
Oil and Equity Index Return Predictability:

The Importance of Dissecting Oil Price Changes∗

Haibo Jiang†

Tulane University

Georgios Skoulakis‡

University of British Columbia

Jinming Xue§

University of Maryland

January 12, 2018

∗ The authors wish to thank Steve Baker, Murray Carlson, Lorenzo Garlappi, Xuhui (Nick) Pan, Nishad
Kapadia, Carolin Pflueger, Lena Pikulina, Terry Zhang, Zhaodong (Ken) Zhong, and seminar partici-
pants at the Georgia Institute of Technology, at Tulane University, at the University of Auckland, at
the University of British Columbia, the 2016 Conference on Research on Economic Theory and Econo-
metrics, the 2017 Pacific Northwest Finance Conference, the CICF 2017 conference, and the MFA 2017
conference for their comments and suggestions. Tudor Barcan, Stacy Cheng, Beth Li, and Judah Ok-
wuobi provided excellent research assistance. † Finance Department, Freeman School of Business,

Tulane University, New Orleans, LA, 70118; Email: hjiang9@tulane.edu. ‡ Finance Department,
Sauder School of Business, University of British Columbia, Vancouver, BC, Canada V6T 1Z2; Email:
georgios.skoulakis@sauder.ubc.ca. § Finance Department, Smith School of Business, University of

Maryland, College Park, MD 20742; Email: jinming.xue@rhsmith.umd.edu.



Oil and Equity Index Return Predictability:

The Importance of Dissecting Oil Price Changes

Abstract

Using data until 2015, we document that oil price changes no longer predict G7 country

equity index returns, in contrast to evidence based on earlier samples. Using a structural VAR

approach, we decompose oil price changes into oil supply shocks, global demand shocks, and

oil-specific demand shocks. The conjecture that oil supply shocks and oil-specific demand shocks

(global demand shocks) predict equity returns with a negative (positive) slope is supported by

the empirical evidence over the 1986-2015 period. The results are statistically and economically

significant and do not appear to be consistent with time-varying risk premia.
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1 Introduction

The impact of oil price fluctuations on equity markets and the real economy has been of great

interest to academics, policy makers, and market participants alike. Oil, as the major source of

energy, plays a crucial role in the modern global economy. Oil price changes could be interpreted

in different ways. On one hand, an oil price increase could be considered bad news for the econ-

omy and equity markets as it increases the cost of production in a significant number of sectors

and causes consumers to reduce their consumption. Following the same line of thinking, an oil

price drop would have the opposite effect and would be perceived as good news. On the other

hand, lower oil prices imply lower profits for the oil sector. This will likely cause oil company

shares to lose value and, to some extent, drag down the aggregate market. Analogously, higher

oil prices is good news for the oil sector and could affect positively the broader market. The

conventional wisdom in the past was that the former effect dominates implying that an oil price

hike is considered to be bad news for equity markets. A Financial Times 2008 article was titled

“US stocks rally as oil prices fall”.1 Accordingly, a possible conjecture is that positive (nega-

tive) oil price changes should predict lower (higher) subsequent stock returns. In line with this

conjecture, Driesprong, Jacobsen, and Maat (2008) document that, based on data until 2003, oil

price changes predict Morgan Stanley Capital International (MSCI) equity index returns with a

negative and statistically significant predictive slope for a large number of countries. However,

the relationship between oil price movements and stock returns evolves over time.2 Indeed, the

correlation between oil price changes and subsequent equity index returns has turned positive

over the last ten years. Figure 1, where we present the two scatter plots of MSCI World index

return versus the one-month lagged log growth rate of West Texas Intermediate (WTI) spot price

over the 1982–2003 and 2004–2015 periods, clearly illustrates the shift over time. As a result,

the predictive ability of oil price change has been dramatically reduced over the sample period

covering the last thirty years. This structural change is striking and begs for an explanation.

1 See Financial Times, August 8, 2008 (https://www.ft.com/content/59891010-6545-11dd-a352-
0000779fd18c). 2 The financial press closely follows the dynamic relationship between oil and the stock
market. Two recent articles, related to this point, in the Wall Street Journal are titled “Oil, stocks at
tightest correlation in 26 years” on January 25, 2016 (https://www.wsj.com/articles/oil-stocks-dance-
the-bear-market-tango-1453722783) and “Stocks and oil prices: correlation breakdown” on April 18,
2016 (https://www.wsj.com/articles/stocks-and-oil-prices-correlation-breakdown-1461003126). It is
worth pointing out that, while most of the discussion in the financial press is concerned with contemporaneous
correlations, we focus on the predictive relationship between oil price changes and future stock returns.
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At the most fundamental level, oil prices move when there is a misalignment between supply

and demand. Understanding what causes the oil price change in the first place can be crucial

for determining the potential impact of such a change on equity markets. For instance, lower

oil prices due to a slowdown in global economic activity should be viewed as bad news. As

