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Abstract
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location portfolio. We find that these more sophisticated models do dominate more naive
approaches in modelling the tail of the portfolio return distribution. As a result, dynamic
portfolio insurance strategies building on these models work effectively in protecting investors
from downside risk. Given that the mechanics of the portfolio insurance strategy automati-
cally reduce investment exposure when approaching a protection level, the weakness of a less

sophisticated risk forecast can be alleviated by this second line of defense.
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I. Introduction

Investors’ objectives are generally expressed as a combination of risk and return targets. Defining
the return target is usually relatively simple — but the definition of risk targets is less straight-
forward. One conventional approach is to consider volatility. For many investors, however, maxi-
mum drawdown is a more relevant statistic, as it points to the maximum loss of portfolio value. To
limit the maximum drawdown investors typically follow broadly diversified investment strategies
that include a tactical asset allocation component designed to avoid losses as often as possible.
However, without perfect foresight investors might fail in navigating any given market drawdown.
Thus, to effectively limit maximum drawdown, a given investment strategy often include some
form of portfolio insurance. Portfolio insurance strategies primarily aim to improve the down-
side risk profile of an investment strategy without jeopardizing its long-term return potential.
Of these, the constant proportion portfolio insurance (CPPI) strategy (Perold, 1986; Black and
Jones, 1987, |1988; [Perold and Sharpe, 1988) is probably the most popular method among prac-
titioners. It is based on a dynamic portfolio allocation between a risky and a risk-free asset,
aiming to guarantee a minimum capital level at the end of the investment period. Key element
to determine the investment exposure of the risky asset is the so-called multiplier. It represents
the inverse of the maximum sudden loss of the risky asset so that a given risk capital (i.e., the
spread between portfolio value and protection level) is not fully consumed and the portfolio value

does not fall below the protection levelEl

The academic literature provides various methods to determine the multiplier in a static
unconditional way (e.g. |[Bertrand and Prigent, 2002; [Balder, Brandl, and Mahayni, 2009; |Cont
and Tankov, [2009), but they all reduce the risk dimension of the strategy to the risky asset
exposure (see Black and Perold, 1992). Hence, these traditional unconditional methods do not
fully account for the risk of the underlying asset that is known to change with market conditions.
In other words, the risky asset’s risk is considered constant during the whole investment period.
Given the empirical characteristics of financial assets concerning risk (see for instance Longin and
Solnik|, [1995; |Andersen, Bollerslev, Christoffersen, and Diebold, |2006), the academic literature

proposes to model the multiplier as time-varying and conditional.

We contribute to the existing literature on time-varying conditional multipliers by investigating
which risk model is most suitable in timely managing the investment exposure of a dynamic

portfolio insurance strategy.

Following Bertrand and Prigent| (2002) who determine their unconditional multiplier according
to quantile conditions |Ameur and Prigent| (2006, |2014) introduce the conditional time-varying
multiplier depending on the market evolution. Specifically, they employ GARCH-type models
including an EGARCH(1,1)-model and compare it to a constant multiplier specification. In this

vein, further methods have been developed to determine the conditional multiplier. While Hamidi,

'For a comprehensive literature review on portfolio insurance and CPPI multipliers see for instance [Benninga
(1990)); Black and Perold| (1992)); Basak| (2002); |Dichtl and Drobetz| (2011); [Hamidi, Maillet, and Prigent| (2014).



lJurczenko, and Maillet| (2009) and Hamidi, Maillet, and Prigent| (2008) define the multiplier as a
function of a dynamic autoregressive quantile model of the Value-at-Risk according to

Manganelli| (2004), |Chen, Chang, Hou, and Lin| (2008)) propose a multiplier framework based on

genetic programming. Closely related to our paper, Hamidi, Maillet, and Prigent| (2014) employ

a dynamic autoregressive expectile (DARE) model to estimate the conditional multiplier. In this
framework, the multiplier is modeled as a function of the Expected Shortfall determined by a
combination of quantile functions in order to reduce the potential model error. Specifically, they
combine the historical simulation approach, three methods based on distributional assumptions,
and four methods based on expectiles and conditional autoregressive specifications (CAViaR) into
the DARE approach. All these papers evidence that the dynamic proportion portfolio insurance
(DPPI) strategy with a multiplier based on a time-varying conditional risk estimate is more
profitable than the traditional CPPI strategy.

We are particularly interested in comparing different ways to compute the conditional time-

varying multiplier — by assessing various models to estimate portfolio risk. While the academic

literature suggests a myriad of risk models — [Andersen, Bollerslev, Christoffersen, and Diebold|
(2006)) and [Kuester, Mittnik, and Paolellal (2006) provide good summaries on risk modelling —

practitioners still only use a limited number of them. There may be various reasons for this

discrepancy such as complexity, (computational) efficiency, or that the additional benefit of im-
plementing a highly sophisticated model could be minor. We therefore examine both simple
methods that are common among practitioners such as the historical simulation approach and
more sophisticated methods based on quantile regressions or Copula-GARCH models to estimate

portfolio risk.

In particular, we perform an empirical study using a global multi-asset data set consisting
of stock, bond, commodity, and currency indices. When using international daily return data
one faces the problem of different market closing times. Ignoring this fact will lead to distorted
portfolio risk estimates given that the degree of co-movement is considerably underestimated (see
[Scholes and Williams|, [1977; [Lo and MacKinlayl [1990; [Burns, Engle, and Mezrichl, [1998; [Audrino|
land Bithlmann, [2004; Scherer, |2013)). Hence, we first synchronize daily returns by extrapolating

asset prices of closed markets, based on information from markets that close later. Following

ldrino and Bithlmann| (2004)) we thus employ a synchronization approach based on a VAR(1) model.

Second, we estimate portfolio risk using the following models: historical simulation, RiskMetrics,
Cornish-Fisher approximation, quantile regression, extreme value theory and Copula-GARCH. To
quantify risk, we resort to the classic downside risk measure, the Value-at-Risk. Third, we employ
the ensuing risk forecasts for the application of dynamic portfolio insurance strategies. We focus
on the DPPI strategy but also investigate a dynamic variant of the time invariant portfolio pro-
tection (TIPP) strategy (Estep and Kritzman, [1988)) and the synthetic put strategy

land Leland, |1981) for comparison purposes. Our findings indicate a superiority of sophisticated

risk forecasts over simple approaches in terms of historical accuracy and statistical fit. Using the
most prominent Value-at-Risk tests (Kupiec, 1995} |Christoffersen, 1998} |Christoffersen and Pel-|
2004)), we find that the quantile regression and the Copula-GARCH approach are the most

suitable methods. When implementing the portfolio insurance framework, we find evidence that




dynamic portfolio insurance strategies building on these sophisticated risk models are capable to
protect investors from downside risk. However, more naive approaches are also able to provide
downside protection. Given that the mechanics of the portfolio insurance strategy automatically
reduce investment exposure when approaching the protection level, the less sophisticated methods

seem to particularly profit from this second line of defense.

The remainder of the paper is structured as follows: Section [I1] discusses the most prominent
dynamic portfolio insurance strategies. Section[[TI]briefly presents the different models to estimate
portfolio risk. In Section we perform the empirical study using a global multi-asset data set to
compare the performance of dynamic portfolio insurances strategies with conditional multipliers

based on different risk models. Section [V] concludes.

I1. Portfolio Insurance Techniques

We consider an highly risk-averse investor who primarily aims to limit the downside risk of an
investment during period h. Typical choices are annual or semi-annual investment horizons.
Further, let ¢t = 1,2, ...,T be the time index of portfolio rebalancing during investment period h.
It is common in the literature to rebalance on a daily basis implying that T = 252. At ¢ = 0 the
investor determines the minimum value, the so-called floor F}, that should be preserved at t =T

in order to hedge his investment W7, ;.

Figure [I] illustrates the timing of investment decisions. The floor is chosen at the inception of

each investment period.

Investment Period h=1 Investment Period h=2 Investment Period h=3

Time

Figure 1. Graphical illustration of the timing of investment decisions in the porfolio insurance

framework.

