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Abstract

We propose several large sample estimators of the stochastic discount factor
(SDF) for pricing risky assets. Our estimators can utilize not only a set of factors
implied by a specific asset pricing model but also a set of latent factors estimated
by multivariate statistical methods. We suggest a correction for the bias induced
by having a finite time series and show how to use the correction in exploiting
unbalanced panels of individual stock returns. The estimators perform well in
simulations designed to mimic the the U.S. equity markets. A Lasso penalized
version of the estimators does a good job of excluding systematic, but unpriced
factors. When applied to large cross sections of equity returns, the estimators

provide evidence about which factors command a risk premium.
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1 Introduction

In an economy without arbitrage opportunities, there exists a valid stochastic discount
factor (SDF) such that the price of any security is obtained as the expected value of the
discounted (by the SDF) future payoff. The stochastic discount factor representation
of asset pricing models has been widely used in the empirical finance literature. It
is often the case that empirical studies using asset returns to estimate the SDF use

L' This paper proposes several alternative estimators of

a small number of portfolios.
the stochastic discount factor so that empirical researchers can fully exploit useful
information on asset prices from a large panel of either balanced or unbalanced financial
data.

The intuition behind our estimators is similar to the idea in Hansen and Jagan-
nathan (1997). Within a set of candidate SDF's, we search for the one which minimizes
the norm of pricing errors. It turns out that we can consistently estimate the true SDF
with the mild assumption that individual assets have an approximate factor structure
as in Chamberlain and Rothschild (1983). In an economy where the returns of a large
number assets are driven by a finite number of common factors, the true SDF is ex-
pressed as a linear function of the pervasive factors which can be either traded or
non-traded. Our estimator minimizes the (cross-sectional) sum of squared SDF pricing
errors across a large number of assets. For the case of balanced panel data, the min-
imization problem is reduced to a linear regression problem and the solution can be
easily obtained. To accommodate unbalanced panel data, we split the time series into
multiple non-overlapping time blocks and mimic the solution of the balanced panel case
with each short time block data. With a proper small-sample (in the time dimension)
bias correction similar to Litzenberger and Ramaswamy (1979) and Kim and Skoulakis
(2017), our estimators can consistently estimate the true SDF. Additionally, we find
that our estimators are robust to the latency of factors, being partially agnostic in the
spirit of Pukthuanthong and Roll (2017), and can adopt regularization tools such as
lasso regressions as in Kozak, Nagel, and Santosh (2017).

This paper is not the first attempt to exploit the SDF representations of a large
number of assets. Araujo and Issler (2012) show that the SDF can be summarized by
a scaled inverse of the cross-sectional geometric average of returns. We allow multiple

pervasive risks (possibly priced and non-priced factors) in an economy and let our

1To the best of our knowledge, Cochrane (1996) and Jagannathan and Wang (1996) are first papers
to propose SDF specification for asset pricing tests using a long time-series data of a small number of
assets.



estimators find the priced factors among those by observing price dynamics of the large
panel. In particular, our paper is closely related to Pukthuanthong and Roll (2017).
They also propose an SDF estimator which minimizes the squared pricing errors. Their
approach has an advantage of being agnostic in the sense that no assumptions are
required for the return generating process or the nature of systematic risk, except the
SDF representation. However, in simulations, we find that the downside of the lack of
structure of this SDF estimator is that it provides a very noisy estimate of the true SDF
in economies constructed to have risk matching that of the U.S. equity market. We
argue that being slightly less agnostic by imposing a more restrictive factor structure
on the SDF, as in our estimators, leads to significant improvement in the performance
of the estimated SDF with empirically relevant panel sizes. An alternative approach is
proposed by Kozak, Nagel, and Santosh (2017) which estimates the SDF using a vast
array of characteristics on individual stocks.

We also contribute to a broader literature of using individual stocks for the empir-
ical studies of asset pricing models. The arbitrage pricing theory of Ross (1976) and
Chamberlain and Rothschild (1983) provides a framework to dichotomize a large cross
section of returns into pervasive factors and diversifiable risks. A long literature derives
methods to extract pervasive factors from a large cross sectional data (e.g., Connor
and Korajezyk (1986, 1987, 1988), Stroyny (1992), Stock and Watson (1998, 2002),
and Jones (2001)). We contribute to this literature by providing a simple tool to select
a priced factor among the pervasive common factors extracted from a large panel of
data. As pointed out in Merton (1973), Jagannathan and Wang (1996), Campbell and
Vuolteenaho (2004), Kelly and Pruitt (2013) and Jagannathan and Marakani (2015),
not all pervasive factors (i.e., those that explain common movements in asset returns)
need be important for explaining the cross section of asset prices.

Alternatively, the pricing of a given pervasive factor can be examined with the beta
pricing form. Exploiting a large cross section of assets in estimating beta pricing models,
a series of papers have proposed risk premia estimators using large cross-sections (see
Litzenberger and Ramaswamy (1979), Shanken (1992) and Jagannathan, Skoulakis,
and Wang (2010)). The recent papers by Gagliardini, Ossola, and Scaillet (2016) and
Kim and Skoulakis (2017, 2018) obtain the large panel asymptotic distribution of the
risk premia estimator along with an estimator of its variance-covariance matrix. Our
paper is differentiated in that we are using the SDF representation, not a beta pricing
representation. This difference is particularly important when we use large panel data
where the measurement errors in individual asset betas can severely bias estimated risk

premia. Although the equivalence between SDF form and beta form is well known in



the small-N /large-T" setup (Jagannathan and Wang (2002)), more work is required to
understand the differences between two approaches in the large panel data setting.

In Section 2, we describe our large cross-sectional economy and propose several
large sample estimators of the stochastic discount factor (SDF) for pricing risky assets.
In Section 3, we simulate an economy in which asset risks match those in the U.S.
equity markets and examine the performance of our SDF estimators across various
sample sizes. The estimators perform well and the imposition of a factor structure
improves the estimators’ performance relative to purely agnostic alternatives. The bias
correction for unbalanced panels works. A Lasso version of the estimator is able to
exclude unpriced factors. In Section 4, we apply our SDF estimators to a large cross
section of assets and provide evidence on the size and significance of risk premia on
candidate factors. We find that the value factor, HML, from Fama and French (1993,
2015) is subsumed by investment and profitability factors in for some sets of test assets.

Section 5 concludes. All proofs are in the Appendix.

2 Economy

We assume that the gross return generating process of each individual security follows
a K-factor model. In particular, the gross return of the i-th asset at time ¢ is expressed
as

Riy=oa;+ B +eiy, fori=1--- Nandt=1,---,T, (2.1)

where 3; is the (K x 1) vector of factor loadings of the i-th asset on the (K x 1) vector
of factor realizations, f;. As is standard, we assume Ele;;] = 0 and E [fie;;] = O, a
(K x 1) vector of zeros. We allow the factor of f; to be either traded excess returns,
traded gross returns, latent, or nontraded factors.

With some mild assumptions on the cross-sectional dependency among residuals
of e;4, Ross (1976) and Chamberlain and Rothschild (1983) show that in an economy
without statistical arbitrage, there exists a scalar, A\, the gross return on the riskless
asset, and a (K x 1) vector, Ay, such that

E[Ri] = Ao+ BiAs. (2.2)

We assume that exact factor pricing holds, so that the equation (2.2) holds as an equality
(as in Connor (1984)). Let the (K x 1) vector ps be puy = E[f;]. By combining the

return generating process of (2.1) and the exact form of the pricing restriction of (2.2),



we have

E[Ri4] = a; + Bips = Xo + BiAy,

implying that
a; =X+ B (Ar — my)-

Then, plugging the above expression into the process of (2.1) yields
Rm = )\0 + ,3: (Af — I.,l,f + ft) + €it- (23)

The equation (2.3) allows for many different specifications of the nature of the factor
vector, f;. If f; is an observed vector of portfolio excess returns (as in Fama and French
(1993)) then py = Agp. If f; is an observed vector of portfolio gross returns, then
pr = 1xgXo+ Ay and spanning of the mean-variance frontier by the factors implies that
(2.3) reduces to (see Huberman and Kandel (1987)):

R = Béft + €, (2.4)

with the added constraint that B/1x = 1. If f; is an observed vector of pre-whitened
macroeconomic variables, then gty = Og. In the literature, there are a number of papers
which use a combination of traded excess returns and pre-whitened macroeconomic
variables, such as Chen, Roll, and Ross (1986) or Shanken and Weinstein (2006). In
this case the expected value of the factors is the factor risk premium for the excess
return factors and zero for the pre-whitened variables. Finally, if f; is an unobserved
vector of latent portfolio excess returns (as in Connor and Korajezyk (1986)) then
iy = Ay, but the procedure requires an consistent estimator of the excess returns on
factor mimicking portfolios.

Next, we specify the stochastic discount factor (SDF) m; in this economy such that
E[R;ym{=1fori=1,--- N.
The realized SDF is a linear function of the realization of the systematic factors:
my = 0 + fd7y, (2.5)

which satisfies E [R; ym;] = 1 when the scalar §y and the (K x 1) vector, d¢, are given



o = " (14 )27 Ay) (2.6)
[
6= —5-(57"Ar) (2.7)

where
Np=E [(ft — ) (£ — Mf)/} :

The expected value of m; is A\

So far, we describe an economy with N assets and specify the form of stochastic
discount factor as a linear function of systematic factors, which prices the gross returns
of the N assets. In many cases, when a risk free asset exists, empirical research studies
the returns of the N assets in excess of the risk free return. If there exists a risk free
asset, then the expression of (2.3) implies that the gross return of the risk free asset is
Ao since it has neither any exposure to the factor (8; = Ox) nor residual risk (e;; = 0).

Hence, from (2.3), the excess return of the i-th asset at time ¢ can be written as
R?,t = Ri,t — )\0 = ﬁ; (Af — MKy + ft) -+ €it- (28)

Now, we characterize a stochastic discount factor my which prices the excess returns
of the N assets, i.e.,
E[Rfym{] =0fori=1,--- N.

It can be shown that we can construct a stochastic discount factor
m; =1+ f/6°, (2.9)
satisfying E [R¢,m{]| = 0, with the (K x 1) vector of &%, given by
8= — (5 + Ap)) T A (2.10)

We obtain an extra degree of freedom when pricing excess returns, rather than gross
returns, since we do not require the SDF to pin down the mean of m or, equivalently,
the riskless rate of return, thus it can be off in pricing gross returns by a constant which
cancels when excess returns are analyzed (see Cochrane (2005, section 6.3)).

Neither of the stochastic discount factors, m; (for gross returns) nor m§ (for excess

returns), are observable since the parameters, A, pr, 3¢, Ao, and possibly the factors



themselves, are unobservable. We propose several alternative estimators of the SDF's
which are based on using large cross-sections of individual assets or portfolios. We
start with an estimator assuming a balanced panel of asset returns and then extend to

a number of alternative estimators.

2.1 Balanced Panel Estimator

In this section, we assume that we observe the gross returns of I?;; or the excess returns
of Rf, for assets ¢ = 1,---, N over the time period { = 1,---,T. It is convenient to
represent the gross return generating process of (2.3) and the excess return generating

process of (2.8) in matrix form:
R:)\O]_N]_/’I‘—i_B(Af_l/lzf) 1/T+BF/+E, (2.11)

and
R°=B(A; — pus) 1, + BF +E, (2.12)

where the (7,t) element of the (N x T') matrices of R and R are R;; and R, respec-
tively, 1y is the (N x 1) vector of ones, the i-th row of the (N x K) matrix of B is

! the t-th row of the (7" x K) matrix of F is f], and the (i,t) element of the (N x T)
matrix of E is e; .

We make standard assumptions on the systematic factors and factor loadings.

Assumption 1. As N — oo, %B’lN — pg and %B’B — Vg = ¥ + pgpy, where
S5 is a positive definite matriz. Also, as T — oo, xF'1p 5 py and 1F'F 5 V; =
X+ ufp,}, where Xy is a positive definite matriz.

Assumption 1 specifies that loadings on each factor are pervasive across a large number
of assets and that each factor is neither redundant nor non-stationary over time, which
are reasonably acceptable for the return generating process. The assumption does not
imply that all pervasive factors are priced, so that it allows factors that explain common
variation but are not deemed important by investors.

Next, we make assumptions on the distributional properties of the residual terms of

e;r. We use 0,5, to denote the (m x n) matrix of zeros.

. 1. E1 D IR/ ’ P / P
Assumption 2. As N,T — oo, =+ = 0, FJEV;N, B]\]?%T = 0x and % = O xk-

Also, a5 T = o, (%) (%) 5 0, % (£ (%) 2 0, and & () (%) 5

Oxxxk-



The first set of conditions in Assumption 2 states that the average residual terms over
the (N x T') panel data converges to zero even when the average is weighted by factor
realizations (in time-series dimension) or factor loadings (in cross-sectional dimension).
The second set of conditions in Assumption 2 imposes that the time-series averages of
residuals and the product of residuals and factors are sufficiently close to zero so that
the squared cross-sectional averages converge to zeros.

The following theorem establishes that we can recover the stochastic discount factor

as a linear function of factors from a large panel data.

Theorem 2.1. With Assumptions 1 and 2, as N, T — oo, m; = gg—l—ft’gf and m§ = 1+

£/6° converge to my and m given in (2.5) and (2.9), respectively, when the (K + 1) x 1)
~ ~ ~ 7/ ~

vector of & = [50 6}} and the (K x 1) vector of 8 are constructed by

~ "R'RF,\ ' /F,R'1
A A A N
o (TRREe) ! (FLR L) 219
< F'RYRF\ ' (FR'R°1;
0 :—(W) (T) (2.14)

where Fp = [17 F].

