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Abstract

The population growth of captive Asian elephants explains the cross-section of expected
returns of size-value sorted portfolios with a cross-sectional R2 of 93% and a t-statistic
of 4.0 for the market price of risk. Obviously, this factor is economically meaningless.
Standard GMM cross-sectional asset pricing tests can generate such spurious explanatory
power for factor models when the weight on certain moment conditions is set inappro-
priately. In fact, by shifting these weights, any desired level of cross-sectional fit can be
attained at the price of not matching the factor means. We run placebo tests with factors
that by construction do not explain the cross-section of expected returns and obtain spu-
riously high cross-sectional R2’s. Finally, we document some examples of factor models
proposed in the literature that suffer from this problem.
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1 Introduction

The amount of factor models that have been proposed to explain the cross-section of expected

stock returns is enormous and the literature keeps on growing. Some attempts have been un-

dertaken to domesticate this zoo of factors.1 However, one factor seems to have been overlooked

by researchers so far. Figure 1 shows the cross-sectional fit of a GMM estimation of a new one-

factor model featuring the log growth rate of the number of captive Asian elephants as the only

factor. Using a quarterly postwar sample of the usual 25 Fama-French size and book-to-market

sorted portfolios as test assets, the cross-sectional R2 is 92.7%, and the estimate for the market

price of risk is statistically significantly different from zero with a t-statistic of 4.0.
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Figure 1: The figure depicts realized average excess returns of the 25 Fama-French
size- and book-to-market-sorted portfolios, plotted against their model-implied ex-
pected excess returns. The latter are determined via a one-stage GMM procedure
as outlined in Section 5. The explanatory factor is the log growth rate in the total
number of captive Asian elephants living in zoos worldwide. The data have been
downloaded from http://www.asianelephant.net/database.htm. In the GMM
estimation we use the identity matrix as the weighting matrix for the moment con-
ditions.

Does this mean that elephant population growth should be considered as the Holy Grail of

empirical asset pricing? Although a creative economist might come up with a story explaining

the finding in Figure 1, we regard it as economically meaningless. We argue in this paper that,

in their search for the “right” factor model for the cross-section of expected returns, researchers

may (unknowingly) propose models with spuriously strong explanatory power. We show that

1For a selection of the most recent approaches see, e.g., the papers by Harvey et al. (2016), Kogan and Tian
(2014), Freyberger et al. (2017), or Harvey and Liu (2017).
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the standard GMM cross-sectional asset pricing test is prone to this error when the weighting

matrix is set inappropriately.

There are several ways to test models for the cross-section of asset returns. Fama and

MacBeth (1973) have established the standard two-pass regression approach. Cochrane (2005)

discusses how this two-stage approach can be translated into a GMM test in which both betas

and market prices of risk are estimated jointly. A third way is to use the Euler equation directly

as a moment condition, which is sometimes labeled the “sdf approach”. Finally, a related and

also popular procedure relies on GMM as an estimation tool and uses the moment condition

0 = E [Re
i −Re

i (F − µF )λ], which is based on the covariance between excess returns Re and a

candidate factor F . In this procedure the factor mean µF is typically estimated by adding a

further moment condition of the form 0 = E[F − µF ]. In this paper, we mainly focus on the

latter approach. We show that too small a weight on the moment condition for the factor mean

can lead to an imprecise estimate of µF in favor of an improved cross-sectional fit, i.e., a smaller

pricing error.

In the elephant example above, we use the identity matrix for weighting the different

moment conditions, i.e., pricing errors for the test assets and deviations from the sample mean

of the factor are equally relevant in the optimization. Figure 2 shows the cross-sectional fit from

an alternative estimation, in which we leave all ingredients but the weighting matrix unchanged.

Now, the weight on the moment condition that identifies the factor mean is high to ensure that

the estimate is close to the sample average of the factor. The resulting cross-sectional R2 is

negative and the market price of risk estimate is insignificant.

What is happening in the estimation when the weights are chosen inappropriately? To

see this, assume a one-factor pricing model, where the factor is uncorrelated with all test asset

returns. Assume further that the mean of the pricing factor is unknown, and is treated as a free

parameter in the GMM procedure. In this setting it is easy to prove that, in the extreme case

where one only targets the standard cross-sectional moment conditions in the GMM procedure

and puts zero weight on the condition pinning down the factor mean, the following results

hold: (i) betas with respect to the factor are fixed multiples of average excess returns, and (ii)

the average pricing error of each asset is identically equal to zero, which, translated into the

language of Fama-MacBeth regressions, means that (iii) the cross-sectional R2 in the second-

pass regression is 1. Stated differently, it is possible to generate misleading evidence in favor of

a (spurious) factor model by allowing the mean of the pricing factor to be misestimated. These

theoretical statements hold only in the knife-edge case of a zero correlation between the factor

and the test asset excess returns and a zero weight on the moment condition targeting the
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Figure 2: The figure depicts realized average excess returns of the 25 Fama-French
size- and book-to-market-sorted portfolios, plotted against their model-implied ex-
pected excess returns. The latter are determined via a one-stage GMM procedure
as outlined in Section 5. The explanatory factor is the log growth rate in the total
number of captive Asian elephants living in zoos worldwide. The data have been
downloaded from http://www.asianelephant.net/database.htm. In the GMM
estimation the weighting matrix assigns a weight of 1 to the pricing errors and a
weight of 250,000 to the moment condition F − µF = 0 that identifies the factor
mean.

factor mean. However, we show in a range of applications that spuriously high cross-sectional

R2’s and statistically significant market prices of risk estimates can still be obtained even when

these knife-edge assumptions are weakened, as is also documented in Figure 1.