The academic literature suggests various investment strategies that incorporate loss protection.
We will focus on the most prominent dynamic portfolio insurance strategies, which are briefly

discussed in the followingE]

A. Constant and Dynamic Proportion Portfolio Insurance

The basic idea of the constant proportion portfolio insurance (CPPI) strategy (see Perold, |1986}
Black and Jones, (1987, 1988 Perold and Sharpe, [1988) is a portfolio that dynamically shifts be-

tween the risk-free and the risky investment according to a discrete trading rule. Each investment

2For a more detailed analysis see [Benninga| (1990) or [Dichtl and Drobetz| (2011), among others.



period the investor determines the minimum portfolio value, the so-called floor, that should be
preserved at the end of the period. The corresponding risk capital, called the cushion, obtains as
the difference of wealth, W;, and discounted floor, i.e. the net present value, NPV(+), of the floor
Fy,:

Cy = W, — NPV,(Fp). (1)

The cushion represents a certain amount of the portfolio value that allows to absorb potential
market shocks before the manager can rebalance the portfolio. In order to avoid a breach of the
discounted ﬂ001E| the investment exposure of the risky investment, defined as FE;, should be set

such that the cushion is at least as high as the maximum sudden loss of the investment, i.e.
Cy > Wy MaxLoss(Wy), (2)

where MaxLoss(-) gives the maximum sudden loss of the investment in percentage terms. As the

portfolio consists of two assets, a risky and a risk-free asset, we can write:
Cy > e,W; MaxLoss(risky investment), (3)

where e; describes the exposure to the risky investment in percentage terms. Rearranging

then yields the (total) exposure of the risky investmen‘ﬂ as

Ci
E; < =m-C 4
" = MaxLoss(risky investment) et )

where the multiplier

1
= 5]
" MaxLoss(risky investment) 5)

allows for a neat interpretation: it indicates how often a given cushion can be invested in the risky
asset without breaching the floor. Thus, it reflects the investor’s risk tolerance. The higher the
multiplier, the more the investor will participate in upward market movements of the underlying.
But, the higher the multiplier, the faster the portfolio will reach the floor when there is a sustained
decrease in the underlying’s price. In order to allow for the highest possible participation in the
underling risky investment, it is common to set E; such that equality holds in . The remainder

of the investor’s wealth is invested in the risk-free asset.

The classic CPPI strategy is based on a static unconditional multiplier — often reflecting

a constant worst-case scenario. Although such a conservative stance would have meaningfully

3The risk of losing more than the cushion between two rebalancing dates and thus failing to ensure the protection
at the end of the investment period is known as overnight or gap risk.

4We follow Benninga, (1990)) and [Dicht] and Drobetz| (2011) and restrict the participation ratio to vary between
0% and 100% of the risky investment in order to rule out short positions. This approach leads to a slightly different
exposure definition: E; = max[min(mC, W), 0].



addressed catastrophic drawdowns during crisis periods, it would also have capped upside potential
over the long term. Dynamic proportion portfolio insurance (DPPI) may be a more suitable choice.
Instead of using a static multiplier, the risk budget adapts dynamically to changes in a dynamic
risk forecast such as the Value-at-Risk. Hence, the investment exposure is adjusted by introducing

a time component t:

Cy
E; < = - Cy. 6
b= MaxLoss; (risky investment) et ()
The dynamic multiplier is then defined as
1
my = (7)

~ MaxLoss (risky investment)

In this way, the portfolio’s exposure to the risky investment reacts to changes in the risk forecast
— ensuring that it does not remain artificially low as a result of a constant conservative risk
assumption. For this to work in practice, the risk model must be capable of quickly homing in on

volatility spikes, and just as quickly readjusting to a normalization of market volatility.

The advantage of the CPPI and DPPI strategy, respectively, is the simple practical implemen-
tation that does not call for forecasting the returns of the risky investment. Major drawbacks are
the strategies’ path dependencies as well as the lock-in effect. Essential to the strategy’s resulting
return profile is the course of the risky investment during the investment period. Depending on
the path the CPPI/DPPI strategy can deliver considerably different results. In general, the more
volatile the risky investment the lower is the average participation ratio. While the CPPI strategy
is fully exposed to the problem of path dependency, the DPPI strategy can mitigate this problem
at least to some extent due to its capability to quickly react to market changes. The lock-in
effect occurs when the cushion is entirely consumed by losses. The CPPI/DPPI strategy is then
fully invested in the risk-free asset until the end of the investment period and no participation in

subsequent upward movements is possible.

B. Time Invariant Portfolio Protection

The time invariant portfolio protection (TIPP) strategy suggested by [Estep and Kritzman| (1988])
is a modification of the CPPI strategy: Instead of using a fixed floor the TIPP strategy ratchets
up the floor if the value of the portfolio increases. The main argument of the authors is that
investors do not only care about a protection of their initial wealth but also about any interim
capital gain. However, Choie and Sefl (1989) argue that the continuous adjustments of the floor
to the highest portfolio value increase the likelihood of breaching the prevailing floor. Therefore,
the TIPP strategy will generally participate less in upward movements than the classic CPPI
strategy. In our analysis we do not use the classic TIPP strategy but also resort to a dynamic

variant based on a dynamic risk forecast — the dynamic TIPP (dTIPP).



C. Synthetic Put Portfolio Insurance

An obvious way to protect a risky portfolio against losses is the purchase of a European put
option. The so-called protective put strategy ensures that the portfolio value will not breach the
targeted floor at expiry. However, such a strategy can be expensive, since the option premium is
payable each investment period, although the portfolio insurance could prove unnecessary in the
majority of periods. Moreover, it may be difficult to find option contracts that fit the needs of the
portfolio — particularly when it comes to complex investment vehicles like a multi-asset portfolio
(Figlewski, Chidambaran, and Kaplan, 1993)). Yet, both of these problems can be addressed by

synthetically replicating the necessary European put option.

Using the Black and Scholes| (1973)) option pricing formula the synthetic put portfolio insurance
strategy (Rubinstein and Leland, [1981) creates a continuously adjusted synthetic European put
option on the risky investment. Combining the purchase of a risky asset with the purchase of
a put option on this asset is equivalent to buying a continuously-adjusted portfolio, which is a
combination of the risky and the risk-free asset. Pricing the put option with the Black and Scholes
(1973)) option pricing formula, the value of a portfolio that consists of a stock S plus a put P can

be calculated as:

Si+ P, =Sy — SyN(—dis) + Kpe " TN (—dyy)
= SN(d1y) + Kne " TIN (—dyy), (8)

where K}, denotes the strike price determined at the beginning of each investment period and ry
the risk-free rate. Moreover, N(-) is the standard normal cumulative distribution function with
dy and do defined as:
In (S;/K 0.507) (T —t
iy — n (Sy/Kn) + (re +0.507) ( )7 d2,t:d1,t_0t\/m7 (9)

’ Ot T—t

where oy is the standard deviation of risky asset returns. The investment exposure of the repli-
cating portfolio is then calculated using the deltaE] of the portfolio in :

wrisky _ StN(st)

10
t SN(dlyt) + Khe_”t(T_t)N(—dQ,t) ’ ( )

i.e., an investor needs to increase the proportion of the risky asset in the portfolio if the price of
the risky asset increases, and vice versa. In order to maintain the targeted floor, the strike price

K}, must be set such that the following relationship holds:

F
Ky = 3 (St + Pio(K)) (1)
h

5The delta measures the sensitivity of the synthetic put option to changes in the underlying. In this context,
it defines how much of the risky asset must be purchased in order to replicate the portfolio consisting of the risky
asset and the put option.



where the ratio (F}, /W) is the percentage floor of investment period h. As the value of the put op-
tion P;,(K},) depends on the strike price itself, the solution of must be determined iteratively.

Two drawbacks lead to the limited use of this strategy in practice. First, a synthetic put strat-
egy is based on the assumptions of the Black and Scholes (1973)) option pricing model. Among
other assumptions, the model suggests that stock returns are normally distributed following a ge-
ometric Brownian motion. Second, the synthetic put strategy entails the disadvantage of frequent

portfolio reallocation resulting in high transaction costs.

The most crucial issue in the synthetic put portfolio insurance strategy is, however, to esti-
mate the volatility of the asset whose value needs to be securedﬁ Accordingly, the quality of
the protection strongly depends on the precision of this estimate (Zhu and Kaveel 1988} Bird,
Cunningham, Dennis, and Tippett), 1990; Rendleman Jr and O’Brien, 1990). In this context, we
investigate appropriate risk models generating volatility forecasts that are suitable in the synthetic

put portfolio insurance strategy.

III. Estimating Portfolio Risk

When estimating portfolio risk for the use in dynamic portfolio insurance strategies we first need
to define how to measure risk. As we are particularly interested in the left tail of the distribution,
we resort to the classic downside risk measure, the Value-at-Risk (VaR). Conditional on the
information given up to time ¢, the VaR for ¢ 4+ 1 is the negative p-quantile of the conditional

return distribution, that is,
VaR}, | = —Qp(r1|F) = —igf{m €ER: P(ryy1 <z|F) > p}, (12)

where Q,(-) denotes the quantile function, r; reflects the portfolio return in period ¢, and F;

represents the information available at date t.

