Ultra Short Tenor Yield Curves For High-Frequency Trading and Blockchain Settlement

Anton Golub, Lidan Grossmass, and Ser-Huang Poon*

March 2, 2018

* Antón Golub (anton.golub@lykke.com) is the co-founder of Lykke Corp, Zurich, Switzerland; Lidan Grossmass (lidan.grossmass@hhu.de) is at the Department of Economics, University of Düsseldorf, Germany; Ser Huang Poon (ser-huang.poon@manchester.ac.uk) is at the Alliance Manchester Business School, University of Manchester, UK. The funding from Manchester University FinTech Initiative 2017 is gratefully acknowledged. We would also like to thank the participants of the Shanghai FinTech Conference 2017, AMBS seminar, Eduardo Salazar and Michael Brennan for helpful comments in writing this paper.
Ultra Short Tenor Yield Curve For High-Frequency Trading and Blockchain Settlement

Abstract

Blockchain, based on the distributed ledger technology, provides immediate settlement of transactions of digital assets and direct ownership. Since settlement of transactions is immediate, the blockchain system requires an ultra short tenor interest rate curve that is always up-to-date. Today, many market-quoted rates are still accrued at the end of each trading day, typically with one day as the shortest tenor available. This paper develops an interbank money market model for the equilibrium interest rate of ultra short tenor and updated at an intraday level with automated adjustment for the event of a flash crash. Apart from facilitating trades settlement on blockchain, our research findings are vital for central banks’ efforts in stabilizing the currencies during flash crashes. We show that during the flash crash on 15 January 2015 when the Swiss National Bank (SNB) dropped the floor of CHF 1.2 per EUR, the ultra short CHF interest rates should have been highly negative to incentivize market makers to provide liquidity during the sharp CHF appreciation and to neutralize the arbitrage activities that aggravated the crash.

JEL-Classification: G01, G12, G14, G23, C01, C15, C41, C58

Keywords: Blockchain, Intraday Yield Curve, Flash Crash, Duration and Time Deformation
1 Introduction

Flash crashes are typically short-lived but have the potential to undermine confidence in financial markets. Trading today occurs at high speed with traders opening and closing positions in rapid succession and it is estimated that more than 90% of currency positions are held for less than 24 hours, and typically only for minutes or a few hours (Golub et al. (2013)). If only the overnight positions attract interest rate charges, this means that in practice only a small portion of FX transactions actually triggers interest payments. In the event of a large intraday selling pressure of a particular currency, the central bank is helpless against this type of ‘flash crash’ (Kirilenko et al. (2014)), which can potentially lead to permanent economic losses.

Central banks can intervene in financial markets to stabilize their currencies by buying or selling foreign currency reserves but that often comes at a cost of rapid expansion or shrinkage of their balance sheets, as well as disruptions in financial markets and the real economy. Until 2015, the Swiss National Bank (SNB) has accumulated over 500 billion CHF worth of currency reserves by maintaining a floor on EUR/CHF, but only to see the market value of those reserves drop by over 60 billion CHF in a matter of hours when the floor was abandoned on 15 January 2015. In extreme situations, the central bank can drastically change short-term interest rates as a measure of last resort to protect its currency. Without the ultra short tenor rates, the central bank can only change the overnight 1-day rate or the base rate. Using the 1-day rate to manage ultra high frequency trading and to counteract flash crashes can cause disruptions to the financial system and the real economy. In another instance, in 2000 the Turkish Central Bank had to raise daily interest rates to 300% at the height of the crisis to prevent the currency from collapsing, driving many banks and corporations into bankruptcy and resulting in over 1 million people losing their jobs (Özatay (2002)). Today, Brexit and the instability of world political situations are the type of market conditions that germinate currency volatility, often in the ultra-high frequency
Blockchain, or distributed ledger technology, is an infrastructure that allows for immediate settlement. Traditional ways of clearing and settling trades based on centralized ledgers require batch-based serial processes that often result in multi-day settlement times, along with high costs and operational risks. Since blockchain allows for immediate settlement of transactions, it will pave the way for the development of the ultra short tenor interest rate market. The yield curve will start with, for example, a one-second duration instead of one day, as is currently the case, and extend outward and converge to the 1-day rate as the tenor approaches 86,400 seconds. An important effect of fast clearing and settlement is the reduction in costs, counterparty and liquidity risks. In essence, the blockchain is a universally accessible ledger and a decentralized notary service that ensures global consensus on completed transactions and asset ownership. Like the world wide web, the ledger is not controlled by a single entity but by all market participants. The ‘global’ nature of the blockchain allows it to extend beyond country borders, central bank regulations, traditional trading hours, and exchanges. This emergent technology has revolutionized the way financial markets work and more structural changes are to be expected.

The key concerns of policy makers are that systemic financial institutions are not undermined, market is resilient, and that flash events should ideally not happen nor produce systemic contagion across markets. However the fragmented nature of FX trading, anonymised trading accounts, and the automated trading system on these OTC platforms make monitoring an impossible task for central banks and regulators. Hence the Foreign Exchange Working Group (FXWG) developed the FX Global Codes to enhance coordinations in an orderly market. Among other things, the codes relate to market participants’ obligation to avoid the disruptive consequences of their trading activities (see for example, the execution requirements during periods of poor space.

1See Peters and Panayi (2016) for a detailed description of how the technology works.
2Currently it needs about 10 minutes to update all the ledgers, but the technology is currently being developed such that settlement would be achieved in milliseconds (see for example McKinsey (2015)).
liquidity); governance around algorithmic trades execution, and measures to boost
resilience against the loss of data from public venues; and, in collaboration with sev-
eral industry bodies, how market participants should determine the minimum (or
maximum) point of pricing in a flash event.

In this paper, we derive the implied yield curves for ultra short tenor by using
exchange-rate dynamics and the uncovered interest rate parity (UIP). The UIP pos-
tulates that the interest rate differentials between two currencies should equal the
expected changes of exchange rates. This hypothesis however could not be verified
empirically (see Hansen and Hodrick (1980)), and carry trades tend to be profitable in
practice. Several papers explain this phenomenon by the existence of a time-varying
risk premium that is correlated with the interest differential, while Chaboud and
Wright (2005) showed that the UIP does hold in extremely short durations when in-
terest rates are paid. Based on these research findings, we are able to derive the equi-
librium yield curves from exchange rate changes by appropriate volatility and term
structure models that can filter out the noise at ultra-high frequency. Specifically, the
dynamics of the exchange rate returns are modelled using a time-deformation model
proposed by Engle (2000), in which both returns and stochastic volatility are driven
by the duration process, which is modelled using the log-ACD model of Bauwens and
Giot (2000).

Following the spirit of FXWG’s code, this paper proposes an intraday model for
the very short tenor interest rates based on the exchange rate dynamics, UIP and
the condition of no-arbitrage. Our intraday (or hourly) updated discount curve is
designed for trades settlement on blockchain where transactions are settled in mil-
iseconds. Our findings show that the intraday yield curve update is vital especially
during liquidity blackouts and flash events. We argue that the discount curve used
for settling millisecond transactions on blockchain should have a convincing and well
considered adjustment for flash events. Our time-deformed model is well suited for
capturing real time price discovery in ultra-high-frequency data and information flow.

The outline of the remaining paper is as follows: Section 2 describes how the
blockchain functions in financial trading using Lykke, a Swiss FinTech company, to illustrate its inner-workings, as well as how the ultra short term interest rates would work in practice. Section 3 develops the ultra short tenor yield curve model using UIP and a model for FX dynamics. Section 4 examines the empirical application of the model using a case-study of the Swiss-Franc event on 15 January 2015. Finally, Section 5 concludes.

2 Blockchain trading and settlement: An example using Lykke Exchange

Lykke Corp is a FinTech company based in Switzerland that launched its global marketplace for all asset classes and instruments in 2016, initially using the Colored Coin protocol of Bitcoin and later ERC20 protocol of the Ethereum.3 Both colored and ERC20 coins are analogous to a bank note issued and guaranteed by the central bank or the national currency board. However, these coins are backed by real financial assets, and technically, can be created without the knowledge of the “issuer” of the financial assets. The key players here are the trader who agreed to sell and the trader who agreed to buy. Where applicable, many of these coins are linked to ISIN (International Securities Identification Number) codes to facilitate book-keeping and risk management.