Ethan Harris, a Bank of America chief economist, put it “If you think oil prices are dropping

because of the global economy is sick, then you are less likely to see lower prices as a windfall”.3

But prices could also fall because of excess supply of oil, in which case the message would be

different. To provide an explanation for the recent positive correlation between oil price changes

and aggregate US market returns, Bernanke (2016) decomposes oil price change into a demand-

related component and a residual. He documents that the correlations of the two components

with market returns are different and states about his finding: “That’s consistent with the idea

that when stock traders respond to a change in oil prices, they do so not necessarily because the

oil movement is consequential in itself, but because fluctuations in oil prices serve as indicators

of underlying global demand and growth”. Recent academic literature has also discussed the

potential differential effects of demand and supply shocks associated with oil price fluctuations.

Although oil price shocks were often associated with oil production disruptions in the 1970s and

1980s, it has been argued that the role of global demand for oil, especially from fast-growing

emerging economies, should also be emphasized (Hamilton, 2003; Kilian, 2009; Kilian and Park,

2009). Furthermore, Kilian (2009) points out that oil supply shocks, global demand shocks, and

other types of shocks, all of which can cause oil prices to fluctuate, should have different effects

on the macroeconomy and the stock market. Building on these ideas, we suggest that oil price

changes do contain useful information for predicting future stock returns in a real-time fashion,

once these changes are suitably decomposed into supply and demand shocks.

We start our empirical analysis by demonstrating that the ability of oil price changes to

forecast G7 country MSCI index excess returns at the monthly frequency has diminished over

the extended sample period ending in 2015, using both statistical and economic significance

metrics. Employing formal structural break tests, we provide evidence of a break in the predictive

relationship in the third quarter of 2008 for most of these indexes. At first sight, these results

might suggest that oil price changes are useless for forecasting international equity index returns.

3 See Fortune, October 15, 2014 (http://fortune.com/2014/10/15/stock-market-plunge-oil-prices/).
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However, we contend that information contained in oil price changes becomes useful once it is

suitably complemented with relevant information about oil supply and global economic activity.

The key observation, as made by Kilian (2009), is that oil price changes are driven by various

supply and demand shocks that fundamentally play different roles. Accordingly, using a variant

of the structural VAR approach of Kilian (2009), we obtain an oil price change decomposition

into an oil supply shock, a global demand shock, and an oil-specific demand shock and argue that

these three different shocks should have different implications for international equity markets.

Subsequently, we illustrate the ability of these three shocks to predict G7 country MSCI index

excess returns, using metrics of both statistical and economic significance, and the structural

stability of this predictive relationship over the last thirty years.

This paper relates to a growing literature that examines the impact of oil price shocks on

the real economy and equity markets. Chen, Roll, and Ross (1986), Jones and Kaul (1996), and

Kilian and Park (2009), among others, examine the contemporaneous relationship between the

price of oil and stock prices.4 Kilian and Park (2009) augment the structural VAR model of

Kilian (2009) by adding the US real stock return in the vector of variables and study contem-

poraneous relationships between shocks embedded in oil price changes and stock returns. They

examine cumulative impulse responses of real stock returns to one-time shocks to oil supply,

global demand, and oil-specific demand in the crude oil market. Their results, using data in

the period of 1975–2006, show that an unexpected decrease in oil production has no significant

effect on cumulative US real stock returns and a positive surprise to global demand (oil-specific

demand) leads to a subsequent increase (decrease) in US real stock returns. In addition, several

recent papers, including Driesprong, Jacobsen, and Maat (2008), Casassus and Higuera (2012),

and Narayan and Gupta (2015), investigate the ability of oil price shocks to forecast equity in-

dex returns and document a negative predictive slope of oil price changes. Unlike Kilian and

Park (2009), and in line with the recent finance literature and Driesprong, Jacobsen, and Maat

(2008) in particular, we use a predictive regression framework to examine whether information

contained in oil price changes can be used to forecast future stock returns. Although we utilize

the structural VAR model by Kilian (2009), we approach the question from the perspective of an

4 The contemporaneous relationship between the volatility of oil prices and stock returns has been studied by
several papers, such as Chiang, Hughen, and Sagi (2015) and Christoffersen and Pan (2014).
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investor who wishes to use the real-time information embedded in oil price changes and captured

by the three aforementioned shocks to predict future MSCI equity index returns.

