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Abstract

We study the risk dynamics of the betting-against-beta anomaly. The strategy
shows strong and predictable time variation in risk and no risk-return trade-off. A
risk-managed strategy exploiting this achieves an annualized Sharpe ratio of 1.28
with a very high information ratio of 0.94 with respect to the original strategy.
Similar strategies for the market, size, value, profitability, and investment factors
achieve a much smaller information ratios of 0.15 on average. The large economic
benefits of risk-scaling are similar to those of momentum and set these two anoma-
lies apart from other equity factors. Decomposing risk into a market and a specific
component we find the specific component drives our results. The performance of
the strategy is also observed in international markets and is robust to transaction
costs.

JEL classification: G11; G12; G17.

Keywords: Betting-against-beta, BAB, time-varying risk, realized volatility, mo-

mentum, risk factors, scaled factors, market anomalies.



1. Introduction

The capital asset pricing model (CAPM) of Sharpe (1964), Lintner (1965), and
Treynor (1965) provides the first theoretically motivated measure of the riskiness
of each asset and the expected return it should command in equilibrium. It is
arguably the most taught asset pricing model and is widely used in corporate
finance, portfolio performance measurement and investment valuation (see e.g.
Fama and French (2004) and Damodaran (2012)). However, we know from early
empirical tests of the model that low (high) beta stocks have consistently positive
(negative) risk-adjusted returns, a result known as the beta anomaly (Black et al.
(1972)). Recently, Frazzini and Pedersen (2014) propose an investment strategy
(“betting-against-beta” (BAB)) that exploits this anomaly by buying low-beta
stocks and shorting high-beta stocks. They report a Sharpe ratio for the strategy
of 0.78, about double that of the US equity market.

Besides US equities, Frazzini and Pedersen (2014) show that BAB achieves
abnormal returns in international equities, bonds, and currencies. Asness et al.
(2014b) and Baker et al. (2014) find similar results examining industry portfolios
and macro level country selection. Furthermore, in contrast to other anomalies
in equities, the profits of exploiting the beta anomaly seem robust to transaction
costs (Asness et al. (2014Db)).

So the beta anomaly allows an impressive investment performance, at least
from an unconditional perspective. But Cederburg and O’Doherty (2016) find
that if one fully accounts for the time-varying systematic risk of the strategy its
alpha already becomes insignificant. We propose an alternative approach to the

conditional performance of the strategy and examine its time-varying volatility



instead.

There is an extensive literature documenting the time varying risk of the stock
market (e.g. Schwert (1989), Bollerslev (1987)) and the potential benefits of timing
its volatility (Fleming et al. (2001)). Barroso and Santa-Clara (2015b) extend this
discussion to the space of long-short equity factor investing by showing the benefits
of managing the risk of momentum. More recently Moreira and Muir (2016) find
similar benefits of volatility timing for other equity factors.

We find that volatility has an important economic value to condition exposure
to the BAB strategy. In our sample, the Sharpe ratio of the BAB strategy increases
from 0.91 to 1.28 with risk-management. The information ratio of the risk-managed
strategy is 0.94 when compared to its original version, a result similar to that of
momentum (0.93). The Fama-French 5-factor alpha of the strategy increases from
an annualized 5.48% to 15.97%. Similar to momentum, the benefits come from
strong predictability in risk and the absence of a risk-return trade-off. In fact, we
find months with extreme high risk for the strategy are followed by lower returns
on average.

Our results contrast with those of Cederburg and O’Doherty (2016). They find
that conditional on time-varying beta BAB is less of a puzzle. We find the strategy
also has strongly time-varying volatility and that using this to manage its risk
makes BAB a much deeper puzzle.

We decompose the risk of the strategy into specific and market risk to assess
the origins of the gains. We find that market risk plays a relatively minor role in
our results. The specific component is the one showing interesting predictability.

Our study is closely related to the literature on the conditional behaviour of the

beta anomaly. Cohen et al. (2005) find that consistent with the presence of money



illusion in the stock market, the required real discount rate on low-beta stocks
increases disproportionately with inflation. As a result the low-beta anomaly is
concentrated in periods with moderate to high inflation. Antoniou et al. (2015)
show that beta commands a reasonable risk premium in pessimistic periods and
show that the anomaly is mainly present at times of optimism. They suggest that
optimism attracts unsophisticated and overconfident investors to the market that
result in the mispricing of beta. Huang et al. (2015) examine a measure of excess
co-movement in the BAB portfolio as a proxy for arbitrage activity. They find
that periods of high activity predict short-term returns positively but also more
pronounced subsequent reversals. We add to this literature by examining the case
for timing the volatility of the strategy.

Our paper is also related to the recent literature on timing the volatility of
equity factors (Barroso and Santa-Clara (2015b),Moreira and Muir (2016), Barroso
and Maio (2017)). Moreira and Muir (2016) in particular provide a prominent
study of such benefits across a set of factors and show they do not seem to be
explained by business cycles or analogous low-risk anomalies in the cross section.
Comparatively, our study highlights the large economic benefits of managing the
risk of BAB, shows its startling similarity with those found for momentum, identifies
the component of risk driving the result, and examines potential implications for
our understanding of the anomaly.

We test the robustness of our result along three dimensions: alternative methods
to estimate volatility, incorporating frictions (leverage constraints and transaction
costs), and international evidence. Overall, the results seem to be present in other
samples; different methods to estimate volatility do not overturn the analysis; and

the benefits of timing the volatility of BAB are not eliminated in constrained



portfolios with plausible transaction costs.

This paper is structured as follows. Section 2. compares the performance
of BAB with that of other equity factors. Section 3. shows the performance of
risk-managed factor portfolios. Section 4. assesses the predictability of risk for the
strategy and the existence of a risk-return trade-off. In section 5. we examine a
decomposition of the risk of the strategy into its market and specific components.
Section 6. examines robustness on three dimensions: i) alternative methods to
estimate variance; ii) international evidence; and iii) portfolios with constrained

leverage and incorporating transaction costs. Section 7. concludes.

2. Factor investing and betting-against-beta

In this section we describe the equity factors used in this study, provide de-
scriptive statistics of their investment performance, and examine the risk-adjusted
performance of betting-against-beta (BAB).

We use the BAB returns for US stocks obtained from AQR’s data library
(https : | Jwww.aqr.com/library/data — sets). The strategy consists on buying
low-beta stocks and shorting high-beta stocks choosing weights such that the
ex-ante beta of the strategy is zero. This implies having more than one dollar in
the long leg and less than one dollar in the short leg. The difference is funded by
a short position in the risk-free rate asset (T-bills) such that the overall portfolio
has zero cost. Frazzini and Pedersen (2014) provide a complete description of the
construction of the strategy’s portfolio.

