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Motivation

@ Harvey, Liu and Zhu (2015)
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@ Cochrane (2011) in his presidential address: In the zoo of new

variables, | suspect we will have to use different methods

(portfolio sorting).
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Literature

McLean and Pontiff (2016): anomalies declined sharply after publication.

Harvey et al.(2015): documented 316 factors; many as result of data-snooping.

Green et al.(2016): use multiple test accounting for data-snooping to find factors for the US stock market.
Fama, French (2016): RHS method and sharpe ratio to "choose factors” according to Barillas, Shanken (2016).
Harvey and Liu (2017): "Lucky factors” — use orthogonal design and Bootstrap to find significant factors.
Pelger and Lettau(2017):Risk premium PCA to estimate asset pricing factors

Pukthuanthong et al.(2017): proposed a protocol to screen factors — factors must be correlated with test asset

returns.

Feng et al.(2017): " Taming the factor zoo"; two step lasso plus OLS post-selection regression to find cross-sectional

return predictors.
Ando and Bai (2014): use SCAD (smoothly clipped absolute deviation) to find Chinese stock predictors.
Nagel et al. (2017): use elastic net (¢1 plus £ norm) to shrink the cross section in a Bayesian framework.

Freyberger et al. (2017): non-parametric adaptive group lasso to find which characteristics provide independent
information for the cross-sectional returns.

Bryzgalova (2016): modified adaptive lasso in the Fama-MacBeth regression to shrink spurious factors.

using machine learning techniques to reduce high-dimensionality problems in finance.
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Contributions

@ Utilise the Ordered and Weighted ¢; norm regulariser (OWL) in
machine learning literature to reduce high dimensionality in the

"zoo of factors”.

@ ! OWL relaxes orthogonal matrix design assumption (allow

factors to be highly correlated).

© It answers two questions:
e Which factors are redundant and weak factors in terms of
explaining the cross section of average returns?
o Which factors share the similarity in term of explaining the
cross-sectional expected returns? (factors that are correlated
and have similar explanatory power)
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Contributions contd’

© Two-Stage select-and-test procedure to find factors.

o First stage, we use the OWL to shrink the high dimensionality
of factors. Survival factors are grouped by their magnitude
(clustered factors).

e Second stage, group-wise orthogonal test for factor significance.
= which factors provide independent information about average
returns? Cochrane (2011).
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@ my =1— b(f; — pr) : demeaned and normalised SDF

@ The Euler equation states: E[Rfm,] = 0, ¥ admissible SDF
m; € M. For a candidate m;(b) where b are the model
parameters yet to be estimated, the pricing error
e(b) = E[R¢m,(b)].

@ With the specification of m;, we can write:

e(b) = E[R:m:(b)] = E[R]E[m(b)] + cov(R;, m(b))
= pugre — Cb

Where C is the covariance matrix of returns and factors,
C = cov(R®, f)
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Recover the model by minimising the discrepancy

b = argmin e(b)’ * W x e(b)
b

@ By choosing different W, we can arrive different measures of
discrepancy. The most well known choice of W is the GMM
optimal weighting matrix, that is, the inverse of variance matrix,
however it would be incorrect in the context of comparing
models.

@ A popular choice of W can be the identity matrix, which avoids
favouring the more volatile assets (Ludvigson, 2012).

e If choose W = E(RR’)™1, the discrepancy measure would

corresponds to the well known Hansen-Jaganathan distance.
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Recover the model by minimising the discrepancy

Using the standard GMM method, we can estimate

b= argénin e(b) x W x e(b) = (C'WC) 1 C'W puige
@ Ludvigson(2012) advocates to use the Identity matrix as the
weighting matrix when the test assets are decided, as it would
yield more stable result comparing using an estimated weighting
matrix.
I The curse of dimensionality: When the dimension of C is big,
(NAHH#K, or even N < K), the traditional method will fall in

short. It cries out for regularisation.
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Ordered and Weighted ¢; norm (OWL) regulariser

Proposition 1
A 1
b= argmini(uR — Cb) Wr(ur — Cb) + Q,,(b) (1)
b

2 where Q,(b) = W'|b|, , and w is a K x 1 vector, and w € k, where
K IS @ monotone non-negative cone, defined as

Ki={x€R":x1 >x >..>x,>0} and w1 > wk. |b|, is the
absolute value of the parameter, decreasingly ordered by its

magnitude.