The estimator proposed in Theorem 2.1 can be intuitively understood as follows.
By specifying the (T x 1) vector of the realized SDF, [m; ---my¢| , as m = FAd, the

realized mispricing of the IV assets’ gross returns can be formulated by

Rm RF
Iy — — =1y — —24§
N NS

and the estimator & in (2.13) can be obtained as the solution of the minimizing the

squared pricing error:

< : RF, .\’ RF
0= arg min (11\7 — TAJ) (1N — TA(S) ) (2.15)

Similarly, given the (T x 1) vector of the realized SDF, [m$---m%]’, denoted by m® =
17 +Fd°, the estimator §¢ in (2.14) can be interpreted as the solution of the minimizing

the squared pricing error:

~ . (Rly R°F _\ [Rly R°F_,




The formation of & and 8¢ as in (2.15) and (2.16) implies that they are regression

. : RF .o Rely
coefficients (regressing 1y on =% for gross returns and regressing ==

excess returns). This facilitates the adoption of popular regularization/selection tools

ReF
on = for

such as Ridge regression or Lasso. These tools are extremely useful in that we can
generalize the asset pricing model by incorporating a relatively large number of factors
and let the statistical tools select factors which are useful in minimizing pricing errors.
For example, we can apply the estimator to K pervasive factors to choose L < K priced

factors:

~ X RFA ' RFA
5lasso - arg%;}(lil (1N - T(s> <1N - T 5) + 7‘|dH17 (217)

where v > 0, d = [d; - -+ dg|’, ||d|ly = |di]| + -+ + |dx|, F is the (T x K) matrix such
that F = FSy, 6; = Sjd, 6 = [6y 8], and the (K x L) factor selection matrix of S is
defined as follows. The (k,1) element of Sy is 1 if dj, is the [-th non zero element among
dy,--- ,dp and 0 otherwise. Similarly, the extension of 8¢ with the lasso penalty and

the extended factor F can be formulated by

~ . [(Re1 R°F _\' /R°1 R°F
G =g (00 - B ) (R0 e gl )

where 6 = S}d.

Theorem 2.1 assumes that we have the true, but possibly mean-deficient, factors.
An alternative approach is to treat F as latent factors which are estimated through
multivariate statistical techniques. For this case we do not directly observe factor
realizations, F, but estimate those with F* such that F* = FO + o, (1), where O
is a AKx K linear transformation. The following corollary shows that the consistent
estimation of the stochastic discount factor is still feasible. In practice, we obtain
estimates of the latent factors by applying principal components analysis (PCA) to
large cross sectional data as in Connor and Korajezyk (1986) or Stock and Watson
(1998).

Corollary 2.1. With Assumptions 1 and 2, given a consistent factor estimator of
F*=FO +o0,(1) for a some rotation matriz of O, as N,T — oo, m; = 0y + £} and

m;¢ =1 +ft*’g*e converge to my and m$ given in (2.5) and (2.9), respectively, when the



~ ~ o~ 7/ ~
((K 4+ 1) x 1) vector of 6* = [58 5;’} and the (K x 1) vector of 6*¢ are constructed by

-, (FIRRFL\ ' (FiR1ly
d _<T> (W) (2.19)
~e F*/Re/ReF* -1 F*/Re/RelT

where By = [17 F*] and F* = [f; --- £3]'.

Furthermore, even without factor estimates, we can consistently estimate the stochas
tic discount factor for the gross returns with some restrictions on the residual variances
and the sequential asymptotics of N — oo and then T — oo. It is worth to empha-
size that the SDF estimator of this case is identical to that by Pukthuathong and Roll
(2017).

Proposition 2.1. With Assumptions I and 2, the homoskedasticity condition of %E’E N

sy, as N — oo and then T — oo, 1y converges to my in (2.5), when my is given by

y R'R\ ' /R'1y
Ty = () <NT2> < NT ) : (2.21)

where v s the (T x 1) vector of zeros except the t-th element of one.

The Pukthuathong and Roll (2017) estimator is totally agnostic as to the number of
pervasive factors. Our estimator is equivalent to that of Pukthuathong and Roll (2017)
when we let K = T.2

2.2 Unbalanced Panel Estimator

Since the estimators proposed in the previous subsection utilize the full panel data of
large N and T', they are appropriate for the case using a large number of portfolios over a
long horizon. However, if empirical researchers wish to use individual stocks to construct
the SDF, the estimators are problematic due to the survivorship biases induced by

requiring a balanced panel of individual assets. In this section, we propose estimators

2Let m = [my --- mp] and h = [y --- mr]. Then, when K = T, it holds that

~ F,R'RF,\ ' /F,R'1y R'R\ o R'1y
m=F,6 =F =F F | = F/ F/ = 1.
meta A( NT? ) ( NT ) AA(NT?) (F2) A(NT) "
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which deal with unbalanced panel data by estimating the SDF over non-overlapping
time periods of length 7 with the number of blocks increasing as I" approaches infinity.
The estimators proposed above (and the estimator of Pukthuathong and Roll (2017))
are biased for finite values of T since the errors in the regression of 1y (for gross
returns) and Re% (for excess returns) are correlated with the regressor. This requires
us to propose a bias correction for the SDF estimators.

We split the time period of length T" into B non-overlapping time blocks of length
such that T'= B1. We fix 7. Hence, as T increases, B increases. Weuse b=1,--- | B
as an index of time blocks. For example, the first block of b = 1 covers the time period
t =1,---,7 and the second block of b = 2 covers the time period t = 7+ 1,--- ,27.
Pick a specific b. Then, collect all individual stocks with full return data over the
b-th time block, t = (b—1)7 + 1,--- ,br. Although this restriction can be relaxed by
assuming missing-at-random within a block (as in Connor and Korajczyk (1987) and
Stock and Watson (1998)), we require full returns in a single time block for simplicity.
We relabel stocks in block b with the index of iy = 1, -+, N, where Np; is the number
of individual stocks with full returns over the b-th time block. Note that i does not
have to be identical to the original index of 7 and that i) will, in general, be different
from iy when b # 0.

Next, we express the observed return generating process in the b-th time block

similarly to the original full panel representation of (2.11) and (2.12):
Ry = /\OlN[b}lfr + By (Af — uf) 1:. + B[b]F/[b] + Epy, (2.22)

and2
Rjy =By (Af — py) 1, + By Fy + Egy, (2.23)

where the (i[b],s) element of the (N[b] X 7') matrices of Ry and be} are Ri[bp(b_l)ﬂrs
and Rf[b],(b—l)’r—&-s’
(Np x K) matrix of By is ,6',’;[1)], the s-th row of the (7 x K) matrix of Fpy is £,

and the (z'[b], s) element of the (N[b] X 7') matrix of Ep) 18 €, (p—1)r+s-

respectively, 1,, is the (m x 1) vector of ones, the ip-th row of the

T+s?

We need the assumptions of the availability of large cross-sectional data in each
time block and the time-invariant first two moments in the cross-sectional distribution

of factor loadings.

Assumption 3. As N — 0o, minge; ... p (N[b]) — 00. Also, as Ny — oo, ﬁbe]lN[b] —

B, Ey . .
s, ﬁB,[b}B[b] — Vi = ¥ + ppp, and U5V, where Ve is a (7% 7) di-

agonal matriz.

11



It is worth to highlight that this assumption allows the beta at the individual stock level
to vary over time. We require that only the first two moments of the cross-sectional
distribution factor loadings are stable over time. Also, note that from the last limit
in the assumption, the variance of residuals can vary within a block as well as across
blocks, similar to Jones (2001).

Lastly, we need the following regularity condition in our short-time block structure.

Assumption 4. Consider a continuous function of Fy; f - R™K — R™. Then, there

exists a finite number M > 0 such that

S R ,
lim — 371/ F (Fy) £ (Fy) < M.
b=1

T—oo B

Assumption 4 simply restricts the behavior of factor realizations to be stationary enough
so that the block-wise averages do not explode as T' increases.

So far, we specified all assumptions that we need to construct a stochastic discount
factor utilizing unbalanced panel data. Before we present our main theorem, we need
to introduce an estimator of V. which will be an essential element of our small-7
bias correction. A bias-correction in a short time series has been addressed in other
papers (Litzenberger and Ramaswamy (1979), Shanken (1992)) and the relation of our
correction to those papers will be discussed later. We utilize the estimator of V.,
proposed by Kim and Skoulakis (2017).

Lemma 2.1. Let Assumptions 1, 3, and 4 be in effect. Define \Afe,[b] by

- _ E,Ep
V. = diag <(H[b] ® Hy)) 'S vec ( []ll]f[b][ ]>> ’ (2.24)

where

Hy = J, — J.Fy (FyJ.Fy)  Fld,, (2.25)

1
']7' == IT - _1T><T7
T

the operator ® denotes the Hadamard product (entry-wise product), the (i, j)-th element
of the (12 x ) selection matriz of S is given by 1 (i = (j — 1) 7+ j) and the (N x 1)
matrix of E[b] 15 defined, for the case of using the gross returns, by E[b} = Ry Hyp and,
for the case of using excess returns, by E[b} = be}H[b]. Then, it holds that as N, T — o0,
{7@[17] N Ve for eachb=1,---,B.

12



The intuition of the estimator defined by (2.24) follows. Given the expressions of Ry
and Hp in (2.22) and (2.25), respectively, it holds that ]/E\I[b} = Ry Hy) = EyHy,. Hence,

Assumption 3 implies that []Z[b] = Hp <M> H[b] LN H[b]Ve,[b}H[b]. To extract the

diagonal matrix of V. in the probability limit of Ny 0 We manipulate the matrix of

E . E;,
[b] (0]

as in (2.24).

Ny, ( )

Lastly, we state our main theorem for unbalanced panels which shows that a con-

sistent estimator of the SDF can be constructed with unbalanced panel data.

Theorem 2.2. With Assumptions 1, 3, and 4, as N,T — oo, m; = 3\0 + ft’gf and

mi =1+ ftfge converge to my and m§ given in (2.5) and (2.9), respectively, when the
~ ~ o~ 7/ ~

((K +1) x 1) vector of § = [50 6}} and the (K x 1) vector of 8 are constructed by

5=D'U (2.26)
5 =— (D) U, (2.27)

where

FLFA\ 1 &
D=2 =
7)nx

b=1

71 o~
Fir mFam FrmRuRuoFap  FapVenFap
. A _ : . (2.28)
[b]T T

1 2 Fia B v

- 2.29
: e (2.:29)
b=1
B -1 e e vV
pe— (FEa L5~ | (FawFam)  (FapRiRuFn  FayVenFu (2.30)
rJBiD T Niyr? 72 7 |
- 1 . -~
vem (FEa) Ly~ | (FayFam ) (FapRiRiyle  FapVewls (2.31)
rJBiI T Niy? 72 7 |

Fap = (1 Fy), Vep) = diag (Vo)

and Ve is given in (2.24).

The intuition behind Theorem 2.2 follows. We focus on the case of & given by (2.26)
because the underlying intuition can be apphed to &° given by (2. 27) in a similar
manner. First, compare the expression of & in (2.26) with that of & in (2.13). The

matrices D and U given by (2.28) and (2.29) are designed to mimic (%) and
F,R'ly
( NT

/

N . .
are identical

F/ R'RF
with Assumptions 1- 4. Next, we provide intuition that the matrix D mimics TQA

) in (2.13), respectively. The probability limits of U and FA

13



For expositional simplicity, we consider the traded factor case, i.e., Ay = p¢. Then, the

return generating process of (2.3) can be rewritten as follows:
Ry = XFp y + Epy,

where X = [)\01 Niy B[b]} . Then, with the realized value of the linear SDF over the b-th
block, denoted by the (7 x 1) vector of mp; = Fa 18, the realized mispricing can be

written as
Rymy, RbFA,b F/A,bFA,[b] EbFA,b
Ly — (] []ZlN,[b]— (] Hdle,[b]— X (] + (] (] 5.
T T T T
R, F A

Hence, if we simply regress the true price of 1y on fm to estimate 4, a bias
will be induced by the non-negligible term of m with the finite 7 in the regressor.

That is, even though this term has zero expectation, and disappears as 7 approaches

. . . .. Fl Ve mFap
infinity, it is non-zero for any finite 7. This is why we need to deduct M#M from

F R’ R F ) . . F/\R'RF
et 1\[/3]7[;] “8 s in (2.28), while we do not need such an adjustment for —23—=
in (2.13). Furthermore, we need a slight adjustment of multiplying the inverse of

FlA,[b] Fapl

the sample moment ) over the b-th block to properly average the adjusted

values across blocks, and then we compensate the adjustment by multiplying the sample
F, F
T

Recall that, in the previous subsection on the balanced panel estimator, we show

moment ( A) over the whole time series data.

that the stochastic discount factor can be consistently estimated even without observing
the true factors (see Corollary 2.1) through PCA-based methods. It turns out that we
can replace F with F* such that F* = FO + o, (1) for the unbalanced panel estimator

and still consistently estimate the stochastic discount factor.