Our paper makes an important contribution to the empirical asset pricing literature in that

it points out a fundamental flaw in cross-sectional asset pricing tests that may lead researchers

to think that a model has explanatory power when it actually does not. However, we want to

emphasize that the goal of our paper is not to provide a complete econometric analysis of the

distributional properties of Fama-MacBeth or GMM parameter estimates. In fact, the main

theoretical result presented in this paper is easy to grasp, very straightforward to prove and

potentially nested in existing papers on the econometrics of cross-sectional asset pricing tests.

Instead, our analysis addresses the deeply rooted economic issue of whether the asset

pricing performance of certain factor models potentially comes at the cost of falling short on

matching fundamentals. The moment condition that, when disregarded, drives up the explana-

tory power of the model is simply the one related to the mean of the pricing factor. We show

that there is a trade-off between estimating the correct mean of the pricing factor and matching

the cross-section of expected returns. More precisely, we document that, by shifting the weights
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in the GMM accordingly, any desired level of cross-sectional fit is possible if one is willing to

sacrifice matching basic fundamentals. Instead of being primarily an econometric exercise, our

analysis is thus more directed towards the greater issue to what extent a calibrated asset pricing

model should match both financial and fundamental macroeconomic dynamics.

Our paper comprises a short theoretical motivation and a large part with applications. In

the theoretical part, we prove the main result stated above: Assume that a factor is uncorrelated

with all test asset excess returns. If then, in a GMM estimation, the mean of the pricing factor is

chosen exogenously without imposing additional moment conditions (like, e.g., the mean being

equal to the sample average), then the standard set of cross-sectional moment conditions will

deliver a market price of risk estimate such that the pricing error is zero for all test assets. A

notable special case is the situation when the sample mean of the factor is nonzero, but the

econometrician assumes it to be zero (for instance, if the econometrician “forgets” to demean

the factor, but treats it as having mean zero). We show that in this situation the misspecified

GMM translates into a very simple, misspecified Fama-MacBeth regression. More precisely, we

prove that, when a factor has zero explanatory power for the cross-section of expected returns,

a cross-sectional R2 of 1 is obtained if the intercept in the first stage of the Fama-MacBeth

regression is omitted.

The second part of the paper deals with applications to demonstrate the actual severeness

of the matter. We perform four exercises. First, we run a placebo test in a controlled environment

with simulated data. We simulate i.i.d. normal test asset returns, i.e., from a model without

factors. We then make up a pricing factor that is by construction uncorrelated with all test

asset returns in the sample. We perform the misspecified one-stage GMM procedure, where we

vary the relative weight on the moment condition that identifies the factor mean from 0 to 1.

We show that any desired level of cross-sectional fit can be achieved and that the spuriously

good pricing performance can even show up for relative weights close to 1.

In practice it is impossible to find a factor that has exactly zero correlation with any test

asset return in sample. As a second exercise, we therefore run tests with the elephant factor

described above. We choose this factor for two reasons: i) it has no economic meaning, and ii) it

is almost uncorrelated with the excess returns on the 25 Fama-French size- and book-to-market

portfolios (the largest absolute correlation across the 25 portfolios is 0.075). We show that the

results obtained in the controlled simulation environment are almost perfectly replicated in this

example with real data.

As a third exercise, we repeat the placebo simulation study, where we now simulate returns

from a one-factor model and run the empirical test with a two-factor model (the true factor and
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an additional useless factor). We do this in order to document that the problem is not resolved

by the presence of possibly true pricing factors. Varying the relative weight of the moment

conditions identifying the factor means, we find again that any cross-sectional R2 between the

theoretically true R2 (which is larger than 0 in this case) and 1 can be achieved. Moreover,

again, for low relative weights on the factor mean conditions, the estimate for the market price

of risk of the second (useless) pricing factor is statistically different from 0.

Finally, we apply our theoretical findings to a well-known example from the empirical

consumption-based asset pricing literature. More precisely, we document that durable and non-

durable consumption growth, which have been proposed as factors by Yogo (2006), do not have

explanatory power for the cross-section of expected stock returns when the weight on the addi-

tional moment condition in the GMM is sufficiently large.2 Other papers that estimate factor

models as described above and are thus prone to the spuriousness documented in our paper are

Dhume (2010), Darrat et al. (2011), Maio and Santa-Clara (2012), Maio (2013), Lioui and Maio

(2014), Da et al. (2016), and Chen and Lu (2017). None of these papers mention the tradeoff

that we discuss.

Although the issue that we raise in our paper is very general and, in theory, applies to

any factor model, it is particularly relevant in practice for models related to the consumption

CAPM, as, for instance, Parker and Julliard (2005) already point out in a footnote. The reason is

that macroeconomic variables like consumption often tend to have little correlation with excess

returns. For instance, the cay variable proposed by Lettau and Ludvigson (2001) is used as an

example in the paper by Kleibergen and Zhan (2015) about the asymptotics of weak factors.

