Portfolio Pretesting with Machine Learning*

Ekaterina Kazak' Winfried Pohlmeier?
University of Konstanz, GSDS University of Konstanz, CoFE, RCEA

This version: January 14, 2018

Abstract

The general idea of the pretest estimator is to develop an optimal decision making rule
to switch between the two competing estimators, i.e. a procedure based on the test outcome
for a given significance level to be chosen. In some circumstances it might be reasonable to
select a lower significance level (higher probability of a Type I error) than a conventional
one in order to increase the probability of rejecting the benchmark strategy. Particularly for
the problem of deciding between the two portfolio strategies in the presence of low power of
the existing tests this implies assigning to the alternative a higher probability to be pursued
if it is truly superior.

In this paper we develop a data driven approach for choosing an optimal significance level
for the pretest estimators. We show that the bagged pretest estimator performs exceptionally
well, especially when combined with adaptive smoothing. The resulting strategy allows for a
flexible and smooth switch between the underlying strategies and is shown to outperform

the corresponding stand-alone strategies.
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1 Introduction

Estimation risk is a well-known issue in empirical portfolio modeling. For a given performance
measure, estimation risk may cause a theoretically superior portfolio strategy to be inferior
compared to simple alternatives when it comes to a comparison of the performance measures
based on their estimated counterparts. The most prominent example is the equally weighted
(1/N) portfolio strategy, for which the null hypothesis of equal out-of-sample performance
compared to a more sophisticated, theory based strategy often cannot be rejected at conventional
significance levels (DeMiguel et al. (2009)).

A lot of effort in the recent literature has been devoted to stabilizing the portfolio weight
estimates. Among others Jagannathan and Ma (2003) propose to impose a norm-constraint
directly to the portfolio optimization for stabilizing the weight estimates in small samples;
Ledoit and Wolf (2003), Ledoit and Wolf (2004), Ledoit and Wolf (2014) wrote a series of
papers focusing on the improved covariance matrix estimation, which is a key ingredient in the
portfolio optimization; Kourtis et al. (2012) proposed a shrinkage approach for the inverse of
the covariance matrix, which can be directly used in the most of portfolio weight estimates;
DeMiguel et al. (2014) introduced a VAR model to capture the serial dependence in stock returns
resulting in better out-of-sample portfolio performance.

Despite all the effort no general statement can be made whether any of the approaches
can outperform the equally weighted portfolio uniformly over all parameter constellations and
datasets. We address the problem from a different perspective. Instead of working with the
weight estimation directly we develop a flexible algorithm which optimally combines a fixed
given set of weight estimates in a data-driven way with respect to a certain portfolio performance
measure. In particular, we use the pretest estimator as a statistical tool to choose an optimal
strategy with respect to the out-of-sample Certainty Equivalent net of the transaction costs. The
pretest estimator is based on the simple t-test commonly used in the literature (Ledoit and Wolf
(2008), DeMiguel et al. (2009)), where the investor decides on how to invest his wealth for the
next period based on the test outcome. Similar to shrinkage strategies which combine a given
portfolio strategy with the equally weighted portfolio by some optimality criterion (DeMiguel
et al. (2009), Frahm and Memmel (2010)), our pretest estimator uses the information about all

underlying strategies through the outcome of the performance test. However, contrary to the



shrinkage approaches, our pretest strategy can be continuously updated to incorporate the most
recent information in the rolling window forecasting set-up. In the previous work Kazak and
Pohlmeier (2017) show that the existing portfolio performance tests are correctly sized, but for
realistic scenarios have a very low power. This implies that the pretest estimator cannot be used
directly and needs to be adjusted. Our first contribution is a novel approach of optimizing the
significance level for the pretest estimator.

We propose a fully data-driven and time-adaptive significance level choice, which optimizes a
trade-off between Type I and Type II error with respect to Certainty Equivalent. The second
contribution is introducing machine learning in the pretest estimation. To the best of our
knowledge this paper is the first one combining bagging with pretest estimation in the portfolio
context. We modify the classical pretest estimator replacing the indicator functions with the
bootstrapped probabilities, which helps to stabilize the pretest estimator and reduces portfolio
turnover. In an extensive empirical study we show that our proposed bagged pretest estimator
outperforms the underlying weight estimation strategies and other competitors and is robust to
different parameter constellations.

This paper is organized as follows. In Section 2 we use a simple motivating example which
illustrates the problem of an optimal strategy choice and propose the novel bagged pretest
estimator. Section 3 provides the reader with an empirical illustration of the proposed method.

Section 4 summarizes the main findings and gives an outlook on future research.



2 Pretest Estimator

Consider a standard portfolio choice set-up with NV risky assets. Let r; be an excess return vector

at time ¢ with mean vector E [r¢] = u and variance-covariance matrix V [ry] = X. Moreover, let

w(s) = w(s) (1, ) be the N x 1 vector of portfolio weights for strategy s, e.g. w(g) =
the global minimum variance portfolio (GMVP) minimizing the portfolio variance, w(e) = %L

—1

for the equally weighted portfolio and w(tn) = L,EET’L for the tangency portfolio, maximizing

the Sharpe Ratio. For strategy s the portfolio return at time ¢ is given by r(s) = w(s)'r; with
mean p,(s) = E[r!(s)] = w(s)'u and variance crg(s) =V [rf(s)] = w(s)Zw(s).