Corollary 2.2. With Assumptions 1, 3, and 4, given a consistent factor estimator of
F*=FO +o0,(1) for a some rotation matriz of O, as N, T — oo, m; = 5\5 + ft*’g;'é and
> ke

m;e =1+ ft’g*e converge to my and m{ given in (2.5) and (2.9), respectively, when the
~ ~ o~ 7/ ~
((K 4 1) x 1) vector of 8* = [(56‘ 5}’} and the (K x 1) vector of 6*¢ are constructed by

6" = (D) U (2.32)
5 = — (D*)" U, (2.33)
The matrices of D*, U*, D* and U*® are the analogues of D, U, D¢ and U® where
F, Fn, Fy and Fap are replaced by F*, F = [1, F*], Fjy and ¥, = [17 Frb]},
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respectively, and \Afz’[b] s given in lemma A.8.

3 Performance of the SDF estimators in a simulated

economy

We provide the simulation evidence on the properties of our SDF estimators. We
simulate economies that are constructed so that returns follow a strict K-factor model
and compare the estimated SDF with the true SDF. The simulation design is similar
to that in Chen, Connor, and Korajczyk (2018).

3.1 Calibration

To simulate returns, we need to take a stance on the return generating process in (2.3).
We consider three return generating processes implied by the CAPM, the Fama and
French (1993) three-factor model (FF3), and the Fama and French (2015) five-factor
model (FF5). For monthly factor returns of the three models as well as the risk free
return, we use data from Ken French’s database.? In particular, we use the U.S. value-
weighted stock market excess returns for all of the three models, SMB (small minus
big) and HML (high minus low) factors for FF3 and FF5, and RMW (robust minus
weak) and CMA (conservative minus aggressive) factors for FF5. We use the factor
realizations over 600 months (January 1967 to December 2016), to estimate the first
two moments of factors: p; = 5 SO0 f, and Xy = o 000 (£, — my) (f, — py)’ . The
riskless gross return is estimated as the average of the gross realized risk free return
over the same period: \g = ﬁ fiﬂ Ry

To obtain the parameters for a large number of assets in the simulation we exploit
all available individual stock returns over 600 months (January 1967 to December 2016)
from the CRSP monthly database. We estimate the factor betas (3;) and the variances
of residual returns (0'1'75 =K [5%}) of individual stocks by regressing the excess returns

of R;+ — Ry, on a constant and a vector of factor returns:
Ri,t — Rﬁt = ; + ,Bgft + €t

After this process, we have the estimated betas (3;) and the variance of residual returns

(01-76 =E [em) for each 14,277 individual stocks which have more than 60 observations

3See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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over our sample period January 1967 to December 2016.

3.2 Simulation Evidence

We simulate economies for the three asset pricing models of CAPM, FF3, and FF5
with N stocks over T' periods, where N and T are set by N = 1,000; 2,000; 4,000; and
8,000 and T' =60, 120, 240, and 480. The N stocks are randomly selected, without
replacement, out of 14,277 stocks available on CRSP over our sample period. If the
j-th asset in the simulation is chosen to be asset i from CRSP then it is assigned the
beta vector(B;) and the variance of residual returns (o;. = E [e?,]) calibrated for the
i-th stock in CRSP. We draw f; ~ N (s, Xy) and e;y ~ N (0,0%,) for t = 1,--- T
and j = 1,--- , N in each repetition. With the calibrated 3; and )y and the simulated
f; and e;;, the return process described in (2.3) can be generated. Note that it holds
As = py in this economy because f; is traded for the three asset pricing models under
consideration.

We examine the performance of our SDF estimator by comparing the estimated
SDF with the true SDF given by (2.5) for gross returns and (2.9) for excess returns. In
particular, since the estimated SDF is the true SDF plus estimation error, we regress

the estimated SDF m on a constant and the true SDF m:

my=a-+b-my+ errory.

If the fit to the true SDF is perfect, R? is 1, the intercept (a) is zero, and the coefficient
on the true SDF (b) is 1. We use these three statistics of R?, a, and b as metrics for
the performance of SDF estimator. We report the mean of the estimated R?, a, and b
across 10,000 repetitions.

Tables 1 and 2 report the SDF estimator performance in a CAPM economy. We
repeat the same exercise for FF3 (Tables 3 and 4) and FF5 (Tables 5 and 6). The
results of the SDF estimators for gross (excess) returns are reported in Tables 1, 3
and 5 (Tables 2, 4 and 6). Panel A of each table shows the performance of the bal-
anced panel estimators derived in Theorem 2.1. The results for the unbalanced panel
estimators, derived in Theorem 2.2, follow in Panel B of each table. Furthermore, to
investigate the implication of Corollary 2.1, stating that our SDF estimators are robust
to the case of using estimated factors, we consider both cases of using true factors
(Panels A-1 and B-1) and estimated factors (Panels A-2 and B-2). To estimate per-
vasive factors, we use the asymptotic principal components (APC) method of Connor

and Korajezyk (1986) applied to the simulated returns. Lastly, for comparison with
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other SDF estimators, we report the performance of other estimators in Panel C of
each table. For gross returns, we also consider the Pukthuanthong and Roll’s (2017)
estimator, which is appropriate for a large-N setting, and the conventional GMM es-
timator, requiring a small-N setting. Because Pukthuanthong and Roll’s (2017) es-
timator is not applicable to excess returns, we only compare our estimators to the
GMM estimator when we estimate the SDF from excess returns. We use a two-step
efficient GMM estimator. For the case of gross returns, the small-N GMM estimator
is obtained as follows. In the first step, we find 84py = argming g (8) Ing (8), where
g(d) =1y — RFTN;. In the second step, we estimate 84 = argming g (6)' W~g (8),
where W = % ZtT:1 <1N —r[1 f]] 3&;&) <1N —ri[1 f]] g&%{): r; is the ¢t-th column of
R, and f] is the t-th row of F. The SDF m; is estimated as m;qm = [1 ] 8.4 For the
small-N GMM estimator, we utilize the following three sets of portfolios: (i) 10 portfo-
lios formed on Market Beta, (ii) 25 Portfolios formed on Size and Book-to-Market, (iii)
25 Portfolios Formed on Operating Profitability and Investment. Note that the three

sets of portfolios are motivated by the corresponding asset pricing models of CAPM,
FF3 and FF5. We obtain the realized returns of the three sets of portfolios over January
1967 to December 2016 from Ken French’s database (cited above) and estimate the beta
and residual variance of each portfolio for each of the three asset pricing models with
the identical methods used for individual stocks.

We start with the CAPM results in Tables 1 and 2. Because the SDF estimators
using the true factor are linear combinations of a constant and the market excess returns,
R? is always 1 by construction. Hence, we do not report R? for such cases as in Panel
A-1 or Panel B-1. Interestingly, even for the cases using estimated factors, R? is very
close to 1 as shown in Panels A-2 and B-2. In contrast to this, Panel C-1 of Table 1
show lower R? values for the Pukthuanthong and Roll’s (2017) estimator. For example,
for N = 4000 and T = 120, the average R? is less than 10%.° This evidence shows
that being slightly less agnostic by imposing a more restrictive factor structure on asset

returns and using a small number of extracted factors leads to significant improvement

4For the case of excess returns, the small-N GMM estimator is obtained as follows. In the first

step, we find 5&%}) = argminge g° (6°)' Ing® (6°), where g° (6¢) = Bz — R%‘se. In the second step, we
~ —~ ~ !
estimate dgn’) = arg minge g¢ (6°) W—1g® (6¢), where W = * S (rte — ft’(sgl\’,&l)> (r§ - ft’éé‘g&”) ;

r{ is the t-th column of R, and f} is the t-th row of F. The SDF m{ is estimated as m§ gy = 1+f{3§}’,{§42).

This estimator is not amenable to the case in which N >> T due to the fact that the weighting matrix,
W, is not invertible in for that case.

5Some readers may find this result puzzling, given Proposition 2.1. However, untabulated simulation
results show that increasing N to 1 million yields R? values for the Pukthuanthong and Roll (2017)
estimator is close to 1.
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in the performance of the estimated SDF, compared to the fully agnostic approach by
Pukthuanthong and Roll (2017). In terms of the intercept (a) and slope (b), Panel A
of Table 1 shows that the balanced panel estimators have a clear bias although the bias
decreases as T increases. For the unbalanced panel estimator with the bias correction,
reported in Panel B, we set 7 = 60 and find that the correction clearly eliminates the
bias even with short 7. We observe this pattern for both cases of using the true factors
(A-1 vs B-1) or the estimated factors (A-2 vs B-2). It is worth noting that the bias
in the balanced panel estimator for excess returns disappears much faster than that
for gross returns by comparing Panel A of Table 1 to that of Table 2. Lastly, we find
that the performance of the small-N GMM estimator heavily depends on the choice of
assets. The performance of estimates is obviously the best for 10 portfolios formed on
Market Beta. This should be expected since it provides an ideal environment of wide
cross-sectional variation of market beta.

The results for the FF3 and FF5 models are qualitatively similar across the two
models, so we focus on FF3 (Tables 3 and 4). In terms of R?, the performance using
true factors and estimated factors become similar as N and T increase. For example,
in Panel B of Table 4, when N = 4000 and T = 480, the average R? is 0.81 for the
case using the true factors and 0.78 for the case of using estimated factors. The bias
for the intercept (a) and slope (b) in Panel A of Table 3 is attenuated in Panel B due
to the correction terms in the unbalanced panel estimator. However, when either N or
T is small, the unbalanced panel estimator still suffers from the bias due to the bias in
the estimated factors (Panel B-2). The performance of the small-N GMM estimator
changes with test portfolios. It does not work well with the 10 portfolios formed on
Market Beta, for which an econometrician would not find sufficient variation in the
cross section of exposures to some factors in the FF3 or FF5 models. Although- the
GMM estimator performs better with 25 portfolios formed by Size and Book-to-Market
ratio or Operating Profitability and Investment, our large sample estimators perform
at least as well as the GMM estimator when N is sufficiently large.

Lastly, we evaluate how well the penalized estimators using Lasso, given by (2.17)
and (2.18), select priced factors. We construct returns of assets in the economy be
priced by a certain K-factor model but estimate the stochastic discount factor from a
larger set of factors. In particular, for Panel A (B) of Table 7, we set the returns of assets
in the economy follow CAPM (FF3) but admit the stochastic discount factors to be
estimated from a larger set of factors (MKT, SMB, and HML for the CAPM and MKT,
SMB, HML, RMA, and CMW for the FF3 model). Table 7 reports the percentage of
selected frequency of a given factor over 10,000 repetitions. We set N = 2000 and T' =
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480. Overall, the penalized estimators select the priced factors correctly in most cases.
The priced factors in the simulation are selected at least 93%, and usually selected
in excess of 98% of the simulations. Using gross returns, there is a tendency to over
select the non-priced factors (8%-13% of the time). However, using excess returns the
unpriced factors are chosen between 0% and 0.6% of the simulations. The Lasso-based
selection seems to be very accurate for the SDF estimators using excess returns.

The simulation exercise shows that our SDF estimators have some desirable proper-
ties. As N and T increase to a size typical of financial panel data in developed markets,
R? in the regression of the estimated SDF on the true SDF approaches 1. Furthermore,
the intercept (slope) converges to 0 (1) with large, but empirically relevant, values of
N and T. Also, we find that SDFs based on APC factor estimates perform similarly
to those using known factors when NNV is large. The SDF estimators for the excess re-
turns suffer less from the small 7" bias and show faster convergence to the true SDF. In
addition, the Lasso-penalized estimator using excess returns selects price factors quite
accurately. Resorting to the superior performance of SDF estimators using excess re-
turns relative to those using gross returns, we mainly focus on the estimators utilizing

excess returns in our empirical results, reported below.

4 Empirical Application

In this section, we apply our SDF estimators to U.S. equity return data. Recall that
our SDF estimator can be used either for a set of factors proposed by a specific asset
pricing model (e.g., Sharpe’s (1964) CAPM) or a set of statistical factors (e.g, Connor
and Korajczyk (1986)). Hence, we consider both cases.

In particular, we consider six asset pricing models: CAPM, FF3, HXZ4 (Hou, Xue
and Zhang (2015)), FF5 (Fama and French (2015)), BS6 (Barillas and Shanken (2017)).
As noted above, the CAPM is a model with a single factor of market excess return. FF3
considers two additional factors of size (SMB) and value (HML). HXZ4 augment the
set of factors by adding profitability (ROE) and investment (I/A). However, they drop
the value factor with the claim that the value factor becomes redundant with their
two new factors. FF5 use different factors for profitability (RMW) and investment
(CMA). BS6 revive the value factor by using the monthly updated version (HML devil)
in conjunction with the momentum (MOM) factor. Barillas and Shanken (2017) argue
that the model with the six factors of market, size, value, momentum, profitability
(ROE) and investment (I/A) performs the best relative to other potential combinations.

To obtain statistical factors, we apply two methodologies. First, we apply APC by

19



Connor and Korajezyk (1986) to excess returns of a large cross section of individual
stocks from CRSP. To manage missing data in individual stock returns, we use the ex-
pectation maximization (EM) algorithm. From this method, we obtain four systematic
factors over the 600 months from January 1967 to December 2016. Second, we utilize a

recent technique developed by Pelger and Lettau (2017). They propose applying PCA

to a matrix strengthened by a signal on the average returns, <R€7§W +A (RCTIT) (R;IT )/)
with some A > 0. We apply their method to the returns of 209 portfolios, composed
of 16 sets of characteristic-based decile portfolios plus 49 industry portfolios,® and ex-
tract four systematic factors from the realized returns of the 209 portfolios over the 600

months.