Similarly in spirit, Savov (2011), who estimates both betas and market prices of risk jointly using

the moment conditions proposed by Cochrane (2005), writes: “Fixing the betas to their OLS

estimates is important because doing so does not allow the unwanted flexibility of manipulating

betas to obtain a better cross-sectional fit” (p.194). Our paper concretizes this “flexibility”

and shows that the trade-off between estimating “correct” betas and fitting the cross-section

translates into a trade-off between cross-sectional fit and fit to macro fundamentals. Our findings

thus imply that matching the cross-section of expected returns with consumption-based models

remains a major challenge in asset pricing.

Our paper is linked to several strands of the literature. First of all, there are papers

dealing with the econometric details behind our main theoretical result, like e.g. Kan and Zhang

(1999b), Kan and Zhang (1999a), Kleibergen (2009), Kleibergen and Zhan (2015), Burnside

(2016), Gospodinov et al. (2014) or Lewellen et al. (2010). Moreover, in the late 1990s a debate

2The paper of Yogo (2006) has recently also been criticized by Borri and Ragusa (2017).
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emerged whether the classical Fama-MacBeth test or the more advanced GMM/SDF method

provides more reliable estimates of market prices of risk (see Kan and Zhou (1999), Cochrane

(2001), Jagannathan and Wang (2002)). However, the emphasis of our paper is not so much on

the statistical properties of Fama-MacBeth or GMM estimates, but rather on their economic

significance, i.e., on quantifying the underlying tradeoff between matching asset price data and

fundamental dynamics. The analysis in Bryzgalova (2016) also nests the finding that treating

the factor mean as a free parameter can produce spurious results, but this issue is not at the

core of her discussion. Instead, she argues that the (potentially low) unconditional correlation

between factors and excess returns should be taken into account and proposes an ad-hoc solution

by adding a penalty term for low correlation to the GMM objective function. We make the more

general argument that the spuriousness is rooted in not matching macroeconomic fundamentals

properly and can be overcome by just putting more weight on the respective moment conditions.

Given the choice of our examples, our paper is also linked to the large literature that tries to

evaluate the performance of consumption-based asset pricing models for the cross-section of

expected returns. Major advances in this literature have been made recently by, e.g., Savov

(2011), Ferson et al. (2013), Boguth and Kuehn (2013), and Kroencke (2017).

2 Cross-Sectional Regressions with GMM

Assume that there are n test assets with excess returns Re
i,t (i = 1, . . . , n) and a single candidate

pricing factor F . The standard moment conditions for a cross-sectional GMM estimation of this

one-factor model are the following (for i = 1, . . . , n):3

E[Re
i ] = Cov[Re

i , F ]λ

⇔ E[Re
i ] = E[Re

iF ]λ− E[Re
i ]E[F ]λ

⇔ 0 = E [Re
i −Re

i (F − E[F ])λ] .

(1)

Here λ denotes the market price of F -risk, scaled by the variance of F (i.e. λ = MPRF

V ar[F ]
) and is

the parameter to be estimated. Using the sample average of the factor, F̄ , as a proxy for E[F ]

the moment condition would become

0 = E
[
Re
i −Re

i (F − F̄ )λ
]
.

3See, e.g., Cochrane (2005)
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Suppose that the pricing factor F is uncorrelated with all test asset excess returns, i.e.

Cov(Re
i , F ) = 0 for all i. Then λ cannot be identified from these moment conditions alone since

either Equation (1) holds for any value of λ (if all expected excess returns are zero) or it holds

for no value of λ (if at least one of the expected excess returns is nonzero).

Now suppose that we change the GMM procedure slightly. The expectation of the pricing

factor, E[F ], is generally unknown. Of course, F̄ ≡ ET [F ] is an unbiased estimate for it.4 Let us

pretend not to have any information about E[F ] and replace the expectation by a new choice

variable µF . Let us set µF to a value that is not exactly equal to the true mean E[F ]. Then the

moment conditions

0 = E [Re
i −Re

i (F − µF )λ] (2)

allow us to pin down a unique λ if E[Re
i ] 6= 0 for at least one i:

0 = E [Re
i −Re

i (F − µF )λ]

⇔ E[Re
i ] = E[Re

iF ]λ− E[Re
i ]µFλ

⇔ E[Re
i ] = E[Re

i ]E[F ]λ− E[Re
i ]µFλ

⇔ λ = (E[F ]− µF )−1

Here we make use of the fact that E[Re
i ]E[F ] = E[Re

iF ], since Cov(Re
i , F ) = 0 by assumption.

Using the sample equivalent of Equation (2) as a moment condition and using µF 6= F̄ ,

i.e., assuming a factor mean that is different from the sample average, will deliver the estimate

λ̂ = (F̄ − µF )−1 (3)

We have thus proven the following theorem.

Theorem 1 Assume there are n test assets with excess returns Re
i,t and ET [Re

i ] 6= 0 for at

least one i. There is a pricing factor F that is uncorrelated in sample with all test asset excess

returns, i.e. CovT (Re
i , F ) = 0 for all i. Assume µF is an arbitrary number different from the

4Throughout the paper, we use the notation of Hansen (1982) in which a subscript T denotes the sample
equivalent of a given moment.
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sample average F̄ . Then the following set of sample moment conditions

gT (λ) = ET

 Re
1 −Re

1(F − µF )λ
...

