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Abstract:

Recent portfolio theory has seen an explosion in interest in risk-based portfolios which aim to lower portfolio volatility
or maximize portfolio diversification. A common theme among all these is an absence of expected returns as inputs.
This brings about increased robustness in the portfolio construction process as expected returns are notoriously
difficult to estimate accurately. However, it does not mean that risk-based portfolios are immune to estimation risk,
as the primary input to their construction is some estimate of the covariance matrix. We study six risk-based
portfolios in a general framework for decomposing the covariance into separate dimensions of correlations and
volatilities and illustrate risk-based portfolio sensitivity to a range of volatility and correlation estimation models. We
find in a long-only fully invested equity market context, that the estimation error sensitivity varies significantly across
time horizons and risk-based portfolio types, and that the simple sample historical covariance estimator is possible,
but difficult to outperform in a portfolio context.

Keywords: risk-based portfolios, estimation, shrinkage, Marcenko-Pastur distribution, rotationally invariant
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1. Introduction

Since the 2008 Global Financial Crisis, there has been a significant increase in interest in portfolio construction
methods that have increased diversification or risk reduction embedded into their objective functions. Such methods
are collectively termed risk-based portfolios emphasizing that their focus is on optimally extracting information out of
the risk structure of the market, as opposed to utilizing forecasts of expected returns in their construction, which as

we know from Merton (1980) are notoriously difficult to estimate with any accuracy.

Several additional design features may lend greater robustness to risk-based portfolios. These include, the implicit
shrinkage of the sample estimates, embedded within the optimizations of some of these, notably, the Equal Risk
Contribution portfolio see Maillard et al. (2009), and objective functions that do not require the inversion of the
covariance matrix - as is the case in traditional mean-variance optimization (Roncalli, 2017). The finding of greater
robustness of risk-based portfolios may indeed hold, but it does not mean that they are immune to estimation error,
as there is still significant error to be encountered in the estimation of the covariance matrix of returns as a key input

to many of these portfolios.

A rich literature has developed to address the vulnerability to estimation error of the traditional mean-variance
framework, such as Michaud (1998) and Titlincl and Koenig (2004) and more recently, innovations in random matrix
theory such as Bun, Bouchaud and Potters (2016). AlImost without exception, most studies on estimation have centred
on the mean-variance or minimum-variance class of portfolios in their empirical application. To date the only other
study of which the authors are aware that considers estimation error in a more general class of risk-based portfolios,
is the Monte Carlo based analysis of Ardia, Bolliger, Boudt and Fleury (2017). We attempt to make a contribution to
this void by studying six different risk-based portfolios in a empirical setting, where permutations of 10 volatility
models and 12 correlation models inform a recomposed covariance matrix, used in the determination of the risk-based
portfolios. Sensitivities to volatility estimates and correlation estimates are systematically isolated via a decomposition

of the covariance matrix..

The scope is limited to six of those risk-based portfolios that maximize a measure of diversification in their objective
functions i.e. the class of maximum diversification portfolios. The minimum variance (MV) portfolio is included as an
important benchmark with a long history in portfolio theory. It can be viewed as maximizing a proxy measure of

diversification i.e. portfolio variance, justifying its inclusion.
Risk-based portfolios considered in this study are:

1) the Minimum Variance Portfolio (MV), of classic Markowitz (1952) and many others such as Clarke, De Silva

and Thorley (2006);
2) the Equal Weighted Portfolio (EW), examined in DeMiguel, Garlappi and Uppal (2006);
3) the Equal Risk Contribution Portfolio (ERC) of Maillard, Roncalli & Teiletche (2010);
4) the Most Diversified Portfolio (MDP) of Choueifaty and Coignard (2008);
5) the Effective Number of Bets Portfolio (EffBetsPCA) of Meucci (2009); and,



6) the Effective Number of Linear Torsion Bets Portfolio (EffBetsMLT) of Meucci, Santangelo and Deguest
(2013).

Risk-based portfolio definitions are only briefly reviewed here. See Du Plessis & van Rensburg (2017) for a more
detailed analysis of these. Three broad classes of volatility models are considered: EWMA, GARCH and intra-day range
estimators. Correlation forecasting models covered range from basic shrinkage estimators such as average correlation
(Elton and Gruber, 1973, plesiochronous correlations of Choueifaty, Coignard and Reynier (2013), to the more
sophisticated eigenvalues-clipping approach of Bouchaud and Potters (2011), and the very recent rotationally invariant
estimator (RIE) of Bouchaud, Bun and Potters (2016). Classic Ledoit and Wolf shrinkage (2003, 2004) are also added as
a benchmark, albeit that these operate on the whole covariance matrix A perfect foresight ‘upper bound’ benchmark,
called the ‘oracle estimator’ is also added for both volatilities and correlations. The historical sample estimate is used
as a ‘baseline’ benchmark. In all cases, a long only constraint and full investment budget constraint is applied to the

portfolios. Appendix A details all the models along with a glossary of the model abbreviations used.

The remainder of the paper is organized as follows. Section 2 briefly defines the risk based portfolios. Section 3
defines the volatility and correlation models in use. Section 4 discussed the dataset and in particular, the step-wise
methodological approach followed to elicit risk-based portfolio sensitivity to estimation error. Section 5 discusses

the empirical results and Section 6 concludes. Prior research is discussed in context in Section 2 to 4.



2. Risk-Based Portfolios

On Notation

We consider a market of N risky assets (or positions generally) observed at the daily frequency for most except the
intraday range estimators below, which defines a vector of raw returns r; = (rl,t, Tot, ...,rN‘t) foreach day t =

1, ..., T. The portfolio weight vector is denoted by x = (x4, ..., xy), optimal weights by x*, Z is the estimated N X
N covariance matrix of returns, and given the subscript X;,; when necessary to refer to the sample historical
covariance matrix. E is the historical sample correlation matrix, ) the estimated correlation matrix I the identity
matrix and e the unit vector. The in-sample conditioning window period is denoted m, with last in-sample
observation increment T (also referring to the length of the available dataset, as will be clear from context), current
time, t, and out-of-sample holding period, T + t. At each portfolio formation (or rebalance) date both the
conditioning window and holding period are moved forward in time by 7. Operator dg(+) refers to diagonalization,

such the result is a diagonal matrix with its argument on the principle diagonal and zeros everywhere else.

Minimum Variance (MV)

The minimum variance portfolio is well familiar as the left most point on the classic Markowitz (1952) frontier
(ignoring the risk free asset). Its sensitivity to estimation error has been well documented, along with many attempts
to improve upon its estimation such as Michaud (1998) and Tutiinci and Koenig (2004). This portfolio can be solved
for via the optimization setup:

xyy = argmin f(x)

s.t.1'x=1; 0 <x<1
where: f(x) = x'Zx

Equal Weighting (EW)
The Equally Weighted portfolio is simply defined via

1
N

Xpw for N € RY
requiring no optimization in its solution. There may be certain situations where the estimates of volatilities and
correlations are so unreliable as to make it preferable to abandon optimization in favour of an 1/N allocation. It is

included as an important benchmark, especially following DeMiguel, Garlappi and Uppal (2006), who demonstrate

that this portfolio often dominates many of the others in terms of risk-adjusted return and turnover.

Equal Risk Contribution (ERC)



The Equal Risk Contribution portfolio, as defined and studied extensively in Maillard et al. (2009) and Roncalli (2014),
maximizes the uniformity in the Euler risk contributions’. While, for N>2 and non-uniform correlations there exists
no analytical solution, the ERC portfolio can be solved via non-linear convex minimization, as in
Xgre = argmin f(x)
s.t.1'x=1; 0 <x<1
where: f(x) = ?=1Z}l=1(xi (Zx); — x;(Zx) j)z

where x;(Zx); represents the scaled Euler risk contributions. The ERC portfolio exhibits many appealing empirical
properties, including multi-period stability exhibited by low turnover, high capacity (it always takes a non-zero
position in every asset in the universe) and robustness to estimation error (see specifically, Demey, Maillard and

Roncalli, 2010).

Diversification Ratio and Most Diversified Portfolio (MIDP)

Taking a slightly different approach, Choueifaty and Coignard (2008) define the Diversification Ratio, DR, as the
weighted average volatility divided by the portfolio volatility:

x'oc

DR =
Vx'2x

The DR measure has a range of DR = 1 for full concentration and DR = +/N for maximum diversification. It is
interesting to note that DR is precisely the same concept as the Tasche (2008) Diversification Index, albeit that the
latter is inverted with the weighted average volatility in the denominator. The portfolio that maximizes this ratio is
then called the Most Diversified Portfolio, solvable via:
Xypp = argmax f(x)
s.t.1'x=1; 0 <x<1

where: f(x) = X9

Vx'2x

The Most Diversified Portfolio has several interesting theoretical properties, as elaborated upon by Choueifaty,
Froidure and Reynier (2013), such as that every security selected by the objective function is less correlated to the
final portfolio than every stock excluded by it and that all stocks within the final portfolio have the same correlation

to this portfolio.

Effective Number of Bets via PCA (EffBetsPCA)

The Effective Number of Bets via PCA portfolio of Meucci (2009) maximizes the uniformity of allocation to orthogonal
risk factors (called principal portfolios, after Partovi and Caputo, 2004), via an eigen-decomposition of the covariance.

It is solved via



Xpca =argmax f(x)
s.t.1'x=1; 0sx<1
wher : f(x)=exp{—ppca’logppca}

Where ppc4 is the diversification distribution of principal portfolio contributions to portfolio risk, given by

— (Er1x)e(Erzx)
- x1Ex

Ppca

Where E is the matrix of eigenvectors decreasingly responsible for portfolio risk, and o the Hadamard (element-wise)
product. This is a theoretically appealing diversification method which incorporates key aspects of the diversification
problem (weights, volatilities, correlations, dimension reduction, long/short invariance) in its solution. It has been
criticized in Meucci, Santangelo and DeGuest (2014), for a lack of uniqueness and instability, as will be illustrated in

Section 5 below extreme sensitivity to estimation error.

Effective Bets via Minimum Linear Torsion (EffBetsMLT)

As a solution to the shortcomings of the maximum Effective Number of Bets via PCA portfolio noted above, Meucci,
Santangelo and DeGuest (2014), introduce the maximum Effective Number of Bets via Minimum Linear Torsion
(MLT) portfolio. Instead of focusing on orthogonal sources of risk via principal portfolios in its decomposition, the
EffBetsMLT portfolio is solved via a de-correlating transformation (MLT) that finds the least disrupts the original
factors used to inform the portfolio selection. Similarly to EffBetsPCA its objective function is given by

xypr = argmax f(x)
s.t.1'x=1; 0 <x<1

where: f(x) = exp{—pu.r'logpmLr}
Where py 7 is the diversification distribution of de-correlated minimum linear torsion portfolio contributions to

portfolio risk, given by

(twr'~1x) © (tyr'Zx)
x'Zx

PmLT

Where tyr is the torsion matrix. In a departure from the ‘uniform prior’ perspective taken in all the other risk-based
portfolios discussed here, the EffBetsMLT portfolio is well adapted to a factor-based management paradigm where
the risk of the portfolio is denominated in pre-specified factors, whereupon diversification is imposed. In keeping with
the analysis of maximum diversification portfolios, it is applied in this study to the original asset returns without any
prior dimension reduction into a pre-defined factor portfolio. The EffBetsMLT portfolio was originally designed to
impose diversification upon a pre-defined factor portfolio differing slightly from its use as a maximum diversification

portfolio derived from underlying asset returns, as is the case here (see Meucci, Santangelo and DeGuest, 2014).



3. Covariance Estimation

By decomposing the covariance matrix via £ = diag(o) Q diag(o) it becomes possible to separately control the
estimation of the correlations and the volatilities and ideally choose the best models for each independently of the
other. The objective is to test models of volatility that theoretically promise an improvement to the historical standard
deviation estimate, specifically in the context of risk-based portfolio construction under the null hypothesis of no

improvement.

Volatility Models

Historical Sample Volatility (volHist)

The sample historical volatility estimator needs no introduction. Given its wide acceptance, ease of calculation and
statistical property of being an unbiased if inefficient estimator (see Meucci, 2009, for a thorough discussion). It will

form a baseline benchmark for the empirical evaluation of all other volatility estimators.
Oracle Volatility (oracleVol)

As its name implies, the oracle estimator is the perfect look-ahead estimator, of exactly the same form as the
historical sample volatility estimator, (volHist), except using the returns r, ; from the out-of-sample holding period
T + 7, i.e. one rebalance period ahead, in the estimation of the volatilities at time T. Out-of-sample returns ry, ; are
of course inaccessible in practice, but having partitioned the dataset into conditioning windows and holding periods

allows the use of the oracle estimator as a benchmark for the upper limit of volatility estimation improvements.

EWMA Volatility [volEWMA98; volEWMA96; volEWMA94]

The first of the conditional volatility models is the Exponentially Weighted Moving Average volatility estimator,

defined as:
67 = (1 - ¥ +262,

Where A is the decay coefficient. The potential usefulness of EWMA model beyond the historical sample estimator
lies in the introduction of both a reaction term (1 — A)r?,_; and a persistence term 162 ;. More weight is placed on
recent observations and the smaller A the more reactive is the estimate to the most recent observation. Three

different values A =[0.98, 0.96, 0.92] are considered with corresponding time periods that contribute half of the

weight given by % ~ [35,17,9] days. These are respectively denoted volEWMA98, volEWMA96 and

volEWMA92.



GARCH [voIGARCH(1,1)N, volGARCH(1,1)t, volGARCH(GIR)N, volGARCH(GJR)t]

Of the 140+ GARCH models defined in Bollerslev’s (2008) “Glossary to ARCH (GARCH)” which reflects the rich
literature that has evolved since the introduction of Auto-Regressive Conditional Heteroskedasticity models by Engle

(1982)- two are applied here:

1) First, the symmetric “plain vanilla” GARCH(1,1) model of Bollerslev (1986), as defined as:

ot = w+ agf_,+ Bof

Where g2 _; is the innovation term, a determines the reaction sensitivity of the model to volatility shocks,

measures the persistence in conditional volatility and the constant parameter w, together with the sum «a +

2 _ w

[ determines the long term volatility or unconditional variance (52) - via & T

Two versions of the model are in used in this study: one where the innovation term &Z_; is assumed to come
from a normal distribution, called volGARCH(1,1)N, and one where it is assumed to arise from a Student t-
distribution with degrees of freedom empirically calibrated for each of the individual returns series 1, =

(7"1,9 Tog e ,rN‘t), called volGARCH(1,1)t.

2) Second, the asymmetric GIR-GARCH model of Glosten, Jagannathan and Runkle (1993), defined as:

0f = w+ ag? | + M{g_; <0}, + o’

Where the term additional to the GARCH(1,1) model above, Al{s,_; < 0}e2_; , contains an indicator function
1{-} that amplifies the volatility estimate by A in the event that the most recent return was negative. This
‘leverage effect’ describes the empirical finding, especially in equity markets, that volatility increases much

more after a negative shock than after a positive shock of same magnitude [reference needed here??]. The

long term variance is given by g2 = m, where the rest of the parameters have the same
—(a 1
2

interpretation as for vanilla GARCH. As with the vanilla GARCH model, two varieties of GIR-GARCH model are
used — one with Gaussian innovations, volGARCH(GJR)N, and another with t-distributed innovations,

VOIGARCH(GIR)t.

The interest in adding GARCH volatility models to the study lies in their ability to finely calibrate the volatility estimate
to each individual security in the portfolio, with time-varying reaction and persistence functions, as opposed to the
EWMA approach where these are fixed across time and across securities. In addition, in the case of the GJR-GARCH

model, the ability to capture the leverage effect may further enhance the estimate.

Intraday Range Volatility [volRangePK, volRangeGK, volRangeRS, volRangeYZ]

All of the volatility estimators up to this point take as inputs the close-to-close daily returns, ignoring any information

that may be exploitable in the intra-day trading range. Four classic intraday range volatility models are added to the



analysis, viz: Parkinson (1980), Garman & Klass (1980), Rogers & Satchell (1991) and Yang & Zhang (2000) and are

defined as follows, with additional notation explained below:

1
4log(2)

1) Parkinson (1980) [volRangePK]: ofx(t) = (h(t) = 1(t))?

2) Garman & Klass (1980) [volRangeGK]: o2 (t) = % [R(t) — 1()]? — 2log(2)c?(t)
3) Rogers & Satchell (1991) [volRangeRS]: 034(t) = h(t)[h(t) — c()] + L(O[L(t) — c(t)]

4) Yang & Zhang (2000) [volRangeYZ]: 07z (tm-1,tm) = 05 (tm=1,tm) + koGrpgy (Em—1,tm) +

(1'_ k)Uﬁs(Gn—l,En)
Where the open, high, low, close log-prices of the trading day are denoted O, H;, L, C; , respectively, and then:

e o0, = 0, — C;_qisthe overnight jump

o ¢ = (C; — 0O isthe normalized closing price

e h,= H; — O;isthe normalized high price

o [, = L;— O;isthe normalized low price

e 1. = C;— C;_qisthe daily close-to-close return, and
e Inthe case of Yang & Zhang (2000),

o ag] is the variance of the overnight jump (o;)

034 . . .
o k= —— 71 1S @ parameter to be calibrated with N, the number of sample days

1.34+
Np—1

These estimators differ in the extent of intraday information utilized and estimator efficiency (see Baltas & Kosowski,
2015). In order of increasing information, volRangePK uses intraday high and low prices, but assumes drift term of
zero; volRangeGK adds the closing price, still with zero-drift; volRangeRS adds a time-varying, non-zero drift, and
volRangeYZ adds the overnight jump to all of the above. They have also been demonstrated to be theoretically multiple
times more efficient than the simple historical sample volatility estimator (see the original texts cited earlier in this
section). This last property is their most interesting feature and reason for inclusion in this study: if an estimator is, for
example, five times more efficient than another then, simply put, should need five times less data to achieve the same
performance. This might allow for high quality volatility estimates in situations where the length of the conditioning

window is limited or, all else being equal, superior estimates from the same data.

