
A Portfolio Perspective on the

Multitude of Firm Characteristics∗

Victor DeMiguel Alberto Mart́ın-Utrera Francisco J. Nogales Raman Uppal

March 8, 2018

Abstract

We investigate how many characteristics matter jointly for an investor who cares
not only about average returns but also about portfolio risk and transaction costs.
Our main finding is that transaction costs significantly increase the dimension of
the cross section of stock returns. While in the absence of transaction costs only
a small number of characteristics—about six—are significant, in the presence of
transaction costs this number increases to 15. The explanation is that, as we show
analytically and empirically, combining characteristics helps to substantially reduce
transaction costs because the trades in the underlying stocks required to rebalance
different characteristics net out. Our work demonstrates that transaction costs
provide an economic rationale to consider a larger number of characteristics than
that considered in prominent asset-pricing models.
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1 Introduction

Hundreds of variables have been proposed to predict the cross-section of stock returns;

see, for instance, Harvey, Liu, and Zhu (2015), McLean and Pontiff (2016), and Hou, Xue,

and Zhang (2017).1 This abundance of cross-sectional predictors leads Cochrane (2011)

to ask, “Which characteristics really provide independent information about average

returns? Which are subsumed by others?” Likewise, Goyal (2012) states that “these

days one has a multitude of variables that seem to explain the cross-sectional pattern

of returns. The amount of independent information in these variables is unclear as no

study to date [...] has conducted a comprehensive study to analyze the joint impact of

these variables.”

Cochrane and Goyal challenge researchers to characterize the dimension of the

cross-section of stock returns by identifying a small set of characteristics that subsume

the rest. To address this challenge, several papers use cross-sectional regressions to shrink

the cross section of expected stock returns ; see Green, Hand, and Zhang (2017), Frey-

berger, Neuhierl, and Weber (2016), and Messmer and Audrino (2017). These papers,

however, study the dimension of the cross section in the absence of transaction costs, but

transaction costs matter because the hundreds of predicting variables discovered in the

literature pose a challenge to the efficient market hypothesis only if investors can exploit

them to build a portfolio that delivers superior risk-adjusted returns net of transaction

costs. To address this gap in the literature, our objective is to study how transaction

costs affect the dimension of the cross section of stock returns.

To achieve our objective, we study how many firm-specific characteristics matter

jointly from a portfolio perspective; that is, from the perspective of an investor who cares

not only about average returns, but also about portfolio risk and transaction costs. A

portfolio perspective is required in order to assess how many characteristics matter jointly

because it is optimal to trade combinations of characteristics to reduce both portfolio

risk and transaction costs.

1See also the following survey papers: Subrahmanyam (2010), Richardson, Tuna, and Wysocki
(2010), and Nagel (2013), and the book Bali, Engle, and Murray (2016).
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Our main finding is that transaction costs significantly increase the dimension of

the cross section of stock returns. We consider a dataset with 51 characteristics and we

find that while in the absence of transaction costs only a small number of characteristics—

about six—are significant, in the presence of transaction costs this number increases to

15. The intuition behind this result is that combining characteristics is advantageous in

the presence of transaction costs because the trades in the underlying stocks required

to rebalance different characteristics often cancel each other out, and thus, combining

a larger number of characteristics allows one to substantially reduce transaction costs.

Essentially, combining characteristics allows one to diversify trading, just as combining

them allows one to diversify risk.

To quantify the benefits from trading diversification we first compare analytically

and empirically the average trading volume (turnover) required to exploit an equally

weighted portfolio of characteristics in combination with that required to exploit them

in isolation. Analytically, we show that the turnover required to rebalance an equally

weighted portfolio of the K characteristics is about 1/
√
K of that required to rebal-

ance the characteristics separately. Empirically, we find that while the average monthly

turnover required to exploit a characteristic in isolation is 24.09%, the turnover required

to exploit an equally weighted combination of characteristics is only 6.71%; that is, trad-

ing diversification delivers a 72.15% reduction in turnover. Note that a reduction in

turnover will translate into a reduction in transaction costs regardless of the particular

manner in which transaction costs are modeled.

To achieve our main research goal, we then extend the parametric portfolio frame-

work in Brandt, Santa-Clara, and Valkanov (2009). Parametric portfolios are obtained

by adding to a benchmark portfolio a linear combination of the long-short portfolios

associated with each of the firm-specific characteristics considered. To determine which

characteristics are jointly significant, we use a screen-and-clean method to test which

characteristics have parametric portfolio weights that are significantly different from

zero. Then, we address three research questions. First, how many characteristics are

jointly significant from a portfolio perspective? Second, how does the answer to this

question change with transaction costs? Third, can an investor improve out-of-sample
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performance net of transaction costs by exploiting a large set of characteristics instead

of the small number considered in prominent asset-pricing models?

Our answers to these three questions are as follows. First, in the absence of trans-

action costs, only a small number of characteristics—about six—are significant. Five

characteristics—unexpected quarterly earnings, return volatility, asset growth, 1-month

momentum, and gross profitability—are significant because they increase the mean return

and also help to reduce the risk of the portfolio of characteristics. A sixth characteristic—

beta—is significant only because of its ability to reduce the risk of the other character-

istics, in particular, the return-volatility characteristic.2 We find that traditional char-

acteristics such as 12-month momentum and book to market are not significant because,

although they have high mean returns, they do not offer a sufficiently attractive tradeoff

between portfolio mean return and risk.

Second, in contrast to what one would find if evaluating characteristics in isolation,

we find that the presence of transaction costs increases the number of jointly significant

characteristics from six to 15. This is because the benefits of trading diversification are

large when combining characteristics optimally. Indeed, we find empirically that the

marginal transaction cost of trading the stocks underlying a characteristic is reduced

by around 65% on average when they are combined in an optimal parametric portfolio.

Consequently, certain characteristics that would require a large amount of trading in the

underlying stocks if exploited in isolation, such as the short-term-reversal characteristic

(i.e., 1-month momentum), continue to be significant in the presence of transaction costs

because of the trading diversification possible from combining characteristics.

Finally, we show that an investor can exploit a large set of characteristics in the

presence of transaction costs to achieve an out-of-sample Sharpe ratio that is larger than

that obtained by exploiting small sets of characteristics that are typically considered in

prominent asset-pricing models. For instance, we find the investor achieves an out-of-

sample Sharpe ratio of returns net of transaction costs around 100% larger than that from

2The returns of the beta and return-volatility characteristics are highly correlated over time, but
while return volatility has a large (negative) mean return, beta has a negligible mean return. Thus,
going long the beta characteristic allows the investor to hedge the risk of her short position in the
return-volatility characteristic, without compromising its mean return.
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exploiting the three traditional characteristics considered in Brandt et al. (2009) and 25%

higher than that from exploiting a set of four characteristics that include investment and

profitability characteristics, which are highlighted in Hou, Xue, and Zhang (2014) and

Fama and French (2015). These out-of-sample results confirm that in the presence of

transaction costs the cross section of stock returns is not fully explained by a small set

of characteristics.3

Our main finding complements the result in Kozak, Nagel, and Santosh (2017) that

principal-component-sparse asset-pricing models explain the cross section better than

characteristic-sparse models. Our work demonstrates that transaction costs increase the

number of characteristics that are significant for an investor, and thus, transaction costs

provide an economic rationale for non-sparse characteristic-based asset-pricing models.

1.1 Characteristics and factors

We now discuss the relation between firm-specific characteristics and risk factors. Charac-

teristics are variables that can be computed using individual-firm data, e.g., the historical

stock-return volatility of a firm. Factors, on the other hand, are variables that proxy for

a common source of risk, e.g., the market return. Firm-specific characteristics are related

to factors because the return of a long-short portfolio based on a characteristic can be

used as a proxy for an underlying unknown risk factor. For instance, Fama and French

(1993) finds that returns on long-short portfolios based on size and book to market ex-

plain the cross-section of stock returns, and thus argues that these characteristics are

proxies for common risk factors.

The relation between characteristics and risk factors, however, is not always clear.

For instance, Daniel and Titman (1997) challenges the findings in Fama and French (1993)

and claims that it is the size and book-to-market characteristics themselves rather than

the covariance structure that explains the cross-section of expected stock returns. Pastor

and Stambaugh (2000) explains that once model uncertainty and margin constraints

are taken into account, the difference between characteristic-based and risk-factor-based

3This out-of-sample analysis also alleviates the data-mining concerns raised in Fama (1991), Kogan
and Tian (2013), Harvey et al. (2015), Bryzgalova (2015), McLean and Pontiff (2016), Linnainmaa and
Roberts (2018), and Chordia, Goyal, and Saretto (2017).
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models is small from an investment perspective. In addition, Kozak, Nagel, and Santosh

(2018) argues that there is no clear distinction between risk-factor pricing and behavioral

asset pricing. Therefore, we consider 50 firm-specific characteristics and are agnostic

about whether a particular characteristic is a proxy for the loading on a common risk

factor or not; instead, we account for risk directly through the mean-variance utility of

the investor.4

1.2 Relation to literature on asset pricing

The asset pricing literature can be classified by the following three methodologies: cross-

sectional regression, time-series regression, and the stochastic discount factor approach.

In this section, we discuss how our portfolio approach relates to these three approaches.

One of the most popular cross-sectional approaches is the Fama and MacBeth

(1973) procedure, which runs a cross-sectional regression of stock returns on firm-specific

characteristics at each date, and then tests the significance of the risk premia, defined

as the average of the regression slopes over time. One advantage of cross-sectional re-

gressions when studying the dimension of the cross section is that it allows one to test

which characteristics are jointly significant; see Green et al. (2017), Freyberger et al.

(2016), and Messmer and Audrino (2017). Freyberger et al. (2016), in particular, uses

nonparametric cross-sectional regressions to study the dimension of the cross section.

The main difference between these papers and our work is that, while these papers

ignore transaction costs, we focus on the effect of transaction costs on the dimension of the

cross section of stock returns. Another important difference is that while cross-sectional

regressions focus on mean returns, our portfolio approach accounts for both mean and

variance of returns. Analytically, we show that our approach based on the parametric

portfolios produces results that are different from those of Fama-MacBeth regressions,

even in the absence of transaction costs, unless the covariance matrix of asset returns is

4In addition to the 50 firm-specific characteristics, we consider also beta (i.e., the exposure of each
stock to the market-return factor) because of its importance for investment management, as shown in
Frazzini and Pedersen (2014). Although beta is a risk-factor loading rather than a characteristic, for
expositional ease we refer to all 51 variables as characteristics.
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diagonal.5 For example, Fama-MacBeth regressions find that while return volatility is

significant, the beta characteristic is not. However, because the cross-sectional slopes of

return volatility and beta are highly correlated over time, our portfolio approach, which

accounts for risk, shows that the investor optimally goes short return volatility and goes

long beta to reduce risk; hence, we find that both characteristics are jointly significant.6

The time-series approach regresses the return of a characteristic-based long-short

portfolio on the returns of a few commonly accepted factors, such as the Fama and French

(1993) and Carhart (1997) four factors. If the intercept of this time-series regression is

statistically significant, then the return on the characteristic is not fully explained by

the commonly accepted factors. Gibbons, Ross, and Shanken (1989) shows that testing

the significance of the intercept is equivalent to testing whether the characteristic long-

short portfolio can improve the Sharpe ratio of a mean-variance investor who already

has access to the commonly accepted factors. Consequently, this approach captures the

tradeoff between mean return and risk. Recently, Novy-Marx and Velikov (2016) develops

a “generalized alpha” that extends the time-series regression to capture the impact of

transaction costs.

A disadvantage of the time series approach is that it focuses on the significance

of the intercept, and therefore, tests the significance of a single characteristic when it is

added to a set of commonly accepted factors.7 This is a limitation because the result

of the statistical inference depends on the sequence in which variables are selected. For

instance, a time-series regression of the return on the beta characteristic onto the returns

5The slopes in cross-sectional regressions can be estimated using either ordinary least squares (OLS)
or generalized least squares (GLS). Lewellen, Nagel, and Shanken (2010) recommends using GLS because
its R2 captures the mean-variance efficiency of the model’s factor-mimicking portfolios. Our analytical
results show that both OLS and GLS cross-sectional regressions produce results that are different from
those of our portfolio approach.

6Our out-of-sample analysis is also related to Lewellen (2015), which shows that Fama-MacBeth
regressions provide good out-of-sample estimates of stock expected returns. Our out-of-sample analysis,
however, focuses on estimating directly portfolio weights, which incorporate information about expected
returns as well as risk and transaction costs.

7Note that one can also regress the returns of multiple assets with respect to the commonly accepted
factors. Gibbons, Ross, and Shanken (1989) shows that in this case, testing whether the intercepts of
these regressions are jointly equal to zero is equivalent to testing whether the multiple assets can improve
the Sharpe ratio of an investor who already has access to the commonly accepted factors. The Gibbons,
Ross, and Shanken test, however, does not indicate how many of the multiple assets are significant.
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of the Fama and French (1993) and Carhart (1997) four factors finds that beta is not

significant, but a time-series regression of the beta return onto these four factors and

the return of the return-volatility characteristic finds that beta is significant. We show

analytically that our approach of testing the significance of the characteristics for mean-

variance parametric portfolios is equivalent to testing the significance of the slopes of a

particular time-series regression in the absence of transaction costs. The advantage of our

approach based on slope significance is that it allows one to consider all characteristics

simultaneously rather than sequentially. This is crucial because both portfolio risk and

transaction costs depend critically on how characteristics are combined.

There are also papers that combine elements from both cross-sectional and time-

series regressions. Back, Kapadia, and Ostdiek (2015) first runs cross-sectional regres-

sions to estimate risk premia and then runs time-series regressions of these risk premia

on factors. The advantage of this procedure is that it avoids the errors-in-variables

problem. Feng, Giglio, and Xiu (2017) combines the double-selection lasso in Belloni,

Chernozhukov, and Hansen (2014) with two-pass regressions to estimate risk prices and

evaluate the marginal contribution of a new factor with respect to an existing high-

dimensional set of factors. The advantage of this approach is that it explicitly accounts

for potential model-selection errors, and thus, avoids the biases associated with omitted

variables. Nevertheless, the inference in the two aforementioned approaches depends on

the sequence in which characteristics are tested, just like in time-series regressions.

Baker, Luo, and Taliaferro (2017) studies the relevance of cross-sectional and

time-series regressions for a mean-variance investor. The paper shows that a risk-neutral

investor facing quadratic transaction costs cares only about characteristics that are signif-

icant in cross-sectional regressions, a mean-variance investor facing no transaction costs

cares only about time-series regressions, and a mean-variance investor facing quadratic

transaction costs cares about both types of regressions. We sidestep the choice between

cross-sectional and time-series regressions by focusing directly on the parametric portfolio

problem of a mean-variance investor facing transaction costs.

Finally, the stochastic discount factor (SDF) approach is the most closely related

to our portfolio approach because one can show that for every mean-variance efficient
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portfolio there is an SDF that is an affine function of the portfolio return. Ghosh, Julliard,

and Taylor (2016a,b) uses a model-free robust approach to estimate the SDF that fits a

cross section of asset returns by minimizing its entropy relative to the physical probability

measure. Using this approach, Ghosh et al. (2016a) identifies a novel source of risk not

captured by the Fama and French (1993) and Carhart (1997) factors.

Kozak, Nagel, and Santosh (2017) proposes a robust SDF by imposing an economi-

cally-motivated prior on SDF coefficients that can shrink the contributions of both low-

variance principal components of characteristics as well as individual characteristics with

low risk prices. They find that principal-component-sparse SDFs explain the cross section

better than characteristic-sparse SDFs. The main difference between our paper and the

aforementioned papers using the SDF approach is that we study the impact of transaction

costs on the dimensionality of the cross section of stock returns. Our main finding is that

transaction costs increase the number of characteristics that are significant for portfolio

construction, and thus, transaction costs provide an economic rationale for non-sparse

characteristic-based asset-pricing models.

1.3 Relation to literature on transaction costs

Several papers study the transaction costs associated with trading particular charac-

teristics: Korajczyk and Sadka (2004) studies the market-impact costs associated with

exploiting momentum and finds that this characteristic can be exploited on only a rela-

tively modest scale. Novy-Marx and Velikov (2016) considers 23 different anomalies and

finds that simple strategies to mitigate transaction costs significantly reduce the impact of

transaction costs on the profitability of anomaly-based trading strategies. Chen and Ve-

likov (2017) considers 135 anomalies and shows that if, in addition to transaction costs,

one takes into account the post-publication decay, the profitability of anomaly-based

trading strategies is substantially diminished. The aforementioned papers use publicly

available datasets to estimate the costs of an average investor. Frazzini, Israel, and

Moskowitz (2015), using proprietary data from an institutional money manager, finds

that the trading costs associated with exploiting size, momentum, and book to market
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can be quite small for large institutional investors, and that these managers can exploit

these characteristics to a much larger extent than previously thought.

Very few papers consider the transaction costs associated with trading multiple

characteristics jointly. Hanna and Ready (2005) shows that the long-short stock-selection

strategy considered in Haugen and Baker (1996), which is based on a combination of more

than 50 characteristics, does not outperform the portfolios based solely on book to market

and momentum once transaction costs are taken into account. Hand and Green (2011)

considers parametric portfolios with three accounting-based characteristics in addition

to size, book to market, and momentum and finds that accounting-based characteristics

can improve performance substantially, but transaction costs reduce the benefits from

exploiting accounting-based characteristics. We show that by combining a large number

of characteristics the investor can alleviate the impact of transaction costs significantly

because of trading diversification.

Other papers have also found that combining characteristics helps to reduce trans-

action costs. For instance, Frazzini, Israel, and Moskowitz (2015) considers size, value,

and momentum and explains that “value and momentum trades tend to offset each other,

resulting in lower turnover which has real transaction costs benefits.” Barroso and Santa-

Clara (2015) considers currency portfolios based on six characteristics and explains that

“transaction costs depend crucially on the time-varying interaction between character-

istics.” Novy-Marx and Velikov (2016) studies “filtering,” a cost mitigation technique

that allows investors trading one strategy to opportunistically take small positions in

another at effectively negative trading costs. We build on these three papers and show

how to quantify precisely the reduction in transaction costs when an investor optimally

rebalances a portfolio based on a large number of characteristics.

The rest of this paper is organized as follows. Section 2 describes the data. Sec-

tion 3 explains how we extend the methodology of parametric portfolios. Section 4

characterizes the benefits from trading diversification. Sections 5 and 6 study how many

characteristics matter in the absence and presence of transaction costs, respectively.

Section 7 evaluates the out-of-sample performance of different portfolios. Section 8 con-

cludes. Appendix A studies how our portfolio approach relates to the cross-sectional and
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time-series regression approaches. Appendix B contains proofs for all analytical results

in the manuscript.

The Internet Appendix investigates the robustness of our main finding that trans-

action costs increase the number of significant characteristics to: considering quadratic

instead of proportional transaction costs, excluding microcaps, applying the reality check

in White (2000), expanding our dataset to consider also characteristics with a large

number of missing observations, different subperiods, risk-aversion, and using different

methods to standardize firm characteristics. In addition, the Internet Appendix checks

the robustness of our out-of-sample results to: firm size, shortsale constraints, and the

constraint on maximum turnover.

2 Data

We combine U.S. stock-market information from CRSP, Compustat, and I/B/E/S, cover-

ing the period from January 1980 to December 2014. We start by compiling data on the

100 firm-specific characteristics considered in Green et al. (2017),8 but drop characteris-

tics with a large proportion of missing observations.9 Specifically, we drop characteristics

with more than 5% of missing observations for more than 5% of firms with CRSP returns

available for the entire sample from 1980 to 2014. In addition, we drop characteristics

without any observations for more than 1% of these firms. Table 1 lists the resulting 51

characteristics together with their definitions, the name of the author(s) who identified

them, and the date and journal of publication.