Re
n −Re

n(F − µF )λ


in a GMM estimation delivers the unique solution λ̂ = (F̄ − µF )−1 which satisfies gT (λ̂) = 0.

Note that this theorem holds irrespective of the sample size or of how the moment con-

ditions are weighted. It also implies that all test assets are priced perfectly, so that the cross-

sectional R2 is equal to 1. Summing up, in the theoretical case that CovT (Re
i , F ) = 0 for all i,

any choice of µF 6= F̄ allows to explain the cross-section of expected returns perfectly, i.e. there

exists a λ̂ for which the average pricing errors are equal to zero for all test assets.

3 Fama-MacBeth regressions

To better understand Theorem 1, it is instructive to formulate its implications for Fama-

MacBeth two-stage regressions. The first stage involves time series regressions of excess returns

on the factor to estimate the betas for all assets. In the second stage, average excess returns are

regressed on these betas to estimate the market price of risk from the cross-section of average

returns.

The beta of an asset with respect to the factor F is given as

βFi =
Cov[Re

i , F ]

V ar[F ]
=
E[Re

i (F − E[F ])]

V ar[F ]
=
E[Re

i (F − E[F ])]

E[(F − E[F ])2]

which is estimated via the sample analogues as

β̂Fi =
ET [Re

i (F − F̄ )]

ET [(F − F̄ )2]
.

An econometrician who sets the mean of the factor to µF instead of estimating it from the data

will obtain the following beta:

β̂Fi =
ET [Re

i (F − µF )]

ET [(F − µF )2]
=
CovT [Re

i , F − µF ] + ET [Re
i ]ET [(F − µF )]

ET [(F − µF )2]
.
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Assuming again that the sample covariance CovT [Re
i , F − µF ] is equal to zero for all i, this

implies

β̂Fi =
ET [F − µF ]

ET [(F − µF )2]
ET [Re

i ].

The beta measured by the econometrician is thus equal to the asset’s average excess return,

multiplied by a constant which does not depend on i.

Given this, the second-pass cross-sectional regression

ET [Re
i ] = `0 + `1β̂

F
i + εi

can be rewritten as

ET [Re
i ] = `0 + `1

ET [F − µF ]

ET [(F − µF )2]
ET [Re

i ] + εi.

This regression obviously delivers `0 = 0 and `1 = ET [(F−µF )2]
ET [F−µF ]

with a cross-sectional R2 of 1,

i.e. a perfect explanatory power of the (misspecified) model. The coefficient `1 is related to the

GMM estimate via λ̂ = `1
V arT [F ]

. Since ET [(F − µF )2] is the (incorrect) estimate of the variance

of F in this context, we again obtain the result λ̂ = (F̄ − µF )−1.

To sum up, we have shown the following: Suppose a pricing factor is completely unrelated

to returns in the time series. If an econometrician then falsely believes that the mean of the

pricing factor is µF 6= F̄ and consequently applies this incorrect mean in a standard GMM

estimation or in a Fama-MacBeth two-stage regression, then the estimated betas are just mul-

tiples of the average excess returns. The cross-sectional R2 in a second-pass Fama-MacBeth

regression then automatically equals 1, which is equivalent to zero average pricing errors for all

test assets in GMM.

A special case of this setup would be to set µF = 0, while the sample mean ET [F ] is

nonzero. Then the falsely estimated beta would be

β̂Fi =
ET [Re

i (F − µF )]

ET [(F − µF )2]
=
CovT [Re

i , F − µF ] + ET [Re
i ]ET [(F − µF )]

ET [(F − µF )2]
=

ET [F ]

ET [F 2]
ET [Re

i ],

and this is just the coefficient from a first-pass regression of Re
i on F without intercept.5 Again,

5In a similar vein, for µF 6= 0, the estimated beta would equal the coefficient from a first-pass regression of
Re

i on F with an exogenously fixed nonzero intercept. For brevity, we do not discuss this case here any further.
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the cross-sectional R2 from the second-pass regression would be 1. So, in the special case µF = 0

Theorem 1 is equivalent to the following theorem:

Theorem 2 Assume there are n test assets with excess returns Re
i,t. There is a pricing factor

F uncorrelated with all test asset excess returns, i.e., Cov(Re
i , F ) = 0 for all i. Assume that

the first pass regression in a standard Fama-MacBeth two stage regression is performed without

intercept. Then the cross-sectional R2 in the second stage is equal to 1.

We have shown that the misspecified GMM discussed above is equivalent to a Fama-

MacBeth two-stage regression without intercept in the first stage. If the factor that is tested is

uncorrelated with all test asset returns, then this procedure will generate a seemingly perfect,

but only spurious explanatory power for the factor model. Note that Theorems 1 and 2 hold

regardless of the structure of the true data-generating process. In particular, there does not even

have to be a hidden factor structure in returns that we want to uncover. This is an important

distinction between our paper and econometric papers like Lewellen et al. (2010) or Kleibergen

and Zhan (2015). We make no assumption on the data-generating process, other than returns

being uncorrelated with the factor.