Consider Certainty Equivalent (CE) as a portfolio performance measure, which is given
by CE(w(s)) = pp(s) — J02(s) with v being a risk aversion coefficient of the investor. The
analysis below can also be extended to the Sharpe Ratio or other popular portfolio evaluation
criteria, however we mainly consider CE due to its utility interpretation. In particular, CE
is defined as a return which makes the investor indifferent between investing into the risky
portfolio or receiving the certainty equivalent return U(CE(w(s))) = E[U(rP(s))], with U(-)
being the utility function of the investor (Merton and Samuelson, 1992). In the following strategy
s is said to outperform strategy s if the difference in certainty equivalents is non-negative
Ay(s,8) = CE(w(s)) — CE(w(S)) > 0.

Given the population parameters (u, ¥) the dominant strategy according to a chosen portfolio
evaluation criteria is known, however in empirical applications the first two moments of the
return process have to be estimated and the estimation risk has to be taken into account.
Furthermore, investment decision is a dynamic process, therefore the financial or forecasting
risk has to be accounted for as well. In empirical work the actual performance of the competing
portfolio allocation strategy is often evaluated based on the out-of-sample Certainty Equivalent,
which takes into account both estimation and forecasting risk (Kazak and Pohlmeier, 2017).
In the following we consider a typical rolling window set-up, where for the period ¢t + 1 the
out-of-sample portfolio return 77 +1(s) is based on a one-step forecast of the portfolio weights
wt+1|t(s) with period {t —T,...,t} as an estimation window. We adopt the standard assumption
for static models that the last available estimate w;(s) is used to compute the out-of-sample

return for the next period: 7}, (s) = Qy41)4(5)'re41 = ©¢(s)'re41. Estimation window is shifted

one period ahead H times resulting in the H x 1 vector of the out-of-sample portfolio returns



7P(s). Different portfolio strategies are then evaluated based on the out-of-sample Certainty

Equivalent C/'Eop(ob(s)) given by:

The driving force of the portfolio performance based on the out-of-sample CE is the estimation
noise, i.e. theoretically superior strategies do not usually perform well in practice as the estimation
error dominates the theoretical gain. Depending on the size of the portfolio NV, length of the

estimation window T portfolio performance varies dramatically.

2.1 Motivating Example

As an illustrative example consider an investor who chooses among three different strategies and
wants to rebalance his portfolio monthly. Based on the monthly excess returns of 100 industry

portfolios from K.R.French database! he estimates the weights of the following strategies:

1. GMVP based on the plug-in covariance matrix estimator

olg) = =1, (2)
L L

where 3 = x Zle(rt —7)(ry —7)" and ¢ is an N x 1 vector of ones.

2. Tangency portfolio with a shrinked covariance matrix

w(tn) =

ST @)

where i = %Zle ry and 2(\) = 3 + My with A = 0.05N and Iy - identity matrix of

size N.

3. Equally weighted portfolio

w(e) =w(e) = %L. (4)

!The data is taken from K.R.French website and contains monthly excess returns from 01/1953 till 12/2015.




For the portfolio evaluation the length of the out-of-sample period is set to H = 500 and the
risk aversion parameter to v = 1. Transaction costs at period ¢ which an investor has to pay

every month after portfolio rabalancing are computed as follows:

N
TCy(s Z |wje41(s — Wj i+ ()l (5)

where T'Cy(s) denotes transaction costs at period ¢, W, ;+ - portfolio weight before rebalancing at
t + 1 and c - cost per transaction (5 basis points, DeMiguel et al. (2009)). The out-of-sample
CE is then computed based on the net portfolio returns 7" (s) = #*(s) — TC4(s) in the very
similar way to (1). For a more general comparison for a given pair of (N,T) we randomly draw
N assets from the available asset space and compute the out-of-sample CE for each of the 500
random draws.

Figure 1: Out-of-sample CE for underlying strategies
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Lines on the plots represent the average out-of-sample CE computed on net portfolio returns over a 500 randomly
drawn portfolios of size N (x-axis). For each randomly drawn portfolio the out-of-sample CE is computed over an
out-of-sample evaluation horizon of H = 500 observations, risk aversion parameter v = 1. The left panel depicts
the average out-of-sample CE with the weights of GMVP (in black) from (2), tangency portfolio (in gray) from
(3), and equally weighted portfolio (in red) from (4) computed over an estimation window length of T' = 120
observations. The right panel plots the average out-of-sample CE for 7" = 180.

The right panel of Figure 1 depicts the average out-of-sample CE for a grid of portfolio sizes



and the in-sample estimation window length 7" of 15 years (180 months). The equally weighted
portfolio (in red) does not require weight estimation and is therefore stable across the portfolio
sizes N. The out-of-sample CE of GMVP (black line) is deteriorating with the increase in N as
the plug-in covariance matrix estimation adds more and more noise. Tangency portfolio (gray
line) with shrunken covariance matrix performs very well for all N. However, on the left panel
with a smaller estimation window length 7' = 120 the performance of the tangency portfolio
worsens dramatically (note the difference in scaling of the y-axes). Tangency portfolio is known
to produce extremely unstable weight estimates for the smaller estimation windows, while the
performance of the GMVP and the equally weighted portfolio is not that sensitive. Moreover,
in some circumstances it is better to keep the estimation window length smaller, e.g. due to
structural breaks in the financial markets only the recent information should be included in the
weight estimation.

All in all, no general statement can be done with respect to the optimal strategy for a given
portfolio space and the estimation window length. In this paper we develop a data driven
procedure for an optimal strategy choice, which outperforms the underlying weight estimation

strategy regardless of the parameter constellations.