4.1 Application to large cross section of portfolios

We start with a large cross section of portfolios, which are appropriate for our bal-
anced panel estimators. We consider two different sets of portfolios. The first set is
comprised of 1200 portfolios sorted by estimated expected returns over the sample pe-
riod of 293 months from January 1990 to May 2014.7 Freyberger, Neuhierl and Weber
(2017) estimate expected returns of individual stocks by using a non-linear function
of twenty one characteristics of individual stocks.® The rational behind our choice of
portfolio construction is that a wide cross section of expected return should be aligned
with a wide cross section of true factor loadings. The second set of portfolios is a col-
lection of decile portfolios sorted independently on 16 characteristics plus 49 industry
portfolios. In particular, we consider sixteen sets of decile portfolios sorted on various
stock characteristics: accruals (Sloan (1996)), book-to-market ratio (Fama and French
(1992, 1993)), cash flow-to-price ratio (Chan, et al. (1991)), dividend-to-price ratio
(Litzenberger and Ramaswamy (1982)), earnings-to-price ratio (Basu (1983)), invest-
ment (Chen, Novy-Marx, and Zhang (2010)), long-term reversal (DeBondt and Thaler
(1985)), market beta (Frazzini and Pederson (2011)), 12-2 past return (Jegadeesh and
Titman (1993)), net share issues (Ikenberry, et al. (1995), Fama and French (2008)),
operating profitability (Hou, et al. (2015), Fama and French (2015)), quality minus
junk (Asness, et al. (2014)), residual variance (Ang, et al. (2006)), short-term reversal

6The 209 portfolios will be explained in details in subsection 4.1.2 where we use those portfolios as
test assets.

"The number of portfolios is determined by the smallest number of individual stocks over the sample
period so that there is at least one stock allocated to each portfolio in every time period.

8We thank Andreas Neuhierl for providing the data on the estimated expected returns of individual
stocks.
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(Jegadeesh (1990)), aggregate variance (Ang, et al. (2006)). For industry portfolios, we
consider 49 Fama-French industry portfolios. All of these portfolio returns are obtained
from Ken French’s database (cited above) except the 10 quality minus junk portfolio

returns, which are from the AQR Capital Management data library.’

4.1.1 1200 portfolios sorted by estimated expected returns

Table 8 reports the estimated values of §°, when we apply our balanced panel estimator
using 1200 portfolios sorted by expected returns. The associated standard errors are
estimated by bootstrap method of resampling assets with replacement and reported in
parenthesis.’® The sample periods are 293 months over January 1990 to May 2014.
The direction of weighting of factors in the estimated stochastic discount factor is
pretty well aligned with the implications of each model. In CAPM, the coefficient for
market excess returns is significantly negative (-8.07 with a standard error of 0.08). To
give some context for this estimate, consider a CAPM world in which ), is 0.5% per
month (6% per year) and o, = 5.77% per month (20% year). These parameters are
close to historical averages. For this economy, (2.10) implies the true value of §¢ equals
-8.66, which is close to the -8.07 reported in the first row of Table 8 For FF3 and HXZ4,
every factor receives significant weighting in the estimated SDF. The Lasso estimator
excludes HML (I/A) in the estimated SDF for the FF3 (HXZ4) model. In FF5, the
weighting of HML is opposite in sign from the implications of the model. This might be
due to the redundancy of HML factor in conjunction with investment and profitability
factors as mentioned in Hou, Xue, and Zhang (2015) and Fama and French (2015).
This conjecture is also consistent with the results from Lasso estimator. In FF5, HML
is dropped from the estimated SDF using the Lasso penalty and the sizes of coefficients
on CMA and RMW shrink substantially. Although the monthly updated value factor
of HML (devil) still appears to be significantly priced in BS6, HML (devil) does not
survive in Lasso estimation. Also, the performance of statistical factors is impressive.
The first principal components contribute significantly to the estimated discount factor
under both methods. Two out of the remaining three principal components affect the

discount factor.

9See https://www.aqr.com/library/data-sets.
0Given N assets, we resample N, (s) = N assets with replacement and estimate d(,) for s =
1,---,1000. The standard errors are computed as the standard deviation of §(4) over s = 1,---,1000.
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4.1.2 209 portfolios (16 decile portfolios and 49 industry portfolios)

We proceed to the next set of 209 portfolios. For this set of portfolios, we have a longer
sample period of 600 months from January 1967 to December 2016. The estimated
coefficients, §¢, along with their standard errors in parenthesis (calculated using the
same bootstrap procedure described above) are reported in Table 9.

Results for the five asset pricing models are given in Panel A. For CAPM, the
coefficient for market excess returns is still consistently negative but the magnitude
is reduced by less then one third relative to the case of using 1200 portfolios sorted
on expected returns. One explanation would be that most of the decile portfolios are
constructed on the basis of return differences that are not explained by CAPM. Across
FF3, HXZ4, FF5, and BS6, SMB does not appear to be important in the stochastic
discount factor, and it is also dropped in the Lasso estimator. This confirms that
the most of these anomalies are somewhat independent phenomena apart from size
effects. Given the choice of 209 test portfolios, HXZ4 is the only model for which
every factor significantly affects the discount factor with a positive risk premium (i.e.,
negative estimated §). Although I/A is very important in the construction of the SDF
in HXZ4, I/A becomes almost redundant and excluded with Lasso penalty in BS6. In
contrast to the results in the in Table 8, MOM and HML (devil) are now aligned well
with their historical returns, hinting that these two factors may play an important role
in jointly explaining various anomalies. All of the four APC-based factors estimated
from individual stocks receive significant weighting in the stochastic discount factor.
However, for this set of portfolios, the SDF estimated via RP-PCA only has significant

weighting of the first principal component.

4.2 Application to individual stock returns

In this subsection, we apply our unbalanced panel estimators to individual stock returns
from CRSP. We consider all individual stocks which were traded in the three main
exchanges of NYSE, AMEX, and NASDAQ over our sample period of 50 years from
January 1967 to December 2016. The share code is required to be 10 or 11 so that only
common stocks are included in our sample. We apply price filter of five dollars at the
beginning of each month. Also, we drop individual stocks with a lifespan of less than 5
years. After applying the three filters, we obtain 10,112 individual stocks.

Table 10 reports the estimates, b} , from the unbalanced panel data from all individual
stocks available in CRSP over our sample period. Standard errors are computed by

bootstrap method and reported in parenthesis.
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In Panel A, the behavior of the estimated stochastic discount factor aligns with
intuition. Across all models, the coefficient on MKT is significant, with the expected
negative sign. For FF3 and HXZ4, every factor is significant in the estimated SDF.
Consistent with the findings from a large cross section of portfolios, the weight on
HML is significantly positive. Most of the statistical factors appear to be important as
reported in Panel B. In particular, all of the four principal components extracted from

individual stocks are significantly related to the estimated SDF.

5 Conclusion

While a large panel of asset return data is available, the empirical asset pricing literature
has tended to utilize small numbers of test assets in the cross section to test specific
asset pricing models. We propose novel estimators of the stochastic discount factor
(SDF) which can exploit a large panel data. Simulation evidence shows that our SDF
estimators perform better than some other methods in an economy with risk matching
that of the U.S. equity market. The bias correction for unbalanced panels works well in
eliminating the bias associated with small time-series samples. A Lasso version of the
estimator is able to exclude unpriced factors. When applied to actual return data, the
relation between the estimated SDF and the pervasive factors is in line with long-run
estimates of risk premia and factor risks. We find that the value factor, HML, from
Fama and French (1993, 2015) is subsumed by investment and profitability factors for a
number of sets of test assets. The statistical significance of OLS estimated risk premia
and Lasso estimates often agree on which factors should not enter the SDF. For the
Fama-French 3-factor model, both OLS and Lasso exclude HML while only the Lasso
estimator excludes HML in the Fama-French 5-factor model. Both approaches exclude
the investment factor in the HXZ4 model, but only Lasso excludes the investment factor
in the BS6 model.
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A  Proofs

Lemma A.1. With Assumption 1, it holds that as N, T increases,
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which completes the proof of the lemma. O
For simplicity, we use the following notation:
A 0
A= 0 K (A.3)
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Proof of Theorem 2.1 Define Bpo = [1yB]. In addition, from Assumption 2, we have
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We rewrite the return generating process of R in (2.11) as

R = 1N/\01/T +B()\f —p,f) 1/T+BFI+E
= BAAF, +E, (A.8)

where A is given by (A.3). From Assumptions 1, 2, and the limits of (A.1)-(A.6), we have
that
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NT T T NT

LV, AV, AV,

_'_

and that

NT NT T N NT
D, / ’ 7/
= Vi A [h‘ﬁ] :

PRy Fu(FAABL+E) 1y W, LBy | FLELy

Hence, from (A.7), it follows that
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Combining (A.9) and (A.10), we prove the first claim in the theorem.
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Next, in a similar manner, we show that PN 6¢, implying m§ RN mg. Note that
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Re:B(Af—uf)]./'T"‘BF/‘i‘E
= BA°F/, +E, (A.12)
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From (A.10) and (A.13), we complete the proof of the theorem. O
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= — (O/WO/+OP (1)> <O/W +Op (1))

FR'RF\ ' (FRYR‘1
P ! . T /se
1 - - ) =
20 hm < NT? > ( NT? > 0,

2 m¢. The proof is

where the last equality is from Theorem 2.1. This proves that mj®

complete. O

Proof of Proposition 2.1 Note that from Assumptions 1, 2, and the limit of (A.1) and

the homoskedasticity condition, as N — oo,

R'R B B EE EB, B/\E
= FAA AF/ AF, + FAAN —2—
N o N L at¥alb—y
B FAN Vs, AF), + sIp (A.14)
R'1y ,BlAlN E'ly p / 1/
~ =FaA Nty S FaA 1wl (A.15)
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From the N-limits of (A.14) and (A.15), some algebra shows that as N — oo,

oy (RR\7 Ry
t=\NT N

B0 ([FaA' Ve, AL + sTp) " (Fan’ 1 pf)")

-1
F,F
o ~r1/2 [ S 1/2 AT A S F1/2 -1/2 IR
= [ FAA'VY (TIK+1+VBAATAVM> (Va2 [ wh))

-1
F/\F
_ a2 [ S 1/2 AT D s 1)2 —1/2 IRV

Hence, as N — oo and then T' — oo,

. ,(RR\ ' (R1y
=\ N2 NT

B0n] (VEAT) (Vi D wel) = [ f)a=m

where the next to the last equality is from (A.10). This completes the proof of the proposition.
0
For the proof of the rest, we define S as the (72 X 7') selection matrix such that the

(t(s—1)+1,s) element of S is 1, for s = 1,--- , 7 and all other elements are zero.

Proof of Lemma 2.1 Define the (7 x 1) vector of v, such that V,p = diag (Ve7[b]).
From the expression of \Afe,[b} given in (2.24), we have that Ve,[b] = diag (V) , where

E, E

~ -1 [b]—[0]

Vo = (Hy © Hy) ' S'vee | 40

1 = (Hpy © Hy) ( N )

Hence, it suffices to show v, p 2 Ve - The invertibility of (H[b] @H[b]) is discussed in
footnote 7 of Kim and Skoulakis (2017).

B, B
First, we verify the N-limit of vec ( %{b][b] > Since 17 Hp) = 0’ and F’[b}H[b] = O 7, for

both the gross returns case of (2.22) and the excess return case of (2.23), it holds that

Ep) = EpHpy.
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Using the property of vec(-) operator, we have that

EyBy) [y E'HEHH  (HeoH
| ~ny ) = vee(Hoy, —Ho = (Hpy @ Hy) vec

= (Hp @ Hy)) vee (Vo) ,

where the last limit is from Assumption 4.

E

mEm>
Npy)

Hence, from the above limit and the properties of selection matrix of S such that vec (Ve,[b]) =

Sv, ) and that Hy © Hy) = 8 (Hp © Hy)) S, we have that

E, E
~ -1 6] (0]
Ve = (Hpy © Hyy) vaec< Npy )

B (Hy © Hy) S (Hy © Hyy) vee (V)
= (Hy © Hpy) ' S (Hy @ Hpy) Sve

—1
= (Hp © Hy)  (Hp) © Hy) Vo) = Ve s

completing the proof of the lemma.

We use the following lemmas to prove Theorem 2.2.

Lemma A.2. Let Assumptions 3 and 4 be in effect. Consider any set of functions of Fpy;

fay : RE o RE fo : R™¥E 5 REP) fa0  RK 5 R7, fiy
Jay: R™K s R™. Then, as N, T — oo, it holds that

)
1 B
52 fe) (Fpy) veC( " B _Vﬁ> 0
b=1
1 B
/ P
B > fe) (Fy) (Nb E[b]le> =0
b=1
1 B
P,
EZfM) (F[b}) ’U€C< . E/[b]B[b]> -0
b=1

(0]

. RTXK

— RE7 and

Proof Let the (m x 1) vector of e denote any of the five errors: (ﬁB’[ }1N[b] — MB) )

VGC(ﬁB,[b}BH Vg) (N[b [b]le]) vec(N[b []B[b]> andvec(
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that from Assumption 3,

ber?,%?fB e{b]e[b] 0. (A.16)

Let fx) be the corresponding function. As T increases, it follows that

B B
1 1
B Zf(k) (F[b])’e[b] < B Z \/f(k) (F[b])/f(k) (F[b])\/e’[?[b]
b=1 b=1
1 B
!/
=\z bz_; \/f(k) () e (F[bl)> bel elyen)
<M max_ . fefep = 0, (A.17)

bel, B

where the first inequality is from the Cauchy-Schwarz inequality, the third inequality is from
Assumption 4, and the last limit is from (A.16). In a similar manner, we can show that as T

increases,
B

Z (k) F[b] e[b] < Mber{lax ,/e’[b]e[b] 0. (A.18)

Lastly, combining (A.17) and (A.18) in conjunction with the squeeze theorem, we have that

as N, T — oo,
B

éZf ep 2 0,

completing the proof of the lemma. O

Lemma A.3. [t holds that
E, E E, E
Ot .~ [b]—[0]
ec | ——— — diag (Ve’[b])> = K[pjvec ( — Ve,[b]> ,
< Ny Ny

Ky = (L2 = S (Hy © Hy)) ™' ' (Hy @ Hy) ),

where

and Hpy is given in (2.25).