Lykke Exchange is organized as a semi-decentralized trading venue. Each on-boarded client has a "Lykke wallet", which is a digital representation of clients’ assets on the blockchain. Lykke wallet establishes ownership of assets and is secured and insulated from the Lykke exchange. Matching of transactions is centralized and utilizes the exchange’s matching engine. When a client’s limit order is matched with another client’s market order, the exchange initiates an atomic swap of assets in the wallets of these clients by sending an instruction via an Application Programming Interface

(API) to the blockchain to settle the transactions which is typically completed within 10 minutes.

Lykke Exchange was launched initially for major fiat currencies (USD, EUR, CHF, JPY, GBP, AUD, CAD), precious metals (XAU, XAG), Bitcoin (BTC), Ether (ETH) and SolarCoin (SLR), the Lykke coin (shares of Lykke) and two innovative products, viz. music rights and CO2 certificates. Lykke Exchange limit orders system is price-spread-time dependent. High-frequency traders will not be able to extract an unfair advantage from the pending limit orders as in the case of a standard price-time queuing system. Lykke is open 24/7 for both FX and crypto-currencies, while most other venues close over the weekend. Generally, all coins received can immediately be reused in a new trade. Thus trading can be executed as fast as the network connection between the trader and the exchange permits, normally in the range of 10ms to 100ms.

The blockchain is served by a, yet developing, ultra short tenor interest rate market. Interest rate yield curves moves according to demand and supply in real time and responds to all regulatory interventions, but is expected to converge at the daily level to the overnight (ON) swap rates. Interest rate payments are accounted for second by second, thus improving liquidity provision on the blockchain. Each broker has his own rollover/interbank swap rates connected to an ECN (Electronic Communication Network) with credit facility, e.g. IC Markets. As an example, a leveraged trading whereby a trader enters on a margin for a short EUR/USD transaction of 100k USD at a price of 1.2. If the daily short rollover rate is +0.784983\%, then the trader will receive \((100,000 \times 0.00784983)/1.2 = 654.1525\) EUR at settlement if the transaction takes one day to close. The maintenance of margin account and margin calls procedures are the same as the traditional leverage trading but with a much faster clock cycle.

2.1 Ultra short tenor interest rates

In the past, interest rates for intraday transactions are set to zero for efficiency grounds. Under normal circumstance, interest rates, even for those at the shorter end
of the term structure, are expected to be slow moving while exchange rate fluctuates widely responding to demand, supply and changing expectations. Baglioni and Monticini (2010) show that this is not the case during liquidity crisis. They provide evidence that the intraday pattern of the Overnight (ON) rate jumped by more than ten times (from 0.2 bp to 2.2 bp) in the reserve maintenance period from August 8th 2007. This is matched by an increase of the liquidity premium and the cost of collateral.

The overnight interbank market actually operates round the clock where all loans must be repaid at the same time next day. According to Baglioni and Monticini (2010), a bank short of liquidity say at 9 am has two alternatives: (i) borrow immediately in the interbank ON market, or (ii) obtain intraday credit from the European Central Bank (ECB) and borrow later (say at 4 pm) in the ON market. During the period of high uncertainty, a risk averse bank might have a strict preference for borrowing early in the ON market, rather than borrowing later, in order to make sure that it has enough funds to achieve its end-of-day targeted liquidity position. This explains why a borrowing bank might be ready to pay an implicit interest rate higher than the cost of central bank daylight credit. This is then the "liquidity premium" on an ON loan delivered early in the day.

The second explanation for the jump in intraday interest rate is an increase in intraday credit from ECB due to a higher cost of collateral. Since ECB does not charge any fee on intraday credit, the only cost comes from the collateral requirement. A way to measure the cost of collateral is provided by the Euribor-Eurepo spread: this is the cost of borrowing eligible securities through a buy and sell back transaction, earning the Eurepo rate, and funding the deal by borrowing in the interbank market at the Euribor rate. The average three-month spread goes from 7.6 bp before the liquidity crisis to 51.6 bp during the crisis due to a higher credit risk perceived by market par-

4 The difference between the rate charged on an overnight loan delivered at 9 a.m. and a loan with the same maturity delivered at 10 a.m. implicitly defines the price [difference] of an hourly loan. Baglioni and Monticini (2010) use tick-by-tick data for the e-MID interbank market, which was the most liquid market in the euro area for the exchange of interbank deposits at the time when the research was conducted.
participants. This finding highlights that the ability of the central bank to curb the market price of intraday liquidity during a liquidity crisis is limited, despite the provision of free (collateralized) daylight overdrafts.

3 Estimating the Yield Curve for Ultra Short Tenor Interest Rates

In this section, we develop a model for the ultra short tenor yield curve using interest rate parities and the principle of no arbitrage. We also design the econometric model for estimating the intraday yield curve from tick-by-tick FX data. We begin by defining the following notation: Let the daily domestic interest rate (in basis points) at day \(t \) be \(i_t \) and the foreign interest rate be \(i^*_t \). At the intraday level, let the ultra short term interest rate be \(i_{tk}(\delta) \) and \(i^*_{tk}(\delta) \) respectively. This is the interest rate term structure that the trader faces at the time that the \(k^{th} \) trade is executed, i.e. at time \(t_k \). \(\delta \) is the fraction of a business day that the asset is held and restricted to be less than \(D \), the entire business day. For \(\delta > D \), the conventional interest rate term structure should be used. For day \(t \) with \(N \) transactions, the time-grid of transactions \(t_k \in \{t_1, \ldots, t_N\} \) is irregularly spaced. Finally, the duration, \(d \), is the time difference at the \(k^{th} \) transaction to the last executed transaction: \(d_{tk} = t_k - t_{k-1} \).

For convenience, we shorten the subscripts \(t_k \) to \(k \), and write the intraday interest rates at the time of the \(k^{th} \) transaction as \(i_k(\delta) \) and \(i^*_k(\delta) \) respectively and write the duration at the \(k^{th} \) transaction as \(d_k \). These intraday interest rates may or may not be observable. If they are unobservable, they can be derived from the intraday (logged) spot exchange rates, \(s_k \).

3.1 Uncovered Interest Rate Parity

When the intraday interest rate term structure is unavailable or unobservable, we can derive it from uncovered interest rate parity (UIP). The UIP relation postulates
that the interest rate differential between two currencies should equal the expected exchange rate change:

\[E_t(s_{t+1} - s_t) = (i_t - i_t^*) \]

(1)

where \(s_t \) is the log of the spot exchange rate (in terms of home currency price of a unit of foreign currency), \(i_t \) and \(i_t^* \) are, respectively, the one-day domestic and foreign continuously compounded interest rates, and \(E_t \) is the conditional expectations operator. Over longer horizons, the differentials of inflation should be subtracted from the UIP, and the relationship is known as real exchange rate-real interest rate (RERI) (see for example Hoffmann and MacDonald (2009)). Since our focus is on high frequency intervals (daily or intraday), we do not consider the effects of inflation.

In practice, eq. (1) becomes

\[r_{t+1} = s_{t+1} - s_t = (i_t - i_t^*) + \pi_t + \varepsilon_t, \]

(2)

where \(r_t \) is the daily (not annualised) exchange rate return at time \(t \), \(\pi_t \) is a stationary (time-varying) risk premium or excess return\(^5\) and \(\varepsilon_t \) is a zero-mean iid random error. Here, we see that the interest rate reference period is ex ante and not ex post. The UIP thus implies that a regression of exchange rate returns on the interest differential should give a slope coefficient of unity. This hypothesis has been consistently and decisively rejected by the data. Very often, the estimated slope coefficient is negative, meaning that the currency with the higher interest rate tends to appreciate. A carry trade (in which the investor borrows in the currency with the low interest rate and invests in the currency with a high interest rate) is profitable on average. Furthermore, Equation (2) suggests that \(\pi_t > 0 \) for a depreciating currency where \(r_{t+1} > 0 \) (i.e. \(s_{t+1} > s_t \)). The foreign currency becomes more expensive at time \(t + 1 \) than at time \(t \), hence a risk premium is needed for holding the weaker currency for the amount not compensated by the interest rate differential.