In applications, the factor mean is typically not just set to a value that is different from

the sample average of the factor. Instead, researchers often add the moment condition F−µF to

estimate the factor mean. We show in the following how the weight on this moment condition,

relative to the weights on the pricing error moment conditions, may have an impact on the

inference.

4 Simulation study: one factor

We start the second part of the paper, which contains applications of the theory presented above,

by performing a simulation exercise. We do so in order to study the impact of weighting different

moment conditions in a clean environment. In particular, throughout this first “placebo test”

we maintain the assumption that the candidate factor is uncorrelated with the excess returns

of all test assets, even though this extreme case is certainly impossible to find in reality.

We assume the data generating process Re
i,t = αi+σεi,t for 25 test assets, where the alphas

are randomly assigned and vary between 0.3 and 2.7 percentage points per quarter. The return

volatility is set to 8 percentage points quarterly for all assets and the εi,t are i.i.d. normally

distributed. We simulate only one sample with a sample size of 240, which corresponds to a

10



post-war dataset with quarterly data. The realizations of the useless factor Ft are also drawn

from a normal distribution with a mean of 2 percentage points and a standard deviation of 8

percentage points. To make sure that the factor is uncorrelated with all excess returns even in

the simulated sample, we then make the factor orthogonal to all 25 test assets. Afterwards we

scale and shift the factor so that its mean and standard deviation are exactly equal to 2 and

8 percentage points in the finite sample, in order to ease the interpretation of the following

numerical results.

We use the simulated sample to estimate the market price of risk λ and the factor mean

µF using the moment conditions

gt(λ, µF ) =


Re

1,t −Re
1,t(Ft − µF )λ

...

Re
n,t −Re

n,t(Ft − µF )λ

Ft − µF

 (4)

To weight the corresponding sample moment conditions gT we use a prespecified weighting

matrix of the form

W =


1 . . . 0 0
...

. . .
...

...

0 . . . 1 0

0 . . . 0 x

 = diag(1, . . . , 1, x).

x denotes the weight of the last moment condition, which pins down the factor mean of the

useless factor. In the following, we vary x between 0 and +∞ and study the result of the

cross-sectional regression in terms of R2’s and point estimates.6

Note that the GMM will deliver two parameters, λ and µF , whereas the theorems derived

in the previous sections all assume that µF is chosen exogenously. The smaller the weight x,

the further away from the true sample mean F̄ will the estimate µF be. Given, µF , the point

estimate for λ is then pinned down by the relationship λ̂ = (F̄ − µF )−1. We constrain the

estimate λ̂ to be between −B and B. Without such a constraint for λ̂ the algorithm will set

µF arbitrarily close to F̄ and then let λ̂ explode in order to match asset pricing moments in

6Of course, the GMM weighting matrix has always been an issue of large debates. Cochrane (2005) discusses
advantages and disadvantages of using a prespecified weighting matrix or to iteratively find the “optimal”
weighting matrix (see Hansen (1982)) in an asset pricing context. Since we want to keep our analysis as simple
as possible, we perform single-stage GMM estimations only.
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the extreme case of zero correlation between the factor and the excess returns. We set B = 50,

but any other number would deliver the same qualitative results.

The upper graph in Figure 3 shows the cross-sectional R2 as a function of the relative

weight of the last moment condition, which is given by x/trace(W ) = x/(x + 25). A relative

weight of 0 corresponds to x = 0, while a relative weight of 1 corresponds to the limiting case

x = +∞. We find that for a relative weight of 0, i.e. if we assign zero weight on estimating the

factor mean correctly, the cross-sectional R2 is equal to 1. Increasing the relative weight leads

to a decrease in R2. The true R2 of 0 is matched as the relative weight approaches 1.
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Figure 3: The figure depicts R2 and point estimates of coefficients as functions of
the relative weight on the moment condition that identifies µF . The relative weight
is weight/(#test assets+weight). Test asset returns and the factor are simulated as
outlined in Section 4.

The lower two graphs show point estimates of λ in the left and µF in the right plot.

The point estimate of λ is equal to the upper bound B for all values of the relative weight by

construction as explained above. Economically more interesting are the shaded areas, which in-

dicate confidence bounds produced by the estimation algorithm. These are obtained by adding

and subtracting 1.96 standard errors to the point estimates. It is standard in the asset pricing
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literature to consider such confidence bounds in order to evaluate whether an estimate is statis-

tically significantly different from zero. In our case, we would conclude that the useless factor is

useful in explaining cross-sectional variation in expected returns as long as the relative weight

is below 0.77.

The lower right plot shows point estimates of µF . With a small relative weight, the es-

timated factor mean is F̄ − 1
B

, the solution of B = (F̄ − µF )−1, which is equal to zero in our

case. The confidence band does not include the sample mean of 0.02. Putting more weight on

the last moment condition brings the point estimate of µF closer to the sample mean F̄ = 0.02,

which is marked by the thin line. With a relative weight of 1, the estimate of µF is equal to

F̄ = 0.02 and, at the same time, the confidence band around the estimate of λ is huge, which

is in line with the true structure of expected returns. λ should not be identified given that all

sample covariances of returns with the factor are zero.7

To sum up, our analysis shows that there is a tradeoff between the two objectives of

having a high explanatory power for the cross-section of expected returns and of matching

fundamentals, i.e., estimating the factor mean precisely. When testing a factor that does not

explain anything, one can “pump up” the R2 at the price of not matching fundamentals. Our

analysis further documents that the problem not only exists for very low weights for the moment

condition targeting the factor mean. Even for relatively large weights, i.e., when the estimation

of µF is treated as rather important, the misspecified GMM test delivers spurious evidence in

favor of the factor model.