Our initial database contains every firm traded on the NYSE, AMEX, and NAS-

DAQ exchanges. We then remove firms with negative book-to-market ratios. As in

Brandt et al. (2009), we also remove firms below the 20th percentile of market capital-

ization because these are very small firms that are difficult to trade. Our final dataset

8As in Green et al. (2017), when constructing monthly characteristics at time t, we assume that
annual (quarterly) accounting data is available at the end of month t− 1 if the firm’s fiscal year ended
at least six (four) months earlier.

9To ensure that our results are reliable, in our main analysis we have considered only characteristics
with a small proportion of missing observations. However, in Section IA.4 of the Internet Appendix, we
run our experiments using all 100 characteristics and find that our main finding that transaction costs
increase the dimension of the cross section is robust.
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contains 51 firm-specific characteristics for a total of 17,930 firms of which an average of

3,071 firms have return data in a particular month.

As in Green et al. (2017), we cross-sectionally winsorize each characteristic; that

is, we replace extreme observations that are beyond a certain threshold with the value

of the threshold. Specifically, we set equal to the third (first) quartile plus (minus) three

times the interquartile range any observations that are above (below) this threshold.

Finally, as in Brandt et al. (2009), we standardize each characteristic so that it has

a cross-sectional mean of zero and standard deviation of one. The resulting standardized

characteristic is a long-short portfolio that goes long stocks whose characteristic is above

the cross-sectional average, and short stocks whose characteristic is below the cross-

sectional average.

3 Methodology

To study how many characteristics matter jointly from a portfolio perspective, this section

explains how we extend the parametric portfolio methodology in Brandt et al. (2009).

We also describe a screen and clean method to test whether the parametric portfo-

lio weights corresponding to the different characteristics are significantly different from

zero. Appendix A compares analytically and empirically our methodological approach

based on the parametric portfolios with the cross-sectional (Section A.1) and time-series

(Sections A.2 and A.3) regression approaches.

3.1 Mean-variance parametric portfolios

Parametric portfolios use a set of firm-specific characteristics to tilt the benchmark port-

folio toward stocks that help to increase the investor’s utility. The portfolios are obtained

by adding to the benchmark portfolio a linear combination of long-short portfolios ob-

tained by standardizing K firm-specific characteristics cross sectionally so that they have

zero mean and unit standard deviation. The resulting parametric portfolio at time t,

wt(θ) ∈ RNt , can be written as

wt(θ) = wb,t + (x1,tθ1 + x2,tθ2 + . . .+ xK,tθK)/Nt, (1)
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where wb,t ∈ RNt is the benchmark portfolio at time t, xk,t ∈ RNt is the long-short portfolio

obtained by standardizing the kth firm-specific characteristic at time t, θk is the weight

of the kth characteristic in the parametric portfolio, and Nt is the number of firms at

time t.10 As in Brandt et al. (2009), we consider a portfolio that is fully invested in risky

assets.11 The parametric portfolio can also be written in compact matrix notation by

defining Xt ∈ RNt×K to be the matrix whose kth column is xk,t:

wt(θ) = wb,t +Xtθ/Nt, (2)

where θ ∈ RK is the parameter vector, whose kth component is the weight of the kth

characteristic θk, and Xtθ/Nt is the characteristic portfolio at time t.

The return of the parametric portfolio at time t+ 1, which we denote as rp,t+1(θ),

can thus be rewritten as

rp,t+1(θ) = w>b,trt+1 + θ>X>t rt+1/Nt = rb,t+1 + θ>rc,t+1, (3)

where rt+1 ∈ RNt is the return vector at time t + 1, rb,t+1 = w>b,trt+1 is the benchmark

portfolio return at time t+ 1, and rc,t+1 = X>t rt+1/Nt is the characteristic return vector

at time t + 1, which contains the returns of the long-short portfolios corresponding to

the K characteristics scaled by the number of firms Nt.
12 Equation (3) shows that

the parametric-portfolio return is the benchmark-portfolio return plus the return of the

characteristic portfolio.

We assume that the investor optimizes mean-variance utility. The advantages of

mean-variance utility, as we will show below, are that it allows us to identify the marginal

contribution of each characteristic to the investor’s utility and to compare analytically

10The weights of the characteristics in the parametric portfolio are scaled by the number of stocks Nt

so that they are meaningful for the case with a varying number of stocks. Without this scaling parameter,
increasing the number of stocks while keeping the weights fixed would result in more aggressive portfolio
allocations.

11Consequently, the parametric portfolio weights on the stocks need to sum to one. Because the
weights on the stocks in the long-short portfolios sum to zero, this implies that the parametric weight
on the benchmark portfolio must equal one.

12Note that we use only lagged values of characteristics to build portfolios; thus, the returns of the
characteristic portfolio formed at time t, Xtθ/Nt are evaluated using the return at time t + 1; that is,
θ>X>t rt+1/Nt.
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the parametric portfolio weights to the results from time-series and cross-sectional re-

gressions.13 In particular, we assume the investor solves the following problem:

min
θ

γ

2
vart[rp,t+1(θ)]− Et[rp,t+1(θ)], (4)

where γ is the risk-aversion parameter and vart[rp,t+1(θ)] and Et[rp,t+1(θ)] are the variance

and mean of the parametric portfolio return, respectively.

Given T historical observations of returns and characteristics, the following propo-

sition shows that the parametric portfolio problem can be formulated as a tractable

quadratic optimization problem.

Proposition 1. The mean-variance parametric portfolio problem in (4) is equivalent to

min
θ

(γ/2)θ>Σ̂cθ︸ ︷︷ ︸
var(char)

+ γθ>σ̂bc︸ ︷︷ ︸
cov(bench)

− θ>µ̂c︸︷︷︸
mean

, (5)

where Σ̂c and µ̂c are the sample covariance matrix and mean of the characteristic-return

vector rc, and σ̂bc is the sample vector of covariances between the benchmark portfolio

return rb and the characteristic-return vector rc.

Proposition 1 shows that the mean-variance parametric portfolio problem is to

find the parameter vector θ that offers the optimal tradeoff between the variance of the

characteristic portfolio return, (γ/2)θ>Σ̂cθ; the covariance of the characteristic portfolio

return with the benchmark portfolio return, γθ>σ̂bc; and the mean characteristic portfolio

return, θ>µ̂c.

3.2 Transaction costs

As in Brandt et al. (2009) and Hand and Green (2011), we consider an investor who faces

proportional transaction costs that decrease with firm size and over time. Proportional

transaction costs are a reasonable assumption for the average investor, as explained in

Novy-Marx and Velikov (2016) and Chen and Velikov (2017). Nevertheless, Section IA.1

13We have run our empirical analysis also for power utility, as in Brandt et al. (2009), and the main
insights are unchanged.
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of the Internet Appendix shows that our main findings are robust to using quadratic

transaction costs that are often used to model the price impact costs of large investors;

see, for instance, Korajczyk and Sadka (2004).

Let the proportional transaction cost parameter for the ith stock at time t be

κi,t = ytzi,t, (6)

where yt and zi,t capture the variation of the transaction cost parameter with time and

firm size, respectively. Following Brandt et al. (2009) and Hand and Green (2011), we

assume yt decreases linearly from 3.3 in January 1980 to 1.0 in January 2002, and after

that it remains at 1.0.14 We set zi,t = 0.006 − 0.0025 ×mei,t, where mei,t is the market

capitalization of firm i at time t after being normalized cross-sectionally so that it takes

values between zero and one. This functional form results in proportional transaction

costs in the 1980s of about 180 basis points for the smallest firms and 100 basis points

for the largest firms, and after 2002 of about 60 basis points for the smallest firms and

35 basis points for the largest firms.

Given T historical observations of returns and characteristics, the transaction cost

associated with implementing the parametric portfolios can be estimated as

TC(θ) =
1

T − 1

T−1∑

t=1

‖Λt(wt+1(θ)− w+
t (θ))‖1, (7)

where the transaction cost matrix at time t, Λt, is the diagonal matrix whose ith diagonal

element contains κi,t, ‖a‖1 =
∑N

i=1 |ai| is the 1-norm of the N -dimensional vector a, and

w+
t is the portfolio before rebalancing at time t+ 1, that is,

w+
t = (wb,t +Xt × θ/Nt) ◦ (et + rt+1), (8)

where et is the Nt-dimensional vector of ones and x ◦ y is the Hadamard or component-

wise product of vectors x and y. Combining (5) and (7), the mean-variance parametric

portfolio problem with transaction costs is

min
θ

(γ/2)θ>Σ̂cθ︸ ︷︷ ︸
var(char)

+ θ>γσ̂bc︸ ︷︷ ︸
cov(bench)

− θ>µ̂c︸︷︷︸
mean

+ TC(θ).︸ ︷︷ ︸
transaction costs

(9)

14Brandt et al. (2009) defines yt so that transaction costs in 1974 are four times larger than in 2002.
Therefore, if we decrease yt uniformly until 1980, we would have a starting value for yt approximately
equal to 3.3. See also French (2008, p. 1553) for a discussion of the time evolution of transaction costs.
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3.3 Understanding why a characteristic matters

To understand why particular characteristics are significant from a portfolio perspec-

tive, it is useful to consider the first-order optimality conditions for the mean-variance

parametric portfolio problem with transaction costs, that is, the problem in (9).

By decomposing the variance of the characteristic portfolio return, θ>Σ̂cθ, into

a term associated with the characteristic own-variances, θ>diag(Σ̂c)θ, and a term as-

sociated with the characteristic covariances, θ>(Σ̂c − diag(Σ̂c))θ, where diag(Σ̂c) is the

diagonal matrix whose kth diagonal element contains the variance of the kth character-

istic return, the mean-variance parametric portfolio problem with transaction costs can

be rewritten as

min
θ

(γ/2)θ>diag(Σ̂c)θ︸ ︷︷ ︸
own−var(char)

+ (γ/2)θ>(Σ̂c − diag(Σ̂c))θ︸ ︷︷ ︸
cov(char)

+ θ>γσ̂bc︸ ︷︷ ︸
cov(bench)

− θ>µ̂c︸︷︷︸
mean

+ TC(θ).︸ ︷︷ ︸
tran. costs

(10)

Note that the transaction cost term TC(θ) is a convex function of the parameter

θ, but it is not differentiable at values of θ for which wi,t+1(θ) = w+
i,t(θ) for some i

and t. Therefore, the optimality conditions must be formally defined in terms of the

subdifferential ∂TC(θ).15

Proposition 2. The first-order optimality conditions for problem (10) are

0 ∈ γdiag(Σ̂c)θ︸ ︷︷ ︸
own−var(char)

+ γ(Σ̂c − diag(Σ̂c))θ︸ ︷︷ ︸
cov(char.)

+ γσ̂bc︸︷︷︸
cov(bench.)

− µ̂c︸︷︷︸
mean

+ ∂TC(θ)︸ ︷︷ ︸
costs

, (11)

where the kth component of the subdifferential of the transaction cost term is

∂θkTC(θ) =
1

T − 1

T−1∑

t=1

sign(wt+1(θ)−w+
t (θ))>(Λt[(Xt+1)•,k− (Xt)•,k ◦ (et + rt+1)]), (12)

where A•,k is the kth column of matrix A, and

sign(wi,t+1(θ)− w+
i,t(θ)) =





+1 if wi,t+1(θ) > w+
i,t(θ),

−1 if wi,t+1(θ) < w+
i,t(θ),

[−1, 1] if wi,t+1(θ) = w+
i,t(θ).

(13)

15See Rockafellar (2015) for an extensive treatment of subdifferentials.
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The first-order optimality conditions in (11) allow us to identify the marginal con-

tribution of each characteristic to the investor’s mean-variance utility. Specifically, the

kth component of the right-hand side in (11) is the marginal contribution of the kth char-

acteristic to the parametric portfolio mean-variance utility; that is, the marginal change

to mean-variance utility associated with a unit increase in the weight that the parametric

portfolio assigns to the kth characteristic. Moreover, the five terms on the right-hand

side of (11) are: the marginal contributions of the kth characteristic to the character-

istic own-variance, γdiag(Σ̂c)θ; the characteristic covariance with other characteristics,

γ(Σ̂c − diag(Σ̂c))θ; the covariance between the characteristic and benchmark portfolios,

γσ̂bc; the characteristic portfolio mean, −µ̂c; and the transaction cost, ∂ TC(θ).

Finally, to gauge the size of the trading diversification benefit associated with

combining characteristics, it will be useful to compute the marginal contribution to trans-

action costs of trading the kth characteristic in isolation (that is, without the benchmark

or any other characteristics), which is

∂isoθk TC(θ) =
1

T − 1

T−1∑

t=1

‖Λt[(Xt+1)•,k − (Xt)•,k ◦ (et + rt+1)]‖1. (14)

Straightforward algebra shows that the marginal contribution to transaction costs of

trading the kth characteristic in isolation, given in (14), is larger in general than that of

trading it in combination, given in (12).

3.4 The regularized parametric portfolios

Although the parametric portfolios only require estimating one parameter per charac-

teristic, we will be considering a large number of characteristics. To deal with such a

high-dimensional setting, we propose a new class of parametric portfolios, which we term

regularized parametric portfolios. These portfolios are obtained by imposing a lasso16

16The term lasso originated as the acronym for least absolute shrinkage and selection operator. The
lasso was originally proposed in Tibshirani (1996) in the context of statistical learning and has become
a prominent tool in the age of machine learning. See Hastie, Tibshirani, and Wainwright (2015) for an
in-depth treatment of the lasso and DeMiguel, Garlappi, Nogales, and Uppal (2009a) for a Bayesian
interpretation of the lasso constraint in the context of portfolio choice.

17



constraint on the parametric portfolio to achieve two goals. First, the lasso constraint

helps to avoid overfitting, reducing the impact of estimation error. Second, the lasso

constraint is a variable-selection method that results in parametric portfolios where only

the relevant characteristics receive a nonzero parameter. This is exploited by the screen-

and-clean significance test described in Section 3.5 to characterize the dimension of the

cross section.

In contrast, the minimum-entropy SDF approach used in Ghosh et al. (2016a)

results in SDFs that assign a nonzero weight to every characteristic, and thus, it is not

suitable to study the dimension of the cross section. The elastic-net SDF approach in

Kozak et al. (2017) shrinks the contributions to the SDF of both low-variance principal

components of characteristics as well as individual characteristics with low risk prices.

Shrinking only the contributions of low-risk-price characteristics allows us to study how

transaction costs affect the number of characteristics that are significant for an investor.

The regularized parametric portfolios are obtained by solving problem (9) subject

to the lasso constraint, that is, by solving

min
θ

γ

2
θ>Σ̂cθ + θ>γσ̂bc − θ>µ̂c + TC(θ), (15)

s.t. ‖θ‖1 ≤ δ, (16)

where ‖θ‖1 =
∑K

k=1 |θk| is the 1-norm of the parameter vector, and δ is the threshold

parameter. To gain intuition about δ, note that for δ = ∞, we recover the standard

parametric portfolios, and for δ = 0, we recover the benchmark portfolio. Thus, as one

increases δ, the regularized parametric portfolios move from the benchmark portfolio

toward the unregularized parametric portfolio.

3.5 Testing the significance of characteristics considered jointly

We now explain how we test whether the parametric portfolio weights corresponding to

the different characteristics are significantly different from zero. Chatterjee and Lahiri

(2011) shows that it is challenging to carry out statistical inference in the presence of a

lasso constraint, such as the one imposed on the regularized parametric portfolios. To ad-

dress this issue, we use a two-stage screen-and-clean method similar to the methods pro-
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posed in Wasserman and Roeder (2009), Meinshausen and Yu (2009), and Meinshausen,

Meier, and Buhlmann (2009). In the first stage, we screen the characteristics by using

the regularized parametric portfolios. Specifically, we use five-fold cross-validation, as ex-

plained in Hastie et al. (2015, Section 2.3), to select the lasso threshold δ that optimizes

the mean-variance criterion.17 For the resulting optimal lasso threshold, we compute the

regularized parametric portfolios and “screen” or remove any characteristics with a zero

parameter.

In the second stage, we clean the characteristics that were not removed in the first

stage. That is, we compute the parametric portfolios using the characteristics that were

not removed in the first stage, but now without a lasso constraint, thus circumventing

the concerns highlighted in Chatterjee and Lahiri (2011), and apply a bootstrap method

to establish which of these characteristics have parametric portfolio weights that are

significantly different from zero.18 Specifically, we apply the percentile-interval method

described in Efron and Tibshirani (1993, Section 13.3) and Hastie et al. (2015, Section

6.2) to establish the significance of the selected characteristics.19

17In particular, we divide the sample of monthly observations into five intervals of equal length. For
j from 1 to 5, we remove the jth-interval from the sample and use the remaining sample returns to
compute the regularized parametric portfolio for several values of δ. We then evaluate the return of the
resulting portfolios on the jth-interval. After completing this process for each of the five intervals, we
have out-of-sample portfolio returns for the entire sample for each value of δ. Finally, we compute the
mean-variance utility of these out-of-sample returns and select the value of δ that corresponds to the
portfolio with the largest mean-variance utility.

18Barroso and Santa-Clara (2015) uses a one-stage bootstrap method essentially equivalent to our
“clean” stage to test the statistical significance of the different characteristics in a currency paramet-
ric portfolio. This method is appropriate in the context of that paper because it considers only five
characteristics and thus does not require a regularization method like lasso.

19In detail, we first generate 1, 000 bootstrap samples from the original dataset using sampling with
replacement. Second, we estimate the optimal parametric portfolio for the remaining characteristics and
for each bootstrap sample. Finally, we declare as significant at the 5% level those characteristics whose
estimated parameter is strictly positive (strictly negative) for at least 95% of the bootstrap samples,
and compute the p-value as the proportion of bootstrap samples for which the parameter is less than
or equal to zero (greater than or equal to zero). Note that the parametric portfolio approach relies on
the assumption that, conditional on firm-specific characteristics, stock returns are independently and
identically distributed (iid). Therefore, we employ an iid bootstrap method. Nevertheless, to gauge the
importance of the iid assumption, we have repeated the tests using the stationary bootstrap in Politis
and Romano (1994), which takes serial dependence into account, and we have found that the results are
robust. In particular, we have run the (nonstudentized) stationary bootstrap with expected block sizes
of two and six months, and we have found that this does not affect the significance results.
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Other approaches have been considered in the literature to identify characteristics

that are jointly relevant when considered simultaneously. For instance, Freyberger et al.

(2016) and Messmer and Audrino (2017) use a refinement of the lasso approach known

as adaptive lasso to select characteristics in the context of cross-sectional regressions.

The adaptive lasso is complementary to our approach as it could be used as the variable-

selection method for the screen stage of our screen-and-clean approach.

In contrast, one might think of using a sequential bootstrap method to test the

significance of adding one more characteristic to an existing parametric portfolio. This

approach would be similar in spirit to the methodology proposed in Harvey and Liu (2018)

in the context of sequential factor selection. However, from a portfolio perspective a

sequential significance test would not capture the risk and trading-diversification benefits

from adding several characteristics simultaneously. This is crucial because both risk and

transaction costs depend critically on how characteristics are combined.20

4 Trading diversification

We now characterize analytically and empirically the magnitude of the trading diversifica-

tion benefits obtained by combining characteristics. We do this by comparing the average

trading volume (turnover) required to exploit characteristics in combination with that

required to exploit them in isolation. To simplify the exposition, in this section we focus

on the case where the investor holds an equally weighted portfolio of the characteristics,

but all results can be extended to the case with a generic portfolio of characteristics. Note

that the reduction of turnover that we characterize in this section will result in a reduc-

tion of transaction costs regardless of the particular manner in which transaction costs

are modeled. Then, in Sections 5 and IA.1, we show that in the presence of proportional

20In results not reported to conserve space, we find that our main finding that transaction costs
increase the number of significant characteristics is robust to the choice of significance test. The reason
for this is that our main insight is obtained by comparing the number of significant characteristics for
the cases with and without transaction costs. We find that, independently of the test or data sample
used, trading diversification results in an increased number of jointly significant characteristics for the
case with transaction costs.
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and quadratic transaction costs, respectively, the benefits of trading diversification lead

to an increase in the number of characteristics that are jointly significant for an investor.