Having defined the risk measure, the obvious question is which risk model is the most suitable
in timely managing the investment exposure of a dynamic portfolio insurance strategy. Given
the vast amount of available models, we focus on a few, yet distinct approaches, ranging from
rather simple to quite advanced approaches. In particular, we examine a non-parametric historical
simulation method, a semi-parametric RiskMetrics approach, a fully parametric Cornish-Fisher

approximation approach, and a more sophisticated quantile regression approach, an extreme value

SWe follow [Dicht] and Drobetz| (2011) and incorporate the so-called transaction costs effect when estimating
volatility (see Leland] |1985). The latter author suggests the use of a modified volatility estimator:

2 k
Ot = Ot +14/ =

T oAt

where k captures the round-trip transaction costs, and At denotes the length of the rebalancing interval.




theory approach and a Copula-GARCH approach. We briefly summarize these methods in the
following[[]

A. Historical Simulation

The simplest way to estimate the Value-at-Risk is to employ the sample quantile estimate based
on historical pseudo portfolio returns constructed using historical asset prices but todays’ portfolio

weights. Known as historical simulation (HS), the VaR estimate for ¢ + 1 can be computed as
—~p A
V&RtJrl = —Qp(rt,rt_l,...,rt_n+1), (13)

where Qp(-) is the empirical p-quantile and n the number of observations. For example, with a
moving window of length 1000 observations, the 99% VaR estimate is simply the negative of the

10t" sample order statistic.

The main advantage of the HS approach is its computational simplicity and non-parametric
dimension, i.e. the VaR does not rely on any distributional assumptions. In contrast, the most
pertinent disadvantageﬁ is its incapability to properly incorporate conditionality (see |Andersen,
Bollerslev, Christoffersen, and Diebold}, 2006)). This deficiency of the conventional HS approach is
forcefully highlighted by clustering in time of the corresponding VaR violations, reflecting a failure
to properly account for persistent changes in market volatility. The only source of dynamics in the
HS-VaR is the evolving window used to construct historical pseudo portfolio returns. Though, the
choice of the window size is crucial: too few observations will lead to sampling error, whereas too
many observations will slow down estimates when reacting to changes in the true distribution of
financial returns. Moreover, VaR estimates can exhibit jumps when large negative returns either

enter or exit the estimation window.

B. RiskMetrics Approach

Given the shortcomings of the HS-VaR approach, a simple alternative can be found in the Risk-
Metrics (RM) approach. While the HS-VaR methodology makes no explicit assumptions about
the distributional model generating the returns, the RM model implicitly assumes a very tight
parametric specification by incorporating conditionality via exponential smoothing of squared
portfolio returns. More precisely, in the RM model, the portfolio returns are assumed to follow a

normal distribution r;11|F; ~ N (0,07, ), where the conditional variance o7, ; is defined as

otp1 = (1= A)rf + Aot (14)

"For a rigorous discussion of the analyzed risk models, see [Kuester, Mittnik, and Paolellal (2006), |Andersen,
Bollerslev, Christoffersen, and Diebold| (2006) or |Andersen, Bollerslev, Christoffersen, and Diebold| (2013).

8For a rigorous discussion of several serious issues of the HS approach see [Pritsker| (2006]).



which corresponds to an Integrated GARCH(1,1) model with a +f = 1 and w = 0. X is a
smoothing parameterﬂ Using repeated substitution (and an initial 52) the variance can also be

formulated as an exponentially weighted moving average of past squared returns:

J

The VaR is then simply obtained as

VaRy,, = —6:19; 7, (16)

where @ 1is the p-th quantile of the standard normal distribution.

The RM model is appealing because no parameters need to be estimated — which is due to the
implicit assumption of zero mean returns, a fixed smoothing parameter, and conditional normality.
However, as the normality assumption is not consistent with the behaviour of financial returns,
the RM model tends to underestimate the Value-at-Risk. As the variance scales with the return
horizon the RM model can be thought of as a random walk model in the conditional variance.
The historical record of volatility across numerous asset classes, however, suggests that volatilities
are unlikely to follow random walks, and hence that the flat forecast function associated with
exponential smoothing is inappropriate for modeling volatility. In particular, the lack of mean-
reversion in the RM variance calculations implies that the term structure of volatility is always
flat, which violates both intuition and empirical evidence (see Andersen, Bollerslev, Christoffersen,
and Diebold, 2013)).

C. Cornish-Fisher Approximation

Another simple approach is the Cornish-Fisher approximation (Cornish and Fisher}|1938) method
that consists of a Taylor-series type expansion of the VaR around the VaR of a normal distribution.
In detail, the Cornish-Fisher VaR is an extension of the normal quantile function by accounting

for skewness v and kurtosis § leading to

VaRy,, = —pier1 — ot Fop(p), (17)

where
Fab) = o5 + (1052 — 1) 2+ (jor 1 — 30;0) =2 (o1 — 5et) L 18
crp) =@, ([0, 1) o+ ([0,1° —30,) T 0 - (200, 59,1 oo (18)

The main advantage of the Cornish-Fisher approximation is the ability to account for fat tails.
However, an issue is that the CFA-VaR is not necessarily monotone, i.e. the 99% VaR might be
smaller than the 95% VaR.

9In practice, A is typically fixed at a preset value of 0.94 for daily returns.
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D. Quantile Regression

The determination of the Value-at-Risk naturally lends itself to the concept of quantile regression.
The basic idea is to directly model the conditional quantile, rather than the whole distribution of
portfolio returns. More precisely, the conditional p-quantile, Q,(r¢|X;) = —VaRy, is modeled as a

function of the information X; € F;_1:
VaRf =—09p (Xﬁﬂp) ) (19)

where ¢g(-,-) and the parameter vector f explicitly depend on p. Following Koenker and Bassett

(1978), the conditional sample p-quantile can be found as the solution to

min {p Z |re + VaRY| + (1 — p) Z |rt+VaRf|}, (20)

k
ﬂp R Tt z\laRf re< *V&Rf

where we determine VaRY by the CAViaR specification of Engle and Manganelli (2004). In
particular, we adopt their asymmetric slope CAViaR modem that is given by

VaRf = [y + 61VaRf_1 + Bomax [Tt—17 0] + B3max [—Tt_l, O] . (21)

The attractiveness of the quantile regression approach is that no explicit distributional assumption
for the time series behavior of returns is needed, thus reducing the risk of model misspecification.
The main drawback of the CAViaR modeling strategy is similar to the CFA method. It might

generate out-of-order quantiles. Also, estimation of model parameters is challenging.

E. Extreme Value Theory

As we are primarily interested in the tails of the distributions a natural way is to resort to extreme
value theory (EVT) which allows for meaningfully estimating the tails based on extrapolating from
available observations. McNeil and Frey| (2000) propose a semi-parametric framework based on
extreme value theory to describe the tail of the conditional distribution. In a first step, the authors
employ pseudo-maximum-likelihood fitting of AR(1)-GARCH(1,1) models to estimate conditional
volatility forecasts 6+y1 and conditional mean forecasts fiz+1. In a second step, they resort to
EVT for estimating the tail of the innovation distribution of the AR(1)-GARCH(1,1) model.
In particular, they use the peak-over-threshold method where a Generalized Pareto distribution

(GPD) is fitted to losses over a specified threshold. The quantile 2, can then be estimated as
Lo

(—2) - 1] , (22)
Ny /N

OFor the sake of simplicity, we focus on one CAViaR model. Particularly, we choose the asymmetric slope
specification because of its ability to accommodate the leverage effect.

A

. g

Zp=u+ =
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where 3 and é are the GPD estimates and n,, is the number of observations above threshold .

Consequently, the VaR forecast can be computed as
=P . SN
VaR, ) = —fi11 — 61412 (23)

The ARMA-GARCH fitting in the first step allows to capture certain stylized facts such as
time-varying volatility, fat tails, and volatility clustering. Then, EVT is particularly suitable to
estimate the tails of the distribution. The crucial assumption of EVT is, however, that we are
in the tails of the distribution. Hence, the difficulty is the determination of the threshold. If
the threshold is too low, then the approximation can hardly be justified and the associated risk
estimates may be biased. Vice versa, if the threshold is too high, there are too few observations

over the threshold resulting in highly volatile estimates.