We compare the returns of BAB with those of the Fama and French (1993)

three factors (FF3 model). The FF3 factors are: i) the excess return of the market



over the risk-free rate (market factor or ‘RM’); ii) the return of small firms in excess
of large firms (size factor or ‘SMB’); iii) the return of high book-to-market stocks
in excess of low book-to-market stocks (value factor or ‘HML’). For completeness
we add to these the two newly proposed factors in Fama and French (2015) (FF5
model): operating profitability (‘RMW?’ for robust-minus-weak) and investment
(‘CMA’ for conservative-minus-aggressive). These two factors capture, respectively,
the average positive excess returns of firms with high profitability and of those
with low investments (as measured by asset growth). Taken together these factors
reflect the sources of predictability for the cross section of equity returns found in
the size (Banz (1981)), value (Basu (1983), Bondt and Thaler (1985), Rosenberg
et al. (1985)), profitability (Novy-Marx (2013), Hou et al. (2014)), and investment
(Hou et al. (2014)) variables.

We also use the Carhart (1997) 4-factor model (C4 model) that combines
momentum with the FF3 factors. The return of momentum in a given month ¢ is
defined as the difference in value-weighted returns between the portfolio of previous
winners and the portfolio of previous losers. The previous winners are the stocks in
the top decile according to cumulative return from months ¢t — 12 to t — 2 while the
previous losers are those in the bottom decile. Only stocks listed in NYSE are used
to compute the cut-off points of the deciles. This avoids having some of the deciles
dominated by many small caps. The month ¢ — 1 is skipped to avoid confounding
with the short-term reversal effect in monthly returns (Jegadeesh (1990), Jegadeesh
and Titman (1995)). Momentum returns capture the tendency of recent winners, as
defined by their returns in the previous 3 to 12 months, to continue outperforming
recent losers (Levy (1967), Jegadeesh and Titman (1993)).

The returns of the momentum portfolios and the FF5 factors are from Kenneth



French’s data library.! We have both daily and monthly returns available for all
factors from July 1963 to December 2015. We use realized volatilities computed
from one month and 6 months of data to perform the risk-scaling so our first

risk-managed returns start in January 1964 and end in December 2015.

[Insert table 1 near here]

Table 1 shows the descriptive statistics of each factor-based investment strategy.
Compared with the market, size, value, momentum, profitability, and investment
factors, BAB has the highest Sharpe ratio. Its annualized Sharpe ratio is of 0.91,
more than double the 0.38 of the market with is already a central puzzle in financial
economics (Mehra and Prescott (1985)). It is also higher than the Sharpe ratio
of momentum (0.67) which is often regarded has the major asset pricing anomaly.
This illustrates the extent of the empirical failure of the CAPM. Black et al. (1972)
find that the security market line (SML) is flatter than what should hold according
to the CAPM. Frazzini and Pedersen (2014) show that a strategy exploiting this
apparent mispricing has an economic performance even more impressive than
momentum.

The strategy’s high Sharpe ratio comes with a considerable higher order risk
though with an excess kurtosis of 3.58 combined with a skewness of -0.62, both
higher in absolute terms than the market that has 1.90 and -0.52 respectively. This
higher order risk is small though when compared to the very high excess kurtosis
of momentum (7.84) and respective negative skewness (-1.42).

In spite of the impressive long run performance of the strategy it is also exposed

to substantial downside risk. Its maximum drawdown of -52.03 is close in magnitude

Lhttp : / /mba.tuck.dartmouth.edu/pages/ faculty/ken. french/datayibrary.html



to that of the market (-55.71) which has a much higher standard deviation (15.45%
versus 11.21%). Still, both the higher order risk and the (closely related) maximum
drawdown are smaller than those of momentum. So BAB offers a higher Sharpe
ratio and it is not as exposed to crashes as momentum (see Daniel and Moskowitz
(2016), Barroso and Santa-Clara (2015b) for a discussion of the crash risk of
momentum).

Table 2 examines the ability of other risk factors to explain the returns of BAB.
The second column shows the alpha of the strategy with respect to the different
risk models. Columns 3 to 8 show the factor loadings of the strategy.

The market factor does not explain the returns of BAB. The strategy has a
high annualized alpha of 10.54% with a t-statistic of 6.57. The beta of the strategy
is very close to zero (-0.06). This shows that the strategy, which is constructed to
have an ex-ante beta of zero, on average achieves this goal ex-post.

Jointly the size and value factors explain approximately 20% of the CAPM-alpha
of the strategy. This is mainly due to the value factor. The BAB strategy in all
specifications that include the value factor shows a significant exposure to that
factor. The strategy is also exposed to the momentum, profitability and investment
factors. Taken together we see that available stock market risk models explain up
to 48% of the CAPM-alpha of the strategy (1 — 5.48/10.54). This happens because
on average low beta firms also show some loading on value, profitability and (low)
investment factors.?

This suggests that a substantial part of the empirical failure of the CAPM can

2In unreported results we also computed the a with the Hou et al. (2014) model. We find this
model is the most successful explaining the returns of BAB, accounting for two-thirds of its a.
The focus of this paper, the benefits of risk-management for BAB, are robust to using Hou et al.
(2014) though.



be traced to failing to capture the multi-dimensional nature of risk that features
in latter models.®> But this ability of other factors to explain approximately half
of the anomaly’s risk-adjusted returns still leaves a considerable amount to be
explained. The alpha of approximately 5.5 to 6 percentage points a year and
respective t-statistics (3.49 in the C4 model and 3.48 in the FF5 model) are clearly

economically and statistically significant.
[Insert table 2 near here]

Still, in a world with more than 300 factors or anomalies in the cross-section
of stocks, it is legitimate to ask whether the beta anomaly is truly an anomaly
or if it can rather be easily explained by some set of known risk factors. That
is certainly plausible and some recent studies point in that direction (Hou et al.
(2014), DeMiguel et al. (2017), Liu et al. (2016) for example). To this we observe
that "age is rank” and, in a sense, the beta anomaly is the seminal anomaly in
asset pricing. Nearly half a century after its discovery it can still be confirmed in
the data and it remains quite strong. By contrast, many of the factors available
now to explain it are of recent discovery and we don’t know how robust they will
look 50 years from now. That is a valid concern as McLean and Pontiff (2016)
shows return predictability diminishes considerably after discovery. Therefore, the
extensive post-discovery evidence supporting the beta anomaly should confer it

some genuine status.