2.2 Machine Learning and Pretest

The pretest estimator is a statistical tool which can help the investor to decide between different
strategies in a data-driven way. For a moment assume that the investor has to decide between
two strategies s and §. The difference in the out-of-sample CE’s between the two strategies is

defined as



The goal is to chose either strategy s or strategy § depending on the test outcome. Null and

alternative hypotheses take the usual one-sided form:
Hy: Agp(s,5) <0 and Hi: Agp(s,5) >0. (6)

Let the pretest estimator of the portfolio weights forecasts for ¢ + 1 be such that it depends

either on strategy s in case the null is rejected or on § otherwise:
wi(s, 3, a) = 1 (Agy(s,3) > A%(a)) (wi(s) — wi(3)) + wi(3), (7)

with the estimated CE difference A, (s, 3) = C/’Eop(s) - C/'Eop(é) and the critical value A*(«)
for significance level a. In other words the pretest estimator chooses the strategy s if it is
significantly better than the alternative and the sensitivity of the pretest estimator depends on
a: the lower is the chosen nominal level, the stricter is the pretest rule and the greater should
be the difference Aop(s, §) for choosing the strategy s over §.

There are two main difficulties arising from applying the pretest estimator defined in (7) in
practice. First of all, at time period ¢ the investor does not know the out-of-sample CE difference
A,p(s,5) and therefore the test decision from (6) is unknown. Secondly, in empirical applications
an investor has to decide on «, which influences the performance of the pretest estimator, e.g.
for a = 50% the CE of strategy s has to be just slightly greater than the CE of 5 in order to
be chosen, whereas for the commonly used levels of significance of 1% and 5% the difference
Aop(s, 5) has to be fairly large for the null rejection. Kazak and Pohlmeier (2017) show that
in realistic scenarios the empirical power of the portfolio performance tests is very low, which
implies that even if the strategy s is truly superior, the pretest estimator is not able to choose
the dominating strategy. Therefore going for the conservative a-level is not a reasonable choice,
as in the presence of low power it will force the pretest estimator to choose § even in cases
when s is dominating. In particular, the problem of the low power calls for an optimal trade-off
between Type I and Type II error. In this paper we propose a feasible pretest estimator with a
data-driven and time adaptive significance level choice.

We solve the first issue of unfeasible testing by constructing the pretest weight estimator

based on the in-sample CE difference which is available at time ¢. First, at time ¢ the weights



wy(s) are estimated based on the sample {t —T',...,t}. The estimated within sample CE for the

strategy s is computed as
CEint(s) = CEin(s[t — T, ... t) = @4 (s)'Fr — Ln(s) Sudon(s), (8)

where 7; denotes the sample mean and 3, the sample covariance matrix of the returns based on
the estimation window {t — T,...,t}. The in-sample test statistic deciding between s and the

benchmark § is defined as

CEini(s) — CEin1(3)
S.E. [@m(s) - CFEW(.;)]

tin,t(37 §) = )

where the standard error for the CE difference is computed via Delta method (DeMiguel et al.,
2009). For the multivariate comparison where the investor chooses between M alternatives
s1,...,Sp and a benchmark strategy s and for a given significance level « the pretest estimator

based on the in-sample CE is defined as

1(si, ) = 1 [max [tin(51,5), ..., tint(Sa, 5), t° ()] = tinyg(si,8)], 1=1,..., M,

M M
d}in,t(sa O[) == dj’in,t(817 s SM, §7 Of) = Z ]]- <8i) Oé)d}t(sz) + (1 - Z ]1 (S’ia O[)) d)t(g)7 (9)
=1 =1

where S = {s1,..,sum, 5}, t*(«) is the corresponding critical value for the nominal level a: the
(1 — a) quantile of the standard normal distribution. In other words, the pretest estimator
chooses the strategy with the largest standardized difference from the benchmark § and which
at the same time crosses the threshold t*(«).

We now address the problem of the significance level choice. Statistically speaking, increasing
the nominal level in order to improve on the power of the test is not meaningful. In empirical
finance however, there is a well-defined portfolio performance measure, such that the trade-off
between the Type I and Type II error of the pretest estimator can be optimized with respect to
it. We propose to choose a significance level «, which maximizes the in-sample CE difference. In
particular, at each period ¢ the pretest weight estimates are computed according to (9) on the
grid of (0,1) a-values of length J. For every @i, (S, ), j=1,..,J the in-sample CE of the

pretest estimator is computed similarly to (8):



Clin (S, 0j) = Gins(S, o)/ 7 — %am,t(s, ;) S4oina(S, ). (10)

Finally, the in-sample CE optimizing significance level aj ; is chosen for the test, determining

the strategy for the next period t + 1:
iy py1 = AT max CEini(S, ;). (11)

The above procedure is repeated with every shift of the estimation window. In practice this
results in a very unstable series of significance level choices {afmt 10Oy 1}, as the choice of
afnyt 41 is data driven and also depends on the instable estimates of the portfolio weights. On the
other hand, the sequence of o},’s along the rolling estimation window takes into account changes
of the return process across time, e.g. volatility regimes. In order to mitigate the instability

problem we suggest to adaptively smooth the o}, -series according to
afpr = (1= ANaj, 111 + Aaf, (12)

where the tuning parameter A is chosen to control the degree of smoothness. The adaptive
smoothing takes into account not only the latest optimal choice o, but also the previous
estimates with geometrically decaying weights. The smoothing parameter A is chosen via a grid
search in the similar fashion as the o, ,,: for a given couple (aj, ;,,af) the in-sample CE is
computed on the grid of A’s and the optimal A is the one maximizing the in-sample CE of the
pretest estimator @m,t(S Q).