F. The Copula-GARCH Approach

To reasonably capture both the risk dynamics of the univariate return series and the whole
dependence structure between the portfolios’ assets Jondeau and Rockinger| (2006) and [Patton
(2006)) propose a Copula-GARCH approach. This framework is based on the concept of inference

from margins, i.e. dependencies between the marginal distributions are captured by a copula.

In a first step, univariate GARCH(1,1)-models are fitted to the underlying return series.

Assuming a return process (1) e N,t ez the mean and variance equations are given by

Tit = fhi + Eit (24)
Eit = Zit\/UTQt (25)
zit ~ D;(0,1,&, 1) (26)
0% = wi + aigh_y + Bios_y, (27)

where w; > 0,a; > 0 and B; > 0, ¢ = 1,...,n. Moreover, r; are the returns of the i-th portfolio
asset and D; reflects the skewed standardized-t distribution with skewness parameter £; and shape

parameter v;.

In a second step, we use a time-varying copula to estimate the marginal distributions of the
asset returns together with the dependence structure. In particular, the joint distribution of the

n GARCH return processes can be expressed depending on an n-dimensional copula C'

Fy (velpe, 00) = Cp (Fre(rielpeae, o1t)s -oor Fre(ne| fnt, one) | Fe—1) (28)

where Fi(-),..., Fj,(-) are the conditional marginal distributions of the return processes. The
dependence structure of the margins is assumed to follow a Student-t copula with conditional
correlation R; and constant shape parameter 1. We resort to the Student-t copula for modelling

the dependence of financial assets since the normal copula cannot account for tail dependence.
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The conditional density of the Student-t copula at time ¢ is given by:

ft (Fgl(uz-t!n), ooy Fi H(une[0) | Ras 77)

1 £ (B (b))

Ct (u’ih"‘aunt’RtJn) = ’ (29)

where w;; = Fy(rit|pie, 04t, &y v5) is the probability integral transformation of each series by its
conditional distribution Fj; estimated via the first stage GARCH process, Fi;l(uitm) represents
the quantile transformation of the uniform margins subject to the common shape parameter of
the multivariate density, f;(-|R¢,7n) is the multivariate density of the Student-t distribution with
conditional correlation R; and shape parameter n and f;(-|n) is the univariate margins of the
multivariate Student-t distribution with common shape parameter n. Furthermore, we allow the
parameters of the conditional copula to vary through time in a manner analogous to a GARCH
model for conditional variance (e.g. Patton, [2006). Specifically, we assume the dynamics of Ry to
follow an Asymmetric Generalized Dynamic Conditional Correlation (AGDCC) model according
to (Cappiello, Engle, and Sheppard| (2006).

The Copula-GARCH model has several advantages over more simplistic approaches. The
GARCH models with skewed standardized-t distribution applied in the first stage allow to capture
the main empirical characteristics of financial asset returns. Moreover, as correlation coefficients
can capture the dependency between random variables correctly only for elliptical distributions
and asset returns hardly follow elliptic distributions, dependencies between the portfolios’ assets
cannot be measured correctly in most cases. Using the concept of copulas enables us to sepa-
rate the marginal distributions and the dependence structure so that dependencies between the
portfolios’ assets can be incorporated in the VaR estimation. Given the associated computational

effort and complexity, however, most practitioners rather resort to more simple methods.

IV. Empirical Analysis

A. Global Asset Allocation Data

In the empirical analysis we use a global multi-asset data set consisting of the stock market
indices Nikkei 225, Furo Stoxx 50, FTSE 100, S&P 500, MSCI EM, the government bonds
JGB 10Y, FEuro Bund, UK Gilt, U.S. 10Y, the commodity indices Oil, Gold, Copper, and the
foreign exchange rates JPY/USD, EUR/USD, GBP/USD. The money market investment is based
on the 3-month U.S. Treasury Bill. We retrieve all data from BloombergE-] The sample spans
from January 2nd, 1991 to March 31st, 2017, giving rise to 6,847 daily return observations for

each series.

When calculating portfolio returns, we assume a given static strategic allocation of portfolio

11 particular, we use future series of the described indices. All asset returns are in local currency. Portfolio
returns and values are computed from the perspective of an U.S. investor who is hedging any currency exposure.
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weights (see Table . Alternatively, one could consider a dynamic weight structure driven by a
tactical asset allocation component. However, one could no longer determine whether an increase
in performance is due to superior risk forecasts or due to predictability of the tactical component.
Thus, to clearly identify the impact of different risk models we build on a static strategic allocation.
Moreover, from a practitioner’s perspective it is also reasonable to choose such a static allocation
since, in practice, it is common to have a strategic allocation (long-term focus) and a tactical
component (medium-term focus) in the first and second place. If these two components fail to
navigate drawdowns, portfolio insurance is the ultima ratio to avoid breaching the floor (daily

focus).

[Table [I| about here]

Table [[ reports descriptive statistics of the portfolio returns and the risk-free returns based on the
3-month U.S. treasury biHE We see that the multi-asset portfolio is conservative with a mean
return of 4.6% and a volatility of 7.5%.

For estimating the risk models we split the sample in two periods: we use a rolling window
of 1,000 daily returns for dynamically estimating the parameters in-sample and an out-of-sample
period from 3/11/1994 to 31/3/2017 consisting of 5,846 daily returns for out-of-sample testing

the various risk models.

B. Synchronizing Returns

When modelling risk using international daily return data one has to properly account for the
fact that markets have different closing timeSE Even worse, for some markets trading times do
not overlap at all, as is the case for the U.S. and Japan. Obviously, these differences will render
equity markets to appear less (cor)related than they actually are. As a result, portfolio risk
estimates will overstate the diversification benefit attached to investing across these assets (see
Scholes and Williams, [1977; |Lo and MacKinlay, 1990; Burns, Engle, and Mezrich, [1998]). Ideally,
daily returns can be computed for all series using the same time stamp. This approach, however,
is hardly feasible, even when using high-frequency data. Instead, the academic literature suggests
to synchronize daily returns by extrapolating asset prices for those markets that close earlier,
based on information from markets that close latest. While Burns, Engle, and Mezrich (1998)
use a first-order vector moving average model with a multivariate GARCH covariance matrix to
estimate synchronized returns, Audrino and Bithlmann| (2004) employ a simple first-order vector
autoregressive model. We follow the latter approach due to its computational efficiency and

performance advantages.

12866 Table[V|for descriptive statistics of the individual components of the multi-asset portfolio and the allocation
of portfolio weights.

13The opening times of the markets in our sample are as follows: Japanese markets are open from 19:00(-1) to
1:00 ET, EU/UK markets from 3:00 to 11:30 ET, and U.S. markets open from 09:30 to 16:15 ET.
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Let S, ; denote the continous time price of asset j (j =1,..., M), where time t; is the closing
time of market j measured in local time of the base market, i.e. the market where to synchronize

to. The corresponding synchronized price S7; is then defined as
log (S;) = E [log (Sy) |Fi] = E [log (Si,15) 1F] . t;<t<t;+1(teN),  (30)

where t = t; and F; is the complete information of all recorded prices up to time t. The logarithms
are used to be consistent with continuously compounded returns. Clearly, if the closing price S
is observed at time ¢ € N, then its conditional expectation given F; is the observed price. This is
the case for the assets from the base market. If the market closes before ¢, then its past prices and
all the other markets may be useful in predicting S at time ¢t. As a simplifying approximation,
the authors therefore assume that, given the information F;, the best predicted log-prices at ¢
and at the nearest succeeding closing time ¢; + 1 remain the same, saying that future changes up

to t; + 1 are unpredictable.

Then, we denote 7, as the vector of log-returns in different markets using the multi index
t = (t1,t2,- - ,ty) and define the synchronized returns r§ as the change in the logarithms of the

synchronized prices:

ry = : Ty = : . (31)

In order to estimate the relationship between the individual asset markets, the authors employ a

simple ,auxiliary“ VAR(1) model:
re=A-ri1 + &, (32)

where the innovations &, are i.i.d.~ N(0, ), independent from {rs;s < ¢t} and A is the matrix of

VAR coefficients. We can then derive the synchronized returns as follows
r; =log(8}) —log (S},
= E [log (S¢41) | 7] — E [log (S¢) | F1—1]

= E [log (St41) —log (S¢) [F] — E [log (S¢) — log (St—1) [Fr—1] + log (S?;)

=K [rt+1‘ft] —E [7"t|]:t71] + Tt
=Ary — Ary_ 1+ 1y
=71+ A(T’t - Tt71)~ (33)

That is, any synchronized return r; is still anchored in the actual realized return r; plus an
anticipated innovation according to the estimated VAR-relation as captured in matrix A. The

,missing* dynamics of markets closing early in the day are thus proxied according to the short-
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term relationship with respect to those markets closing later that day.