31t also suggests a possible reason for the particularly high Sharpe ratio of the strategy: it is
analogous to a linear combination of weakly correlated stock market factors



3. Scaled factor strategies

Barroso and Santa-Clara (2015b) construct a risk-scaled version of momentum.
We extend this to other factors and examine the resulting economic performance
for an unconstrained investor. We compute the realized variance RV, from daily
returns in the previous 21 sessions for each month and factor. Let {ry}%_, be the
daily returns and {d;}{_, the time series of the dates of the last trading sessions of

each month. Then the realized variance of factor F' in month ¢ is:

20
RVF}t = ZT%,dt—j' (1)
=0

Then we use the realized volatility 6, = \/m to scale the returns in order
to achieve a given target osq,4e¢. Implicitly 65, is used as the forecast of opyqq. All
of the original factors used are zero-cost portfolios, so their scaled versions are still
zero-cost and self financing strategies that we can scale without constraints. The

scaled portfolio weight in the original factor at time t is:

Wt _ Otarget (2)

OFy
And so the risk-scaled factors are defined as I}, = F,,1W;. The choice of
volatility target is arbitrary but influences directly the maximum, minimum, mean
and the standard deviation of returns as well as the maximum drawdown of the
scaled portfolio. However this choice is irrelevant for scale-invariant measures
of portfolio performance such as the Sharpe ratio, (left) skewness, and excess
kurtosis. As in Barroso and Santa-Clara (2015b) we pick a target corresponding to

an annualized volatility of 12%. This choice of target has the desirable property of



producing scaled factor portfolios with approximately the same ex-post volatility of
the (unscaled) US stock market. Picking the same target for all portfolios facilitates
comparison of those performance measures that are sensible to scaling.

Other volatility models could produce more accurate estimates of risk with
increased potential for risk-scaling. We refrain from that pursuit in this paper
and chose to focus instead on this somehow coarse measure of volatility. This also
serves as an implicit control mechanism when assessing the existence of robust

economic benefits in risk-scaling.?
[Insert table 3 near here]

Table 3 shows the performance of the scaled factors. Risk-scaling has economic
gains for investors following (almost) all factor strategies. For the market, the
risk-scaled factor has an information ratio of 0.20 with respect to the unscaled
factor. This gain confirms the result of Fleming et al. (2001) who document the
economic benefits of timing the volatility of the market. Their documented gains
from market timing using volatility contrast with the difficulty of similar strategies
trying to use predictability in returns (Goyal and Welch (2008)).

The benefits are not restricted to the market factor as 6 out of the 7 portfolios
show positive information ratios. The exception is the size premium for which the
scaled factor has a negative information ratio. Moskowitz (2003) show that the
size premium increases with volatility and recessions in a way consistent with a
risk-based explanation. Our results are consistent with theirs for the size factor.

By far the most impressive gains are found for the momentum and BAB factors.

Comparing with table 1 the Sharpe ratio of momentum increases from 0.67 to

4As a robustness test we also use the usual workhorse of volatility modelling, the GARCH(1,1).
We present those results in table 10.
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1.08 (a 0.41 gain) and that of BAB increases from 0.91 to 1.28 (a 0.37 gain). The
information ratio of the scaled strategies with respect to their original versions
are very large for these two factors: 0.93 for MOM™* and 0.94 for BAB*. These
high information ratios reflect the fact that the risk-scaled portfolios are highly
correlated with the original factors but much more profitable. For the FF5 factors
the information ratio is on average 0.15, momentum and BAB have information
ratios about 6 times larger. Our results for momentum confirm the findings of
Barroso and Santa-Clara (2015b). Moreira and Muir (2016) recently examine the
benefits of risk management in a set of factors that includes the FF5 but do not
consider BAB. Therefore, to the best of our knowledge, we are the first to document
that BAB shares this puzzling feature with momentum: the two strategies have
particularly expressive economic benefits from risk management, gains that set

them both apart from the FF5 factors.
[Insert table 4 near here]

Table 4 shows the risk-adjusted performance of BAB*. The strategy has a very
high CAPM-alpha of 21.10% per year. The risk model with the best fit for the
strategy is the C4 that explains 25% of its CAPM-alpha ((21.10%-15.83%)/21.10%).
This is a smaller proportion than the almost half explained in table 2. So risk-
managed BAB offers more diversification benefits than BAB for diversified investors
exposed to other equity factors. The smallest annualized alpha is a very high 15.83%
(with the C4 model) and the adjusted r-squares of the regressions are all smaller
than in table 2. This confirms that BAB* is of value for diversified investors and

more so than BAB.

[Insert figure 1 near here]
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Figure 1 shows the cumulative returns of momentum, betting-against-beta and
their respective risk-managed versions. As the strategies considered are zero-cost
portfolios their returns are excess returns. In order to have gross returns we add
to each strategy the gross return of an investment in the risk-free rate. So each
moment in time the portfolio puts all wealth in the risk-free rate and combines this
with a long-short portfolio. °

In a pure CAPM world none of the strategies in figure 1 should have any drift
but empirically they have had an impressive economic performance. One US dollar
invested in momentum in July 1963 grows to 9,990 by the end of the sample. For
the betting-against beta strategy the investment grows to a more modest amount
of 1,675 dollars but with much less risk than the momentum strategy. The scaled
strategies have similar ex post standard deviation (17.37 for MOM* versus 16.84 for
BAB*) but very different end results: the investment in risk-managed momentum
grows to 87,843 but in the beta anomaly to 364,121. For comparison a similar
investment in the US stock market grows to 139 US dollars by the end of the
sample. This illustrates with an investment approach the extent of the puzzle in the
performance of these strategies, particularly the benefits derived from managing
their risk.

A related debate is whether investors could attain these performances in a
realistic setting with transactions costs and other frictions (see, for example,
Lesmond et al. (2004) and Asness et al. (2014a) for different interpretations of

the evidence). If not, then one possible interpretation of our results is that the

5For example, for momentum the original strategy puts a notional amount in the long leg of
Wealth; and in the short leg of —Wealth;. For the risk-managed version the notional amount
would be W;Wealth; and —W;Wealth; in the long and short legs respectively. For BAB the
amounts in the long and short leg are different in order to target a beta of zero but they are offset
by positions in the T-bills.
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performance of these strategies, without frictions, is too puzzling to accept any
explanation that does not incorporate them. While the argument is appealing, in
section 6.2., we find the benefits of risk-management show interesting resilience to

plausible trading costs and leverage constraints.

4. Risk and return of BAB

We examine the predictability of the risk of BAB and its relation with expected
returns.
First we examine the predictability of risk. Figure 2 shows the time series of

the (annualized) monthly realized variances computed from daily returns.
[Insert figure 2 near here]

The plot illustrates the typical patterns of volatility known from Bollerslev
(1987), Schwert (1989) and many others. Namely, volatility varies over time in a
persistent manner. The realized volatility of the strategy varies significantly from a
minimum of 1.75% in April 1965 to a maximum of 83% reached in May 2002. The
series is also highly non-normal with a kurtosis of 35.44 and a very high positive
skewness of 4.52 indicating that the sample contains extreme high risk outliers.

