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Optimal Timing and Tilting of Equity Factors

Abstract

Given the pervasive low yield environment investors strive to allocate capital to al-
ternative building blocks. Within equities this endeavor amounts to identifying equity
factors that are typically associated with firm characteristics and have proved meaningful
in explaining the cross-section of stock returns. A major challenge is to combine these
factors into a coherent portfolio that is capable of optimally harvesting the associated
factor premia. In this vein, we put forward an integrated framework to optimally ex-
ploit time-series and cross-sectional factor allocation signals. In particular, we consider a
parametric portfolio policy that allows for both: Timing factors according to time-series
predictors and tilting factors according to cross-sectional factor characteristics. While
the time-series predictors are insignificant, the resulting factor allocation outperforms
the equal-weighted benchmark. On the other hand, the cross-sectional evidence is strong
in a multivariate framework also leading the resulting factor allocation to outperform.

Keywords: Asset allocation, factor investing, factor timing, parametric portfolio policy
JEL Classification: G11, D81, D85



1 Introduction

The pervasive low yield environment in major developed markets severely challenges investors
who strive for positive and stable investment performance. For this purpose, the bedrock of
investment management was to diversify investments across asset classes, a concept which
is often referred to as the only “free lunch” in investing, see Ilmanen and Kizer| (2012)
among others. Yet, the concept of diversification mostly failed during the financial crisis
in 2007-08. Except for high-quality sovereign debt, virtually all asset classes suffered and
were characterized by high volatility. In turn, many investors were not as diversified as they
had thought and started to consider new sources to generate sufficient investment returns at
a reasonable level of risk.

In a related vein, the recent academic literature synthesizes that all asset classes are
subject to some common underlying factor exposures or risk premia. For instance, Ang,
Goetzmann, and Schaefer| (2009) argue that a high proportion of active fund returns can be
explained by exposure to various factors. Based on the observation that factors are hardly
correlated, [Ilmanen and Kizer (2012)) argue that the concept of diversification is not dead but
that investors simply failed to diversify across these factors historically.

While this concept of factor investing has recently attracted considerable interest, the
underlying factor theory is not new. The first approach known as the capital asset pricing
model (CAPM) of Sharpe| (1964) builds on the foundation of diversification and the mean-
variance paradigm introduced by |[Markowitz (1952)). The CAPM states that the expected
return of an asset is proportional to its sensitivity to the market, i.e. its beta. In other words,
the market premium is the sole risk premium available to investors and beta is the unique
pricing factor. Unfortunately, the simplicity of the CAPM model comes at the cost of many
assumptions and the CAPM has been challenged empirically. In that regard, a recurring
theme are patterns in the cross-section of stock returns that cannot be explained by the
exposure to the market factor and the associated market risk premium alone, see [Martellini
and Milhau| (2015)). Among the most prominent findings are the size, value, and momentum
effects which describe a persistent link of future stock returns to the corresponding stock
characteristic over a sustained time period and in several markets, see Banz (1981)), Basu
(1977)), and |Jegadeesh and Titman, (1993), respectively.

Resurrecting the CAPM, models using multiple factors were introduced starting with the
intertemporal CAPM by Merton| (1973)) and the Arbitrage Pricing Theory by |Ross| (1976)).
These approaches were followed by the three-factor model of Fama and French| (1993) that
builds on the empirical observation that size and value are complementary in explaining the
cross-section of stock returns. Building on the work of Jegadeesh and Titman (1993), Carhart
(1997)) incorporated momentum into the three-factor model as a further priced factor.

To rationalize the explanatory power of equity factors one way is to relate them to the
stochastic discount factor (SDF) denoted as m. In modern asset pricing theory the SDF

acknowledges the notion of uncertainty and time-varying expected returns when defining the



price P} of a given risky asset, see (Cochrane, (2009):
P! = Ey[myg1 zi41]s (1)

where x; is the cash flow for asset ¢ in period t. The SDF in t can be interpreted as an index
of “bad times”, i.e., times where the marginal utility of returns for investors is high: If period
t+1 turns out to be a bad state, m;yq will be high, and vice versa. For further insights we

consider the beta representation of expected returns, see Cochrane| (2009):

E(R,)— R, = (2)
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Representation shows that the required return of asset ¢ is linked to its covariation with
bad times, cov;(R: +1,Mit1): Assets that perform well in bad states are particularly valuable
for investors leading them to accept lower expected returns or risk premia. Conversely,
investors require a higher risk premium for assets that perform poorly in bad states. While a
higher sensitivity to the market increases the assets’ expected return in the CAPM, it is now
the sensitivity of the asset to the SDF (ﬁf’mt“) that is multiplied by A\"™, i.e., the SDF
risk premium. However, the SDF is unobservable and needs to be associated to observable
variables as pursued in consumption-based modelsﬂ The unobservability issue prompts to
use factor models as a proxy for the SDF. Given that K observable factors are represented
by dollar-neutral excess returns, the SDF depends on a (K x 1) vector of factor returns f, a

scalar a and a (K x 1) vector b of pricing factors (abstracting from time indices):
m=a+b'f (3)

This formulation is equivalent to the following beta representation of expected returns, see
Cochrane, (2009):

E(R) = Ry + B, A (4)

where 3; is a (K x 1) vector of multivariate regression coefficients of R; on f with a constant.
The vector of factor risk premia, A, contains the expected factor returns E(f), see Cochrane
(2009). Each of the K factors in f (deemed to be relevant in explaining the cross-section of
stock returns) make up the stochastic discount factor and each define a different set of bad
times. In equlibrium, investors have to be compensated by factor risk premia for bearing

these risks.

The present paper thoroughly investigates the idea of directly investing into factors instead

of traditional asset classes. The challenge is to optimally combine factors which is “still

! Obviously, such associations may raise new problems, e.g., aggregated macroeconomic consumption data
is characterized by low frequencies, lagged releases and revisions, see Martellini and Milhau| (2015).



unchartered territory” [Briere and Szafarz (2016)]. In the literature, most studies focus on

the timing of factors by developing factor return prediction models, often restricted to single

factors. Examples are momentum-based models, see |Clare, Sapuric, and Todorovic| (2010) or

|Chen and De Bondt| (2004), and multivariate models using economy- or stock market-related
predictors, see Copeland and Copeland (1999), Kao and Shumaker| (1999), [Levis and Liodakis|
(1999)), |Cooper, Gulen, and Vassalou (2001)), |[Lucas, van Dijk, and Kloek! (2002), and Bauer,|
Derwall, and Molenaar| (2004). Conversely, Medvedev and Vaucher| (2017) concentrate on

optimal stock selection based on factor exposures but do not consider allocating between

factors used as input for portfolio construction.

Our main contribution is to combine equity factors into a coherent portfolio that is capable
of optimally harvesting the associated factor premia. In particular, we distinguish between
factor timing that seeks to exploit time-series information and factor tilting that seeks to
exploit cross-sectional information. Both approaches are couched into the parametric portfo-
lio policy of [Brandt and Santa-Claral (2006) and Brandt, Santa-Clara, and Valkanov] (2009)),

respectively. This work therefore will contribute to the ongoing debate or ”quantroversy “

among quantitative investment managers and/or academic scholars regarding the degree to

which it is possible to time equity factors, see [Parker, Hayes, Ortega, and Naha/ (2016) for a

quite positive view and (2016) for a rather sceptical one. In a similiar vein,

Hogan, Peterson, and Ang (2017) use business cycle factors to time factors and building

on work of |Asness, Friedman, Krail, and Liew (2000) and Lewellen| (2002) when incorpo-

rating cross-sectional information to tilt factors. Jointly investigating such information in a
parametric portfolio policy sheds new insights into active factor allocation.