Sorting markets according to their closing times allows to readily formulate a restriction matrix
for the VAR model such that markets are explained only by those markets with a later closing
time. Given that U.S. markets are the last to close in our sample, we anchor our synchronization of
daily returns in U.S. markets. Thus, the U.S. time series remain unchanged but are still included
in the VAR-model to serve as explanatory markets, i.e. the final set of synchronized daily returns
does not build on forecasted time series for the U.S. but uses their original daily returns. Non-U.S.
data is, however, forecasted to the closing time of the US market by the VAR(1) (see Table

for median t-statistics of the obtaining coefficients).

Based on our sample, we compare the synchronized daily returns to the original ones. Table
shows the descriptive statistics of the original and synchronized daily returns. Looking at the
mean, we observe that differences are only marginal. Volatilities, however, are slightly higher
when synchronizing. Thus, the return characteristics of the original data are maintained, which

can be confirmed by analyzing the plots in Figure [0

[Table [Tl about here]

To check the effectiveness of synchronization Figure 2| shows the correlation matrices of both return
types. For the synchronized daily returns, the chosen VAR(1) model is successfully re-correlating
the within-asset class correlations. While equity correlations are no longer underestimated, equity-
bond correlations tend to be more negative when using synchronized returns. Hence, the improved
equity-bond diversification could mitigate the equity risk pick-up. However, we learn that the
latter effect dominates and unreported results evidence an increase of portfolio risk figures that
average to 15% for the conservative multi-asset portfolio. These findings are in line with Scholes
and Williams| (1977) and |Lo and MacKinlay| (1990).

[Figure [2| about here]

C. Validity of Risk Forecasts

In order to test the validity of the risk forecasts based on the estimated models we resort to
various Value-at-Risk tests (see Kuester, Mittnik, and Paolella, 2006; Christoffersen, 2012). In
principle, backtesting VaR, forecasts boils down to evaluating the distribution of VaR violations.
That is, counting the number of realized returns that fall below the predicted VaR-level for a given
estimation period. Hence, for example, in a set of 252 forecasts of daily 99%-VaRs per year, there
should be 2.52 violations in theory. The most prominent VaR test, the test for unconditional
coverage of [Kupiec| (1995), assesses whether the frequency of violations is consistent with the
quantile of loss a VaR measure is intended to reflect. However, this test does not account for
serial independence of the number of violations. |Christoffersen| (1998)) offers a remedy by jointly
testing the frequency as well as the independence of violations, assuming that VaR violations are

modeled with a first order Markov chain. Thus, this test for conditional coverage is able to reject
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a VaR model that generates too many clustered violations. An alternative way to account for
clustering of extremes is the duration test of |Christoffersen and Pelletier| (2004), which examines
the duration between violations by testing the null hypothesis that the duration between violations

is exponentially distributed against a Weibull alternative.

Figure [3| presents the forecasted VaR figures of the Historical Simulation approach (HS),
RiskMetrics (RM), Cornish-Fisher approximation (CFA), Quantile Regression (QR), Extreme
Value Theory (EVT) and Copula-GARCH (CG) model over a rolling estimation window of 1,000
days leading to 5,846 out-of-sample forecasts. Panel (a) shows the HS-VaR forecast. As expected,
the majority of realized returns were higher than the forecasted VaR. In the sample period from
November 1994 to March 2017, there are only 60 violations (red dots) — which is very close to the
number of expected violations (=1% of 5,846). An analysis of VaR violations throughout time,
however, calls into doubt the validity of the HS-VaR — given a latent underestimation of risk with
most violations occuring during the 2008 Financial Market Crisis. Subsequently, the HS-VaR
forecast was overly conservative, and there were no violations in the following five years. Thus,
it seems that a portfolio insurance strategy on this basis would have held investment exposure
much too low over time. This conclusion is confirmed by rigorous statistical testing. Using the
unconditional coverage test, the HS-VaR does indeed deliver a conclusive number of violations
over the entire period. But, based on the test for correct coverage and independence and the
duration test, it is clear that the violations are not occurring independently, but rather appear in
clusters (cf. Table [III).

Regarding the Cornish-Fisher VaR in Panel (¢) we can draw similar conclusions. Although
the Cornish-Fisher approximation approach accounts for fat tails by incorporating skewness and
kurtosis it still remains sluggish over time. Like the HS-VaR, the CFA-VaR passes the test for

unconditional coverage but fails when accounting for clustering of returns (cf. Table .

[Figure [3[ about here]

The remaining risk models are much more sensitive and quicker to react to the prevailing risk
environment (see Panel (b), (d), (e), (f)). Moreover, the occurrence of violations is markedly less
clustered — as confirmed by the statistical tests. All four risk methods pass the duration test. The
RM-VaR, however, fails the unconditional and conditional coverage test which is mostly due to
the high deviation of the realized to the expected number of violations (96 vs. 58). The EVT-VaR
also fails the test for unconditional coverage but passes the tests that account for independence. In
contrast, the QR-VaR and the CG-VaR pass all tests. Although the QR approach has the higher
p-values one would presumably prefer the Copula-GARCH forecasts since the risk estimates of

the QR approach are much more volatile than the ones of the Copula-GARCH approach.

[Table [I1I} about here]
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D. The Economic Relevance of Risk Forecasting for Dynamic Portfolio Insur-
ance Strategies

In this section, we analyze the performance of the different risk models when fed into dynamic
portfolio insurance strategies. We first discuss the DPPI strategy with respect to the different
multipliers. Subsequently, we investigate the dTIPP and synthetic put strategy as robustness

checks.

D.1 Historical Path

To examine how a dynamic proportion portfolio insurance strategy based on different risk models
would have performed over the period from 1994 to 2017 we calculate the historical path using the
multi-asset portfolio as risky and the 3-month U.S. Treasury Bill as risk-free investment. Further,
we choose a floor level of 95%. An investment horizon of one calendar year — a typical choice of
institutional and private investors alike (see |Benartzi and Thaler, [1995) — implies that the floor
is adjusted to the current portfolio value at the start of each year to initialize the cushion. This

procedure helps to mitigate the lock-in effect.

Figure [4] illustrates how the mechanism of a DPPI strategy generally works. The chart shows
the performance of the conservative multi-asset portfolio using the DPPI strategy (red line) in
relation to the floor (green line) over time. The investment exposure is mainly driven by two
components: the floor and the multiplier. If the portfolio value of the underlying approaches the
floor line, i.e. the cushion shrinks, the exposure is reduced (see grey background of Figure [4)) and
parts of the investment are shifted into the risk-free asset. Similarly, the exposure is reduced
if risk estimates predict too high (overnight) risk, i.e. the multiplier decreases given that the
distance to the floor is not excessive. In this example, the conditional multiplier is based on the
Copula-GARCH-VaR at 99% conﬁdence@ For comparison, we also include the performance of

the underlying multi-asset portfolio (blue line) and a money market investment (black line).

[Figure 4] about here]

Examining the whole sample period, we learn that the DPPI strategy indeed prevented catas-
trophic drawdowns. With the onset of the financial market crisis, investment exposure drops to
zero, so that the portfolio value at the end of 2008 is equal to the floor. Then, even with the
V-shaped market evolution (steep decline followed by a rapid recovery) in early 2009 — a major
impediment for portfolio insurance — the DPPI portfolio does not end up in a ,cash lock“ It
participates in at least part of the subsequent recovery. On the whole, the DPPI strategy has an

average investment exposure of approximately 90% and delivers an excess return of 23bp per year

11 order to reflect the preferences of highly risk-averse investors, we follow [Soupé, Heckel, and de Carvalho
(2014)) and scale the risk forecast by a term consisting of an investor’s risk aversion parameter and the expected
Sharpe ratio given a Constant Relative Risk Aversion (CRRA) utility function of the investor. Assuming a highly
risk-averse investor, we choose the risk aversion parameter to be 0.05 and an expected Sharpe ratio of 0.3.
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compared to the pure multi-asset portfolio (see column PF and CG in Table . This advantage
remains when considering risk-adjusted returns. The Sharpe ratio of the DPPI strategy (0.35) is
significantly higher than the one for the underlying (0.26). The lower maximum drawdown of the

DPPI strategy (11pp) evidences that downside protection is indeed provided.