Correlation Models

The correlation models used in this study are briefly described below, from basic estimators to sophisticated
shrinkage approaches and then finally, breaking with the format of separately modelling volatilities and correlations,
the well-known Ledoit and Wolf (2003 & 2004) approach that operates directly on the covariance matrix is included

as a shrinkage benchmark.



Cross-Sectional Standardization

Two versions of all the correlation models are included. First, a version denoted by the prefix [noNorm_] where the
inputs to the correlations are the raw sample returns r, = (7”1,9 Tots s rN‘t). Second, a version [csvNorm_] that

inputs demeaned and standardized returns, following Bouchaud and Potters (2011). In this case, let, r;, — 7 =

T A . g
Lt/ﬁi . with §; ; the cross-sectional volatility given by

Oit =

)

whereby the final returns fed into the correlation estimator are stationary to a first-order approximation.The
motivation for using the cross-sectional volatility 6; ; in the normalization is that this performs a shrinkage function
in itself, and as demonstrated in Couillet, Mammoun and Pascal (2016), serves as a robust estimator of the

covariance.’

Historical Sample Correlation (corrHist)

Like the sample volatility estimator, the Pearson sample correlation estimator needs no introduction. It is likewise

used as a baseline benchmark for all the other correlation estimators

Oracle Correlation (oracleCorr)

As its name implies and in parallel to the oracle volatility estimator, the oracle correlation estimator applies the
Pearson sample correlation with perfect foresight to the out of sample returns 71, ;, as a indication of the upper

limit of what should be possible with improved correlation estimation.

Average Correlation (corrAve)

In the average correlation estimator the cross-sectional average correlation of the sample returns at time T is simply
used as the best estimate of the out of sample correlations for all pairwise correlations. This idea first occurred in Elton
and Gruber (1973). It is an extreme view on the information content of the cross-section, such that no pair of
correlations can be estimated more accurately than any other and only the level of average correlation at time T in
the time series is reliable information. The Ledoit and Wolf (2004) approach shrinks towards this as a target, and the
average correlation estimator may perform well in certain situations where only very short conditioning windows are

available.



Plesiochronous Correlation (corrPlesio)

The plesiochronous estimator (from the Greek ‘plesio’, which means near) takes a different approach and questions
the reliability of the choice of the size of the time-step dt and attempts to address this issue by taking averages of
correlations measured over different tenors of dt. This is similar to the estimator understood to be in use in

Choueifaty, Coignard and Reynier (2013)" and defined as follows:

Leti = [1,2, ..., k] denote returns series rt(i) = (rl(’?,rz(‘?, ,rA(,lg) of different tenors, such that if i = 1, the returns

series are denominated in one-day returns; for i = 5, in five-day returns and so on. Then the correlation estimate ()

is composed of weighted slices of sub-matrices of different tenors, simply as:

— vk 1
-Qples = Li=1} ° Q;

Where k =5 is the maximum tenor of returns and corresponding number of slices of the final estimate, Q. It is
important to limit the size of the highest tenor point, such that conditioning window m is large enough that

correlations estimated from sub-windows of size m/k would contain enough data-points not to lose significance.

Eigenvalue-Clipping Shrinkage Estimator (corrEigenClip)

For the last two correlation estimators, it is useful to introduce as in Bouchaud and Potters (2011), the eigen-

decomposition of the sample correlation matrix as;

N
E = Z Akuku;(
k=1

Where 4, refers to the set of eigenvalues sortedas 4y = 1, = -+ = Ay = 0, with uy, u, -+, uy the corresponding
eigenvectors of E.The eigenvalues-clipping estimator of Bouchaud and Potter (2011), proceeds as follows: Keep the
[Na] top eigenvalues and shrink the others to constant y that preserves the trace of the resulting correlation matrix,
such that Tr(ﬂcu-p) =Tr(E) = N, thus:

A if k < [Na]

_ lip 1 clip
Qain = &8P upu where: = { :
clip = e Wellk s £k y  otherwise

The usual procedure for choosing the cut point «, is to assumed that all sample eigenvalues beyond the upper edge
of the Maréenko-Pastur density contain some signal and can therefore be kept; the rest are suspected to contain
noise and are set to constant y. However, there are two potential shortcomings with this choice of a: First, as
reported in Bouchaud, Bun and Potters (2016), this treatment ignores the fact that the largest empirical eigenvalues
are typically overestimated. Second, the trace-preservation constraint placed on y typically implies that it would be
set to the average of the remaining eigenvalues to be ‘clipped’. Being an average, some of these will necessarily be
above y and some below, and the smallest eigenvalues will then be augmented. This has the contra-intended effect

of increasing the suspected noise.



Rotationally Invariant Shrinkage Estimator (corrRIE)

In response to the shortcomings of the previous estimator, Bouchaud, Bun and Potters (2016) introduce the
Rotationally Invariant (RIE) estimator, following the arguments of Ledoit and Péché (2011) and Bun and Knowles
(2016). The rotational invariance of the estimator implies that one does not have any knowledge of the structure of

the true eigenvectors, so it is best to leave the eigenvectors u; of E unchanged.
In summary (see Bun, Bouchaud and Potters, 2017 for details):
— RIE
Qpie = S U Uk

Where the adjusted eigenvalues now become:

RIE _ Ak
k 11— q + qzesk(ziOl?

_ N
° q_F’

e z,= A —i/V/Nisacomplexvariable Vk € [1,N]

1

_ 1N
o si(z) = 5 Zj:l;j::kﬁ

To which is added a small sample correction via:

2 |1 —-q+ qZkgmp(Zk)|2
Ak

Fk=0-

Where:

Zx + 02(q-1) — Jzi—An/ZK =24

2qzyo?

* Imp(zp) = is the Stieltjes transform of the rescaled Marcenko-Pastur

distribution
2
1+
© A=Ay (1—%) ’

2 _ _ M
a-vp?’

and 4y is the smallest empirical eigenvalue.

Now finally,

£ = T EREif I, > 1
7 ERIE otherwise

The RIE estimator was designed especially to provide a solution in cases where the ratio g = % — 0(1), which often

occurs in large scale portfolios, where N — T as a result of a limit on data availability. Bouchaud, Bun and Potters
(2016) report empirical results where the RIE estimator results in significant reduction in out of sample portfolio

volatility relative to a selection of other estimators.



Ledoit & Wolf (2003, 2004) Shrinkage Estimators (LWSMM & LWCC)

The familiar Ledoit and Wolf (2003 and 2004) estimators operate directly on the covariance matrix and have the

form:
Qw = aE+ (1—a)[(1=p)ly + pee’]

Where e is the unit vector, [y the identity matrix and a a coefficient that determines the shrinkage intensity, to be
established via optimization. p is the single market factor in the case of LWSMM (Ledoit and Wolf 2003) and the

constant correlation in the case of LWCC (Ledoit and Wolf 2004)

4. Data & Methodology

The dataset that forms the basis of the empirical analysis is the equity market of the Johannesburg Stock Exchange
(JSE) over the time period March 1997 to September 2015. A daily point-in-time database was reconstructed from
JSE, Bloomberg ® and Thomson Reuters Datastream ® data, taking into account every ticker that is known to have
existed over this time, to minimize survivorship bias. A total of 898 unique tickers exist in this dataset. From the total
universe existing at each time, a reduced, eligible universe, was filtered, according to two liquidity filters. First, the
universe was sorted on a 250-day simple moving average of value traded, and then cut at rank number N = 60.
Second, a zero-trade day filter set at 15% was applied such that any security with a number of non-trading days
greater than 15% of the trailing sample length was excluded. These filters are deliberately set to be quite strict on

liquidity, as the objective is to produce results that are of practical relevance to large investors or risk managers.

Approach:

In order to systematically develop the sensitivity profiles to sources of estimation risk in the covariance, we proceed

as follows:

1. First, estimation error of all volatility and correlation models is evaluated on both a root-mean-squared-error
(RMSE) as well as a rank-order correlation criterion, over 22 different holding period and estimation window
combinations. Note that we are interested in comparing the differences of sample means of RMSE across
time horizons adapted from the method of Alexander (2008, ch. 8.3).

2. Thereafter, risk-based portfolio weight sensitivity to a range of separately controlled uniform correlation and
volatilities is measured on a normalized Herfindahl Index, to explore the likely level of concentration in
weights as a function of the level of volatilities and correlations.

3. Next, empirical performance data of the risk-based portfolios are studied, but with the exception of their being
conditioned on a decomposed covariance matrix that adds the covariance information in step-wise fashion to

isolate the sensitivity to correlations and volatilities. These results are reported in Figure 2. Using the



decomposition £ = dg(o) Q dg(o), the analysis proceeds through four levels of controlled information supplied
to the covariance matrix such that:

a. Q = I:First, the correlations are set to constant, via the Identity Matrix, such that all off-diagonal terms
composing all p; j i # j are zero and the correlation content of the data is effectively ‘switched off’. This
correlation matrix is then combined with volatilities estimated from all the models in turn, and then
recomposed into the covariance. This leaves covariance matrix £ and the risk-based portfolio
optimizations in turn, with no other information other than volatilities to solve the optimal weights. Thus
is possible to isolate the portfolio outcome arising from the utilization of volatility information alone.

b. Q = E :Second, the correlations are set to the sample historical correlations E, again combined with
volatilities from all the volatility models to recompose the covariance matrix.. This more realistic setting
allows us to assess whether any portfolio improvement can be made via superior volatility estimation in
the event that correlation estimates superior to E are impossible.

c. o = k: Turning next to the volatility component of the covariance matrix, first the volatilities are set to a
constant. Unfortunately, setting this constant k = 0, as is the case with the correlations under a. above,
will lead to zero matrices, so the next most interesting least-information case is chosen where k is set to
the median of all individual asset volatilities, cross-sectionally and across time. In this data set, the value
is 30.81% p.a., rounded down to k = 30%. This vector of uniform volatilities is then recomposed into the
covariance, along with correlation estimates from every model, allowing us to ‘switch off’ the volatilities,
to the greatest extent possible and isolate the impact of the correlation estimates. Knowing in advance
the median of all asset volatilities of course introduces look-ahead bias into the early samples drawn from
the time series. This is deemed not to matter as the context is anyhow artificial and the volatility
information is very nearly zeroed out be setting the volatility to a constant.

d. o0 = oy : Finally the volatilities are set to the historical sample volatilities, and again recombined with
correlation estimates from all the models, in an effort to assess whether any portfolio improvement is
possible via superior correlation estimation if no improvement is possible upon sample correlation

estimates.

By evaluating and contrasting the behaviour of the risk-based portfolios in each of the four ‘controlled
information content’ cases above, we are able to develop rich insight into the sensitivity of risk-based

portfolios to volatility and correlation estimates.

4. Finally, all volatility and correlation models are combined in search of the best empirical combination for
each risk-based portfolio. These portfolios are then compared against those solved via the simple sample
covariance as a benchmark, along with significance tests on the means, out-of-sample volatilities and Sharpe
ratios of each. In the first two cases, the familiar t-test for difference between sample means and F-test for
differences in sample variances are used. For the Sharpe ratios, the non-parametric Ledoit and Wolf (2008)

test for differences in Sharpe ratios is applied.

The oracle estimator oracleVol and oracleCorr is added to each of the ‘controlled information content’ cases in 3a),
3b), 3c) and 3d), and in combined form to 4) in order to indicate an upper bound for possible estimation

improvement.



Time Horizons

In order to increase the robustness of the results and observe model performance under different time horizons, the
trials in section 3) are repeated for 22 different conditioning window (m) and out-of-sample holding period (1)
horizons. To avoid an explosion in permutations, for the combined correlation and volatility analysis, as contemplated
in in section 4 above, only one m : T horizon combination of a conditioning window of 500 days and holding period

of 125 days combination is reported here.

5. Empirical Results and Discussion

This section reports the results of the quasi-analytical and empirical studies outlined in in the previous section. Read

with the tables and figures appended at the end of the paper, it progresses through:

Estimation error of volatility models assessed at underlying stock level — Tables 1 & 2.
Estimation error of correlation models assessed at underlying stock level — Tables 3 & 4.

Risk-based portfolio weight sensitivity under uniform volatilities and correlations.

P W oe

Select performance metrics (out-of-sample returns, volatilities and turnover) for risk-based portfolios under

conditions of a ‘controlled information content’ covariance matrix (with correlation or volatility information

switched ‘on’ or ‘off’ within the covariance matrix, as developed in part 4 of Data & Methodology — Figure 2,

Panels 1-5).

5. Empirical performance rank order distributions of all possible volatility-correlation model combinations
along six performance metrics for each portfolio — Figure 3.

6. Full scale performance metrics for each risk based portfolio showing the detail of the results summarized in

Figure 3. This is shown in Tables 5-9.

Refer to Covariance Estimation or Appendix A for model codes and abbreviations. Given the size of the dataset
depicted, extensive use is made of heat maps to elicit the structure in the data. To aid interpretation, green is always
in the desirable direction, red in the undesirable direction, although both may represent high or low numbers,

depending on context.

Estimation error of volatility models

Table 1 displays the root-mean-squared-error (RMSE) of the in-sample estimated individual stock volatilities from each
model against the out-of-sample realized volatilities over the holding period. 22 different holding period 7 and
conditioning window (m) sizes (collectively referred to as ‘horizons’) are reported. Each datapoint is the time-series
average of the RMSE for each m : 7 pair, which in turn summarizes the predictive error across the sample of stocks
existing at each rebalance period. The leftmost data column gives the sample historical estimator (volHist) as the
benchmark. Significance at the 5% level is indicated by bold italic underlined fonts, against the null of no difference to

the RMSE of the benchmark volHist model. Models producing a lower RMSE are more desirable.




The most important findings are:

e The choice of time horizon often matters much more than the model, as evidence by the magnitude of the
last row of Table 1 (median across horizons), vs the last column (median across models).

e There are not many models that perform significantly better than the benchmark volHist on this out-of-
sample predictive testand many perform significantly worse. .As can be seen in Table 1, the GARCH class of
models perform poorly, especially in the short horizon end of the trials. There is only one horizon
combination, 500 : 20 where the GARCH class shows significant superior performance to volHist, albeit still
outperformed by the EWMA class. Interestingly, the intraday range class performs particularly poorly, even
at the short horizon end, with exception of volRangePK, the older (1980) model in the very short 20 day: 20
day end. The more sophisticated volRangeYZ estimator appears uniformly poor across all horizons.

e Despite their theoretical simplicity, the EWMA estimators appear to have the lowest error in estimating out
of sample volatility. Particularly volEWMA98 outperform volHist and most other models over most many of

the horizon, with altogether the lowest error

In confirmation of these findings, Table 2 reports rank order correlations of individual stock volatilities using
Kendall’s Tau as a measure. This test evaluates which model can achieve the best rank-order correspondence
between the in-sample and out of sample ranked individual stock volatilities. Considering the rank order in addition
to the RMSE of individual volatilities aims to lend robustness to the assessment". Significance against the null

hypothesis of no difference vs the volHist benchmark is similarly indicated. Note that high numbers are preferred in

this case.
The findings agree almost perfectly with Table 1, in that principally:

e GARCH models as a class do not perform very well, and do not in a single instance outperform volHist.

e Range models perform rather poorly and worse the more advanced and recently developed the model.

e The volEWMA98 estimator is the only one that significantly outperforms the volHist benchmark but in only a
few of the horizons tested.

e In addition, it appears that all models perform poorly over a long : short T combination, e.g. 500 : 20 or 250 :

20. More closely matched m and 7 sizes appear more accurate.

Estimation Error of Correlation Models

Turing now to correlations, Table 3 reports the results of applying the RMSE test to estimated vs realized individual
pairwise correlations for all holding periods and all correlations models. Note that horizons where m < 60 are not
feasible as the matrices will no longer be positive definite, for containing fewer observations than variables. In
parallel to the volatility evaluation, significance at the 5% level against the null of no difference to the historical

sample benchmark estimator (corrHist), is again indicated in bold italic underlined font. Here we find that:



e In contrast the case with volatilities, many more of the models outperform the historical sample estimator
(corrHist).

e In particular, the Rotationally Invariant estimator (corrRIE), with or without cross-sectional volatility (CSV)
normalization, outperforms in nearly every period tested and its normalized version, csvNorm_corrRIE has
the lowest error of all models.

e Differently from the case for volatilities, the median error across time horizons is now closer to the median
across models, suggesting that the time horizon is no longer as dominant as the in the case of volatilities.

e Similarly to the finding in Table 2, holding periods shorter than 40 days become uniformly poor in the result

across all models, even if estimated with a long window.

Table 4 repeats the rank order correlation analysis of Table 2, this time for all the individual pairwise
correlations. The notable outlier is the average correlation (corrAve), but this is to be expected as an average
cannot yield a ranking of the cross section. In this analysis the RIE estimator in non-normalized form

(noNorm_corrRIE) performs exceptionally well.

Weight sensitivity under uniform volatilities and correlations

To briefly explore the question of whether risk based portfolios are sensitive to the average level of volatilities or
correlations, Figure 1a and 1b report results of a controlled studied where respectively the volatilities are
correlations are set to a constant, uniformly applied over the cross section, and then varied over a feasible range.
Sensitivities are given by the Herfindahl index on portfolio weights, to indicate deviation from uniformity, for every
rebalance date in the time series from 1997 to 2017. Contrasting Figure 1a with 1b, we see immediately that when
the level of volatilities are set to uniform across the cross-section (every stock is given the same volatility), the
portfolio weights range within the same bounds, irrespective of the actual level of volatility. Not so for correlations:
portfolio weights are very sensitive to the level of uniform correlations, for two classes of risk-based portfolio, viz.
MV and EffBetsPCA which both show extreme ranges in response to varying the level of uniform correlations. ERC,

MDP and EffBetsMLT do not appear to show any sensitivity to the level of uniform correlations.
‘Controlled information content’ portfolio behaviour

Figure 2 reports the results of the ‘controlled information content’ study which ‘switches on’ various components of
the covariance matrix, as described in Data and Methodology. To guide interpretation, each panel of Figure 2 reports
three portfolio metrics (mean return, out-of-sample portfolio volatility and portfolio turnover, in that order) for,
from left-most in red, the equally weighted portfolio, then case where 0 = 1 and the volatility models are varied (in
olive green), then the case where 0 = E and volatility models are varied (in bright green), to the case where 0 = k
and correlation models are varied (in dark blue), to finally the case where o = oy;5; in magenta and correlations
models are varied and combined with historical correlations. The height of the boxplot bars represent all the horizon

combinations encountered in Tables 1 to 4. The oracle estimator is added here for the first time.