While the UIP regression is usually run over horizons from a month to a year,

\(^5\)As risk premium tends to vary slowly over time, we later assume \(\pi \) to be constant over a particular interest rate regime.
Lyons and Rose (1995) examine the relationship between interest differentials and exchange rates at high frequency. They considered pairs of currencies in the now-defunct European Monetary System (EMS), and found that currencies which were under attack but in fact stayed within the band actually appreciated intraday. Lyons and Rose argue that this intraday appreciation is a compensation for the risk of devaluation that might have occurred, but did not. Investors can be compensated for the risk of devaluation only by intraday appreciation, not by interest differentials, as there are effectively no interest rate differentials intraday at that time.

Similarly, Chaboud and Wright (2005) examine UIP over extremely short horizons. An intraday UIP regression over a short period, that spans 17:00 New York time when interest rate is paid, yielded results in favor of the UIP hypothesis. The full overnight interest differential that accrues in such a window is offset by a jump in the exchange rate. Positive results are obtained for relatively large discrete interest payments accrue on positions held between Wednesday and Thursday, and especially on the multi-day interest rate differential days in the weekend.

Based on current convention, investor received the interest rate differential discretely only at the point when a position was rolled over from one day to the next. The common rollover time is determined by market convention. A position that was not held open overnight received no interest rate differential because intra-daily interest rates were often assumed to be zero. Today, transactions completed on blockchain will attract interest rate for the duration that the asset is held, which is a fraction of the daily rates (for example OIS-swap rates), which themselves may fluctuate intraday. However, our problem at hand is that the intraday rate for duration shorter than a day (say 10 minutes) may not be a fraction of the overnight rate, but is dictated by the supply and demand for the very short term borrowing/lending at the time.

Chaboud and Wright (2005) use bilateral Japanese yen, German mark/euro, Swiss franc and pound sterling 5-min average bid and ask spot exchange rates viz-a-viz the US dollar provided by Olsen and Associates over the 15-year period 1988-2002 and discarding weekends, defined as the time from 23:00 GMT on Friday to 22:55 GMT on Sunday when there is virtually no foreign exchange trading.
3.2 Forecasting irregularly spaced intraday FX returns

To apply the UIP regression in Equation (2) requires a forecast for \(r_{t+1} \) at time \(t \) and hence allows us to project the yield curve at time \(t \) for the ultra short tenor. To fully exploit information contained in tick-by-tick quote or trade data, we adopt the time-deformed model instead of the classical fixed time interval model. The origin of the time-deformed model can be traced back to Clark (1973) who uses trading volume as proxy for volatility, a finding which was later confirmed in Gallant et al. (1992). Later, Ane and Geman (2000) extend Clark’s model by considering a general time change process, and conclude that the transaction clock is better represented by number of trades than volume of trades. The larger the number of trades, the smaller the duration between trades. More recently, Feng et al. (2015) estimated a time-deformed model for IBM stock returns with latent stochastic volatility using the method of simulated moments.\(^7\)

In a similar approach, Engle and Russell (1998) and Engle (2000) model directly transaction arrival times as stochastic events in the form of joint marked point processes. The FX quotes or transaction returns can be modeled as two simultaneous random processes- durations \(d_k \) and returns \(r_k \), where the joint density can be expressed as the product of the marginal density of duration and the conditional density of returns given duration:

\[
f(d_k, r_k|\tilde{d}_{k-1}, \tilde{r}_{k-1}; \theta_k) = g(d_k|\tilde{d}_{k-1}, \tilde{r}_{k-1}; \theta_{1k})q(r_k|d_k, \tilde{d}_{k-1}, \tilde{r}_{k-1}; \theta_{2k})
\]

where \(\tilde{x}_k = \{x_k, x_{k-1}, \ldots, x_1 \} \) denotes the past of \(x \) and \(\theta \)s are parameters of the conditional densities. To model the durations process, we use the log-ACD model of Bauwens and Giot (2000), which is the logarithmic version of the ACD model of Engle and Russell (1998). The duration between two quotes or transactions is expressed

\(^7\)Feng et al. (2015)’s choice of MSM (Method of Simulated Moments) is motivated by the analytically intractable likelihood function. We decided against this model after having difficulty with optimizing globally over all parameters when the sample includes an extremely large amount of data. The estimated model is very sensitive to the starting values used.
as
\[d_k = e^{\phi_k} \epsilon_k \] (4)
where \(\epsilon_k \) are IID and Weibull\((1, \gamma) \) distributed. \(\phi_k \) is proportional to the logarithm of the conditional expectation of \(d_k \), i.e. \(\phi_k = \ln E(d_k|I_{k-1}) \), and \(I_{k-1} \) denotes the information set available at \(t_{k-1} \) which contains at least \(\tilde{d}_{k-1} \) and \(\tilde{\phi}_{k-1} \). Furthermore, \(\phi_k \) follows an autoregressive model
\[\phi_i = \omega + \alpha \ln \epsilon_{k-1} + \beta \phi_{k-1} \] (5)
which means it depends on its lagged past and the lagged "excess durations". This specification has been found by Bauwens and Giot (2000) to best capture the structure of quote processes but other specifications can be readily made by replacing \(\ln \epsilon_{k-1} \) with function \(l(d_{k-1}, \epsilon_{k-1}) \). The density of \(d_k \) is specified using the Weibull density
\[g(d_k) = \frac{\gamma d_k m_k^\gamma e^{-m_k^\gamma}}{d_k \Gamma(1 + 1/\gamma)} \] (6)
where \(m_k = \frac{d_k \Gamma(1+1/\gamma)}{e^{\phi_k}} \) and \(\Gamma(\cdot) \) is the gamma function. The log likelihood function for observations \(k = 1, \ldots, N \) can then be written as
\[\ln g(d_k) = \sum_{k=1}^{N} \ln \gamma - \ln d_k + \gamma \ln(d_k \Gamma(1 + 1/\gamma)) - \gamma \phi_k - \left(\frac{d_k \Gamma(1 + 1/\gamma)}{e^{\phi_k}} \right)^\gamma \] (7)
where \(\phi_k \) follows the process described in Equation (5).

We next model the ultra-high frequency returns process using the UHF-GARCH model described in Engle (2000). Here we approximate the conditional mean of FX returns per square root of time with an ARMA\((1,1)\) and include as in Engle (2000) observed durations as an additional regressor:
\[\frac{r_k}{\sqrt{d_k}} = \rho_2 \frac{r_{k-1}}{\sqrt{d_{k-1}}} + e_k + \phi_2 e_{k-1} + \kappa_2 d_k. \] (8)
The conditional variance \(r_k \) is expressed as
\[h_k = d_k \sigma_k^2 \] (9)
where σ^2_k is the conditional volatility per unit of time which can be modelled as a GARCHX(1,1) process

$$\sigma^2_k = \omega_2 + \alpha_2\epsilon^2_{k-1} + \beta_2\sigma^2_{k-1} + \gamma_2d^{-1}_k$$ \hspace{1cm} (10)

in which the conditional variance depends on the reciprocal of duration. The theory concerning duration and volatility is well debated in the literature. According to market microstructure theory (see Easley and O’Hara (1992)), clusters of return innovations are observed in the market when an unexpected piece of information arrives producing very frequent transactions with very short durations. In contrast, large duration should have lower volatility and lower adverse selection cost. On the empirical front, Manganelli (2005) finds that, for heavily traded stocks, volatility has a significant and negative impact on duration; low durations follow large volatilities. However, in an order-driven (instead of pricing-driven) market, when volatility is large, traders will be encouraged to provide liquidity and hence discouraged to trade immediately. This is because trading during a high volatility episode would incur both higher cost of the liquidity consumption and higher benefit of the liquidity provision. This means that a higher volatility should lead to a higher duration. In Equation (10), exchange rate volatility is a function of duration, d_k, whose direction of the impact will be determined by the sign of γ_2.

In the event of a flash crash, we can add an indicator variable I_k to Equation (8) or (10) that takes a value of 1 for a structural break after a flash event and zero otherwise. This controls for the effect of the flash event and we assume here that the flash crash is temporary and its onset is known a priori.