Our empirical analysis is driven by a broad set of some 20 global equity factors, that we
compile from a broad sample of global companies. Ultimately, we thus can build our main
analysis on two-decades of global equity factor returns ranging from 1997 to 2016. First
taking an agnostic perspective regarding expected factor returns, we start by examining
a quite diversified multi-factor portfolio based on equal factor weights. To improve this
benchmark allocation, we strive for optimal factor investing in two ways: First, we try our

hand at factor timing based on a variety of fundamental and technical indicators commonly

used for predicting the equity risk premium, see for example Campbell and Thompson (2008)

and |Neely, Rapach, Tu, and Zhou| (2014). These indicators are exploited in the parametric

portfolio policy framework of Brandt and Santa-Claral (2006)). Second, we engage in factor

tilting according to cross-sectional factor characteristics. In particular, we consider spreads,

valuation, the 1-month price momentum, see Avramov, Cheng, Schreiber, and Shemer| (2017)),

volatility, and two centrality measures: Building on the work of |Pozzi, Di Matteo, and|
(2013) and |Lohre, Papenbrock, and Poonia (2014) we use the factors’ centrality in

the corresponding factor correlation network. A related but yet distinct characteristic is

a factor’s distance to the market factor as revealed in the correlation network. These six

characteristics are then couched into the parametric portfolio policy of |Brandt, Santa-Clara,|

land Valkanov| (2009). Both, timing and tilting of factors, are based on a benchmark-relative

utility maximization of a mean-variance investor with a quadratic utility function. Given



strong signals in the data, the optimal strategy will actively deviate from the benchmark
allocation. Conversely, it will embrace the benchmark when the informational content is
weak. This framework allows to capitalize the diversification benefits embedded in the risk-
based benchmark while exploiting the opportunity of active positioning. As a consequence,
one might harvest utility gains when some factors enjoy their good times or avoid large
drawdowns when some factors suffer from bad times.

While relying on time-series information, embedded in fundamental and technical pre-
dictor variables, the model is insignificant. Although the statistical evidence is weak, the
resulting factor allocation outperforms the equal-weighted factor allocation benchmark. For
factor tilting we use information embedded in the cross-section of the factor set. In a mul-
tivariate framework the resulting tilting-coefficients show a strong statistical evidence and

slightly helps to improve performance.

2 Building global equity factors

To allow for a comprehensive and relevant analysis of factor timing and tilting we put together
a representative set of global equity factors. These global equity factors derive from a global
universe encompassing the constituents of MSCI, FTSE, S&P or STOXX global as well as
regional indices throughout time. The source for company specific data such as financial
statement data is the Worldscope database. The sample of monthly factor returns starts in
January 1997 to allow for a reasonably broad universe, even in the regional subsets. The
last month of the sample period is December 2016 giving us two decades of equity factor
returns. The overall investable universe comprises roughly 4500 stocks in December 1996
and this number increases to 5000 companies in December 2016. As for the regional split,
the universe on average includes 1700 European stocks and 1300 U.S. companies where both
figures are quite constant throughout time. In December 1996 1000 companies belong to
the Asia-Pacific region, mostly made up of Japan and Australia. The number of companies
increases to 1400 at the end of our sample period. The remainder is recruited from a Rest of
the World universe, including companies from Canada, New Zealand, Israel and Hong Kong.
To not suffer from investability concerns we focus our analysis on this global Large/Mid cap
universe, having a quite diversified universe region-wise.

As for the nature of the global equity factors build on factors which are widely used and

well documented in academic research. Specifically, the factor set includes:

e Profitability (PROF): This factor is long stocks with robust operating profitability and
short stocks with weak profitability. Profitability is calculated as annual revenues less
cost of goods sold and interest and other expenses, divided by book value for the last
fiscal year-end. The factor is based on academic research of Haugen and Baker| (1996)),
Cohen, Gompers, and Vuolteenaho| (2002)), Novy-Marx (2013) and Fama and French
(2006, [2016)

e Cashflow yield (CFY): The cashflow yield factor captures the excess return of going

long stocks with a high cashflow-to-price ratio and short those with a low one, see



Sloan| (1996), Da and Warachka, (2009) and Hou, Karolyi, and Kho (2011). Cashflows

are measured as the sum of funds from operations, extraordinary items and funds from

other operating activities.

Accruals (ACC): The accruals factor is long stocks with low accruals and short those

with high accruals, where accruals are measured as the change in working capital per

share, divided by the book value per share, see (1996).

Dividend yield (DY): The dividend yield factor is long stocks with a high dividend-
to-price ratio and short those with a low dividend-to-price ratio, see [Litzenberger and|
'Ramaswamy| (1979)), Blume, (1980), Fama and French| (1988)) and |Campbell and Shiller]
. Dividends include all extra dividends declared during the year.

Asset turnover (AT): Asset turnover measures asset utilization and efficiency. Following
(2008) companies with high asset turnover are associated with future positive
returns as those firms manage their inventory more efficiently. The factor is defined as

sales, divided by the average net operating assets.

Book to Market (BTM): The factor is constructed by going long stocks with a high
book-to-market ratio and short stocks with a small book-to-market ratio. The factor
builds on the findings of Basu| (1977)), Rosenberg, Reid, and Lanstein (1985), Jaffe,|
Keim, and Westerfield| (1989)), |Chan, Hamao, and Lakonishok| (1991) and

(1992)) that value stocks outperform growth stocks in the long-run.

12-month momentum (MOM12) and 6-month momentum (MOMG6): 12-month mo-

mentum as well as 6-month momentum capture a medium-term continuation effect in

returns by buying recent winners and selling recent losers. We control for the short-
term reversal effect (see below) by excluding the most recent month (¢ — 1) at time ¢.
Jegadeesh! (1990) and [Jegadeesh and Titman, (1993) were the first that documented the

momentum effect in the cross-section of stock returns.

Short-term reversal (STR):|Jegadeesh| (1990) and Lehmann| (1990) documented a short-

term reversal effect in the cross-section of stock returns. The factor is going long stocks

with a weak previous month performance and short stocks with a high performance in

the previous month.

Long-term reversal (LTR): De Bondt and Thaler| (1985) documented reversal patterns
in the long-term past performance. Following DeMiguel, Martin-Utrera, Nogales, and|
Uppal (2017)) we choose the horizon to be 36 months. To control for the momentum

effect we exclude the most recent year from our three year horizon of past performance.

The factors goes long in stocks with a weak long-term past performance and short in

stocks with a strong long-term past performance.

Change in long-term debt (DLTD): An increase in long-term debt could hint at empire-

building behaviour of the company which is associated with negative future returns,



see Richardson, Sloan, Soliman, and Tunal (2005). The factor builds on year-on-year

changes, divided by the long-term debt in t — 2.

Change in shares outstanding (DSO): Ritter| (1991) and Loughran and Ritter| (1995])

were the first to document that firms with a high change in shares outstanding under-

perform relative to non-issuing firms, see also |Daniel and Titman| (2006]) and [Pontiff]

and Woodgate (2008)). Change in shares outstanding is measured by the year-on-year

change in shares outstanding, divided by outstanding shares in ¢t — 2.

Size: The size factor builds on the observation that stocks with a larger market cap-
italization tend to underperform stocks with smaller market capitalizations, see
. The factor is going long stocks with the smallest market capitalization and
short stocks with the highest market capitalizations, see Fama and French| (1992).

Asset growth (AG): This factor is based on research by |Fairfield, Whisenant, and Yohn|
(2003), Richardson, Sloan, Soliman, and Tunal (2005)), Titman, Wei, and Xie| (2004)),
Fama and French| (2006) and |Cooper, Gulen, and Schill| (2008), all documenting a
| per, ) ’ g

negative relation between investment activity and returns. The factor is long stocks

with a low asset growth ratio and short stocks with a high asset growth ratio. Asset
growth is measured by the year-on-year change in total assets, divided by the total

assets in t — 2.