The following highlights from many possible observations are noteworthy:

e As mentioned earlier, horizon effects are often greater than model effects, as witnessed by the height of the
bars relative to the distances between model averages.

e We note that the tightest compression in all three metrics occurs when 0 = T and the correlations are
zeroed out, showing that all risk-based portfolios are more sensitive to correlations than to volatilities, but
differentially so.

e The oracle estimator (second in every group) shows the best out of sample volatility, but not necessarily the
best return or turnover metrics. In the case of volatility, this is reassuring, in that it suggests both that, the
oracle estimator is well defined as a benchmark for estimation models, as well as that effort expended in
estimation improvements will yield a benefit.

e Whereas nearly all of the risk-based portfolios improve upon the EW portfolio, it is harder to see how most
of the models convincingly outperform the historical sample estimator for that same portfolio (the first in

every group).

Empirical rank order distributions of combined volatility and correlation models

Figure 3 shows six different performance metrics for all the risk-based portfolios, in a high-low ranked order. The
equally weighted portfolio appears as a dark dotted line. Vertical lines represent the position of the sample historical
estimators (volHist and corrHist), combining into the sample covariance matrix E, in the rank order of all other
possible permutations (122 in total) of volatility and correlation models combinations, with matching colours
identifying the portfolio. Everything else other than the covariance model is held constant. Several interesting

observations follow:

e Considering the range of the curves and their shape across risk-based portfolios, especially along dimensions
of Sharpe ratio and turnover, in order of sensitivity to the covariance model combination, EffBetsPCA is the
most sensitive, followed by MV, then MDP, then ERC, and finally EffBetsMLT shows the least degree of
sensitivity.

e The location of the sample historical covariance estimator, is not in the top-ranked position, on any of the
metrics. It appears possible to improve on this benchmark, but not equally across portfolios. Considering the
flatness of the curve beyond this point in the cases of MDP and ERC for instance, it seems unlikely that such
improvements would be significant. Not so for EffBetsPCA, where large performance enhancements appear
possible. (Tables 5 to 9 display significance tests for these.)

e Inspecting the turnover panel as an additional guide to portfolio sensitivity to the covariance MDP shows a
unique drop around position 100. The results reveal that this is the position below which all the average
correlation permutations (corrAve) are found. This shows the sensitivity of MDP to information in the

correlation structure, beyond that of any other portfolio.



e Perhaps a remarkable finding is in the panel representing distributional skewness. Whereas EW, ERC and
EffBetsMLT all share a negative skew in the order of -0.2 , almost completely invariant to the covariance,
MDP, MV and especially EffBetsPCA are able to achieve a skew in their distributions at much higher levels,
reaching positive numbers and in the case of EffBetsPCA, numbers > +1.0. This is rarely seen in long-only,

fully invested equity portfolios.

Full scale permutations of volatility and correlation models

Complete performance data summarized in Figure 3 are exhibited in Tables 5 to 9 for reference purposes. Colour
maps aid interpretation and range statistics are displayed. The position of the oracle estimator (called oracleCov) is
also shown, along with that of the equally weighted portfolio. A single horizon of 500 : 125 days is used for all
portfolios. Significance below the 5% level against of a null of no difference to the sample historical covariance
estimator (composed out of volHist and corrHist), is indicated by bold text and boxes around the datapoints. The
sample historical benchmarks (volHist and corrHist) are stated in the first rows and first columns. Observations are

too many to itemize, but in general:

e The sample historical estimators is difficult to outperform reliably. This occurs typically when the EWMA
class volatility estimators are combined with the RIE correlation shrinkage model, albeit infrequently.

e The usefulness of a rich model of the covariance will depend critically on the type of risk based portfolio
within which it is used. For instance, in the case of ERC there exists not a single model combination that is
able to reliably outperform the sample historical estimator and very few that are able to reliably
underperform. This illustrates the strong internal shrinkage embedded in the ERC portfolio objective
function, first noted by Roncalli (2013).

e Inunreported results, nearly all of the risk-based portfolio combinations outperform the EW portfolio on all
metrics except turnover (with strong significance observed for returns, out-of-sample volatility and Sharpe
ratios), despite the fact that expected returns form no part of their construction. This finding is worthy of
study in its own right.

e Itis the covariance matrix of individual asset returns that is in use in all instances in this study. In unreported
results, there exists a preliminary indication that when the dimension is reduced from N = 60 that
constitutes the dimension of most portfolios here, the probably of reliably outperforming the sample
covariance estimator may increase. Pre-specified factor models where the risk-based portfolio is solved
upon the factor portfolios rather than the underlying assets, may be such a candidate. We leave this for

future work.



6. Conclusion

This study aims to connect a rich literature and several sophisticated recent methods in covariance estimation to the
domain of risk-based portfolio construction. Although increasingly popular of late, the systematic study of
covariance estimation in the context of general risk based portfolio construction has mostly escaped attention, other
than for the recent study by Ardia et al. (2017). Insofar as some studies of estimation touched on portfolio
construction, these have almost exclusively focused on mean-variance or minimum-variance portfolios We make a
contribution to this under-researched area via illustrating the impact of covariance estimation for six risk based
portfolios, in a long-only equity market setting. In general the finding is that the simple sample covariance estimator
is difficult to outperform and that reliable outperformance strongly depends on the precise risk-based portfolio
objective function, with certain of these showing strong sensitivity to covariance estimation and others showing
none whatsoever. Several interesting properties of risk-based portfolios are uncovered, notably the ability to
produce a strong positive distributional skew, and in general, strong outperformance of the equally weighted
portfolio on many dimensions of evaluation, despite no consideration of expected returns in their construction

process
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Table 1: Estimation Error of Volatility Models

RMSE of Volatility Models: Estimated vs Out-Of-Sample Volatility of Individual Volatilities
£ , i 7
5 e | g = = = 4] 2 o 2 ® » w0 P 5
: |9 ¢ | 2 & & & & & & & & & & |3
g2 g g g g g g E g g E E =
500 0.122 0123 | 0109 0404 | 0.126 0128  0.128 1019 0125 0129 0132 0.174 0.127
125 250 0.115 0124 0410  0.405 0128  0.28  0.136 0.205 0117 0121  0.124  0.169 0.124
125 0.113 0.125 0111  0.106 0.127 0.257 0139 0177 0.113 0.118 0.122 0171 | 0123
500 0.130 0122 0115 0112 0.122 0199 0119 0121 0.133 0136 0140 0.184 0.126
&0 250 0.123 0123 0116 0.114 0.123 0.225 0421 0.219  0.124 0128 0132 0183 | 0124
125 0.118 0123 0116 0412 0.123 0490 0.126 0.302  0.119 0124 0129 0.187 | 0124
500 0.133 0125 0417 0.114 0.128 0.180  0.128 0.129  0.136 0139  0.143  0.189 0.131
40 250 0.126 0127 0118 0116 0.128 0.200  0.128 0.193 0.127 0131 0135 0184 | 0128
125 0.120 0127 0118 0114 0.128 0433 0131 0379 0122 0126 0131 0.18 | 0.127
500 0.145 0.131 0125 0125  0.133 0.160 0.132  0.134 0.146 0.150 0153 0.201 | 0.140
20 250 0.137 0132 0126 0125 0134 0172 0.133 0214 0138 0141 0146 0197 | 0138
125 0.130 0132 0125 0123 0134 0487 0136 0341 0131 0135 0140 0194 | 0135
500 500 0.127 0129 0115  0.107 0.143 0.141 0140  0.143 0.132 0.136 0.138 0.160 | 0.137
375 375 0.124 0.141 0130  0.121 0.144  0.144  0.143 0.146 0.130 0.134 013 0173 | 0138
250 250 0.117 0126 0113 0108  0.123 0.131 0.128 0.132  0.118 0121 0125 0171 [ 0124
200 200 0.124 0126 0116 0.114 0.130  0.135 0132 0.137 0.125 0.128 0132 0173 | 0129
160 160 0.115 0.141 0128 0118 0135 1605 0.134 0388 0116 0121 0125 0161 | 0131
125 125 0.113 0125 | 0411 = 0406 0127 0257 0139 0177 | 0413 0118 0122 0171 | 0123
80 80 0.118 0.130 0420 0117  0.132 0.133 0487  0.118 0123 0128 0462 | 0129
60 60 0.121 0124 0118 0121  0.130 0.135  2.065 0.120 0.125 0131 0175 | 0.128
40 40 0.120 0123 0118 0134  0.135 0.143  3.048 0117 0122 0127 0178 | 0131
20 20 0.135 0135 0147 0182  0.149 0.157 2 0.128 0132  0.139  0.157
Median (Horizons) | 0.122 0126  0.117 0.114 0.129  0.210 0.124 0.128 0132 | 0177

Table 1 reports the estimation error of the volatility models in the form of Root-Mean-Squared-Error (RMSE) of volatility estimate. Numbers
displayed are the time series averages over the entire study period (03-Mar-1998 to 31-May-2017) of the cross-sectional RMSE of in-sample to
out-of-sample volatilities for every stock at each rebalance point, for 22 different conditioning window and holding period horizon combinations.
The comparison benchmark is the sample historical volatility estimator, shown in the first column. Colour scales aid observation with red in the
unfavourable direction and green showing better-than-benchmark estimators. Median errors across all horizons are shown in the final row and

across models in the final column. Bold italic and underlined fonts indicate significance at the 5% level or below.



Table 2: In-sample to Out-of-Sample Pairwise Rank Order Correlation of Correlation Models

Rank Order Correlation of Volatility Models: Estimated vs Out-of-Sample Rank Order of Individual Volatilities - Kendall's Tau
3
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500 0504 | 0466 0503 0522 0462 0459 0461 0455 0445 0420 0.398 0378 | 0.460
125 250 0516 | 0456 0493 0515 0463 0453 0458 0453 0468 0444 0421 0410 | 0457
125 0498 | 0457 0491 0501 0452 0437 0436 0427 0466 0442 0418 0413 | 0.447
500 | 0466 | 0.416 0461 0493 0428 0423 0430 0427 0410 0390 0371 0359 | 0.425
60 250 0415 0460 0491 0428 0419 0430 0417 0435 0413 0392 0.384 | 0.423
125 0414 0459 0483 0419 0407 0408 0393 0445 0422 0398 039 | 0417
500 0406  0.445 0468 0414 0409 0415 0412 0390 0372 0351 0341 | 0411
10 250 0406 0445 0466 0417 0408 0413 0407 0412 0393 0372 0367 | 0.410
125 0. 0.442 0458 0404 0391 0397 0390 0424 0405 0. 0.380 | 0.404
500 0377 0404 0419 0382 0378 0385 0381 0.345 0.330 0.313 0.304 | 0.379
20 250 0.376  0.402 0417 0378 0370 0377 0369 0.366 0350 0.333 0326 | 0373
125 0374 0401 0413 0372 0360 0365 0357 0378 0362 0.343 0339 | 0.369
500 500 0.448 0.491 _0.491_ 0.435 0.427 0.430 0.421 0.419 0.397 0.369 0.357 0.429
375 375 0.47L 0497 0517 0450 0437 0448 0438 0445 0427 0406 0.394 | 0.446
250 250 0445 0499 0529 0471 0457 0459 0445 0475 0450 0425 0408 | 0.458
200 200 0434 0480 0505 0461 0452 0450 0447 0458 0436 0415 0401 | 0451
160 160 0.433 0483 0508 0447 0442 0432 0439 0468 0442 0417 0415 | 0.442
15 | 128 0457 0491 0501 0452 0437 0436 0427 0466 0442 0418 0413 | 0.447
80 80 0.421 0462 0475 0428 0409 0410 0397 0448 0425 0. 0.405 | 0.423
60 60 0415 0449 0462 0407 0389 0.3%0 0373 0435 0413 0389 0388 | 0410
40 40 0.3%9 0416 0418 0373 0.360 0404 0384 0.3 0.363 | 0.379
20 20 0346 0350 0351 0313 0295 0.350
Median (Horizons) 0416  0.461 0.487 0.428 0.422 0.435

Table 2 reports the rank order correlation between In-Sample (IS) and Out-of-Sample (OO0S) volatility estimates for all models under study.
Numbers displayed are the time series averages of the rank order correlation using Kendall's Tau as a measure, for each cross-section of stocks in
the IS vs OOS periods, for each of 22 different holding period and conditioning window combinations. Colour scales aid interpretation with green
blocks representing a better estimate (higher rank order correlation) and red blocks an inferior estimate. Median rank order correlations across
all horizons are shown in the final row and across models in the final column. Bold italic and underlined fonts indicate significance at the 5% level

or below.



Table 3: Estimation Error of Correlation Models

RMSE of Correlation Models: Estimate vs Out-Of-Sample Error of Individual Pairwise Correlations
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125 0197 | 0189 0210 0207 0209 0200 (0192 0184 0188 (0183 0190 0.187 | 0.191
500 0204 | 0200 0.227 0.224 0.210 0203 0207 0.203 0203 0199 0204 0202 | 0.203
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200 200 0.161 | 0154 0183 0179 0.173 0163 0.158 0.151  0.155 0.150 0157 0.153 | 0.157
160 160 0165 | 0154 0184 0473 0178 0166 0461 0150 0.158 0149 0160  0.157 | 0.161
125 125 0176 | 0164  0.190 0.183 0189 0177 0171 0158 0167 0157 0169 0165 | 0.170
80 80 0.198 | 0.191 0.201 0499 0215 0207 0189 0182 0184 0181 018  0.181 | 0.190
60 60 0218 | 0210 0210 0209 0290 0231 0208 0199 0201 0197 0202 0195 | 0.208
Median (Horizons) | 0484 | 0.178 0492 0183 0185 0180 0182 0177 0183  0.180

Table 3 reports the estimation error of the correlation models in the form of Root-Mean-Squared-Error (RMSE) of pairwise correlation estimate.

Numbers displayed are the time series averages over the entire study period (03-Mar-1998 to 31-May-2017) of the cross-sectional RMSE of in-

sample to out-of-sample correlations for every stock at each rebalance point, for 20 different conditioning window and holding period horizon

combinations. The comparison benchmark is the sample historical correlation estimator, shown in the first column. Colour scales aid observation

with red in the unfavourable direction and green showing better-than-benchmark estimators. Median errors across all horizons are shown in the

final row and across models in the final column. Bold italic and underlined fonts indicate significance at the 5% level or below.



Table 4: In-sample to Out-of-Sample Pairwise Rank Order Correlation of Correlation Models

Rank Order Correlation of Correlation Models: Estimated vs Out-of-Sample Rank Order of Individual Pairwise Correlations - Kendall's Tau
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125 250 0.408 | 0.398 0.359  0.399 : 0.408

125 0.374 0.367 0.360 0.361 0.374

500 0.353 | 0.345 0.346  0.347 0.353
60 250 0349 | 0342 0340  0.340 0.349

125 0.327 | 0.320 0312 0311 . 0.342 0.327

500 0.317 | 0.310 0.311  0.311 0.303 0321 0315 0.317
40 250 0.314 | 0.307 0.305  0.305 0.319  0.322 0318 0.314

125 0.297 | 0.290 0284  0.283 0311 0312 0308 0.297

500 0243 | 0.245 0244 0245 0239 0252 0249 0.249
20 250 0.247 | 0.243 0.240  0.240 0.251  0.253  0.251 0.247

125 0.236 | 0.230 0225 0224 0245 0247 0244 0.236
500 500 0.462
375 375 0.464
250 250 0.440 0.457
200 200 | 0411 | 0.3%6 0.401 0424 0.414 0.411
160 160 | 0.406 | 0.394 0.393 0411 0.406
125 125 0.374 | 0.367 0.360 0.392 0.382 0.374
80 80 0.320 | 0.309 0.300 0.344 0.342 0.334 0.329
60 60 0.278 0.271 0.257 0.257 0.293 0.294 0.289 0.285

Median (Horizons) 0.351 0.344 0.343 0.343 0.353 0.358 0.353 0.352 |

Table 4 reports the rank order correlation between In-Sample (IS) and Out-of-Sample (OO0S) volatility estimates for all models under study.
Numbers displayed are the time series averages of the rank order correlation using Kendall's Tau as a measure, for each cross-section of stocks in
the IS vs OOS periods, for each of 20 different holding period and conditioning window combinations. Colour scales aid interpretation with green
blocks representing a better estimate (higher rank order correlation) and red blocks an inferior estimate. Median rank order correlations across
all horizons are shown in the final row and across models in the final column. Bold italic and underlined fonts indicate significance at the 5% level

or below.