To examine the predictability of risk we run the regression:

1 1
— = po+ P1—— + Et41- (3)
Oit+1 Oit

We focus on the inverse of realized volatility for two reasons. First, the risk-
managed strategy puts a weight on BAB proportional to this quantity so it is the

variable of direct interest to understand the source of the gains. Second, the sample
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of the inverse of volatilities is much closer to normal. It has a kurtosis of 2.99 and a
skewness of -0.11, this allows for a much better inference reducing the large weight
of outliers in the fit.

Table 5 shows the results of regression 3. Given the similar gains of risk
managements for BAB and momentum we focus on these two strategies for the

remainder of the paper.
[Insert table 5 near here]

The table shows that both series have similar levels of predictability. The slope
coefficient is positive and it has a t-statistic of 23.88 for BAB and 25.31 for MOM.
This shows that safe months tend to follow safe months. Most of the variation in
the dependent variable is explained by its lagged value (R? of 60.79% for BAB and
56.11% for MOM).

But in sample predictability can be misleading and so we also compute the
out-of-sample (OOS) R? of the regression. For that purpose we use an initial
window S of 120 months ro run the first in-sample regression and use this to make
a forecast for month S + 1 that we compare with the ex-post realized value of
the variable. The following month we use an expanding window to estimate the
regression and re-iterate the procedure until the end of the sample. The OOS R?

for a factor 7 is estimated as:

T—1 — —
> (Pos+prel/ois —1/0ir
Rgoos —1-=

: (4)

T—-1 —

> (1o — 1/0:001)°

t=S

where 1/0;, is the historical average up to time ¢ and both a; and p; are
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estimated with information available only up to time ¢t. A positive OOS R? shows
that on average the forecast from the regression outperforms that obtained from
the historical average.

We find the OOS R? for BAB is not only positive but also very close to its
in-sample counterpart. This shows that the regression shows strong robustness
out-of-sample — a stark contrast with similar regressions for the equity premium that
typically achieve negative OOS R?’s (Goyal and Welch (2008)). The predictability
of the (inverse of) realized volatility for BAB is quite similar to the one documented

for momentum.
[Insert table 6 near here]

We next examine if this predictability in risk is related with expected returns.
For this purpose we regress the returns of each strategy on its lagged (inverse of)

realized volatility.

Tigt1 = Y0 +71(L/05¢) + et (5)

The existence of a risk-return trade-off should be captured by a statistically
significant negative 7; meaning that months with less risk for the strategy also
predict smaller returns. The results in table 6 show there is no evidence of any
predictability of risk for the returns of BAB (or momentum). In fact the point

estimates for both strategies are positive, although not statistically significant.
[Insert figure 3 near here]

In figure 3 we further examine the relation between risk and return for the

strategies. For each strategy, we sort all months into quintiles according to realized
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volatility. Then, for each quintile, we take the subset of months subsequent to those
in that quintile and compute the average return, standard deviation, and Sharpe
ratio over that subset. The results for momentum confirm the pattern in Barroso
and Santa-Clara (2015b) that higher risk predicts both lower returns and higher
risk for the strategy, so the Sharpe ratio of the strategy is much higher following
quintiles 1 to 3 than in the two top quintiles. The results for BAB show a similar
pattern. In panel A the returns following a month in quintile 5 are lower (4.84%) on
average than for other quintiles (11.53%). The relation is not monotonous and the
underperformance of BAB in terms of expected returns is concentrated in months
of particularly high risk. On the other hand, panel B shows that subsequent risk
rises monotonically with lagged risk. The annualized volatility is 5.13% after a
month in quintile 1 and it is 19.06% after a month in quintile 5. As a result the
Sharpe ratio is much smaller after months in the top quintile (0.25) versus months
after the lowest quintile (1.83). Both effects combine such that BAB has a quite

weak performance as a factor subsequent to months of very high risk.

[Insert figure 4 near here]

Figure 4 shows the weights of BAB* and MOM*. On average BAB* has a
higher weight than MOM*. This happens because both strategies target the same
volatility but original BAB has a much lower standard deviation than MOM.® As
the choice of target volatility is arbitrary this difference in the average weight is not
very informative. We note though that the two series have a strong and statistically

significant correlation of 0.63 (at the 1%) level. So an hypothetical unconstrained

6A version of BAB* re-scaled to have a similar average weight as MOM* would also show a
very similar standard deviation in weights, so the apparent wilder swings of the weights in BAB
are only due to a level effect.
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arbitrageur following both strategies simultaneously would see speculative capital
being absorbed and freed-up from these two uses at the same time. This suggests

a possible limit to arbitrage for risk-management.

5. Anatomy of BAB risk

Grundy and Martin (2001) show that the beta of momentum with respect to
the market varies substantially over time. Cederburg and O’Doherty (2016) argue
that the conditional beta of BAB explains its premium. Motivated by this we
examine if time-varying systematic risk can account for the similar gains of risk

management for BAB and MOM and the performance of BAB in particular.
[Insert figure 5 near here]

Figure 5 shows the plot of the time series of monthly betas of BAB and MOM
with respect to the market. The results for momentum confirm Grundy and Martin
(2001). The beta of MOM ranges between -2.86 and 2.57. We find that BAB
also has some time-varying market risk. In spite of being deliberately constructed
to be market neutral, its beta ranges between -1.57 and 0.30 and it shows some
persistence. Still the beta of BAB shows relatively little time-variation when
compared to momentum.

We use the CAPM to decompose the risk of BAB and MOM into a market and

a specific component:

RVpy = B; RViarys + 02 (6)
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The realized variances are estimated from daily returns in each month. © We
find that on average 37% of the risk of BAB is systematic, so the market neutral
strategy has a substantial market risk component. To assert the origin of the gains,
we examine the performance of a risk-managed strategy using each of the risk

components separately.
[Insert table 7 near here]

Table 7 shows the performance of risk-scaled BAB and momentum with total
risk, specific risk, and market risk respectively. The Sharpe ratio of BAB scaled
with specific risk is 1.21, close to the one using total risk (1.32). By contrast,
the strategy using the systematic risk has a very low Sharpe ratio of 0.18 and
a extreme value for standard deviation (3898.63), excess kurtosis (610.79), and
skewness (24.68). The results for momentum are similar to those of BAB. They
both show that the gains of risk-management come from using the informational
content in the specific component of risk.