5 Real data: elephant population growth

To demonstrate that the documented spurious evidence does not only occur in a controlled

environment with simulated returns, we repeat the exercise from Section 4 using actual data.

7Note that, for a given choice of the weighting matrix, the objective function resulting from the moment
condition (4) typically has two local minima, one where µF > F̄ and one where µF < F̄ . Depending on which

local minimum the numerical minimization will run into, the estimated λ̂ will either be positive or negative.
In the clean environment with zero correlation discussed in this subsection, these two local minima will both
be global minima with identical function values. In the empirical cases discussed below, only one of these two
minima is the global minimum. However, numerically, this implies that small changes in the weighting matrix
can make the estimated λ̂ switch sign and turn from a large positive number to a large negative number or
vice versa. In our implementation, we try to avoid this numerical problem by hand, for instance by trying out
different starting values for the minimization algorithm. In particular, in the figures reported in this paper, we
make sure that the λ̂’s never switch sign (in the simulation exercises) or that we indeed find the global minimum
(in the empirical cases).
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As test assets we use 25 size and book-to-market sorted portfolios from Ken French’s webpage.

To form excess returns, the 3-month Treasury bill rate is subtracted from quarterly portfolio

returns. We use a quarterly sample from 1952Q2 to 2014Q2.

As a factor, we use the quarterly log growth rate in the number of captive Asian elephants

that live in zoos worldwide.8 We choose this factor because it is basically uncorrelated with the

returns on our test assets, with correlation coefficients ranging from -0.006 to 0.075. The average

quarterly growth rate is 0.47 percentage points with a standard deviation of 0.71 percentage

points. To avoid possible relations between economic conditions in North America and the

endowment of zoos in this region, we exclude all U.S. and Canadian zoos from our sample.

Figure 4 shows the same type of pictures as Figure 3. The interpretation is also similar.

The cross-sectional R2 is equal to one if we set the relative weight of the last moment condition

to zero. The point estimate of µF is far away from the true value 0.0047. Indeed, the estimate is

significantly negative. If one were to interpret this point estimate literally, one would conclude

that the number of captive elephants in zoos should have been declining heavily over the past

60 years, whereas it has in fact been increasing. The estimates of λ are significantly positive.

Increasing the relative weight of the moment condition related to the factor mean lets the

R2 drop to even negative values.9 Using a large relative weight close to 1 also leads to a point

estimate of µF which is close to the sample average and to an insignificant estimate of λ.

Figures 1 and 2 discussed in the introduction depict the explanatory power of elephant

growth exposures for the cross-section of size-value sorted portfolios graphically, for x = 1

(which corresponds to a relative weight of 1
26

) and x = 250, 000 (which corresponds to a relative

weight of 0.9999). The detailed analysis above reveals that the elephant factor could be ruled

out for relative weights above 0.9. Any weight below 0.9 produces spurious evidence in favor of

the elephant factor.

6 Simulation study: multiple factors

So far, our analysis has focused on one-factor models. In practice, models often feature multiple

factors. Next, we document that our results carry over to multi-factor models and are also valid

8The data has been downloaded from http://www.asianelephant.net/database.htm. We thank the cre-
ators of this website, Jonas Livet and Torsten Jahn, for making these data publicly available.

9This may well happen if no constant term is included in a regression.
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Figure 4: The figure depicts R2 and point estimates of coefficients as functions of
the relative weight on the moment condition that identifies µF . The relative weight
is weight/(#test assets+weight). As outlined in Section 5, we use the 25 size and
book-to-market sorted portfolios as test assets and the log growth rate of captive
Asian elephants as explanatory factor.

in the presence of additional factors which do in fact have explanatory power. We repeat the

simulation exercise from Section 4, but with different data-generating processes.

We now assume Re
i,t = αi+β

(1)
i F1,t+εi,t for 25 test assets with different randomly assigned

αi’s ranging from 0.3 to 2.7 percentage points, as in Section 4. By construction, the true beta of

portfolio i (i = 1, . . . , 25) with respect to the useful factor is 0.5 + i−1
24

, i.e. betas range between

0.5 and 1.5. The noise terms ε are i.i.d. Gaussian with mean 0 and a standard deviation of 8

percentage points quarterly. As before, we simulate one sample with 60 years of quarterly data.

We construct a second factor F2,t that is orthogonal to all the test portfolio excess returns

and to the factor F1 in the finite sample. Both F1 and F2 have a mean of 2 and a standard devi-

ation of 4 percentage points in quarterly terms. As before, we make sure that these conditions

exactly hold in the sampled time series.
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We then perform a one-step GMM estimation of λ1, λ2, µF,1, and µF,2 using the moment

conditions

gt(λ1, λ2, µF,1, µF,2) =


Re

1,t −Re
1,t(F1,t − µF,1)λ1 −Re

1,t(F2,t − µF,2)λ2
...