Figure 1a: Herfindahl Index of Portfolio Weights under Uniform Volatilities

Herfindahl of Risk-Based Portfolio Weights at Levels of Uniform Volatilites
Date Range 1997 1o 2017, rebalancing portfolios: m = 500, tau = 125
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Figure 1b: Herfindahl Index of Portfolio Weights under Uniform Correlations
Herfindahl of Risk-Based Portfollo Weights at Levels of Uniform Correlations
Dale Range 1997 to 2017, rebalancing portiolios: m = 500, tau = 125
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Figure 1a and 1b normalized Herfindahl indices of portfolio weights for each risk-based portfolio. The Herfindahl indices H(x) € [0,1] are scaled such that
maximum concentration is reached at 0 and full diversification (i.e. equal weight) is at 1. Datapoints are collected from rebalancing portfolios with m = 500; t =
125 with either the volatilities (Figure 1a) or the correlations (Figure 1b) controlled to be uniform, over the ranges as depicted on the x-axis. Each set of uniform

volatility and correlation points represent a full run through the 1997 to 2017 dataset.
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Comparison of Portfolio Metrics across Controlled Split-Sigma Iterations
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Figure 2 - Panel 2

ERC: Comparison of Portfolio Metrics across Controlled Split-Sigma Iterations
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MDP: Comparison of Portfolio Metrics across Controlled Split-Sigma Iterations
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EffBetsPCA Portfolio Empirical Performance Under Controlled Covariance

Figure 2 - Panel 4

effBPCA: Comparison of Portfolio Metrics across Controlled Split-Sigma Iterations
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effBPCA: Comparison of Portfolio Metrics across Controlled Split-Sigma Iterations
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EffBetsMLT Portfolio Empirical Performance Under Controlled Covar

Figure 2 - Panel 5

effBMLT: Comparison of Portfolio Metrics across Controlled Split-Sigma Iterations
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Figure 3: Rank Order Distributions of Volatility-Correlation Model Empirical Performance Metrics
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Table 5 — Panel 1: MV Portfolio Empirical Performance Metrics: m = 500; T = 125; All Model Combinations

Geometric Mean Return p.a.

MV -
Correlation Models
Holding Period:
125days 2 %
i<l 2 2 < %) “
8 b g S 3 g ) & w u K 5
Conditioning Window: I T < < o [ i ] z z 3 2
5 s 5 S S S 5 s S S 9 2 S
500 days 8 S, 8 S, S S, 8 S 8 o S s @
{ { { { { . >
£ £ £ E £ E £ 13 £ E <% s
N =60 S 2 S 2 S 2 S 2 S 2 s¢E £
Volatility Models| 2 3 2 3 2 3 2 3 2 3 ss 3
volHist| 20.02% 20.36% 18.37% 18.39% 19.18% 19.28% 20.92% 2088% | 2047% | 20.83% |ull 19.87% Min (Ex-Ora.)
VvolEWMA92| 19.14% 18.72% 17.60% 17.58% 18.21% 18.12% 18.96% 18.76% 19.20% 18.77% |l 18.51% 17.41%
Vol[EWMA96( 19.82% 19.51% 19.39% 19.20% 19.12% 19.18% 19.81% 19.76% 19.94% 19.66% [ull 19.54%
VOlEWMA9S|  19.98% 19.98% 20.23% 20.01% 19.38% 19.55% 19.84% 19.99% 20.23% 20.17% |all 19.94% Max (Ex-Ora.)
VolGARCH(L,1)N| 19.55% 19.93% 18.82% 18.89% 19.24% 19.47% 19.58% 19.69% 19.76% 20.07% |l 19.50% 20.92%
VOIGARCH(1,1)t| 19.95% 20.03% 18.44% 18.60% 19.61% 19.83% 20.09% 19.99% 20.14% 20.20% |all 19.69%
VOlGARCH(GIR)N| 18.87% 19.08% 17.75% 17.74% 18.19% 18.55% 18.50% 18.70% 19.00% 19.20% [ull 18.56% Oracle
VvolGARCH(GIR)t| 18.99% 19.16% 17.41% 17.58% 18.45% 18.83% 18.99% 18.99% 19.08% 19.24% |ull 18.67% 21.15%
volRangePK| 18.97% 20.29% 19.68% 19.63% 18.65% 19.09% 19.86% 20.70% 19.51% 20.76% .III 19.71%
volRangeGK| 18.52% 19.80% 19.64% 19.58% 18.38% 18.78% 19.56% 20.39% 19.01% 20.25% |ull 19.39% Range
volRangeRS| 18.28% 19.52% 19.62% 19.51% 18.29% 18.66% 19.33% 20.17% 18.78% 19.98% |ull 19.21% (Ex-Oracle)
volRangeYZ| 19.14% 19.66% 18.47% 18.39% 18.60% 18.76% 19.79% 19.96% 19.62% 20.15% [ull 19.25% 3.51%
Mean Across Vol. []19.27% gl 19.67%  ,1]18.78% ,]18.76% 4i[18.78% 41]19.01% ill19.60% will19.83% al]19.56%  will19.94%
Integrated Covariance Models and Benchmarks
noNorm_LwsMM[__20.64% | noNorm_LWCC__19.93% oracleCov [I21115% Equal Weight Portfolio 15.53%
MV Out-of-Sample Volatility p.a.
Correlation Models
Holding Period:
125 days 2 T%
ko) 2 2 S @ ]
8 5 g s 8 g ) S w u 3 5
Conditioning Window: S ?:g < g 2 % i l-:-I:g g g . § .g
500 days 8I S 8| S 8| S 8| S 8I S S S 2
£ £ £ £ £ £ £ £ £ £ <3 S
N =60 S 2 S 2 S 2 S 2 S 2 s¢ £
- [} 2 ) 2 <) 2 [} 2 5] 3 Q3 S
Volatility Model: c 4] 5 8 5 4] c 4] c 8 SO A
volHist| 15.13% 15.19% 16.19% 16.15% 15.26% 15.18% 15.34% 15.32% 15.11% 15.16% |ull 15.41% Min (Ex-Ora.)
Vol[EWMA92| 15.15% 15.10% 16.06% 15.99% 15.18% 15.14% 15.30% 15.22% 15.13% 15.10% |ull 15.34% 14.80%
VOl[EWMA%6| 14.91% 14.90% 15.95% 15.87% 14.95% 14.92% 15.08% 15.01% 14.89% 14.89%  |ull 15.14%
VOl[EWMA98| 14.83% 14.81% 15.85% 15.77% 14.88% 14.84% 14.97% 14.93% 14.80% 14.80% 15.05% Max (Ex-Ora.)
volGARCH(1,1)N|  16.06% I 15.76% 16.84% 16.75% 16.17% I 15.85% 16.22% 16.08% I 16.04% I 15.77% _Jull 16.15% 17.09%
volGARCH(1,1)t| _15.34% 15.23% 16.58% 16.43% 15.43% 15.25% 15.60% 15.45% 15.33% 15.24% Jull 15.59%
VOIGARCH(GIR)N| 15.77% | 15.60% 17.09% 16.93% 15.94% | 15.67% 16.15% 16.00% | 15.74% | 15.61% |ull 16.05% Oracle
VvolGARCH(GIR)t| 15.25% 15.15% 16.58% 16.43% 15.40% 15.23% 15.46% 15.36% 15.23% 15.16% |ull 15.53% 11.29%
volRangePK| 15.42% 15.30% 16.29% 16.19% 15.63% 15.40% 15.71% 15.56% 15.40% 15.28% |ull 15.62%
volRangeGK| 15.51% 15.41% 16.42% 16.36% 15.71% 15.51% 15.77% 15.64% I 15.50% 15.39% |ull 15.72% Range
volRangeRS| 15.59% 15.49% 16.71% 16.63% 15.80% 15.59% 15.84% 15.70% | 15.59% 15.46% |ull 15.84% (Ex-Oracle)
volRangeYZ| 15.46% 15.40% 16.61% 16.55% 15.69% 15.49% 15.77% 15.57% 15.43% 15.36%  |ull 15.73% 2.29%
Mean Across Vol [yl15.37% il 15.28%  wll16.43% ail16.34% 41l15.50% 41115.34%  4il15.60% 4il15.49% wll15.35% al15.27%
Integrated Covariance Models and Benchmarks
noNorm_LWSMM__15.13% noNorm_LWCC__15.14% oracleCov[ 11:20% | Equal Weight Portfolio 18.11%
MV Sharpe Ratio (Cash at 0%)
Correlation Models
Holding Period:
125 days 2 %
k) 2 2 < 2 I
B 3 @ 2 3 8 ) i) w w 3 5
Conditioning Window: I I < < o = i w = 3 S 2
5 IS 5 S 5 IS 5 IS 5 S R S
500 days 8I S 8| S 8| S 8I S 8I S S s 2
£ £ £ S £ £ £ £ £ S <3 g
N =60 S 2 S 2 S 2 S 2 S 2 St £
- © > 5} 2 [} Z S Z ) 2 L3S S
Volatility Models < 4] < 4 < 4] < [4] < 4] S o 3
volHist|  1.32 1.34 113 1.14 1.26 1.27 1.36 1.36 1.35 137 [all 1.29 Min (Ex-Ora.)
volEWMA92 1.26 1.24 1.10 1.10 1.20 1.20 1.24 1.23 1.27 1.24 ol 1.21 1.04
volEWMA96 133 131 1.22 1.21 1.28 1.29 131 1.32 1.34 1.32 all  1.29
volEWMA98|  1.35 135 1.28 1.27 1.30 1.32 1.33 1.34 1.37 136 |ull 1.33 Max (Ex-Ora.)
VOIGARCH(L,IN|  1.22 1.26 112 1.13 1.19 1.23 1.21 1.22 1.23 127 Jull 121 1.37
VOIGARCH(L,1)t|  1.30 1.32 111 1.13 1.27 1.30 1.29 1.29 131 133 |ull 127
volGARCH(GJR)N 1.20 1.22 1.04 1.05 1.14 1.18 1.15 1.17 1.21 1.23 ol 1.16 Oracle
volGARCH(GIR)t| 1.25 1.26 1.05 1.07 1.20 1.24 1.23 1.24 1.25 1.27 ol 121 1.87
volRangePK 1.23 133 1.21 1.21 1.19 1.24 1.26 133 1.27 1.36 il 1.26
volRangeGK! 1.19 1.28 1.20 1.20 117 1.21 1.24 1.30 1.23 1.32 ol 1.23 Range
volRangeRS 1.17 1.26 1.17 1.17 1.16 1.20 1.22 1.28 1.20 1.29 ol 121 (Ex-Oracle)
volRangeYZ 1.24 1.28 111 1.11 1.19 1.21 1.26 1.28 1.27 1.31 I 1.23 0.33
Mean Across Vol |gll 1.25 gl 129 gl 114 gl 115 gl 120 gl 124 a0l 126 il 128 il 128  gil 1.31
Integrated Covariance Models and Benchmarks
noNorm_LWSMM 1.36 noNorm_LWCC 1.32 oracIeCov Equal Weight Portfolio 0.86




Table 5 — Panel 2: MV Portfolio Empirical Performance Metrics: m = 500; T = 125; All Model Combinations

MV : Skewness
Correlation Models
Holding Period:
125 days 2 £
ko) 2 2 < 2 9
5 b v g g g g & w w 3 5
Conditioning Window: I T < < z S [ ¢ g € . S '§
500 days 8| 8| 8| 8| 8| 8| 8| 8| 8| 8| 3 S ‘i
£ £ £ £ £ £ £ £ £ £ <3 §
$ 2 s 2 2 2 $ 2 S 2 §¢ S
Volatility Model 2 8 2 8 2 8 2 8 2 4 ] 3
volHist|  0.00 -0.10 -0.08 -0.10 -0.07 -0.11 0.08 -0.07 0.01 010 |[gl] -0.05 Min (Ex-Ora.)
volEWMA92 -0.08 -0.15 -0.14 -0.14 -0.12 -0.15 -0.07 -0.14 -0.08 -015 | -0.12 -0.19
volEWMA96 -0.09 -0.15 -0.09 -0.09 -0.13 -0.16 -0.04 -0.13 -0.08 -015 g -0.11
volEWMA98 -0.06 -0.14 -0.04 -0.05 -0.11 -0.13 0.00 -0.12 -0.05 -0.14 |y -0.08 Max (Ex-Ora.)
VOIGARCH(1,1)N|  0.07 0.02 -0.09 -0.09 0.06 0.03 0.04 0.01 0.07 001 gl o001 0.14
volGARCH(1,1)t -0.01 -0.08 -0.19 -0.19 -0.05 -0.08 -0.03 -0.10 -0.01 -0.09 [y -0.08
VOIGARCH(GJR)N|  0.11 0.05 -0.03 -0.05 0.08 0.03 0.11 0.05 0.10 004 [ml o005 Oracle
VolGARCH(GIR)t| 0.03 -0.02 -0.15 -0.14 -0.01 -0.03 0.03 -0.03 0.03 -0.02 gl -0.03 -0.10
volRangePK|  0.06 -0.02 -0.04 -0.08 0.04 0.01 0.14 0.04 0.08 002 |gll 0.02
volRangeGK 0.05 -0.03 -0.04 -0.06 0.01 0.00 0.12 0.03 0.06 -0.02 .III 0.01 Range
volRangeRS 0.04 -0.03 -0.04 -0.06 0.00 0.00 0.10 0.03 0.05 -0.02 [l o001 (Ex-Oracle)
volRangeYZ -0.02 -0.14 -0.16 -0.17 -0.09 -0.15 0.07 -0.08 -0.02 -013 | -0.09 0.33
Mean Across Vol. |ull 0.01 gl -0.07 il -009 4l -0.10 il -0.03 il -0.06 il 0.05 gl -0.04 4l 0.01 gl -0.07
Integrated Covariance Models and Benchmarks
noNorm_LWSMM 0.01 noNorm_LWCC -0.04 oracleCov -0.10 Equal Weight Portfolio -0.21
MV : Kurtosis
Correlation Models
Holding Period:
125 days £ T%
o e} 2 c “© )
B b @ 2 3 8 ) & w u g g
Conditioning Window: S T < < T 2 i g z [ . § £
500 days 8I SI 8| 8| 8| SI 8| SI 8I 8| S S “i
£ £ £ £ £ £ £ £ £ £ 28 g
Volatility Model 2 4 2 g 2 4 2 4 2 g S8 3
volHist| 6.94 6.65 7.26 7.19 6.86 6.76 7.12 6.87 6.94 6.66 ol 6.93 Min (Ex-Ora.)
volEWMA92 5.93 6.06 6.41 6.44 5.95 6.06 5.90 6.15 5.96 6.12 o 6.10 5.90
volEWMA96 6.31 6.43 6.71 6.72 6.40 6.47 6.20 6.57 6.32 6.50 N 6.46
volEWMA98 6.72 6.63 6.92 6.88 6.75 6.75 6.74 6.88 6.71 6.67 ol 6.77 Max (Ex-Ora.)
volGARCH(1,1)N 8.33 7.89 838 8.18 8.65 8.15 8.22 8.30 8.38 7.97 il 8.25 8.65
volGARCH(1,1)t 6.52 6.66 7.55 7.34 6.61 6.71 6.56 6.75 6.54 6.71 ol 6.79
VOIGARCH(GIR)N|  7.48 7.43 8.52 8.13 7.83 7.61 7.90 7.88 7.49 752 il 7.78 Oracle
volGARCH(GIR)t| 6.44 6.55 7.19 7.03 6.57 6.70 6.37 6.61 6.47 6.63 all 6.66 8.07
volRangePK 7.32 7.01 7.00 6.83 7.32 7.47 7.41 7.25 7.38 7.04 wll  7.20
volRangeGK 7.29 6.97 6.91 6.85 7.30 7.47 7.29 7.12 7.35 6.99 ol 7.15 Range
volRangeRS 7.29 7.01 6.89 6.80 7.27 7.39 7.22 7.16 7.33 7.05 all 7.14 (Ex-Oracle)
volRangeYZ, 6.74 6.41 6.94 6.89 6.73 6.71 6.90 6.49 6.76 6.45 all 6.70 2.75
Mean Across Vol. [all 6.94  all 681 gl 722 il 711 all 702 gl 702 gl 699 gl 700 4l 697 gl 686
Integrated Covariance Models and Benchmarks
noNorm_LWSMM 6.86 noNorm_LWCC 6.71 oracleCov 8.07 Equal Weight Portfolio 6.06
MV : Turnover (2-way p.a.)
Correlation Models
Holding Period:
125 days 2 %
k) 2 2 < 2 I
B 3 @ 2 8 8 1) ) w w 3 5
Conditioning Window: S T £ < z T i £ 3 € " S £
500 days 8I SI 8| 8| 8| SI 8I SI 8I 8| 3 s ‘i
£ £ £ £ £ £ £ £ £ £ 23 g
N =60 S 2 s 2 s 2 S 2 $ 2 §¢ g
Volatility Models 2 4 2 8 2 8 2 8 2 [ s 8 a
volHist| 180% 172% 154% 151% 192% 184% 170% 167% 176% 169% |y 171% Min (Ex-Ora.)
volEWMA92 271% 269% 285% 283% 273% 274% 259% 258% 268% 266% |ull 271% 135%
volEWMA96 241% 240% 256% 253% 247% 247% 229% 229% 238% 237% [ll 242%
VolEWMA98 218% 215% 225% 221% 227% 226% 208% 206% 215% 212% il 217% Max (Ex-Ora.)
VolGARCH(1,1)N|  240% 236% 249% 247% 243% 242% 228% 226% 238% 232% |l 238% 285%
VOIGARCH(1,1)t|  247% 243% 257% 254% 256% 250% 234% 231% 244% 239% |ull 246%
VOIGARCH(GIR)N|  240% 236% 249% 247% 247% 242% 227% 227% 237% 233% |ull 238% Oracle
VOIGARCH(GIR)t|  245% 243% 257% 254% 253% 248% 231% 230% 242% 240%  |ull 244% 261%
volRangePK 175% 168% 147% 144% 188% 181% 164% 162% 171% 164% |y 166%
volRangeGK! 177% 170% 151% 148% 189% 182% 167% 165% 174% 167% |y 169% Range
volRangeRS 179% 172% 152% 150% 190% 183% 168% 165% 176% 168% |y 170% (Ex-Oracle)
volRangeYZ 179% 169% 139% 135% 192% 185% 167% 162% 174% 165% 167% 150%
Mean Across Vol [ull 216% il 211% ol 210% gl 207% gl 225% gl 220% .0l 204% gl 202% il 213% gl 208%

Integrated Covariance Models and Benchmarks

noNorm_LWSMM 177% noNorm_LWCC 177% oracleCov 261% Equal Weight Portfolio 36%




Table 6 — Panel 1: ERC Portfolio Empirical Performance Metrics: m = 500; T = 125; All Model Combinations

ERC Geometric Mean Return p.a.
Correlation Models
Holding Period:
125days 2 %
i<l 2 2 < %) “
k] k] g s 8 g & & w u K 5
Conditioning Window: I T < < o [ i ] z z 3 2
5 s 5 s 5 s 5 s 5 s 9 2 S
500 days 8 S, 8 S, S S, 8 S 8 o S s @
| | | | | . >
£ £ £ E £ E £ 13 £ E <% s
N =60 S 2 S 2 S 2 S 2 S 2 s¢E £
— 5] > 5] > I} > 5] > ] 2 Q 5 3
Volatility Models e 3 e 3 2 3 e 3 2 3 S a
volHist| 17.41% 17.32% 16.57% 16.57% 17.28% 17.19% 17.17% 17.26% 17.43% 17.34% |all 17.15% Min (Ex-Ora.)

