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Motivation

Harvey, Liu and Zhu (2015)

Cochrane (2011) in his presidential address: In the zoo of new

variables, I suspect we will have to use different methods

(portfolio sorting).
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Literature

McLean and Pontiff (2016): anomalies declined sharply after publication.

Harvey et al.(2015): documented 316 factors; many as result of data-snooping.

Green et al.(2016): use multiple test accounting for data-snooping to find factors for the US stock market.

Fama, French (2016): RHS method and sharpe ratio to ”choose factors” according to Barillas, Shanken (2016).

Harvey and Liu (2017): ”Lucky factors”→ use orthogonal design and Bootstrap to find significant factors.

Pelger and Lettau(2017):Risk premium PCA to estimate asset pricing factors

Pukthuanthong et al.(2017): proposed a protocol to screen factors→ factors must be correlated with test asset

returns.

Feng et al.(2017): ”Taming the factor zoo”; two step lasso plus OLS post-selection regression to find cross-sectional

return predictors.

Ando and Bai (2014): use SCAD (smoothly clipped absolute deviation) to find Chinese stock predictors.

Nagel et al. (2017): use elastic net (`1 plus `2 norm) to shrink the cross section in a Bayesian framework.

Freyberger et al. (2017): non-parametric adaptive group lasso to find which characteristics provide independent

information for the cross-sectional returns.

Bryzgalova (2016): modified adaptive lasso in the Fama-MacBeth regression to shrink spurious factors.
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Contributions

1 Utilise the Ordered and Weighted `1 norm regulariser (OWL) in

machine learning literature to reduce high dimensionality in the

”zoo of factors”.

2 ! OWL relaxes orthogonal matrix design assumption (allow

factors to be highly correlated). example

3 It answers two questions:

Which factors are redundant and weak factors in terms of

explaining the cross section of average returns?

Which factors share the similarity in term of explaining the

cross-sectional expected returns? (factors that are correlated

and have similar explanatory power)
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Contributions contd’

4 Two-Stage select-and-test procedure to find factors.

First stage, we use the OWL to shrink the high dimensionality

of factors. Survival factors are grouped by their magnitude

(clustered factors).

Second stage, group-wise orthogonal test for factor significance.

⇒ which factors provide independent information about average

returns? Cochrane (2011).
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SDF

mt = 1− b(ft − µf ) : demeaned and normalised SDF

The Euler equation states: E [Re
t mt ] = 0, ∀ admissible SDF

mt ∈M. For a candidate mt(b) where b are the model

parameters yet to be estimated, the pricing error

e(b) = E [Re
t mt(b)].

With the specification of mt , we can write:

e(b) = E [Rtmt(b)] = E [Rt ]E [m(b)] + cov(Rt ,m(b))

= µRe − Cb

Where C is the covariance matrix of returns and factors,

C = cov(Re , f )
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Recover the model by minimising the discrepancy

b̂ = argmin
b

e(b)′ ∗W ∗ e(b)

By choosing different W , we can arrive different measures of

discrepancy. The most well known choice of W is the GMM

optimal weighting matrix, that is, the inverse of variance matrix,

however it would be incorrect in the context of comparing

models.

A popular choice of W can be the identity matrix, which avoids

favouring the more volatile assets (Ludvigson, 2012).

If choose W = E (RR ′)−1, the discrepancy measure would

corresponds to the well known Hansen-Jaganathan distance.
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Recover the model by minimising the discrepancy

Using the standard GMM method, we can estimate

b̂ = argmin
b

e(b)′ ∗W ∗ e(b) = (C ′WC )−1C ′WµRe

Ludvigson(2012) advocates to use the Identity matrix as the

weighting matrix when the test assets are decided, as it would

yield more stable result comparing using an estimated weighting

matrix.