Another feasible pretest estimator may be obtained by performing a pseudo-out-of-sample
exercise which is commonly used for parameter training in machine learning. The goal of the
pretest estimator is to choose an optimal strategy in a data-driven way which results in the
highest out-of-sample CE. Choosing the strategy based on the in-sample comparison does not
necessarily provide a good out-of-sample choice: the pretest estimator as defined in (9) does not
take into account transaction costs and the forecasting risk. A feasible out-of-sample pretest
estimator might be obtained by dividing the within-sample period into two parts, where the
first part is used for the weight estimation and the second part is used for the pseudo-out-of-

sample return computation. The optimal strategy is then defined as the one having the largest



pseudo-out-of-sample CE net of the transaction costs. In particular, the weights for the strategy
s are computed based on the sample of length T7/2: {t — T,..,t — T/2}. The out-of-sample
portfolio returns are computed in the rolling window of length 7'/2 and the transaction costs
are subtracted from the out-of-sample returns at each time point ¢ as in (5). The resulting

pseudo-out-of-sample CE is similar to (1):

Ak ’y A~k
CEopt( ( )) ::uop,t(s) - §Uog,t(8)a (13)
jR—. JR—.
where: flop.t(3) :T—/z Z o (s) = T/2 Z Qe h—1(8)Te1n,
h=—T/2+1 h=—T/2+1
-7
~Ax2 _ 1 AD ~ 2
h=—T/2+1

The out-of-sample pretest estimates of portfolio weights are computed based on the difference in

the pseudo-out-of-sample CE:

CE,,4(s) — CE,,,(3)
S.B.[CE,,(s) ~ CEop(3)]

top,t(3i7 §) = ) (14)

1,,(8i, ) =1 [max [topyt(sl,5),...,topt(sM,§),t*(a)] =topt(si,8)], i=1,..., M, (15)

@op,t(‘s»a) :a}op,t(sla'-aSMagya Z]]op Si, & Wt 5@ (1_211017 Si, & ) (5) (16)

The pseudo-out-of-sample CE from (13) is used only for indicator functions computations,
and the out-of-sample pretest estimator chooses the weight estimates computed on the whole
in-sample estimation window. The optimal significance level choice for the out-of-sample pretest
estimator can be done in the very same way as in (12) using a grid search. Note that the
out-of-sample portfolio returns used in the pseudo-out-of-sample CE are net of the transaction
costs and therefore the pretest estimator takes into account the amount of rebalancing or
turnover. Also note, that the estimation window length used in (13) is twice shorter than the
initial estimation window, thus adding more estimation noise to the problem and making it very
unstable. Moreover, the pretest estimator can be seen as a sharp thresholding choosing only one
strategy for investing in the next period. In the rolling window scenario this may result in a huge
amount of turnover if the pretest estimator switches between different strategies every period.

As a solution we propose to stabilize the pretest estimator using bagging. In order to do so,

10



the in-sample estimation window is bootstrapped B times smoothing the indicator functions
of the pretest estimator by the bootstrapped probabilities. The computation of the bagged

out-of-sample pretest estimator can be summarized in a following algorithm?:

Bagging the pretest estimator
1. At the period t define the estimation window of length 7" {ry_r,...,7¢}.

2. Divide the sample into two parts and compute the pseudo-out-of-sample CE net of the
transaction costs according to (13) and the out-of-sample test statistic according to
(14) for each pair of strategies (s;, $§), i =1,..., M.

3. For a grid of J a values compute the out-of-sample pretest weight estimates according
to (16) and choose o}, ;; which results in the largest out-of-sample CE on the grid.

4. For a grid of A values compute the smoothed ag,, ; using the previous optimal
significance level and choose the one maximizing the out-of-sample CE of the pretest
estimator.

For every bootstrap iteration b = 1, ..., B compute (5) and (6):

5. Randomly sample the rows of the in-sample T' x N data with replacement and repeat
step (2) for the out-of-sample test statistic computation.

6. For a significance level chosen in (4) compute the indicator functions ]lgp(si, Qopt+1)
for every strategy ¢ and bootstrap iteration b.

7. The bagged probability of the strategy s; is then defined as ﬁ(si,afmt 41)
1 B

b .
B 4Zub=1 ]lop(siv agp,t—i—l) usimg (15)'

8. Finally the bagged out-of-sample pretest weight estimator for the period ¢t +1 is defined
as an average of the weights estimated on the whole sample weighted by the bootstrap

probabilities:
M+1

@i,t(saazp,t-s-l) = Z ﬁ(siaagp,t-s-l)wt(si)- (17)
i=1

The proposed out-of-sample pretest bagged estimator is a novel approach providing the
investor with a fully data driven way of an optimal portfolio allocation strategy choice according
to a specific performance measure. For instance, if the investor is looking for a strategy with
the highest out-of-sample Sharpe Ratio, the proposed bagging algorithm can be easily adapted.
Moreover, the algorithm takes into account the amount of transaction costs and is time adaptive

through the significance level choice. Using bagging helps to stabilize the problem and reduce

2Note, that monthly returns do not posses any significant SACF or SPACF patterns, therefore the i.i.d.
bootstrap of Efron (1992) is appropriate to use. For the returns of higher frequencies one should use the moving
block bootstrap by Politis and Romano (1992).