Proof From (2.24),

E
. ~ R _ (]
vec (diag (Ve,[b])) =Svep =S (H[b] © H[b}) 'S (H[b] ® H[b]) vee ( [Jlllf[b] ) '
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Hence,

E
[b] (0] N
ec ( N[b} — diag (ve,[b])>

E. E
= <I7—2 -8 (H[b] ® H[b])il S’ (H[b} & H[b])) vec (W)

1 E{, Ep
- (ITQ ~ S (Hpy oHy) ' S (Hy ®H[b]))vec Ny —Vep |

where the last equality is from

(12— S (Hy 0 Hy) ™' 8’ (Hy) @ Hyy) ) vee (Vo)
= (12 - 8 (Hy 0 Hy) 'S’ (Hy @ Hy) ) Sve
=Sve — S (Hy © Hy) ' 8 (Hy) © Hyy) Svep) = 02

This completes the proof of the lemma. O

Lemma A.4. Let Assumptions 1-4 be in effect— As N, T — oo,
D 5 VA A VA AV p,

where D, Via, Vga, and A are given in (2.28), (A.2), (A.1), and (A.3), respectively.

Proof We decompose D in (2.28) as

D =D;Do,
where
F/ Fa
D, = AT :
1 o~
XB: F [b]FA (] FlA,[b]be]R[b]FA,[b] B F’A,[b}ve,[b]FA,[b}
— N[b]TQ 72 ’
From (A.2),

D; % Via. (A.19)

Hence, it suffices to show that Dy LN A'Va AV ¢p. Rewrite Ry in (2.22) as

Ry = Ba yAF, ) + Epy, (A.20)

31



where Ba 5 = [lNB[b]] and A is given in (A.3). Plugging the expression of (2.24), we have

F/A,[b]REb]R[b]F&[b] B F/A,[b]Ve,[b]FA,[b}

N[b}TQ 7'2
:F/A,[b]FA»[b] A/B/A,[b]BAV[b}AF/A,[b]FAa[b] N F o [ EnEw 5 Fap
T N[b] T T N[b] elb T
/
+FIA,[b] E/[b]Bﬁv[b] AF/A,[b]FAJb]+F/A,[b]FA7[b]A, Eib]Bﬁv[b] Fa
T Npy) T T Npy) T’
yielding
F, . F ' /F, R, Ry F F, . V. F F, ,F
AT A0 ATV TR AL E A ] Y e bl A — AV A 1 AN L + ),
(A.21)
where
B, ,.Ba [b] F, .Fx [b]
Enoi= A | 22Ty, AL A

/
EfyBa,jy AF’A,MFA,W N EyBap\ Fap
N[b} T

F, . F, B, ..B
vec (ED’[I,]) = (A’[b]T 1 A’) ® A') vec <A’[;][[b]&[b} — VA75>

Fl Fl FA -1 F/ E/ E
+ ( Al o (( A0 ’[b]> A’“’])) K[b]vec( by, [b]>
- . T Ny ’

F, F F, . F B E.. B
A RAN [ Ao A AN A,[b] vec B2 A[0]
T T T N[b]
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implying that

B

1

5 2 Ep1 7 Ocan)x(r+1)
b=1

from Lemma A.2. Hence, from the expression of (A.21), we have

-1 ~
b _ L ZB: F) mFam FroRuRoFam  FapVenFap
27 B T N[b]7'2 T2
b=1
B / B
1 FawFap 1
/ )
=AVEASY ST 2 &y
b=1 b=1
B AVAV A, (A.22)

Combining (A.19) and (A.22), we have
D =D;Dy % VAN ViaAVa,

completing the proof of the lemma. O
Lemma A.5. Let Assumptions 1-4 be in effect. As N,T — oo,

P /
U= VfAA/ [1 /’L,IB] ’
where U and Va are given in (2.29) and (A.2), respectively.

Proof Recall the expression of (A.20):

Ry = By AF ) + Epy. (A.23)
Note that
Fp o Bitog _ (F'A,[b]FA,[blA') (BA,[b}lN[w) L FomButvy
Nyt 72 Ny N2
_ (FIA,[b]TFA,[b]> Aps+ Eupy, (A.24)
where

e (FamFapA (Baplyy Y (Fam) (Ewlyy
e ™ Ny r Ny /)

From Lemma A.2,
1

5 2o 7 Okt (A.25)

I
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Hence, from (A.24) and (A.25),

B ! /
1 LN [b]R[b]lN[b] p ' IRt
U=—- — = — | 5V, A'|l
b (T ) oy
completing the proof of the lemma. O

Lemma A.6. Let Assumptions 1-4 be in effect. As N,T — oo,
!/
DB [y V[ ATVeAS [y V]
where D¢ and A° are given in (2.30) and (A.4), respectively.

Proof We decompose D€ in as

D¢ = Di Sv
where
F'F
D¢ = -2,
T
71 o~
oe_ L ZB: F) mFam FrmBReRuFn  FapVenFn
2 B T N[b]7'2 7—2
b=1
From Assumption 1,
Df 5 [y Vs (A.26)

/
Hence, it suffices to show that Dg % AV gA°© { py Vy ] - Rewrite Ry in (2.23) as
R = B[b]AeF/Mb] + Epy. (A.27)
Plugging the expression of (2.24), we have

FrmBuRoFe  FapVemFn
2

N[b]T2 T

_FapFam . ByBu

F. .F F’ E. E F
PN L) A, [b] DY Ul
T Nt 1w ( Nig Ve’[b]> T
/
F/A,[b] E/[b} By ., F/A,[b] Fpy) FIA,[b] Fam E,[b] Bp\ Fpy
n A + A —
T N[b] T T N [8] T
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yielding

F, .F /R RYREFy  FL V. F F, .F
A A [ ATV [] [b] A,[b] L L ] N AT (Y]
( T ) ( N[b]7'2 T2 ) = ATViA T +Epe s

(A.28)

T

-1
F/A,[b]Fﬂv[b} F/A,[b] E/[b}E[b] S F
+ — Ve | —
T T N, [b] T

-1 /
FowFoam\ Fawy (EwBe )  FawmFe | . EyBu) Fuy
+ A A UdUR 0N
T T N [b] T N, [b] T

Using the property of vec (ABC) = (C' ® A) vec (B) and Lemma A.3, we have

F|,F B, B
bt A, e b 2[0]
vec (Epe ) = <”A’ A’> Vec< []é[b] —V5>

F B 0 E,.E
[b] b] A0 A[b] [b] 1b]
K SRUNE R v
( ) T ) ”Vec< Noy e“)
( :

B/.B F,. ..F
ey = Ae,< B _V5> JANCLC

-1
[b]FA [b] F,A,[b]Fﬁv[b} F/A,[b] vec E,[b]B[b]
T T N[b]
B
[ el (6] 1]
+ ® A ,
) (( N ))

B
1
3 Z Epe ] = Ok +1)x K

implying that

from Lemma A.2. Hence, from the expression of (A.28), we have
1 B
e _
Di=5D

-1 €. [ ¥
FIA,[b]FMb] F/A,[b}R[é}R[b}F[b] B F/A,[b}va[b]F[b}
— T N[b]7'2 T2 '

F/
= Ae,VﬁAeB Z ( - ) B Zc‘:[b]

2 AV A [ pp Vy }'. (A.29)
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Combining (A.26) and (A.29), we have
/
D¢ = D{D§ 5 [ py Vy ]Ae'VﬁAe[w Vi ] :
completing the proof of the lemma. O

Lemma A.7. Let Assumptions 1-4 be in effect. As N, T — oo,
/
P
U B [y V| ATVeAS[ 1 g ]
where U® and A° are given in (2.31) and (A.4), respectively.

Proof We decompose U€ in as

Ut = U5,
where
F'Fa
U$ =
1 T )
-1 el Re 7
Us= i FnpFa FrmBuRE  FapVenls
2 B T N[b]7-2 7—2
b=1
From Assumption 1,
Ut S |y Vs (A.30)

/
Hence, it suffices to show that U EaN A“VgA°© [ 1 'u,/f } . Rewrite Ry in (2.23) as
R = By A“Fy iy + Epy. (A.31)

Plugging the expression of (2.24), we have

A~

FrRupRE FapyVemls

Ny 72
:F/A,[b]FA,[b] Ae/B/[b}B[b] AC FlAy[b] 1, N F/A,[b] El[b]E[b] v 1
r Ny T T\ Ny )

+

/
Fap (E'[b]BW> acfant  FapFaw (E/[b]B[b]> 1

N, [t] T T N (t] T’

T
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yielding

F, . F ! RYR5 1, Fo V.l F, .1
AN A 1 ADITVRITETT T AR YelbltT ) e e OB T
( T ) ( N2 T2 ) = ATVsA T +E&ue

(A.32)
where
!/
By AL
g . — Ae/ [b] [ Ae 7[]
vl ( (0] T
F, . F 'F E|,E
A A [0] A[b] DY 1,
* ( T ) T ( Ny Ve’[b]> T
—1 /
n F/A,[b]FA,[b] F/A,[b] E/[b}B[b} AC F/A,[b]lT 4 A E/[b]B[b] 1,
T T Npy) T Npy) T
Using the property of vec (ABC) = (C' ® A) vec (B) and Lemma A.3, we have
1 B/,B
gUe = <7—A[b]A€/ Ae/) ‘[Z(i][ [b} —Vﬁ
[b]
-1 v /
’T F) [b]FA (6] Fam EiyEp
(T - Kyvec 7N[b] = Ve
-1
1/ FA F/A,[b}FAJb] F 1 EyBr
ve
T T Ny
' E, By \’
_|_ h ® A€/> [b] [b] ,
T N[b]
implying that
1B
E ZEDE’[b] £> OK
from Lemma A.2. Hence, from the expression of (A.32), we have
-1 [ e \
Ue - L XB: FapFan FroBRERu  FapVels
;] T N2 T2 )
b=1
1 Ab
_ el e
=A V/BA B; (T) BZEUe [0]
/
£> Ae/VﬁAe |: 1 lJ/ff :| . <A33)
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Combining (A.30) and (A.33), we have
e erte P el e / !
U :U1U2—>[uf Vf}A VA [1 uf} ,

completing the proof of the lemma. O

Now, we prove Theorem 2.2 using the above lemmas.

Proof of Theorem 2.2 We will show that § & & and 8¢ & 8¢, implying 7y — my and
mg EN mg, respectively. completing the proof of the lemma. From Lemmas A.4 and A.5, we
have that

§=D UL (Vi A'V5, AV}, )V A 1]
1 (1+,uf2;1>\f) .
Ao —2;1)\]0 ,

where the next to the last equality is from (A.10). From Lemmas A.6 and A.7, we have that
ge _ (De)fl U
/ -1 !/
- <[ wp Vi | ATVAS |y V| > [ ms Ve |ATVeAs [ 1 |
e ! - e ! / -1
= - <A aa ) AL g | == (O = mg) s+ V) T Oy =y + )
=~ (Asur +2p) 7 Ay = 0"

The above two limits complete the proof of the theorem. O
For the rest of proofs, it is convenient to express D*, D* D* and D* in terms of F* :

* * -1 * * * \7* *
pr— (FaFa) 1 i FRmFap FLnRuRuFan  FAmVemFam)|
T B T Ny 12 72 ’ '

1< FX[ b] N
Ur=—) =0 A.35
B Z Nyt (A.35)

-1 ~
FYF\ 1 FXmFam FRmBRuRHFN  FamVeunF
D*e — _ Pt e Bl 0 _ ) i A'
( ) B Z ( T Ny 72 72 ’ (A.36)

=1
B B %/ % */ e/ Re */ *
g — (F7Fa Z FiuFom)  (FLuRiRl  FipVen! (A7)
> - N[b]T2 7_2 . .

Also, to prove Corollary 2.2, we need following lemmas, which confirm that Lemmas 2.1 and
A.3-A.7 still hold for the estimated factors.

o
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Lemma A.8. With Assumptions 1, 3, and 4, as N,T — oo, \A/': W = diag (V: [b]) RN Ve
for each b=1,---, B, where V} 0 s given by

E*l E*

-1
V= (Hy 0Hy)  Svee | Y [”]>, (A.38)
1t ( i [b]) ( Ny

where Ef‘b] is defined by for the case of using the gross returns E’[kb] = R[b]Hf‘b] and for the case
of using excess returns E[b] = be]Hrb] and

* ! -

b =Jr - 3F (Fa, F[b]) Fid, (A.39)

1
JT —I T><T
T

Proof  Because Fjj = F;;O + 0, (1), it follows that Hp, = Hp) + 0y (1) and f}f‘b] = f}[b] +
op (1), implying that v* e = Ve, 5] + 0p (1). Hence, by applying Lemma 2.1, we prove that
Vi = diag (Vi) B Vep 0

Lemma A.9. It holds that

E E E

[b] (0] . ~ [b] (0]
ec —diag |V = Ky vec -V, +o0p(1),
( Noy 9( e,[b})) [b] ( Ny, ,[b]) p (1)

where
Ky = (L2 — S (Hy 0 Hy) ™ 8’ (Hy @ Hyy) ),

and Hy is given in (2.25).

