cumulative Alphas of BaB-Factor Returns

This Figure reports cumulative alphas and cumulative skew-adjusted alphas for the BaB-factor of Frazzini and
Pedersen (2014). We report cumulative alphas and skew-adjusted of CAPM (Panel A), FF3 (Panel B), and FF4
(Panel C) regressions. To adjust for skewness, we use both the LSK- and the USK-factor. We compute cumulative
alphas by cumulating the intercept and the residuals of the corresponding regressions over time, i.e. the final values
of the cumulative alpha series divided by the number of periods correspond to the unadjusted and skew-adjusted
alpha values reported in Table IA.6. The overlapping period of our sample and the data of Frazzini and Pedersen
(2014) is from 01/1996 to 03/2012.
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Figure IA.18: Low Risk Anomalies and Market Skewness

This Figure reports alphas and skew-adjusted alphas of low risk anomalies (LRAs) for periods of low compared to
high (i.e. less negative) market skewness, measured from the rolling 250-day covariance of market excess returns
with squared market excess returns. At the end of every month, we sort firms into value-weighted decile portfolios
based on their CAPM beta, idiosyncratic volatility (measured from the residual variance of CAPM and Fama
French three factor model regressions), or their equity option-implied ex-ante variance. From these portfolios, we
compute Low-minus-High returns generated by betting-against-beta/volatility strategies, and alphas of CAPM-,
Fama-French three-, and four-factor regressions. We distinguish between periods of low market skewness (black
bars) and high market skewness (white bars) based on the rolling 250-day covariance of market excess returns with
squared market excess returns. The data covers 4,967 US firms, is sampled at a monthly frequency over the period
January 1996 to August 2014, and contains a total of 400,449 observations.
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Figure IA.19: Implied Skewness and Credit Risk

This Figure presents results for the relation between firms’ implied skewness and measures of credit risk. Panel
A presents simulation evidence from a skew-aware world with 2,000 Merton firms and their model-implied credit
spreads. Panels B and C present empirical evidence using option-implied measures of ex-ante skewness and CDS
spreads or credit ratings respectively. We compute lower skewness (by definition always negative), upper skewness
(by definition always positive), and skewness which is the sum of upper and lower skewness. We sort firms into
decile portfolios based on the three option-implied skew measures and compute the portfolios average measure
of credit risk, where high (low) values generally imply high (low) credit risk. Portfolios P1 and P10 contain the
firms with the lowest and highest values of the sort variables, respectively. In the simulated data in Panel A we
report results for using measures of Q-skew (blue line with bullets) and P-skew (green line with diamonds) using
lower skewness (left), upper skewness (middle), and skewness (right). In the empirical data in Panels B and C, we
present results for equally-weighted portfolios (blue line with bullets) and value-weighted portfolios (green line with
diamonds). For the analysis of CDS spreads, our dataset contains Markit CDS data for 573 firms from 01/2001 to
03/2010 with a total of 37,514 observations. For the analysis of credit ratings, we obtain the S&P long-term credit
ratings via Compustat whenever available for firms in our sample. We convert ratings into numerical data, with
lower numbers indicating better ratings, i.e. we asign a value of 1 to AAA-rated firms, 2 to firms with a rating
of AA+, 3 to firms with a rating of AA, etc. This results in a subsample of 2,066 firms with a total of 179,816
observations from January 1996 to August 2014.
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Panel B. Empirical: 5-year CDS spreads
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Panel C. Empirical: Credit Ratings
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