11



transaction costs, as the bootstrapped probabilities smooth the transition between the strategies
along the rolling window.

As a competitor for the bagged pretest estimator we consider a sequential relative performance
weighting inspired by the approach of Shan and Yang (2009) used in the forecast combinations.
The idea behind this approach is very similar to boosting. First, at each period ¢ the relative
performance of different strategies is measured by the exponential function of the in-sample CE.
Then the time-adaptive weight dy; for the strategy i is computed according to (18), where the

initial values for the weights are fixed to do; = ﬁ The resulting weight estimator is denoted

as WP (S):

dt—l,i exp(é-\Ein,t(Si))

dii = — ; (18)
S dy 1y exp(CEiny(s5)
M+1
PP (S) = Z deior(si), i=1,...,M+1 (19)
=1

where S = {s1, .., 50,5} is a space of the underlying strategies and d;; are the time-adaptive
coeflicients used to weight the relative performance of the underlying strategies. This approach
is computationally very easy and is adapting the weights with the every shift of the estimation
window. It is also a smooth combination of the underlying strategies, potentially requiring less

rebalancing and reducing transaction costs.

12



3 Empirical Evidence

In this section we present the empirical application of the pretest estimators discussed in the
previous section. We continue the example from Section 2.1 and consider the GMVP, tangency
and the equally weighted portfolios as the underlying competing strategies. We take the data on
monthly excess returns from K.R.French database? of a 100 industry portfolio. In the analysis
below for a given portfolio size N we randomly draw N out of 100 unique assets and report the
average portfolio performance over 500 random draws. For bagging the number of bootstrap
iterations is set to B = 200, the out-of-sample evaluation window is fixed to H = 500 observations

and the risk aversion parameter is set to v = 1.

Table 1: Out-of-sample CE for T' = 120.

N=10 N=20 N=30 N=40 N=50 N=60 N=70 N=8 N=90
GMVP 0.0069  0.0070  0.0070  0.0072  0.0069  0.0064  0.0055 0.0045 0.0023
Tangency | -0.0545 -0.8500 -0.6386 -0.1405 -1.0088 -1.2433 -0.1927 -43.9858 -0.2068
1/N 0.0068  0.0069  0.0069  0.0069  0.0069 0.0069  0.0069 0.0069 0.0069
a=5% 0.0073 0.0073  0.0041  0.0071  0.0071  0.0067 -0.0085 -0.0130  0.0008
o, 0.0070  0.0070  -0.0087 0.0044 -0.4950 -0.2427 -0.0104 -0.3138  0.0000
o, B 0.0072  0.0073  0.0073  0.0061  0.0072  0.0072  0.0071 0.0069  -0.0017
a5 0.0041  -0.1294 -0.0190 -0.0002 -0.0483 -0.1552 -0.0124 -0.4365 -0.0121
ag, B 0.0073 0.0074 0.0074 0.0075 0.0074 0.0075 0.0074 0.0074 0.0074
Seq. Perf. | 0.0073 0.0074 0.0074 0.0067 0.0076 0.0075 0.0073 0.0072 0.0066

Figures in the table correspond to the average out-of-sample CE computed on net portfolio returns over a 500
randomly drawn portfolios of size N. For each randomly drawn portfolio the out-of-sample CE is computed over
an evaluation horizon of H = 500 observations, risk aversion parameter v = 1, in-sample estimation window
length 7' = 120. « = 5% denotes the pretest estimator based on the in-sample test statistic as in (9) with a
fixed significance level of 5%, a3, allows for a flexible significance level choice according to (12) and «f, B is the
bagged version of aj,. ag, and af, B denote the out-of-sample significance level choice and the one combined
with bagging as in (17). Seq. Perf. corresponds to (19). Numbers in bold correspond to the largest CE for a
given portfolio size N.

Table 1 reports the average out-of-sample Certainty Equivalent net of transaction costs
for the underlying strategies (first block), pretest estimators (second block) and sequential
performance weighting (last row) for in-sample estimation window length of 10 years (120
monthly observations) with different portfolio sizes N in the corresponding columns. As before,
with the increase in N the out-of-sample CE of the GMVP decreases, CE of the tangency
portfolio is negative resulting from the extreme weight estimates and the CE of the equally

weighted portfolio is stable across N. The forth row corresponds to the CE of the pretest

3The data is taken from K.R.French website and contains monthly excess returns from 01/1953 till 12/2015.
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estimator based on the in-sample test statistic as in (9) with a fixed significance level of 5%. Here
the pretest estimator chooses the strategy which standardized in-sample CE difference from the
1/N is greater than the 95% quantile of the standard normal distribution. This pretest estimator
is working quite well for smaller asset spaces, however for N > 30 its performance deteriorates
and the CE of the pretest estimator is no longer greater than the values of the underlying
strategies, potentially suffering from the low power property of the portfolio performance tests.
Allowing for a flexible significance level choice according to (12) based on the in-sample CE
is quite unstable across N and is not performing very well. However, combining this pretest
estimator with bagging (a3, B) outperforms the underlying strategies up to N = 80 having a
greater out-of-sample CE than the best of the stand-alone strategies. The next row (ag,) reports
the average out-of-sample CE for the pretest estimator with adaptively smoothed out-of-sample
significance level choice, which takes into account transaction costs, but suffers from the short
evaluation period of 7'/2. Out-of-sample pretest estimator is very unstable across N and is not
outperforming the underlying strategies, however it always outperforms the worst underlying
strategy. Notably, the bagged out-of-sample pretest estimator (ang) performs extremely well,
producing the largest out-of-sample CE for all portfolio sizes N always greater than the best
underlying strategy. The sequential performance weighting results in the average out-of-sample
CE which is as good as the bagged out-of-sample pretest estimator, except for N = 90, where it
is not able to beat the equally weighted portfolio benchmark.