Cash productivity (CP):|Chandrashekar and Rao| (2009) find the productivity of cash to

be a strong and robust negative predictor of returns. Firms with high cash productivity

have low subsequent stock returns, and low cash productivity firms have high future
returns The factor is defined as market value plus long-term debt minus total assets,
divided by cash.

Profit margin (PMA): (2008) stated that firms which are able to ensure a

high profit margin are often associated with a first mover advantage or a high brand
recognition which translates into a high pricing power. Profit margin is defined as
operating income divided by sales. The factor goes long stocks with a high profit

margin and goes short firms with a lower profit margin.

FEarnings yield (EY): The earnings yield factor is long stocks with a high earnings-to-
price ratio and short those with a low earnings-to-price ratio, see (1977).

Leverage (LEV): The leverage factor of Bhandari (1988) is defined as total liabilities,
divided by the market value of the company.

Return on Assets (ROA): High return on assets indicates a successful firm described

by Balakrishnan, Bartov, and Faurel (2010). The factor is therefore long in firms with

a high return on assets ratio and short those with a low return on assets ratio.

Sales to cash (STC): The factor is based on research of (Ou and Penman| (1989) who

show a positive relationship between a high sales to cash ratio and future returns. The




factor is long stocks with a high sales to cash ratio and short those with a low sales to

cash ratio.

o Sales to inventory (STI): Sales to Inventory measures the effective use of the firms
assets. |Ou and Penman| (1989)) stated that a high sales-to-inventory ratio indicates firm

effectiveness and is associated with higher future returns.

To compute all equity factors we sort the global universe of companies according to the
factor characteristic on a monthly basis and compute the mean of the subsequent 1-month
local return of the respective quintiles. The ultimate long-short factor return results from

taking the spread between top and bottom quintiles.
[Figure [1| about here.]

The correlation chart in Figure [1| shows that we have constructed a quite heterogenous
factor set. Yet, factors looking to harvest a “value” premium do have a higher correlation.
The correlation of CFY, DY, BTM or EY ranges from 0.8 to 0.9. Also, the momentum
factors MOM12 and MOM6 do have a high positive correlation of 0.9. Size and ACC are
factors adding diversification potential to our factor set, having negative correlation to the
most other factors in the range from —0.1 to —0.4 for Size and from —0.4 to —0.8 for ACC.

[Table |1] about here.]

The best performing factors are the momentum factors, MOM12 and MOM6, with two
digit annualized returns of 12.1% and 10.2%, respectively. ACC, STR and ST have rather
modest returns with 0.3%, 1.9% and 2.5% p.a., respectively. Thus, all factors have a positive
premium in the sample period. All equity factors used throughout this study have a strong
economic rationale and are widely accepted in academic research. However, [Schwert, (2003)),
Chordia, Roll, and Subrahmanyam (2011) and McLean and Pontiff (2016) show that factors
tend to weaken after their publication. As the interest of this paper is to optimally combine
factors and not provide the most stable and robust ones we refrain from cherry picking and
include all factors in the analysis. Especially, time-variation in factor returns is calling for
actively managing factor exposures to navigate potential factor cyclicality. From a volatility
perspective the momentum factors are the most volatile, with 20.2% for MOM12 and 19.2%
for MOMG6, and ACC, AT and ST1I are the least volatile. The ensuing Sharpe Ratios range
from 0.05 for ACC' to 1.15 for PROF'.

3 Factor timing

To improve an equal-weighted benchmark factor allocation we consider factor timing by re-
lating factor returns to a variety of fundamental variables and technical indicators commonly
used for predicting the equity risk premium. The identification of good and bad times of a
given factor should help to improve the overall risk-return profile of the equal-weighted bench-
mark strategy. In particular, we operationalize the potential predictive content of predictor

variables in the parametric portfolio policy framework of Brandt and Santa-Clara; (2006]).



3.1 Predictor variables
3.1.1 Fundamental variables

We use fundamental variables to track macroeconomic conditions which could inform about
the future state of the economy and therefore about different good or bad times, see [Neely,
Rapach, Tu, and Zhou (2014)). In particular, we employ the following variables as deployed
in Welch and Goyal| (2008) and publicly available from July 1926 to December 2016 on Amit
Goyal’s web pageﬂ Dividend Price Ratio (dp), Dividend Yield (dy), Earnings Price Ratio
(ep), Dividend Payout Ratio (de), Stock Variance (svar), Book to Market Ratio (bm), Net
Equity Expansion (ntis), Treasury Bills (¢tbl), Long Term Yield (lty), Long Term Rate of
Return (Itr), Term Spread (tms), Default Yield Spread (dfy), Default Return Spread (dfr)
and Inflation (infl). See Appendix for a definition of the variables. Following Rapach,
Strauss, and Zhou| (2013) using U.S. based fundamental variables have a good predictive
ability for other developed non-U.S. countries.

To avoid spurious findings resulting from high autocorrelations it is useful to detrend
the variables, see |[Ferson, Sarkissian, and Simin| (2003)). We thus standardize any predictor
variable X at time ¢ by subtracting its arithmetic mean and dividing by its standard deviation.
For the calculation of the mean and standard deviation we use a rolling window covering the
12 months preceding (and thus excluding) ¢. Hence, the current observation of X is not
included which allows for stronger innovations:

= X
——N—

1 t—1
Xt - N 'ZN X@'
Xt = — (5)

Vs Sk (X - X)2

with N = 12. Furthermore, as few standardized fundamental variables might attain extreme

values, we truncate the variables at +5:

5 if Xptd > 5
Xt = -5 if Xt < -5 (6)

X5t otherwise

3.1.2 Technical indicators

Besides variables capturing the state of the economy, we follow Neely, Rapach, Tu, and Zhou
(2014) in using technical indicators or trading rules using past factor returns. Similar to
Hammerschmid and Lohre (2017), we include 16 technical indicators based on three sets
of trading rules related to the general concepts of momentum (MOM,,), moving averages
(M A,_;) and stochastic oscillator (K D.S,,,). These technical trading rules reasonably capture

the trend-following idea of technical analysis and are representative of typical rules analyzed

2The dataset is available on http://www.hec.unil.ch/agoyal/. For a more detailed description of the
variables please refer to |Welch and Goyal| (2008).


http://www.hec.unil.ch/agoyal/

in the literature, see for example |Brock, Lakonishok, and LeBaron| (1992) and Sullivan,
Timmermann, and White, (1999).

1. Momentum (MOM,,): The momentum indicator gives a buy signal if the price at time

t, P, is higher than the price at time (¢t — m), P,_,,, and a sell signal otherwise:

1 it P>P_
MOM,, = Bt Tiem (7)
0 if Pt S Ptfm
We compute five momentum indicators for different look-back periods using m =
1, 3, 6, 9, 12 months. The conjecture is that factor returns are trending such that

recent positive returns are followed by subsequent positive returns.

2. Moving Average (M As_;): The moving average indicator is based on the comparison

of a short-term and a long-term moving average which are calculated as:

j—1
17
MAj ==Y Py for j =s,1 (8)
J =0
where s and [ are the length of the lookback period for the short- and long-term moving
averages in months using s = 1, 2, 3and [ = 9, 12. The indicator gives a buy signal

if the short-term moving average is greater than the long-term moving average

NI { 1 if MA,, > MA, o)

0 if MA,; < MA,

providing us with six moving average indicators. The conjecture is that a crossing of
the long-term moving average from below by the short-term moving average signals an

upshift in the trend while smoothing out noise from the price data.

3. Stochastic Oscillator (KDS,,): The stochastic oscillator was introduced by George C.
Lane in the 1950s, see Murphy (1999), and tracks the speed or momentum of price
movements. It builds on the idea that momentum changes often precede price changes.
To compute the indicator, we first calculate th st which gives the position of the price
relative to the high-low price range over a specific period ranging from (¢t —m) to ¢
(denoted t —m, t). We create five stochastic oscillators based on five look-back periods
with m = 12, 24, 36, 48, 60 months.