VOlEWMA92| 17.13% 17.08% 16.51% 16.51% 16.99% 16.94% 16.80% 16.99% 17.14% 17.08% |ull 16.92% 16.05%

VOlEWMA6|  17.36% 17.29% 16.68% 16.68% 17.22% 17.17% 17.05% 17.21% 17.37% 17.30% |l 17.13%

VOlEWMA98|  17.51% 17.43% 16.78% 16.78% 17.38% 17.31% 17.39% 17.36% 17.52% 17.44% |l 17.29% Max (Ex-Ora.)
VOIGARCH(1,1)N|  17.02% 16.99% 16.44% 16.44% 16.91% 16.85% 16.72% 16.91% 17.03% 17.00% |ull 16.83% 17.52%
VOIGARCH(1,1)t| 16.95% 16.90% 16.34% 16.34% 16.83% 16.77% 16.93% 16.81% 16.96% 16.91% |l 16.77%

VOIGARCH(GIR)N|  16.97% 16.93% 16.36% 16.36% 16.83% 16.79% 16.94% 16.85% 16.98% 16.94% |ull 16.80% Oracle
VOIGARCH(GIR)t|  16.87% 16.83% 16.29% 16.29% 16.75% 16.70% 16.83% 16.74% 16.88% 16.84% |ull 16.70% 18.31%

volRangePK| 17.38% 17.29% 16.52% 16.52% 17.24% 17.15% 17.11% 17.23% 17.40% 17.31% |all 17.12%

volRangeGK| 17.47% 17.38% 16.59% 16.59% 17.32% 17.23% 17.20% 17.32% 17.49% 17.39% |l 17.20% Range

volRangeRS| 17.49% 17.40% 16.60% 16.60% 17.34% 17.25% 17.23% 17.34% 17.51% 17.81% |all 17.22% (Ex-Oracle)

volRangeYz| 16.90% 16.80% 16.05% 16.05% 16.77% 16.65% 16.62% 16.73% 16.91% 16.81% |ull 16.63% 1.47%

Mean Across Vol |all17.21% il 17.14%  ;1116.48%  ,116.48%  gll17.07%  ll17.00% all17.00% all17.06% gil17.22%  ll17.15%
Integrated Covariance Models and Benchmarks
noNorm_LwsMM[_17.47% | noNorm_LWCC__17.20% oracleCov ABI31% Equal Weight Portfolio 15.53%
ERC Out-of-Sample Volatility p.a.
Correlation Models
Holding Period:
125 days 2 T%
k) 2 2 < 2 I
I z ] 2 3 8 g & w w 3 b
Conditioning Window: I I < < o [ i ] z = 3 2
£ 5 £ g £ 5 £ 5 £ g g 3 s
500 days 8I S 8| S 8| S 8| S 8| S S S 2
£ £ £ £ £ £ £ £ £ £ <3 S
N =60 S 2 S 2 S 2 S 2 S 2 s¢ £
— © > ) 2 ) > © > ] a L 3 S
Volatility Model: c 4] c 8 5 4] c 4] c 8 SO A
volHist|  15.13% 17.14% 17.66% 17.66% | 17.10% 17.13% 17.09% 17.13% 17.07% 17.14% |ull 17.02% Min (Ex-Ora.)

VOlEWMAR2|  16.73% 16.79% 17.32% 17.32% 16.75% 16.78% 16.76% 16.78% 16.72% 16.79% |ull 16.87% 15.13%

VOlEWMA96|  16.80% 16.87% 17.40% 17.40% 16.83% 16.86% 16.83% 16.86% 16.80% 16.87% |ull 16.95%

VOlEWMA98|  16.88% 16.95% 17.47% 17.47% 16.91% 16.94% 16.91% 16.94% 16.88% 16.94% |ull 17.03% Max (Ex-Ora.)
VOIGARCH(1,1)N|  16.86% 16.92% 17.45% 17.45% 16.89% 16.91% 16.89% 16.91% 16.85% 16.92% |ull 17.00% 17.79%
VOIGARCH(1,1)t| 16.83% 16.89% 17.41% 17.41% 16.86% 16.88% 16.85% 16.88% 16.82% 16.88% |ull 16.97%

VOIGARCH(GIR)N|  16.81% 16.88% 17.41% 17.41% 16.84% 16.87% 16.83% 16.87% 16.80% 16.88% |ull 16.96% Oracle
VOIGARCH(GJR)t|  16.80% 16.86% 17.39% 17.39% 16.83% 16.86% 16.82% 16.85% 16.80% 16.86% |ull 16.95% 15.36%

volRangePK| 17.08% 17.14% 17.65% 17.65% 17.11% 17.14% 17.12% 17.14% 17.08% 17.14% |ull 17.23%

volRangeGK|  17.06% 17.12% 17.63% 17.63% 17.09% 17.12% 17.10% 17.12% 17.06% 17.12% |ull 17.20% Range

volRangeRS| 17.07% 17.14% 17.65% 17.65% 17.10% 17.13% 17.11% 17.13% 17.07% 17.14% |l 17.22% (Ex-Oracle)

volRangeYz|  17.20% 17.27% 17.79% 17.79% 17.23% 17.26% 17.24% 17.27% 17.20% 17.27% |l 17.35% 2.65%

Mean Across Vol [ull16.77% _ ull 17.00%  aill17.52%  aill17.52% wil]16.96% uil]16.99% wil]16.96% wil16.99% 4[16.93%  u17.00%
Integrated Covariance Models and Benchmarks
noNorm_LWSMM__17.07% noNorm_LWCC__17.17% oracleCov|_15:36% | Equal Weight Portfolio 18.11%
ERC Sharpe Ratio (Cash at 0%)
Correlation Models
Holding Period:

125 days 2 %
k) 2 2 < 2 I
B 3 @ 2 3 8 ) i) w w 3 5
Conditioning Window: I I < < o = i w = 3 S 2
£ 5 5 5 £ 5 £ s £ 5 2 3 g
500 days 8I S 8| S 8| S 8I S 8I S S s 2
£ £ £ S £ £ £ £ £ S <3 g
N =60 S 2 S 2 S 2 S 2 S 2 St £
™ 9] > ) 2 ) 2 o 2 o 2 L3S S
Volatility Models < 4] < 4 < 4] < 4] < 4] S o 3

volHist|  1.02 1.01 0.94 0.94 1.01 1.00 1.00 1.01 1.02 1.01 gl 100 Min (Ex-Ora.)

VOlEWMAS2|  1.02 1.02 0.95 0.95 1.01 1.01 1.00 1.01 1.02 1.02 gl 100 0.90

VolEWMA96|  1.03 1.02 0.96 0.96 1.02 1.02 1.01 1.02 1.03 1.03  [gll 101

volEWMA98|  1.04 1.03 0.9 0.9 1.03 1.02 1.03 1.02 1.04 103 [gll 102 Max (Ex-Ora.)
VOIGARCH(1,1)N| ~ 1.01 1.00 0.94 0.94 1.00 1.00 0.99 1.00 1.01 101 [qll 099 1.04
VOIGARCH(1,1)t|  1.01 1.00 0.94 0.94 1.00 0.99 1.01 1.00 1.01 1.00 [ql 099
VOIGARCH(GIR)N|  1.01 1.00 0.94 0.94 1.00 0.99 1.01 1.00 1.01 1.00 [ql 099 Oracle
VOIGARCH(GJR)t|  1.00 1.00 0.94 0.94 1.00 0.99 1.00 0.99 1.00 1.00 [ql 099 1.19

volRangePK|  1.02 1.01 0.94 0.94 1.01 1.00 1.00 1.01 1.02 101 [all 099

volRangeGK|  1.02 1.01 0.94 0.94 1.01 1.01 1.01 1.01 1.03 102 fqll 100 Range

volRangeRs|  1.02 1.02 0.94 0.94 1.01 1.01 1.01 1.01 1.03 1.02 il 100 (Ex-Oracle)

volRangevz| 098 | 097 0.90 0.90 097 | 096 | 09 | o097 | o098 | o097 0.96 0.14

Mean Across Vol. |gll 1.02 gl 1.01 gl 094 gl 0.94 gl 101 gl 1.00 il 100 gl 1.00 gl 1.02 il 1.01

Integrated Covariance Models and Benchmarks

noNorm_LWSMM 1.02 noNorm_LWCC oracIeCov Equal Weight Portfolio 0.86




Table 6 — Panel 2: ERC Portfolio Empirical Performance Metrics: m = 500; T = 125; All Model Combinations

ERC : Skewness
Correlation Models
Holding Period:
125 days 2 £
ko) 2 2 S L )
5 b v g g g g & w w 3 5
Conditioning Window: I T £ < E 3 ug i E g . § .§
500 days 8| 8| 8| 8| 8| 8| 8| 8| 8| 8| 3 S ‘i
£ £ £ £ £ £ £ £ £ £ <3 §
$ 2 s 2 2 2 $ 2 S 2 §¢ S
Volatility Model 2 8 2 4 2 4 2 3 2 4 ] 3
volHist|  -0.20 -0.21 -0.21 -0.21 -0.21 -0.21 -0.20 -0.20 -0.20 021 |gll -0.21 Min (Ex-Ora.)
VolEWMA92 -0.22 -0.23 -0.22 -0.22 -0.23 -0.23 -0.22 -0.22 -0.22 -0.23 |y -0.22 -0.23
VolEWMA96 -0.21 -0.22 -0.21 -0.21 -0.22 -0.22 -0.21 -0.21 -0.21 -0.22 will -0.21
volEWMA9S[  -0.21 -0.21 -0.21 -0.21 -0.21 -0.22 -0.20 -0.21 -0.21 021 |ful -021 Max (Ex-Ora.)
volGARCH(1,1)N -0.22 -0.22 -0.22 -0.22 -0.23 -0.23 -0.21 -0.22 -0.22 -0.22 |y -0.22 -0.20
volGARCH(1,1)t -0.22 -0.22 -0.22 -0.22 -0.22 -0.23 -0.21 -0.22 -0.22 -0.22 |y -0.22
volGARCH(GIR)N -0.22 -0.22 -0.22 -0.22 -0.22 -0.23 -0.21 -0.22 -0.22 -0.22  |[yll -0.22 Oracle
VolGARCH(GIR)t| -0.21 -0.22 -0.22 -0.22 -0.22 -0.22 -0.21 -0.22 -0.21 -0.22  [yll -0.22 -0.24
volRangePK|  -0.21 -0.21 -0.22 -0.22 -0.21 -0.22 -0.20 -0.21 -0.20 021 full -0.21
volRangeGK -0.21 -0.22 -0.22 -0.22 -0.22 -0.22 -0.20 -0.21 -0.21 -0.22  |[qll -0.22 Range
volRangeRS -0.22 -0.22 -0.22 -0.22 -0.22 -0.23 -0.21 -0.22 -0.21 -0.22 |y -0.22 (Ex-Oracle)
volRangeYZ -0.21 -0.22 -0.22 -0.22 -0.22 -0.22 -0.20 -0.21 -0.21 -0.22 will -0.21 0.03
Mean Across Vol. [all -0.21 gl -0.22 gl 022 gl 022 gl 022 il 022  gil -020 il 021 gl -021 gl -0.22
Integrated Covariance Models and Benchmarks
noNorm_LWSMM -0.20 noNorm_LWCC -0.21 oracleCov -0.24 Equal Weight Portfolio -0.21
ERC : Kurtosis
Correlation Models
Holding Period:
125 days 2 T%
o e} 2 c “© )
k] 5 2 S 8 g & i) w u K 5
Conditioning Window: S T < < T 2 i g z [ . § £
500 days 8I SI 8| 8| 8| 8| 8| SI 8I 8| S S “i
£ £ £ £ £ £ £ £ £ £ 28 g
Volatility Model 2 4 2 [ 2 4 2 4 2 [ S8 3
volHist|  6.10 6.18 6.20 6.20 6.14 6.18 6.06 6.18 6.10 618 |l 6.15 Min (Ex-Ora.)
volEWMA92 6.07 6.13 6.15 6.15 6.11 6.14 6.02 6.13 6.07 6.13 ull  6.11 5.92
volEWMA96 6.08 6.14 6.16 6.16 6.12 6.15 6.03 6.14 6.07 6.14 ull  6.12
volEWMA98[  6.09 6.16 6.17 6.17 6.13 6.16 6.04 6.16 6.09 616 [l 6.13 Max (Ex-Ora.)
VOIGARCH(1L,1)N|  6.09 6.15 6.16 6.16 6.13 6.16 6.04 6.14 6.09 615 il 6.13 6.20
volGARCH(1,1)t 6.04 6.10 6.12 6.12 6.08 6.12 5.99 6.09 6.04 6.10 ol 6.08
volGARCH(GIR)N 6.04 6.10 6.12 6.12 6.08 6.11 5.99 6.09 6.04 6.10 ol 6.08 Oracle
volGARCH(GIR)t| 6.03 6.09 6.11 6.11 6.06 6.10 5.98 6.08 6.03 6.08 i 6.07 6.16
volRangePK 6.01 6.08 6.11 6.11 6.04 6.09 5.95 6.07 6.01 6.08 o 6.05
volRangeGK! 6.00 6.07 6.09 6.09 6.03 6.07 5.94 6.06 6.00 6.07 o 6.04 Range
volRangeRS 5.99 6.06 6.07 6.07 6.03 6.07 5.94 6.05 5.99 6.06 N 6.03 (Ex-Oracle)
volRangeYZ, 5.98 6.05 6.09 6.09 6.01 6.05 5.92 6.04 5.97 6.05 o 6.02 0.28
Mean Across Vol. [all 6.04  all 611 gl 613 il 6.13  all 608 il 612 gl 599 il 610 4l 6.04 gll 6.11
Integrated Covariance Models and Benchmarks
noNorm_LWSMM 6.10 noNorm_LWCC 6.15 oracleCov 6.16 Equal Weight Portfolio 6.06
ERC Turnover (2-way p.a.)
Correlation Models
Holding Period:
125 days 2 %
k) 2 2 < 2 I
B 3 @ 2 8 8 1) ) w w 3 5
Conditioning Window: S T £ < z T i £ 3 € " S £
500 days 8I SI 8| 8| 8| SI 8I SI 8I 8| S s i
£ £ £ £ £ £ £ £ £ £ < B §
N =60 S 2 S 2 S 2 S 2 S 2 St £
- © > 5} 2 [} Z S Z ) 2 L3S S
Volatility Models < 4] < 4] < 4] < 4] < 4] S o 3
volHist| 60% 58% 47% 47% 61% 59% 60% 58% 60% 58% o 57% Min (Ex-Ora.)
volEWMA92 84% 83% 76% 76% 84% 83% 85% 83% 84% 83% il 82% 45%
volEWMA96 75% 75% 67% 67% 75% 75% 76% 75% 75% 75% il 74%
VolEWMA98 69% 68% 59% 59% 69% 68% 69% 68% 69% 68% i 67% Max (Ex-Ora.)
VOIGARCH(L, )N  76% 75% 67% 67% 76% 75% 77% 75% 76% 75% il 74% 85%
VOIGARCH(L,1)t|  76% 75% 68% 68% 76% 75% 76% 75% 76% 75% il 74%
VOIGARCH(GIR)N|  76% 76% 68% 68% 77% 76% 77% 76% 77% 76% full 75% Oracle
VOIGARCH(GIR)t|  77% 76% 69% 69% 77% 77% 77% 76% 77% 76% full 75% 92%
volRangePK 60% 58% 46% 46% 61% 59% 60% 58% 60% 58% o 57%
volRangeGK! 61% 59% 46% 46% 62% 60% 62% 59% 61% 59% o 58% Range
volRangeRS 61% 59% 47% 47% 62% 60% 62% 59% 61% 59% o 58% (Ex-Oracle)
volRangeYZ 59% 57% 45% 45% 61% 59% 60% 58% 59% 57% 56% 39%
Mean Across Vol. |ull 69%  all 68% gl 59% gl 59%  all 70% il 69% il 70% il 69% il 69% il 68%

Integrated Covariance Models and Benchmarks

noNorm_LWSMM 60% noNorm_LWCC 56% oracleCov 92% Equal Weight Portfolio 36%




Table 7 — Panel 1: MDP Portfolio Empirical Performance Metrics: m = 500; t = 125; All Model Combinations

Geometric Mean Return p.a.