The proposed bagged out-of-sample pretest estimator is performing very well even in the
presence of the estimation noise and is preferred to the sequential relative performance weighting.
Figure 2 depicts the boxplots of the out-of-sample CE’s of the considered strategies across the 500
random draws of portfolios of a given size N. The boxplot of the bagged out-of-sample pretest
estimator denoted by opB shows how stable is this strategy and how few negative outliers does it
have in comparison to other ones. For instance, for N > 40 the out-of-sample CE’s of the pretest
estimators despite of having very similar medians are very different from each other in terms of
the number of negative outliers. Comparing boxplots in with inB and op with opB shows that
bagging always helps to stabilize the out-of-sample performance of the pretest estimators and
works exceptionally well in the combination with the time-adaptive out-of-sample significance

level choice. In particular, the out-of-sample CE of the proposed estimator is almost as stable as
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Figure 2: Boxplots of the out-of-sample CE for T' = 120.
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Each boxplot corresponds to the distribution of the out-of-sample CE computed on net portfolio returns over a
500 randomly drawn portfolios of size N. For each randomly drawn portfolio the out-of-sample CE is computed
over an evaluation horizon of H = 500 observations, risk aversion parameter v = 1, in-sample estimation window
length T' = 120. X-axes denote different ways of computing portfolio weights: G from (2), TN from (3), 1/N from
(4), 5% denotes the pretest estimator based on the in-sample test statistic as in (9) with a fixed significance level
of 5%, in allows for a flexible significance level choice according to (12), inB is the bagged version of in. op and
opB denote the out-of-sample significance level choice and the same pretest estimator combined with bagging as
n (17). SP corresponds to (19).

the equally weighted portfolio and at the same time it outperforms the 1/N benchmark in mean
and has a very few outliers in comparison with the sequential performance weighting.

The source of such a good performance of the bagged pretest estimator is the transaction
cost reduction. Table 2 reports the average turnover? of the considered strategies. As expected,
the equally weighted portfolio produces the smallest turnover among the considered strategies,
the turnover of the GMVP and the tangency portfolio increases with the increase in N. Bagging
the pretest estimators reduces turnover and the average turnover of the proposed bagged out-
of-sample pretest estimator (agp B) is as small as the one of the equally weighted portfolio.
The average turnover of sequential performance weighting is way larger and steeply increases

with the portfolio size N. Moreover, our novel approach outperforms the sequential relative

performance weighting also in terms of the out-of-sample Sharpe Ratio (SR) based on the net

“Turnover of a strategy s is computed as TO(s)

£ (S0 @1 () = @504 (5)])
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Table 2: Turnover for 7' = 120.

N=10 N=20 N=30 N=40 N=50 N=60 N=70 N=80 N=90

GMVP 0.0749  0.1413 0.2036  0.2680  0.33656  0.4160  0.5127  0.6415  0.8293
Tangency | 0.9084  1.4565 1.1571  0.7946 1.7806  1.5813  1.1478  6.4067  1.0036
1/N 0.0217  0.0222  0.0225 0.0225 0.0226  0.0226  0.0227  0.0227  0.0227
a=5% 0.0367  0.0437  0.0789  0.0641  0.0609  0.0848  0.1673  0.2719  0.1914
s, 0.0485  0.0559  0.1685  0.1184  0.4787  0.5698  0.2326  0.6230  0.2454
of, B 0.0301  0.0362  0.0401  0.0689  0.0499 0.0546  0.0642 0.0712  0.1585
ag, 0.1241  0.3858  0.2446 0.2049 0.2674 0.5261  0.2833  0.6939  0.2216
a;, B 0.0264 0.0305 0.0319 0.0331 0.0336 0.0332 0.0341 0.0353  0.0382
Seq. Perf. | 0.0364 0.0502 0.0669  0.1007 0.0982 0.1157 0.1352  0.1575  0.1872

Figures in the table correspond to the average turnover over a 500 randomly drawn portfolios of size N. For each
randomly drawn portfolio the out-of-sample CE is computed over an evaluation horizon of H = 500 observations,
in-sample estimation window length T'= 120. a = 5% denotes the pretest estimator based on the in-sample test
statistic as in (9) with a fixed significance level of 5%, a3, allows for a flexible significance level choice according
to (12) and «j, B is the bagged version of oj,. a5, and a;, B denote the out-of-sample significance level choice
and the one combined with bagging as in (17). Seq. Perf. corresponds to (19).

returns. Figure 3 in Appendix depicts the boxplots of the Sharpe Ratios across the 500 random
portfolios of size N. Similarly to the out-of-sample CE, bagging stabilizes the SR and reduces
the number of outliers. Furthermore, the results are robust to the in-sample estimation window
length. Tables 3 and 4 report the average out-of-sample CE and turnover of the considered
strategies for T' = 180. In this case, the tangency portfolio and the GMVP perform well and the
proposed bagged pretest estimator is performing as good as the best underlying strategy. Figures
5 and 4 report the boxplots of the out-of-sample CE and SR for different portfolio sizes N and
T = 180, where again, the most stable strategy with less outliers is the bagged out-of-sample

pretest estimator, performing very well for all randomly drawn portfolios.
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4 Conclusions