Proof From Lemmas 2.1 and A.8, we have v, ;) = v, 5 + 0p (1) and V7 5 = Vel +0p (1),
implying that
Ve = Ve +0op (1),

which in conjunction with Lemma A.3 proves the claim of the lemma. g

Lemma A.10. With Assumptions 1, 3, and 4, as N,T — oo,
D* A OW VAN VEAAV A Op,

where
1 0%

On =
“ o O

: (A.40)

and D*, Via, Vga, and A are given in (A.34), (A.2), (A.1), and (A.3), respectively.
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Proof We decompose D* in (A.34) as

D* = D*D5,
where
. FXF,
1= )
T
* * 71 *, * * *
i FX [b]FA 0 FYuRyRoFam  FhuVepFaw
N[b}T2 7'2 ’
Because FXF*A F'AFA
1= T = A 7 Ontop(l),
from (A.2),
D} 5 O\ Vp0n. (A.41)

Hence, it suffices to show that Dy ONA'VaAAViAOp. Rewrite Ry in (2.22) using
Fpp)=Fp ;) On +0p(1) as

Ry = Ba j AOAFL i + (BapA) 0p (1) + Epy, (A.42)
where Ba 5] = [1NB[b]] and A is given in (A.3). Plugging the expression of (2.24), we have

FLuRuyRoFay  FluVinFap

N[b]T T2
F* F* B, ..B F* . F* F* E..E F*
AT A A A A B PA ] OB AL A,[b] [l . Ab]
= A A R VA
= On Ny, On - + - < Ny e,[b}) -
F*/ E/ B F*l * F*/ >|< El B / F*
4 Al [b] A [0] AOA A, [b] A[b] A [b] A[b] LA/ [b] 24, [0] Al +o, (1),
T N[b] T T N[b] T
yielding
* * 71 * *
FXmFam FX [bJR[bJFA 0 FluViwFap
- : (A.43)
T N[b] T

LN

—ONA'V 5 3AO FamFap £ 1
=CUAN VA AUA - +&pmtop(1),
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where

B, ..B FY F*
s oy oar [ PApPAR AT AL
Epp = OnA (N[b] —VM> AOAiT

* * _1 * *
L (FawFam) Fam (EwBo 5. | Fap
T T Ny & [b] T

* * -1 s * * ! %
n F3 [b]FA [b] FA/,[b} E/[b]BA,[b] A(DAFA/ [b]FA [b] L O E/[b]BA»[b] FA,[b]
T T N[b] T & N[b} T

Using the property of vec (ABC) = (C' ® A) vec (B) and Lemma A.9, we have

F* F* B, .,.B
vec (ED [b]> ((M (AOA)/) ® (AOA)/> vec <W — VA,B)
(]
FZ F* F* E E
(0] A[b] O[] [b] (0]
( ( i ) ’ )) K[b]vec( Ny _Ve’“’]>
F*/ >k F*/ F* F*l E/ B
( A0A>> ( A’“’}T A’“’]) = “’]) vec ( [bJN ;’W)
F* E, B '
( [b] A(’)A)> oc (( [b]N A,[b]> ) +o, (1),
(0]

B

1 *

5 Z €D, = O(K4+1)x(K+1)
b=1

_l’_

implying that

from Lemma A.2. Hence, from the expression of (A.43), we have

B */ * -1 */ ! * * *
<FA 0Fa, [b]) <FA,[b]R[b]R[b]FA,[b] AmVe i A[b})]‘

5y

b:

N[b}TQ 7'

= O’AA’VAﬂAOAé EB: M 25* +o,(1
b=1
LN O/AA/VgAAVfAOA. (A.44)
Combining (A.41) and (A.44), we have
D* = D;D5 5 OW VAN VAAV 2O,

completing the proof of the lemma. O
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Lemma A.11. Let Assumptions 1-4 be in effect. As N, T — oo,
Ut B 0LV, A1 )
where Op, U* and V¢ are given by (A.40), (A.35) and (A.2), respectively.

Proof  Recall the expression of (A.20) using Fa ) = F\ [b]O/A +o0p(1) as

Ry = B ) AOAFL ) + (Ba,pA) 0p (1) + Egy. (A.45)
Note that
FA/ R 1y F* F* B 1 F* Emly
(2 e (2 A R AT A b / A, (0] N[b]) A\, [b] 0]+ Ny
= AO + +o,(1
N[b]T T ( A) ( N[b] N[b}T p( )
F*/ F*
- (M’L A’“’]) (AOAY s + €y + 00 (1), (a.46)
where

FAmFa Byl F¥ Epl
* A A, A LN ’ gl
e <[b]T[b] (AOA)/> <][V][b][b] B ug) ! ( ATM) ( [J}V[b] M) '

From Lemma A.2,
B
1 *
b=1

Hence, from (A.46) and (A.47),

B (F 1
>3 (m) 04V, 0l (A08) (1] = OsV A 1]
(o] T

completing the proof of the lemma. O

Lemma A.12. Let Assumptions 1-4 be in effect. As N, T — oo,
D50 [ py Vi | AVA |y }'O,

where D*¢ and A€ are given in (A.36) and (A.4), respectively.

Proof We decompose D*¢ in as

D*e — DTCD;C
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where

w  FFL
1 — T )

B */ -1 */ e/ me T|* */ \* *
oLy FamFam FapBuRuTam  FamVenTap
©BI T Nyyr? m |

From Assumption 1,
Di* 20 [ uy V| Os (A.48)

!/
Hence, it suffices to show that D3¢ 5 O/ A“VzA° [ py Vi ] O. Rewrite Ry in (2.23) as
R[b] B[b]A OAFA 1] + (B[b]Ae) Op (1) + E[b] (A.49)

Plugging the expression of (2.24), we have

x/ el * x/ * >|<
FXuRoRuFy  FlyVinFh
N[b]7'2 T2
F*/ F* B/ B F*/ F* F*/ E/ E F*
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Using the property of vec (ABC) = (C' ® A) vec (B) and Lemma A.3, we have

F*/ F* B/ B
vee (Epepy) = <<w (@ Ae')) ® (OAA‘”)> Vec( []l;]f[b} Y —Vﬁ)

F*/ F*l F* F*/ E/ E
A [b] A A[b] b
) - ) K[b]vec ( N[b] Ve,[b])

F*l * F*/ F* F*/ B
( A[b (9 Ae’)> (( AJb] A[b]) [b]))vec< ] [b])
T T N[b]
F¥ E, By )\’
[b] el [b} [b}
O A vec T 4+ 0, (1),
( )> (( Ny )) 0

B

1 * D

5 2 Ebe 7 O
b=1

+

implying that

from Lemma A.2. Hence, from the expression of (A.50), we have
1 B
Dy =5,

* */ el F* *l ATk x
<F ApFa, [b]) (FA R RuF FA,[b}Ve,[blFm)]
T 7—2 7—2 :
b=1 [b]

B
s nem 1 Fal
=OaAA IVﬁA O/AE E <”> E gDe (0]
b=1

/
B OANVA |y Vs | O (A.52)

Combining (A.48) and (A.52), we have
/
D =Di'Dy* 5 O | puy V; |ATVeAT | uy V| O,
completing the proof of the lemma. O
Lemma A.13. Let Assumptions 1-4 be in effect. As N,T — 0o,
xe P, e e !

U 20| pp V| ATVeA[ 1o |
where U*¢ and A€ are given in (A.37) and (A.4), respectively.
Proof We decompose U*® in as

U*(i — UT@U;E
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where

o */FZ
1 = T )
B */ -1 e/ pe * \T*
Up ==Y} FawFam) (Fa [b]R[b}RH _FamVepls
27 B — T N2 72 '

From Assumption 1,
U & o [ wy Vi } On. (A.53)

/
Hence, it suffices to show that Uz % ONA“VzA° [ 1 M} } . Rewrite Ry in (2.23) using
Fpp)=Fp ) On +0p(1) as

R[b] = B[b]A OAFA [0] + (BA7[b]A6) Op (1) =+ E[b] (A.54)
Plugging the expression of (2.24), we have
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el e FA [b]l *
—OAA V A OA + 8 e,[b] —+ 0p (1) y <A56)

where

B/, B F
. _oope [BuBo cey. Dot
Eie y = On A <]V[b]_VB>AOAT
*/ * */ /
L (Fawfap Pl (BBn . )1
T T Ny el | 7

FY F* B E’ B F* 1 E. B !
A6 A A [b] [6] 2 10] e AT el 20\ 17
+ A — 4+ A _ —+ 1).
( T ) T ( N ] ) Oa T On < N ] > T o (1)

45




Using the property of vec (ABC) = (C' ® A) vec (B) and Lemma A.9, we have

Elre ) = ((A@O’AFZ’TU)]L) ® ((”)AAG’)> vec (BE@E“’] - Vﬁ>

(9 i ((FA [b]TFz [b}> FAT o )) Ky <E%E[b] ) V@ﬁ)
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b

+ ( ® (OAAe’)/> vec ((E%’\][zm)) +op(1),

implying that
1 »
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f—

+

\]

SRS

from Lemma A.2. Hence, from the expression of (A.55), we have
1
*e
-y

*/ * */ e/ Re
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1 F*/
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b e/ e / !
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Combining (A.53) and (A.57), we have
!/
U =UUs 50| up vy |ATVeAc[ 1 ) ]
completing the proof of the lemma.
Proof of Corollary 2.2 Note that from Lemmas A.10 and A.11

(DY) U" B O (Vi AV AV ) Vi A 1G] = 08
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and that from Lemmas A.12 and A.13
(D;)"'U;

-1

A_o'([w v, | AV vf}’) (p vy | AVaA [ 1w

=~ O (Vi ANV, AV;,) T Vi A 1] = —0'6°.

Hence, the claim of the corollary is proved.
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Table 1: SDF Estimator Performance when Gross Returns follow CAPM

R? intercept(a) slope(b)
Panel A: Balanced Panel Estimator
A-1: With Observed Factors

N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.63 0.39 023 0.12 0.38 0.61 0.77 0.88
1000 N.A. 0.60 0.39 0.22 0.12 0.40 0.61 0.78 0.88
2000 0.60 0.38 0.22 0.12 0.41 0.63 0.78 0.88
4000 0.65 042 025 0.13 0.35 0.58 0.75 0.87
A-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.96 0.97 097 097 0.62 041 026 0.16 0.38 0.59 0.74 0.84
1000 0.98 0.98 0.98 0.98 0.60 040 024 0.14 0.40 0.60 0.76 0.86
2000 0.99 0.99 0.99 0.99 0.60 0.38 0.23 0.13 0.41 0.62 0.77 0.87
4000 0.99 0.99 0.99 1.00 0.65 0.42 025 0.14 0.35 0.58 0.75 0.86

Panel B: Unbalanced Panel Estimator
B-1: With Observed Factors

N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 -0.05 -0.04 -0.01 0.01 1.07 1.05 1.01 1.00
1000 N.A. -0.06 -0.02 0.00 -0.01 1.07 1.03 1.00 1.01
2000 -0.05 -0.02 0.00 -0.01 1.07 1.03 1.01 1.01
4000 -0.03 -0.02 0.00 0.00 1.05 1.03 1.00 1.00
B-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.96 0.97 0.97 0.97 0.04 0.06 0.05 0.05 0.98 0.95 0.96 0.95
1000 0.98 0.98 0.98 0.98 0.02 0.02 0.01 0.02 0.99 0.99 0.99 0.98
2000 0.99 0.99 0.99 0.99 -0.03 0.03 0.01 0.00 1.05 098 0.99 1.00
4000 0.99 0.99 0.99 1.00 -0.01 -0.01 -0.01 0.00 1.03 1.02 1.01 1.00

Panel C: Other Estimators
C-1: Pukthuanthong and Roll’s (2017) Estimator

N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.04 0.02 0.01 0.00 0.60 0.36 0.19 0.08 040 064 081 0.92
1000 0.06 0.04 0.02 0.01 0.59 037 0.20 0.09 041 0.63 0.80 0.91
2000 0.09 0.06 0.04 0.02 059 036 0.21 0.10 042 064 0.79 0.90

4000 0.11 0.09 0.06 0.04 0.64 040 023 0.12 0.36 0.60 0.77 0.88
C-2: GMM Estimator

Pfo\T 60 120 240 480 60 120 240 480 60 120 240 480
10 Beta -0.01  0.00 0.00 0.00 1.03 1.01 1.00 1.01
25 S&B N.A. 031 0.18 0.09 0.04 0.70 0.83 091 0.96
25 I&P 026 0.15 0.06 0.03 0.75 086 094 0.97

This table summarizes the performance of various SDF estimators for gross returns when the
true return generating process of each individual asset follows CAPM. We consider different
levels of N = 500, 1000, 2000 and 4000 and T" = 60, 120, 240 and 480. After obtaining a
time series of estimates my for t = 1,--- , T, we regress the estimated SDF m on a constant
and the true SDF m: My = a + b - my + error,. If the fit to the true SDF is perfect, R? is 1,
the intercept (a) is zero and the coefficient on the true SDF (b) is 1. We report the mean of
the estimated R2, a, and b across 10,000 repetitions.
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Table 2: SDF Estimator Performance when Excess Returns follow CAPM

R? intercept(a) slope(b)
Panel A: Balanced Panel Estimator
A-1: With Observed Factors