?For the ease of notation, | will use pg to denote the mean of EXCESS
returns, without explicitly using the e subscript.
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Atomic Norm of Q,(.)

Figure: Atomic Norm in R3, Figueiredo et al.(2015)

(d) U]

Fig. 2. OWL balls in R3 with different weights: (a) w1 > wa > w3 > 0;
(b) wi > wy = w3z > 0;(c) wy =wz > w3 > 0:(d) wy =ws > w3z =0;
(&) w1 > wy = w3z = 0; () w1 = w2 =w3 > 0.
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Proximal algorithm

define the proximal function as
1
Proxq,(b) = argminx§||x — bl|5 + Qu(x) (2)

since Q,,(b) = Q. (|b|), and ||b — sign(b) ® |x|||5 < ||b — x]|3, we
have:
Proxq,, (b) = sign(b) ® Proxq,(|b|) (3)

Now since Q,(x) = Q,(Px) and ||P(v — x)||3 = ||v — x]||5 where P is
a permutation matrix. we have:

Proxq,,(b) = sign(b) ® Proxq,, P'(|b]),(|b],) (4)

where |b|, is decreasingly ordered absolute value of coefficients. and
P’(|b|) is the transpose of the permutation matrix, which recovers
the order.
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Proximal algorithm contd’

For any b € k, we have:
1 2 1 » 1 2 /
Slix = bl[3 + Qu(x) = S|x[l2 + 5[Ib][z — b'x + ()
2 2 2

1 * 1 * *

> SIXIE + Sl = b'x" + Qu(x)
where x* € k. So Proxq,(b) € k, and Q,(x) = w'x, then we have:
1 2 1 2
argminer. 5 ||x — [bl, [ + w'x = argmin.ez||x — ([bly —w)|l2

which is the projection of (|b|; — w) onto x, Then equation (4) can
be written as:

Proxq, (b) = sign(b) © (P'(|b]) Proj.(|bl, — w)) (5)

where Proj,(.) is the projection operator onto k.
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FISTA (fast interactive soft-thresholding)for OWL

1 Input: g, C,w

2 Qutput: b in (1)

3 Initialisation:by = boys,to = t; = 1,1 = by, k = 1,0 € (0,1), 70 €
(0,1/L)

while some stopping criterion not met do
Tk = Tk—1:

4
5
6 by = Proxq,(ux + 7 % C' x (ugr — Cb))
7 | while ||ug — Cb||3 > Q(bx, ux) do

8 Tk = 1 * Tk,

9 ‘ by = Proxq,(ux + 7 % C' % (g — Cb))
0 end

1

2

3

4

5

tirr = (14 /1 +4t2)/2

U1 = by + 22 (b — bi—1)

tyt1

k+—k+1
end
Return: by_;
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Tuning parameters

@ Although by choosing different weighting scheme, we can arrive
different LASSO norm specification, we restrict our weighting
scheme consistent with OSCAR (octagonal selection and
clustering algorithm for regression) because of its clustering
property, that is linear and equal-spaced. In OSCAR the
weighting vector can be specified by two tuning parameters, \;
and \y: w; = A1 + (K — i)\, where K is the total number of

factors in the model, and i = 1,2, .... K.
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Cross-validation

@ We use the common 5-fold cross validation method, that is,
given grids of A\; and \,, at each point on the grids (mesh), we
estimate the model using OWL. In particular, we divide the
sample into 5 parts, using 4 parts to estimate the model using
OWL, and use 1 part to estimate the out-of-sample estimation
error (MSE), we rotate these parts as being used as the
out-of-sample sub-sample, and then compute the average MSE.
At each point on the mesh, we compute the MSE, and then we
compare all MSEs obtained at different points on the mesh. The
one with the smallest MSE would corresponds to the optimal

parameters.
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Statistical Properties