This paper introduces a novel pretest estimator with a data-driven and time adaptive significance
level choice. Our pretest estimator is designed to choose an optimal portfolio allocation strategy
among M alternatives and the equally weighted portfolio as a benchmark strategy. Equally
weighted portfolio is known as one of the toughest benchmarks in the empirical finance, i.e. it is
very difficult for a more sophisticated theory based strategy to outperform the naive 1/N in
both in-sample and out-of-sample comparisons. However, for certain datasets and parameter
constellations it is possible for other strategies to be better than the equally weighted portfolio
according to a certain portfolio evaluation criteria. Our proposed pretest estimator uses the
weight estimates of the competing strategies and chooses the one, maximizing the predetermined
criterion. We have constructed an estimator which results in the highest out-of-sample CE based
on the net portfolio returns, the algorithm however can be easily adjusted to other performance
measures.

Our estimator takes into account transaction costs and with the help of machine learning
techniques computes the optimal portfolio weights. It first evaluates the pseudo-out-of-sample
CE and chooses an optimal significance level in a time adaptive way. With bagging it smooths
the indicator functions of the pretest estimator, which stabilizes the performance and reduces the
turnover costs. We show that our estimator is robust to different portfolio sizes and in-sample
estimation window lengths. We also provide evidence that the proposed estimator outperforms
the underlying strategies with respect to the out-of-sample Certainty Equivalent and Sharpe
Ratio.

The analysis in this paper is based on the monthly return data, in future work it needs to
be shown whether our findings can be generalized to portfolio strategies estimated at higher

frequencies where autocorrelation plays a major role.
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A Appendix

Figure 3: Boxplots of the out-of-sample SR for T' = 120.

N=10 N =20 N =30
z + T T
0o2f T 1 1 T T - é ozé T ; 02 ‘ * é
' =B s S B s Hiocoszsa o - =SS DS
T
o.lLﬁ*f§¥§%$mLﬁ*§¥*§%§mfﬁ §§¥$%¥
IR D K IS R K R
G TN 1I/N 5% in inB op opB SP G TN 1I/N 5% in inB o‘p opB SP G TN 1I/N 5% in inB o‘p opB SP
‘ N =40 ‘ ‘ ‘ ‘ ‘ N =50 ‘ ‘ ‘ ‘ ‘N:‘GO ‘ ‘
i + + 02 T ~ 1 ; 02 % ;
”E*%ééég-%$ Eﬁ%éﬁ?$%$ Hh+=8< s ¢
oaf 1 f % H Jf My b Ji § + § Flo0ar g g ; g §
* | t | + S N + + | +
0 | : or | Tl % 0 | : :
0 E + 1 ‘ ‘ N ‘ * ‘ n i
G TN 1I/N 5% in inB op opB SP G TN 1/N 5% in inB op opB SP G TN 1IN 5% in inB op opB SP
N=70 N—SO N =90
;F | | | :T‘: 0.2 | — ‘, | | ! 02 T T T | i
lrlsagaeassr] TH+286834%7 |t~ 2g0FFT
5 ﬁ § § bl ot Pl oo} %‘ ‘ J; H
oy i ‘ : :
P i i . Jl; i i - o ¥ §
0 i i : 0 } T ° i i * ¢

G TN 1N 5% in inB op opB SP G TN 1/N 5% in inB op opB SP

Each boxplot corresponds to the distribution of the out-of-sample SR computed on net portfolio returns over a
500 randomly drawn portfolios of size N. For each randomly drawn portfolio the out-of-sample CE is computed
over an out-of-sample evaluation horizon of H = 500 observations, risk aversion parameter is v = 1, in-sample
estimation window length 7" = 120. X-axes denote different ways of computing portfolio weights: G from (2),
TN from (3), 1/N from (4), 5% denotes the pretest estimator based on the in-sample test statistic as in (9) with
a fixed significance level of 5%, in allows for a flexible significance level choice according to (12), inB is the
bagged version of in. op and opB denote the out-of-sample significance level choice and the same pretest estimator

combined with bagging as in (17). SP corresponds to (19).
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Figure 4: Boxplots of the out-of-sample SR for 7" = 180.
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Each boxplot corresponds to the distribution of the out-of-sample SR computed on net portfolio returns over a
500 randomly drawn portfolios of size N. For each randomly drawn portfolio the out-of-sample CE is computed
over an out-of-sample evaluation horizon of H = 500 observations, risk aversion parameter is v = 1, in-sample
estimation window length 7' = 180. X-axes denote different ways of computing portfolio weights: G from (2),
TN from (3), 1/N from (4), 5% denotes the pretest estimator based on the in-sample test statistic as in (9) with
a fixed significance level of 5%, in allows for a flexible significance level choice according to (12), inB is the
bagged version of in. op and opB denote the out-of-sample significance level choice and the same pretest estimator
combined with bagging as in (17). SP corresponds to (19).

Table 3: Out-of-sample CE for T' = 180.