MDP -
Correlation Models
Holding Period:
o 2
125days £ =5
" © 2 2 < S @ 8
% B ] g K 8 g & w w 3 ko
Conditioning Window: I T < < o [ i ] z z 3 2
t 5 £ 5 E s t s £ 5 o S s
500 days 8 S 8 S S S 8 S S S S < @
| 1 | I \ 1 | 1 \ I 23 =
£ € £ £ £ £ £ £ £ 3 <E s
Volatility Models 2 [ 2 2 2 2 2 [ 2 2 S8 3
volHist| 19.51% 19.80% 16.57% 16.57% 18.46% 18.38% 18.73% 19.09% 19.73% 20.03% |ull 18.69% Min (Ex-Ora.)
VOlEWMA92| 18.75% 18.98% 16.51% 16.51% 17.59% 17.67% 18.07% 18.32% 19.01% 19.23% |uilll 18.06% 16.05%
VvolEWMA96| 19.06% 19.28% 16.68% 16.68% 17.89% 17.98% 18.41% 18.63% 19.32% 19.54% |ull 18.35%
VOlEWMA98|  19.32% 19.54% 16.78% 16.78% 18.16% 18.20% 18.69% 18.92% 19.57% 19.79% |ull 18.57% Max (Ex-Ora.)
VolGARCH(L,1)N| 18.58% 18.95% 16.44% 16.44% 17.37% 17.47% 17.85% 18.33% 18.79% 19.19% |l 17.94% 20.04%
VvolGARCH(1,1)t[ 18.46% 18.83% 16.34% 16.34% 17.31% 17.39% 17.74% 18.19% 18.68% 19.07% |ull 17.83%
VOlIGARCH(GIR)N|  18.46% 18.82% 16.36% 16.36% 17.24% 17.34% 17.75% 18.21% 18.69% 19.09% [ull 17.83% Oracle
VvolGARCH(GIR)t| 18.14% 18.63% 16.29% 16.29% 17.00% 17.15% 17.44% 17.98% 18.37% 18.87% |ull 17.62% 19.13%
volRangePK| 19.34% 19.70% 16.52% 16.52% 18.24% 18.18% 18.55% 19.07% 19.56% 19.95% |I|| 18.56%
volRangeGK| 19.36% 19.75% 16.59% 16.59% 18.23% 18.21% 18.62% 19.16% 19.58% 20.01% |I|| 18.61% Range
volRangeRS| 19.31% 19.73% 16.60% 16.60% 18.16% 18.16% 18.63% 19.18% 19.55% 20.01% |I|| 18.59% (Ex-Oracle)
volRangeYZ| 18.75% 19.05% 16.05% 16.05% 17.67% 17.54% 17.97% 18.33% 18.99% 19.30% |all 17.97% 3.99%
Mean Across Vol. |ll18.92%  all 19.25%  ,1116.48%  ,116.48% 17.78%  4l17.81% ll18.20% 118.62% gil19.15%  ll19.51%
Integrated Covariance Models and Benchmarks
noNorm_LWSMM noNorm_LWCC| 19.46% oracleCov__ 19.13% Equal Weight Portfolio 15.53%
Out-of-Sample Volatility p.a.
MDP i L y P
Correlation Models
Holding Period:
o 2
125 days £ 5
o 2 c S Ky )
B g g ¢ K g ) & w w 3 5
Conditioning Window: I I < < o [ i ] z = 3 2
= 5 £ s £ 5 = 5 t 5 o S s
500 days 8I S 8| S 8| S 8| S 8I S S S 2
£ £ £ g £ £ £ £ £ £ <3 g
N =60 S 2 S 2 S 2 S 2 S 2 st £
v Model o 2 o 2 o 2 o 2 o 2 ] 3
Volatility c 4 c 4] < 4 c 4 c 4] SO %)
volHist| 16.28% 16.22% 17.66% 17.66% 16.61% 16.39% 17.21% 16.79% 16.29% 16.20% |ull 16.73% Min (Ex-Ora.)
VOl[EWMA92| 15.84% 15.80% 17.32% 17.32% 16.19% 16.00% 16.79% 16.38% 15.84% 15.78% |ull 16.32% 15.78%
Vvol[EWMA96| 15.90% 15.85% 17.40% 17.40% 16.25% 16.05% 16.81% 16.42% 15.90% 15.84% |ull 16.38%
Vvol[EWMA98| 16.01% 15.95% 17.47% 17.47% 16.35% 16.14% 16.90% 16.51% 16.01% 15.93% |ull 16.47% Max (Ex-Ora.)
volGARCH(1,1)N| 16.01% 15.97% 17.45% 17.45% 16.34% 16.17% 16.98% 16.52% 16.02% 15.95% |ull 16.49% 17.79%
volGARCH(1,1)t| 15.98% 15.93% 17.41% 17.41% 16.33% 16.15% 16.96% 16.50% 15.99% 15.91% |ull 16.46%
volGARCH(GJR)N|  15.94% 15.92% 17.41% 17.41% 16.27% 16.11% 16.93% 16.48% 15.95% 15.90% |ull 16.43% Oracle
volGARCH(GIR)t| 15.95% 15.89% 17.39% 17.39% 16.29% 16.10% 16.93% 16.47% 15.96% 15.87% |ull 16.43% 12.85%
volRangePK| 16.41% 16.29% 17.65% 17.65% 16.74% 16.48% 17.57% 17.03% 16.43% 16.28% ||I| 16.85%
volRangeGK| 16.41% 16.28% 17.63% 17.63% 16.73% 16.47% 17.54% 17.01% 16.42% 16.27% ||I| 16.84% Range
volRangeRS| 16.43% 16.30% 17.65% 17.65% 16.76% | 16.49% 17.56% 17.04% 16.44% 16.29% |ull 16.86% (Ex-Oracle)
volRangeYZ| 16.47% 16.38% 17.79% 17.79% 16.81% | 16.56% 17.61% 17.11% 16.48% 16.36% ,ill 16.94% 2.01%
Mean Across Vol. [yl]16.13% il 16.07%  all17.52%  all17.52% ll16.47%  41]16.26% all17.15% .l16.69% l16.14% 4il16.05%
Integrated Covariance Models and Benchmarks
noNorm_LWSMM _ 16.26% noNorm_LWCC _ 16.19% oracleCov| 12.85% Equal Weight Portfolio 18.11%
Sharpe Ratio (Cash at 0%
MDP i L ( )
Correlation Models
Holding Period:
o L2
125 days £ 5
o 2 c S ) )
% b Q g K] R} & & w w 3 kS
Conditioning Window: I T < < a [ i ] z = 3 2
= 5 £ s £ 5 IS 5 t 5 “w S 8
500 days 8I S 8| S 8| S 8I S 8I S S s 2
£ £ £ S £ £ £ £ £ S <3 g
N =60 S 2 S 2 S 2 S 2 S 2 St £
- © > 5} 2 [} Z S Z ) 2 L3S S
Volatility Models < 4] < 4] < 4] < 4] < 4] S o 3
volHist|  1.20 1.22 0.94 094 | 111 1.12 1.09 1.14 1.21 124 gl 112 Min (Ex-Ora.)
volEWMA92 1.18 1.20 0.95 0.95 1.09 1.10 1.08 1.12 1.20 1.22 il 1.11 0.90
volEWMA96 1.20 1.22 0.96 0.96 1.10 112 1.10 1.13 1.21 1.23 all .12
volEWMA98[  1.21 1.23 0.96 0.96 1.11 1.13 1.11 115 1.22 124 yll 113 Max (Ex-Ora.)
VOIGARCH(L, N[  1.16 1.19 0.94 0.94 1.06 1.08 1.05 111 1.17 120 Jqll 109 1.24
VOIGARCH(1,1)t|  1.15 1.18 0.94 0.94 1.06 1.08 1.05 1.10 1.17 120 |qll 109
volGARCH(GJR)N 1.16 1.18 0.94 0.94 1.06 1.08 1.05 1.10 1.17 1.20 ol 1.09 Oracle
volGARCH(GIR)t| 1.14 1.17 0.94 0.94 1.04 1.06 1.03 1.09 1.15 1.19 ol 1.08 1.49
volRangePK 1.18 121 0.94 0.94 1.09 1.10 1.06 112 1.19 1.23 will  1.10
volRangeGK! 1.18 1.21 0.94 0.94 1.09 111 1.06 113 1.19 1.23 all  1.11 Range
volRangeRS|  1.18 121 0.94 0.94 1.08 1.10 1.06 1.13 1.19 123 Jull 111 (Ex-Oracle)
volRangeYZ 1.14 1.16 0.90 0.90 1.05 1.06 1.02 | 1.07 1.15 1.18 1.06 0.34
Mean Across Vol |gll 117 all 120 gll 094 gl 0.94 gl 1.08 gl 110 4l 106 gl 112 gl 119 gil 1.22
Integrated Covariance Models and Benchmarks
noNorm_LWSMM 1.23 noNorm_LWCC 1.20 oracIeCov Equal Weight Portfolio 0.86




Table 7 — Panel 2: MDP Portfolio Empirical Performance Metrics: m = 500; t = 125; All Model Combinations

MDP : Skewness
Correlation Models
Holding Period:
125 days 2 £
ko) 2 2 S L )
5 b v g g g g & w w 3 5
Conditioning Window: I T < < z S [ ¢ g € . S '§
500 days 8| 8| 8| 8| 8| 8| 8| 8| 8| 8| 3 S ‘i
£ £ £ £ £ £ £ £ £ £ <3 §
$ 2 s 2 2 2 $ 2 S 2 §¢ S
Volatility Model 2 8 2 8 2 4 2 3 2 4 ] 3
volHist|  0.00 -0.10 -0.21 -0.21 -0.04 -0.10 0.16 0.01 0.01 009 |ull -0.06 Min (Ex-Ora.)
VolEWMA92 -0.08 -0.15 -0.22 -0.22 -0.10 -0.16 0.06 -0.05 -0.07 -0.15 o -0.11 -0.22
VolEWMA96 -0.05 -0.14 -0.21 -0.21 -0.08 -0.14 0.09 -0.04 -0.04 -0.13 [y -0.09
volEWMA98 -0.02 -0.12 -0.21 -0.21 -0.06 -0.13 0.12 -0.02 -0.01 -0.11  [y)! -0.08 Max (Ex-Ora.)
volGARCH(1,1)N -0.04 -0.11 -0.22 -0.22 -0.07 -0.12 0.12 0.00 -0.02 -0.10  [gql/ -0.08 0.23
volGARCH(1,1)t -0.02 -0.11 -0.22 -0.22 -0.06 -0.11 0.14 0.01 -0.01 -0.10 4l -0.07
volGARCH(GIR)N -0.04 -0.10 -0.22 -0.22 -0.07 -0.11 0.13 0.00 -0.02 -0.10 [qll -0.07 Oracle
VolGARCH(GIR)t| -0.02 -0.10 -0.22 -0.22 -0.05 -0.11 0.15 0.01 0.00 -0.09 [all -0.06 -0.11
volRangePK|  0.04 -0.08 -0.22 -0.22 -0.01 -0.08 0.23 0.05 0.06 007 |gll -0.03
volRangeGK 0.03 -0.10 -0.22 -0.22 -0.03 -0.10 0.21 0.04 0.04 -0.08 .III -0.04 Range
volRangeRS 0.02 -0.10 -0.22 -0.22 -0.04 -0.11 0.21 0.04 0.03 -0.09 [l -0.05 (Ex-Oracle)
volRangeYZ -0.01 -0.11 -0.22 -0.22 -0.05 -0.12 0.16 0.02 0.00 -0.10  [ull -0.06 0.45
Mean Across Vol. [all -0.01 gl -0.11  gll 022 gl 022 gl -0.05 gl -0.12 4l 015 gl 0.01 4l 000 gl -0.10
Integrated Covariance Models and Benchmarks
noNorm_LWSMM 0.03 noNorm_LWCC -0.04 oracleCov -0.11 Equal Weight Portfolio -0.21
MDP : Kurtosis
Correlation Models
Holding Period:
125 days 2 T%
ko) 2 2 S @ ]
8 5 g s 8 g ) S w u 3 5
Conditioning Window: S T < < T 2 i g z [ . § £
500 days 8I SI 8| 8| 8| 8| 8| SI 8I 8| S S “i
£ £ £ £ £ £ £ £ £ £ 28 g
Volatility Model 2 4 2 g 2 4 2 4 2 g S8 3
volHist| 6.66 6.36 6.20 6.20 6.71 6.69 6.85 6.26 6.74 6.38 il 6.51 Min (Ex-Ora.)
volEWMA92 6.19 6.16 6.15 6.15 6.38 6.45 6.22 5.98 6.23 6.18 o 6.21 5.98
volEWMA96 6.35 6.24 6.16 6.16 6.48 6.53 6.36 6.07 6.39 6.25 N 6.30
volEWMA98 6.52 6.33 6.17 6.17 6.60 6.63 6.56 6.19 6.57 6.34 ol 6.41 Max (Ex-Ora.)
volGARCH(1,1)N 6.51 6.37 6.16 6.16 6.65 6.75 6.60 6.16 6.58 6.38 il 6.43 717
volGARCH(1,1)t 6.48 6.26 6.12 6.12 6.60 6.64 6.64 6.11 6.55 6.29 ol 6.38
VOIGARCH(GIR)N|  6.45 6.28 6.12 6.12 6.59 6.66 6.58 6.09 6.53 631 |l 637 Oracle
VOIGARCH(GJR)t|  6.48 6.24 6.11 6.11 6.60 6.62 6.67 6.10 6.55 627 |l 638 6.98
volRangePK|  7.00 6.43 6.11 6.11 6.92 6.83 7.16 6.31 7.07 6.46 |ull 6.64
volRangeGK 7.00 6.43 6.09 6.09 6.92 6.84 7.14 6.31 7.06 6.46 .III 6.63 Range
volRangeRS 7.03 6.44 6.07 6.07 6.94 6.86 7.17 6.32 7.08 6.47 ull  6.65 (Ex-Oracle)
volRangeYZ, 6.61 6.24 6.09 6.09 6.60 6.55 6.69 6.02 6.68 6.26 all 6.38 1.19
Mean Across Vol. [ull 6.61  all 632 gl 613 gl 613  all 667 il 667 il 672 4l 616 il 667 il 634
Integrated Covariance Models and Benchmarks
noNorm_LWSMM 6.79 noNorm_LWCC 6.46 oracleCov 6.98 Equal Weight Portfolio 6.06
MDP : Turnover (2-way p.a.)
Correlation Models
Holding Period:
125 days 2 %
k) 2 2 < 2 I
B 3 @ 2 8 8 1) ) w w 3 5
Conditioning Window: S T £ < z T i £ 3 € " S £
500 days 8I SI 8| 8| 8| SI 8I SI 8I 8| S s i
£ £ £ £ £ £ £ £ £ £ 23 g
N =60 S 2 s 2 s 2 S 2 $ 2 §¢ g
Volatility Models 2 8 2 8 2 8 2 8 2 8 s 8 a
volHist| 172% 164% 47% 47% 193% 184% 159% 156% 166% 158% |y 145% Min (Ex-Ora.)
volEWMA92 181% 174% 76% 76% 200% 194% 170% 168% 176% 169%  |ull 158% 45%
volEWMA96 177% 169% 67% 67% 197% 189% 165% 163% 171% 164%  |ul. 153%
VolEWMA98 174% 167% 59% 59% 195% 187% 162% 159% 168% 161% il 149% Max (Ex-Ora.)
VOIGARCH(L, N[  177% 171% 67% 67% 197% 190% 166% 163% 171% 165%  |ull 153% 200%
VOIGARCH(1,1)t|  176% 171% 68% 68% 198% 191% 164% 162% 171% 165%  |ull 153%
volGARCH(GJR)N 176% 170% 68% 68% 197% 190% 165% 162% 171% 165% will  153% Oracle
volGARCH(GIR)t| 176% 170% 69% 69% 198% 191% 164% 162% 170% 164% il 153% 273%
volRangePK 171% 163% 46% 46% 192% 183% 157% 154% 165% 157% | 143%
volRangeGK! 172% 164% 46% 46% 192% 183% 158% 155% 166% 158% |y 144% Range
volRangeRS 171% 164% 47% 47% 192% 183% 158% 154% 165% 158% |y 144% (Ex-Oracle)
volRangeYZ 172% 164% 45% 45% 193% 184% 157% 154% 166% 158% 144% 155%
Mean Across Vol. |ull 175%  all 168%  qll 59%  ull 59%  all 195% il 187% il 162% il 159% ] 169% il 162%

Integrated Covariance Models and Benchmarks

noNorm_LWSMM 168% noNorm_LWCC 164% oracleCov 273% Equal Weight Portfolio 36%




Table 8 — Panel 1: EffBetsPCA Portfolio Empirical Performance Metrics: m = 500; T = 125; All Model Combinations

metric Mean Return p.a.
EffBetsPCA aeaing ean Return p.a
Correlation Models
Holding Period:
o
125days %- 5
ko) 2 2 S “ a
8 B g ¢ 3 8 g & w w 2 &
Conditioning Window: I T < < o [ e ] z z 3 2
E 5 £ 5 t 5 S 5 £ 5 o S S
500 days S S 8 S 8 S S S S S RS a
1 ! | ! { { 1 ! 1 ! 5 S <
£ £ £ £ £ £ £ £ £ £ 2% g
N =60 S 2 S 2 S 2 S 2 S 2 5¢ £
- <} > 5] > 5] > I} > I} > S S
Volatility Model 2 3 e 3 e 3 2 [ 2 3 S S 3
volHist| 23.25% 23.56% 20.37% 20.88% 21.51% 32.77% 21.55% 27.04% 26.30% 20.09% |l 23.73% Min (Ex-Ora.)