We also examine the predictability of the inverse of each component of risk.
Table 8 shows the results of an auto-regression for each of those components (which

correspond to the weights in the strategies examined in table 7).
[Insert table 8 near here]

For BAB the specific part of risk is highly persistent with a slope coefficient
of 0.68 and a t-statistic of 20.30. The regression shows a good fit both in-sample

and OOS with R-squares of 46.13% and 47.46% respectively. The predictability of

"To ensure the decomposition holds exactly, we use in this section the variance formula. This
de-means returns each month instead of just summing the squares of returns as in equation
1. This does not change any of the results substantially and avoids the possibility of getting a
negative specific risk.
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the specific component is almost as high as that of total risk. For the systematic
component there is no predictability. The slope coefficient is zero and so is the
R-squared. The results for momentum are similar and confirm those of Barroso
and Santa-Clara (2015b). For both strategies the predictable part of risk is the

specific component.

6. Robustness tests

6.1. Alternative estimates of variance

We assess the robustness of our results with respect to the horizon used to
compute the realized variance and using the GARCH(1,1) instead to estimate
variance.

Table 9 shows the performance of scaled factors using 6 months to estimate
variance instead of just one. First we note that for this particular window the

result of the economic value of timing the volatility of the market is not robust.
[Insert table 9 near here]

The information ratio for risk-managed momentum is 0.98, so the benefits for
this strategy are robust to this alternative period to compute variance. For BAB,
with a Sharpe ratio of 1.17 and an information ratio of 0.76 with respect to the
original strategy, we conclude that the benefits of risk-management are robust to
using an alternative window.

We also use GARCH(1,1) from monthly returns of each strategy to compute
risk-managed strategies. In order to assess the benefits of risk-management in

a realistic OOS environment we only use volatility estimates obtained from a
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GARCH(1,1) model estimated in real time. We use the initial 120 months of data
to infer the parameters of the initial model and use them to make a forecast for
month 121. The following month we expand the sample with a new observation
and re-estimate the model. We keep re-iterating the procedure until the end of the
sample. Table 10 shows the economic performance of the risk-managed portfolios.
For comparison table 11 shows the performance of the original strategies for this

different sample period.
[Insert tables 10 and 11 near here]

In this setting the benefits of risk-management for the market are not robust
with a negative information ratio of -0.18. For momentum the benefits are robust
with a gain in Sharpe ratio from 0.57 to 0.71 and a substantial reduction in the
maximum drawdown from -80.36% to just -31.88%. For BAB the results are quite
robust. The information ratio of BAB* is 0.65, even higher than the 0.43 of MOM*.
So in this particular exercise the benefits of risk-management for BAB are stronger

than for MOM.

6.2. Leverage constraints and transaction costs

Standard asset pricing research focuses on frictionless markets where portfolios
combine assets freely in a linear space. As an illustration of this, Asness et al.
(2013) explain in page 976 of their paper: ”[...] Like most academic studies, we
focus on gross returns, which are most suitable to illuminating the relation between
risk and returns.” We also believe analysis with gross returns are informative per
se and the often used alternative of computing the costs of isolated strategies is

not necessarily preferable.
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In a world where investors can combine different signals to form portfolios, it
is not straightforward to assess after-cost profitability of isolated signals. Barroso
and Santa-Clara (2015a) show that the trading costs of a stand-alone strategy (e.g.
momentum) can be substantially reduced if the same strategy is used in combination
with other characteristics (such as the carry trade). DeMiguel et al. (2017) quantify
precisely the reduction in trading costs of using several characteristics in combination
and show that depends crucially on their interaction.

Still, from an asset pricing perspective, it is relevant to distinguish between
correct prices driven by risk loadings from mispricings that are hard to arbitrage.
Figure 4 shows that risk-managed BAB, as we define it, implies both substantial
leverage and fast changes in weights. A typical investor is constrained on the
leverage he can assume and incurs in costs to trade. So, it is important to ask if
an hypothetical arbitrageur, as a hedge fund, still finds any benefit in timing the
volatility of BAB in a realistic setting. As a result, we examine the conventional
case of an investor exploiting a single source of predictable risk-adjusted returns
- our strategy - while keeping in mind sophisticated arbitrageurs would probably
want to combine several strategies to reduce costs.

We follow Moreira and Muir (2016) who estimate alphas net of costs under
different assumptions for transaction costs: 1 basis point (bp) as in Fleming et al.
(2003), 10bps as in Frazzini et al. (2012) and an additional scenario of 14bps
reflecting the cost of trading in conditions of high volatility (VIX at 40%, its
98" percentile). Volatility management implies trading to reduce positions after
increases in risk, when risk is high. This makes the 14 bps assumption potentially

pertinent to our study.®

80n the other hand it should be kept in mind that BAB* also implies trading to increase
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Besides trading costs we also consider a version of BAB* constrained to have
maximum leverage of 50% (an exposure of 150% to the original factor) and no

leverage (an exposure of 100% to the factor).
[Insert tables 12]

Table 12 shows the results. BAB* has an o w.r.t. original BAB of 8.86%
but this comes with a very high turnover of 102% per month (2 x 0.51). Still,
after transaction costs of 14bps, most of the o remains (7.15%). The break-even
transaction cost that eliminates the a of volatility timing is 73bps, above typical
estimates of transactions costs.

Nevertheless, much of the turnover of the original strategy can be reduced
implementing leverage constraints. The strategy in panel A, with no leverage has
a turnover of just 6% a month, less than a tenth of BAB* (most of the time the
strategy would just keep an exposure of 100% to the factor). The break-even cost
of this strategy would be very high (220 bps) but is « is also much smaller (1.55%
a year). This is understandable as the strategy is very close to the original.

As mentioned above, changing the volatility target is not relevant to assess
Sharpe ratios and information ratios. It is just akin to a dislocation along the
CAL and not a shift in the curve. But the same does not apply to the after-cost
alphas of different volatility managed strategies. Panels B and C show that it is
possible to achieve higher risk-adjusted returns for given transaction costs if the
volatility target is smaller. Intuitively, strategies with high volatility will find the
leverage constraint binding most of the time - as a result they are almost identical

to original BAB and their o’s are small. For the same reasoning, strategies with

positions after decreases in risk (when risk is low) and, generally, much larger positions in low-risk
environments.
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small volatility targets imply little leverage on average and produce interesting
risk-adjusted returns.

Generally the results in table 12 suggest transaction costs and leverage con-
straints do not eliminate the benefits of volatility-management. In fact, versions of
BAB* with combinations of tight leverage constraints and modest volatility targets
show very high cut-off transactions costs between 91 and 220bps. So we conclude

the performance of BAB* has an interesting resilience to practical considerations.