Since the UHF-GARCH model can also be estimated using maximum likelihood, the overall time-deformed log ACD UHF-GARCH process can be estimated jointly using the log likelihood:

$$LL = \sum_{k=1}^{N} \left[\ln g(d_k|\tilde{d}_{k-1}, \tilde{r}_{k-1}; \theta_1) + \ln q(r_k|d_k, \tilde{d}_{k-1}, \tilde{r}_{k-1}; \theta_2) \right],$$ \hspace{1cm} (11)

where $\theta_1 = \{\omega_1, \alpha_1, \beta_1, \gamma\}$ and $\theta_2 = \{\rho_2, \phi_2, \omega_2, \alpha_2, \beta_2, \gamma_2\}$
3.3 Constructing the ultra short tenor yield curve

To construct the ultra short tenor yield curve\(^8\), we estimate the log-ACD UHF-GARCH model at time \(t_k\) using the last 1000 quote observations and use the estimated parameters to simulate the next 5000 time-deformed observations. We repeat the simulations 1000 times, i.e. we construct 1000 projected yield curves and take the average.\(^9\)

Using UIP, the ultra short tenor yield curve an investor faces at time \(t = t_k\) to hold an asset till time \(t = t_k + t_q\) is

\[
\sum_{j=1}^{q} \delta_{k+j} = (i_{k+q} - i_{k+q}^*) + \left(\sum_{j=1}^{q} \delta_{k+j}\right) \pi + \varepsilon_k, \quad q = 1, \ldots, N
\]

(12)

where \(\delta_k = \frac{d_k}{D}\) is the duration \(d_k\) expressed as a fraction of a business day, \(D\), both measured in the same time units (assuming that a business day is 24 hours), and \(N\) is the number of irregularly spaced quotes/observations. \(\pi\) is the daily exchange rate risk premium for a particular day, which arguably is a function of the volatility and can potentially be negative or zero as well depending on the relative strength of the two currencies. We assume \(\pi\) to be constant over a particular interest rate regime and estimate it using Equation (2) with daily data over the past one year. We also assume that it is ‘constant’ intraday, scaled by intraday duration that the asset is held.

The intraday interest rates, \(i_{k+q}\) and \(i_{k+q}^*\), are the unscaled (i.e. not converted to daily or annual) local and foreign interest rates in basis points charged or paid over the \(\sum_{j=1}^{q} d_{k+j}\) duration at time \(t_k\). If intraday interest rates are constant for day \(t\), then the net interest differential is simply \((i_{k+q} - i_{k+q}^*) = \sum_{j=1}^{q} \delta_{k+j}(i_t - i_t^*),\) where \(i_t\) and \(i_t^*\)

\(^8\)The ‘yield curve’ here denotes market risk-free interest rates, in contrast to Treasury curves, which are relevant only for sovereign, or Libor, and are not free from credit risks.

\(^9\)The choice of using 1000 in-sample observations for estimations is arbitrary and constitutes for our dataset of the last 2-3 hours observations. Shortly after the crash on 15 Jan at 10 a.m., the last 1000 observations consists of the last 1.5 hours of observations. One could also use for example all observations in the last hour, etc. Further fine-tuning for optimal in- and out-of-sample sizes could be made but is out-of-scope of this paper.
are the local and foreign daily overnight rates respectively for day \(t \). In the case where \(i^*_{k+q} \) is known, Equation (12) can be used to infer \(i_{k+q} \), and vice versa.

Given \(q = 1, \ldots, N \) estimated values of \(\hat{i}_{k+q} \) and \(\hat{d}_{k+q} \), we fit the Nelson-Siegel model to the time-deformed model-simulated yield curve to produce the fitted intra-day yield curve\(^{10}\) as follows:

\[
\hat{i}_{k+q} = b_0 + b_1 \left[\frac{1 - \exp(-d/\tau)}{d/\tau} \right] + b_2 \left[\frac{\left[1 - \exp(-d/\tau) \right]}{d/\tau} - \exp(-d/\tau) \right] \tag{13}
\]

where \(b_0, b_1, b_2 \) and \(\tau \) are the fitted parameters.\(^{11}\)

According to Nelson and Siegel (1987), \(b_0 \) is interpreted as the long run levels of interest rates (the loading is 1, it is a constant that does not decay), \(b_1 \) is the short-term component (it starts at 1, and decays monotonically and quickly to 0), \(b_2 \) is the medium-term component (it starts at 0, increases, then decays to zero), and \(\tau \) is the decay factor: small values produce slow decay and can better fit the curve at long maturities, while large values produce fast decay and can better fit the curve at short maturities, \(\tau \) also governs where \(b_2 \) achieves its maximum. In order to constrain \(\hat{i}_{k+q} \) to the overnight rate \(i_t \) when \(\sum_{j=1}^{q} d_{k+j} \) equals one day, we do not estimate \(b_0 \) but simply

\(^{10}\)We use the unscaled intraday yield curve. We can express the rates as daily rates by using \(\hat{i}_{k+q} \) the scaled (daily) rate for intraday duration \(\sum_{j=1}^{q} d_{k+j} \) (i.e. \(\hat{i}_{k+q} = i_{k+q}/\sum_{j=1}^{q} \delta_{k+j} \)). We find however, due to the large effect of scaling where there are 86400 seconds in a day, it renders most of the yield curve very flat except for the first six minutes. For ease of reading of the graph, we use the unscaled interest rates.

\(^{11}\)In the case when \(i^*_{k+q} \) is also unknown, we propose using cross rate parity of two FX returns to help estimate \(i_{k+q} \). For example, to estimate the intraday yield curve for CHF, both forecasted EURCHF and USDCHF FX returns can be used to estimate \(i_{k+q,CHF} \):

\[
\sum_{j=1}^{q} \hat{r}_{k+j,EURCHF} - \sum_{j=1}^{q} \delta_{k+j} \pi_{EURCHF} = (i_{k+q,EUR} - i_{k+q,CHF}) + \varepsilon_{k,EURCHF}, \; q = 1, \ldots, N \tag{14}
\]

\[
\sum_{j=1}^{q} \hat{r}_{k+j,USDCHF} - \sum_{j=1}^{q} \delta_{k+j} \pi_{USDCHF} = (i_{k+q,USD} - i_{k+q,CHF}) + \varepsilon_{k,USDCHF}, \; q = 1, \ldots, N \tag{15}
\]

where \(i_{k+q,EUR} \) and \(i_{k+q,USD} \) are estimated using daily rates scaled by the intraday durations, \(\hat{i}_{k+q}^* = i_t / \sum_{j=1}^{q} d_{k+j} \). Expectation Maximization (EM) algorithm can be used to fit the Nelson Siegel curve using both the estimated \(i_{k+q,CHF} \) in (14) and (15).
use $b_0 = i_t$, the 1-day unscaled rate, i.e. the intraday yield curve should converge to the daily ‘long run’ yield, except during flash crashes when the ON rates may be stale.

4 An Empirical Study: Swiss Franc Event, 15 January 2015

On 15 January 2015, SNB announced at 09:30 (local time) the discontinuation of the minimum exchange rate of CHF 1.20 per euro. At the same time, it lowered the interest rate on sight deposit account balances by 0.5 percentage points, to -0.75%, and the target range for the three-month Libor was to change from between -0.75% and 0.25% to between -1.25% and -0.25%. Prior to the SNB’s intervention, the euro has depreciated considerably against the US dollar and this, in turn, has caused the Swiss franc to weaken against the US dollar. Hence, the SNB concluded that enforcing and maintaining the minimum exchange rate for the Swiss franc against the euro is no longer justified.

The SNB announcement caused a 41% rise in the Swiss franc in 20 minutes. It retracted over 60% of this move within a further 20 minutes. Automated liquidity providers withdrew from two-sided market-making and suspended streaming prices on public and bilateral platforms. Chicago Mercantile Exchange activated a trading halt in CHF currency futures which further amplified the flash crash. Later, the SNB stabilised markets by providing liquidity in a price range, giving market participants the confidence to re-enter the market. Market users initially reverted to more traditional transaction methods such as voice trading but resumed the use of all methodologies once they had made the appropriate adjustments to their e-trading tools.