N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.01 0.00 0.01 0.00 0.98 1.00 0.98 0.99
1000 N.A. 0.01 0.01 0.00 0.00 0.98 0.98 0.99 0.99
2000 -0.02 0.02 0.00 0.00 1.01 097 0.99 0.99
4000 0.00 -0.01 -0.01 0.00 0.99 1.00 1.00 0.99
A-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.96 0.97 097 097 0.05 0.03 0.05 0.03 0.94 0.96 0.95 0.96
1000 0.98 0.98 0.98 0.98 0.03 0.02 0.02 0.02 0.96 0.97 0.97 0.98
2000 0.99 0.99 0.99 0.99 -0.01 0.03 0.01 0.01 1.00 0.96 0.98 0.99
4000 0.99 0.99 0.99 1.00 0.01 0.00 0.00 0.00 0.98 0.99 0.99 0.99

Panel B: Unbalanced Panel Estimator
B-1: With Observed Factors

N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.01 0.00 0.01 0.00 0.98 0.99 0.98 0.99
1000 N.A. 0.01 0.01 0.00 0.00 0.98 0.98 0.99 0.99
2000 -0.02 0.02 0.00 0.00 1.01 097 0.99 0.99
4000 0.00 -0.01 -0.01 0.00 0.99 1.00 1.00 0.99
B-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.96 0.97 0.97 0.97 0.05 0.03 0.04 0.03 0.94 0.96 0.95 0.96
1000 0.98 0.98 0.98 0.98 0.03 0.02 0.02 0.02 0.96 0.97 0.97 0.98
2000 0.99 0.99 0.99 0.99 -0.01 0.03 0.01 0.00 1.00 096 0.98 0.99
4000 0.99 0.99 0.99 1.00 0.01 0.00 0.00 0.00 0.98 0.99 0.99 0.99
Panel C: GMM Estimator
Pfo\T 60 120 240 480 60 120 240 480 60 120 240 480
10 Beta -0.02 0.00 -0.01 -0.01 1.02 0.99 1.00 1.00
25 S&B N.A. -0.08 -0.02 -0.01 -0.01 1.07 1.02 1.00 1.00
25 1&P -0.09 -0.03 -0.01 0.00 1.08 1.02 1.00 0.99

This table summarizes the performance of various SDF estimators for excess returns when the
true return generating process of each individual asset follows CAPM. We consider different
levels of N = 500, 1000, 2000 and 4000 and T" = 60, 120, 240 and 480. After obtaining a
time series of estimates my for t = 1,--- , T, we regress the estimated SDF m on a constant
and the true SDF m: my; = a + b - my + errory. If the fit to the true SDF is perfect, R? is 1,
the intercept (a) is zero and the coefficient on the true SDF (b) is 1. We report the mean of
the estimated R?, a, and b across 10,000 repetitions.
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Table 3: SDF Estimator Performance when Gross Returns follow FF'3

R? intercept(a) slope(b)
Panel A: Balanced Panel Estimator

A-1: With Observed Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.45 0.61 0.77 0.88 0.57 036 021 0.11 0.43 0.64 0.79 0.89
1000 0.45 0.62 0.78 0.89 0.58 0.38 0.22 0.12 0.42 0.63 0.78 0.88
2000 0.49 0.65 0.80 0.90 0.54 0.35 020 0.11 0.46 0.66 0.80 0.89
4000 0.52 0.67 0.81 0.90 0.50 0.31 0.18 0.09 0.50 0.69 0.82 0.91

A-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.36 0.52 0.67 0.79 0.62 044 031 0.22 0.38 0.56 0.69 0.78
1000 0.36 0.53 0.70 0.82 0.63 044 030 0.19 0.37 0.56 0.70 0.81
2000 0.44 0.60 0.75 0.85 0.57 0.38 0.25 0.16 0.44 0.62 0.75 0.84
4000 0.45 0.62 0.76 0.87 0.54 036 022 0.13 0.46 0.64 0.78 0.87

Panel B: Unbalanced Panel Estimator

B-1: With Observed Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.52 0.45 0.46 0.52 -0.07 -0.16 0.00 -0.04 1.09 1.17 1.00 1.04
1000 0.53 0.49 0.53 0.60 -0.05 -0.03 -0.01 0.00 1.07 1.04 1.02 1.01
2000 0.55 0.54 0.60 0.70 -0.05 -0.04 -0.02 0.00 1.07 1.05 1.03 1.00
4000 0.55 0.58 0.66 0.77 -0.04 -0.03 -0.01 -0.01 1.06 1.04 1.02 1.01

B-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.42 0.46 0.53 0.64 0.22 0.15 0.12 0.12 0.79 0.85 0.88 0.89
1000 0.43 0.50 0.59 0.72 0.19 0.14 0.12 0.08 0.82 0.87 0.89 0.92
2000 0.50 0.56 0.66 0.77 0.08 0.06 0.06 0.06 0.93 0.95 0.95 0.94
4000 0.49 0.57 0.70 0.82 0.09 0.06 0.05 0.04 0.92 0.95 096 0097

Panel C: Other Estimators
C-1: Pukthuanthong and Roll’s (2017) Estimator
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.05 0.04 0.02 0.00 0.56 0.35 0.19 0.09 0.44 0.65 0.81 0.92
1000 0.08 0.07 0.05 0.03 0.57 0.36 021 0.10 0.43 0.64 0.79 0.90
2000 0.13 0.13 0.10 0.06 0.54 0.34 019 0.11 0.46 0.66 0.81 0.89
4000 0.18 0.19 0.16 0.12 0.50 0.32 0.18 0.09 0.50 0.69 0.82 0.91
C-2: GMM Estimator

Pfo\T 60 120 240 480 60 120 240 480 60 120 240 480
10 Beta 0.39 0.42 046 0.52 0.68 0.55 041 0.26 0.33 0.45 0.59 0.74
25 S&B 047 0.61 0.75 0.86 0.20 0.11 0.06 0.03 0.81 0.90 0.94 097
25 1&P  0.38 047 0.58 0.73 0.45 0.32 020 0.11 0.55 0.68 0.81 0.89

This table summarizes the performance of various SDF estimators for gross returns when the
true return generating process of each individual asset follows FF3. We consider different
levels of N = 500, 1000, 2000 and 4000 and T" = 60, 120, 240 and 480. After obtaining a
time series of estimates my for t = 1,--- , T, we regress the estimated SDF m on a constant
and the true SDF m: My = a + b - my + error,. If the fit to the true SDF is perfect, R? is 1,
the intercept (a) is zero and the coefficient on the true SDF (b) is 1. We report the mean of
the estimated R2, a, and b across 10,000 repetitions.
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Table 4: SDF Estimator Performance when Excess Returns follow FF3

R? intercept(a) slope(b)
Panel A: Balanced Panel Estimator

A-1: With Observed Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.56 0.69 0.81 0.90 0.01 0.00 0.00 0.00 0.92 094 0.96 0.96
1000 0.56 0.69 0.82 0.90 0.01 0.00 0.01 0.00 0.92 094 0.95 0.96
2000 0.57 0.70 0.82 0.90 0.00 0.00 -0.01 0.00 0.93 0.95 0.96 0.95
4000 0.56 0.70 0.82 0.90 0.00 0.00 0.00 0.00 0.93 0.95 0.95 0.96

A-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.44 0.58 0.71 0.80 0.18 0.13 0.11 0.10 0.75 0.82 0.85 0.86
1000 0.45 0.59 0.73 0.83 0.17 0.12 0.10 0.07 0.77 0.83 0.86 0.89
2000 0.51 0.65 0.77 0.86 0.08 0.06 0.05 0.05 0.85 0.89 0.91 0.91
4000 0.50 0.65 0.78 0.87 0.10 0.06 0.04 0.03 0.84 0.89 0.91 0.93

Panel B: Unbalanced Panel Estimator

B-1: With Observed Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.52 0.65 0.78 0.88 0.01 0.00 0.00 0.00 0.92 0.95 0.96 0.96
1000 0.53 0.67 0.80 0.89 0.01 0.00 0.01 0.00 0.92 0.94 0.95 0.96
2000 0.56 0.69 0.81 0.90 0.00 0.00 -0.01 0.00 0.93 0.95 0.96 0.95
4000 0.55 0.68 0.81 0.90 0.00 0.00 0.00 0.00 0.93 0.95 0.95 0.96

B-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.44 0.57 0.70 0.79 0.17 0.13 0.11 0.11 0.76 0.82 0.85 0.86
1000 0.46 0.59 0.73 0.83 0.15 0.12 0.09 0.07 0.78 0.83 0.87 0.89
2000 0.51 0.64 0.77 0.86 0.08 0.07 0.05 0.04 0.85 0.88 0.90 0.92
4000 0.50 0.64 0.78 0.87 0.09 0.06 0.04 0.04 0.84 0.89 0.91 0.92

Panel C: GMM Estimator

Pfo\T 60 120 240 480 60 120 240 480 60 120 240 480
10 Beta 0.50 0.56 0.62 0.69 -0.05 -0.02 0.00 -0.01 0.97 0.96 0.95 0.97
25 S&B 0.55 0.69 0.81 0.90 -0.15 -0.05 -0.01 -0.01 1.07 0.99 097 0.97
25 1&P 0.51 0.64 0.77 0.87 -0.14 -0.04 -0.02 -0.01 1.06 0.99 097 0.97

This table summarizes the performance of various SDF estimators for excess returns when
the true return generating process of each individual asset follows FF3. We consider different
levels of N = 500, 1000, 2000 and 4000 and T" = 60, 120, 240 and 480. After obtaining a
time series of estimates my for t = 1,--- , T, we regress the estimated SDF m on a constant
and the true SDF m: my; = a + b - my + errory. If the fit to the true SDF is perfect, R? is 1,
the intercept (a) is zero and the coefficient on the true SDF (b) is 1. We report the mean of
the estimated R?, a, and b across 10,000 repetitions.
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Table 5: SDF Estimator Performance when Gross Returns follow FF5

R? intercept(a) slope(b)
Panel A: Balanced Panel Estimator

A-1: With Observed Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.51 0.69 0.82 0.90 0.45 0.28 0.16 0.09 0.55 0.72 0.84 0.92
1000 0.52 0.69 0.83 0.91 0.49 0.32 0.19 0.10 0.52 0.68 0.81 0.90
2000 0.55 0.72 0.84 0.92 0.47 0.30 0.17 0.09 0.53 0.70 0.83 0.91
4000 0.59 0.74 0.85 0.92 0.40 0.24 0.14 0.07 0.60 0.76 0.86 0.93

A-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.38 0.55 0.68 0.77 0.54 040 0.29 0.22 0.46 0.60 0.71 0.78
1000 0.41 0.56 0.67 0.75 0.54 041 031 0.26 0.46 0.59 0.69 0.74
2000 0.47 0.64 0.77 0.85 0.51 0.35 0.23 0.16 0.49 0.65 0.77 0.84
4000 0.51 0.66 0.77 0.84 0.45 031 021 0.15 0.56 0.70 0.79 0.84

Panel B: Unbalanced Panel Estimator

B-1: With Observed Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.47 0.26 0.29 0.37 -0.09 -0.09 -0.01 -0.03 1.11 1.10 1.02 1.03
1000 0.51 0.34 0.39 0.49 -0.07 -0.01 -0.03 -0.01 1.09 1.02 1.03 1.02
2000 0.54 0.44 0.51 0.64 -0.05 -0.02 -0.02 -0.01 1.07 1.03 1.02 1.01
4000 0.54 0.53 0.63 0.75 -0.05 -0.02 -0.01 -0.01 1.06 1.03 1.02 1.01

B-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.39 0.35 0.43 0.55 0.23 0.19 0.17 0.16 0.78 0.82 0.83 0.85
1000 0.43 0.41 0.50 0.61 0.18 0.18 0.17 0.18 0.84 0.83 0.83 0.82
2000 0.47 0.49 0.61 0.73 0.11  0.09 0.08 0.08 0.91 0.92 0.92 0.92
4000 0.48 0.52 0.64 0.75 0.09 0.09 0.09 0.09 0.92 0.92 091 0.91

Panel C: Other Estimators
C-1: Pukthuanthong and Roll’s (2017) Estimator
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.12 0.09 0.05 0.00 0.45 0.28 0.16 0.08 0.55 0.72 0.84 0.92
1000 0.16 0.15 0.11 0.06 0.48 0.31 0.18 0.09 0.52 0.69 0.82 0.91
2000 0.24 0.24 0.20 0.13 0.47 0.30 0.17 0.09 0.53 0.70 0.83 0.91
4000 0.32 0.34 0.30 0.23 0.42 026 0.16 0.09 0.58 0.74 0.84 0.91
C-2: GMM Estimator

Pfo\T 60 120 240 480 60 120 240 480 60 120 240 480
10 Beta 0.24 0.25 0.29 0.35 0.68 0.55 0.35 0.24 0.32 0.45 0.65 0.76
25 S&B 0.33 047 0.63 0.78 0.38 0.25 0.14 0.08 0.62 0.76 0.86 0.93
25 1&P  0.31 043 059 0.74 0.41 0.27 0.16 0.09 0.60 0.73 0.84 0.91

This table summarizes the performance of various SDF estimators for gross returns when the
true return generating process of each individual asset follows FF5. We consider different
levels of N = 500, 1000, 2000 and 4000 and T" = 60, 120, 240 and 480. After obtaining a
time series of estimates my for t = 1,--- , T, we regress the estimated SDF m on a constant
and the true SDF m: My = a + b - my + error,. If the fit to the true SDF is perfect, R? is 1,
the intercept (a) is zero and the coefficient on the true SDF (b) is 1. We report the mean of
the estimated R2, a, and b across 10,000 repetitions.
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Table 6: SDF Estimator Performance when Excess Returns follow FF5