Re
n,t −Re

n,t(F1,t − µF,1)λ1 −Re
n,t(F2,t − µF,2)λ2

F1,t − µF,1
F2,t − µF,2

 .

We again assign various weights to the latter two moment conditions using a prespecified

weighting matrix 
1 . . . 0 0 0
...

. . .
...

...
...

0 . . . 1 0 0

0 . . . 0 x 0

0 . . . 0 0 x

 = diag(1, . . . , 1, x, x)

We vary x from 0 to +∞ and normalize x to a [0, 1]-scale by considering x/(25 + x) as in

Section 4. We produce the same pictures as above, but for the two-factor model, i.e. we plot

µ̂F,1, µ̂F,2 and the two market prices of risk estimates λ̂1 and λ̂2 with confidence bands. Just as

in Section 4, we constrain λ̂2 to be between -50 and 50.

Figure 5 depicts the results. The upper picture again shows the cross-sectional R2 as a

function of the relative weight assigned to the moment condition targeting the factor means. For

a relative weight of zero, the cross-sectional R2 is again equal to 1, which (falsely) indicates that

the two-factor model delivers a perfect cross-sectional fit. When the relative weight approaches

one, the R2 converges to the true R2 which is, by construction, 0.385.

The lower pictures again show point estimates for the market prices of risk and factor

means. The market price of risk of the (useful) first factor is correctly estimated to be signif-

icantly positive. Only for very small weights on the factor means, one may conclude that it

is insignificant. At the same time, with small weights on the factors means, the market price

of risk of the (useless) second factor is estimated to be significantly different from zero. This

shows that the choice of inappropriate weights has the potential to bias the inference in favor

of a useless factor at the expense of an actually useful factor.

Turning to the estimates of µF , we find that especially the estimate of the sample mean of

the useless factor µF,2 is biased if the estimation puts too little emphasis on the factor means.
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Figure 5: The figure depicts R2 and point estimates of coefficients as functions of
the relative weight on the moment conditions for µF,1 and µF,2. The relative weight
is weight/(#test assets+weight). Test asset returns and factors are simulated as
outlined in Section 6. F1 denotes the useful factor and F2 denotes the useless factor.

As described in Section 2, we have the relation λ̂2 = (F̄2 − µ̂F,2)−1. One takeaway from this is

that the estimates of the factor means should always be reported in papers that perform GMM

estimations of cross-sectional relations. Whenever the estimate of the mean of a tested factor

is far from its sample mean and the market price of risk is equal to (or close to) the inverse of

the difference between sample mean and estimated mean, the inference in favor of this factor
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is very likely spurious.

7 Empirical evaluation of the durable consumption model

The final section is devoted to an actual example from the asset pricing literature where success

in pricing the cross-section is claimed based on the GMM presented in this paper. The example

we choose is the durable consumption factor which has been established by Yogo (2006). He

argues in favor of a three-factor model with durable and nondurable consumption growth and

the return on the market index as factors. Although the issue that we raise in our paper is very

general and, in theory, is valid for any factor model, it is particularly relevant in practice for

models related to the consumption CAPM, since macroeconomic variables like consumption

often tend to have little correlation with excess returns. For instance, the correlation between

durable consumption growth and the excess returns of the 25 Fama-French size and book-

to-market-sorted portfolios ranges from -0.139 to -0.064 on the sample described below. As a

comparison, the same returns exhibit correlations with the stock market factor between 0.746

and 0.941.

We repeat the analysis from Section 4 with the same data Yogo (2006) uses in his paper.10

The test asset returns are quarterly excess returns of the 25 size and book-to-market sorted

portfolios from Kenneth French’s webpage. The factors are growth rates of aggregate nondurable

and services consumption and of durable consumption, both obtained from NIPA, and the excess

return on the value-weighted CRSP stock market portfolio. The sample covers the period from

1951Q1 to 2001Q4. We employ the same moment conditions as outlined in the previous sections.

The only difference between our analysis and the one of Yogo (2006) is the prespecified weighting

matrix. To make the results from this section comparable to the ones from the previous sections

and for tractability, we use the weighting matrix

1 . . . 0 0 0 0
...

. . .
...

...
...

...

0 . . . 1 0 0 0

0 . . . 0 x 0 0

0 . . . 0 0 x 0

0 . . . 0 0 0 x


= diag(1, . . . , 1, x, x, x).

10The data can be downloaded from https://sites.google.com/site/motohiroyogo/.

18



Figure 6 depicts the results from this exercise. The upper plot again shows the cross-sectional

R2 as a function of the relative weight of the latter three moment conditions that identify the

means of the three factors. As before, the R2 is equal to one if the weight on the factor means

is zero. The other extreme, i.e. setting the relative weight of the factor means to a very high

value, thus forcing the estimated factor means to be equal to the sample averages of the factors,

results in a cross-sectional R2 of only 1.18%.

The six plots below show point estimates and confidence bands of the market prices of

risk (left column of graphs) and the factor means (right column of graphs) for (from top to

bottom) the growth rate of nondurable and services consumption, the growth rate of durable

consumption, and the stock market index. We find that the market prices of risk of the non-

durable consumption factor and of the market portfolio are at best marginally significant for all

values of the relative weight. The durable consumption factor shows a pattern that is similar

to those found for the useless factors in the previous sections. The estimate of the market price

of risk is significantly different from zero for all but the highest values of the relative weight on

the moment conditions that identify the factor means. Looking at the estimates of the factor

means, we find that they are close to the sample average only when a high weight is put on the

latter three moment conditions. The exception is the market return for which the factor mean

estimate is always literally identical to the time series average.