4.1 Analytical results

Proposition 3 below characterizes the reduction in turnover obtained by combining char-

acteristics. The intuition underlying this proposition is that, just as we get diversification

of risk when we combine stocks, we get diversification of trading when we combine char-

acteristics. To see this, note that rebalancing the long-short portfolio associated with

each characteristic requires trading in the same set of underlying stocks. Thus, exploit-

ing multiple characteristics allows one to cancel out some of the trades in the underlying

stocks required to rebalance the characteristic long-short portfolios. For instance, if to

rebalance a characteristic long-short portfolio we need to buy a particular stock, whereas

to rebalance another characteristic we need to sell the same stock, then the net amount

of trading required to exploit these two characteristics in combination will be smaller

than that required to exploit them in isolation.

Proposition 3. Assume that the trades in the ith stock required to rebalance K > 1

different characteristics, that is, the quantities

tradei,k = (Xt+1)i,k − (Xt)i,k(1 + ri,t+1), k = 1, 2, . . . , K (17)

are jointly distributed as a multivariate Normal distribution with zero mean and positive-

definite covariance matrix Ω. Then:

1. The ratio of the average trading volume (turnover) in the ith stock required to

rebalance an equally weighted portfolio of the K characteristics to that required to

rebalance the K characteristics in isolation is

turnover(tradeewi )

turnover(tradeisoi )
=

√
e>Ωe∑K

k=1

√
Ωkk

< 1,

where e ∈ RK is the vector of ones, Ωkk is the variance of tradei,k,

turnover(tradeewi ) = E

[
1

K

∣∣∣
K∑

k=1

tradei,k

∣∣∣
]
, and
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turnover(tradeisoi ) = E

[
1

K

K∑

k=1

|tradei,k|
]
.

2. If, in addition, the covariance matrix Ω is symmetric with respect to all K char-

acteristics, that is, if the variances and correlations between the trades in the ith

stock required to rebalance the K different characteristics are all equal to σ2 and ρ,

respectively, then21

turnover(tradeewi )

turnover(tradeisoi )
=

√
1 + ρ(K − 1)

K
< 1. (18)

3. If, in addition, the correlations between the trades in the ith stock required to rebal-

ance the K different characteristics are all zero (ρ = 0), then

turnover(tradeewi )

turnover(tradeisoi )
=

1√
K

< 1.

Part 1 of Proposition 3 shows that, provided the covariance matrix of the re-

balancing trades is positive definite (and thus, the rebalancing trades between some of

the characteristics are not perfectly correlated), combining characteristics will result in

trading diversification and a reduction in turnover. Also, Part 2 of Proposition 3 shows

that the benefits of trading diversification increase with the number of characteristics and

decrease with the correlation between the rebalancing trades of different characteristics.

4.2 Empirical results

We now evaluate empirically the benefits from trading diversification. Figure 1 compares

the monthly turnover required to exploit the 51 characteristics in isolation with that

required to exploit them in an equally weighted combination.22 The figure shows that the

21Note that in (18) the term 1 + ρ(K − 1) is strictly positive because of the assumption that Ω is
positive definite.

22For this section only, we have adjusted the sign of every characteristic so that its associated long-
short portfolio produces positive average returns. The marginal contributions to turnover are computed
using Equation (12) for the case where the transaction cost matrix Λt is replaced by the identity matrix
and for an equally weighted portfolio of the 51 characteristics without the benchmark; that is, wt =
Xte/(51Nt), where e is the vector of ones.
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trading diversification benefits of combining characteristics are large empirically. While

the average monthly turnover required to exploit the 51 characteristics in isolation is

24.09%, the turnover required to exploit an equally weighted combination of them is

only 6.71%; that is, trading diversification delivers a 72.15% reduction in turnover.23

Note that this 72.15% reduction in turnover is similar in magnitude to that pre-

dicted by Part 3 of Proposition 3 for the symmetric case with zero correlation between

rebalancing trades across characteristics: 1 − 1/
√
K = 1 − 1/

√
51 ≈ 86%. Indeed,

Figure 2 gives a heatmap of the correlations between the rebalancing trades for the 51

characteristics for a particular stock and shows that many of the correlations are close to

zero.24 Moreover, we find that the average correlation between rebalancing trades across

the 51 characteristics and for the entire universe of stocks is 5.47%, not very different

from zero. This explains why the empirical benefits from trading diversification are so

large and in line with those predicted by Part 3 of Proposition 3.

In this section, we have shown analytically and empirically that combining char-

acteristics in an equally weighted portfolio results in a substantial reduction in turnover

compared to trading them in isolation. In the next two sections, we show that combining

characteristics optimally in a parametric portfolio also results in a substantial reduction

in transaction costs.

5 How many characteristics matter without costs?

This section studies how many characteristics matter jointly from a portfolio perspective

in the absence of transaction costs and Section 6 studies the effect of transaction costs.

We apply the screen-and-clean method described in Section 3.5 to test the sig-

nificance of the characteristics. We consider a risk-aversion parameter γ = 5, use the

value-weighted portfolio as the benchmark, and run the screen-and-clean test on the 319

23In fact, Figure 1 shows that the turnover required to exploit each characteristic in isolation (blue
bars) is much larger than the marginal contribution to turnover of each characteristic in an equally
weighted combination (yellow bars). Most strikingly, for the volatility of share turnover (std turn)
characteristic, the marginal contribution to turnover in an equally weighted combination is negative,
implying that including this characteristic results in an absolute reduction in turnover of the portfolio.

24We have produced heatmaps for several stocks as well as the heatmap for the average correlations
across stocks and the insights are similar.
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monthly observations from May 1988 to December 2014.25 The results from the “screen”

stage, not reported to conserve space, establish that the optimal lasso threshold is δ = 25,

and only 10 characteristics survive the screening. We then run the “clean” stage test,

without lasso regularization, for these 10 characteristics and find that, in the absence of

transaction costs, six characteristics are significant.

Table 2 reports the significance and marginal contributions of each characteristic in

the parametric portfolios. For each characteristic, the last four columns of the table give

the marginal contribution of the characteristic to: (i) the characteristic own-variance,

(ii) the covariance of the characteristic with the other characteristics in the portfolio,

(iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the char-

acteristic mean. Marginal contributions that drive the characteristic to be nonzero are

in blue sans serif font, and marginal contributions that drive the characteristic toward

zero are in red italic font.26

We observe from Table 2 that, in the absence of transaction costs, six charac-

teristics are significant. Five are significant at the 5% confidence level: unexpected

quarterly earnings (sue), return volatility (retvol), asset growth (agr), 1-month momen-

tum (mom1m), and gross profitability (gma); and one characteristic, beta, is significant

at the 10% level. From a return-prediction perspective, Hou et al. (2014) and Fama

and French (2015) show that four and five variables, respectively, are enough to predict

expected returns. Our result confirms that, in the absence of transaction costs, a small

number of characteristics are sufficient also from a portfolio perspective.

The marginal contributions reported in Table 2 show that the five characteristics

significant at the 5% level matter because they help to reduce the risk of the portfolio

25Although our dataset covers the period from January 1980 to December 2014, we drop the first
100 months so that the significance test is run on the exact same sample as the out-of-sample analysis
in Section 7. Also, in Section IA.6 of the Internet Appendix, we consider other values of risk-aversion:
γ = 2 and 10.

26Note that for characteristics with a positive parametric portfolio weight, negative (positive) marginal
contributions help to decrease (increase) the objective function in the minimization problem (9) and
thus increase (decrease) the investor’s mean-variance utility. Therefore for characteristics with positive
parametric portfolio weights, negative (positive) marginal contributions are in blue sans serif font (red
italic font). The opposite color and font convention applies to characteristics with negative parametric
portfolio weights.
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of characteristics and increase its mean return.27 In contrast, the beta characteristic is

significant at the 10% level only because of its ability to reduce the risk of the portfolio

of characteristics. To see this, note that Table 2 shows that, consistent with the findings

in the existing literature (see Black (1993)), the marginal contribution of beta to the

portfolio’s mean return is very small. However, the beta return has a large negative

covariance with the returns of the other characteristics (marginal contribution −0.01381),

and this is what makes it relevant from a portfolio perspective. This is illustrated in

Figure 3, which depicts the marginal contributions of the six significant characteristics,

and shows that beta has a large marginal contribution to the covariance with the other

characteristics that helps to reduce the overall portfolio risk.

Table 2 also explains why size, book to market, and momentum are not signif-

icant when evaluated from a portfolio perspective. For instance, 12-month momentum

(mom12m) and book to market (bm) are not significant, even though their expected

returns are large, because their returns have a very large positive covariance with the

returns of the other characteristics in the portfolio. In contrast, market capitalization

(mve) has only a small mean return, consistent with findings in the literature (see As-

ness, Frazzini, Israel, Moskowitz, and Pedersen (2018)), and hence, although mve helps

to diversify the characteristic portfolio, the risk reduction is not sufficient to make it

significant.

As discussed above, the contribution of characteristics to portfolio risk plays an

important role. Thus, the correlations between the characteristic returns matter from a

portfolio perspective. Table 3 reports the correlation matrix for the returns of the six

significant characteristics and the three characteristics considered in Brandt et al. (2009):

size, book to market, and momentum.

We first observe from Table 3 that the returns of the size, book to market, and mo-

mentum characteristics are not highly correlated, with their correlation coefficients being

smaller than 20%. On the other hand, the returns of the six significant characteristics we

identify are more highly correlated. To understand why these characteristics with highly

27For instance, return volatility has large positive mean return (marginal contribution 0.00323) and
negative return covariance with the other characteristics (marginal contribution 0.02914).
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correlated returns are jointly significant for portfolio choice, consider the case of return

volatility and beta. The returns of these two characteristics are highly positively corre-

lated (93%), but the mean return of beta is very small. As a consequence, the investor

optimally goes long the beta characteristic to hedge the risk of her short position in the

return-volatility characteristic, while preserving most of its mean return. The benefit of

this strategy is illustrated in Panel (a) of Figure 4, which shows the cumulative returns

of a blended strategy that assigns a −50% weight to return volatility and a +50% weight

to beta. This blended strategy has large cumulative returns and very low volatility.28

Asness, Moskowitz, and Pedersen (2013) finds that the returns of value and mo-

mentum are negatively correlated and a blended strategy of these two characteristics

performs well. We compare the return volatility and beta blended strategy with the

value and momentum blended strategy. Panel (b) in Figure 4 shows the cumulative re-

turns of these two blended strategies, where we have scaled them so that they have the

same volatility. We find that the return-volatility and beta blend attains a cumulative

return of 110%, whereas the value and momentum blend attains a cumulative return of

around 80%.

Summarizing, we find that, in the absence of transaction costs, only six character-

istics are significant and that risk diversification plays an important role in determining

which characteristics are significant. We now study the role of trading diversification.

6 What is the effect of transaction costs?

In this section, we examine how transaction costs affect the dimension of the cross section

of stock returns. As explained in Section 3.2, we consider an investor who faces propor-

28Our finding that, despite the high correlation between the return volatility and beta characteristics,
the return-volatility characteristic commands a much higher average return than beta is consistent with
results in the existing literature. As explained in Bali et al. (2016), return volatility and idiosyncratic
volatility are very similar in the cross section. Therefore, the high average return of the return-volatility
characteristic can be traced back to the high average return of the idiosyncratic-volatility characteristic,
which is documented in Ang, Hodrick, Xing, and Zhang (2006). Moreover, Bali et al. (2016, Table 15.7)
shows that the idiosyncratic risk characteristic commands a high average return mostly when computed
from daily data over short horizons, which is how return volatility is computed in our analysis. Beta,
on the other hand, is computed from weekly returns over the past three years, and thus delivers much
lower average returns; for a detailed analysis of the relation between beta and idiosyncratic volatility,
see Liu, Stambaugh, and Yuan (2018).
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tional transaction costs that decrease with firm size and over time, as in Brandt et al.

(2009) and Hand and Green (2011). Section IA.1 of the Internet Appendix shows that our

main findings are robust to transaction costs that are quadratic instead of proportional.

Intuitively, one may expect that in the presence of transaction costs fewer charac-

teristics would be significant because transaction costs can only erode the benefits from

exploiting characteristics. Indeed, we find that this is the case if one were to consider each

characteristic individually : 21 characteristics are individually significant in the absence

of transaction costs, but only 14 in the presence transaction costs.29 However, when con-

sidered jointly, we find that the number of characteristics that are jointly significant at

the 5% level increases from five in the absence of transaction costs to 15 in the presence

of proportional transaction costs.30

The explanation for this result can be found in Table 4, which gives the signifi-

cance and marginal contributions of the characteristics for the parametric portfolios in

the presence of transaction costs. Of particular interest are the last two columns of the

table, which give (i) the marginal contribution of each characteristic to transaction costs

when combined in the optimal parametric portfolio and (ii) the marginal contribution

of each characteristic to transaction costs when traded in isolation; that is, indepen-

dently from the benchmark portfolio and the other characteristics. Comparing these two

columns reveals that the reason why the number of significant characteristics is larger

in the presence of transaction costs is that the transaction costs associated with trading

combinations of characteristics are substantially smaller than those associated with trad-

ing characteristics in isolation. We find that the marginal transaction cost associated

with trading the 15 significant characteristics is reduced by around 65% on average when

they are combined. This reduction is illustrated in Figure 5, which depicts the marginal

29To evaluate the significance of the 51 characteristics individually, we solve the problem defined in (9)
for the case where only one characteristic is available. Because we are considering a single characteristic
at a time, we do not need to use the first step of the screen-and-clean test, and instead we just run the
bootstrap significance test on each of the 51 single-characteristic parametric portfolios. Finally, note
that here we consider 51 individual significance tests and thus, following the suggestion in Harvey et al.
(2015), we apply Bonferroni’s adjustment. To conserve space, the details of these results are omitted.

30For the case of quadratic transaction costs reported in Section IA.1, the number of characteristics
that are jointly significant increases from five to 19.
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contributions to transaction costs of the 15 significant characteristics for the case when

the characteristics are traded jointly and in isolation.

A stark example of the trading diversification benefits from combining charac-

teristics is the short-term reversal characteristic (mom1m in the 14th row of Table 4),

which has an enormous marginal contribution to transaction costs if traded in isola-

tion (marginal contribution 0.00857), but a dramatically smaller marginal contribution

to transaction costs when traded in combination (marginal contribution 0.00211). As a

result, the short-term reversal characteristic is significant even in the presence of trans-

action costs when traded in combination with other characteristics.31

In Section 4, we showed analytically and empirically that combining characteris-

tics in an equally weighted portfolio results in a substantial reduction in turnover com-

pared to trading them in isolation. The results in this section confirm that combining

characteristics in an optimal parametric portfolio results in a substantial reduction in

transaction costs. The intuition behind these results is that combining a larger number

of characteristics is advantageous in the presence of transaction costs because the benefits

from trading diversification grow with the number of characteristics exploited as shown

in Proposition 3. The main takeaway is that transaction costs increase the dimension

of the cross-section of stock returns and provide an economic rationale for non-sparse

characteristic-based asset-pricing models.

7 Out-of-sample analysis

The previous sections studied the significance of the different characteristics for portfolio

choice in-sample; that is, for our full sample of observations. In this section, we study

whether an investor can improve out-of-sample performance net of transaction costs by

31This result contrasts sharply with DeMiguel, Nogales, and Uppal (2014) and Novy-Marx and Ve-
likov (2016) that find that the short-term reversal characteristic is not profitable after transaction costs
when traded in isolation. DeMiguel et al. (2014) finds that a short-term reversal (contrarian) strat-
egy is not profitable in the presence of even modest proportional transaction costs of 10 basis points.
Novy-Marx and Velikov (2016) finds that the short-term reversal strategy does not improve the invest-
ment opportunity set of an investor with access to the Fama-French factors, even when a buy-and-hold
transaction-cost-mitigation strategy is employed.
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exploiting a larger set of characteristics than that considered in prominent asset-pricing

models.

7.1 Methodology for out-of-sample evaluation

To evaluate the out-of-sample performance of the different portfolios we use a “rolling-

horizon” procedure similar to that used in DeMiguel, Garlappi, and Uppal (2009b).

First, we choose a window over which to perform the estimation. The total number of

monthly observations in the dataset is Ttot = 419 and we choose an estimation window

of T = 100. Second, using the return data over the estimation window, we compute the

various portfolios we study. Third, we repeat this “rolling-window” procedure for the

next month, by including the data for the next month and dropping the data for the

earliest month. We continue doing this until the end of the dataset is reached. At the

end of this process, we have generated Ttot − T = 319 portfolio-weight vectors, wjt , for

t = T, . . . , Ttot − 1 and for each strategy j. Holding the portfolio wjt for one month gives

the out-of-sample return net of transaction costs at time t+ 1:

rjt+1 = (wjt )
>rt+1 − ‖Λt(w

j
t − (wjt−1)+)‖1,

where Λt is the transaction cost matrix at time t defined in Section 3.2, and (wjt−1)+ is

the portfolio for the jth strategy before rebalancing at time t; that is

(wjt−1)+ = wjt−1 ◦ (et−1 + rt),

where et−1 is the Nt−1 dimensional vector of ones and x ◦ y is the Hadamard or com-

ponentwise product of vectors x and y. Then, for each portfolio we study, we compute

the monthly turnover, and the out-of-sample annualized mean, standard deviation, and

Sharpe ratio of returns net of transaction costs:

turnoverj =
1

Ttot − T
Ttot−1∑

t=T

‖wjt − (wjt−1)+‖1,

µ̂j =
12

Ttot − T
Ttot−1∑

t=T

(wjt )
>rt+1,
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σ̂j =

(
12

Ttot − T
Ttot−1∑

t=T

(
(wjt )

>rt+1 − µ̂j
)2
)1/2

, and

ŜR
j

=
µ̂j
σ̂j
.

To test if the out-of-sample performance of the regularized parametric portfolio

is statistically significantly better than that of the other portfolios we consider, we use

the iid bootstrap method in Ledoit and Wolf (2008), with 10,000 bootstrap samples

to construct a one-sided confidence interval for the difference between Sharpe ratios.

We use three/two/one asterisks (∗) to indicate that the difference is significant at the

0.01/0.05/0.10 level.32

7.2 Out-of-sample performance

Table 5 reports the out-of-sample performance of the different portfolios in the presence

of transaction costs and risk-aversion parameter γ = 5. Panel A reports the performance

for the portfolios that do not use any characteristics, which are the benchmark value-

weighted portfolio (VW) and the equally weighted portfolio (1/N). Panel B reports the

performance of three parametric portfolios: two portfolios that exploit a small number

of characteristics and the regularized portfolio that exploits a large set of 51 charac-

teristics.33 The first parametric portfolio exploits the three characteristics considered

in Brandt et al. (2009): size, book to market, and momentum. The second paramet-

ric portfolio exploits four characteristics: size, book to market, asset growth, and gross

32Note that to reduce computation time, we compute the optimal parameter vector θ only in January
of each year, and use this parameter vector to compute the parametric portfolios for every month of the
year. We use the cross-validation methodology explained in Section 3.5 to calibrate the lasso threshold,
but using only the 100 observations in each estimation window so that there is no look-ahead bias.
Also, we find that the regularized parametric portfolios that solve problem (15)–(16) result in very
large turnovers. Although we find that these portfolios are profitable even after transaction costs (see
Section IA.8.3 of the Internet Appendix), they may not be implementable for institutional investors
facing turnover constraints. Therefore, we report the results for the parametric portfolios after scaling
them to control for turnover. Specifically, we scale the optimal parameter vector θ so that the portfolio
monthly turnover is around 100%. Section IA.8.3 of the Internet Appendix reports the results in the
absence of turnover controls.

33For the regularized parametric portfolio, we calibrate the lasso threshold by using five-fold cross-
validation to select each year the lasso threshold that maximizes the mean-variance utility criterion.
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profitability, which include the investment and profitability characteristics such as those

highlighted in Fama and French (2015) and Hou et al. (2014).