Our work is also related to some recent empirical research that focuses on disentangling the

intrinsic shocks embedded in oil price changes. Rapaport (2014) and Ready (2016) propose to

use information from the stock market to identify the underlying types of shocks in oil price

changes. Rapaport (2014) argues that using the sign and magnitude of the correlation between

daily oil price changes and aggregate stock market returns, excluding oil companies, allows one

to identify shocks specific to the oil market and shocks that affect the overall economy. Ready

(2016) uses crude oil futures returns, returns on a global equity index of oil producing firms, and

innovations to the VIX index to identify demand and supply shocks. Ready (2016) focuses on the

contemporaneous relationship between aggregate market returns and the three shocks obtained

from his decomposition. In contrast, since we focus on the ability of the various shocks embedded

in oil price changes to forecast equity index returns, we adopt the approach advanced by Kilian

(2009), which utilizes more direct proxies for oil supply and global demand and does not require

information from the stock market in the decomposition.

In this paper, we make a number of contributions to the literature studying the impact of

oil price fluctuations on international equity returns. First, we document that the ability of oil

price changes to forecast G7 country MSCI index returns has declined significantly over the last

decade. In particular, using formal structural break tests, we detect a break in the predictive

relationship in the third quarter of 2008 for most of the indexes under examination.

Second, using a variant of the structural VAR approach of Kilian (2009), we obtain a decom-

position of oil price change into an oil supply shock, a global demand shock, and an oil-specific

demand shock. To do so, we use the first principal component of the log growth rates of WTI,

Dubai, and Arab Light spot prices as a comprehensive proxy for oil price change. Moreover, we

employ two proxies for global real economic activity, namely a shipping cost index and global

crude steel production, and use the first principal component of their log growth rates as a com-

prehensive proxy for global demand growth. Importantly, all the variables that we use in our

empirical tests are constructed based on real-time available information.
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Third, we illustrate the ability of these three shocks to predict G7 country MSCI index re-

turns, denominated in both local currency and US dollars. In particular, the conjecture that

oil supply shocks and oil-specific demand shocks (global demand shocks) predict equity returns

with a negative (positive) slope is supported by the empirical evidence over the 1986–2015 pe-

riod. Moreover, we detect no structural breaks in the predictive relationship between the three

aforementioned shocks and G7 country MSCI equity index returns. We also demonstrate the

advantage of using the oil price decomposition instead of just the oil price change, in economic

terms, by the substantial and statistically significant improvement in the performance of simple

mean-variance trading strategies. Specifically, for the case of the MSCI World index, the cer-

tainty equivalent return and Sharpe ratio increase from 3.88% to 7.90% and from 0.30 to 0.56,

respectively.

In addition, we examine various other aspects of the predictive relationship. To address real-

time data availability concerns, we construct returns with a delay of one and two weeks and

show that the results are essentially identical. We further demonstrate that, as the forecasting

horizon increases from one to six months, the predictive ability of the three shocks gradually

diminishes. For the case of the United States, we document that the forecasting ability of the

three shocks is robust in the cross section of industries; we further show that the three shocks have

low correlations with the standard macroeconomic variables used to predict aggregate market

returns and that the three shocks remain strong predictors in the presence of these alternative

predictors. Moreover, the estimated conditional expected returns based on the three shocks

exhibit high volatility and low persistence in comparison to risk premia estimates available in

the literature. Finally, these three shocks do not appear to have an effect on conditional return

volatility. Collectively, these results do not appear to be consistent with the notion of time-

varying risk premia.

The rest of the paper proceeds as follows. In Section 2, we describe the data that we use in our

empirical exercises. In Section 3, we describe the metrics of statistical and economic significance

that we employ to evaluate the ability of the various quantities of interest to predict G7 country

MSCI equity index returns at the monthly frequency. In Section 4, we present empirical evidence

on the forecasting ability of oil price changes and how it has changed over the last decade. In
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Section 5, we introduce a decomposition of oil price changes into oil supply shocks, global demand

shocks, and oil-specific demand shocks and illustrate the ability of these three shocks to forecast

G7 country MSCI index returns. In Section 6, we offer some concluding remarks.

2 Data

We use five different types of data: returns on international equity indexes, short-term interest

rates, oil price proxies, proxies for global economic activity, and global oil production. The full

sample period is from January 1982 to December 2015.

We use returns on MSCI equity indexes for the G7 countries, denominated in both local cur-

rency and US dollars.5 We collect monthly short-term interest rates from the International Mon-

etary Fund (IMF) and the Organisation for Economic Cooperation and Development (OECD).

We use IMF Treasury bill rates when these rates are available and short-term interest rates

obtained from the OECD otherwise.6

We use three proxies for oil price, namely the WTI spot price, the Dubai spot price, and the

Arab Light spot price.7 Note that 75% (83%) of the log growth rates of WTI (Arab Light) prices

from October 1973 to September 1981 are zero. Therefore, it is problematic to use WTI and

Arab Light prices before September 1981. Therefore, in our empirical analysis, we use oil price

data from 1982 onwards. Following Driesprong, Jacobsen, and Maat (2008), we use nominal oil

prices.