Theorem 1 (Error bounds)
Let the DGP be g = Cb* + e, b* € R¥ is S—sparse, e € RN is the
error term, and ||e||y/n < e. Let b be a solution of (1), w, is the first

element of the weighting vector w, and & is the mean of all elements

A wy | SlogK
E||b— b*||, = b*||—
15— £°[l> = Ol ]2 2/ 2227

of w, then
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Statistical Properties

Comments:

@ OWL is a biased estimator.

SlogK
N

@ OWL convergence rate is of
@ estimation bias is proportional to weights.

@ OWL shrinks more of parameters when its true (absolute) value

is great, shrinks less of parameters of small magnitude.
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Statistical Properties

Theorem 2 (Grouping)

Let b(K x 1) be a solution of (1), f; and f; (both T x 1)be the ith
and jth factors, so b; and b; are the coefficients in the SDF
specification associated with the i and j* factors. Let pp(N x 1)
be a vector of test asset means, and /A, be the smallest distance

between two successive weights in w, if

A,

Off <
||urll2||lor]]2

then b;

Y
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Statistical Properties

Comments:

@ When two factors are highly correlated — they are grouped
together (having the same coefficients)

@ The greater A (\; in the OSCAR setting) — more grouping —
because the atomic norm has more pointed surface — tangent
point with the contour from the unregularised solutions.

@ Less volatile of tests assets, more grouping — When portfolios
returns are not much different from each other, factors are
having less explanatory power.

@ Smaller test asset returns, more grouping — When returns are
very close to zero, most factors would be grouped together

because of less explanatory power in all factors.
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Two-stage group-wise testing procedure

1 The first stage, we obtain a sparse model from OWL, then group
these factors according to their coefficient magnitude estimated
through OWL in descending order; that is forming a sequential
of groups {gp1, gp2, ---, &Ps}, in each group, it contains one or
more factors. The elements in each group is equal to each other
in terms of absolute value. So the coefficient in gp; is greater
than in gp;, Vj > i.

2.1 The second stage is orthogonal regression. First, regress i on
first group (gp1) of C, find all significant factors, and include

them in active set A.
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Two-stage group-wise testing procedure

2.2 Regress pg on the updated active set A, obtain residual vector
V, and regress V on the next group of C, test for significance,
and then update A by including more newly tested (significant)

factors.

2.3 Repeat step 2.2, until no more significant factors are found in a
new group, or all groups have been explored. Then the tested

model would be the factors included in the active set A.
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Why need the 2" stage?

@ OWL is a biased estimator, the estimation error is proportional
to the parameter's true value. Which means less shrinkage to

weak factors — possible spurious factors.

@ The grouping property nicely classifies factors by their
magnitudes — we can test groups step by step — less prone to

spurious factor issues.

@ we use orthogonal transformation after testing each group, that
makes each group of factors provides independent information to

the cross-sectional of returns.
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Simulation design

Simulate a return-factor covariance matrix C (N x K), with following
correlation structure.
Let p (K x K matrix) denotes the correlation matrix of C,

p1, P2, p3 € (—1,1) and p are divided into 3 blocks such that:

bky =1 - ¢ |ibke=1| .t | bks=| 1 .
and
bk, 0
P = bk2

0 b
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Simulation design Contd’

@ In each block, the column vectors of C are correlated with each
other, with correlation coefficient of p; , po and p3. But, these

three blocks are uncorrelated with each other.

@ We specify matrix p, and randomly generate an N x K matrix
using the 7.i.d. Gaussian distribution. Then multiply it with the
Choloski decomposition of p to obtain the covariance matrix C,
denoted as simC.