6.3. International evidence

In this subsection we show the performance of BAB* in five major international
markets available in AQR’s website: Global market, Global without the US, Europe,
North America, and Pacific. These samples are different from the ones in the rest

of our study both geographically and temporally.
[Insert tables 13]

The results in table 13 show that BAB* has information ratios between 0.68 and
1.07, all of them positive and statistically significant at the 1% level. While there is
some overlap of the Global and the North American market with our main sample,
the results for Europe, Pacific, and Global Ex-USA provide external validation.
Our initial version of the paper only had US data. So we see this as out-of-sample

confirmation of our main results.
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7. Conclusion

Approximately half of the risk-adjusted returns of betting-against-beta with
respect to the market are explained by the Carhart (1997) or the Fama and French
(2015) factor models. While the remainder risk-adjusted performance is still a
puzzle in its own right, managing the risk of the strategy makes it much larger.
The risk-managed strategy has a high information ratio of 0.94, similar to that of
momentum. The scaled BAB has a higher alpha with respect to the market and
less of it (only 25%) is explained by equity risk factors. So managing the risk of
BAB creates and economic value orthogonal to those equity factors and even the
original BAB itself.

Risk is highly predictable for BAB, similar to that of momentum. There is also
no evidence of a risk-return trade-off for the strategy. If anything there seems to
be the opposite of a trade-off: BAB generally performs worse after months of high
risk in the strategy. This bad performance is concentrated in periods of extreme
risk for the strategy suggesting a regime switch in high volatility states.

Time-varying systematic risk has been proposed as an explanation of the
premium of BAB (Cederburg and O’Doherty (2016)). We find evidence confirming
the existence of this time-varying systematic risk but also find that it conveys
relatively little information about the conditional performance of the strategy.
Decomposing the risk of BAB into market and specific risk we find that the
predictable part is the specific one. Also, the performance of a strategy scaled by
specific risk only is very similar to one using total risk. So we conclude that specific
risk is causing the gains of risk management.

Generally, our results show that risk-managed BAB is a deeper puzzle than its
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original version. The informational content of its own lagged volatility to condition
exposure to the strategy is very large, similar to momentum and much higher than
that found for the other equity factors examined.

The results are robust to using a different window to compute volatilities or a

GARCH(1,1) model to estimate it.
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Table 1
Performance of factor-based strategies

The performance of the betting-against-beta factor (BAB) is compared with the Fama-
French-Carhart risk factors: market (RMRF), size (SMB), value (HML), momentum
(MOM), profitability (RMW), and investment (CMA). All statistics are computed with
monthly returns. Reported are the maximum and minimum one-month returns observed
in the sample, the mean average excess return (annualized), the (annualized) standard
deviation of each factor, excess kurtosis, skewness, (annualized) Sharpe ratio, and the
maximum drawdown (MDD). The sample returns are from 1964:01 to 2015:12. The max,
min, mean, standard deviation and maximum drawdown are in percentage points.

Factor Max. Min. Mean S.D. Kurt. Skew. Sharpe MDD
RMRF 16.10 -23.24 5.92 1545 1.90 -0.52 0.38  -55.71
SMB 2232 -16.70 2.89 10.79 5.64 0.53 0.27  -52.82
HML 1391 -13.11 4.04 994 261 0.01 0.41  -45.21
MOM 26.16 -45.79 16.23 24.26 7.84 -1.42 0.67  -80.36
RMW 1219 -17.57 294 738 11.55 -0.40 0.40  -39.17
CMA 951 -6.81 3.69 698 1.65 0.29 0.53 -17.62
BAB 12.89 -15.22 10.19 11.21 3.58 -0.62 0.91  -52.03
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Table 2
Alphas for BAB

This table presents the alphas and factor loadings from time-series regressions of the
betting-against-beta factor (BAB). The factor models are the CAPM, Fama-French three-
factor model (FF3), Carhart’s four-factor model (C4), and the Fama-French five-factor
model (FF5). The factors are the market (RM), size (SMB), value (HML), momentum
(MOM), profitability (RMW), and investment (CMA). The sample is 1964:01 to 2015:12.
For each regression, the first row presents the coefficient estimates and the second row
reports Heteroskedasticity-adjusted ¢-ratios (in parentheses). « is the annualized intercept.
R? denotes the adjusted coefficient of determination. Bold t-ratios indicate statistical

significance at the 5% level.

Model (%) Bru Bsup  Bamr  Buom  Bruw  Bema  R*(%)

CAPM 1054 —0.06 0.51
(6.57) (—1.25)

FF3 826  0.03  —001 044 14.31
(5.27)  (0.56) (—0.10) (6.46)

c4 597 007 000 050  0.11 19.64
(3.49) (1.40)  (0.01) (7.06) (4.10)

FF5 548  0.08 011 028 046 038  22.00
(3.48) (1.76)  (2.17) (3.06) (5.90) (3.21)
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Table 3
Performance of scaled factor strategies

The performance of the scaled betting-against-beta factor (BAB*) is compared with
the Fama-French-Carhart scaled risk factors: market (RMRF*), size (SMB*), value
(HML*), momentum (MOM?*), profitability (RMW*), and investment (CMA*). Each
scaled factor uses the realized variance in the previous month to scale the exposure to
the original factor. All statistics are computed with monthly returns. Reported are the
maximum and minimum one-month returns observed in the sample, the mean average
excess return (annualized), the (annualized) standard deviation of each factor, excess
kurtosis, skewness, (annualized) Sharpe ratio, and the maximum drawdown (MDD).
IR denotes the (annualized) information ratio of the scaled factor with respect to the
unscaled benchmark. The sample returns are from 1964:01 to 2015:12. The max, min,
mean, standard deviation and maximum drawdown are in percentage points.

Factor Max. Min. Mean S.D. Kurt. Skew. Sharpe IR MDD

RMRF* 13.94 -18.66 6.30 14.63 1.14 -0.27 0.43 0.20 -52.82
SMB* 23.60 -22.94 4.21 1886 1.85 -0.10 0.22  -0.04 -84.68
HML* 22.84 -22.78 841 18.67 1.19 0.15 0.45 0.20 -57.42
MOM*  20.74 -15.43 18.79 1737 0.82 -0.17 1.08 093 -37.33
RMW* 1826 -17.15 865 17.14 049 0.03 0.50 0.31 -57.97
CMA* 18.22 -13.84 815 16.24 0.07 0.17 0.50 0.07 -44.02
BAB* 17.59 -28.54 21.48 16.84 270 -0.41 1.28 0.94 -56.75
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Table 4
Alphas for scaled BAB

This table presents the alphas and factor loadings from time-series regressions of
the scaled betting-against-beta factor (BAB*). BAB* uses the realized variance in the
previous month to scale the exposure to the original factor. The factor models are the
CAPM, Fama-French three-factor model (FF3), Carhart’s four-factor model (C4), and
the Fama-French five-factor model (FF5). The factors are the market (RM), size (SMB),
value (HML), momentum (MOM), profitability (RMW), and investment (CMA). The
sample is 1964:01 to 2015:12. For each regression, the first row presents the coefficient
estimates and the second row reports Heteroskedasticity-adjusted ¢-ratios (in parentheses).
«a is the annualized intercept. R? denotes the adjusted coefficient of determination. Bold
t-ratios indicate statistical significance at the 5% level.