We observe from Table 5 that the gains from exploiting a large set of characteris-

tics are significant: the regularized parametric portfolios achieve an out-of-sample Sharpe

ratio that is 100% higher than that of the parametric portfolios based on three character-

istics and 25% higher than that of the parametric portfolios based on four characteristics,

with the differences being statistically significant. The magnitude of the economic gains

is evident also from Figure 6, which depicts the out-of-sample cumulative returns of the

value-weighted portfolio and the three parametric portfolios we consider, after scaling

them so that they all have the same volatility.

These out-of-sample results confirm that in the presence of transaction costs the

cross section of stock returns is not fully explained by a small number of characteristics.

7.3 Can factor models explain regularized portfolio returns?

The previous section demonstrates that the regularized parametric portfolios that exploit

a large set of 51 significantly outperform the two parametric portfolios that exploit only

small sets of characteristics. To check the robustness of this result, we run a time-

series regression of the out-of-sample returns of the regularized parametric portfolio onto

three sparse factor models from the literature: the Fama and French (1993) and Carhart

(1997) four-factor model (FFC), the Fama and French (2015) five-factor model (FF5),

and the Hou et al. (2014) four-factor model (HXZ). All factors are obtained from Kenneth

French’s and Lu Zhang’s websites.

Table 6 shows that none of these three sparse factor models fully explains the

returns of the regularized parametric portfolios, which achieve an economically and sta-

tistically significant abnormal average monthly return of about α = 1% for each of the

three models. This confirms that sparse factor models cannot fully explain the out-of-

sample performance of the regularized parametric portfolios.
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8 Conclusion

A multitude of variables have been proposed to predict the cross-section of expected stock

returns. The existing literature takes a return-prediction perspective to understand which

variables provide independent information about average returns. In contrast, we take a

portfolio perspective to understand the effects of also risk and transaction costs on the

dimension of the cross section.

In response to the question posed by Cochrane, which we highlighted at the start

of the manuscript, we find that in the absence of transaction costs, out of the 51 char-

acteristics we consider, only a small number—about six—are jointly significant. In the

presence of transaction costs, however, the number of significant characteristics increases

from six to 15 because combining characteristics helps to reduce transaction costs in trad-

ing the stocks underlying the characteristics. Kozak et al. (2017) concludes that “the

empirical asset-pricing literature’s multi-decade quest for a sparse characteristics-based

factor model [...] is ultimately futile.” We find that transaction costs increase the number

of characteristics that are significant for portfolio construction. Moreover, we find that

in the presence of transaction costs, the regularized parametric portfolios that exploit

a large set of characteristics outperform out of sample the parametric portfolios that

exploit only small sets of characteristics, such as those considered in prominent asset-

pricing models. Thus, our results provide an economic rationale based on transaction

costs for non-sparse characteristic-based asset-pricing models.
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A Relation to regression approaches

In this appendix, we study the relation of our approach based on parametric portfolios

with the regression approaches frequently used in the literature. Section A.1 studies the

relation to the Fama-MacBeth cross-sectional regressions, Section A.2 to the time-series

regressions, and Section A.3 to the generalized alpha approach developed in Novy-Marx

and Velikov (2016). Proofs for the propositions and corollary that appear in this section

are given in Appendix B.

A.1 Relation to Fama-MacBeth regressions

In this section, we study analytically and empirically the relation between our approach

and the Fama-MacBeth regressions in the absence of transaction costs. The Fama-

MacBeth procedure can be described as running cross-sectional regressions of stock re-

turns, rt, onto firm-specific characteristics at each date t:

rt = Xt−1λt + εt, (A1)

whereXt−1 ∈ RNt−1×K is the matrix of firm-specific characteristics at time t−1,34 λt ∈ RK

is the vector of slopes at time t, and εt ∈ RNt−1 is the vector of pricing errors at time

t. The Fama-MacBeth approach then tests the significance of the average of the slopes

over time, λ.

Most of the existing literature estimates the Fama-MacBeth cross-sectional regres-

sions using ordinary least squares (OLS). Lewellen et al. (2010), however, recommends

using generalized least squares (GLS) cross-sectional regressions because their goodness-

of-fit metric has a clear economic interpretation. In particular, Lewellen et al. (2010)

extends a result in Kandel and Stambaugh (1995) to show that the GLS R2 measures

the mean-variance efficiency of the model’s factor-mimicking portfolios.35 The following

34For the sake of simplicity and without loss of generality, we assume that Xt−1 is divided by the
number of firms at time t− 1, as we do for parametric portfolios.

35Lewellen et al. (2010) studies two-pass cross-sectional regressions, rather than Fama-MacBeth re-
gressions; see (Cochrane, 2009, Sections 12.2 and 12.3). For our theoretical analysis, we make the
simplifying assumption that the characteristics are time invariant, and in this case the cross-sectional
regressions coincide with the Fama-MacBeth regressions. In addition, we use firm-specific characteristic
data, rather than factor data, and thus all of our analysis is based on a single pass regression of stock
returns onto characteristics.
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proposition clarifies the relation between our portfolio approach and the Fama-MacBeth

OLS and GLS regressions.

Proposition A1. Assume that the standardized firm characteristics are constant through

time so that Xt = X. Then, the OLS and GLS Fama-MacBeth average slopes are

λOLS = (X>X)−1X>µ̂r, and (A2)

λGLS = (X>Σ̂−1
r X)−1X>Σ̂−1

r µ̂r, (A3)

where µ̂r ∈ RN is the sample mean of stock returns and Σ̂r ∈ RN×N is the sample

covariance matrix of stock returns. Assume also that the sample vector of covariances

between the benchmark portfolio return and the characteristic portfolio return vector is

zero (σbc = 0). Then the optimal mean-variance parametric portfolio is

θ∗ =
1

γ
(X>Σ̂rX)−1X>µ̂r. (A4)

Proposition A1 shows that the OLS and GLS Fama-MacBeth slopes differ in gen-

eral from the mean-variance parametric portfolio weights; that is, testing the significance

of Fama-MacBeth slopes is different from testing the significance of the weights a mean-

variance investor assigns to each characteristic. Note, in particular, that the OLS and

GLS Fama-MacBeth slopes are different in general from the mean-variance parametric

portfolio weights unless the sample covariance matrix of asset returns is equal to the

identity matrix (Σr = I).

The following corollary provides further insight into the difference between the

parametric portfolio weights and the OLS Fama-MacBeth slopes.

Corollary A1. Let the assumptions in Proposition A1 hold, and assume in addition

that the columns of the firm-specific characteristic matrix X are orthonormal; that is,

X>X = I. Then, the optimal mean-variance parametric portfolio is

θ∗ =
1

γ
Σ̂−1
c λOLS, (A5)

where Σ̂c is the sample covariance matrix of characteristic returns and γ is the risk-

aversion parameter.

34



Corollary A1 shows that, for the particular case in which the columns of the

firm-specific characteristic matrix are orthonormal, there is a componentwise one-to-one

relation between mean-variance parametric portfolio weights and OLS Fama-MacBeth

slopes only if the sample covariance matrix of characteristic returns, Σ̂c, is diagonal.36

If, on the other hand, characteristic returns are correlated, then a given characteristic k

could have a zero OLS Fama-MacBeth slope (λk = 0), and yet have a nonzero parametric

portfolio weight (θ∗k 6= 0). This is the case, for instance, when the correlation of the kth

characteristic return with the returns on the other characteristics can be exploited by

the investor to reduce risk, and thus, improve her overall mean-variance utility.

The above theoretical results demonstrate that testing the significance of Fama-

MacBeth slopes will, in general, produce results that are different from those of testing the

significance of the weights that a mean-variance investor assigns to each characteristic.

We now compare empirically the significance results from OLS Fama-MacBeth regressions

with those of our approach.37 Table A1 reports the significance of the Fama-MacBeth

slopes for the six characteristics we found to be significant in Section 5 plus size, book

to market, and momentum. The first column lists the name of the characteristics, the

second column reports the multiple regression slopes and Newey-West t-statistics (in

brackets),38 and the third column reports the individual regression slopes and Newey-

West t-statistics.

We see from Table A1 that the five characteristics that are significant at the 5%

level in Section 5 are also jointly significant for cross-sectional regressions. However,

in contrast to the finding in Section 5, beta is not significant in the Fama-MacBeth

regressions even at the 10% level. This is because, as shown in Proposition A1, Fama-

MacBeth slopes differ in general from parametric portfolio weights when the returns on

the characteristics are correlated over time and the investor can exploit this to reduce

the risk of the mean-variance portfolio. Regarding the book-to-market and momentum

36To see this, note that if Σ̂c is diagonal, then θ∗k = (λOLS)k/(γ(Σ̂c)kk), where (Σ̂c)kk is the kth

element of the diagonal of Σ̂c, and thus there is a one-to-one correspondence between the kth component
of θ∗ and the kth component of λOLS .

37We do not run GLS Fama-MacBeth regressions because the sample covariance matrix of stock
returns is singular for our case with thousands of stocks and only hundreds of monthly dates.

38We compute t-statistics with Newey-West adjustments of 12 lags, as in Green et al. (2017).
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characteristics, we see from Table A1 that both book to market (bm) and 12-month

momentum (mom12m) are significant for multiple cross-sectional regressions, whereas

they were not significant from a portfolio perspective. Intuitively, these characteristics are

significant in multiple cross-sectional regressions because these regressions ignore the large

contribution of these characteristics to the risk of the overall portfolio of characteristics,

which reduces their appeal from a portfolio perspective.

A.2 Relation to time-series regressions

In this section, we study analytically and empirically the relation of our portfolio approach

to the time-series regression approach in the absence of transaction costs. The time-series

approach may be described as regressing the return of a new characteristic long-short

portfolio onto the returns of Kc commonly accepted characteristic long-short portfolios;

that is,

rn,t = αTS + β>TSrc,t + εt, (A6)

where rn,t ∈ R is the return of the new characteristic long-short portfolio at time t,

rc,t ∈ RKc is the return of the commonly accepted characteristic long-short portfolios at

time t, the error term εt ∈ R follows a Normal distribution with zero mean and standard

deviation σε, αTS ∈ R is the intercept of the regression, and βTS ∈ RKc is the slope vector.

If the intercept in this regression is significant, the return on the new characteristic is

not fully explained by the return of the commonly accepted characteristics. Gibbons

et al. (1989) shows that a significant intercept implies that the new characteristic-based

long-short portfolio improves the investment opportunity set of a mean-variance investor

who already has access to the returns of the set of commonly accepted characteristics.

As explained above, the time-series regression approach tests the significance of the

intercept. In contrast, the following proposition shows that, in the absence of transaction

costs, our approach is equivalent to testing the significance of the slopes in a particular

constrained time-series multiple regression. Britten-Jones (1999) shows that the tangency

mean-variance portfolio can be identified by solving a linear regression. We extend this

result to the context of any parametric portfolio on the mean-variance efficient frontier

by introducing a constraint on the mean return of the portfolio.
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Proposition A2. For a given risk-aversion parameter γ, the optimal parameter θ∗ for

the mean-variance parametric portfolio problem without transaction costs (5) is equal to

the ordinary least square (OLS) estimate of the slope vector in the following time-series

regression model:

rb,t = α− β>rc,t + εt, (A7)

subject to the constraint that

β>µc = (θ∗)>µc, (A8)

where rb,t ∈ R is the return of the benchmark portfolio, rc,t ∈ RK is the return on the

characteristics, α ∈ R is the intercept, β ∈ RK is the slope vector, µc is the mean charac-

teristic return vector, and (θ∗)>µc is the average return of the mean-variance parametric

portfolio.

The advantage of the parametric-portfolio approach is that by focusing on the

slopes, it allows one to test the significance of the different characteristics when they are

considered jointly. The traditional time-series approach, on the other hand, is designed to

test only the significance of a single characteristic when it is added to a set of commonly

accepted characteristics; see also Footnote 7. This is a limitation of the time-series re-

gression approach because the result of the statistical inference depends on the sequence

in which variables are selected. For instance, when regressing the return of each charac-

teristic in our dataset onto the returns of the four Fama and French (1993) and Carhart

(1997) factors downloaded from Kenneth French’s website, we find that eight charac-

teristics are significant in the absence of transaction costs, but beta is not significant.39

Beta, however, is significant when its returns are regressed onto the four Fama and French

(1993) and Carhart (1997) factors plus the return of the return-volatility long-short port-

folio, because beta helps to hedge the return-volatility characteristic.40 Accordingly, beta

matters if one controls for return volatility.41 Our portfolio approach considers all char-

39We run 48 significance tests corresponding to the 51 characteristics except size, value, and momen-
tum and thus, following Harvey et al. (2015) we apply Bonferroni’s adjustment.

40We again apply Bonferroni’s adjustment.
41This result is analogous to that in Asness et al. (2018), which finds that despite the weak performance

of the size characteristic when evaluated in isolation, it becomes significant once it is considered in
combination with a quality characteristic.
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acteristics simultaneously and finds that return volatility and beta are jointly significant

together with four other characteristics. These empirical results highlight the importance

of considering all characteristics simultaneously. Other advantages of our portfolio ap-

proach are that it allows one to consider transaction costs in a straightforward manner

and identify the marginal contribution of each characteristic to the investor’s utility.

A.3 Relation to generalized alpha

In this section, we compare empirically the results from our portfolio approach in the pres-

ence of transaction costs with those from using the generalized alpha developed in Novy-

Marx and Velikov (2016), which extends the traditional time-series regression framework

to take transaction costs into account. Novy-Marx and Velikov (2016) proposes com-

puting the returns of the mean-variance portfolio in the presence of transaction costs

for the commonly accepted characteristics, MVEX , and the returns of the mean-variance

portfolio in the presence of transaction costs for the commonly accepted characteristics

plus the new characteristic, MVEX,y. Then it runs the following regression:

MVEX,y/wy = α + βMVEX + ε, (A9)

where wy is the weight of the mean-variance portfolio on the new characteristic. Novy-

Marx and Velikov (2016) shows that in the absence of transaction costs, the generalized

alpha in (A9) equals the alpha from the traditional time-series approach. In the presence

of transaction costs, this approach tests the significance of adding the new characteristic

to a set of commonly accepted characteristics taking transaction costs into account.42

As discussed in Section A.2, the main advantage of our portfolio approach with

respect to the time-series approach is that it considers all characteristics simultaneously

and tests their significance when considered jointly, whereas the time-series regressions

are designed to consider one characteristic at a time; see Footnote 7. To illustrate this,

we compute the generalized alpha for each of our characteristics with respect to the four

Fama and French (1993) and Carhart (1997) factors downloaded from Kenneth French’s

42Although the implementation in Novy-Marx and Velikov (2016) considers the transaction cost
associated with each characteristic independently, here we extend the approach in Novy-Marx and Velikov
(2016) to capture trading diversification.
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website. We find that, in the presence of transaction costs, none of the characteristic

portfolios has a significant generalized alpha with respect to the four factors.43 However,

in the absence of transaction costs, Section A.2 showed that eight characteristics were

significant with respect to the four factors. That is, the number of characteristics that are

significant with respect to the four factors for the time-series approach decreases in the

presence of transaction costs when the characteristics are considered in isolation, which

is consistent with the results in Novy-Marx and Velikov (2016). In contrast, our portfolio

approach shows that the number of significant characteristics increases in the presence of

transaction costs. This is because our approach allows one to consider all characteristics

simultaneously and identify the optimal combination of characteristics that results in

substantial trading diversification.

43To address the multiple testing problem, we again apply Bonferroni’s adjustment because we carry
out 48 significance tests corresponding to our 51 characteristics except size, value, and momentum.
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B Proofs for all propositions

Proof of Proposition 1

Equation (3) shows that the parametric portfolio is a combination of the benchmark

portfolio and the K standardized firm-specific characteristics, scaled by the number of

firms Nt. Therefore, we can define this combination as w = [1, θ] ∈ RK+1 and the

vector of benchmark and characteristic returns as Rt = [rb,t , rc,t+1/Nt]. Under this

specification, the mean-variance parametric portfolio problem takes the familiar form:

min
w

γ

2
w>Σ̂w − w>µ̂, (B1)

s.t. w1 = 1, (B2)

where w = [w1, θ] ∈ RK+1 and Σ̂ and µ̂ are the sample covariance matrix and mean

of Rt = [rb,t , rc,t+1]. The result follows by using straightforward algebra to eliminate

the decision variable w1 and the constraint, and then removing terms in the objective

function that do not depend on the parameter vector θ.

Proof of Proposition 2

The marginal contributions of the characteristics are given by the subdifferential of the

objective function in (10) with respect to θ. Note that the first four terms in (10) are

differentiable with respect to θ and thus their subdifferentials coincide with their gradient.

It is straightforward to show that the gradients of these four terms are given by the first

four terms in the right-hand side of (11).

The only term that is not differentiable is the implied transaction cost from trading

asset i at time t + 1. From expression (7), we can define the transaction cost term for

asset i at time t+ 1 as

ui,t+1 = |Λii,t

(
wi,t+1(θ)− w+

i,t(θ)
)
|, (B3)

where Λii,t is the associated transaction cost parameter for asset i at time t. Therefore,

it suffices to characterize the subdifferential of expression (B3). Note that the function

inside the absolute value is differentiable with respect to θ. Thus, applying the chain

rule for subdifferentials, we have that the subdifferential of ui,t+1 with respect to the

kth parametric portfolio weight θk is equal to the subdifferential of the absolute value

function times the differential of Λii,t

(
wi,t+1(θ)− w+

i,t(θ)
)
.
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Note that Λii,t > 0 and thus, the subdifferential of the absolute value function

is given by the sign function as precisely defined in (13). Finally, the differential of the

term Λii,t

(
wi,t+1(θ)− w+

i,t(θ)
)

is

d[Λii,t

(
wi,t+1(θ)− w+

i,t(θ)
)
]

dθk
= Λii,t[(Xt+1)ik − (Xt)ik(1 + ri,t+1)].

The result follows by adding the subdifferentials of ui,t+1 for i = 1, 2, . . . , Nt, and

then combining the subdifferentials with respect to θk for k = 1, 2, . . . , K into a single

vector.

Proof of Proposition 3

Part 1. The trade in the ith stock required to rebalance an equally weighted portfolio

of K characteristics is:

tradeewi =
1

K

K∑

k=1

tradei,k =
1

K

K∑

k=1

[(Xt+1)i,k − (Xt)i,k(1 + ri,t+1)]. (B4)

Because tradei,k for k = 1, 2, . . . , K are jointly distributed as a multivariate Normal distri-

bution with zero mean and and covariance matrix Ω, we have that tradeewi is distributed

as a Normal distribution with zero mean and standard deviation
√
e>Ωe/K.

By definition, the average trading volume (turnover) in the ith stock required to

rebalance an equally weighted portfolio of the K characteristics is the average of the

absolute value of tradeewi . Geary (1935) shows that the mean absolute deviation of a

Normally distributed random variable is
√

2/π times its standard deviation. Therefore,

the average turnover in the ith stock required to rebalance an equally weighted portfolio

of K characteristics is

turnover(tradeewi ) =
√

2/π ×
√
e>Ωe/K. (B5)

Following a similar argument, the average cost of the trade in the ith stock required to

rebalance a quantity 1/K of each of the K characteristics in isolation is

turnover(tradeisoi ) =
√

2/π ×
K∑

k=1

√
Ωkk

K
. (B6)
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Taking the ratio of (B5) to (B6), we get

turnover(tradeewi )

turnover(tradeisoi )
=

√
e>Ωe∑K

k=1

√
Ωkk

. (B7)

To show that this ratio is strictly smaller than one, we note that the square of the ratio

in (B7) is

e>Ωe

(
∑K

k=1

√
Ωkk)2

=

∑K
k=1 Ωkk +

∑K
l=1

∑
m6=l ρlm

√
Ωll

√
Ωmm∑K

k=1 Ωkk +
∑K

l=1

∑
m6=l
√

Ωll

√
Ωmm

, (B8)

where ρlm is the correlation between the rebalancing trade in the ith stock for the lth

and mth characteristics. The ratio in (B8) is smaller than one because ρlm < 1 by the

assumption that Ω is positive definite.