N=10 N=20 N=30 N=40 N=50 N=60 N=70 N=80 N=90
GMVP 0.0069  0.0069  0.0068  0.0067 0.0066 0.0064  0.0060 0.0056  0.0052
Tangency | 0.0060 0.0075  0.0075 0.0076  0.0076  0.0076  0.0076  0.0075  0.0076
1/N 0.0068  0.0069  0.0069  0.0069 0.0069 0.0069 0.0069 0.0069  0.0069
a=5% 0.0074  0.0075  0.0075 0.0076  0.0076  0.0076  0.0076  0.0075  0.0076
o5, 0.0074  0.0075  0.0075 0.0076  0.0076  0.0076  0.0076  0.0075  0.0076
of, B 0.0074  0.0075  0.0075 0.0075  0.0075  0.0075  0.0075  0.0075  0.0075
ag, 0.0067  0.0072  0.0073  0.0075  0.0077  0.0078  0.0078 0.0077  0.0072
ag, 0.0073  0.0075  0.0075  0.0075  0.0075  0.0075  0.0075  0.0075  0.0075
Seq. Perf. | 0.0073 0.0074  0.0074  0.0075 0.0075  0.0075 0.0074  0.0073  0.0073

Figures in the table correspond to the average out-of-sample CE computed on net portfolio returns over a 500
randomly drawn portfolios of size N. For each randomly drawn portfolio the out-of-sample CE is computed
over an out-of-sample evaluation horizon of H = 500 observations, risk aversion parameter is 7 = 1, in-sample
estimation window length T' = 180. o = 5% denotes the pretest estimator based on the in-sample test statistic as
in (9) with a fixed significance level of 5%, a3, allows for a flexible significance level choice according to (12) and
o, B is the bagged version of o,. a3, and a;, B denote the out-of-sample significance level choice and the same
pretest estimator combined with bagging as in (17). Seq. Perf. corresponds to (19).
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Figure 5: Boxplots of the out-of-sample CE for T' = 180.

3 I - o F H ; 10 7 + 1
1007 - i % %
5 H Jf + ? ? % 1 * f + + L *
N +
M or 0
°f
5 5t 5
G TN 1/N 5% in inB op opB SP G TN 1/N 5% in inB op opB SP G TN 1/N 5% in inB op opB SP
%10 N =40 %10 N =50 x10°° N =60
10f + + 100 + + o5 o -
ez s+o+D BEesEEEg D LbFseves T+ d
5f 1 5r 5
; ’ ! :
0 or 0
5 5¢ 5
G TN 1/N 5% in inB op opB SP G TN 1/N 5% in inB op opB SP G TN 1/N 5% in inB op opB SP
%1073 N=70 %1073 N =80 %1073 N =90
10 - 101 - 1 10
T s L= == 2= L *-?%-?—?%%—1—% L .+ e o= =
5 él * 5—‘_:‘_' ¥ R 5 =
1 i +
0 o 0
5 5t 5

G TN 1/N 5% in inB op opB SP G TN 1IN 5% in inB op opB SP G TN 1/N 5% in inB op opB SP

Each boxplot corresponds to the distribution of the out-of-sample CE computed on net portfolio returns over a
500 randomly drawn portfolios of size N. For each randomly drawn portfolio the out-of-sample CE is computed
over an out-of-sample evaluation horizon of H = 500 observations, risk aversion parameter is v = 1, in-sample
estimation window length 7' = 180. X-axes denote different ways of computing portfolio weights: G from (2),
TN from (3), 1/N from (4), 5% denotes the pretest estimator based on the in-sample test statistic as in (9) with
a fixed significance level of 5%, in allows for a flexible significance level choice according to (12), inB is the
bagged version of in. op and opB denote the out-of-sample significance level choice and the same pretest estimator
combined with bagging as in (17). SP corresponds to (19).

Table 4: Turnover for T = 1&0.

N=10 N=20 N=30 N=40 N=50 N=60 N=70 N=80 N=90
GMVP 0.0673 0.1238  0.1733  0.2227  0.2718 0.3213  0.3757 0.4334  0.4995
Tangency | 0.0529  0.0232  0.0225 0.0224 0.0225 0.0226  0.0226  0.0226  0.0226
1/N 0.0218  0.0223  0.0225 0.0225 0.0226  0.0226  0.0226  0.0227  0.0227
a=5% 0.0226  0.0226  0.0227  0.0226  0.0226 ~ 0.0227  0.0226  0.0227  0.0227
o5, 0.0235 0.0226  0.0227  0.0226  0.0226 ~ 0.0227  0.0226  0.0227  0.0227
of, B 0.0220 0.0225  0.0228  0.0228  0.0230  0.0231  0.0231  0.0232  0.0235
ag, 0.0524  0.0626 ~ 0.0750  0.0847  0.0877  0.0869  0.0786  0.0574  0.0227
ag, 0.0220 0.0226  0.0228  0.0228  0.0229  0.0230 0.0230  0.0230  0.0231
Seq. Perf. | 0.0244 0.0316 0.0396  0.0476  0.0557  0.0627 0.0675 0.0733  0.0758

Figures in the table correspond to the average turnover over a 500 randomly drawn portfolios of size N. For
each randomly drawn portfolio the average turnover is computed over an out-of-sample evaluation horizon of
H = 500 observations, in-sample estimation window length T' = 180. o = 5% denotes the pretest estimator based
on the in-sample test statistic as in (9) with a fixed significance level of 5%, a3, allows for a flexible significance
level choice according to (12) and «j, B is the bagged version of o3,. a;, and «;, B denote the out-of-sample
significance level choice and the same pretest estimator combined with bagging as in (17). Seq. Perf. corresponds
to (19).
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