Comparing the performance of the DPPI strategy across risk models yields less clear-cut
results. Panel A of Table [[V] shows the corresponding results. Analyzing returns we find a 19bp-
difference between the best performing risk model, the Copula-GARCH, and the weakest model,
the HS approach (4.58 vs. 4.39). However, when risk-adjusting returns, this spread diminishes so
that we observe marginal differences among the different models. In particular, the Sharpe ratio
ranges from 0.33 to 0.36. The same conclusions can be drawn in terms of maximum drawdown.
In addition, we apply the Calmar and the Sortino ratio suggested by the literature to measure
downside risk[®] While the Calmar ratio is defined as the ratio of annualized return over the
absolute value of the maximum drawdown, the Sortino Ratio is calculated as the difference of
mean return and minimum acceptable return divided by downside deviationll;g] Evaluating the
risk models on the basis of Calmar and Sortino ratio shows only marginal differences. The range
from 0.29 to 0.32 and from 0.14 to 0.15, respectively, indicates that not only sophisticated but also
more naive approaches are able to provide downside protection in the context of DPPI. Among the
best models are the CFA (Calmar ratio of 0.32) and the Copula-GARCH approach (Calmar ratio of
0.31). This finding can be rationalized as follows: In general, few allocation changes are necessary
to protect from downside risks if the DPPI strategy is reasonably calibrated. In particular, the
investment exposure will be decreased when one is approaching the floor, irrespective of the
underlying risk forecast. This embedded line of defense is most likely preventing less accurate
risk forecasts from inhibiting overall performance. As a result, we see that all risk models likewise

dominate the underlying risky portfolio when evaluating Calmar and Sortino ratio.

Similar to several studies (Bertrand and Prigent, |2002; |Ameur and Prigent, 2006; Hamidji,
Jurczenko, and Maillet], 2009; |Ameur and Prigent, [2014; Hamidi, Maillet, and Prigent), 2014), we
also benchmark the DPPI performance with multipliers based on the different risk models against
the CPPI performance based on static unconditional multipliers. In particular, we employ two
static multipliers representing different levels of loss aversion. While the fixed multiplier of 8
(FMB) is calculated as the maximum loss of the underlying indicating high loss aversion, the fixed
multiplier of 32 (FM32), determined as the average over the HS-VaR, reflects an average attitude
towards downside risk. Even with the average risk estimator (FM32) the maximum drawdown is
halved — similar to the DPPI strategies. However, there is a performance drag relative to these
strategies. It reveals that this static multiplier underperforms in terms of Sharpe ratio (0.27

vs. approx. 0.33) and Calmar ratio (0.23 vs. approx. 0.30) while exhibiting a similar participation

15See [Bertrand and Prigent| (2011) for general definitions of the Calmar and the Sortino ratio.

In our context, we set the minimum acceptable return (MAR) to the corresponding floor return,
i,e. MAR = —(1 — FloorPercentage). Furthermore, downside deviation measures the variability of underperfor-
mance below a minimum target rate. More precisely, it eliminates positive returns when calculating risk and uses
the minimum acceptable return instead of the mean return.
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in the risky asset (approx. 88%). This performance drag is exacerbated when plugging a worst-
case assumption into the constant multiplier (FM8). In terms of downside measures, however,
FMS8 shows slightly better results than the competing DPPI strategies owing to a more defensive

investment exposure (approx. 60%).

D.2 Historical Simulation

Due to the problem of path dependency that arises when analyzing the historical path, we also
conduct a historical simulation. In particular, we use 250 subsequently following daily portfolio
and risk-free returns on a rolling window basis and implement the DPPI strategy based on the
different risk models. Intuitively, this approach enables us to assess the DPPI strategy’s robustness
with respect to alternative entry dates. Moreover, it allows to use the available data in the most
efficient way (5,597 overlapping yearly performance data) while preserving all dependency effects
in the series, such as autocorrelation and conditional heteroskedasticity (see Dichtl and Drobetz,
2011]).

Figure [5| shows the distribution of the simulated yearly returns of the DPPI strategy (red
shade). The black dashed line indicates the floor level of 95%. For comparison, we also include
the return distribution of a pure buy-and-hold portfolio investment strategy (blue shade). The
chart clearly highlights the effect of portfolio insurance. The left tail of the return distribution
is shifted towards the floor level such that downside risk is reduced — however, at the expense of

some return potential in the right tail.

[Figure |5 about here]

Panel B in Table [[V]reports the median performance data of the historical simulation. Compared
to the historical path, we find slightly different results. Concerning the performance of the un-
derlying, we learn that its Sharpe ratio increases (from 0.26 to 0.48) and its maximum drawdown
decreases (from -21% to -6%) such that we have similar figures to the DPPI strategy. Moreover,
we observe that the Calmar Ratio increases substantially for all strategies (from approx. 0.3 to ap-
prox. 0.95). Both findings can be explained by the fact that the massive drawdown year 2008 loses
weight when performing historical simulations. In other words, the crisis year 2008 is ,,averaged
out®. In terms of Sortino ratio we still find no significant differences across risk models. Given the
amount of simulations we can resort to another downside risk measure, the cumulative prospect
value. It is based on cumulative prospect theory (CPT) according to [Tversky and Kahneman
(1992) that especially accounts for the finding that many investors are more sensitive to losses
than to gains (loss aversion) and have the tendency to overweight extreme, but unlikely events.
Dichtl and Drobetz (2011) were the first to apply CPT in the context of portfolio insurancem In

our analysis, evaluating in terms of the cumulative prospect value shows that the DPPI strategy

"To compute the cumulative prospect value we define the involved parameters according to [Abdellaoui (2000),
ie.ar B ~088\~225 6" =0.65 6 =0.84, v" =0.65, v~ = 0.84.
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based on different risk models outperforms both the underlying and the money market investment
(approx. 5.9 to 3.8 and 5.5). On the other hand, we find only slight differences across the risk
models’ performances. While the Copula-GARCH based multiplier dominates among sophisti-
cated models, it shows a slightly weaker performance compared to the HS and CFA approach as
well as to the static FMS.

[Table [[V| about here]

In essence, the results support the conclusion drawn from the historical path analysis. Dynamic
proportion portfolio insurance strategies building on sophisticated risk models do a good job in
protecting investors from downside risk. Given that the mechanics of the portfolio insurance
strategy automatically reduce investment exposure when approaching the protection level, a less

sophisticated risk forecast is mostly profiting from this second line of defense.

D.3 dTIPP and Synthetic Put

In order to verify the robustness of the findings of the historical path and historical simulation
analysis we investigate the dTIPP and the synthetic put portfolio insurance strategy. The more

conservative dTIPP strategy differs from the DPPI strategy by locking in any intermediate gain.

Panel (a) of Figure E] shows the evolution of the dTIPP strategy, based on the identical risk
forecast as the DPPI strategy. Exposure over the entire period is roughly 20 percentage points
lower than that of the DPPI strategy — a consequence of the floor being always closer to the
portfolio value so that no additional cushion can be built up. This feature implies a clear reduction
of returns compared to the DPPI strategy — but one that is less dramatic in risk-adjusted terms.
Panel (b) of Figure [7|shows that the dTIPP strategy is the most efficient approach to protect the
initial floor. Compared to the other strategies, the smallest mass of the return distribution is to
the left of the floor line. However, it can also be observed that this protection comes at the high
cost of reduced upside return potential. The dTIPP has considerably less mass in the right tail
than the DPPI.

Figure [§] charts the evolution of the synthetic put strategy over time. We note that the rate of
investment (exposure) varies significantly, depending on the expected volatility and the difference
between the portfolio value and the strike price. This finding demonstrates one weakness of a
synthetic put strategy: frequent portfolio reallocations. Nonetheless, we see that the strategy is
able to prevent investors from massive drawdowns — the exposure would have been reduced early

enough in 2008 to avoid a massive drawdown — and benefit from upward market movements.

In essence, when comparing the different portfolio insurance strategies we find similar results
to Dichtl and Drobetz| (2011]). The DPPI strategy dominates the dTIPP strategy as well as the
synthetic put strategy and the buy-and-hold portfolio investment strategy. Table allows to
compare the estimation results of the historical path and the historical simulation across the
different risk models for both the dTIPP and the synthetic put strategy. We see that, no matter

which performance measure is used, there are only marginal differences. This finding confirms
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the results of the analysis of the DPPI strategy.