Part 2. Because Ω is symmetric with respect to the K characteristics, we have that

tradeewi is distributed as a Normal distribution with zero mean and standard deviation√
e>Ωe/K = σ(1 + ρ(K − 1))/K. The result follows using arguments identical to those

in the proof of Part 1.

Part 3. Because ρ = 0, we have that tradeewi is distributed as a Normal distribution

with zero mean and standard deviation
√
e>Ωe/K = σ/K. The result follows using

arguments identical to those in the proof of Part 1.

Proof of Proposition A1

Let us consider the following cross-sectional regression model:

rt = Xλt + εt, (B9)

where rt ∈ RN is the vector of stock returns at time t, X ∈ RN×K is the matrix of

standardized firm characteristics, λt ∈ RK is the vector of slopes at time t, and εt ∈ RN

is the vector of pricing errors at time t.44 The OLS and GLS Fama-MacBeth slopes of

model (B9) are

λOLS = (X>X)−1X>µ̂r (B10)

λGLS = (X>Σ̂−1
r X)−1X>Σ̂−1

r µ̂r, (B11)

44Note that we now assume that characteristics Xt and the number of firms Nt are constant through
time and therefore we drop the subscript t.
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where µ̂r is the vector of sample mean returns. It is straightforward to see that λOLS and

λGLS are identical when Σ̂r is the identity matrix. On the other hand, we know that the

solution of a mean-variance parametric portfolio is

θ∗ =
1

γ
Σ̂−1
c µ̂c − Σ̂−1

c σ̂bc. (B12)

Now, given the assumption that firm characteristics are constant, we can define the

vector of mean characteristic-portfolio returns and the covariance matrix of characteristic-

portfolio returns as µ̂c = X>µ̂r and Σ̂c = X>Σ̂rX, respectively. Assuming that the

covariance between characteristic portfolio returns and the benchmark portfolio is zero,

expression (B12) can be then expressed as

θ∗ =
1

γ
(X>Σ̂rX)−1X>µ̂r. (B13)

Therefore, one can see that λOLS, λGLS, and θ∗ will be equivalent when Σ̂r is the identity

matrix of dimension N and the covariance between characteristic portfolio returns and

the benchmark portfolio is zero.

Proof of Corollary A1

The result in Corollary A1 follows from the assumption thatX>X = I, which implies that

λOLS = X>µ̂r = µ̂c. Then, if the covariance between characteristic-portfolio returns and

the benchmark portfolio is zero, we can define the solution of a mean-variance parametric

portfolio as

θ∗ =
1

γ
Σ̂−1
c λOLS. (B14)

Proof of Proposition A2

We can estimate model (A7) with OLS. The corresponding optimization problem, in

matrix form, is

min
α,β

r>b rb + α2T + β>r>c rcβ − 2αr>b eT + 2r>b rcβ − 2αe>T rcβ

s.t. µ̂>c β = µ0,
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where eT is a T -dimensional vector of ones. Now, given that Σ̂c = r>c rc − µ̂cµ̂>c , σ̂bc =

r>b rc − µ̂bµ̂>c and e>T rc = T µ̂c, we can write the above problem as

min
α,β

r>b rb + α2T + β>Σ̂cβ + β>µ̂cµ̂
>
c β − 2αr>b eT + 2(σ̂bc + µ̂bµ̂c)

>β − 2αT µ̂>c β

s.t. µ̂>c β = µ0.

Because µ̂>c β is constant in the feasible region, we can obtain the OLS slopes of (A7) as

the solution to the following problem:

min
β

β>Σ̂cβ + 2σ̂bcβ

s.t. µ̂>c β = µ0,

which is a quadratic mean-variance optimization problem. If we set µ0 equal to the

solution of the mean-variance parametric portfolio problem times the vector of mean

characteristic portfolio returns (that is, µ0 = θ∗>µ̂c), the OLS slopes of the time-series

model in (A7) coincide with the solution of the mean-variance parametric portfolio prob-

lem in (5).
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Table 1: List of characteristics considered

This table lists the characteristics we consider, ordered alphabetically by acronym. The first column gives the number of the characteristic, the second
column gives the characteristic’s definition, the third column gives the acronym, and the fourth and fifth columns give the authors who analyzed
them, and the date and journal of publication. Our definitions and acronyms match those in Green et al. (2017).

# Characteristic and definition Acronym Author(s) Date and Journal

1 Abnormal volume in earnings announcement: Average daily trading volume for 3 days
around earnings announcement minus average daily volume for 1-month ending 2 weeks
before earnings announcement divided by 1-month average daily volume. Earnings an-
nouncement day from Compustat quarterly

aeavol Lerman, Livnat & Mendenhall 2007, WP

2 Asset growth: Annual percent change in total assets agr Cooper, Gulen & Schill 2008, JF
3 Bid-ask spread: Monthly average of daily bid-ask spread divided by average of daily

spread
baspread Amihud & Mendelson 1989, JF

4 Beta: Estimated market beta from weekly returns and equal weighted market returns for
3 years ending month t− 1 with at least 52 weeks of returns

beta Fama & MacBeth 1973, JPE

5 Book to market: Book value of equity divided by end of fiscal-year market capitalization bm Rosenberg, Reid & Lanstein 1985, JPM
6 Industry adjusted book to market: Industry adjusted book-to-market ratio bm ia Asness, Porter & Stevens 2000, WP
7 Cash productivity: Fiscal year-end market capitalization plus long term debt minus total

assets divided by cash and equivalents
cashpr Chandrashekar & Rao 2009 WP

8 Industry adjusted change in asset turnover: 2-digit SIC fiscal-year mean adjusted change
in sales divided by average total assets

chatoia Soliman 2008, TAR

9 Change in shares outstanding: Annual percent change in shares outstanding chcsho Pontiff & Woodgate 2008, JF
10 Industry adjusted change in employees: Industry-adjusted change in number of employees chempia Asness, Porter & Stevens 1994, WP
11 Change in 6-month momentum: Cumulative returns from months t − 6 to t − 1 minus

months t− 12 to t− 7
chmom Gettleman & Marks 2006 WP

12 Industry adjusted change in profit margin: 2-digit SIC fiscal-year mean adjusted change
in income before extraordinary items divided by sales

chpmia Soliman 2008, TAR

13 Change in tax expense: Percent change in total taxes from quarter t− 4 to t chtx Thomas & Zhang 2011 JAR
14 Convertible debt indicator: An indicator equal to 1 if company has convertible debt

obligations
convind Valta 2016 JFQA

15 Dollar trading volume in month t−2: Natural log of trading volume times price per share
from month t− 2

dolvol Chordia, Subrahmanyan & Anshuman 2001, JFE

16 Dividends-to-price: Total dividends divided by market capitalization at fiscal year-end dy Litzenberger & Ramaswamy 1982, JF
17 3-day return around earnings announcement: Sum of daily returns in three days around

earnings announcement. Earnings announcement from Compustat quarterly file
ear Kishore, Brandt, Santa-Clara & Venkatachalam 2008, WP

18 Change in common shareholder equity: Annual percent change in book value of equity egr Richardson, Sloan, Soliman & Tuna 2005, JAE
19 Earnings to price: Annual income before extraordinary items divided by end of fiscal year

market cap
ep Basu 1977, JF

20 Gross profitability: Revenues minus cost of goods sold divided by lagged total assets gma Novy-Marx 2013 JFE
21 Industry sales concentration: Sum of squared percent of sales in industry for each company herf Hou & Robinson 2006, JF
22 Employee growth rate: Percent change in number of employees hire Bazdresch, Belo & Lin 2014 JPE
23 Idiosyncratic return volatility: Standard deviation of residuals of weekly returns on weekly

equal weighted market returns for 3 years prior to month-end
idiovol Ali, Hwang & Trombley 2003, JFE

24 Industry momentum: Equal weighted average industry 12-month returns indmom Moskowitz & Grinblatt 1999, JF
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Table 1 continued: List of characteristics considered

# Characteristic and definition Acronym Author(s) Date and Journal

25 Leverage: Total liabilities divided by fiscal year-end market capitalization lev Bhandari 1988, JF
26 Change in long-term debt: Annual percent change in total liabilities lgr Richardson, Sloan, Soliman & Tuna 2005, JAE
27 12-month momentum: 11-month cumulative returns ending one month before month-end mom12m Jegadeesh 1990, JF
28 1-month momentum: 1-month cumulative return mom1m Jegadeesh 1990, JF
29 36-month momentum: Cumulative returns from months t− 36 to t− 13 mom36m De Bondt & Thaler 1985, JF
30 6-month momentum: 5-month cumulative returns ending one month before month-end mom6m Jegadeesh & Titman 1990, JF
31 Market capitalization: Natural log of market capitalization at end of month t− 1 mve Banz 1981, JFE
32 Industry-adjusted firm size: 2-digit SIC industry-adjusted fiscal year-end market capital-

ization
mve ia Asness, Porter & Stevens 2000, WP

33 ∆% CAPEX - industry ∆% AR: 2-digit SIC fiscal-year mean adjusted percent change in
capital expenditures

pchcapx ia Abarbanell & Bushee 1998, TAR

34 ∆% gross margin - ∆% sales: Percent change in gross margin minus percent change in
sales

pchgm pchsale Abarbanell & Bushee 1998, TAR

35 ∆% sales - ∆% AR: Annual percent change in sales minus annual percent change in
receivables

pchsale pchrect Abarbanell & Bushee 1998, TAR

36 Price delay: The proportion of variation in weekly returns for 36 months ending in month
t explained by 4 lags of weekly market returns incremental to contemporaneous market
return

pricedelay How & Moskowitz 2005, RFS

37 Financial-statements score: Sum of 9 indicator variables to form fundamental health score ps Piotroski 2000, JAR
38 R&D to market cap: R&D expense divided by end-of-fiscal-year market capitalization rd mve Guo, Lev & Shi 2006, JBFA
39 Return volatility: Standard deviation of daily returns from month t− 1 retvol Ang, Hodrick, Xing & Zhanf 2006, JF
40 Return on assets: Income before extraordinary items divided by one quarter lagged total

assets
roaq Balakrishnan, Bartov & Faurel 2010, JAE

41 Revenue surprise: Sales from quarter t minus sales from quarter t − 4 divided by fiscal-
quarter-end market capitalization

rsup Kama 2009, JBFA

42 Sales to cash: Annual sales divided by cash and cash equivalents salecash Ou & Penman 1989, JAE
43 Sales to inventory: Annual sales divided by total inventory saleinv Ou & Penman 1989, JAE
44 Sales to receivables: Annual sales divided by accounts receivable salerec Ou & Penman 1989, JAE
45 Annual sales growth: Annual percent change in sales sgr Lakonishok, Shleifer & Vishny 1994, JF
46 Volatility of dollar trading volume: Monthly standard deviation of daily dollar trading

volume
std dolvol Chordia, Subrahmanyan & Anshuman 2001, JFE

47 Volatility of share turnover: Monthly standard deviation of daily share turnover std turn Chordia, Subrahmanyan & Anshuman 2001, JFE
48 Cashflow volatility: Standard deviation for 16 quarters of cash flows divided by sales stdcf Huang 2009, JEF
49 Unexpected quarterly earnings: Unexpected quarterly earnings divided by fiscal-quarter-

end market cap. Unexpected earnings is I/B/E/S actual earnings minus median fore-
casted earnings if available, else it is the seasonally differenced quarterly earnings before
extraordinary items from Compustat quarterly file

sue Rendelman, Jones & Latane 1982, JFE

50 Share turnover: Average monthly trading volume for most recent 3 months scaled by
number of shares outstanding in current month

turn Datar, Naik & Radcliffe 1998, JFM

51 Zero trading days: Turnover weighted number of zero trading days for most recent month zerotrade Liu 2006, JFE

46



Table 2: Significance and marginal contributions without transaction costs

This table reports the significance and marginal contributions for the parametric portfolios without trans-
action costs, for risk-aversion parameter γ = 5. We run a screen-and-clean significance test. For the screen
step, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso
threshold that maximizes investor’s utility is δ = 25. For the clean step, we run the bootstrap experiment
for the parametric portfolios using those characteristics with nonzero θ’s from the previous step. Character-
istic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one
asterisks (∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute
the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ’s
for the screen step plus the three characteristics considered in Brandt et al. (2009): size, book to market,
and momentum. For each characteristic, the first column gives the acronym, the second the optimal value
of the parameter and the significance asterisks, and the next four columns give the marginal contribution
of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the
other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio,
and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans
serif font, and contributions that drive the characteristic toward zero are in red italic font (cf. Footnote 26).

Marginal contributions to
Characteristic Param. variance cov (char.) cov (bench.) mean

sue 20.12∗∗∗ 0 .00341 −0.00068 −0.00019 −0.00254
retvol −10.85∗∗∗ −0 .03529 0.02914 0.00292 0.00323
agr −10.37∗∗ −0 .00397 0.00050 0.00057 0.00290
mom1m −3.10∗∗ −0 .00509 0.00454 −0 .00109 0.00164
gma 5.97∗∗ 0 .00252 −0.00255 0 .00069 −0.00066
beta 2.36∗ 0 .00971 −0.01381 0 .00419 −0.00008
bm ia 6.49 0 .00337 −0.00328 0 .00072 −0.00081
chcsho −5.89 −0 .00210 −0 .00111 0.00092 0.00228
rd mve 6.01 0 .00215 −0.00096 0 .00045 −0.00164
std turn 8.53 0 .01442 −0.01576 0 .00214 −0.00080
bm 3.10 0 .00264 0 .00023 −0.00082 −0.00205
mve −4.02 −0 .00136 0.00148 −0 .00034 0.00022
mom12m −4.42 −0 .00784 0.01125 −0 .00066 −0 .00275
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Table 3: Correlations of significant characteristics

This table reports the correlation matrix for the returns of the six characteristics that are most significant in the absence of transaction costs and the
returns of the three characteristics considered in Brandt et al. (2009): size (mve), book to market (bm), and momentum (mom12m).

Characteristics sue retvol agr mom1m gma beta bm mve mom12m

Unexpected quarterly earnings (sue) 1.00 −0.43 −0.08 0.18 −0.18 −0.36 −0.05 0.41 0.45
Return volatility (retvol) −0.43 1.00 0.22 −0.18 0.45 0.93 −0.46 −0.63 −0.17
Asset growth (agr) −0.08 0.22 1.00 −0.33 0.56 0.33 −0.64 0.03 −0.17
1-month momentum (mom1m) 0.18 −0.18 −0.33 1.00 −0.23 −0.26 0.14 0.19 0.28
Gross profitability (gma) −0.18 0.45 0.56 −0.23 1.00 0.54 −0.62 −0.24 −0.06
Beta (beta) −0.36 0.93 0.33 −0.26 0.54 1.00 −0.54 −0.52 −0.21
Book to market (bm) −0.05 −0.46 −0.64 0.14 −0.62 −0.54 1.00 −0.05 −0.08
Market capitalization (mve) 0.41 −0.63 0.03 0.19 −0.24 −0.52 −0.05 1.00 0.20
12-month momentum (mom12m) 0.45 −0.17 −0.17 0.28 −0.06 −0.21 −0.08 0.20 1.00
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Table 4: Significance and marginal contributions with transaction costs

This table reports the significance and marginal contributions for the parametric portfolios in the presence
of transaction costs, for risk-aversion parameter γ = 5. We run a screen-and-clean significance test. For
the screen step, we calibrate the regularized parametric portfolios with five-fold cross-validation and find
that the lasso threshold that maximizes investor’s utility is δ = 25. For the clean step, we run the boot-
strap experiment for the parametric portfolios using those characteristics with nonzero θ’s from the previous
step. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign
three/two/one asterisks (∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively.
To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with
nonzero θ’s for the screen step plus the three characteristics considered in Brandt et al. (2009): size, book to
market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal
value of the parameter and the significance asterisks, and the next five columns give the marginal contri-
bution of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic
with the other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark
portfolio, (iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal
contribution of the characteristic to transaction costs when it is traded in isolation. Contributions that drive
the characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic
toward zero are in red italic font (cf. Footnote 26).

Marginal contributions to Isolation
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 11.85∗∗∗ 0 .00425 −0.00333 0 .00045 −0.00164 0 .00027 0 .00055
agr −7.27∗∗∗ −0 .00278 −0 .00012 0.00057 0.00290 −0 .00057 0 .00125
sue 3.00∗∗∗ 0 .00051 0 .00077 −0.00019 −0.00254 0 .00146 0 .00240
turn −3.41∗∗∗ −0 .00806 0.00502 0.00279 0.00068 −0 .00043 0 .00177
retvol −1.92∗∗∗ −0 .00623 0.00148 0.00292 0.00323 −0 .00139 0 .00468
std turn 1.28∗∗∗ 0 .00217 −0.00433 0 .00214 −0.00080 0 .00082 0 .00493
zerotrade −1.53∗∗∗ −0 .00129 0.00284 −0 .00205 0.00124 −0 .00075 0 .00235
chatoia 4.51∗∗ 0 .00029 0 .00008 −0.00005 −0.00077 0 .00046 0 .00116
chtx 1.36∗∗ 0 .00026 −0.00022 0 .00015 −0.00123 0 .00104 0 .00232
beta 3.39∗∗ 0 .01398 −0.01829 0 .00419 −0.00008 0 .00021 0 .00126
ps 4.94∗∗ 0 .00156 −0.00027 −0.00068 −0.00127 0 .00066 0 .00140
gma 6.60∗∗ 0 .00278 −0.00298 0 .00069 −0.00066 0 .00016 0 .00090
herf −5.78∗∗ −0 .00144 0.00061 0.00041 0.00061 −0 .00019 0 .00077
mom1m −0.62∗∗ −0 .00102 0.00258 −0 .00109 0.00164 −0 .00211 0 .00857
bm ia 2.85∗∗ 0 .00148 −0.00168 0 .00072 −0.00081 0 .00029 0 .00128
stdcf −5.05∗ −0 .00259 0.00101 0.00068 0.00114 −0 .00024 0 .00067
pchgm pchsale 3.46∗ 0 .00034 0 .00006 −0.00003 −0.00079 0 .00042 0 .00122
chcsho −3.11∗ −0 .00111 −0 .00166 0.00092 0.00228 −0 .00044 0 .00123
bm 1.74∗ 0 .00148 0 .00122 −0.00082 −0.00205 0 .00017 0 .00121
chmom −0.67 −0 .00065 0.00166 −0 .00073 0.00044 −0 .00072 0 .00404
baspread 0.55 0 .00240 −0.00795 0 .00329 0 .00279 −0.00053 0 .00322
ep 1.27 0 .00206 0 .00045 −0.00166 −0.00104 0 .00018 0 .00125
idiovol −1.80 −0 .00680 0.00194 0.00308 0.00187 −0 .00008 0 .00109
roaq −0.12 −0 .00014 0.00292 −0 .00114 −0 .00215 0.00051 0 .00186
mve −2.28 −0 .00077 0.00092 −0 .00034 0.00022 −0 .00003 0 .00045
mom12m −0.61 −0 .00109 0.00418 −0 .00066 −0 .00275 0.00031 0 .00265
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Table 5: Out-of-sample performance

This table reports the out-of-sample performance of the different portfolios in the presence of transaction
costs, for risk-aversion parameter γ = 5. Panel A reports the performance for the portfolios that do not
use any characteristics, which are the benchmark value-weighted portfolio (VW) and the equally weighted
portfolio (1/N). Panel B reports the performance of two parametric portfolios that exploit a small number
of characteristics, and the regularized parametric portfolio that exploits a large set of 51 characteristics. The
first parametric portfolio exploits the size, book-to-market, and momentum characteristics (Size/val./mom.).
The second parametric portfolio exploits the size, book-to-market, asset growth, and gross profitability char-
acteristics (Size/val./inv./prof.). The third portfolio is the regularized parametric portfolio that exploits all
51 characteristics (Regularized). The lasso threshold is calibrated using cross-validation over the estimation
window. For each portfolio, the first column reports the monthly turnover, and the next three columns
report the out-of-sample annualized mean, standard deviation, and Sharpe ratio of returns, net of transac-
tion costs. We test the significance of the difference of the Sharpe ratio of each portfolio with that of the
regularized parametric portfolio. Three/two/one asterisks (∗) indicate that the difference is significant at
the 0.01/0.05/0.1 level.