4.1 Data

We use intraday EURCHF and USDCHF quote data from Olsen for the period 08-16 January 2015. The data contains tick-by-tick quotes with time stamps in millisecond.
onds, bid and ask prices and bid and ask volumes. FX trading is 24 hours, hence we include the overnight period but exclude all weekend quotes (because of too few observations) which leaves us with seven days of data. For quotes within the same second, we keep only the last entry of the second (with the largest millisecond) as a representative observation.\footnote{Feng et al. (2015) also use this method to deal with multiple observations. Another method is to use volume weighted averages within the same second, see for example Engle and Russell (1998).} To compute FX returns, we use the log returns of the midprice, i.e.

\begin{equation}
R_k = \ln(\frac{Ask_k + Bid_k}{2}) - \ln(\frac{Ask_{k-1} + Bid_{k-1}}{2})
\end{equation}

Tables 1 shows the number of observations for EURCHF and USDCHF respectively, each day before and after ‘filtering’ the data (from multiple quotes within a second) as well as the descriptive statistics of the quote returns and durations. Market liquidity of USDCHF is higher than that of EURCHF, with significantly more quotes and much shorter quote durations. With exception of 15 January, the returns of USDCHF are also more volatile than EURCHF.

Table 1 about here.

Figures 1, 2 and 3 present the EURCHF exchange rate characteristics on January 15, 2015 when the SNB announced to drop the minimum EURCHF rate commitment. Figures 1a and 1b show vividly the sharp fall in EURCHF exchange rate in the first hour of trading and the huge volatility that follows. This is accompanied by a widening of the bid-ask spread in Figure 1c, which improved during the day but deteriorated when the Asian markets opened the next morning. Interestingly, Figure 1d shows the rate reaction took place a couple of minutes before the SNB announcement but by 10am, the rate has recovered half of the lost ground. Figure 1e shows huge volume of trades and quotes concentrated around the announcement. Liquidity dried out when European and US markets closed, and Asian markets reopened the next morning. The shortage of liquidity is clearly reflected in the rise in trade duration as shown in Figure 1f.
Figure 2 shows the annualised exchange rate return per trade hour by hour. The scale show on the y-axis (for the annualised returns) is a clear reflection of volatility changes from one hour to the next. Figure 3 shows the logarithmic of the number of trades against duration between trades, hour by hour, during the Euro-Swiss Franc event. It is very clear that the majority of the trades were executed very quickly within a few seconds. In Figure 4, we calculate the interest rate differential implied from the FX returns without adjustment for stochastic volatility, seasonality and the flash event triggered by the SNB’s announcement. By the assumption of a stable Euro rate, we can calculate the implied discount curve for the Swiss franc on an hourly basis for maturity from 1 to about 70 seconds. We argue that intraday discount curves will play an increasing important role in trading platform such as the blockchain. It is important that such high frequency ultra short tenor discount curves are also updated at high frequency and are adjusted for flash events.
4.2 Estimation Results

Since intraday prices and durations have seasonal patterns over a trading day, we need to adjust for these diurnal effects before estimating the econometric model. The intraday diurnal effects in duration is adjusted using a cubic spline as described in Engle and Russell (1998) and Bauwens and Giot (2000). The diurnal effect $\phi(\cdot)$ is estimated by taking the average duration conditional on the time of the day in 30-minute interval of the day. These average durations are used as mid-points in the respective intervals and a cubic spline smoothing is used to obtain the diurnal factor $\phi(\cdot)$. While there are differences in $\phi(\cdot)$ for each day of the week (see Bauwens and Giot (2000)), we follow Feng et al. (2015) and Tse and Dong (2014) in disregarding this effect due to the limited number of days in our data.13 Similarly, returns are adjusted for the diurnal effect in its volatility, where volatility per unit time, σ^2, is estimated using returns divided by square root of duration (r/\sqrt{d}), and a smoothing spline is fitted over the average volatilities to obtain the diurnal factor. The absolute r/\sqrt{d} is then divided by the estimated diurnal factor.

Our estimated diurnal factor for durations and volatility is shown in Figure 5, where the time of day is given in Central Eastern Time. Durations are low during European and U.S. market opening hours, but are higher during the late afternoon US trading hours as well as when both markets are closed. For volatility, the diurnal factor is the highest during the European trading hours and tapers downwards in the late afternoon. The typical U-shape curve can be observed during US market opening hours (15.00-23.00). Descriptive statistics of the durations and returns adjusted for diurnality are given in Table 2.

13We also disregard data from 15-16 January when estimating the diurnal factor due to the flash event on 15 January.
Using the diurnally adjusted returns and durations, we estimate the log-ACD-UHF-GARCH model for the 9th and 13th January at 9, 10 and 11 am (calm period) as well as for 15th January 9 a.m., 10 a.m., 11 a.m., 12 p.m., 1 pm, and 16th January 8 a.m. (directly before and after the SNB announcement) using the last 1000 observations presented at these specific times. The estimated parameters of the log-ACD UHF-GARCH model are given in Table 3. The estimated log-ACD parameters are mostly significant at 5% or better, with very large β_1s indicating strong persistence. The persistence drops sharply shortly after the crash, at 11 a.m. on 15 January and the next day 8 a.m. Ljung Box statistics of the residuals are small and mostly insignificant, which indicates that the model has captured most of the autocorrelations in durations.

For the UHF-GARCH, the ARMA parameters in the conditional mean are mostly insignificant, except after the crash, where returns take a downward trend with large negative AR (ρ_2) and negative MA (ϕ_2) parameters (as observed in Figure 1). Duration of quotes is added as an additional regressor to the conditional mean to capture the "bad news effect" of long durations as in the Diamond and Verrecchia (1987) model. The coefficients are mainly negative (as found in Engle (2000)) but κ_2 is mostly insignificant. After the crash, the coefficients κ_2 become positive, which means that longer durations are seen as "good news", i.e. quote arrivals due to panic buying of CHF or selling of EUR have eased.

In the variance equation, the α and β (ARCH and GARCH parameters) sum to a low number before the crash and tend to be insignificant. The coefficient on the reciprocal of duration is large and significantly positive for estimations before the crash. This was also observed in Engle (2000) and supports Easley and O'Hara (1992) hypothesis that no quote or trade arrivals are interpreted as lack of news and decreases volatility. After the crash, however, the ARMA (ρ_2 and ϕ_2) and GARCH (α_2 and β_2)
parameters become very large (summing to more than one) and significant, while the coefficients on inverse durations (γ_2) becomes insignificant. This high estimated persistence is an artefact of the extreme observations in the sample period. The low Ljung-Box statistics in the residuals indicates that the UHF-GARCH model has captured much of the autocorrelation in intraday return.

[Table 3 about here.]

Using only the estimated parameters that are significant, we simulate a horizon of 5000 time-deformed observations starting with the last observation in the sample. The simulations are repeated 1000 times and then the mean durations (d_k) and returns (r_k) are used. The diurnal factors are re-introduced into the mean simulated durations and returns. We then use the simulated data to estimate the UIP equation (12). To estimate the exchange rate risk premium (in Equation (2)), we use the daily EURCHF14 and interest rates of the last one year preceding our dataset and obtain a daily risk premium estimate for the period of $\hat{\pi} = 1.746 \times 10^{-4}$.

The raw estimated intraday yield curves are plotted in Figure 6. They tend to be downward sloping, and sometimes have a hump around the 10000 second mark, which is equivalent to about 3 hours. Figures 3(d) and 3(k) show only straight downward sloping lines due to all the parameters in the conditional means and variances being insignificant (except for inverse durations in the volatility), and hence is only a function of time. Since the interest rates are unscaled, it means for example in Figure 3(d) that an investor holding CHF for 5000 seconds (approximately 1 hr 20 mins) will have to pay an interest of about -2.0 bps for that 5000 secs in total. Holding CHF longer till 15000 seconds (approximately 4 hours 10 minutes) incurs an interest of about -2.2 bps for the time. Here, we do find that UHF-GARCH may be inadequate in fully capturing the dynamics of intraday return and alternative models should certainly be explored for future extensions of this work.