Py — L

Kfast _
Ht—m,t - Lt—m,t

t

%100 (10)

where L;_,,; and Hy_,; are the lowest and the highest price respectively within the
last m months. Equation yields a value between 0 and 100 with a high figure
indicating that the factor trades close to its high (measured over the m-months period).

slow

The smoothed version using a 3-months moving average of constitutes K;7*°* which



is also denoted as D

D{ast _ KtSlow — MAS,t (Kifast> (11)

We further decelerate th @t o get a less choppy indicator by taking another 3-month

average
Dyl = MAg, (D) (12)

The final stochastic oscillator gives a buy signal if the shorter moving average (D{ ‘LSt)

is greater than the longer moving average (Dg!o):

1 if D{*"> Djlow

13
0 if Df*' < pglow (13)

KDS,, = {
Intuitively, the stochastic oscillator follows the speed or momentum of price changes: If
D{ LT bigger than D{!°¥_ the factor’s price increased strongly more recently (relative
to its trading range) and gained momentum compared to the realization of the longer
term average of this number. Hence, the stochastic oscillator pictures an upward trend
in the factor’s price. Conversely, if Dg 5t is smaller than Dfl"“’, the price increase slowed

down and could possibly reverse displaying a downward trend.

As we “lose” observations for technical indicators that are based on longer periods (for
instance, for K DSy4 we do not have observations in the first 23 months) we fill missing values
with indicator values from shorter periods. In the K DS example, the missing observations
for month 13 to 23 for K DS54 are filled with the values of K DS15. Still, the first 12 months
are “lost” such that all technical predictors start in January 1998.

To check for multicollinearity of predictors figure 2] gives the correlation matrix for the
fundamental variables and technical indicators that obtain for the equity factor M OM12
over the whole sample from January 1998 to December 2016E| As expected, the technical
indicators are highly correlated with correlations up to 0.9 especially within the three trading
rule sets. Only M OM; does exhibit rather small correlations to the other technical predictors
ranging from 0.2 to 0.4. Among the fundamental variables, the correlation structure is more
heterogenous. Yet, the valuation ratios dp, dy, ep, and bm appear to be highly correlated.
Moreover, ltr and tms are perfectly collinear. The most negative correlation is found for
dp and de with —0.7. As can be seen, technical and fundamental predictors are rather

uncorrelated in general, suggesting complimentary predictive content (if any).

[Figure [2| about here.]

3Note that the fundamental variables used to predict MOM12 are also used to predict other equity factors,
whereas the technical indicators are factor-specific and therefore the correlation structure does differ across
factors. Still, the general notion of highly correlated technical indicators prevails across all equity factors.

10



3.1.3 Reducing the number of predictor variables

We reduce the number of independent variables while preserving the information embedded
in them. For this purpose, we resort to principal component analysis (PCA) that is seper-
ately applied to the fundamental variables and technical indicators in the spirit of |[Neely,
Rapach, Tu, and Zhou (2014), see also |[Ludvigson and Ng (2007, 2009)) and [Hammerschmid
and Lohre (2017). The aim is to come up with a reduced number of predictive factors that
synthesize the heterogeneous information contained in the 30 predictor variables and to get
rid of the noise within the predictors. Also, the PCA gives orthogonal predictors such that
multicollinearity problems are avoided. In our main analysis we use the ﬁrstE] principal com-
ponent for fundamental variables (denoted as FUNT1) and the first principal component for
technical indicator (denoted as TECH1). Both capture a significant proportion of variation

in the underlying variables and indicators (27% and 86%, respectively).

3.2 Optimal factor timing

We ultimately want to examine whether a risk averse investor may profit from timing equity
factors with respect to fundamental variables and technical indicators. To this end, we use
the parametric portfolio policy (PPP) of Brandt and Santa-Clara| (2006) that ties predictive
variables and investor utility in a portfolio-theoretic framework. Their approach translates
the predictive power embedded in the above PCA factors into optimal portfolio weights. To
do so, one augments the set of 21 equity factors by synthetic assets that invest into the equity
factors in proportion to the conditioning variables. In our case the conditioning variables are
the PCA factors. Optimal portfolio weights then derive from a classic Markowitz mean-

variance optimization over this augmented space of equity factors.

3.2.1 Methodology of Brandt and Santa-Clara (2006))

Brandt and Santa-Claral (2006]) consider the maximization problem of a mean-variance in-
vestor who is risk averse according to her risk aversion parameter v and is thus solving:
/ 7 / /

n%}z:XE W] — §wtrt+17“t+1wt (14)
where ryy1 is the vector of future excess return of the N equity factors and w; denotes the
vector of equity factor portfolio weights. The use of excess returns implies that the remainder
is invested into the risk-free asset with return 7 if the PPP is not fully invested. The crucial
ingredient of Brandt and Santa-Claral (2006)) is to assume the optimal portfolio strategy w;
to be linear in the vector z; of the K conditioning variables (of which the first element is

simply a constant):

Wt = Gzt (15)

4As a robustness check we have also analyzed the use of 3 PCAs (jointly capturing 56% of variation)
which gives rise to similar conclusions. Moreover, a smaller number of predictors allows to have a longer
out-of-sample backtesting window.
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and 6 is an N x K matrix of parameters. Plugging the linear portfolio policy from represen-
tation in Equation , the problem becomes

max By [(9Zt)'7“t+1 - %(ta)/ﬁﬂriﬂ(%t) (16)
Using some linear algebraﬂ to rearrange the following term

(020)'rev1 = 210" re11 = vee(0) (2 @ 1e41) (17)
—_—— ———

=W =Tt41

one can write Equation (16 as
max Ej [w’ml . gw’mlf; Hw} (18)
w

As the same w maximizes the conditional expected utility at all ¢, it also maximizes the

unconditional expected utility, hence optimization problem ((18)) is equivalent to
~f Yot oo~
max E (0’741 — S WTt1Ty W (19)
w

Thus, the original dynamic optimization problem can be restated as a static Markowitz
optimization applied to an augmented set of assets that does not only include the basis assets
(i.e., the equity factors) but also “managed” portfolios. Each of these managed portfolios
invests in a single basis asset according to the realization of one of the conditioning variables.
To illustrate the augmented asset space, consider a simple two-factor example using Book-
to-Market (BT'M) and 12-month momentum (M OM12) with just one conditioning variable:

BT M MOM12 BT M MOM12
ftl ftl o ftl * 2t ftl © * 2t
BTM MOM12 BTM MOM12
- ftg ftz ftg * ztl ftz * ztl
Fr=| . . . . (20)
BTM MOM12 BTM MOM12
ftT ftT ftT * Ztp_q ftT * Ztp_q

Instead of directly solving for portfolio weights as in the classical Markowitz problem, one
optimizes over the 6 parameters that govern the linear portfolio policy. Having obtained
an optimal parameter for each managed portfolio, one can simply multiply these with the
current realizations of the conditioning variables to arrive at the optimal weight w. That
is, by adding up the corresponding weight components that are related to a specific factor,
we can infer the optimal weights for any single factor. In the above example, one thus adds

for fMOMI2 and fFMOMIZ o » to obtain the total momentum factor

up the optimal weights
weight.
The conditioning variables used for the equity factors are the first fundamental PCA

factor and the first technical PCA factor. Note that any given equity factor can be joined