Policy Turnover Mean SD SR

Panel A: Portfolios with no characteristics
VW 0.050 0.085 0.150 0.567∗∗∗

1/N 0.134 0.085 0.177 0.482∗∗∗

Panel B: Portfolios with characteristics
Size/val./mom. 0.754 0.145 0.215 0.675∗∗∗

Size/val./inv./prof. 0.963 0.236 0.220 1.072∗∗

Regularized 0.979 0.241 0.178 1.356

50



Table 6: Factor loadings of regularized parametric portfolios

This table reports the intercept, slopes, and t-statistics (in brackets) from regressing the out-of-sample
regularized portfolio returns onto three sparse factor models: (1) the Fama and French (1993) and Carhart
(1997) four-factor model (FFC) that includes the market, size (SMB), value (HML), and momentum (UMD)
factors; (2) the Fama and French (2015) five-factor model (FF5) that includes the market, size, value,
profitability (RMW), and investment (CMA) factors; and, (3) the Hou et al. (2014) four-factor model (HXZ)
that includes the market, size, investment (I/A), and profitability (ROE) factors. We report t-statistics with
Newey-West adjustments of 12 lags. Factors are obtained from Kenneth French’s and Lu Zhang’s websites.

FFC Coefficient FF5 Coefficient HXZ Coefficient

α 0.0115 α 0.0102 α 0.0095
[4.12] [3.59] [2.89]

Market 0.8898 Market 0.9747 Market 0.9147
[15.29] [15.35] [11.90]

SMB 0.0745 SMB 0.1212 SMB 0.2547
[0.49] [0.84] [1.37]

HML 0.3697 HML −0.2640 I/A 0.7491
[1.84] [−1.71] [2.65]

UMD 0.3249 RMW 0.2554 ROE 0.3316
[2.46] [1.31] [1.69]

CMA 1.0852
[3.64]
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Table A1: Fama-MacBeth regressions for significant characteristics

This table reports the slope coefficients from Fama-MacBeth regressions and the corresponding t-statistics
(in brackets) with Newey-West adjustments of 12 lags. We report the results for multiple and individual
regressions for the six most significant characteristics in the absence of transaction costs, and the three char-
acteristics considered in Brandt et al. (2009): size (mve), book to market (bm), and momentum (mom12m).

Characteristic Multiple Individual

Unexpected quarterly earnings (sue) 0.0019 0.0027
[7.38] [7.10]

Return volatility (retvol) −0.0037 −0.0032
[−4.42] [−2.22]

Asset growth (agr) −0.0026 −0.0031
[−5.39] [−5.09]

1-month momentum (mom1m) −0.0033 −0.0017
[−4.67] [−2.13]

Gross profitability (gma) 0.0020 0.0007
[3.80] [1.34]

Beta (beta) 0.0013 0.0001
[0.99] [0.04]

Book to market (bm) 0.0016 0.0021
[2.11] [2.17]

Market capitalization (mve) −0.0007 −0.0002
[−1.76] [−0.40]

12-month momentum (mom12m) 0.0026 0.0030
[2.43] [2.45]
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Figure 1: Marginal contribution to turnover of characteristics traded in isolation and in equally weighted portfolio

This figure compares the average trading volume (turnover) required to exploit the 51 characteristics in isolation with that required to exploit them
in an equally weighted portfolio. The horizontal axis gives the turnover in percentage and the vertical axis gives the acronyms of the characteristics
and the equally weighted portfolio (EW). The blue bars give the turnover required to exploit each of the characteristics in isolation (Isolation), the
yellow bars give the marginal contribution to turnover of each characteristic in an equally weighted portfolio (Combined), and the red bar gives the
turnover of the equally weighted portfolio of the 51 characteristics (EW portfolio).
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Figure 2: Correlations between rebalancing trades of different characteristics

This figure depicts a heatmap of the correlations between the rebalancing trades for the 51 characteristics for a particular stock.
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Figure 3: Marginal contributions of significant characteristics without transaction costs

This figure shows the marginal contributions to the investor’s utility of the six significant characteristics in the absence of transaction costs. The
vertical axis gives the labels of the significant characteristics: unexpected quarterly earnings (unexp. earn.), return volatility (ret. vol.), asset growth,
1-month momentum (reversals), gross profitability (profit.), and beta. The horizontal axis gives the marginal contributions of each characteristic to
(i) the characteristic own-variance (brown bars, variance), (ii) the covariance of the characteristic with the other characteristics in the portfolio (yellow
bars, cov(char.)), (iii) the covariance of the characteristic with the benchmark portfolio (light-blue bars, cov(bench.)), and (iv) the characteristic mean
(dark-blue bars, mean). Contributions that drive the characteristic to be nonzero are depicted with positive bars, and contributions that drive the
characteristic toward zero are depicted with negative bars; cf. Footnote 26.
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Figure 4: Cumulative returns for beta and return-volatility blended strategy

This figure shows the cumulative returns of a blended strategy that goes long beta and short return volatility.
Panel (a) depicts the cumulative returns of going long beta (long beta), of going short return volatility (short
retvol), and of a blended strategy formed by assigning 50% weight to beta and −50% to retvol. Panel (b)
compares the cumulative returns of the blended strategy with beta and retvol with those of a blended strategy
that assigns 50% to book to market (bm) and 50% to 12-month momentum (mom12m). For comparison
purposes, in Panel (b) we normalize both strategies so that they have the same volatility.

(a) Beta and retvol blended strategy
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Figure 5: Marginal contribution to transaction costs of characteristics in isolation and in optimal parametric portfolio

This figure shows the marginal contribution to transaction costs when characteristics are traded in isolation and in an optimal parametric portfolio.
We plot the marginal contribution to transaction costs of the 15 most significant characteristics in Table 4. The horizontal axis gives the marginal
contribution to transaction costs and the vertical axis gives the acronyms of the characteristics. The blue bars give the marginal contribution of each
characteristic to transaction costs when traded in isolation (Isolation) and the yellow bars give the marginal contribution of each characteristic to
transaction costs when combined in the optimal parametric portfolio (Combined).

0 1 2 3 4 5 6 7 8 9

x 10
−3

bm_ia

mom1m

herf

gma

ps

beta

chtx

chatoia

zerotrade

std_turn

retvol

turn

sue

agr

rd_mve

Contribution to transaction costs

 

 

Isolation

Combined

57



Figure 6: Out-of-sample cumulative returns

This figure shows the out-of-sample cumulative returns of the value-weighted portfolio (VW) and
three different parametric portfolios in the presence of transaction costs, for risk-aversion parameter
γ = 5. Two of the parametric portfolios exploit a small number of characteristics. The first paramet-
ric portfolio exploits the size, book-to-market, and momentum characteristics (Size/val./mom.). The
second parametric portfolio exploits the size, book-to-market, asset growth, and gross profitability
characteristics (Size/val./inv./prof.). The third parametric portfolio is the regularized parametric
portfolio that exploits all 51 characteristics (Regularized). The lasso threshold is calibrated using
cross-validation over the estimation window. For comparison purposes we normalize all portfolio
returns so that they have the same volatility.
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IA Robustness checks

We investigate the robustness of our main finding that transaction costs increase the num-

ber of significant characteristics to: considering quadratic instead of proportional trans-

action costs, excluding microcaps, applying the reality check in White (2000), expanding

our dataset to consider also characteristics with a large number of missing observations,

different subperiods, different levels of risk-aversion, and using different methods to stan-

dardize firm characteristics. In addition, we check the robustness of our out-of-sample

results to: firm size, shortsale constraints, and the constraint on maximum turnover.

IA.1 Quadratic transaction costs

In the main body of the manuscript, we consider an investor who faces proportional

transaction costs, as in Brandt, Santa-Clara, and Valkanov (2009). Proportional trans-

action costs are a reasonable assumption for the average investor; see Novy-Marx and

Velikov (2016) and Chen and Velikov (2017). For large investors, a common assumption

is that their price impact is linear on the amount traded, and thus, they face quadratic

transaction costs; see, for instance, Korajczyk and Sadka (2004). In this section, we show

that our main finding is robust to considering quadratic transaction costs; that is, the

number of characteristics that are jointly significant at the 5% level increases from five

to 19 in the presence of quadratic transaction costs.

IA.1.1 Modeling quadratic transaction costs

To model market impact costs, we need to track absolute portfolio positions instead of

portfolio weights. To do this, we consider an investor with a wealth of $B billion, who

holds the following parametric portfolio:

wt(θ) = Bwb,t +Xtθ/Nt, (1)

where the notation is as in Section 3 of the manuscript. We assume the investor maximizes

her mean-variance utility of wealth growth net of quadratic transaction costs:

min
θ

γa
2
θ>Σ̂cθ + γaBθ

>σ̂bc − θ>µ̂c + TC(θ), (2)
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where γa = γ/B is the investor’s absolute risk-aversion parameter, defined as the ratio of

relative risk-aversion parameter to wealth,1 and TC(θ) is the quadratic transaction cost

TC(θ) =
1

T − 1

T−1∑

t=1

(wt+1(θ) − w+
t (θ))>Λt+1(wt+1(θ) − w+

t (θ)), (3)

where Λt = diag(λ1,t, . . . , λNt,t) is the diagonal matrix whose ith element is the Kyle

lambda of the ith stock at time t and w+
t (θ) is the parametric portfolio before rebalancing

at time t+ 1.

To calibrate our quadratic transaction cost function we rely on the empirical

results in Novy-Marx and Velikov (2016), which uses Trade and Quote (TAQ) data to

estimate the Kyle lambdas of individual stocks. The paper shows that the R-squared

of a cross-sectional regression of log Kyle lambda on log market capitalization is 70%

and the slope is not statistically distinguishable from minus one. This suggests that a

good approximation to the cross-sectional variation of Kyle lambdas is to assume they

are inversely proportional to the market capitalization of each firm. Moreover, Novy-

Marx and Velikov (2016) shows that the average price elasticity of supply, defined as the

product of Kyle lambda and market capitalization, λi,t ×mei,t, is about 6.5. Based on

this evidence, we assume the Kyle lambda of the ith stock at time t is λi,t = 6.5/mei,t,

where mei,t is the market capitalization of the ith stock at time t.

IA.1.2 How many characteristics matter jointly with quadratic costs?

Table IA.1 reports the significance and marginal contributions of each characteristic in

the parametric portfolios in the presence of quadratic transaction costs. We consider an

investor who allocates B = $1 billion to the benchmark portfolio2 and has an absolute

risk-aversion parameter γa = 5/109, which corresponds to a relative risk-aversion param-

eter of γ = 5 for an investor with wealth of B = $1 billion. Similar to the analysis in

Section 6, we run a screen-and-clean significance test.

Table IA.1 reports the significance and marginal contributions of each character-

istic in the parametric portfolios. Our main finding is that, similar to the case with

1Because the mean-variance optimization problem is defined in terms of absolute portfolio posi-
tions, we formulate the problem in terms of absolute risk-aversion instead of relative risk-aversion, as in
Gârleanu and Pedersen (2013).

2We have also considered the cases with B = $10 and $100 billion and the results are similar.
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proportional transaction costs, the number of significant characteristics with quadratic

transaction costs is substantially larger than for the case without transaction costs. In

particular, the number of characteristics that are significant at the 5% level increases

from five in the absence of transaction costs to 19 in the presence of quadratic trans-

action costs. The explanation for this result can be found by comparing the last two

columns of Table IA.1, which report the marginal contribution of the characteristic to

the transaction cost when traded in the optimal parametric portfolio and in isolation, re-

spectively.3 We observe that combining characteristics reduces the marginal contribution

to quadratic transaction costs by an average of 93%; that is, the benefits from trading

diversification are very large also in the presence of quadratic transaction costs.

IA.2 Excluding microcaps

In the main body of the manuscript, we exclude stocks that are below the 20th per-

centile of market capitalization across the NYSE, AMEX and NASDAQ exchanges. We

now check the robustness of our significance results to excluding microcap stocks, which

are the stocks below the NYSE 20th percentile. Tables IA.2 and IA.3 report the sig-

nificance results for the cases where we compute the parametric portfolios without and

with transaction costs, respectively. The number of characteristics significant at the 5%

level increases from seven in the absence of transaction costs to 12 in the presence of

transaction costs. Thus, our central insight that transaction costs increase the dimension

of the cross section is robust to excluding microcaps.

IA.3 Reality check

Novy-Marx (2016) explains that overfitting bias occurs when researchers consider multi-

ple variables that have been shown individually to predict stock returns in sample. We

believe that our main finding that transaction costs increase the dimension of the cross

section is not driven by overfitting bias because, although overfitting may increase the

3To compute the marginal contribution to transaction costs of a characteristic traded in isolation,
we assign to the single characteristic a weight equal to the sum of the absolute values of the optimal
parametric portfolio weights for the case when characteristics are traded in combination. This allows
for a meaningful comparison for the case with quadratic transaction costs.
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number of significant characteristics for both cases without and with transaction costs,

it is unlikely to reverse the relative size of these two numbers.

Nonetheless, to check whether overfitting bias affects our significance test, we

adapt the reality check in White (2000) to the context of parametric portfolios.4 First, we

set the benchmark portfolio equal to the in-sample optimal parametric portfolio instead

of the value-weighted portfolio. By doing this we essentially remove the predictability

from our dataset while preserving the correlation structure of the 51 characteristics.

Second, we implement a variant of the screen-and-clean test.5 Specifically, we generate

1,000 bootstrap samples from the original dataset using sampling with replacement. For

each of the 1,000 bootstrap samples we use five-fold cross-validation to select the lasso

threshold that optimizes the mean-variance criterion and we screen any characteristics

with zero weight for the resulting regularized parametric portfolio. We then compute

the optimal parametric portfolio of the characteristics that have survived the screen

stage for each bootstrap sample, but without the lasso constraint. Finally, we use the

percentile-interval method to establish the significance of the characteristics across the

1,000 samples.

We perform the reality check for both the cases with and without transaction costs.

In results not reported to conserve space, we find that after removing the predictability

from our dataset, none of the 51 characteristics are significant either in the absence or

the presence of transaction costs.

IA.4 Characteristics with many missing observations

To ensure our results are reliable, we consider in our main analysis only characteristics

with a small proportion of missing observations. Specifically, we drop characteristics with

more than 5% of missing observations for more than 5% of those firms with CRSP returns

available for the entire sample from 1980 to 2014. In addition, we drop characteristics

without any observations for more than 1% of these firms. Consequently, our main

analysis is based on 51 out of the 100 characteristics listed in Green, Hand, and Zhang

4Harvey and Liu (2018) applies the reality check to the context of sequential factor selection.
5We cannot implement the plain screen-and-clean test of Section 3.5 because, given that we are using

the in-sample optimal parametric portfolio as the benchmark portfolio, none of the characteristics would
survive the screen stage.
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(2017). However, to check the robustness of our results, we also run the screen-and-clean

significance test of Section 3 using all 100 characteristics in Green et al. (2017).

We find that our results are robust to the inclusion of characteristics with a large

proportion of missing observations. First, in the absence of transaction costs, out of

the 100 characteristics, only seven are significant, compared to six in the case with 51

characteristics. Second, in the presence of transaction costs, the number of significant

characteristics increases to 15, just as in the case with 51 characteristics.

IA.5 Pre- and post-January 2003 analysis

Chordia, Subrahmanyam, and Tong (2014) shows that the magnitude of asset return

predictability has decreased in the last decade. To understand how our results vary over

time, we test the statistical significance of characteristics for two different subperiods

with similar number of observations: May 1988 to December 2002 and January 2003 to

December 2014. In results not reported to conserve space, we find that for the period

before 2003 the number of significant characteristics increases from eight in the absence

of transaction costs to 14 in the presence of transaction costs. For the period after 2003,

the number of significant characteristics increases from two in the absence of transaction

costs to eight in the presence of transaction costs. Our results confirm both, our main

finding that transaction costs increase the dimension of the cross section, as well as the

finding in the literature that the magnitude of asset return predictability has decreased

in the last decade.

IA.6 Risk-aversion

We now study how our results depend on the risk-aversion parameter. Tables IA.4 and

IA.5 report the significance of characteristics for the parametric portfolios with risk-

aversion parameter γ = 2 for the cases without and with transaction costs, respectively.

Likewise, Tables IA.6 and IA.7 report the significance of characteristics for γ = 10 for the

cases without and with transaction costs, respectively. Our main finding that transaction

costs increase the dimension of the cross section is robust to the investor’s risk-aversion

parameter: For γ = 2, the number of significant characteristics increases from six in the

absence of transaction costs to 14 in the presence of transaction costs, and for γ = 10, the
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number of significant characteristics increases from eight in the absence of transaction

costs to 13 in the presence of transaction costs.

IA.7 Quintile-standardized characteristics

We now consider characteristic long-short portfolios defined in terms of the top and

bottom quintiles instead of standardizing the characteristics by subtracting the cross-

sectional mean and dividing by the standard deviation. Specifically, we assign a weight

of 1/Qt to firms in the fifth quintile and −1/Qt to firms in the first quintile, where Qt is

the number of firms per quintile in month t. Tables IA.8 and IA.9 report the significance

of characteristics for the parametric portfolios with quintile-standardized characteristics

in the absence and presence of transaction costs, respectively. The tables show that the

number of significant characteristics increases from six in the absence of transaction costs

to 10 in the presence of transaction costs.

IA.8 Out-of-sample analysis

We now run several checks on the robustness of our out-of-sample analysis.

IA.8.1 Firm size

To study how the out-of-sample performance of the regularized parametric portfolios

depends on firm size, we classify stocks (including those with market capitalization below

the 20th percentile of our sample, which are excluded in our main analysis) into five size

quintiles. Table IA.10 reports the out-of-sample performance of the parametric portfolios

in the presence of transaction costs applied to each of the five quintiles separately. It is

clear from the table that the performance of the regularized parametric portfolios is better

for the quintiles with small stocks. Indeed, this table demonstrates that the regularized

parametric portfolios outperform the benchmark value-weighted portfolios significantly

for the first four quintiles corresponding to the 80% of smallest stocks. These results are

consistent with the findings in Hand and Green (2011) and Fama and French (2008). Also,

the regularized parametric portfolios significantly outperform the parametric portfolios

based on a small number of characteristics for the first three quintiles corresponding to

the 60% of smallest stocks.
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IA.8.2 Shortsale constraints

Table IA.11 reports the out-of-sample performance of the regularized portfolios subject

to shortsale constraints.6 Panel A reports the performance for the parametric portfolios

with no shortselling, and Panel B reports the performance for the parametric portfo-

lios after scaling the optimal parameter θ so that the short positions in the regularized

parametric portfolio amount to around 50%. Panel A shows that with shortsale con-

straints, although the out-of-sample Sharpe ratio of the regularized parametric portfolios

is higher than that of the value-weighted benchmark portfolio, the difference is not sta-

tistically significant. Panel B, however, shows that the amount of shorting required for

the regularized parametric portfolios to significantly outperform the other portfolios is

not large. We observe that for the case with around 50% shortselling, the regularized

parametric portfolios attain an out-of-sample Sharpe ratio around 87% higher than the

benchmark value-weighted portfolio, 48% higher than that of the portfolios that exploit

three characteristics, and around 22% higher than that of the portfolios that exploit four

characteristics, with the differences being statistically significant.

IA.8.3 Turnover constraints

In Section 7, we evaluate the out-of-sample performance of the regularized parametric

portfolios after controlling their turnover to be around 100% per month. Table IA.12 re-

ports the performance of the regularized parametric portfolios in the absence of turnover

controls. The regularized parametric portfolios without turnover control have a monthly

turnover of around 386%. Despite their high turnover, the table shows that the reg-

ularized parametric portfolios attain an out-of-sample Sharpe ratio of returns net of

transaction costs around 125% higher than the parametric portfolio that exploits three

characteristics, and around 29% higher than the parametric portfolio that exploits four

characteristics with the difference significant at the 10% level.