VOlEWMA92| 22.08% 20.22% 9.03% 6.91% 20.21% 16.44% 20.70% 22.72% 27.34% 20.16% [ull 18.58% 6.91%

VolEWMA96| 25.14% 18.28% 16.27% 17.50% 19.06% 16.48% 20.43% 23.86% 25.82% 21.94% |ulll 20.48%

VOlEWMA98| 27.72% 21.29% 20.83% 19.86% 22.80% 18.75% 19.05% 22.18% 23.40% 17.65% [ull 21.35% Max (Ex-Ora.)
VOIGARCH(1,1)N| 24.36% 22.70% 17.33% 16.18% 22.24% 24.38% 22.50% 24.78% 21.51% 22.13% |ull 21.81% 32.77%
VvolGARCH(1,1)t[ 23.59% 27.15% 14.23% 13.83% 22.75% 24.18% 19.55% 20.95% 19.57% 24.88% |l 21.07%
VOlGARCH(GJR)N|  20.06% 24.30% 15.52% 17.73% 16.12% 21.09% 23.33% 24.66% 16.21% 23.45% [ulll 20.25% Oracle
VolGARCH(GIR)t| 22.33% 24.04% 19.13% 16.09% 21.35% 20.00% 27.81% 23.23% 20.86% 23.20% |ull 21.80% 19.25%

volRangePK| 22.50% 24.32% 12.98% 13.83% 19.38% 23.52% 21.32% 20.09% 21.07% 23.51% |all 20.25%

volRangeGK| 24.62% 25.47% 15.64% 18.20% 19.96% 19.87% 20.61% 25.30% 26.62% 24.62% |ull 22.09% Range

volRangeRS| 20.59% 23.51% 14.02% 15.46% 21.33% 21.64% 21.55% 22.87% 22.36% 23.14% |all 20.65% (Ex-Oracle)

volRangeYZ| 19.42% 23.68% 18.01% 18.14% 22.58% 19.43% 23.57% 22.43% 21.63% 21.59% |all 21.05% 25.86%

Mean Across Vol [gll22.97% il 23.21%  ,16.11%  1]16.22%  4ll20.77%  all21.55% all21.83%  all23.34%  ail22.72%  gll22.20%
Integl d Covariance Models and Benchmarks
noNorm_LWSMM __ 24.03% noNorm_LWCC __ 25.18% oracleCov__ 19.25% Equal Weight Portfolio 15.53%
Out-of-Sample Volatility p.a.
EffBetsPCA - L2 vip
Correlation Models
Holding Period:

o

125 days %. k=
o 2 c S Ky )
8 5 g S 8 8 & i) w w 32 £
Conditioning Window: I T < < o 2 e @ z € 3 2
= 5 £ s £ 5 t 5 IS 5 “w S s
500 days 8 S S S S S 3 S 3 S S S @
{ { { { { S >
£ £ £ £ £ £ £ £ £ £ 3 §
N =60 S 2 S 2 S 2 S 2 S 2 st £
- [} 2 ) 2 <) 2 [} 2 5] 3 Q3 S
Volatility Model: c 4] < 8 5 4] c 4] c 8 SO A

volHist| 21.46% 20.39% 21.22% 21.70% 21.27% 20.79% 22.85% 23.36% 21.17% 21.55% ull 21.58% Min (Ex-Ora.)

VOl[EWMA92|  20.82% 19.37% 22.37% I 21.87% 20.53% 19.83% 22.50% 22.48% 20.78% 19.85% 21.04% 19.30%

Vvol[EWMA96|  19.30% 20.29% 21.49% 21.56% 20.20% 20.54% 21.86% 22.34% 19.75% 20.19% 20.75%

Vvol[EWMA98|  19.60% 20.24% 21.13% 21.14% 20.77% 20.31% 22.64% 22.54% 20.57% 20.59% 20.95% Max (Ex-Ora.)
volGARCH(1,1)N|  20.62% 20.38% 22.19% I 22.01% 21.04% 21.10% 23.03% 22.95% 20.50% 20.79%  |ull 21.46% 25.77%
volGARCH(1,1)t| _20.95% 20.31% 22.00% 21.99% I 20.58% I 21.65% 23.82% 23.07% 21.08% 20.75% |ull 21.62%

VOIGARCH(GIR)N| _19.73% 20.62% 22.63% | 22.13% | 21.19% | 20.54% 22.84% 22.68% 20.75% 19.43% |ull 21.26% Oracle
volGARCH(GIR)t| 20.51% 21.03% 21.76% 21.93% 21.00% 21.09% 23.24% 22.57% 21.05% 21.51% [ull 21.57% 16.04%

volRangePK| 20.72% 21.33% 22.33% 22.02% 20.65% | 22.13% 24.62% 24.49% 21.70% 21.61% |all 22.16%

volRangeGK| 20.75% 22.17% 21.36% 20.84% 21.01% 21.02% 25.77% 25.57% 20.11% 21.56% |ull 22.02% Range

volRangeRS| 21.40% 21.02% 23.24% 22.43% 21.55% [ 22.23% 24.54% 25.72% 21.70% 21.98% [l 22.58% (Ex-Oracle)

volRangeYz| 21.69% 20.96% 22.35% 22.06% 22.20% | 21.71% 23.98% 23.39% 21.06% 22.07% |l 22.15% 6.46%

Mean Across Vol [y1120.63% il 20.68%  1122.00% i[21.81% 41]21.00% 41121.08% il23.48% ail23.43% .i120.85% .i/20.99%
Integrated Covariance Models and Benchmarks
noNorm_LWSMM __ 21.01% noNorm_LWCC  21.61% oracleCov| 16.04% Equal Weight Portfolio 18.11%
Sharpe Ratio (Cash at 0%
EffBetsPCA UL ( )
Correlation Models
Holding Period:
o
125 days T% £
2 2 c < @ ]
I B ] 2 3 8 g ) w w 3 5
Conditioning Window: I T < < a [ i ] z = 3 2
= 5 £ s £ 5 IS 5 t 5 “w S 8
500 days 8I S 8| S 8| S 8I S 8I S S s 2
£ £ £ £ £ £ £ £ £ £ <8 §
N =60 S 2 S 2 S 2 S 2 S 2 St £
- © > 5} 2 [} Z S Z ) 2 L3S S
Volatility Models < 4] < 4 < 4] < 4] < 4] S o 3
volHist|  1.08 1.16 0.96 0.96 1.01 158 | o094 1.16 1.24 093 |[gl 110 Min (Ex-Ora.)

VOIEWMAS2[  1.06 104 0.98 0.83 0.92 101 132 102 |ull o089 0.32

volEWMA96 1.30 0.90 0.76 0.81 0.94 0.80 0.93 1.07 131 1.09 all 0.99

volEWMA9S|  1.41 1.05 0.9 0.94 1.10 0.92 0.84 0.98 1.14 08 [l 1.02 Max (Ex-Ora.)
VOIGARCH(L, N[  1.18 1.11 0.78 0.74 1.06 1.16 0.98 1.08 1.05 1.06 |ull 102 1.58
VOIGARCH(L,1)t|  1.13 1.34 0.65 0.63 111 112 0.82 0.91 0.93 120 gl 0.98
volGARCH(GJR)N 1.02 1.18 0.69 0.80 0.76 1.03 1.02 1.09 0.78 1.21 ol 0.96 Oracle
VOIGARCH(GIR)t|  1.09 1.14 0.88 0.73 1.02 0.95 1.20 1.03 0.9 1.08 |qll 101 1.20

volRangePK 1.09 1.14 0.58 0.63 0.94 1.06 0.87 0.82 0.97 1.09 o 0.92

volRangeGK! 119 1.15 0.73 0.87 0.95 0.95 0.80 0.99 1.32 1.14 il 1.01 Range

volRangeRS 0.96 1.12 0.60 0.69 0.99 0.97 0.88 0.89 1.03 1.05 o 0.92 (Ex-Oracle)

volRangeYZ 0.90 1.13 0.81 0.82 1.02 0.90 0.98 0.96 1.03 0.98 I 0.95 1.26

Mean Across Vol |gll 112 gl 112 gl 074 gl 075 gl 099 ] 1.02 40l 093 g4l 1.00 g4l 1.09  gil 1.06
Integrated Covariance Models and Benchmarks
noNorm_LWSMM 1.14 noNorm_LWCC 1.17 oracleCov 1.20 Equal Weight Portfolio 0.86




Table 8 — Panel 2: EffBetsPCA Portfolio Empirical Performance Metrics: m = 500; T = 125; All Model Combinations

EffBetsPCA i SHicwness
Correlation Models
Holding Period:
125 days 2 £
ko) 2 2 < 2 9
5 b v g g g g & w w 3 5
Conditioning Window: I T £ < E 3 ug i E g . § .§
500 days 8| 8| 8| 8| 8| 8| 8| 8| 8| 8| 3 S ‘i
£ £ £ £ £ £ £ £ £ £ <3 §
2 2 2 2 2 2 2 2 2 2 §¢ g
Volatility Model 2 4 2 [ 2 4 2 4 2 [ S8 3
volHist|  0.31 0.17 -0.04 0.00 0.50 0.47 0.65 0.79 0.46 023 |4l o035 Min (Ex-Ora.)
volEWMA92 0.24 0.10 -0.03 -0.03 0.12 0.18 0.22 0.33 0.03 0.16 o 0.13 -0.18
VolEWMA96 0.17 0.05 0.00 0.16 0.20 -0.06 0.22 0.25 0.22 0.26 , 0.15
volEWMA98 0.28 0.18 0.08 0.13 0.14 0.27 0.16 0.21 0.41 0.24 ol 0.21 Max (Ex-Ora.)
volGARCH(1,1)N 0.32 0.41 0.05 0.05 0.89 0.74 0.51 0.51 0.32 0.42 il 0.42 1.03
volGARCH(1,1)t 0.42 0.29 0.04 -0.02 0.46 0.64 0.60 0.40 0.60 0.37 il 0.38
volGARCH(GIR)N 0.31 0.22 -0.09 -0.10 0.37 0.34 0.48 0.65 0.05 0.33 all 0.26 Oracle
VolGARCH(GIR)t| 0.13 0.10 -0.14 -0.05 0.30 0.54 0.42 0.35 0.70 0.59 all 0.29 0.17
volRangePK| 1,01 0.88 -0.09 -0.12 0.25 0.58 0.73 0.55 0.86 096 |[ull 056
volRangeGK 0.32 0.87 -0.12 -0.13 0.71 0.69 0.71 0.77 0.53 0.48 .III 0.48 Range
volRangeRS 0.77 0.59 -0.17 -0.18 0.64 0.77 0.77 0.73 1.03 0.94 il 0.59 (Ex-Oracle)
volRangeYZ 0.58 0.64 0.10 0.19 0.51 0.12 0.57 0.88 0.48 0.51 will  0.46 1.21
Mean Across Vol. |ull 041 gl 038 il -003 il -0.01 il 042 il 044 il 050 gl 054 il 047 il 0.46
Integrated Covariance Models and Benchmarks
noNorm_LWSMM 0.73 noNorm_LWCC 0.69 oracleCov 0.17 Equal Weight Portfolio -0.21
EffBetsPCA : Kurtosis
Correlation Models
Holding Period:
125 days £ T%
ko) 2 2 S @ ]
b z ¢ H 8 8 & & w w 3 £
Conditioning Window: S T < < T 2 i g z [ . § £
500 days 8I SI 8| 8| 8| SI 8| SI 8I 8| S S “i
£ £ £ £ £ £ £ £ £ £ 28 g
Volatility Model 2 4 2 g 2 4 2 4 2 g S8 3
volHist| 8.12 7.33 5.45 573 9.57 8.77 9.86 11.34 8.75 8.16 ol 831 Min (Ex-Ora.)
volEWMA92 6.91 6.40 5.82 524 5.99 832 6.27 6.55 5.68 6.33 ol 6.35 5.24
volEWMA96 6.71 6.46 5.99 6.53 7.75 7.76 6.02 6.07 6.02 6.71 o 6.60
volEWMA98 6.90 7.70 6.17 6.24 7.08 7.11 6.00 6.22 7.54 7.40 o 6.84 Max (Ex-Ora.)
volGARCH(1,1)N 7.45 8.87 5.88 6.00 14.58 10.79 7.88 8.45 6.66 9.33 ol 8.59 15.62
volGARCH(1,1)t 8.05 7.97 6.47 5.79 7.39 10.51 9.39 8.00 9.31 8.12 ol 8.10
volGARCH(GIR)N 7.63 7.28 6.23 5.59 8.21 9.31 8.38 10.38 8.26 7.35 ol 7.86 Oracle
volGARCH(GIR)t| 7.27 8.09 6.65 6.84 7.60 10.52 7.75 7.14 10.96 10.18 |y 8.30 7.41
volRangePK|  15.40 14.48 6.51 6.61 8.75 10.94 11.43 8.86 15.19 1537 |all 1135
volRangeGK 7.49 14.80 6.38 6.42 13.64 10.79 10.91 11.02 8.32 10.44 |yl. 10.02 Range
volRangeRS|  14.16 10.02 6.97 6.60 11.18 13.17 11.50 10.56 15.62 1452 |l 11.43 (Ex-Oracle)
volRangeYZ, 10.82 12.38 7.83 7.66 9.80 6.88 9.04 11.55 8.81 10.67 il 9.54 10.38
Mean Across Vol. [ull 891  all 931 il 636 gl 627 il 930 il 957 il 870 il 884 il 9.26 il 9.55
Integrated Covariance Models and Benchmarks
noNorm_LWSMM 12.30 noNorm_LWCC 10.69 oracleCov 7.41 Equal Weight Portfolio 6.06
EffBetsPCA : Turnover (2-way p.a.)
Correlation Models
Holding Period:
125 days 2 %
k) 2 2 < 2 I
b k- g ) 8 g ) ) w w X 5
Conditioning Window: S T £ < z T i £ 3 € " S £
500 days 8I SI 8| 8| 8| SI 8I SI 8I 8| 3 s ‘i
£ £ £ £ £ £ £ £ £ £ 23 g
Volatility Models 2 8 2 4 2 4 2 3 2 4 s S 3
volHist| 297% 277% 350% 355% 294% 293% 281% 267% 303% 270% |y 299% Min (Ex-Ora.)
volEWMA92 304% 292% 389% 385% 319% 323% 313% 304% 314% 290% Jull 323% 257%
volEWMA96 287% 288% 370% 365% 305% 298% 295% 291% 284% 291% [ll 307%
VolEWMA9S|  294% 288% 368% 366% 320% 308% 293% 287% 297% 283% |ull 310% Max (Ex-Ora.)
VOIGARCH(1,1)N|  322% 279% 365% 369% 293% 308% 282% 314% 277% 288% |ull 310% 389%
VOIGARCH(1,1)t|  295% 285% 376% 370% 308% 319% 286% 297% 306% 297% |ull 314%
VOIGARCH(GIR)N|  295% 304% 385% 385% 310% 302% 303% 308% 287% 282% |ull 316% Oracle
VOlGARCH(GJR)t| 321% 277% 368% 368% 308% 306% 281% 286% 298% 278%  [ll 309% 328%
volRangePK 275% 257% 348% 345% 287% 278% 272% 284% 282% 281%  |u 291%
volRangeGK! 294% 274% 355% 358% 281% 274% 282% 282% 271% 274% |y 294% Range
volRangeRS 295% 265% 362% 358% 280% 266% 271% 283% 272% 258% | 291% (Ex-Oracle)
volRangeYZ 288% 274% 346% 345% 321% 288% 280% 276% 291% 284% il 299% 132%
Mean Across Vol [yl 297% il 280% il 365% gl 364%  all 302% gl 297% il 287% gl 290% il 290% 4l 281%
Integrated Covariance Models and Benchmarks
noNorm_LWSMM 286% noNorm_LWCC 286% oracleCov Equal Weight Portfolio 36%

328%




Table 9 — Panel 1: EffBetsMLT Portfolio Empirical Performance Metrics: m = 500; 7 = 125; All Model Combinations

EffBetsMLT

Geometric Mean Return p.a.

Correlation Models

Holding Period:

125days % T%
ko) 2 2 S “ a
2 g 2 S 8 8 & & w 5 3 B
Conditioning Window: I T < < o [ e ] z z 3 2
E 5 £ 5 t 5 S 5 £ 5 o S S
500 days S S 8 S 8 S S S S S RS a
1 ! | ! { { 1 ! 1 ! 5 S <
£ £ £ £ £ £ £ £ £ £ g% g
N =60 S 2 S 2 S 2 S 2 S 2 5¢ £
- <} > 5] > 5] > I} > I} > S S
Volatility Model 2 3 e 3 e 3 2 3 2 3 S S 3
volHist| 15.33% 15.51% 16.34% 16.33% I 15.44% 15.60% 15.43% 15.57% 15.32% 15.50% |ull 15.64% Min (Ex-Ora.)
VOlEWMA92| 15.46% 15.63% 16.30% 16.29% 15.58% 15.74% 15.58% 15.70% 15.44% 15.62% .III 15.73% 14.98%
VolEWMA96| 15.53% 15.71% 16.43% 16.42% 15.65% 15.81% 15.63% 15.77% 15.51% 15.70% .III 15.82%
VOIEWMA98|  15.54% 15.73% | 1650% | 16.49% | 15.66% 15.82% 15.64% 15.79% 15.52% 15.71% |ull 15.84% Max (Ex-Ora.)
volGARCH(1,1)N| 15.45% 15.61% 16.23% 16.23% 15.54% 15.69% 15.53% 15.63% 15.44% 15.59% |ull 15.69% 16.50%
volGARCH(1,1)t[ 15.37% 15.54% 16.16% 16.15% 15.46% 15.61% 15.45% 15.56% 15.36% 15.52% [all 15.62%
VOlGARCH(GJR)N|  15.38% 15.54% 16.17% 16.17% 15.48% 15.63% 15.46% 15.57% 15.36% 15.52% |ull 15.63% Oracle
VolGARCH(GIR)t| 15.34% 15.50% 16.11% 16.11% 15.43% 15.58% 15.41% 15.52% 15.32% 15.48% |ull 15.58% 16.10%
volRangePK| 15.25% 15.44% 16.29% 16.28% 15.37% 15.54% 15.34% 15.48% 15.24% 15.43% |ull 15.57%
volRangeGK| 15.27% 15.47% 16.35% 16.33% 15.40% 15.57% 15.36% 15.51% 15.26% 15.45% |ull 15.60% Range
volRangeRS| 15.27% 15.47% 16.36% 16.34% 15.40% 15.57% 15.36% 15.51% 15.25% 15.46% |ull 15.60% (Ex-Oracle)
volRangeYZ| 15.01% 15.19% 15.94% 15.93% 15.13% 15.30% 15.03% 15.17% 14.98% 15.17% 15.28% 1.52%
Mean Across Vol. [yl]15.35% gl 15.53%  ll16.27%  all16.26%  ,]15.46%  1l15.62%  41115.44%  1115.56% 4115.33%  gl]15.51%
Integl d Covariance Models and Benchmarks
noNorm_LWSMM__ 15.30% noNorm_LWCC _ 15.51% oracleCov| 16.10% Equal Weight Portfolio 15.53%
Out-of-Sample Volatility p.a.
EffBetsMLT - L2 vip
Correlation Models
Holding Period:
o 2
125 days £ 5
k) 2 c S 2 ]
8 5 g S 8 8 & i) w w 32 £
Conditioning Window: I I < < o [ i ] z = 3 2
= 5 £ s £ 5 = 5 t 5 o S s
500 days 8I S 8| S 8| S 8| S 8I S S S 2
£ £ £ 3 £ £ £ £ £ 3 <35 S
N =60 S 2 S 2 S 2 S 2 S 2 st £
- [} 2 ) 2 <) 2 [} 2 5] 3 Q3 S
Volatility Model: c 4] < 8 < 4] c 4] c 8 SO A
volHist| 18.43% 18.36% 17.74% 17.75% 18.41% 18.37% 18.39% 18.33% 18.42% 1834% |ull 18.25% Min (Ex-Ora.)
VOol[EWMA92| 18.19% 18.11% 17.46% 17.47% 18.17% 18.13% 18.13% 18.07% 18.17% 18.10% |ull 18.00% 17.46%
VOl[EWMA96| 18.24% 18.17% 17.53% 17.53% 18.23% 18.19% 18.19% 18.13% 18.23% 18.15% |ull 18.06%
VOl[EWMA98| 18.29% 18.22% 17.59% 17.60% 18.28% 18.24% 18.24% 18.19% 18.28% 18.21% |ull 18.11% Max (Ex-Ora.)
volGARCH(1,1)N| 18.30% 18.22% 17.56% 17.57% 18.28% 18.23% 18.25% 18.19% 18.29% 18.20% |ull 18.11% 18.55%
volGARCH(1,1)t| 18.27% 18.19% 17.53% 17.54% 18.25% 18.20% 18.22% 18.17% 18.26% 18.18% |ull 18.08%
volGARCH(GIJR)N| 18.27% 18.19% 17.53% 17.54% 18.25% 18.20% 18.23% 18.17% 18.26% 18.17% |ull 18.08% Oracle
VvolGARCH(GIR)t| 18.26% 18.18% 17.52% 17.53% 18.24% 18.19% 18.22% 18.15% 18.25% 18.16% |ull 18.07% 18.77%
volRangePK| 18.46% 18.38% 17.75% 17.75% 18.44% 18.39% 18.43% 18.36% 18.45% 18.37% |ull 18.28%
volRangeGK| 18.45% 18.37% 17.73% 17.73% 18.42% 18.38% 18.42% 18.35% 18.44% 18.35% |ull 18.26% Range
volRangeRS| 18.46% 18.37% 17.74% 17.74% 18.43% 18.39% 18.43% 18.36% 18.45% 18.36% |ull 18.27% (Ex-Oracle)
volRangeYz| 18.55% 18.46% 17.85% 17.85% 18.52% 18.48% 18.52% 18.45% 18.54% 18.45% lull 18.37% 1.09%
Mean Across Vol. [ull18.35%  alll 18.27%  4ll17.63%  41117.63% all18.33%  uil18.28% wll18.31% .il18.24% ll18.33%  wil18.25%
Integrated Covariance Models and Benchmarks
noNorm_LWSMM __ 18.41% noNorm_LWCC _ 18.29% oracleCov| 18.77% Equal Weight Portfolio 18.11%
Sharpe Ratio (Cash at 0%
EffBetsMLT UL ( )
Correlation Models
Holding Period:
o L2
125 days £ 5
o 2 c S ) )
B 2 2 g K] k] % o0 w w 3 kS
Conditioning Window: I T < < a [ i ] z = 3 2
= 5 £ s £ 5 IS 5 t 5 “w S 8
500 days 8I S 8| S 8| S 8I S 8I S S s 2
£ £ £ E £ £ £ £ £ E <E s
N =60 S 2 S 2 S 2 S 2 S 2 St £
- © > 5} 2 [} Z S Z ) 2 L3S S
Volatility Models < 4] < 4 < 4] < 4] < 4] S o 3
volHist| 0.83 0.85 0.92 0.92 0.84 0.85 0.84 0.85 0.83 0.84 ill 0.86 Min (Ex-Ora.)
volEWMA92 0.85 0.86 0.93 0.93 0.86 0.87 0.86 0.87 0.85 0.86 il o087 0.81
volEWMA96 0.85 0.86 0.94 0.94 0.86 0.87 0.86 0.87 0.85 0.86 il oss
volEWMA98|  0.85 0.86 0.94 0.94 0.86 0.87 0.86 0.87 0.85 0.86  [ull 087 Max (Ex-Ora.)
VOIGARCH(L,1)N[  0.84 0.86 0.92 0.92 0.85 0.86 0.85 0.86 0.84 0.86 [ull 087 0.94
VOIGARCH(1,1)t|  0.84 0.85 0.92 0.92 0.85 0.86 0.85 0.86 0.84 0.85 [l 086
VOIGARCH(GIR)N|  0.84 0.85 0.92 0.92 0.85 0.86 0.85 0.86 0.84 0.85 Il 086 Oracle
VOIGARCH(GIR)t|  0.84 0.85 0.92 0.92 0.85 0.86 0.85 0.85 0.84 0.85 Il 086 0.86
volRangePK 0.83 0.84 0.92 0.92 0.83 0.84 0.83 0.84 0.83 0.84 ol 0.85
volRangeGK! 0.83 0.84 0.92 0.92 0.84 0.85 0.83 0.85 0.83 0.84 il  0.85 Range
volRangeRS 0.83 0.84 0.92 0.92 0.84 0.85 0.83 0.84 0.83 0.84 ol 0.85 (Ex-Oracle)
volRangeYZ 0.81 0.82 0.89 0.89 0.82 0.83 I 0.81 0.82 0.81 0.82 0.83 0.13
Mean Across Vol [yl 0.84 4l 085 il 092 gl 092 il 084 4l 085 il 084 il 085 il 0.84 4l 085
Integrated Covariance Models and Benchmarks
noNorm_LWSMM 0.83 noNorm_LWCC 0.85 oracleCov 0.86 Equal Weight Portfolio 0.86




Table 9 — Panel 2: EffBetsMLT Portfolio Empirical Performance Metrics: m = 500; 7 = 125; All Model Combinations

EffBetsMLT i SHicwness
Correlation Models
Holding Period:
125 days 2 £
ko) 2 2 < 2 9
5 b v g g g g & w w 3 5
Conditioning Window: I T £ < E 3 ug i E g . § .§
500 days 8| 8| 8| 8| 8| 8| 8| 8| 8| 8| 3 S ‘i
£ £ £ £ £ £ £ £ £ £ <3 §
2 2 2 2 2 2 2 2 2 2 §¢ g
Volatility Model 2 4 2 [ 2 4 2 4 2 [ S8 3
volHist|  -0.19 -0.19 -0.21 -0.21 -0.19 -0.19 -0.20 -0.20 -0.19 -019 |[ull -0.20 Min (Ex-Ora.)
VolEWMA92 -0.20 -0.20 -0.22 -0.22 -0.19 -0.19 -0.20 -0.20 -0.20 -0.20 will -0.20 -0.22
VolEWMA96[  -0.19 -0.19 -0.21 -0.21 -0.19 -0.19 -0.19 -0.19 -0.19 019 gl -0.20
volEWMA98[  -0.19 -0.19 -0.21 -0.21 -0.19 -0.19 -0.19 -0.19 -0.19 019 gl -0.19 Max (Ex-Ora.)
volGARCH(1,1)N -0.20 -0.20 -0.22 -0.22 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 [ql/ -0.20 -0.19
volGARCH(1,1)t -0.20 -0.20 -0.22 -0.22 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 [gl/ -0.20
volGARCH(GIR)N -0.20 -0.20 -0.22 -0.22 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 [ull -0.20 Oracle
VolGARCH(GIR)t| -0.20 -0.20 -0.22 -0.22 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 [ull -0.20 -0.15
volRangePK -0.20 -0.20 -0.21 -0.21 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 wll -0.20
volRangeGK! -0.20 -0.20 -0.22 -0.22 -0.20 -0.20 -0.21 -0.21 -0.20 -020 |y -0.21 Range
volRangeRS -0.21 -0.21 -0.22 -0.22 -0.20 -0.20 -0.21 -0.21 -0.21 -0.21 |y -0.21 (Ex-Oracle)
volRangeYZ -0.20 -0.20 -0.21 -0.21 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 wil. -0.20 0.03
Mean Across Vol. |ull -0.20  all -0.20 il -022 il -0.21 il -0.20 il -0.20 il -0.20 a4l -0.20 4l -0.20 il -0.20
Integrated Covariance Models and Benchmarks
noNorm_LWSMM -0.19 noNorm_LWCC -0.20 oracleCov -0.15 Equal Weight Portfolio -0.21
EffBetsMLT : Kurtosis
Correlation Models
Holding Period:
125 days 2 T%
ko) 2 2 S @ ]
# b} © 2 K 8 g B w w 3 &
Conditioning Window: S T < < 2 2 i i g 2 § .;é
500 days 8 8| 8 8| 8 8, 8 8| S 8| g S 2
£ £ £ 3 £ £ £ £ £ 3 % S
Volatility Model 2 4 2 g 2 4 2 4 2 g S8 3
volHist|  6.22 6.18 6.17 6.17 6.20 6.18 6.22 6.17 6.21 617 |l 6.19 Min (Ex-Ora.)
volEWMA92 6.18 6.15 6.14 6.14 6.17 6.15 6.19 6.15 6.18 6.14 il 6.16 6.07
volEWMA96 6.19 6.15 6.14 6.14 6.17 6.15 6.19 6.15 6.18 6.14 ull  6.16
volEWMA98 6.19 6.15 6.15 6.15 6.17 6.15 6.19 6.15 6.19 6.15 ull  6.17 Max (Ex-Ora.)
volGARCH(1,1)N 6.17 6.14 6.14 6.14 6.15 6.13 6.19 6.15 6.17 6.13 il 6.15 6.22
volGARCH(1,1)t 6.15 6.12 6.11 6.11 6.13 6.11 6.17 6.13 6.15 6.11 ol 6.13
volGARCH(GIR)N 6.15 6.11 6.10 6.10 6.13 6.11 6.17 6.12 6.15 6.10 ol 6.12 Oracle
volGARCH(GIR)t| 6.15 6.11 6.10 6.10 6.13 6.11 6.17 6.12 6.14 6.11 all 6.12 6.23
volRangePK 6.15 6.11 6.10 6.10 6.14 6.11 6.15 6.11 6.15 6.11 i 6.12
volRangeGK! 6.14 6.10 6.08 6.08 6.12 6.10 6.14 6.09 6.13 6.09 o 6.11 Range
volRangeRS 6.13 6.09 6.07 6.07 6.11 6.08 6.12 6.08 6.12 6.08 N 6.10 (Ex-Oracle)
volRangeYZ, 6.14 6.10 6.08 6.08 6.12 6.10 6.14 6.10 6.13 6.10 o 6.11 0.15
Mean Across Vol. [all 6.16  all 612 gl 611 gl 611  all 614 gl 612 a4l 627 4l 613 a4l 616 il 612
Integrated Covariance Models and Benchmarks
noNorm_LWSMM 6.21 noNorm_LWCC 6.17 oracleCov 6.23 Equal Weight Portfolio 6.06
EffBetsMLT : Turnover (2-way p.a.)
Correlation Models
Holding Period:
125 days 2 %
k) 2 2 < 2 I
b k- g ) 8 g ) ) w w X 5
Conditioning Window: S T £ < z T i £ 3 € " S £
500 days 8I SI 8| 8| 8| SI 8I SI 8I 8| 3 s ‘i
£ £ £ £ £ £ £ £ £ £ < B §
N =60 S 2 S 2 S 2 S 2 S 2 St £
- © > 5} 2 [} Z S Z ) 2 L3S S
Volatility Models < [4] < 4] < 4] < 4] < 4] S o 3
volHist| 48% 47% 44% 44% 50% 49% 48% 47% 48% 47% o 47% Min (Ex-Ora.)
volEWMA92 67% 65% 66% 66% 69% 67% 68% 67% 67% 65% il 67% 43%
volEWMA96 61% 59% 59% 59% 62% 61% 62% 60% 61% 59% il 60%
VolEWMA98 56% 54% 53% 53% 57% 56% 57% 55% 55% 54% ol 55% Max (Ex-Ora.)
VOIGARCH(1,1)N|  62% 60% 60% 59% 63% 62% 63% 61% 62% 60% |ull 61% 69%
VOIGARCH(1,1)t|  62% 60% 60% 59% 64% 62% 63% 61% 62% 60% |ull 61%
VOIGARCH(GIR)N|  62% 61% 60% 60% 64% 62% 63% 62% 62% 61%  |ull 62% Oracle
VolGARCH(GIR)t|  63% 62% 61% 60% 65% 63% 64% 62% 63% 62% |ull 62% 70%
volRangePK 47% 45% 43% 43% 49% 47% 47% 46% 47% 45% o 46%
volRangeGK! 47% 45% 44% 43% 49% 48% 47% 46% 46% 45% o 46% Range
volRangeRS 47% 46% 44% 44% 49% 48% 47% 46% 47% 45% o 46% (Ex-Oracle)
volRangeYZ 48% 46% 43% 43% 50% 49% 48% 46% 48% 46% 47% 26%
Mean Across Vol ull 56% il 54% 53% gl 53% il 58%  all 56%  all 56% gl 55% gl 56% gl 54%
Integrated Covariance Models and Benchmarks
noNorm_LWSMM 48% noNorm_LWCC 46% oracleCov 70% Equal Weight Portfolio 36%




Appendix A: Glossary of Portfolio Codes and Model Abbreviations

Portfolio Codes

MV

EW

ERC

MDP

EffBetsPCA

EffBetsMLT

Minimum Variance Portfolio with weights xyy

Equal Weighted Portfolio with weights xgw

Equal Risk Contribution Portfolio with weights xggrc

Most Diversified Portfolio with weights xypp

Effective Number of Bets via PCA Torsion Portfolio with weights xpca

Effective Number of Bets via Minimum Linear Torsion Portfolio with weights xy1

Volatility Model Abbreviations

volHist

oracleVol

volEWMA

volGARCH

volRangePK
volRangeGK
volRangeRS

volRangeYZ

Historical trailing standard deviation with specified window

‘Oracle Volatilities’: perfect-look ahead out-of-sample volatilities used for the in-sample portfolio

estimation

Exponentially Weighted Moving Average Volatility with specified decay coefficient 1 (e.g.
volEMWA96 denotes EMWA volatility with 4 = 0.96

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) volatility models with specified
form and innovation distribution (e.g. volGARCH(1,1)N denotes vanilla GARCH with a Guassian

innovation distribution; volGARCH(GJR)t denotes GJR-GARCH with a t innovation distribution
Intra-day range volatility estimator of Parkinson (1980)

Intra-day range volatility estimator of Garman & Klass (1980)

Intra-day range volatility estimator of Rogers & Satchell (1991)

Intra-day range volatility estimator of Yang & Zhang (2000)

Correlation Model Abbreviations

corrHist

oracleCorr

corrAve

Historical sample correlations yielding sample correlation matrix E

‘Oracle Correlations’: perfect-look ahead out-of-sample correlations used for the in-sample portfolio

estimation

Average correlations — a valid correlation matrix where each entry p; ; is set to a uniform sample

average value



corrPlesio The plesiochronous correlation matrix estimator of Choueifaty et al. (2013)
corrEigenClip  The treated correlation matrix estimator of Bouchaud and Potters (2011)
corrRIE The rotationally invariant correlation matrix estimator of Bouchaud, Bun and Potters (2016)

Lwo3 The covariance matrix shrinkage estimator of Ledoit and Wolf (2003) with single market model

shrinkage target

LWO04cCC The covariance matrix shrinkage estimator of Ledoit and Wolf (2004) with constant correlation

shrinkage target

End Notes

"None of the portfolios in this study include expected returns inputs. It is possible though, that there are some ‘risk-based’
portfolios that do include expected returns. The Efficient Maximum Sharpe Ratio Portfolio of Amenc, Goltz and Stoyanov (2011)
which includes expected returns albeit as an increasing direct function of downside risk, is such an example. It may be a stretch
to extend the definition of risk to include a drift (return) term, but this is exactly the argument by Roncalli (2013), defining the
portfolio risk R(x) as R(x) = —x'u + ¢ - Vx'¥x, with ¢ an arbitrary scalar, leading to an immediate comparison to the functional
form of VaR as VaR,(x) = —x'u + @ 1(a) - Vx'Zx, with &1 the inverse normal cdf and « the significance level.

i The concept of Euler risk contributions is based on the Euler theorem for the decomposition of multivariate functions into their
weighted first partial derivatives. The risk of any one portfolio position is then defined as the product between the weight of
that position and the portfolio’s marginal sensitivity to a change in that weight. The Euler risk contribution is general in the risk
measure and analytical expression exists for contributions under VaR and CVaR. See Du Plessis and van Rensburg (2017) for
details.

it The surprising empirical finding in this study is that this exceedingly simple regularization method contributes a great deal of
the value of more sophisticated models such as corrEigenClip and corrRIE that typically embed it. See Section 3.

v Choueifaty, Coignard and Reynier (2013) do not provide details about their approach other than that is was inspired by the
Hayashi and Yoshida (2005) estimator for overcoming asynchronous arrival times in high frequency estimation. The
development of the plesiochronous estimator [corrPlesio] in our study is informed by discussions the corresponding author had
with its original developers (Messrs. Choueifaty and Froidure) and who accepts all responsibility for errors and omissions in its
design. It was nonetheless deemed interesting enough for inclusion here.

Y The ability of a volatility model to correct predict the rank order of out-of-sample volatilities should also be useful in the
capture of the ‘low-volatility effect’, which is exactly a phenomenon that exists in the rank order of cross-sectional volatilities.
Low volatility portfolios are not directly studied here, but many of the risk-based portfolios in the text take exposure to low
volatility factors. See for example Roncalli (2013).