5Note that vec is a linear transformation which converts the matrix into a column vector and ® denotes
the Kronecker product of two matrices.
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with a factor-specific set of conditioning variables, i.e., one could focus on selecting factor-
conditioning variables that are deemed meaningful. Yet, we refrain from pursuing such a
cherry picking exercise, but rather aim for including the maximal amount of information as
represented by the 2 PCA factors. We compute the first optimal portfolio weights over a 66
months window which is expanded going through time such that we obtain the first portfolio
for June 200@ As for the risk aversion parameter 7y governing the quadratic utility function,
we choose a quite conservative value of 10 implying a relatively high risk aversion, see |[Ang
(2014). The parameters in 6 pertaining to the original basis equity factor are constrained such
that they equal the weight of the equal-weighted benchmark portfolio. Hence, we perform
benchmark-relative portfolio allocation where deviations from the equal-weighted benchmark
only result from changes in the conditioning Variablesﬂ (i.e., in the above example for t = 1:

BTM MOM12
i * 24, and fi]

* 2¢,). To avoid extreme allocations, we allow a predictor to change
the factor weight by twice its benchmark weight at most. In addition, we rescale the timing
portfolio weights such that they obey a maximum ex-ante annualized tracking error of 2.5%.
In particular, this rescaling ensures that we do not unnecessarily force the strategy into more
extreme allocations when the signals from the PCA factors are deemed weak. In the latter
case the strategy will naturally resort to the equal-weighted benchmark. The (annualized)

ex-ante tracking error at time t (T'E}) is calculated as

TE; = /12 (ws — wp) 2 (ws — wy) (21)

where w; is the weights vector of the strategy and wy is the weights vector of the benchmark
such that the difference gives the active weights of the factor timing strategy. ¥ denotes the
covariance matrix based on the factor returns that are available upon estimation.

As the PPP expresses the portfolio problem in an estimation context, it is possible to
compute standard errors for the 6 coefficients and to evaluate the significance of a given
predictor. According to [Brandt and Santa-Clara/ (2006)), we calculate standard errors from
the covariance matrix of w which is calculated as

1 1

;T_NxK(LT R (- F) () (22)

where ¢ denotes a T' x 1 vector of ones.

3.2.2 Empirical results

Table [2| gives the estimates of the #-coefficients and their significance. Significance is assessed
in terms of the corresponding confidence bands calculated as 0, + 1.96 x SE; with i ranging

from 1 to 21 x 2 = 42. Note that all the #-coefficients representing the factor timing strategy

5 Additionally, we need another 12 months to calibrate the technical indicators.

"The approach of [Brandt and Santa-Claral (2006)) is designed to also allow the policy to fully deinvest if
deemed necessary: When equity factors are expected to disappoint, the PPP resorts to a risk-free investment
instead. Imposing a full-investment constraint might thus prevent the strategy from fully exploiting the
information content embedded in the PCA factors. In unreported tests we observe that relaxing the full
investment constraint hardly leads the PPP to deinvest.
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are insignificant at the 5% level. Nevertheless, simply looking at the signs, a positive coef-
ficient for TECH1 would indicate that factor buy signals lead to even higher weightings in

the factor allocation.
[Table 2| about here.]

While the statistical evidence of the f-coefficients is weak, following the approach of
Leitch and Tanner (1991), we wonder whether the economic performance is likewise weak.
In a first step we inspect the ensuing factor allocations over time. In particular, Figure
depicts the transfer of 6-coefficients into the optimal portfolio weights using the examples of
Book-to-Market (BT'M) and 12-month momentum (MOM12). Specifically, we decompose
the optimal weights by contributions of each conditioning variable. While TECH1 favors
MOMT12 in nearly every period throughout our sample - except for a few months in 2009,
FUN1 has a more cyclical contribution to the weights decomposition. Especially during the
crisis of 2007 to 2009, in 2012 to 2013 and in 2016 it is reducing the weight on MOM12. As
a result, one normally overweights the factor, except for the above mentioned periods. For
the BT M factor the picture is different. We underweight and even short this factor most of
the time, driven by TECH1 as well as FUN1 predictors.

Considering the remaining factors the average weight of PROF, CFY, AT, MOM12,
CP, EY and ROA is increased compared to the benchmark case. The strongest increase
obtains for PROF with 2.5% per month on average. For the remaining factors, the PCA
factors lead to a decrease in the weight. This decrease is most pronounced for DY with —2.5
percentage points and ST R with —2.2 percentage points. The general overweight in PROF
and MOM12 as well as the underweight in ACC' should help active performance while an
underweight in MOMG6 and an overweight in C'P should be detracting active performance.
As a result, the biggest average weight over the time period is assigned to PROF (7.3%),
MOM12 (6.9%), and CFY (6.7%), while MOM®6 (3.4%), DY (2.3%), and STR (2.3%)
account for the factors with the lowest weight. Thus, the factor allocation ensuing from the
PPP is quite active and might be rewarded performance-wise, despite the insignificance of

the #-coeflicients.
[Figure [3| about here.]

In fact, the factor timing strategy is outperforming the equal-weighted benchmark by
1.23% p.a. Given an ex-post tracking error of 1.12% this results in an information ratio of
1.10, see Table [3| The absolute performance is 4.60% excess return at 2.89% volatility p.a.
which responds to a sharpe ratio of 1.59 and compares to a equal-weighted factor allocation
benchmark sharpe ratio of 1.21. Yet, the maximum drawdown of the factor timing strategy
is slightly more severe (-6.11% vs. -5.31%).

[Table [3| about here.]
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4 Factor tilting

A potentially complementary way of optimal equity factor investing could exploit differences
in cross-sectional factor characteristics. For this purpose, we couch suitable characteristics
into the cross-sectional parametric portfolio policy developed by [Brandt, Santa-Clara, and
Valkanov| (2009). We employ six cross-sectional factor characteristics that can be computed
from the factors’ return time series: valuation, spread, price momentum, volatility, and the

factors’ position in the factor correlation network.

4.1 Cross-sectional factor characteristics
4.1.1 Valuation (VAL)

The underlying rationale of any value strategy is to invest in relatively cheap assets while
avoiding (or shorting) securities that are relatively expensive. Translating this idea to equity
factors one could consider overweighting factors which are cheap and underweighting those
that are expensive. To operationalize this rationale we focus on valuation levels. Following the
idea of Basul (1977), value, as measured by fundamental factor metrics (such as price-to-book
or price-to-earnings), is a good predictor of future stock returns. Translating this rationale
to the factor level one can determine the relative cheapness of a given factor by comparing
the average valuation of the factor’s top quintile to the one of the bottom quintile. The
academic literature provides several explanations for the value premium ranging from risk
considerations to behavioural arguments (cf. Fama and French| (1993} |1995)) and Lakonishok,
Shleifer, and Vishny| (1994))). Therefore, one would expect a positive prognostic ability of
future performance on a factor level as well (cf. Arnott, Beck, Kalesnik, and West| (2016))).
Still, we have to keep in mind, that any factor will trade on its own norm. Value factors will
be cheap by definition compared to growth factors. Using Book-to-Market ratios as a proxy
for valuation in our research, we especially have to address if there is any additional benefit
to using a valuation indicator for factor timing when there is already a value factor in the

overall factor allocation model.

4.1.2 Spread

A factor spread measures the distance in its defining characteristic from top quintile to
bottom quintile. Thus, stocks are sorted in descending order according to the factor-defining
characteristic. If the mean difference between top and bottom quintile is large, the factor
is relatively cheap in terms of the factor-defining characteristic as one can easily distinguish
between attractive and unattractive stocks. |Asness (1997) showed that realized performance
over the short term is heavily driven by the dispersion of returns. Consequently, it is difficult
to show superior skill if returns act homogeneously. Following this rationale, we use factor

spreads to proxy for their potential future return dispersion: If the factor spread is wide the
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factor’s return opportunity is expected to be largest (cf. Huang, Liu, Ma, and Osiol (2010)).

As we have a diverse set of factors included in our factor set, we standardize their spreadsﬁ

4.1.3 1-month price momentum (PM)

We use 1-month price momentum (PM), to capture short-term factor momentum. Avramov,
Cheng, Schreiber, and Shemer| (2017) document a naive active factor momentum strategy
applied to a set of 15 equity factors to consistently outperform a 1/N benchmark. The
momentum measure for equity factor ¢ at time ¢, PM;;, is simply calculated as the return of

the respective equity factor in the previous month, r; ;1.