14The overnight EUR rates used are obtained from Bloomberg: these are -0.047 for 9 Jan, -0.069 for 13 Jan, -0.067 for 15 Jan and -0.081 for 16 Jan.
Shortly after the crash, the UHF-GARCH is nonstationary due to extreme observations and the graphs 3(h), (i) and (k) show very large volatility. We replot the graphs for these three periods for the first 500 seconds (approximately 8 minutes) in Figure 7 and also provide the graph at 9 a.m. just before the crash. At 9 a.m, the rates show no unusual activity. It is higher at the first few minutes, then drops to -1.92 bps and increases monotonically. At 10 a.m., the rates in the first 300 seconds are only slightly negative in keeping with the daily rate as a payment for providing liquidity to the market. Thereafter it becomes extremely negative to -20 000 basis points – market makers providing ample liquidity by absorbing CHF panic buying at the midst of the flash crash would achieve short-term interest profits to the tune of 200%, offsetting the price loses on EUR/CHF exchange rate. At 11 a.m., the rates are stable at the first 300 seconds, and then displays a lot of volatility with unclear direction. At 12 p.m., the rates are stable only for the first 200 seconds, has a positive hump at around the 350 seconds and then dives down to -50 basis points.

[Figure 6 about here.]

[Figure 7 about here.]

Finally, we smooth the simulated estimated yield curves using the Nelson-Siegel model, where we constrain the first parameter b_0, which represents the level of the yield curve, to the daily CHF rate, except during the flash event when the ON rate might be stale. The estimated parameters are given in Table 4, where the parameters are mostly significant except for the crash period on 15 Jan at 10 a.m., 11 a.m. and 12 p.m.. The smoothed curves are plotted in Figure 8 and generally either U-shape, rewarding the liquidity provider at the extreme short end of the yield curve and penalizing investors who hold the currency for about 1 hour or so, or simply downward sloping. The Nelson-Siegel interest rate model was however not flexible enough to provide a good fit to intraday yield curve during the crash period on 15 Jan at 10 a.m, 11 a.m. and 12 p.m..
After the crash on 15 Jan at 1p.m., the entire intraday yield curve lies below the daily rate with a very broad U shape. The curve on the next day, 16 Jan, returns to normal, but rewards the liquidity provider higher rates than usual. Overall, our results support the finding of Christoffersen et al. (2016) that market illiquidity dominates all other factors during periods of crash or that with high crash risks, hence the market rewards liquidity provision during such circumstances. While we could not get the fitted Nelson-Siegel curves during the crash period, the raw curves for the first few minutes indicate that after the first few minutes (to support liquidity provision), the equilibrium yield curve dives sharply into the negative zone to discourage investors from holding CHF. This phenomenon helps to stabilize the currency in the panic buying of CHF after the SNB announcement.

[Table 4 about here.]

[Figure 8 about here.]

5 Conclusion

In this paper, we propose an intraday model for deriving the implied equilibrium ultra short tenor discount curve based on the exchange rate dynamics, uncovered interest rate parity and the condition of no-arbitrage. The necessity of an intraday ultra short tenor yield curve has been long overdue, with the rapid development of high frequency trading and development of newer settlement platforms, for example the blockchain. Our ultra short tenor discount curve can be updated intraday (hour-by-hour, by a certain quote or trade volume or by other suitable criteria) and used, for example, for trades settlement on the blockchain where transactions are completed in milliseconds.

In order to capture all information in the ultra high frequency data, we adopt a time-deformed log-ACD UHF GARCH model to capture the dynamics of intraday durations and returns, and the real time price discovery across currency markets. Us-
ing the estimated model, we simulate time-deformed observations for a full range of ultra short tenor interest rates and construct a yield curve based on UIP. We then estimate a smoothed Nelson-Siegel yield curve using nonlinear least squares. We find that the log-ACD models intraday durations effectively but the fit of the UHF-GARCH model for tick-by-tick quote returns are at times poor using our FX dataset. We also find that the Nelson-Siegel curve is not flexible enough to obtain smoothed ultra short tenor discount curves during flash crashes, and future work should consider developing other models for such purpose.

Our findings show that the intraday yield curve update is generally U-shape or downward sloping, where liquidity provision is rewarded with higher interest rates in the first few minutes, and holding the currency for an hour or more incurs costs to the investor. During the crash triggered by the SNB announcement, the first five minutes of the intraday yield curve is still stable, but after that dives sharply to -20000 basis points in the first hour after the announcement. This very negative rates incentivizes liquidity provision, discourages investors from the panic buying of CHF and should automatically stabilize the currency in the short term before the effect of the daily interest rate adjustment kicks in at the end of the day. The next day after the crash, we notice large interest rates at the very short end of the intraday yield curve to encourage liquidity provision. This supports the hypothesis of Christoffersen et al. (2016) of market liquidity factor dominating during periods with high crash risks.

This paper is a first novel attempt at introducing an intraday ultra short tenor yield curve following the FXWG’s code. We derive the intraday yield curves that is consistent with market liquidity provision and discourage ultra short term speculation that increases crash risks. During periods of shocks, the stabilizing mechanism of intraday interest rates become even more critical and lend central banks a useful tool in managing the stability of their currencies. The flash crash on January 15 saw the EURCHF fall by 40% in seconds. While FX trading venues could trigger circuit breakers to prevent extreme pricing, the execution system could not function properly because liquidity providers ceased to provide liquidity during the event. We strongly argue
that had such ultra short tenor interest rates adjustments been implemented, many large swings in currency trades would have been prevented.
References

List of Figures

1. Euro-Swiss Franc Exchange Rate ... 31
2. Euro-Swiss Franc Unadjusted Annualised Rate Differential by Hour 32
3. Euro-Swiss Franc: logarithmic of the number of trades against duration between trades, hour by hour .. 33
4. Euro-Swiss Franc Unadjusted Discount Curve (Annualised Rate vs. Seconds) by Hour ... 34
5. Diurnal effects in durations and volatility: Black broken lines show the average time-of-day effect of durations. Red lines show the smoothed diurnal factor using cubic splines. Time of day is given in Central Eastern Time. ... 35
6. CHF Unadjusted Yield Curves .. 36
7. CHF Unadjusted Yield Curves just before and after SNB announcement at the ultra short end tenor. .. 37
8. Estimated CHF Nielsen Siegel Yield Curves 38
There are 93728 quotes from 08:14:57 15.01.2015 to 08:14:55 16.05.2015. The announcement to drop the minimum EURCHF rate at 1.2 was made by the Swiss National Bank at 9:30. The log quote returns, mid FX rates, bid-ask spreads, quote volumes and quote durations are plotted here, whereby Δt used are quote durations.
Figure 2: Euro-Swiss Franc Unadjusted Annualised Rate Differential by Hour

(a) Jan 15, 08 hour

(b) Jan 15, 09 hour

(c) Jan 15, 10 hour

(d) Jan 15, 11 hour

(e) Jan 15, 12 hour

(f) Jan 15, 13 hour

(g) Jan 15, 14 hour

(h) Jan 15, 15 hour

(i) Jan 15, 16 hour

(j) Jan 15, 17 hour

(k) Jan 15, 18 hour

(l) Jan 15, 19 hour

(m) Jan 15, 20 hour

(n) Jan 15, 21 hour

(o) Jan 15, 22 hour

(p) Jan 15, 23 hour

(q) Jan 16, 00 hour

(r) Jan 16, 01 hour

(s) Jan 16, 02 hour

(t) Jan 16, 03 hour

(u) Jan 16, 04 hour

(v) Jan 16, 05 hour

(w) Jan 16, 06 hour

(x) Jan 16, 07 hour
Figure 3: Euro-Swiss Franc: logarithmic of the number of trades against duration between trades, hour by hour

(a) Jan 15, 08 hour (b) Jan 15, 09 hour (c) Jan 15, 10 hour (d) Jan 15, 11 hour (e) Jan 15, 12 hour

(f) Jan 15, 13 hour (g) Jan 15, 14 hour (h) Jan 15, 15 hour (i) Jan 15, 16 hour (j) Jan 15, 17 hour

(k) Jan 15, 18 hour (l) Jan 15, 19 hour (m) Jan 15, 20 hour (n) Jan 15, 21 hour (o) Jan 15, 22 hour

(p) Jan 15, 23 hour (q) Jan 16, 00 hour (r) Jan 16, 01 hour (s) Jan 16, 02 hour (t) Jan 16, 03 hour

(u) Jan 16, 04 hour (v) Jan 16, 05 hour (w) Jan 16, 06 hour (x) Jan 16, 07 hour
Figure 5: Diurnal effects in durations and volatility: Black broken lines show the average time-of-day effect of durations. Red lines show the smoothed diurnal factor using cubic splines. Time of day is given in Central Eastern Time.