6As in Brandt et al. (2009), we compute shortsale constrained portfolios by first computing the
unconstrained regularized parametric portfolios, then setting all negative firm weights equal to zero,
and finally normalizing the resulting vector so that its weights sum to one.
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Table IA.1: Significance and marginal contributions with quadratic transaction costs

This table reports the significance and marginal contributions for the parametric portfolios in the presence of
quadratic transaction costs, for the case where the investor allocatesB = $1 billion to the benchmark portfolio and
has an absolute risk-aversion parameter γa = 5/B. We run a screen-and-clean significance test. For the screen
step, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso
threshold that maximizes investor’s utility is δ = 1.5 ×B. For the clean step, we run the bootstrap experiment
for the parametric portfolios using those characteristics with nonzero θ’s from the previous step. Characteristic
p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one asterisks
(∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal
parametric portfolio and marginal contributions, we include all characteristics with nonzero θ’s for the screen
step plus the three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For
each characteristic, the first column gives the acronym, the second the optimal value of the parameter (divided
by 100 million) and the significance asterisks, and the next five columns give the marginal contribution of the
characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the other
characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the
characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution of the
characteristic to transaction costs when it is traded in isolation. Contributions that drive the characteristic to
be nonzero are in blue sans serif font, and contributions that drive the characteristic toward zero are in red italic
font (cf. Footnote 26).

Marginal contributions Isolation
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 2.592∗∗∗ 0 .00009 −0.00033 0 .00045 −0.00164 0 .00143 0 .01365
agr −1.347∗∗∗ −0 .00005 −0 .00041 0.00057 0.00290 −0 .00302 0 .02405
sgr −1.284∗∗∗ −0 .00004 −0 .00046 0.00075 0.00179 −0 .00203 0 .02672
chatoia 0.898∗∗∗ 0 .00001 0 .00005 −0.00005 −0.00077 0 .00077 0 .02745
turn −2.270∗∗∗ −0 .00054 −0 .00091 0.00279 0.00068 −0 .00203 0 .01855
retvol −0.668∗∗∗ −0 .00022 −0 .00141 0.00292 0.00323 −0 .00452 0 .11102
std turn 0.567∗∗∗ 0 .00010 −0.00123 0 .00214 −0.00080 −0.00020 0 .07697
zerotrade −0.817∗∗∗ −0 .00007 0.00092 −0 .00205 0.00124 −0 .00004 0 .07316
chcsho −1.104∗∗∗ −0 .00004 −0 .00056 0.00092 0.00228 −0 .00260 0 .01692
ps 1.017∗∗∗ 0 .00003 0 .00030 −0.00068 −0.00127 0 .00162 0 .02187
sue 0.310∗∗∗ 0 .00001 0 .00015 −0.00019 −0.00254 0 .00258 0 .07646
egr −0.819∗∗∗ −0 .00003 −0 .00035 0.00041 0.00231 −0 .00234 0 .02703
idiovol −1.781∗∗∗ −0 .00067 −0 .00109 0.00308 0.00187 −0 .00319 0 .03448
gma 1.408∗∗∗ 0 .00006 −0.00047 0 .00069 −0.00066 0 .00038 0 .01359
ep 0.718∗∗ 0 .00012 0 .00089 −0.00166 −0.00104 0 .00169 0 .03735
convind −1.187∗∗ −0 .00002 −0 .00032 0.00071 0.00051 −0 .00088 0 .01024
roaq 0.582∗∗ 0 .00007 0 .00078 −0.00114 −0.00215 0 .00244 0 .03971
cashpr −0.814∗∗ −0 .00004 −0 .00063 0.00091 0.00139 −0 .00163 0 .01514
indmom 1.534∗∗ 0 .00026 0 .00037 −0.00050 −0.00222 0 .00209 0 .02111
herf −1.044∗ −0 .00003 −0 .00002 0.00041 0.00061 −0 .00098 0 .01354
pchcapx ia −0.676∗ −0 .00001 −0 .00009 0.00018 0.00093 −0 .00100 0 .02260
mom12m 0.853∗ 0 .00015 0 .00043 −0.00066 −0.00275 0 .00282 0 .03359
stdcf −0.828∗ −0 .00004 −0 .00046 0.00068 0.00114 −0 .00131 0 .01370
lgr 0.329 0 .00001 −0.00044 0 .00064 0 .00182 −0.00203 0 .02653
saleinv 0.587 0 .00001 0 .00027 −0.00064 −0.00005 0 .00041 0 .00975
hire −0.288 −0 .00001 −0 .00051 0.00065 0.00197 −0 .00211 0 .02518
beta −1.003 −0 .00041 −0 .00164 0.00419 −0 .00008 −0 .00205 0 .01902
rsup 0.170 0 .00000 0 .00015 −0.00017 −0.00054 0 .00056 0 .04223
mve −9.661 −0 .00033 0.00041 −0 .00034 0.00022 0.00003 0 .00165
mom36m −0.627 −0 .00003 −0 .00034 0.00022 0.00125 −0 .00110 0 .01653
ear 0.082 0 .00000 0 .00013 0 .00004 −0.00137 0 .00120 0 .07008
bm ia 0.498 0 .00003 −0.00044 0 .00072 −0.00081 0 .00051 0 .02151
mom6m 0.305 0 .00006 0 .00068 −0.00093 −0.00247 0 .00266 0 .05988
baspread −0.192 −0 .00008 −0 .00181 0.00329 0.00279 −0 .00418 0 .08273
chtx 0.115 0 .00000 −0.00002 0 .00015 −0.00123 0 .00110 0 .04466
bm −0.442 −0 .00004 0.00084 −0 .00082 −0 .00205 0.00207 0 .02369
salerec 0.482 0 .00001 −0.00006 0 .00016 −0.00044 0 .00033 0 .01198
dy 0.591 0 .00006 0 .00084 −0.00161 −0.00029 0 .00100 0 .01251
pchgm pchsale −0.132 −0 .00000 0.00000 −0 .00003 −0 .00079 0.00082 0 .02849
lev 0.661 0 .00008 0 .00088 −0.00123 −0.00092 0 .00119 0 .01234
mom1m 0.083 0 .00001 0 .00045 −0.00109 0 .00164 −0.00102 0 .22528
std dolvol −0.040 −0 .00000 0.00061 −0 .00150 0.00003 0.00086 0 .08448
dolvol −0.130 −0 .00001 −0 .00057 0.00139 −0 .00025 −0 .00056 0 .03294
mve ia 0.318 0 .00001 −0.00004 0 .00016 −0.00013 −0.00000 0 .00613



Table IA.2: Significance test without transaction costs: No microcaps

This table reports, for the case where microcaps are excluded from the dataset, the significance and marginal
contributions for the parametric portfolios without transaction costs, for risk-aversion parameter γ = 5.
We run a screen-and-clean significance test. For the screen step, we calibrate the regularized parametric
portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor’s utility
is δ = 40. For the clean step, we run the bootstrap experiment for the parametric portfolios using those
characteristics with nonzero θ’s from the previous step. Characteristic p-values are computed using the
percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗) to those characteristics
whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio
and marginal contributions, we include all characteristics with nonzero θ’s for the screen step plus the
three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each
characteristic, the first column gives the acronym, the second the optimal value of the parameter and the
significance asterisks, and the next five columns give the marginal contribution of the characteristic to:
(i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in
the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, and (iv) the characteristic
mean. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and contributions
that drive the characteristic toward zero are in red italic font (cf. Footnote 26)

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

ear 9.43∗∗∗ 0 .00173 −0.00086 0 .00025 −0.00112
indmom −4.12∗∗∗ −0 .00698 0.00843 −0 .00052 −0 .00093
retvol −6.74∗∗∗ −0 .02308 0.01817 0.00338 0.00153
std turn 9.57∗∗∗ 0 .01983 −0.02187 0 .00223 −0.00019
bm ia 5.63∗∗∗ 0 .00315 −0.00312 0 .00075 −0.00078
sue 8.48∗∗ 0 .00120 0 .00002 −0.00015 −0.00107
ps 6.87∗∗ 0 .00175 −0.00033 −0.00076 −0.00066
rd mve 5.96∗ 0 .00213 −0.00137 0 .00043 −0.00119
std dolvol 3.15∗ 0 .00088 0 .00001 −0.00061 −0.00028
chmom −2.14∗ −0 .00241 0.00208 −0 .00076 0.00110
agr −8.33 −0 .00439 0.00134 0.00098 0.00207
roaq 1.89 0 .00138 0 .00086 −0.00077 −0.00148
mom1m −0.96 −0 .00146 0.00152 −0 .00095 0.00089
egr −4.74 −0 .00218 −0 .00059 0.00083 0.00194
gma 1.46 0 .00085 −0.00136 0 .00070 −0.00019
bm 0.85 0 .00080 0 .00090 −0.00065 −0.00106
mve −0.19 −0 .00007 0.00023 −0 .00053 0.00037
mom12m −0.76 −0 .00150 0.00346 −0 .00045 −0 .00151
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Table IA.3: Significance test with transaction costs: No microcaps

This table reports, for the dataset without microcaps, the significance and marginal contributions for the
parametric portfolios in the presence of transaction costs, for risk-aversion parameter γ = 5. We run a screen-
and-clean significance test. For the screen step, we calibrate the regularized parametric portfolios with five-
fold cross-validation and find that the lasso threshold that maximizes investor’s utility is δ = 20. For the clean
step, we run the bootstrap experiment for the parametric portfolios using those characteristics with nonzero
θ’s from the previous step. Characteristic p-values are computed using the percentile method discussed in
Section 3.5. We assign three/two/one asterisks (∗) to those characteristics whose p-values are lower than
0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions, we
include all characteristics with nonzero θ’s for the screen step plus the three characteristics considered in
Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives
the acronym, the second the optimal value of the parameter and the significance asterisks, and the next
five columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance,
(ii) the covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance
of the characteristic with the benchmark portfolio, (iv) the characteristic mean, and (v) the transaction
cost. The last column reports the marginal contribution of the characteristic to transaction costs when it is
traded in isolation. Contributions that drive the characteristic to be nonzero are in blue sans serif font, and
contributions that drive the characteristic toward zero are in red italic font (cf. Footnote 26)

Marginal contributions Isolation
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

std turn 0.28∗∗∗ 0 .00057 −0.00300 0 .00223 −0.00019 0 .00039 0 .00472
rd mve 7.13∗∗∗ 0 .00255 −0.00205 0 .00043 −0.00119 0 .00026 0 .00051
ear 0.33∗∗∗ 0 .00006 −0.00019 0 .00025 −0.00112 0 .00100 0 .00324
bm ia 2.53∗∗∗ 0 .00142 −0.00181 0 .00075 −0.00078 0 .00043 0 .00125
mom36m 1.17∗∗∗ 0 .00069 −0.00256 0 .00046 0 .00107 0 .00034 0 .00177
chmom −1.01∗∗ −0 .00114 0.00181 −0 .00076 0.00110 −0 .00101 0 .00421
egr −4.09∗∗ −0 .00188 −0 .00032 0.00083 0.00194 −0 .00057 0 .00124
gma 3.84∗∗ 0 .00223 −0.00283 0 .00070 −0.00019 0 .00009 0 .00089
ps 2.72∗∗ 0 .00069 0 .00020 −0.00076 −0.00066 0 .00053 0 .00141
retvol −0.24∗∗ −0 .00081 −0 .00318 0.00338 0.00153 −0 .00092 0 .00492
zerotrade −0.23∗∗ −0 .00008 0.00094 −0 .00108 0.00064 −0 .00042 0 .00182
aeavol −0.17∗∗ −0 .00004 −0 .00050 0.00070 0.00021 −0 .00037 0 .00293
indmom −0.59∗ −0 .00101 0.00293 −0 .00052 −0 .00093 −0 .00047 0 .00252
saleinv 2.80∗ 0 .00040 0 .00023 −0.00058 −0.00020 0 .00016 0 .00069
chatoia 2.45∗ 0 .00023 0 .00020 −0.00016 −0.00067 0 .00040 0 .00118
herf −2.40∗ −0 .00067 0.00024 0.00049 0.00011 −0 .00017 0 .00076
sue 0.21 0 .00003 0 .00039 −0.00015 −0.00107 0 .00080 0 .00219
stdcf −2.31 −0 .00105 −0 .00008 0.00063 0.00073 −0 .00023 0 .00065
roaq 0.64 0 .00047 0 .00107 −0.00077 −0.00148 0 .00071 0 .00186
rsup 0.40 0 .00010 0 .00012 −0.00015 −0.00048 0 .00042 0 .00169
pchcapx ia −1.46 −0 .00039 −0 .00034 0.00034 0.00069 −0 .00030 0 .00123
pchgm pchsale 1.22 0 .00014 −0.00018 −0.00000 −0.00027 0 .00031 0 .00120
chtx 0.16 0 .00005 −0.00048 0 .00030 −0.00052 0 .00065 0 .00233
baspread −0.28 −0 .00122 −0 .00323 0.00380 0.00128 −0 .00062 0 .00344
cashpr −2.07 −0 .00092 −0 .00051 0.00063 0.00095 −0 .00016 0 .00085
pricedelay 0.06 0 .00001 0 .00093 −0.00079 −0.00033 0 .00018 0 .00286
sgr −1.69 −0 .00099 −0 .00107 0.00100 0.00127 −0 .00021 0 .00120
mom6m 0.63 0 .00131 0 .00066 −0.00076 −0.00101 −0.00020 0 .00397
turn −0.53 −0 .00156 −0 .00169 0.00288 0.00054 −0 .00017 0 .00171
beta 0.83 0 .00341 −0.00810 0 .00413 0 .00052 0 .00004 0 .00122
salerec 1.41 0 .00038 0 .00015 −0.00020 −0.00045 0 .00011 0 .00080
lev 1.84 0 .00219 −0.00072 −0.00071 −0.00081 0 .00005 0 .00081
chcsho −0.66 −0 .00026 −0 .00205 0.00098 0.00175 −0 .00042 0 .00126
convind −0.72 −0 .00013 −0 .00082 0.00068 0.00035 −0 .00008 0 .00076
agr −1.15 −0 .00060 −0 .00185 0.00098 0.00207 −0 .00060 0 .00123
ep 0.84 0 .00112 0 .00078 −0.00153 −0.00050 0 .00013 0 .00119
idiovol −0.01 −0 .00002 −0 .00407 0.00335 0.00081 −0 .00006 0 .00114
mom1m 0.08 0 .00013 0 .00111 −0.00095 0 .00089 −0.00117 0 .00850
bm −2.05 −0 .00194 0.00361 −0 .00065 −0 .00106 0.00004 0 .00114
mve −2.27 −0 .00079 0.00100 −0 .00053 0.00037 −0 .00005 0 .00059
mom12m −0.34 −0 .00068 0.00251 −0 .00045 −0 .00151 0.00013 0 .00274



Table IA.4: Significance test without transaction costs: Risk-aversion of γ = 2

This table reports the significance and marginal contributions for the parametric portfolios without trans-
action costs, for risk-aversion parameter γ = 2. We run a screen-and-clean significance test. For the screen
step, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso
threshold that maximizes investor’s utility is δ = 75. For the clean step, we run the bootstrap experiment
for the parametric portfolios using those characteristics with nonzero θ’s from the previous step. Character-
istic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one
asterisks (∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute
the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ’s
for the screen step plus the three characteristics considered in Brandt et al. (2009): size, book to market,
and momentum. For each characteristic, the first column gives the acronym, the second the optimal value
of the parameter and the significance asterisks, and the next four columns give the marginal contribution
of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the
other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio,
and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans
serif font, and contributions that drive the characteristic toward zero are in red italic font (cf. Footnote 26).

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

sue 51.10∗∗∗ 0 .00347 −0.00085 −0.00008 −0.00254
retvol −27.05∗∗∗ −0 .03520 0.03081 0.00117 0.00323
bm 9.54∗∗ 0 .00325 −0.00087 −0.00033 −0.00205
gma 14.88∗∗ 0 .00251 −0.00213 0 .00028 −0.00066
agr −25.44∗∗ −0 .00389 0.00077 0.00023 0.00290
mom1m −7.75∗∗ −0 .00508 0.00388 −0 .00043 0.00164
bm ia 16.42∗ 0 .00341 −0.00289 0 .00029 −0.00081
beta 6.69∗ 0 .01103 −0.01262 0 .00167 −0.00008
rd mve 14.66 0 .00210 −0.00064 0 .00018 −0.00164
std turn 18.71 0 .01266 −0.01271 0 .00085 −0.00080
chcsho −13.50 −0 .00192 −0 .00073 0.00037 0.00228
zerotrade −6.41 −0 .00216 0.00174 −0 .00082 0.00124
mve −9.17 −0 .00124 0.00115 −0 .00014 0.00022
mom12m −10.59 −0 .00752 0.01054 −0 .00026 −0 .00275
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Table IA.5: Significance test with transaction costs: Risk-aversion of γ = 2

This table reports the significance and marginal contributions for the parametric portfolios in the presence
of transaction costs, for risk-aversion parameter γ = 2. We run a screen-and-clean significance test. For the
screen step, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that
the lasso threshold that maximizes investor’s utility is δ = 75. For the clean step, we run the bootstrap
experiment for the parametric portfolios using those characteristics with nonzero θ’s from the previous
step. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign
three/two/one asterisks (∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively.
To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with
nonzero θ’s for the screen step plus the three characteristics considered in Brandt et al. (2009): size, book to
market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal
value of the parameter and the significance asterisks, and the next five columns give the marginal contribution
of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the
other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio,
(iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution
of the characteristic to transaction costs when this is traded in isolation. Contributions that drive the
characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward
zero are in red italic font (cf. Footnote 26).