4.1.4 Volatility (VOL)

As early as in the 1970s low volatility stocks have been documented to outperform high
volatility stocks, see Jensen, Black, and Scholes| (1972) and |Haugen and Baker| (1991)). In this
vein, we test whether there is also a volatility effect amongst equity factors. We calculate
VOL;; from the variance-covariance matrix of equity factors using observations up to ¢t which
are weighted according to an exponentially weighted moving average (EWMA). We use an
initial window of 36 months. Hence, the first factor volatilities are available as of December
1999.

4.1.5 Factor position in correlation networks

We consider two factor centrality measures that build on the work of Mantegna, (1999)), [Pozzi,
Di Matteo, and Aste (2013) and Lohre, Papenbrock, and Poonia (2014)). In a similar vein to
Montagu, Krause, Jalan, Murray, Chew, and Yusuf (2016), we investigate the centrality of
an equity factor in the factor correlation network as given by the factor’s node betweenness.
This reasoning is in line with empirical findings of |Pozzi, Di Matteo, and Aste| (2013]) who
show that portfolios of peripheral U.S. stocks provide a superior risk-adjusted performance
compared to central stocks. In a similar vein, Lohre, Papenbrock, and Poonial (2014) use
the node betweenness in a parametric portfolio policy of |Brandt, Santa-Clara, and Valkanov
(2009) and demonstrate a notable outperformance of peripheral against central equity sectors.
A related and yet distinct characteristic is the factor’s distance to the market portfolio as
revealed in the correlation network.

Appendix details the computation of a correlation network as given by a minimum-
spanning tree. To foster intuition, Figure [4] displays the MST that obtains using equity factor
data from January 1997 to December 2016 together with the market (S&P 500) with equal

weight on all observations.
[Figure [4] about here.]

Note that many factors are generally quite different from the market as the S&P 500 is

found at the periphery. This observation is expected as the long-short construction of factors

8We use an expanding window to standardize the spread according to the factors own history.
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should remove most of the market risk. The factors, among others, PROF, LT R, LEV and
BTM turn out to be rather peripheral to the correlation network similar to S&P 500 and
Size, while MOMG6 and DY are central.

4.1.5.1 Node betweenness (NB)

Specifically, we compute the betweenness centrality which is indicative of a factor’s centrality
in the network. The node betweenness of factor 7 is equal to the number of shortest lines
from all nodes to all others that pass through that node. Based on the minimum spanning
tree (M ST) in Figure[d, Accruals has a node betweenness of 19, as all shortest paths from 19
factors to the S&P 500 cross ACC. Only the one for Size does not pass ACC'. In contrast,
the node betweenness for some factors, including PROF', EY, STR, AT and S&P 500, is
zero, as there are no shortest paths from one factor to another passing through these. Note
that we rely on a correlation network consisting of the 21 equity factors alone (excluding the
market factor) when calculating the factors’ note betweenness. Tilting towards peripheral
factors can be interpreted as an additional layer of risk control that implicitly provides a

higher degree of diversification.

4.1.5.2 Distance-to-market (DTM)

As a novel contribution to the literature we also include a characteristic that measures an
equity factor’s distance to the market. The conjecture is that factors more distant from the
market outperform those closest to the market. Specifically, tilting towards factors most
different from the general market allows for putting emphasis on those factors that appear
most genuine relative to the market return. The distance-to-market (DTM) characteristic
is calculated as the length from the shortest paths from each factor to the S&P 500 in the
MST. For the total period and an equally weighted covariance matrix, Figure [4] shows that
ACC and Size have the shortest DTM on average whereas for example AG has the longest.

4.2 Methodology of Brandt, Santa-Clara, and Valkanov, (2009)

We couch the above characteristics into the parametric portfolio policy of |Brandt, Santa-
Clara, and Valkanov| (2009) which allows for utility-driven portfolio optimization to ex-
ploit cross-sectional characteristics. While an application of the mean-variance approach
of [Markowitz (1952) would require to estimate first and second moments of all assets, the
authors propose a more parsimonious optimization problem that leads to a tremendous re-
duction in dimensionality. In particular, they suggest to parameterize the weight of an asset
as a function of its characteristics. The associated coefficients are estimated by maximiz-
ing investor utility. Specifically, the authors consider an investor seeking to maximize her
conditional expected utility of her portfolio return 7y, ;41:

Ny
u <Z wi,t'r'i,t-i-l) ] (23)
i=1

max  Ep [u(rp41)] = By
{wi,t}i:t1
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where w; ¢ denotes the portfolio weight for asset ¢ and N; the number of assets at time ¢.
Brandt, Santa-Clara, and Valkanov| (2009) propose to model the portfolio weight as a linear

function of its characteristics x; :
1 /.
wig = f(Tie; ) = Wig + ﬁqﬁ Tit (24)
t

where w;; denotes the benchmark weights, ¢ is the vector of coefficients to be estimated
through utility maximization and #;; are standardized factor characteristics. Parameteriza-
tion implicitly assumes that the characteristics fully capture the joint distribution of asset
returns that are relevant for portfolio optimization. The characteristics are cross-sectionally

standardized at time t across all factors

=T

/—/‘—\

Tit — ~7 g Lit
\/N 122 1$1t—1’

As a consequence, the cross-sectional distribution of the standardized characteristics is sta-

(25)

tionary through time and the cross-sectional mean for each standardized characteristic is zero
such that deviations from the benchmark are equivalent to a zero-investment portfolio. The
weights of the resulting portfolio thus always add up to 100 %. The optimization problem
is further simplified by noting that the coefficients that maximize the conditional expected
utility of the investor at a specific time t are constant through time and across assets such

that the optimization problem can be written in terms of the ¢-coefficients:

<Z f(@ig; @) t+1>] (26)

To estimate the ¢-coefficients we rely on the corresponding sample moments:

1 T 1 T-1 Ny
s St = 1 3 (3
t=0 t=0 =1

As the PPP expresses the portfolio problem as a statistical estimation problem, it is pos-

macx B u(ry41)]

1,
Wit + ]thbll‘i,t) Ti,t+1> (27)

sible to obtain standard errors for the ¢ coefficients and to evaluate whether a characteristic
is a significant determinant of the portfolio policy. The optimization problem in Equation
satisfies the first order conditions, see Brandt, Santa-Clara, and Valkanov| (2009)):

1 T-1 1 T-1 1
T ; h(T’t+1, .fCt, E T tz U ’I“p t+1 (N xtrt_,_l) =0 (28)

where u/(1p++1) denotes the first derivative of the utility function and #; the transpose of the

factor characteristics vector. Thus, the optimization problem can be interpreted as a method
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of moments estimator and the asymptotic covariance matrix estimator AVar[qAS] is given by,
see [Hansen| (1982):

~ 1
Yy = AVar(¢] = f[G’v—lc:]—l (29)
where
T-1 /
1 (Sh 7’t+1,.73t, ( 1 ) ( 1 ~! )
G=— g E " (rpi+1) e | | =24 (30)
= Mo

and V' is a consistent estimator of the covariance matrix of h(r, x; ¢).

4.3 Empirical results

Table [4] gives estimation results and performance statistics for six univariate parametric port-
folio policies. Across the univariate models, the only significant coefficients obtain for PM,
while the coefficients for VOL, NB, DT M, VAL, and Spread are insignificant. We observe
a significant positive sign for PM suggesting a short-term price momentum effect among
equity factors. Hence, factors with positive price momentum are overweighted relative to the
benchmark while factors with negative price momentum are underweighted. The annualized
return of the parametric portfolio policy using PM is 0.62 percentage points higher than
the one for the equal-weighted benchmark, the volatility increases by 0.31 percentage points.
This results in an information ratio of 0.88. While VOL, NB and V AL display negative
information ratios, DT'M and Spread have a positive one (0.30 and 0.06, respectively).