(a) EURCHF durations

(b) EURCHF volatility
Figure 6: CHF Unadjusted Yield Curves

(a) Jan 09, 09 a.m.
(b) Jan 09, 10 a.m.
(c) Jan 09, 11 a.m.

(d) Jan 13, 09 a.m.
(e) Jan 13, 10 a.m.
(f) Jan 13, 11 a.m.

(g) Jan 15, 09 a.m.
(h) Jan 15, 10 a.m.
(i) Jan 15, 11 a.m.

(j) Jan 15, 12 p.m.
(k) Jan 15, 1 p.m.
(l) Jan 16, 08 a.m.
Figure 7: CHF Unadjusted Yield Curves just before and after SNB announcement at the ultra short end tenor.

(a) Jan 15, 9 a.m. (b) Jan 15, 10 a.m.

(c) Jan 15, 11 a.m. (d) Jan 15, 12 p.m.
Figure 8: Estimated CHF Nielsen Siegel Yield Curves

(a) Jan 09, 09 a.m.
(b) Jan 09, 10 a.m.
(c) Jan 09, 11 a.m.
(d) Jan 13, 09 a.m.
(e) Jan 13, 10 a.m.
(f) Jan 13, 11a.m.
(g) Jan 15, 09 a.m.
(h) Jan 15, 10 a.m.
(i) Jan 15, 11 a.m.
(j) Jan 15, 12 p.m.
(k) Jan 15, 1 p.m.
(l) Jan 16, 08 a.m.
List of Tables

1. Descriptive statistics of returns and durations of intraday EURCHF FX data during the period 08-16 January 2015. 40

2. Descriptive statistics of diurnally-adjusted returns and durations of EURCHF during the period 08-16 January 2015. 41

3. Estimations for the log-ACD UHF-GARCH model for 9, 13, 15 and 16 January 2015 for EURCHF using the last 1,000 observations at indicated times. Both returns and durations used have been adjusted for intraday diurnality. Standard errors for log-ACD are given in brackets. Robust standard errors are used for UHF-GARCH and also given in brackets. † indicates significance at 5% or better. 42

4. Nelson Siegel parameters estimated using nonlinear least squares. \(b_0 \), the long run factor is constrained to the daily CHF O/N rate and not estimated, except during the flash crash period. Standard errors are given in brackets. † indicates significance at 5% or better. 43
Table 1: Descriptive statistics of returns and durations of intraday EURCHF FX data during the period 08-16 January 2015.

<table>
<thead>
<tr>
<th>Dates</th>
<th>08/01</th>
<th>09/01</th>
<th>12/01</th>
<th>13/01</th>
<th>14/01</th>
<th>15/01</th>
<th>16/01</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_raw</td>
<td>10887</td>
<td>17604</td>
<td>15045</td>
<td>12909</td>
<td>17390</td>
<td>78333</td>
<td>14752</td>
</tr>
<tr>
<td>N_filtered</td>
<td>8900</td>
<td>13414</td>
<td>11790</td>
<td>10541</td>
<td>13523</td>
<td>30361</td>
<td>6962</td>
</tr>
<tr>
<td>returns ($\times 10^5$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>-.007</td>
<td>.0003</td>
<td>-.0071</td>
<td>-.0008</td>
<td>.0012</td>
<td>-6.228</td>
<td>4.141</td>
</tr>
<tr>
<td>std.dev</td>
<td>6.566</td>
<td>7.785</td>
<td>7.211</td>
<td>6.508</td>
<td>7.611</td>
<td>1517</td>
<td>111.6</td>
</tr>
<tr>
<td>median</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>min</td>
<td>-62.45</td>
<td>-62.45</td>
<td>-45.80</td>
<td>-45.80</td>
<td>-49.96</td>
<td>-123429</td>
<td>-1541</td>
</tr>
<tr>
<td>max</td>
<td>41.63</td>
<td>54.12</td>
<td>49.96</td>
<td>49.96</td>
<td>49.96</td>
<td>125843</td>
<td>1198</td>
</tr>
<tr>
<td>skew</td>
<td>-.1649</td>
<td>.0758</td>
<td>.1364</td>
<td>.1450</td>
<td>.0192</td>
<td>-6.060</td>
<td>-4165</td>
</tr>
<tr>
<td>LB(10)</td>
<td>344.4</td>
<td>1880</td>
<td>1455</td>
<td>1010</td>
<td>2011</td>
<td>3977</td>
<td>60.9</td>
</tr>
<tr>
<td>LB(25)</td>
<td>352.4</td>
<td>1909</td>
<td>1468</td>
<td>1057</td>
<td>2020</td>
<td>8913</td>
<td>155</td>
</tr>
<tr>
<td>durations (seconds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>std.dev</td>
<td>11.80</td>
<td>10.94</td>
<td>19.02</td>
<td>15.27</td>
<td>12.75</td>
<td>7.614</td>
<td>6.524</td>
</tr>
<tr>
<td>median</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>min</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>max</td>
<td>335</td>
<td>166</td>
<td>816</td>
<td>461</td>
<td>611</td>
<td>473</td>
<td>136</td>
</tr>
<tr>
<td>kurtosis</td>
<td>104.3</td>
<td>37.55</td>
<td>546.0</td>
<td>175.3</td>
<td>548.9</td>
<td>765.7</td>
<td>53.96</td>
</tr>
<tr>
<td>LB(10)</td>
<td>630.2</td>
<td>2548</td>
<td>4410</td>
<td>2812</td>
<td>3304</td>
<td>20237</td>
<td>906.2</td>
</tr>
<tr>
<td>LB(25)</td>
<td>904</td>
<td>4552</td>
<td>7046</td>
<td>4339</td>
<td>4295</td>
<td>42984</td>
<td>1218</td>
</tr>
</tbody>
</table>
Table 2: Descriptive statistics of diurnally-adjusted returns and durations of EURCHF during the period 08-16 January 2015.