Marginal contributions Isolation
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 31.87∗∗∗ 0 .00457 −0.00332 0 .00018 −0.00164 0 .00022 0 .00047
agr −18.14∗∗∗ −0 .00278 0.00016 0.00023 0.00290 −0 .00051 0 .00115
sue 8.40∗∗∗ 0 .00057 0 .00062 −0.00008 −0.00254 0 .00143 0 .00224
turn −9.17∗∗∗ −0 .00866 0.00727 0.00111 0.00068 −0 .00040 0 .00168
retvol −5.26∗∗∗ −0 .00685 0.00378 0.00117 0.00323 −0 .00133 0 .00445
std turn 3.45∗∗∗ 0 .00234 −0.00320 0 .00085 −0.00080 0 .00081 0 .00478
zerotrade −5.25∗∗∗ −0 .00177 0.00220 −0 .00082 0.00124 −0 .00085 0 .00218
beta 10.98∗∗∗ 0 .01811 −0.01992 0 .00167 −0.00008 0 .00023 0 .00111
chtx 3.85∗∗ 0 .00030 −0.00016 0 .00006 −0.00123 0 .00103 0 .00222
mom1m −1.77∗∗ −0 .00116 0.00207 −0 .00043 0.00164 −0 .00211 0 .00833
ps 11.93∗∗ 0 .00151 −0.00056 −0.00027 −0.00127 0 .00060 0 .00130
chatoia 12.45∗∗ 0 .00032 0 .00004 −0.00002 −0.00077 0 .00043 0 .00107
gma 16.17∗∗ 0 .00273 −0.00248 0 .00028 −0.00066 0 .00013 0 .00081
herf −13.82∗∗ −0 .00138 0.00073 0.00017 0.00061 −0 .00012 0 .00065
pchgm pchsale 9.58∗ 0 .00037 0 .00004 −0.00001 −0.00079 0 .00039 0 .00112
bm ia 7.30∗ 0 .00152 −0.00125 0 .00029 −0.00081 0 .00026 0 .00116
stdcf −14.34∗ −0 .00294 0.00175 0.00027 0.00114 −0 .00021 0 .00060
bm 5.70∗ 0 .00194 0 .00029 −0.00033 −0.00205 0 .00015 0 .00104
chcsho −7.07 −0 .00101 −0 .00127 0.00037 0.00228 −0 .00038 0 .00114
chmom −1.98 −0 .00077 0.00135 −0 .00029 0.00044 −0 .00073 0 .00393
ear 1.09 0 .00007 0 .00059 0 .00002 −0.00137 0 .00070 0 .00305
baspread 1.34 0 .00233 −0.00594 0 .00131 0 .00279 −0.00049 0 .00299
idiovol −4.59 −0 .00693 0.00386 0.00123 0.00187 −0 .00004 0 .00091
ep 3.57 0 .00233 −0.00077 −0.00066 −0.00104 0 .00014 0 .00107
roaq −0.18 −0 .00009 0.00219 −0 .00046 −0 .00215 0.00050 0 .00171
mve −3.63 −0 .00049 0.00045 −0 .00014 0.00022 −0 .00004 0 .00038
mom12m −1.71 −0 .00121 0.00393 −0 .00026 −0 .00275 0.00030 0 .00255
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Table IA.6: Significance test without transaction costs: Risk-aversion of γ = 10

This table reports the significance and marginal contributions for the parametric portfolios without trans-
action costs, for risk-aversion parameter γ = 10. We run a screen-and-clean significance test. For the screen
step, we calibrate the regularized parametric portfolios with five-fold cross-validation and find that the lasso
threshold that maximizes investor’s utility is δ = 15. For the clean step, we run the bootstrap experiment
for the parametric portfolios using those characteristics with nonzero θ’s from the previous step. Character-
istic p-values are computed using the percentile method discussed in Section 3.5. We assign three/two/one
asterisks (∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively. To compute
the optimal parametric portfolio and marginal contributions, we include all characteristics with nonzero θ’s
for the screen step plus the three characteristics considered in Brandt et al. (2009): size, book to market,
and momentum. For each characteristic, the first column gives the acronym, the second the optimal value
of the parameter and the significance asterisks, and the next four columns give the marginal contribution
of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the
other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio,
and (iv) the characteristic mean. Contributions that drive the characteristic to be nonzero are in blue sans
serif font, and contributions that drive the characteristic toward zero are in red italic font (cf. Footnote 26).

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

agr −6.82∗∗∗ −0 .00522 0.00118 0.00115 0.00290
ps 7.84∗∗∗ 0 .00494 −0.00232 −0.00135 −0.00127
sue 9.17∗∗∗ 0 .00311 −0.00019 −0.00038 −0.00254
mom1m −2.20∗∗∗ −0 .00723 0.00776 −0 .00217 0.00164
std turn 8.63∗∗∗ 0 .02919 −0.03265 0 .00427 −0.00080
dolvol −5.98∗∗ −0 .00898 0.00645 0.00278 −0 .00025
retvol −4.58∗∗ −0 .02980 0.02074 0.00583 0.00323
bm ia 3.70∗∗ 0 .00385 −0.00447 0 .00144 −0.00081
gma 2.37∗ 0 .00200 −0.00272 0 .00138 −0.00066
rd mve 3.29 0 .00236 −0.00161 0 .00089 −0.00164
chcsho −1.34 −0 .00095 −0 .00317 0.00184 0.00228
bm 1.13 0 .00192 0 .00176 −0.00164 −0.00205
mve 2.35 0 .00159 −0.00112 −0.00068 0 .00022
mom12m −2.50 −0 .00886 0.01294 −0 .00132 −0 .00275
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Table IA.7: Significance test with transaction costs: Risk-aversion of γ = 10

This table reports the significance and marginal contributions for the parametric portfolios in the presence
of transaction costs, for risk-aversion parameter γ = 10. We run a screen-and-clean significance test. For
the screen step, we calibrate the regularized parametric portfolios with five-fold cross-validation and find
that the lasso threshold that maximizes investor’s utility is δ = 15. For the clean step, we run the bootstrap
experiment for the parametric portfolios using those characteristics with nonzero θ’s from the previous
step. Characteristic p-values are computed using the percentile method discussed in Section 3.5. We assign
three/two/one asterisks (∗) to those characteristics whose p-values are lower than 0.01/0.05/0.1, respectively.
To compute the optimal parametric portfolio and marginal contributions, we include all characteristics with
nonzero θ’s for the screen step plus the three characteristics considered in Brandt et al. (2009): size, book to
market, and momentum. For each characteristic, the first column gives the acronym, the second the optimal
value of the parameter and the significance asterisks, and the next five columns give the marginal contribution
of the characteristic to: (i) the characteristic own-variance, (ii) the covariance of the characteristic with the
other characteristics in the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio,
(iv) the characteristic mean, and (v) the transaction cost. The last column reports the marginal contribution
of the characteristic to transaction costs when this is traded in isolation. Contributions that drive the
characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward
zero are in red italic font (cf. Footnote 26).

Marginal contributions Isolation
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 5.99∗∗∗ 0 .00429 −0.00375 0 .00089 −0.00164 0 .00020 0 .00047
gma 4.09∗∗∗ 0 .00345 −0.00432 0 .00138 −0.00066 0 .00015 0 .00081
ps 3.38∗∗∗ 0 .00213 −0.00017 −0.00135 −0.00127 0 .00066 0 .00130
sue 1.69∗∗∗ 0 .00057 0 .00091 −0.00038 −0.00254 0 .00143 0 .00224
retvol −0.77∗∗∗ −0 .00501 −0 .00288 0.00583 0.00323 −0 .00117 0 .00445
std turn 0.58∗∗∗ 0 .00197 −0.00633 0 .00427 −0.00080 0 .00090 0 .00478
zerotrade −0.81∗∗∗ −0 .00136 0.00495 −0 .00410 0.00124 −0 .00074 0 .00218
herf −3.98∗∗ −0 .00198 0.00072 0.00083 0.00061 −0 .00018 0 .00065
chtx 0.72∗∗ 0 .00028 −0.00035 0 .00030 −0.00123 0 .00100 0 .00222
turn −1.07∗∗ −0 .00505 −0 .00088 0.00557 0.00068 −0 .00032 0 .00168
chatoia 3.13∗∗ 0 .00040 0 .00006 −0.00011 −0.00077 0 .00042 0 .00107
agr −2.61∗∗ −0 .00200 −0 .00154 0.00115 0.00290 −0 .00051 0 .00115
stdcf −2.26∗∗ −0 .00232 0.00003 0.00135 0.00114 −0 .00020 0 .00060
mom1m −0.37∗ −0 .00122 0.00376 −0 .00217 0.00164 −0 .00200 0 .00833
chmom −0.45∗ −0 .00088 0.00268 −0 .00146 0.00044 −0 .00078 0 .00393
mve −1.63 −0 .00110 0.00160 −0 .00068 0.00022 −0 .00004 0 .00038
pchgm pchsale 1.49 0 .00029 0 .00016 −0.00006 −0.00079 0 .00040 0 .00112
bm ia 1.21 0 .00126 −0.00209 0 .00144 −0.00081 0 .00021 0 .00116
sgr −2.25 −0 .00154 −0 .00159 0.00150 0.00179 −0 .00015 0 .00111
chcsho −1.39 −0 .00099 −0 .00277 0.00184 0.00228 −0 .00037 0 .00114
bm 0.81 0 .00138 0 .00217 −0.00164 −0.00205 0 .00013 0 .00104
pchcapx ia −1.11 −0 .00047 −0 .00060 0.00036 0.00093 −0 .00021 0 .00118
roaq −0.34 −0 .00083 0.00488 −0 .00228 −0 .00215 0.00038 0 .00171
ep 0.74 0 .00243 0 .00176 −0.00331 −0.00104 0 .00017 0 .00107
dolvol −0.25 −0 .00037 −0 .00200 0.00278 −0 .00025 −0 .00015 0 .00195
idiovol 0.17 0 .00131 −0.00930 0 .00615 0 .00187 −0.00003 0 .00091
mom12m −0.74 −0 .00264 0.00663 −0 .00132 −0 .00275 0.00008 0 .00255
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Table IA.8: Significance without transaction costs: Quintile-standardized characteristics

This table reports the significance and marginal contributions for the parametric portfolios without transac-
tion costs, for risk-aversion parameter γ = 5. We sort firms by each characteristic every month into quintiles,
assign a weight of 1/Qt to firms in the fifth quintile, a weight of −1/Qt to firms in the first quintile, and a
zero weight to the remaining firms, where Qt is the number of firms in each quintile in month t. We run a
screen-and-clean significance test. For the screen step, we calibrate the regularized parametric portfolios with
five-fold cross-validation and find that the lasso threshold that maximizes investor’s utility is δ = 10. For the
clean step, we run the bootstrap experiment for the parametric portfolios using those characteristics with
nonzero θ’s from the previous step. Characteristic p-values are computed using the percentile method dis-
cussed in Section 3.5. We assign three/two/one asterisks (∗) to those characteristics whose p-values are lower
than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio and marginal contributions,
we include all characteristics with nonzero θ’s for the screen step plus the three characteristics considered in
Brandt et al. (2009): size, book to market, and momentum. For each characteristic, the first column gives
the acronym, the second the optimal value of the parameter and the significance asterisks, and the next four
columns give the marginal contribution of the characteristic to: (i) the characteristic own-variance, (ii) the
covariance of the characteristic with the other characteristics in the portfolio, (iii) the covariance of the
characteristic with the benchmark portfolio, and (iv) the characteristic mean. Contributions that drive the
characteristic to be nonzero are in blue sans serif font, and contributions that drive the characteristic toward
zero are in red italic font (cf. Footnote 26).

Marginal contributions
Characteristic Param. variance cov (char.) cov (bench.) mean

rd mve 2.11∗∗∗ 0 .03183 −0.02588 0 .00284 −0.00879
agr −5.32∗∗∗ −0 .01694 0.00844 0.00075 0.00775
gma 2.79∗∗∗ 0 .01346 −0.01336 0 .00247 −0.00257
sue 9.03∗∗∗ 0 .01184 −0.00350 −0.00051 −0.00783
mom1m −1.08∗∗∗ −0 .01310 0.01112 −0 .00330 0.00528
std turn 4.37∗∗∗ 0 .06424 −0.06666 0 .00681 −0.00439
ep 3.21∗ 0 .04109 −0.03176 −0.00464 −0.00469
stdcf −2.26∗ −0 .02143 0.01442 0.00325 0.00376
retvol −3.00 −0 .07674 0.06176 0.00901 0.00597
roaq −1.14 −0 .01051 0.02086 −0 .00321 −0 .00714
bm 0.04 0 .00033 0 .00895 −0.00292 −0.00636
chcsho −0.21 −0 .00081 −0 .00885 0.00317 0.00649
mve −2.16 −0 .01538 0.01612 0.00020 −0 .00094
mom12m −1.27 −0 .02163 0.03398 −0 .00312 −0 .00924
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Table IA.9: Significance test with transaction costs: Quintile-standardized characteristics

This table reports the significance and marginal contributions for the parametric portfolios in the presence
of transaction costs, for risk-aversion parameter γ = 5. We sort firms by each characteristic every month
into quintiles, assign a weight of 1/Qt to firms in the fifth quintile, a weight of −1/Qt to firms in the first
quintile, and a zero weight to the remaining firms, where Qt is the number of firms in each quintile in month
t. We run a screen-and-clean significance test. For the screen step, we calibrate the regularized parametric
portfolios with five-fold cross-validation and find that the lasso threshold that maximizes investor’s utility
is δ = 5. For the clean step, we run the bootstrap experiment for the parametric portfolios using those
characteristics with nonzero θ’s from the previous step. Characteristic p-values are computed using the
percentile method discussed in Section 3.5. We assign three/two/one asterisks (∗) to those characteristics
whose p-values are lower than 0.01/0.05/0.1, respectively. To compute the optimal parametric portfolio
and marginal contributions, we include all characteristics with nonzero θ’s for the screen step plus the
three characteristics considered in Brandt et al. (2009): size, book to market, and momentum. For each
characteristic, the first column gives the acronym, the second the optimal value of the parameter and the
significance asterisks, and the next five columns give the marginal contribution of the characteristic to:
(i) the characteristic own-variance, (ii) the covariance of the characteristic with the other characteristics in
the portfolio, (iii) the covariance of the characteristic with the benchmark portfolio, (iv) the characteristic
mean, and (v) the transaction cost. The last column reports the marginal contribution of the characteristic
to transaction costs when this is traded in isolation. Contributions that drive the characteristic to be nonzero
are in blue sans serif font, and contributions that drive the characteristic toward zero are in red italic font
(cf. Footnote 26).

Marginal contributions Isolation
Characteristic Param. variance cov (char.) cov (bench.) mean tran. cost tran. costs

rd mve 2.46∗∗∗ 0 .03707 −0.03198 0 .00284 −0.00879 0 .00086 0 .00160
agr −3.56∗∗∗ −0 .01133 0.00400 0.00075 0.00775 −0 .00117 0 .00223
gma 2.58∗∗∗ 0 .01243 −0.01266 0 .00247 −0.00257 0 .00033 0 .00141
sue 4.01∗∗∗ 0 .00525 0 .00003 −0.00051 −0.00783 0 .00306 0 .00368
mom1m −0.55∗∗∗ −0 .00668 0.00864 −0 .00330 0.00528 −0 .00395 0 .01160
std turn 1.08∗∗∗ 0 .01595 −0.02139 0 .00681 −0.00439 0 .00303 0 .00651
chmom −0.53∗∗ −0 .00442 0.00664 −0 .00230 0.00200 −0 .00192 0 .00608
ep 2.04∗∗ 0 .02609 −0.01738 −0.00464 −0.00469 0 .00061 0 .00206
ps 2.05∗∗ 0 .00388 0 .00014 −0.00133 −0.00364 0 .00095 0 .00201
bm 0.53∗∗ 0 .00414 0 .00457 −0.00292 −0.00636 0 .00057 0 .00348
retvol −0.64 −0 .01639 0.00310 0.00901 0.00597 −0 .00168 0 .00635
stdcf −1.08 −0 .01020 0.00353 0.00325 0.00376 −0 .00034 0 .00136
chcsho −1.06 −0 .00415 −0 .00488 0.00317 0.00649 −0 .00063 0 .00180
roaq 0.16 0 .00145 0 .00807 −0.00321 −0.00714 0 .00083 0 .00290
mve −1.08 −0 .00767 0.00885 0.00020 −0 .00094 −0 .00044 0 .00195
mom12m −0.58 −0 .00987 0.02257 −0 .00312 −0 .00924 −0 .00034 0 .00421
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Table IA.10: Out-of-sample performance: Size quintiles

This table reports the out-of-sample annualized Sharpe ratio of returns net of transaction costs for the reg-
ularized parametric portfolios applied to each of the five quintiles of stocks sorted by size, for risk-aversion
parameter γ = 5. Panel A reports the performance for the portfolios that do not use any characteristics,
which are the benchmark value-weighted portfolio (VW) and the equally weighted portfolio (1/N). Panel B
reports the performance of two parametric portfolios that exploit a small number of characteristics, and
the regularized parametric portfolio that exploits a large set of 51 characteristics. The first parametric
portfolio exploits the size, book-to-market, and momentum characteristics (Size/val./mom.). The second
parametric portfolio exploits the size, book-to-market, asset growth, and gross profitability characteristics
(Size/val./inv./prof.). The third portfolio is the regularized parametric portfolio that exploits all 51 charac-
teristics (Regularized). The lasso threshold is calibrated using cross-validation over the estimation window.
We test the significance of the difference of the Sharpe ratio of each portfolio with that of the regularized para-
metric portfolio. Three/two/one asterisks (∗) indicate that the difference is significant at the 0.01/0.05/0.1
level.

Policy Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Panel A: Portfolios with no characteristics
VW 0.341∗∗∗ 0.402∗∗∗ 0.458∗∗∗ 0.546∗∗∗ 0.568
1/N 0.442∗∗∗ 0.391∗∗∗ 0.438∗∗∗ 0.530∗∗∗ 0.558

Panel B: Portfolios with characteristics
Size/val./mom. 0.852∗∗∗ 0.889∗∗∗ 0.666∗∗∗ 0.601∗ 0.456
Size/val./inv./prof. 0.933∗∗∗ 1.072∗∗∗ 0.856∗∗ 0.796 0.360
Regularized 1.734 1.456 1.008 0.769 0.497
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Table IA.11: Out-of-sample performance with shortsale constraints

This table reports the out-of-sample performance of the regularized parametric portfolios in the presence
of transaction costs and shortsale constraints, for risk-aversion parameter γ = 5. Panel A reports the
performance for the parametric portfolios with no shortselling, and Panel B reports the performance for the
parametric portfolios with 50% shortselling. Each panel reports the results for four portfolios: the benchmark
value-weighted portfolio (VW), which has zero shortselling in both panels, two parametric portfolios that
exploit a small number of characteristics, and the regularized parametric portfolio that exploits a large
set of 51 characteristics. The first parametric portfolio exploits the size, book-to-market, and momentum
characteristics (Size/val./mom.). The second parametric portfolio exploits the size, book-to-market, asset
growth, and gross profitability characteristics (Size/val./inv./prof.). For the regularized parametric portfolio
(Regularized), the lasso threshold is calibrated using cross-validation over the estimation window. For each
portfolio, the first column reports the monthly turnover, and the next three columns report the out-of-
sample annualized mean, standard deviation, and Sharpe ratio of returns, net of transaction costs. We test
the significance of the difference of the Sharpe ratio of each portfolio with that of the regularized parametric
portfolio. Three/two/one asterisks (∗) indicate that the difference is significant at the 0.01/0.05/0.1 level.

Policy Turnover Mean SD SR

Panel A: Portfolios with no shortselling
VW 0.050 0.085 0.150 0.567
Size/val./mom. 0.233 0.102 0.177 0.576∗∗

Size/val./inv./prof. 0.186 0.109 0.186 0.586∗∗

Regularized 0.301 0.125 0.187 0.669

Panel B: Portfolios with 50% shortselling
VW 0.050 0.085 0.150 0.567∗∗∗

Size/val./mom. 0.429 0.119 0.165 0.721∗∗∗

Size/val./inv./prof. 0.319 0.132 0.152 0.868∗∗∗

Regularized 0.451 0.155 0.147 1.059
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Table IA.12: Out-of-sample performance without turnover constraint

This table reports the out-of-sample performance of the regularized parametric portfolios that do not control
for turnover in the presence of transaction costs, for risk-aversion parameter γ = 5. Panel A reports
the performance for the portfolios that do not use any characteristics, which are the benchmark value-
weighted portfolio (VW) and the equally weighted portfolio (1/N). Panel B reports the performance of two
parametric portfolios that exploit a small number of characteristics, and the regularized parametric portfolio
that exploits a large set of 51 characteristics. The first parametric portfolio exploits the size, book-to-market,
and momentum characteristics (Size/val./mom.). The second parametric portfolio exploits the size, book-
to-market, asset growth, and gross profitability characteristics (Size/val./inv./prof.). The third portfolio is
the regularized parametric portfolio that exploits all 51 characteristics (Regularized). The lasso threshold is
calibrated using cross-validation over the estimation window. For each portfolio, the first column reports the
monthly turnover, and the next three columns report the out-of-sample annualized mean, standard deviation,
and Sharpe ratio of returns, net of transaction costs. We test the significance of the difference of the Sharpe
ratio of each portfolio with that of the regularized parametric portfolio. Three/two/one asterisks (∗) indicate
that the difference is significant at the 0.01/0.05/0.1 level.

Policy Turnover Mean SD SR

Panel A: Portfolios with no characteristics
VW 0.050 0.085 0.150 0.567∗∗

1/N 0.134 0.085 0.177 0.482∗∗∗

Panel B: Portfolios with characteristics
Size/val./mom. 1.167 0.161 0.300 0.537∗∗∗

Size/val./inv./prof. 1.863 0.358 0.381 0.939∗

Regularized 3.859 0.738 0.611 1.209
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