Model (%)  Brm  Bsus  Bumr  Puom  Bruw  Boma  R*(%)

CAPM 21.10 0.06 0.19

(8.75) (0.90)

FF3 18.22 0.16 0.03 0.55 9.22
(7.68) (2.33) (0.45) (7.66)

C4 15.83 0.20 0.04 0.61 0.12 11.75
(6.42) (2.87) (0.54) (8.39) (4.04)

FF5 15.97 0.22 0.10 0.35 0.30 0.44 11.14
(6.34) (2.93) (1.33) (3.66) (2.96) (2.83)

Table 5

Autoregression of monthly realized volatilities

The realized variances of each factor represent the sum of factor squared daily returns
in each month. The factors are betting-against-beta (BAB) and momentum (MOM).
The AR(1) process regresses the (non-overlapping inverse of the) factor monthly realized
volatility on its own lagged value. Heteroskedasticity-adjusted t-ratios are presented in
parentheses. OOS R?(%) denotes the out-of-sample (OOS) R2, which relies on an initial
(in-sample) window of 120 months. The sample period is from 1963:12 to 2015:12. Bold
t-ratios indicate statistical significance at the 5% level.

Factor 00 P1 R*(%) OOS R*(%)
(t-stat) (t-stat)

BAB 12.96 0.78 60.79 63.36
(7.49) (23.88)

MOM 7.16 0.75 56.11 60.41
(9.12) (25.31)
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Cumulative returns
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Fig. 1. The cumulative returns of BAB, MOM and its risk-managed versions using
the previous month realized volatility. The returns are from 1964:01 to 2015:12 and
include the return of the risk-free rate asset plus the excess return of the respective

zero-cost portfolio.
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This figure plots the time-series of the annualized realized volatility (in %) associated
with the BAB factor computed from daily returns each month. The sample is 1964:01 to

2015:12.
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Panel A: Mean(%)
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Fig. 3. Conditional performance of BAB and MOM

The returns of each factor are sorted on quintiles based on the realized volatility in the
previous month. The figure presents the following annualized average return, volatility,
and Sharpe ratio. The sample is 1964:01 to 2015:12.
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Fig. 4. Weights of scaled BAB and MOM

20

This figure plots the time-series of the weights associated with the scaled BAB and MOM

factors. The sample is 1964:01 to 2015:12.
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Fig. 5. Betas for BAB and MOM
This figure plots the time-series for the realized market beta associated with the BAB
and MOM factors. The sample is 1964:01 to 2015:12.
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Table 6
Volatility-return tradeoff

The realized variances of each factor represent the sum of factor squared daily returns
in each month. The factors are betting-against-beta (BAB) and momentum (MOM).
The monthly return of each factor is regressed on the lagged (non-overlapping inverse of
the) factor monthly realized volatility. Heteroskedasticity-adjusted ¢-ratios are presented
in parentheses. OOS R%(%) denotes the out-of-sample (OOS) R2, which relies on an
initial (in-sample) window of 120 months. The sample period is from 1963:12 to 2015:12.
Bold t-ratios indicate statistical significance at the 5% level.

Factor 7o x 100 ~; x 100 R%*(%) OO0S R?*(%)
(t-stat)  (t-stat)

BAB 0.72 0.00  0.03 —0.45
(1.67)  (0.38)
MOM  0.43 0.03 041 0.00

(0.47)  (1.36)
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Table 8
Autoregression of the components of realized volatilities

The realized variances of each factor represent the sum of factor squared daily
returns in each month. The total variance is decomposed on its specific and systematic
components based on the CAPM pricing equation. The factors are betting-against-beta
(BAB) and momentum (MOM). The AR(1) process regresses the (non-overlapping inverse
of the) factor monthly realized volatility (or each of its components) on its own lagged
value. Heteroskedasticity-adjusted t-ratios are presented in parentheses. OOS R?(%)
denotes the out-of-sample (OOS) R?, which relies on an initial (in-sample) window of 120
months. The sample period is from 1963:12 to 2015:12. Bold t-ratios indicate statistical
significance at the 5% level.

Volatility 00 p1 R*(%) OOS R*(%)

(t-stat) (t-stat)
Panel A: BAB

Total 16.72 0.74 54.82 57.06
(8.09) (20.89)

Spec. 26.96 0.68 46.13 47.46
(10.17) (20.30)

Syst. 930.83  —0.00  0.00 —0.15

(1.54)  (=0.01)
Panel B: MOM

Total 9.38 0.70  49.05 55.19
(9.75) (21.48)

Spec. 1181 068  46.11 50.42
(10.81) (22.45)

Syst. 210.73  —0.00  0.00 —0.50

(6.62) (—0.11)
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Table 9
Performance of scaled factor strategies: alternative variance measures

The performance of the scaled betting-against-beta factor (BAB*) is compared with
the Fama-French-Carhart scaled risk factors: market (RMRF*), size (SMB*), value
(HML*), momentum (MOM?*), profitability (RMW*), and investment (CMA*). Each
scaled factor uses the realized variance in the previous six months to scale the exposure
to the original factor. All statistics are computed with monthly returns. Reported are the
maximum and minimum one-month returns observed in the sample, the mean average
excess return (annualized), the (annualized) standard deviation of each factor, excess
kurtosis, skewness, (annualized) Sharpe ratio, and the maximum drawdown (MDD).
IR denotes the (annualized) information ratio of the scaled factor with respect to the
unscaled benchmark. The sample returns are from 1964:01 to 2015:12. The max, min,
mean, standard deviation and maximum drawdown are in percentage points.