V. Conclusion

This paper investigates a number of forecasting models to generate portfolio risk estimates that
are suitable in timely managing the investment exposure of dynamic portfolio insurance strate-
gies. In particular, we focus on the dynamic proportion portfolio insurance (DPPI) strategy that
works with a conditional multiplier based on a dynamic risk forecast. Therefore, it adapts much
more readily to the market environment than the CPPI approach with its constant unconditional
multiplier. To this end, we analyze risk models both prominent in the academic literature and
popular among practitioners — from simple historical simulation, the RiskMetrics approach, and
the Cornish-Fisher approximation, to quantile regression, extreme value theory and the Copula-
GARCH approach. Empirically, we build our analysis on a global multi-asset return data set
including stocks, bonds, commodities, and foreign exchange rates. To take account of different
market closing times we apply a return synchronization technique by extrapolating prices of closed
markets, based on information from markets which close later. It turns out that the risk forecasts
of the quantile regression approach and the Copula-GARCH method dominate the more naive
approaches in terms of statistical fit. When feeding these risk forecasts into dynamic portfolio
insurance strategies we find less clear-cut results. We evidence that dynamic portfolio insurance
strategies building on sophisticated risk models are capable to protect investors from downside
risk. However, more naive approaches are also able to provide downside protection. Given that
portfolio insurance only leads to few allocation changes simple risk models might have simply been
lucky. Thus, forward looking a more accurate quantile regression or Copula-GARCH approach

appear to be more likely to help mitigating the next downturn.
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Table 1
Descriptive Statistics of the Multi-Asset Portfolio and Money Market Investment

This table reports annualized return and annualized volatility of the multi-asset portfolio of 5 stock indices,
4 bond indices, 3 commodities, 3 foreign exchange rates and a money market investment based on the 3-
month U.S. treasury bill rate over the period from from 02/01/1991 to 31/03/2017.

Multi-asset portfolio = Money market investment

Annualized mean return (in %) 4.63 2.40
Annualized volatility (in %) 7.51 0.14
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Table I1

Synchronized vs. Original Daily Returns: Descriptive Statistics

This table reports the annualized return and annualized volatility of the synchronized and original daily

returns based on the international multi-asset data set.

Nikkei  JGB10Y Bund Gilt EuroSTOXX FTSE
Mean original returns (in %) -0.0035 0.0136 0.0165 0.0149 0.0305 0.0178
Mean synchronized returns (in %) -0.0034 0.0136 0.0165 0.0149 0.0307 0.0179
Volatility original returns (in %) 1.5109 0.2486 0.3341 0.4098 1.3875 1.1306
Volatility synchronized returns (in %) 1.6338 0.2561 0.3581 0.4386 1.5829 1.2916

28



Table I11
Results of VaR Testing

This table shows the results of the unconditional coverage test, the conditional coverage test and the

duration test to evaluate the risk forecasts of the different risk models — Historical Simulation (HS),
RiskMetrics (RM), Cornish-Fisher Approximation (CFA), Quantile regression (QR), Extreme Value Theory
(EVT) and Copula-GARCH (CG). Reported are the number of realized VaR violations, the p-value and
the test decision using the synchronized multi-asset portfolio over the period from 3/11/1994 to 31/3/2017.

We calculate the Value-at-Risk at 99% confidence level and expect 58 violations over the whole sample

period.

HS RM CFA QR EVT CG
Realized Violations 60 96 46 66 7 70
a) Test for unconditional coverage (Hy: Correct Violations)
p-Value 0.84 0.00 0.09 0.33 0.02 0.14
Test Decision X X
b) Test for conditional coverage (Hy: Correct & Independent Violations)
p-Value 0.00 0.00 0.00 0.30 0.07 0.33
Test Decision X X X
¢) Duration test (Ho: Duration between Violations have no memory)
p-Value 0.00 0.92 0.00 0.92 0.86 0.57
Test Decision X X
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Table IV
Estimation Results of DPPI

This table shows the estimation results of the DPPI strategies with conditional multipliers based on differ-
ent risk forecasts for the historical path and historical simulations over the sample period from 1994 to 2017
using a synchronized international multi-asset portfolio and a money market investment. The analyzed
risk models are the Historical Simulation approach (HS), RiskMetrics (RM), Cornish-Fisher approxima-
tion (CFA), Quantile Regression (QR), Extreme Value Theory (EVT) and Copula-GARCH (CG). For
comparison, we include the performance of the underlying multi-asset portfolio (PF), the money market
investment (Cash), and two fixed multipliers based on the maximum loss of the portfolio returns (FM8) and
the average risk measured by the average over the HS-VaR (FM32), respectively. As performance measure,
we employ the annualized mean return, annualized volatility, maximum drawdown, Sharpe Ratio, Calmar
and Sortino ratio, and the cumulative prospect value. Moreover, we show the average participation of the
strategy in the risky investment. For the historical simulation, we report the median of these performance
measures and add the cumulative prospect (CP) value. In each calendar year, a floor of 95% of the initial

portfolio value is targeted.

CPPI DPPI

PF Cash FM8 FM32 HS RM CFA QR EVT CG

Panel A: Historical Path

Return p.a. (in %) 4.35 2.40 3.73 4.04 4.39 4.52 4.48 4.50 4.43 4.58
Volatility p.a. (in %) 7.51 0.14 4.05 6.14 5.94 6.18 5.83 6.12 6.13 6.16
Sharpe Ratio 0.26 0.00 0.33 0.27  0.33 0.34 0.36 0.34 0.33 0.35
Max Drawdown (in %) -20.86 0.00 -5.73 -10.04 -9.51 -10.07 -9.56 -9.72 -9.86 -9.90
Calmar Ratio 0.13 - 0.38 0.23 0.29 0.30 0.32 0.30 0.30 0.31
Sortino Ratio 0.11 - 0.21 0.14 0.15 0.14 0.15 0.14 0.14 0.14
Participation (in %) 100 0 99.1 88.4 88.0 90.2 86.1 89.9 89.9 90.3

Panel B: Historical Simulation

Return p.a. (in %) 5.93 1.70 4.60 5.61 5.45 5.49 5.40 0.43 5.49 5.47
Volatility p.a. (in %) 6.71 0.01 4.73 6.17 6.11 6.15 6.10 6.09 6.14 6.13
Sharpe Ratio 0.48 0 0.43 0.44 0.41 0.43 0.41 0.42 0.43 0.43
Max Drawdown (in %)  -6.09 0.00 -423 -6.14 -6.06 -6.13 -592 -6.12 -6.13 -6.11
Calmar Ratio 1.02 - 1.03 0.94 0.93 0.94 0.94 0.93 0.93 0.95
Sortino Ratio 0.15 - 0.18 0.15 0.15 0.15 0.15 0.15 0.15 0.15
CP Value 3.80 5.46 6.56 5.95 5.94 5.88 5.99 5.84 5.87 5.89
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Table V
Descriptive Statistics and Portfolio Weight Structure of the Multi-Asset Data Set

This table reports the annualized mean return and annualized volatility of the components of the multi-
asset portfolio over the period from January 2nd, 1991 to March 31st, 2017 (including 6,847 daily returns).

In addition, the static portfolio weights are given in the third column.

Mean return (in %) Volatility (in %) Portfolio Weights
A. Stocks
Nikkei 225 -0.88 23.98 5%
Euro Stoxx 50 7.69 22.03 5%
MSCI EM 6.08 18.09 5%
FTSE 100 4.50 17.95 5%
S&P 500 6.24 17.87 15%
B. Bonds
JGB 10Y 3.44 3.95 10%
Euro Bund 4.16 5.30 10%
UK Gilt 3.75 6.15 10%
U.S. 10Y 3.80 5.88 10%
C. Commodities
Oil 0.79 34.26 5%
Gold 4.18 16.04 5%
Copper 6.15 25.49 5%
D. Foreign Exchange Rates
EUR/USD -0.99 9.84 15%
UK/USD -1.61 9.47 15%
JPY/USD 0.70 10.82 15%
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Table VI

Return Synchronization: VAR Estimation Results

This table reports median t-statistics of the estimated VAR matrix. To estimate the VAR relationship we
use a rolling window of 1,000 days over the period from January 2nd, 1991 to March 31st, 2017 and employ
a parsimonious specification of the VAR restriction matrix in which the return series to be synchronized
are only predicted by U.S. equities and U.S. 10Y.