!!! The curse of dimensionality: When the dimension of C is big,

(N>>////K , or even N < K ), the traditional method will fall in

short. It cries out for regularisation.
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Ordered and Weighted `1 norm (OWL) regulariser

Proposition 1

b̂ = argmin
b

1

2
(µR − Cb)′WT (µR − Cb) + Ωω(b) (1)

a where Ωω(b) = ω′|b|↓ , and ω is a K × 1 vector, and ω ∈ κ, where

κ is a monotone non-negative cone, defined as

κ := {x ∈ Rn : x1 ≥ x2 ≥ ... ≥ xn ≥ 0} and ω1 > ωK . |b|↓ is the

absolute value of the parameter, decreasingly ordered by its

magnitude.

aFor the ease of notation, I will use µR to denote the mean of EXCESS
returns, without explicitly using the e subscript.
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Atomic Norm of Ωω(.)

Figure: Atomic Norm in R3, Figueiredo et al.(2015)
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Proximal algorithm

define the proximal function as

ProxΩω(b) = argminx
1

2
||x − b||22 + Ωω(x) (2)

since Ωω(b) = Ωω(|b|), and ||b − sign(b)� |x |||22 ≤ ||b − x ||22, we
have:

ProxΩω(b) = sign(b)� ProxΩω(|b|) (3)

Now since Ωω(x) = Ωω(Px) and ||P(v − x)||22 = ||v − x ||22 where P is
a permutation matrix. we have:

ProxΩω(b) = sign(b)� ProxΩωP
′(|b|)Ωω(|b|↓) (4)

where |b|↓ is decreasingly ordered absolute value of coefficients. and
P ′(|b|) is the transpose of the permutation matrix, which recovers
the order.
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Proximal algorithm contd’

For any b ∈ κ, we have:

1

2
||x − b||22 + Ωω(x) =

1

2
||x ||22 +

1

2
||b||22 − b′x + Ωω(x)

≥ 1

2
||x∗||22 +

1

2
||b||22 − b′x∗ + Ωω(x∗)

where x∗ ∈ κ. So ProxΩω(b) ∈ κ, and Ωω(x) = ω′x , then we have:

argminx∈κ
1

2
||x − |b|↓||22 + ω′x = argminx∈κ

1

2
||x − (|b|↓ − ω)||22

which is the projection of (|b|↓ − ω) onto κ, Then equation (4) can
be written as:

ProxΩω(b) = sign(b)� (P ′(|b|)Projκ(|b|↓ − ω)) (5)

where Projκ(.) is the projection operator onto κ.
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FISTA (fast interactive soft-thresholding)for OWL

1 Input: µR ,C , ω
2 Output: b̂ in (1)
3 Initialisation:b0 = b̂OLS , t0 = t1 = 1, u1 = b0, k = 1, η ∈ (0, 1), τ0 ∈

(0, 1/L)
4 while some stopping criterion not met do
5 τk = τk−1;
6 bk = ProxΩω(uk + τ ∗ C ′ ∗ (µR − Cb))
7 while ||µR − Cb||22 > Q(bk , uk) do
8 τk = η ∗ τk ;
9 bk = ProxΩω(uk + τ ∗ C ′ ∗ (µR − Cb))

10 end
11 tk+1 = (1 +

√
1 + 4t2

k )/2

12 uk+1 = bk + tk−1

tk+1
(bk − bk−1)

13 k ← k + 1
14 end
15 Return: bk−1
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Tuning parameters

Although by choosing different weighting scheme, we can arrive

different LASSO norm specification, we restrict our weighting

scheme consistent with OSCAR (octagonal selection and

clustering algorithm for regression) because of its clustering

property, that is linear and equal-spaced. In OSCAR the

weighting vector can be specified by two tuning parameters, λ1

and λ2: ωi = λ1 + (K − i)λ2, where K is the total number of

factors in the model, and i = 1, 2, ...,K .
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Cross-validation

We use the common 5-fold cross validation method, that is,

given grids of λ1 and λ2, at each point on the grids (mesh), we

estimate the model using OWL. In particular, we divide the

sample into 5 parts, using 4 parts to estimate the model using

OWL, and use 1 part to estimate the out-of-sample estimation

error (MSE), we rotate these parts as being used as the

out-of-sample sub-sample, and then compute the average MSE.