[Table [4| about here.]
[Figure |5 about here.]

Instead of relying on PM only, we include six characteristics in a multivariate parametric
portfolio policy as the interactions of characteristics in a multivariate setting might alter the
evidence. Panel C in Table [4] gives the estimation results for the parametric portfolio policy
based on six characteristics. the estimation coefficients for VAL and N B are insignificant
and detract from performance. Focussing on factors whose estimation coefficients are signifi-
cant in a multivariate framework and which economically foster performance, we reduce our
characteristic set to four factors. Panel D in Table |4 and Figure [5| show the ¢-estimates and
the corresponding confidence bands calculated as le 4+ 1.96 x SE;. Similar to the univariate
case we find PM still having a significant ¢-coefficient. Using a multivariate approach result
in significant coefficients for DT M, Spread and VOL in the sample period. Spread and
VOL have a negative ¢-estimator meaning that the model favors less volatile factors with
wide spreads. On the other hand, DT M shows a positive ¢-coefficient indicating that the

model favors factors which are more distant to the market.

[Figure [6] about here.]
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Figure [f] illustrates the ensuing optimal linear portfolio weight over time using the two
factors Book-to-Market (BT'M) and 12-month momentum (MOM12). As for BT'M, there
is an overweight relative to the equal-weighted benchmark due to Spread and DT M. As this
changed in the course of the financial crisis in 2009 the PPP shys away from BT M to the
extent that this factor is underweighted. The two other characteristics hardly influence the
BTM factor. As the factor is a middle-ground factor according to its volatility, the VOL
characteristic does not significantly add or detract weight from the equal-weighted benchmark
anchor. The evidence is different for the MOM12 factor. The overall weight is much more
volatile going through time. MOM 12 does have the highest volatility in the factor set, thus
the PPP reduced its weight due to the negative ¢-coefficients for VOL. DTM and VOL
lead to an underweight until the beginning of 2009. Afterwards DT M and Spread lead to
an overweight due to the changing ¢-coefficients for DT M over time.

In Table [3| we present the resulting strategy performance. The factor tilting approach
delivers an excess return of 0.51 percentage points p.a. over the benchmark, whereas the
volatility is increased by 0.32 percentage points. As a result, the SR (1.25) is comparable to
the the equal-weighted benchmark (1.21). The return distribution is also more extreme, as
the minimum and maximum returns attain higher absolute values. However, the maximum
drawdown is slightly reduced from —5.3% to —4.6%, indicating that the strategy helps to
navigate some of the bad times. The strategy’s IR is 0.61.

We infer that the chosen characteristics are useful to tilt equity factors. By couching the
cross-sectional characteristics into the parametric portfolio policy of Brandt, Santa-Clara,
and Valkanov| (2009) we are able to construct a portfolio which slightly increase on a risk-
return basis compared to an equal-weighted benchmark and is able to limit the maximum

drawdown.

5 Conclusion

To summarize, this paper contributes to the ongoing debate of whether it is possible to time
factors. In contrast to most existing studies, we use a multi-factor approach. Moreover, taking
a portfolio-theoretic factor allocation view that considers time-series as well as cross-sectional
based predictors also adds to the academic literature. In this context, we contrast our per-
formance against an equal-weighted factor allocation benchmark. Using a well documented
yet diversified factor set, we couch time-series and cross-sectional signals into the parametric
portfolio policy by Brandt and Santa-Claral (2006) and [Brandt, Santa-Clara, and Valkanov
(2009)) to improve the equal-weighted benchmark. For factor timing using time-series in-
formation we rely on fundamental and technical indicators as predictors. To avoid cherry
picking and overcome multicollinearity problems we use the first PCA of both datasets. We
reduce the number of variables to synthesize information embedded in all predictor variables
and also reduce their noise. Although the factor timing coefficients are insignificant we are

able to improve our benchmark results.
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For factor tilting we rely on six different characteristics embedded in the cross-section of
the factor set: valuation, spread, momentum, volatility and two factors based on the corre-
lation network (note betweenness and distance-to-market). Couching this in the parametric
portfolio policy on an univariate basis only momentum coefficients were significant. In a mul-
tivariate model only node betweenness and valuation stay insignificant. Therefore, we focus
on a model including the remaining four significant characteristics to exploit their information
in a factor tilting framework. Using this cross-sectional information the tilting-coefficients
help to slightly improve the risk-return profile of the resulting factor allocation relative to the
equal-weighted factor allocation benchmark and are able to limit the maximum drawdown

remarkably.
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Appendices

Definition of fundamental predictors

Dividend Price Ratio (dp): Difference between the log of 12-month moving sums of
dividends paid on the S&P 500 index and the log of S& P 500 index prices.

Dividend Yield (dy): Difference between the log of 12-month moving sums of dividends
paid on the S& P 500 index and the log of 1-month lagged S& P 500 index prices.

FEarnings Price Ratio (ep): Difference between 12-month moving sums of earnings on
the S&P 500 index and log of S& P 500 index prices.

Dividend Payout Ratio (de): Difference between 12-month moving sums of dividends
on the S& P 500 index and log of 12-month moving sums of earnings on the S&P 500.

Stock Variance (svar): Realized variance calculated as the monthly sum of squared
daily returns on the S&P 500.

Book to Market Ratio (bm): Ratio of book value to market value for the Dow Jones

Industrial Average.

Net Equity Ezpansion (ntis): Ratio of 12-month moving sums of net issues by NYSE
listed stocks divided by the total market capitalization of NYSE stocks.

Treasury Bills (tbl): Interest rate on a 3-month treasury bill traded on the secondary

market.
Long Term Yield (lty): Yield on long-term government bonds.
Long Term Rate of Return (ltr): Return on long-term government bonds.

Term Spread (tms): Difference between the long-term yield on government bonds and
the T-bill rate.

Default Yield Spread (dfy): Difference between BAA- and AAA-rated corporate bond
yields.

Default Return Spread (dfr). Difference between the return on long-term corporate

bonds and returns on the long-term government bonds.

Inflation (infl): Consumer Price Index (all urban consumers).
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A.2 Network Theory

Network theory deals with the representation of relations between elements in graphs. In
a graph, the elements are represented by nodes which are connected by lines. A subgraph
of a connected graph is the minimum spanning tree (MST) where the term tree refers to a
graph in which any two nodes are connected by exactly one line and a spanning tree connects
all nodes of the graph. The MST is the tree in which the sum of the length of all lines is
minimized within the subclass of spanning trees without cycles.

In our case, the elements are equity factors and their relations are described in terms of
correlations. As is common in the literature, we define the distance of factors by transforming

the correlations as follows:
Dj;=1/2(1=pL)) (31)

This transformation ensures that all distances are positive and it yields a matrix with
values in the range of [0,2], in which smaller distances between factors represent higher cor-
relations, and vice versa. We can then construct the MST by using Prim’s (1957) algorithm:
We start to initialize the MST with an arbitrarily chosen single factor A. Then, we examine
all nodes that are not yet included in the graph and attach the node with the shortest dis-
tance to A (as measured by D; ;) to the graph. The algorithm of Prim then progressively
adds further nodes which have not already been linked. This is done by repeatedly adding
those which have the shortest distance to one of the nodes in the tree until all nodes are in-
cluded. Identical to the computation of VOL, we weight the return observations to estimate

the variance-covariance matrix using a decay parameter of A = 0.97.
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Table 1: Stylized facts of equity factors. The table shows stylized facts of the employed
equity factors. Annualized excess returns are calculated using the arithmetic average of simple
returns. The standard deviation and Sharpe ratio are annualized by multiplication with v/12.
Min and Max denotes the lowest and highest monthly excess return in the sample period.
MaxDD describes the maximum drawdown the factor realized. Return, Volatility, Min, Max
and MaxDD are in percentage terms. The time period is from 01/1997 to 12/2016.