R? intercept(a) slope(b)
Panel A: Balanced Panel Estimator

A-1: With Observed Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.55 0.71 0.83 0.91 0.00 0.00 0.00 0.00 0.84 0.88 0.89 0.90
1000 0.56 0.72 0.84 0.91 0.00 0.00 0.00 0.00 0.85 0.87 0.89 0.90
2000 0.57 0.73 0.84 0.92 0.00 0.00 0.00 0.00 0.85 0.88 0.89 0.90
4000 0.57 0.73 0.84 0.91 0.00 0.00 0.00 0.00 0.85 0.88 0.89 0.90

A-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.40 0.56 0.69 0.77 0.20 0.17 0.15 0.13 0.66 0.72 0.76 0.78
1000 0.44 0.58 0.68 0.75 0.16 0.16 0.16 0.16 0.70 0.73 0.75 0.76
2000 0.48 0.64 0.77 0.85 0.11  0.08 0.07 0.06 0.75 0.80 0.83 0.84
4000 0.49 0.65 0.76 0.84 0.09 0.08 0.08 0.08 0.76 0.80 0.82 0.83

Panel B: Unbalanced Panel Estimator

B-1: With Observed Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.48 0.65 0.79 0.88 0.00 0.00 0.00 0.00 0.84 0.87 0.89 0.90
1000 0.52 0.68 0.81 0.90 -0.01 0.00 0.00 0.00 0.85 0.88 0.89 0.90
2000 0.54 0.70 0.83 0.91 0.00 0.00 -0.01 0.00 0.85 0.88 0.90 0.90
4000 0.55 0.71 0.83 0.91 -0.01 0.00 0.00 0.00 0.85 0.88 0.89 0.90

B-2: With Estimated Factors
N\T 60 120 240 480 60 120 240 480 60 120 240 480
500 0.40 0.55 0.68 0.76 0.20 0.17 0.15 0.14 0.66 0.72 0.76 0.78
1000 0.44 0.57 0.68 0.74 0.16 0.15 0.15 0.16 0.70 0.74 0.75 0.76
2000 0.48 0.63 0.76 0.84 0.10 0.09 0.07 0.07 0.75 0.80 0.83 0.84
4000 0.49 0.64 0.76 0.83 0.09 0.08 0.08 0.07 0.76 0.80 0.82 0.83

Panel C: GMM Estimator

Pfo\T 60 120 240 480 60 120 240 480 60 120 240 480
10 Beta 0.31 0.36 0.44 0.56 -0.05 -0.01 -0.01 -0.01 0.89 0.88 0.90 0.91
25 S&B 047 0.61 0.74 0.83 -0.18 -0.07 -0.03 -0.01 1.00 094 0.92 0.91
25 1&P  0.45 0.59 0.73 0.83 -0.18 -0.07 -0.03 -0.01 1.00 093 0.92 0.91

This table summarizes the performance of various SDF estimators for excess returns when

the true return generating process of each individual asset follows FF5. We consider different
levels of N = 500, 1000, 2000 and 4000 and 7" = 60, 120, 240 and 480. After obtaining a
time series of estimates m; for t = 1,--- , T, we regress the estimated SDF m on a constant
and the true SDF m: m; = a + b - m; + error;. If the fit to the true SDF is perfect, R?
is 1, the intercept (a) is zero and the coefficient on the true SDF (b) is 1. We report
the mean of the estimated R?, a, and b across 10,000 repetitions.
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Table 7: Factor Selection Performance using Lasso

Panel A: RGP follows CAPM
MKT SMB HML
Gross return case 99.01 847 7.93
Excess return case 99.20 0.07  0.59
Panel B: RGP follows FF3
MKT SMB HML RMA CMW
Gross return case 98.95 94.79 9954 12.85 12.42
Excess return case 99.44 93.33 98.33 0.01 0

This table reports the probability of a given factor to be selected in the estimated stochastic
discount factor. In Panel A (B), we simulate the returns of assets in the economy using
the calibrated parameters of CAPM (FF3) and allow the stochastic discount factors to be a
linear function of the three factors of MKT, SMB, and HML (the five factors of MKT, SMB,
HML, RMA, and CMW). We set N = 2000 and T" = 480. Reported figures are the empirical
frequencies (in percentage) of a given factor to have a non-zero loading in the estimated SDF
with Lasso penalty, computed from 10,000 repetitions.
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Table 8: SDF Estimates for the Balanced Panel of 1200 Portfolios sorted on Expected
Returns

Model/Methods Factors
Panel A: Specific Asset Pricing Models

MKT SMB HML I/A° ROE CMA RMW MOM HML
(devil)

CAPM -8.07
(0.08)
FF3 -5.81 -5.27  -1.79
(0.25) (0.58) (0.82)
Lasso -6.08 -4.49 0.00

(0.24)  (0.51)

HX7Z4 -6.63  -7.48 -4.00 -5.54
(0.28) (0.59) (1.17)  (0.91)
Lasso -6.52 -7.12 0.00 -6.04
(0.28)  (0.60) (0.90)
FF5 -7.94 741 7.66 -6.97 -12.17
(0.37) (0.85) (1.27) (1.23)  (1.62)
Lasso -6.19  -7.72 0.00 -3.49 -4.18
(0.31) (0.92) (1.01) (1.27)
BS6 -6.53  -9.79 -4.23  -8.60 -0.36 -2.34
(0.33) (0.80) (1.75)  (1.20) (0.88) (1.26)
Lasso -6.44  -9.08 0.00 -9.63 1.61 0.00
(0.31) (0.82) (1.25) (0.49)

Panel B: Statistical Factor Models
PC1 PC2 PC3 PC4
APC (EM) -7.61  -0.73 -3.37 -0.87
(0.82) (0.54) (0.21) (0.39)

RP-PCA 2154 -17.01 -3.26  -0.32
(3.21) (3.43) (0.46) (0.44)
Lasso 2136 -16.85 -3.28  0.00

(3.05) (3.27) (0.45)

This table reports the estimated values of §°, when we apply our balanced panel estimator
using 1200 portfolios sorted by expected returns. We estimate 6° with 6¢ in (2.14) and 47,
in (2.18). In panel A, we consider six asset pricing models: CAPM (Sharpe (1964) and Lintner
(1965)), FF3 (Fama and French (1992)), HXZ4 (Hou, Xue and Zhang (2015)), FF5 (Fama and
French (2015)), BS6 (Barillas and Shanken (2017)). In Panel B, we examine two versions of
statistical factors. First, we apply APC by Connor and Korajczyk (1986) to excess returns of
a large cross section of individual stocks from CRSP. Second, we utilize the method by Pelger
and Lettau (2017) to 209 portfolios (16 sets of characteristic-based decile portfolios plus 49
industry portfolios). Standard errors are computed by bootstrap method and reported in
parenthesis. We report the Lasso factor selection results only when a smaller set of factors

are selected. The sample periods are 293 months over the period January 1990 to May 2014.
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Table 9: SDF Estimates for the Balanced Panel of 209 Portfolios

Model/Methods Factors
Panel A: Specific Asset Pricing Models
MKT SMB HML I/A  ROE CMA RMW MOM HML

(devil)
CAPM -2.40
(0.13)
FF3 -3.50 1.04 -6.44
(0.33) (1.92) (2.19)
Lasso -3.27 0.00 -6.76
(0.16) (1.78)
HXZ4 -4.11  -6.00 -13.34 -11.61
(0.22) (3.13) (3.14) (3.26)
Lasso -4.82 0.00 -12.31 -6.22
(0.32) (2.85)  (1.02)
FF5 -4.90 -0.60 3.52 -2.66 -18.21
(0.54) (1.36) (5.18) (5.64) (5.70)
Lasso -3.49 0.00 -6.05 -2.87 0.00
(0.25) (2.78) (4.55)  (0.00)
BS6 -3.85  -6.31 1.62 -13.43 -791 -11.48
(0.54) (3.77) (7.88) (5.60) (4.26) (6.84)
Lasso -4.84 0.00 0.00  -4.59 -9.30  -9.57
(0.50) (1.81) (3.81) (2.77)

Panel B: Statistical Factor Models
PC1 PC2 PC3 PC4
APC (EM) -3.04 -3.59 -4.15 -11.57
(0.28) (1.63) (1.04) (6.97)

RP-PCA 1021 -8.43  -2.08  -0.37
(5.24) (5.79) (0.95) (0.26)

This table reports the estimated values of 8¢, when we apply our balanced panel estimator us-
ing 209 portfolios (16 sets of characteristic-based decile portfolios plus 49 industry portfolios).
We estimate 6° with 6° in (2.14) and 67, ., in (2.18). In panel A, we consider six asset pricing
models: CAPM (Sharpe (1964) and Lintner (1965)), FF3 (Fama and French (1992)), HXZ4
(Hou, Xue and Zhang (2015)), FF5 (Fama and French (2015)), BS6 (Barillas and Shanken
(2017)). In Panel B, we examine two versions of statistical factors. First, we apply APC by
Connor and Korajczyk (1986) to excess returns of a large cross section of individual stocks
from CRSP. Second, we utilize the method by Pelger and Lettau (2017) to 209 portfolios (16
sets of characteristic-based decile portfolios plus 49 industry portfolios). Standard errors are
computed by bootstrap method and reported in parenthesis. We report the Lasso estimation
results only when a smaller set of factors are selected. The sample periods are 600 months

over the sample period January 1976 to December 2016.
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Table 10: SDF Estimates for the Unbalanced Panel of All Individual Stock Returns

Model/Methods Factors
Panel A: Specific Asset Pricing Models
MKT SMB HML I/A° ROE CMA RMW MOM HML

(devil)
CAPM -4.47
(0.04)
FF3 -3.69 -2.51 -1.15
(0.11)  (0.26) (0.27)
HXZ4 -4.95 -6.35 -7.51  -14.87
(0.16) (0.37) (0.63)  (0.50)
FF5 -5.01 -4.28 3.94 -10.65 -8.51
(0.22) (0.37) (0.66) (0.99)  (1.26)
BS6 -5.08  -6.90 -1.58 -14.72 -5.94  -6.75
(0.18)  (0.43) (1.36)  (0.96) (0.68) (0.81)

Panel B: Statistical Factor Models
PC1 PC2 PC3 PC4

APC (EM) 182 314 161 -6.39
(0.23)  (0.28) (0.69) (1.34)
RP-PCA -10.61  -7.88  -0.28  -0.44

(1.09) (1.23) (0.25) (0.24)

This table reports the estimated values of §°, when we apply our balanced panel estimator
using all individual stocks in CRSP. We estimate 8¢ with 6¢ in (2.27). In panel A, we consider
six asset pricing models: CAPM (Sharpe (1964) and Lintner (1965)), FF3 (Fama and French
(1992)), HXZ4 (Hou, Xue and Zhang (2015)), FF5 (Fama and French (2015)), BS6 (Barillas
and Shanken (2017)). In Panel B, we examine two versions of statistical factors. First, we
apply APC by Connor and Korajczyk (1986) to excess returns of a large cross section of
individual stocks from CRSP. Second, we utilize the method by Pelger and Lettau (2017) to
209 portfolios (16 sets of characteristic-based decile portfolios plus 49 industry portfolios).
Standard errors are computed by bootstrap method and reported in parenthesis. The sample
periods are 600 months over the sample period January 1976 to December 2016.
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Table 11: SDF Estimates for the Unbalanced Panel of NYSE Individual Stocks

Model/Methods Factors
Panel A: Specific Asset Pricing Models
MKT SMB HML I/A° ROE CMA RMW MOM HML
(devil)
CAPM -3.76
(0.05)
FF3 -4.06 0.53 -1.25
(0.10)  (0.28) (0.34)
HXZ4 -5.08 -5.11 -10.28 -16.13
(0.15)  (0.42) (0.81)  (0.60)
FF5 -4.68 -1.39 0.93 -9.58 -4.39
(0.17)  (0.38) (0.63) (0.96) (1.18)
BS6 -4.78  -5.85 1.02 -17.05 -7.30  -11.56
(0.18)  (0.52) (1.53)  (1.12) (0.72)  (0.95)
Panel B: Statistical Factor Models
PC1 PC2 PC3 PC4
APC (EM) 282 255 340 -0.13
(0.18)  (0.29) (1.04) (0.77)
RP-PCA -13.46 -11.28  -0.95  -0.09
(1.37)  (1.53) (0.39) (0.22)

This table reports the estimated values of §°, when we apply our balanced panel estimator
using NYSE individual stocks. We estimate §° with ¢ in (2.27). In panel A, we consider
six asset pricing models: CAPM (Sharpe (1964) and Lintner (1965)), FF3 (Fama and French
(1992)), HXZ4 (Hou, Xue and Zhang (2015)), FF5 (Fama and French (2015)), BS6 (Barillas
and Shanken (2017)). In Panel B, we examine two versions of statistical factors. First, we
apply APC by Connor and Korajczyk (1986) to excess returns of a large cross section of
individual stocks from CRSP. Second, we utilize the method by Pelger and Lettau (2017) to
209 portfolios (16 sets of characteristic-based decile portfolios plus 49 industry portfolios).
Standard errors are computed by bootstrap method and reported in parenthesis. The sample

periods are 600 months over the sample period January 1976 to December 2016.
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