At each point on the mesh, we compute the MSE, and then we

compare all MSEs obtained at different points on the mesh. The

one with the smallest MSE would corresponds to the optimal

parameters.
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Statistical Properties

Theorem 1 (Error bounds)

Let the DGP be µR = Cb∗ + e, b∗ ∈ RK is S−sparse, e ∈ RN is the

error term, and ||e||1/n ≤ ε. Let b̂ be a solution of (1), ω1 is the first

element of the weighting vector ω, and ω̄ is the mean of all elements

of ω, then

E ||b̂ − b∗||2 = O(||b∗||2
ω1

ω̄

√
SlogK

N
)
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Statistical Properties

Comments:

OWL is a biased estimator.

OWL convergence rate is of
√

SlogK
N

.

estimation bias is proportional to weights.

OWL shrinks more of parameters when its true (absolute) value

is great, shrinks less of parameters of small magnitude.
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Statistical Properties

Theorem 2 (Grouping)

Let b̂(K × 1) be a solution of (1), fi and fj (both T × 1)be the ith

and jth factors, so bi and bj are the coefficients in the SDF

specification associated with the i th and j th factors. Let µR(N × 1)

be a vector of test asset means, and ∆ω be the smallest distance

between two successive weights in ω, if

σfi−fj <
∆ω

||µR ||2||σR ||2

then b̂i = b̂j .
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Statistical Properties

Comments:

When two factors are highly correlated → they are grouped

together (having the same coefficients)

The greater ∆ (λ2 in the OSCAR setting) → more grouping →
because the atomic norm has more pointed surface → tangent

point with the contour from the unregularised solutions.

Less volatile of tests assets, more grouping → When portfolios

returns are not much different from each other, factors are

having less explanatory power.

Smaller test asset returns, more grouping → When returns are

very close to zero, most factors would be grouped together

because of less explanatory power in all factors.
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Two-stage group-wise testing procedure

1 The first stage, we obtain a sparse model from OWL, then group

these factors according to their coefficient magnitude estimated

through OWL in descending order; that is forming a sequential

of groups {gp1, gp2, ..., gps}, in each group, it contains one or

more factors. The elements in each group is equal to each other

in terms of absolute value. So the coefficient in gpi is greater

than in gpj , ∀j > i .

2.1 The second stage is orthogonal regression. First, regress µR on

first group (gp1) of C , find all significant factors, and include

them in active set A.
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Two-stage group-wise testing procedure

2.2 Regress µR on the updated active set A, obtain residual vector

V, and regress V on the next group of C , test for significance,

and then update A by including more newly tested (significant)

factors.

2.3 Repeat step 2.2, until no more significant factors are found in a

new group, or all groups have been explored. Then the tested

model would be the factors included in the active set A.
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Why need the 2nd stage?

OWL is a biased estimator, the estimation error is proportional

to the parameter’s true value. Which means less shrinkage to

weak factors → possible spurious factors.

The grouping property nicely classifies factors by their

magnitudes → we can test groups step by step → less prone to

spurious factor issues.

we use orthogonal transformation after testing each group, that

makes each group of factors provides independent information to

the cross-sectional of returns.
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Simulation design

Simulate a return-factor covariance matrix C (N × K ), with following
correlation structure.
Let ρ (K × K matrix) denotes the correlation matrix of C ,
ρ1, ρ2, ρ3 ∈ (−1, 1) and ρ are divided into 3 blocks such that:

bk1 =

 1 . . . ρ1
...

. . .
...

ρ1 . . . 1

 ; bk2 =

 1 . . . ρ2
...

. . .
...

ρ2 . . . 1

 ; bk3 =

 1 . . . ρ3
...

. . .
...

ρ3 . . . 1


and

ρ =

 bk1 0
bk2

0 bk3


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Simulation design Contd’

In each block, the column vectors of C are correlated with each

other, with correlation coefficient of ρ1 , ρ2 and ρ3. But, these

three blocks are uncorrelated with each other.

We specify matrix ρ, and randomly generate an N × K matrix

using the i .i .d . Gaussian distribution. Then multiply it with the

Choloski decomposition of ρ to obtain the covariance matrix C ,

denoted as simC .