Nikkei 225 JGB 10Y Euro Bund UK Gilt Euro Stoxx 50 FTSE 100
S&P 500 2.93 -5.22 -3.99 -4.43 0.25 3.55
U.S. 10Y -5.62 2.31 1.21 1.33 -2.96 -3.95
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Table VII
Estimation Results of dTIPP and Synthetic Put Insurance

This table shows the estimation results of the dTIPP and the synthetic put strategy based on different risk
forecasts for the historical path and historical simulations over the sample period from 1994 to 2017 using a
synchronized international multi-asset portfolio and a money market investment. The analyzed risk models
are the Historical Simulation approach (HS), RiskMetrics (RM), Cornish-Fisher approximation (CFA),
Quantile Regression (QR), Extreme Value Theory (EVT) and Copula-GARCH (CG). For comparison,
we include the performance of the underlying multi-asset portfolio (PF), the money market investment
(Cash), and two fixed multipliers based on the maximum loss of the portfolio returns (FMS8) and the
average risk measured by the average over the HS-VaR (FM32), respectively. As performance measure,
we employ the annualized mean return, annualized volatility, maximum drawdown, Sharpe Ratio, Calmar
and Sortino ratio. Moreover, we show the average participation of the strategy in the risky investment.
For the historical simulation, we report the median of these performance measures and add the cumulative
prospect (CP) value. In each calendar year, a floor of 95% of the initial portfolio value is targeted.

CPPI DPPI

PF  Cash FM8 FM32 HS RM CFA QR EVT CG
dTIPP
Panel A: Historical Path
Return p.a. (in %) 4.35 2.40 3.17 3.38 3.79 3.88 3.82 3.77 3.75 3.92
Volatility p.a. (in %) 7.51 0.14 2.30 4.87 4.60 4.91 4.49 4.82 4.85 4.90
Sharpe Ratio 0.26 0.00 0.33 0.20 0.30 0.30 0.32 0.28 0.28 0.31
Max Drawdown (in %) -20.9 0.00 -466 -642 -6.18 -6.37 -5.70 -6.13 -6.19 -6.02
Calmar Ratio 0.13 - 0.43 0.31 0.34 0.33 0.37 0.34 0.33 0.36
Sortino Ratio 0.11 - 0.36 0.16 0.18 0.17 0.19 0.17 0.17 0.17
Participation (in %) 100 0.0 34.4 71.5 69.4 72.0 67.6 70.6 71.2 72.2

Panel B: Historical Simulation

Return p.a. (in %) 5.93 1.70 5.55 4.56 4.57 4.35 4.61 4.38 4.39 4.41
Volatility p.a. (in %) 6.71 0.01 2.35 5.27 4.78 5.22 4.65 5.03 5.16 5.17
Sharpe Ratio 0.48 0.00 1.20 0.39 0.49 0.37 0.52 0.41 0.38 0.39
Max Drawdown (in %) -6.09 0.00 -1.59 -432 -390 -4.15 -3.75 -397 -4.11 -4.06
Calmar Ratio 1.02 - 3.32 1.10 1.26 1.07 1.31 1.16 1.11 1.11
Sortino Ratio 0.15 - 0.46 0.17 0.19 0.17 0.20 0.17 0.17 0.17
CP Value 3.80 5.46 7.15 6.49 6.55 6.41 6.59 6.45 6.44 6.47

Synthetic Put
Panel C: Historical Path

Return p.a. (in %) 4.35 2.40 3.80 4.34 4.49 4.29 - - 4.32 4.33
Volatility p.a. (in %) 7.51 0.14 4.13 5.17 5.83 5.87 - - 5.87 5.86
Sharpe Ratio 0.26 0.00 0.34 0.37 0.36 0.32 - - 0.33 0.33
Maximum Drawdown (in %) -20.9 0.0 -10.9 -8.58 -10.9 -11.1 - - -11.0 -11.0
Calmar Ratio 0.13 - 0.22 0.29 0.30 0.25 - - 0.25 0.26
Sortino Ratio 0.11 - 0.20 0.17 0.15 0.15 - - 0.15 0.15
Participation (in %) 100 0.0 59.4 75.2 85.3 86.7 - - 86.5 86.3

Panel D: Historical Simulation

Return p.a. (in %) 5.93 1.70 5.37 5.30 5.43 5.33 - - 5.38 5.36
Volatility p.a. (in %) 6.71 0.01 4.02 5.20 5.96 5.98 - - 5.97 5.93
Sharpe Ratio 0.48 0.00 0.68 0.49 0.46 0.41 - - 0.43 0.43
Maximum Drawdown (in %)  -6.09 0.00 -345 -484 -5.65 -5.83 - - -580 -5.73
Calmar Ratio 1.02 - 1.50 1.07 0.99 0.95 - - 0.96 0.97
Sortino Ratio 0.15 - 0.24 0.17 0.15 0.15 - - 0.15 0.15
CP Value 3.80 5.46 6.06 6.07 5.84 5.37 - - 5.41 5.46
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Figure 2. The Effects of Return Synchronization

This figure shows the correlation matrices of the original and synchronized returns based on the interna-
tional multi-asset data set including stocks, bonds, commodities, and foreign exchange rates. Blue shade
indicates positive correlation, red shade negative correlations. The more straight the circles, the higher is
the correlation.
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Figure 3. VaR Forecasts over Time

This figure shows the (negative) daily 99% VaR forecasts of the different risk models and the realized returns
of the multi-asset portfolio (grey dots) over the period from 3/11/1994 to 31/3/2017. VaR violations are

marked in red. At a confidence level of 99%, a total of 58 violations are expected over the model period.

Return + Return < VaR— HistSim (ealzed vil=60) Return + Return < VaR— EWMA_nd (ealized vioi=06)
0a 00
00
o
£ om0
g
00
00
008
00
Return + Return < VaR— CFA (eaized vial=6) Retur + Return < VaR— QR (ralzed vio=66)
o1 008
00
2
H £ oo
£ om0 i
e S 002
o
008
00
Return + Return < VaR— EVT (eaizd viol=T7) Retur + Retur < VaR— CopulaGARCH_c (realzed viol=70)
0o
00
002
S oo
H
H
002
0050

35



Figure 4. Historical Path of DPPI

This chart shows the performance of the conservative multi-asset portfolio (35% equities, 40% fixed income,
15% commodities, 45% currencies) using a DPPI strategy (red line) in relation to the floor (green line)
over the sample period from 1994 to 2017. Exposure is calculated using the cushion (difference between
the portfolio value and the floor; here: 95% of the initial annual portfolio value) and the conditional
multiplier (based on the Copula-GARCH 99%-VaR). For comparison, we have included the performance

of the underlying multi-asset strategy (blue line) and a money market investment (black line).
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Figure 5. Historical Simulation of DPPI

This chart shows the distribution of historically simulated yearly returns of the DPPI strategy (red shade)
and a pure buy-and-hold portfolio investment strategy (blue shade). The multiplier is based on the Copula-
GARCH 99% VaR. The black dashed line indicates the floor level.
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Figure 6. Synchronized vs. Original Daily Returns: QQ-Plots

This figure presents QQ-plots of synchronized vs. original returns for those series that close before the
U.S. markets, i.e. need to be synchronized.
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Figure 7. Historical Path and Historical Simulation of dTIPP

This chart shows the performance of the multi-asset portfolio (35% equities, 40% fixed income, 15% com-

modities, 45% currencies) using a dTIPP strategy for historical path and historical simulation. Panel (a)

shows the historical path of the dTIPP portfolio (red line) in relation to the floor (green line) over the

sample period from 1994 to 2017. Exposure is calculated using the cushion and the conditional multi-
plier (based on the Copula-GARCH 99%-VaR). The key characteristic of the dTIPP strategy lies in the

yratcheting-up® of the floor (95%) once a new high is achieved. For comparison, we have included the

performance of the underlying multi-asset strategy (blue line) and a money market investment (black

line). Panel (b) shows the distribution of historically simulated yearly returns (red shade) and a pure

buy-and-hold portfolio investment strategy (blue shade). The black dashed line indicates the floor level.
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Figure 8. Historical Path and Historical Simulation of Synthetic Put Insurance

This chart shows the performance of the multi-asset portfolio (35% equities, 40% fixed income, 15% com-
modities, 45% currencies) using a synthetic put strategy for historical path and historical simulation. Panel
(a) shows the historical path of the synthetic put portfolio (red line) in relation to the floor (green line)
over the sample period from 1994 to 2017. Participation in the risky asset’s performance is calculated using
a classic Black-Scholes formula measuring the sensitivity of a synthetic put with a strike price matching
the floor value (here: 95% of the initial annual portfolio value). The volatility of the risky asset is fore-
casted based on the Copula-GARCH approach. For comparison, we have included the performance of the
underlying multi-asset strategy (blue line) and a money market investment (black line). Panel (b) shows
the distribution of historically simulated yearly returns (red shade) and a pure buy-and-hold portfolio
investment strategy (blue shade). The black dashed line indicates the floor level.
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