Return Volatility Min Max MaxDD Sharpe Ratio t-stat
PROF 7.70 6.66 -7.93 9.91 15.80 1.15 5.17
CFY 9.69 12.61 -14.00 17.14 46.01 0.76 3.43
ACC 0.29 5.70 -8.80 6.43 30.85 0.05 0.23
DY 5.63 14.08 -14.82 19.25 47.13 0.39 1.79
AT 4.55 5.25 -3.66 4.62 12.51 0.86 3.87
BTM 3.58 11.66 -14.26 16.95 46.36 0.30 1.37
MOM12 12.05 20.21 -33.12 22.45 56.04 0.59 2.67
MOMG6 10.24 19.16 -30.25 27.83 43.93 0.53 2.39
STR 1.94 14.56 -16.26 15.87 37.14 0.13 0.60
LTR 3.20 12.72 -11.08 16.08 38.41 0.25 1.13
DLTD 4.96 7.22 -7.34 11.71 17.23 0.68 3.07
DSO 7.28 9.02 -8.61 12.55 20.83 0.80 3.61
Size 2.97 13.56 -11.45 12.84 45.27 0.21 0.98
AG 5.96 10.04 -10.51 15.71 25.09 0.59 2.66
CcP 4.09 8.19 -7.30 12.18 22.82 0.50 2.24
PMA 3.99 8.63 -8.55 9.22 29.81 0.46 2.07
EY 8.33 11.35 -9.28 14.84 35.38 0.73 3.28
LEV 3.75 13.75 -18.49 18.20 51.84 0.27 1.22
ROA 5.07 7.12 -6.87 5.49 20.52 0.71 3.19
STC 5.28 11.84 -15.07 15.15 51.29 0.44 1.99
STI 2.48 5.68 -4.20 7.64 23.92 0.43 1.95
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Table 2: Factor timing. The table shows the 6 coefficients for the fundamental and
technical PCA factors that obtain in the parametric portfolio policy for factor timing. The
coefficients are marked by * if significant at the 5 %-level. The sample period is from 06/2003
to 12/2016.

FUN1 S.E. TECH1 S.E.
PROF 0.10 0.28 0.21 0.52
CFY -0.10 0.39 0.03 0.38
ACC 0.10 0.41 0.13 0.62
DY -0.10 0.27 -0.05 0.30
AT 0.10 0.49 0.08 0.45
BTM -0.04 0.46 -0.03 0.50
MOM12 -0.10 0.18 0.20 0.15
MOMG6 -0.08 0.18 -0.03 0.19
STR 0.02 0.08 -0.18 0.17
LTR -0.02 0.21 0.00 0.20
DLTD 0.10 0.66 0.04 0.76
DSO 0.10 0.43 0.07 0.54
Size 0.01 0.16 0.00 0.17
AG 0.10 0.61 0.02 0.59
CcP 0.07 0.48 0.02 0.62
PMA 0.10 0.45 -0.04 0.43
EY -0.10 0.51 0.20 0.43
LEV -0.10 0.35 0.01 0.30
ROA 0.05 0.64 0.13 0.44
STC 0.05 0.40 -0.09 0.44
STI 0.10 0.31 0.14 0.49
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Table 3: Performance statistics: Factor timing and factor tilting. Excess return,
standard deviation, minimum, maximum, maximum drawdown, and (ex-post) tracking er-
ror are in percentage points. Annualized excess returns are calculated using the arithmetic
average of simple returns. The standard deviation and Sharpe ratio are annualized by mul-
tiplication with v/12. The OOS period spans from 06,/2003 to 12/2016.

Statistic Benchmark  Factor Timing Factor Tilting
1/N PpPplime ppptit
Excess return 3.37 4.60 3.88
Standard deviation 2.79 2.89 3.11
Minimum -2.78 -2.07 -3.43
Maximum 3.34 3.50 3.50
Maximum drawdown -5.31 -6.11 -4.66
Sharpe ratio 1.21 1.59 1.25
Tracking error 1.12 0.83
Information ratio 1.10 0.61
t-statistic 4.46 5.87 4.60
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Table 4: Factor tilting-coefficients. The table gives estimation results and performance
statistics of parametric portfolio policies for factor tilting based on cross-sectional charac-
teristics. As for the estimation of the parametric portfolio policy, the first column reports
the ¢-coefficients, and the second column reports the associated standard errors (S.E.). The
sample period is from 11/2002 to 12/2016. Panel B gives PPPs based on single character-
istics, Panel C gives the PPP based on six characteristics, Panel D gives the PPP based on
four characteristics. Panel A gives the benchmark model.

Characteristic ) S.E. Return Vola Sharpe Tracking Information
p.a. p.a. ratio error ratio

Panel A: Benchmark model

l/N 3.37 2.79 1.21 - -

Panel B: Univariate model

PM 0.754* 0.261 3.99 3.10 1.29 0.71 0.88

VOL -0.304 0.566 3.11 2.72 1.14 0.55 -0.48

NB -0.209 1.215 3.04 2.63 1.15 0.78 -0.43

DTM 0.542  0.457 3.60 3.01 1.20 0.75 0.30

Val -0.012  0.465 3.15 2.95 1.07 0.55 -0.40

Spread -0.608 0.814 3.41 3.03 1.13 0.70 0.06

Panel C: Multivariate model

PM 1.164* 0.256 3.69 3.15 1.17 0.84 0.38

VOL -1.403* 0.496

NB 1.857  1.045

DTM 0.958* 0.403

VAL -0.536  0.356

Spread -1.214*  0.624

Panel D: Multivariate model

PM 0.946* 0.226 3.88 3.11 1.25 0.83 0.61

VOL -0.854* 0.429

DTM 0.822* 0.414

Spread -1.217%  0.638
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Figure 1: Equity factor correlation matrix. The figure gives the correlation matrix for
the equity factors included in the factor set for the time period 01/1997 to 12/2016.
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Figure 2: Correlation matrix of timing predictors. The figure shows the correlation
matrix of the standardized fundamental variables and technical indicators for the 12-month
momentum (MOM12) factor. The correlation structure of fundamental variables is in the
top left corner, the one of technical indicators in the bottom right corner. The time period
is from 01/1997 to 12/2016
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Figure 3: Decomposition of optimal factor timing weights. The figures decompose
the factor timing weight for two factors (BT'M at the top and MOM12 at the bottom) into
the contributions of the conditioning variables. BM depicts the benchmark weight. The

black line shows the total weight of a respective factor. The time period is from 06,/2003 to
12/2006.
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Figure 4: Minimum spanning tree. The figure visualizes the correlation network in
terms of a minimum spanning tree of equity factors plus the market. The plot builds on the
equal-weighted variance-covariance matrix using monthly data from 01/1997 to 12/2016.
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Figure 5: Multivariate ¢-coefficients over time. The figure depicts ¢-coefficients for the
cross-sectional characteristics used in the parametric portfolio policy for factor tilting. The
solid line depicts the coefficients while the dashed lines give the corresponding 95% confidence
interval.
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Figure 6: Decomposition of optimal factor tilting weights. The figure decomposes
the weight in the parametric portfolio policy for factor tilting for a specific factor into the
contributions of the characteristics. The solid line gives the overall weight. The upper chart
is for BT'M and the lower chart for MOM12. The time period is from 06/2003 to 12/2006.
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Figure 7: Univariate ¢-coefficients over time. The figure shows ¢-coefficients for the
cross-sectional characteristics used in the parametric portfolio policy for factor tilting. The
solid line depicts the coefficients while the dashed lines give the corresponding 95% confidence
interval.
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