We further specify an oracle value for b, then the mean

cross-section returns can be simulated by µR = simC ∗ b + e,

where e is a N × 1 i .i .d . error vector with the scale about 10%

of simC .
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Simulation results

Case I: N > K (N = 25,K = 15)
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Simulation results

Case II: N >> K (N = 200,K = 15)
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Simulation result

OWL can successfully group highly correlated variables, and

assign the same coefficients to them.

OWL can provide satisfactory sparsity solutions, while LASSO

provides inconsistent sparsity solutions.

When K is large relative to N , OWL provides more accurate

estimation than LASSO and adaptive LASSO. Adaptive LASSO

depends on a consistent estimator as the adaptive weight

(usually the OLS estimator), when K is large relative to N, it

may be difficult to obtain a consistent estimator.
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Empirical exercise

Candidate factors: 12 popular and recently proposed factors

from popular models like FF5, q-theory models etc.

Test portfolios are bi-variate-sorted portfolios from Keneth

French’s online data library. Each test portfolio are sorted into

25 portfolios. We include 7 of these bi-variate sorted portfolios,

plus a 49 industrial portfolio.

The time horizon is monthly data from January 1967 to

December 2016.
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Empirical exercise

candidate factors: {mkt, mom, smb, hml, rmw, cma, me, ia,

roe, qmj, bab, hmldevil}

10 test portfolios: {MEBM, BMOP, MEBETA, MEINV, MENI,

MEOP, MEMOM, 49INDUS, 175SORT, 175SORT-49INDUS}

Chuanping Sun Regularising the factor zoo using OWL 29 / 37



Factor structure

Back

Correlation matrix of factors
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result

OWL estimators of SDF coefficients

1 2 3 4 5 6 7 8 9 10

Test portfolios

2

4

6

8

10

12

Fa
ct

or
s

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Chuanping Sun Regularising the factor zoo using OWL 31 / 37



comments

The covariance matrix between factors and test assets (which

matters to determine the SDF coefficients) exhibits higher

dependence than the original factor correlation.

⇒ half of factors exhibits correlation coefficients great than

(absolute value) 0.8!

Shrinkage result depends on test portfolio:

⇒ Depending on the test portfolios, the shrinkage result is more

biased to select the same characters that used to form the test

portfolios.
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comments contd’

’Mkt’ is overwhelmingly the most significant factor, it was

selected by all test portfolios.

’Momentum’, ’QMJ’, ’ROE’ week factors: not selected in any of

the 7 bi-variable sorted FF 25 portfolios.

’HML’ is a strong factor which had been selected in many

different portfolios even for those are sorted by other characters.
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Comments contd’

Fama and French’s ’SMB’ and Hou et al.’s ’ME’ as different

measures of the same (size) character, they have been grouped

together by OWL, with a similar magnitude in coefficients.

the 49 industry portfolio is not explained by any of these popular

characteristics, except the ’Mkt’ factor.

Next: Pooling together 7 bi-variable sorted 25 portfolios, forming a 175

test portfolio. → Two-stage testing procedure to select factors

that provides independent information.
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First stage: OWL estimation of 175 Bi-variable

sorted portfolios

Table: OWL estimation of 175 bi-variable sorted portfolios

Candidate factors OWL estimator 175 sorted

mkt 0.0321

mom 0

smb 0.0053

hml 0.02

rmw 0.0053

cma 0.002

me 0.0053

ia 0.002

roe 0

qmj 0

bab 0.0053

hmldevil 0.0053
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Second stage testing using 175 Bi-variable sorted

portfolios

Table: Test portfolio: 175 bi-variable sorted portfolios

coefficient t-stat

group 1 regression

(Intercept) 0.1819 1.753

Mkt 0.0324 6.29

HML 0.0468 10.643

group 2 regression

(Intercept) -0.0767 -3.1181

SMB 0.2048 3.4865

RMW 0.0438 6.3283

ME 0.2401 3.9173

BAB -0.0002 -0.0256

HMLdevil 0.0215 4.3587

group 3 regression

(Intercept) 0.0191 0.8289

CMA 0.0083 0.829

IA -0.0058 -0.3906
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Conclusions
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