Economically, we can interpret our findings as follows. The return on the CRSP index

is highly correlated with the returns on the test assets in the time series. Thus, the estimated

betas are meaningful. Still, the cross-sectional R2 is close to zero for a high weight on the factor

mean estimation, because, as is well-known, market betas can hardly explain any cross-sectional

variation in size-value sorted portfolios (as pointed out by Fama and French (1992)). Stated

differently, the variation in market betas does not explain the variation in average returns.

The two consumption factors are only weakly correlated with returns on the test assets. To

decrease the pricing errors, the optimization algorithm chooses factor means that are different

from the sample averages. In case of low relative weights on the factor mean condition, we find

a global minimum of the objective function in which µ̂1 < F̄1 and µ̂2 > F̄2. This causes the

estimates of the market prices of risk to be positive for the nondurable consumption factor and

negative for the durable consumption factor.

We, however, also find many local minima that yield similarly low values of the objective

function, but different signs for the market prices of risk. For rather low relative weights on the

latter three moment conditions, using positive starting values for the market prices of risk in

the minimization routine delivers a local minimum in which the market price of risk estimate
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Figure 6: The figure depicts R2 and point estimates of coefficients as functions of
the relative weight on the moment conditions that identify the µF,j. The relative
weight is weight/(#test assets+weight). Test asset returns and factors have been
downloaded from Motohiro Yogo’s webpage, as outlined in Section 7. F1 (F2) denotes
the log growth rate of aggregate nondurables and services (durables) consumption,
F3 denotes the return on the CRSP value-weighted stock return index.
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of the durable factor is large and positive. In particular, using a relative weight of 0.07 gives

values that are close to the ones reported in Yogo (2006): R2 = 93.5% (compared to R2 = 93.5%

in the original paper), λ̂2 = 178.52 (170.57), µ̂2 = 0.0041 (0.0028)11, and the estimates of the

other two market prices of risk are insignificant as in Yogo’s paper.

It is also worth noting that (F̄2 − µ̂F,2)−1, which, based on our theory, approximates the

market price of risk of a useless factor, equals (0.0091 − 0.0028)−1 = 158.73 and is thus close

to the actual point estimate λ̂ = 170.57. Of course, our analytical result in Section 2 only

applies when all sample covariances of test asset returns with the factor are exactly zero, but

since durable consumption growth is only weakly correlated with the test asset returns, the

deviation from the theoretical result is small.

Finally, Yogo (2006) does not use a prespecified weighting matrix, but performs a two-step

GMM estimation. The weighting matrix in the first stage is already different from ours, so that

we do not know the weights put on the moment conditions for the factor means. Nevertheless,

comparing the estimated factor mean of the durable consumption factor with the sample average

(and relating their difference to the estimate of λ) suggests that the evidence in favor of the

durable consumption model is spurious.

8 Conclusion

When calibrating or estimating equilibrium asset pricing models, researchers are often con-

fronted with the general tradeoff between matching fundamental macroeconomic dynamics and

matching asset prices and returns. An ideal model should, of course, work well in both dimen-

sions, but models often fall short on (at least) one of them. In this paper, we argue that such a

tradeoff is also present in the large subfield of cross-sectional asset pricing which has brought

about an overwhelming number of factor models in the past 30 years.

More precisely, standard GMM cross-sectional asset pricing tests can generate spurious

explanatory power for factor models when the weight on certain moment conditions is set

inappropriately and the mean of the pricing factor is allowed to be misestimated. In a range of

examples we vary the weighting matrix in a single-stage GMM and show that any desired level

of cross-sectional fit can be achieved, depending on how the fundamental fit (i.e., matching the

factor means) is traded off against the cross-sectional fit (i.e., minimizing the pricing errors). For

11This value is not reported in the published paper, but can be found in the supplementary material provided
on https://sites.google.com/site/motohiroyogo/.
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instance, in terms of the motivating example presented in the introduction, even the population

growth of captive Asian elephants can explain the cross-section of expected stock returns as

long as too little weight is put on matching mean of this “factor”.

A technical conclusion from our paper is that researchers using the estimation strategy

discussed in our paper should not only report the estimated market prices of risk and the cross-

sectional R2, but also the estimated factor means. An economic implication is that the quest

for a consumption-based explanation of the value premium and other cross-sectional anomalies

continues. Against the backdrop of the current scientific debate that is concerned with taming

the “zoo of pricing factors”12, our paper makes an important contribution to the empirical

asset pricing literature in that it points out a fundamental flaw in cross-sectional asset pricing

tests that may lead researchers to think that a model has explanatory power when it actually

does not. Instead, statements claiming success at the cross-sectional front sometimes have to

be taken with a certain dose of skepticism since they may be the result of sacrificing the fit to

fundamentals.

12See, for instance, Harvey et al. (2016), Kogan and Tian (2014), Freyberger et al. (2017), or Harvey and
Liu (2017)
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