Factor Max. Min. Mean S.D. Kurt. Skew. Sharpe IR MDD

RMRF* 11.39 -20.35 4.99 13.99 1.64 -0.57 0.36 0.00 -57.36
SMB*  21.79 -21.52 434 1796 1.50 0.11 024 -0.02 -82.76
HML* 2313 -17.50 741 1778 0.92 0.12 0.42 0.12 -55.81
MOM* 21.74 -17.06 18.67 17.04 1.18 -0.15 1.10 0.98 -28.28
RMW* 1582 -24.01 7.63 16.65 1.10 -0.19 0.46 0.23 -62.33
CMA* 13.77 -14.23 838 15.63 -0.07 0.16 0.54 0.14 -37.14
BAB* 18.25 -22.79 19.16 16.38 1.63 -0.43 1.17 0.76 -57.14
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Table 10
Performance of scaled factor strategies: GARCH(1,1)

The performance of the scaled betting-against-beta factor (BAB*) is compared with
the Fama-French-Carhart scaled risk factors: market (RMRF*), size (SMB¥*), value
(HML*), momentum (MOM?*), profitability (RMW*), and investment (CMA*). Each
scaled factor uses the volatility forecast obtained from a GARCH(1,1) model to scale
the exposure to the original factor. All statistics are computed with monthly returns.
Reported are the maximum and minimum one-month returns observed in the sample,
the mean average excess return (annualized), the (annualized) standard deviation of each
factor, excess kurtosis, skewness, (annualized) Sharpe ratio, and the maximum drawdown
(MDD). IR denotes the (annualized) information ratio of the scaled factor with respect
to the unscaled benchmark. The sample returns are from 1963:07 to 2015:12, while the
first volatility forecast and scaled factor observation occurs for 1973:07. The max, min,
mean, standard deviation and maximum drawdown are in percentage points.

Factor Max. Min. Mean S.D. Kurt. Skew. Sharpe IR MDD

RMRF* 9.14 -1852 449 1224 225 -0.75 037  -0.18 -42.77
SMB* 16.83 -13.35 3.01 11.96 1.75 0.14 0.25 0.02 -62.68
HML* 1287 -11.67 3.79 1223 0.73 -0.13 031 -0.18 -48.07
MOM* 1294 -2762 999 1399 6.31 -1.22 0.71 0.43 -31.88
RMW* 954 -18.18 591 12.64 1.78 -0.45 047  0.19 -57.12
CMA* 953 -9.80 6.76 11.75 -0.13 0.04 0.58 0.01 -31.88
BAB* 14.49 -18.18 14.58 13.18 237 -0.71 1.11 0.65 -54.01
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Table 11

Performance of factor-based strategies: 1973:07-2015:12

The performance of the betting-against-beta factor (BAB) is compared with the Fama-
French-Carhart risk factors: market (RMRF), size (SMB), value (HML), momentum
(MOM), profitability (RMW), and investment (CMA). All statistics are computed with
monthly returns. Reported are the maximum and minimum one-month returns observed

in the sample, the mean average excess return (annualized), the (annualized) standard

deviation of each factor, excess kurtosis, skewness, (annualized) Sharpe ratio, and the
maximum drawdown (MDD). The sample returns are from 1973:07 to 2015:12. The max,
min, mean, standard deviation and maximum drawdown are in percentage points.

Factor Max. Min. Mean S.D. Kurt. Skew. Sharpe MDD
RMRF 16.10 -23.24 6.71 1594 2.00 -0.56  0.42 -54.36
SMB 2232 -16.70 294 10.78 6.96 0.59 0.27  -52.82
HML 1391 -13.11 394 10.36 2.59  0.00 0.38  -45.21
MOM 26.16 -45.79 14.53 2539 7.69 -1.44 0.57  -80.36
RMW 1219 -17.57 333 7.76 1145 -0.45 043  -39.17
CMA 951 -6.81 411 6.87 183 0.38 0.60  -17.30
BAB 12,89 -15.22 1090 11.92 3.22 -0.67 091 -52.03
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Table 12
Transaction costs and leverage constraints

Estimates of the turnover and after-cost of three strategies timing exposure to the
BAB equity factor for different volatility targets. The strategies are: i) the BAB* strategy
targeting constant volatility using recent one-month realized volatility; ii) a version of
BAB* constrained to have no leverage w.r.t. the original factor; iii) a strategy allowing
up to 50% leverage. Panel A, B and C show results for a target volatility of 12%, 9%,
and 6%, respectively. The columns show the average absolute change in weights of the
strategy; the average (annualized) excess return; the alpha of the dynamic strategy w.r.t.
to plain BAB assuming transaction costs of, respectively, zero, one, ten and fourteen
basis points. The last column shows the transaction costs that would eliminate the alpha
of each dynamic strategy (in basis points). The returns are from 1964:01 to 2015:12.

Strategy |Aw|  ER a  1bps 10bps 14bps Break
even
Panel A: volatility target of 12%

BAB* 0.51 21.31 886 873 7.64 7.15 73
No leverage 0.03 9.54 1.66 1.65 1.58 1.55 220
50% leverage 0.08 13.92 3.89 3.87 3.69 3.61 194

Panel B: volatility target of 9%

BAB* 0.38 1598 6.64 6.55 5.73 5.36 73
No leverage 0.04 9.42 236 2.35 2.25 2.21 213
50% leverage 0.13 12.72 4.23 4.19 3.90 3.78 131

Panel C: volatility target of 6%

BAB* 0.25 10.65 4.43 4.37 3.82 3.57 72
No leverage 0.09 8.48 2.82 280 2.60 2.52 130
50% leverage 0.18 10.07 3.93 3.89 3.50 3.33 91
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Table 13
International evidence

Descriptive statistics of BAB* in five international regions. Reported are the start
and end months for each series of returns, the maximum and minimum one-month returns
observed in the sample, the mean average excess return (annualized), the (annualized)
standard deviation of the scaled factor in each market, its excess kurtosis, skewness,
(annualized) Sharpe ratio, the (annualized) information ratio of BAB* w.r.t. its original
version, the respective t-statistic, and the maximum drawdown (MDD). The max, min,
mean, standard deviation and maximum drawdown are in percentage points. Bold t-ratios
indicate statistical significance at the 5% level.

Market Global  Global FEurope North  Pacific
Ex-USA America

Start  1987:04 1987:04 1989:04 1987:04 1989:01

End 2016:12 2016:12 2016:12 2016:12 2016:12
Max 10.45 11.59 14.42 13.34 14.83
Min -12.50 -7.92 -11.74 -14.29 -9.23
Mean 8.90 9.95 9.74 9.10 8.60
STD 10.07 9.88 11.58 12.53 11.87

Kurt 2.49 0.88 1.87 2.96 1.18
Skew -0.55 0.03 -0.05 -0.60 0.17
SR 0.88 1.01 0.84 0.73 0.72
IR 1.07 0.86 0.88 0.91 0.68

t-stat 5.82 4.70 4.63 4.95 3.61
MDD -0.36 -0.42 -0.23 -0.57 -0.44
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