@ We further specify an oracle value for b, then the mean
cross-section returns can be simulated by ug = simC % b + e,
where e isa N x 1 i.i.d. error vector with the scale about 10%

of simC.
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Simulation results

@ Case : N> K (N=25K=15
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Simulation results

@ Casell: N >> K

SDF coefficents

N = 200, K
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Simulation result

@ OWL can successfully group highly correlated variables, and
assign the same coefficients to them.

@ OWL can provide satisfactory sparsity solutions, while LASSO
provides inconsistent sparsity solutions.

@ When K is large relative to N, OWL provides more accurate
estimation than LASSO and adaptive LASSO. Adaptive LASSO
depends on a consistent estimator as the adaptive weight
(usually the OLS estimator), when K is large relative to N, it

may be difficult to obtain a consistent estimator.
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Empirical exercise

e Candidate factors: 12 popular and recently proposed factors
from popular models like FF5, g-theory models etc.

@ Test portfolios are bi-variate-sorted portfolios from Keneth
French’s online data library. Each test portfolio are sorted into
25 portfolios. We include 7 of these bi-variate sorted portfolios,

plus a 49 industrial portfolio.

@ The time horizon is monthly data from January 1967 to
December 2016.
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Empirical exercise

e candidate factors: {mkt, mom, smb, hml, rmw, cma, me, ia,

roe, gmj, bab, hmldevil}

@ 10 test portfolios: {MEBM, BMOP, MEBETA, MEINV, MENI,
MEOP, MEMOM, 49INDUS, 175SORT, 175SORT-49INDUS}
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Factor structure

Correlation matrix of factors Correlation matrix of correlations between factors and test assets (WEBM25)




result

OWL estimators of SDF coefficients

5 6
Test portfolios
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comments

@ The covariance matrix between factors and test assets (which
matters to determine the SDF coefficients) exhibits higher
dependence than the original factor correlation.
= half of factors exhibits correlation coefficients great than
(absolute value) 0.8!

@ Shrinkage result depends on test portfolio:
= Depending on the test portfolios, the shrinkage result is more
biased to select the same characters that used to form the test

portfolios.
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comments contd’

@ 'Mkt’ is overwhelmingly the most significant factor, it was

selected by all test portfolios.

@ 'Momentum’, 'QMJ’, 'ROE’ week factors: not selected in any of
the 7 bi-variable sorted FF 25 portfolios.

e 'HML' is a strong factor which had been selected in many

different portfolios even for those are sorted by other characters.
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Comments contd’

e Fama and French’'s 'SMB' and Hou et al.'s 'ME’ as different
measures of the same (size) character, they have been grouped
together by OWL, with a similar magnitude in coefficients.

@ the 49 industry portfolio is not explained by any of these popular
characteristics, except the '"Mkt' factor.

Next: Pooling together 7 bi-variable sorted 25 portfolios, forming a 175
test portfolio. — Two-stage testing procedure to select factors

that provides independent information.
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First stage: OWL estimation of 175 Bi-variable

sorted portfolios

Table: OWL estimation of 175 bi-variable sorted portfolios

Candidate factors OWL estimator 175 _sorted

mkt 0.0321
mom (6]
smb 0.0053
hml 0.02
rmw 0.0053
cma 0.002
me 0.0053
ia 0.002
roe (6]
qmj (6]
bab 0.0053
hmidevil 0.0053
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Second stage testing using 175 Bi-variable sorted

portfolios

Table: Test portfolio: 175 bi-variable sorted portfolios

coefficient t-stat

group 1 regression

(Intercept) 0.1819 1.753
Mkt O0.0324 6.29
HMNML O0.0468 10.643
sroup 2 regression

(Intercept) -0.0767 -3.1181
sSsMB O0.2048 3.4865
RNMwWwW 0.0438 6.3283
ME O0.2401 3.9173
BAB -0.0002 -0.0256
HMLdevil 0.0215 4.3587

group 3 regression

(Intercept) 0.0191 0.8289
CCMA O0.0083 o0.829
IA -0.0058 -0.3906
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Conclusions
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