<table>
<thead>
<tr>
<th>Dates</th>
<th>08/01</th>
<th>09/01</th>
<th>12/01</th>
<th>13/01</th>
<th>14/01</th>
<th>15/01</th>
<th>16/01</th>
</tr>
</thead>
<tbody>
<tr>
<td>EURCHF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted returns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>.0146</td>
<td>.0083</td>
<td>.0166</td>
<td>.0193</td>
<td>.0344</td>
<td>-.9852</td>
<td>1.446</td>
</tr>
<tr>
<td>std.dev</td>
<td>1.991</td>
<td>2.272</td>
<td>1.975</td>
<td>1.887</td>
<td>2.272</td>
<td>228.6</td>
<td>37.21</td>
</tr>
<tr>
<td>median</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>min</td>
<td>-31.64</td>
<td>-21.82</td>
<td>-15.02</td>
<td>-19.74</td>
<td>-28.12</td>
<td>-8317</td>
<td>-744.0</td>
</tr>
<tr>
<td>max</td>
<td>22.38</td>
<td>30.32</td>
<td>19.06</td>
<td>21.82</td>
<td>28.16</td>
<td>15221</td>
<td>436.5</td>
</tr>
<tr>
<td>skew</td>
<td>-.4004</td>
<td>.0850</td>
<td>.4561</td>
<td>.4215</td>
<td>.2354</td>
<td>25.76</td>
<td>-.4105</td>
</tr>
<tr>
<td>kurtosis</td>
<td>29.45</td>
<td>14.94</td>
<td>14.86</td>
<td>18.17</td>
<td>16.85</td>
<td>2092</td>
<td>46.19</td>
</tr>
<tr>
<td>LB(10)</td>
<td>184.3</td>
<td>1559</td>
<td>1177</td>
<td>650.9</td>
<td>1533</td>
<td>6242</td>
<td>40.73</td>
</tr>
<tr>
<td>LB(25)</td>
<td>198.7</td>
<td>1580</td>
<td>1185</td>
<td>701.2</td>
<td>1552</td>
<td>11057</td>
<td>109.8</td>
</tr>
<tr>
<td>Adjusted durations (seconds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>.9609</td>
<td>.7843</td>
<td>.9457</td>
<td>1.058</td>
<td>.8246</td>
<td>.3672</td>
<td>.3578</td>
</tr>
<tr>
<td>std.dev</td>
<td>1.628</td>
<td>1.306</td>
<td>1.807</td>
<td>1.709</td>
<td>1.382</td>
<td>.8400</td>
<td>.5545</td>
</tr>
<tr>
<td>median</td>
<td>.3799</td>
<td>.3101</td>
<td>.3486</td>
<td>.4315</td>
<td>.3281</td>
<td>.1812</td>
<td>.1544</td>
</tr>
<tr>
<td>min</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>max</td>
<td>19.72</td>
<td>21.74</td>
<td>47.77</td>
<td>65.12</td>
<td>28.09</td>
<td>46.17</td>
<td>8.915</td>
</tr>
<tr>
<td>skew</td>
<td>4.119</td>
<td>4.438</td>
<td>7.248</td>
<td>8.028</td>
<td>5.086</td>
<td>15.53</td>
<td>4.654</td>
</tr>
<tr>
<td>kurtosis</td>
<td>25.99</td>
<td>32.43</td>
<td>109.6</td>
<td>206.9</td>
<td>48.08</td>
<td>498.6</td>
<td>37.17</td>
</tr>
<tr>
<td>LB(10)</td>
<td>672.9</td>
<td>1270</td>
<td>1177</td>
<td>490.9</td>
<td>2909</td>
<td>19481</td>
<td>726.2</td>
</tr>
<tr>
<td>LB(25)</td>
<td>1038</td>
<td>2060</td>
<td>3572</td>
<td>1797</td>
<td>4205</td>
<td>35828</td>
<td>936.7</td>
</tr>
<tr>
<td>Date</td>
<td>Time</td>
<td>(\omega_1)</td>
<td>(\alpha_1)</td>
<td>(\phi_1)</td>
<td>(\gamma_1)</td>
<td>LL</td>
<td>(L_B(10))</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>9 Jan, 9am</td>
<td></td>
<td>0.0511</td>
<td>0.1024</td>
<td>0.8690</td>
<td>0.9211</td>
<td>-95.02</td>
<td>3.702</td>
</tr>
<tr>
<td>9 Jan, 10am</td>
<td></td>
<td>0.0149</td>
<td>0.1418</td>
<td>0.8835</td>
<td>0.9320</td>
<td>-85.64</td>
<td>14.89</td>
</tr>
<tr>
<td>9 Jan, 11am</td>
<td></td>
<td>0.0138</td>
<td>0.0873</td>
<td>0.9796</td>
<td>0.9940</td>
<td>-76.57</td>
<td>10.54</td>
</tr>
<tr>
<td>13 Jan, 9am</td>
<td></td>
<td>0.0381</td>
<td>0.0367</td>
<td>0.9101</td>
<td>0.9320</td>
<td>-75.01</td>
<td>4.580</td>
</tr>
<tr>
<td>13 Jan, 10am</td>
<td></td>
<td>0.0146</td>
<td>0.0230</td>
<td>0.9404</td>
<td>0.9940</td>
<td>-90.00</td>
<td>7.324</td>
</tr>
<tr>
<td>13 Jan, 11am</td>
<td></td>
<td>0.0150</td>
<td>0.0431</td>
<td>0.9231</td>
<td>0.9260</td>
<td>-95.85</td>
<td>8.363</td>
</tr>
<tr>
<td>15 Jan, 9am</td>
<td></td>
<td>0.0133</td>
<td>0.1319</td>
<td>0.9404</td>
<td>0.9260</td>
<td>-95.85</td>
<td>8.363</td>
</tr>
<tr>
<td>15 Jan, 10am</td>
<td></td>
<td>0.0014</td>
<td>0.0228</td>
<td>0.9404</td>
<td>0.9260</td>
<td>-95.85</td>
<td>8.363</td>
</tr>
<tr>
<td>15 Jan, 11am</td>
<td></td>
<td>0.0133</td>
<td>0.1319</td>
<td>0.9404</td>
<td>0.9260</td>
<td>-95.85</td>
<td>8.363</td>
</tr>
<tr>
<td>15 Jan, 12pm</td>
<td></td>
<td>-0.6500</td>
<td>0.3890</td>
<td>0.5700</td>
<td>1.6561</td>
<td>86.65</td>
<td>6.995</td>
</tr>
<tr>
<td>15 Jan, 1pm</td>
<td></td>
<td>-0.1900</td>
<td>0.2100</td>
<td>0.8270</td>
<td>1.4730</td>
<td>48.34</td>
<td>11.48</td>
</tr>
<tr>
<td>16 Jan, 8am</td>
<td></td>
<td>-0.1610</td>
<td>0.2270</td>
<td>0.6880</td>
<td>1.1351</td>
<td>-197.7</td>
<td>14.97</td>
</tr>
</tbody>
</table>

Table 3: Estimations for the log-ACD UHF-GARCH model for 9, 13, 15 and 16 January 2015 for EURCHF using the last 1,000 observations at indicated times. Both returns and durations used have been adjusted for intraday diurnality. Standard errors for log-ACD are given in brackets. Robust standard errors are used for UHF-GARCH and also given in brackets. † indicates significance at 5% or better.
Table 4: Nelson Siegel parameters estimated using nonlinear least squares. b_0, the long run factor is constrained to the daily CHF O/N rate and not estimated, except during the flash crash period. Standard errors are given in brackets. † indicates significance at 5% or better.

<table>
<thead>
<tr>
<th>Date</th>
<th>b_0</th>
<th>b_1</th>
<th>b_2</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Jan 9am</td>
<td>-.4792</td>
<td>-.3910†</td>
<td>-8.426†</td>
<td>8.623e-5†</td>
</tr>
<tr>
<td>9 Jan 10am</td>
<td>-.4792</td>
<td>-.4105†</td>
<td>-3.424†</td>
<td>.008†</td>
</tr>
<tr>
<td>9 Jan 11am</td>
<td>-.4792</td>
<td>1.117†</td>
<td>-15.09†</td>
<td>4.265e-4†</td>
</tr>
<tr>
<td>13 Jan 9am</td>
<td>-.7867</td>
<td>-.3918†</td>
<td>-3.393†</td>
<td>.008†</td>
</tr>
<tr>
<td>13 Jan 10am</td>
<td>-.7867</td>
<td>-.9648†</td>
<td>-2.604†</td>
<td>.003†</td>
</tr>
<tr>
<td>13 Jan 11am</td>
<td>-.7867</td>
<td>-1.115†</td>
<td>-5.543†</td>
<td>5.72e-5†</td>
</tr>
<tr>
<td>15 Jan 9am</td>
<td>-.7686</td>
<td>-496.3†</td>
<td>-3.599†</td>
<td>3.27e-5</td>
</tr>
<tr>
<td>15 Jan 10am</td>
<td>-.7686 (2.68e95)</td>
<td>.7686 (8.19e96)</td>
<td>.0100 (1.16e99)</td>
<td>.0100 (1.49e97)</td>
</tr>
<tr>
<td>15 Jan 11am</td>
<td>6.921 (1.39e20)</td>
<td>.8492 (2.20e16)</td>
<td>.0766 (1.78e15)</td>
<td>-.0032 (2.95e12)</td>
</tr>
<tr>
<td>15 Jan 12pm</td>
<td>-.7686 (1.11e25)</td>
<td>.7686 (1.46e26)</td>
<td>.0100 (2.30e28)</td>
<td>.0100 (2.96e26)</td>
</tr>
<tr>
<td>15 Jan 1pm</td>
<td>-.7686</td>
<td>-1.093†</td>
<td>-5.155†</td>
<td>-6.971e-5†</td>
</tr>
<tr>
<td>16 Jan 8am</td>
<td>-1.014</td>
<td>1.101†</td>
<td>-.719†</td>
<td>.0016†</td>
</tr>
</tbody>
</table>