We combine the information contained in the three proxies for crude oil spot price into a

single proxy using Principal Component Analysis (PCA). The single proxy, denoted by gP where

P stands for price, is represented by the first principal component of the log growth rates of WTI,

Dubai, and Arab Light spot prices. The details of the construction of the single PCA proxy

5 Specifically, data on MSCI indexes for the G7 countries, i.e., Canada, France, Germany, Italy, Japan, the United
Kingdom, and the United States, as well as the World MSCI index are obtained from Datastream. 6 For Canada,
France, Italy, Japan, and the United Kingdom, we use Treasury bill rates from the IMF. For Germany, we use
Treasury bill rates from the IMF and, from September 2007, short-term interest rates from the OECD. For the
United States, we use the 1-month Treasury bill rate taken from Kenneth French’s website. 7 Data on the Dubai
and Arab Light spot prices are obtained from Bloomberg. Data on WTI spot oil prices for the period of between
January 1982 and August 2013 are obtained from the website of St. Louis Fed. Data for the period between
August 2013 and December 2015 are obtained from Bloomberg.
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for oil price change are given in Appendix A.1. To make the proxy gP comparable to the three

individual proxies, we rescale it so that its standard deviation equals 0.09 over the sample period

of January 1983 to December 2015. Table 1 presents summary statistics, including correlations,

for gP and the log growth rates of the three oil price proxies. Over the subsample period ending

in April 2003, which is the last month in the sample used in Driesprong, Jacobsen, and Maat

(2008), as well as the full sample period, gP is highly correlated with the log growth rates of the

three individual proxies. Figure 2 also shows that the four series track each other quite closely.

We use two proxies for global economic activity to capture changes in global demand. The

first proxy is a shipping cost index constructed from data on dry cargo single voyage rates and

the Baltic Dry Index (BDI). Since the supply of bulk carriers is largely inelastic, fluctuations in

dry bulk cargo shipping cost are thought to reflect changes in global demand for transporting raw

materials such as metals, grains, and coals by sea. Therefore, shipping cost is considered to be

a useful leading indicator of global economic activity. We hand-collect data on dry cargo single

voyage rates from Drewry Shipping Statistics and Economics for the period between January

1982 and January 1985. Rates for seven representative routes are reported each month. We

compute the monthly log growth rates of the shipping cost for each route, and then, following

Kilian (2009), obtain their equally-weighted average.8 Data on the BDI from January 1985 to

December 2015 are obtained from Bloomberg.

The second proxy for global economic activity is global crude steel production. Ravazzolo and

Vespignani (2015) argue that world steel production is a good indicator of global real economic

activity. Steel is widely used in a number of important industries, such as energy, construction,

automotive and transportation, infrastructure, packaging, and machinery. Therefore, fluctuations

in world crude steel production reflect changes in global real economic activity. We obtain

monthly crude steel production data for the period between January 1990 and December 2015

from the website of the World Steel Association. The reported monthly figure represents crude

steel production in 66 countries and accounts for about 99% of total world crude steel production.

In addition, we hand-collect monthly data for the period between January 1968 to October 1991

8 It is, however, worth noting that there is an important difference between our proxy for global economic activity
and the one constructed in Kilian (2009). Specifically, in Kilian (2009), the average growth rate is cumulated, then
deflated using the US CPI and finally detrended. In that sense, the proxy in Kilian (2009) is a level variable. In
contrast, our proxy is a growth rate.
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from the Steel Statistical Yearbook published by the International Iron and Steel Institute.

Crude steel production exhibits strong seasonality and, hence, we seasonally adjust the data, as

we explain in Appendix A.1.

As in the case of oil price proxies, we use PCA to construct a single proxy for global demand

growth. The single proxy, denoted by gD where D stands for demand, is represented by the first

principal component of the log growth rates of the shipping cost index and global crude steel

production. The details of the construction of the single PCA proxy for global demand growth

are given in Appendix A.1. The correlations between gD and the log growth rates of the shipping

cost index and global crude steel production are 0.82 and 0.74, respectively. Figure 3 shows that

gD tracks closely the two individual proxies most of time, except for a few instances in which one

of the two proxies takes extreme values.

Finally, we obtain oil production data, covering the period between January 1982 and Decem-

ber 1991, from the website of the US Energy Information Agency.9 In addition, we hand-collect

data on the total supply of crude oil, natural gas liquids, processing gains, and global biofuels,

for the period between December 1991 and December 2015, from the monthly Oil Market Report

obtained from the website of the International Energy Agency. Combining data from the two

sources, we construct a time series of monthly log growth rates of world crude oil production.

3 Evaluation of predictive ability

In this paper, we examine the ability of (i) oil price changes and (ii) the oil supply, global demand,

and oil-specific demand shocks embedded in these changes to forecast G7 country MSCI excess

returns. We do so in the context of linear predictive regressions of the following type:

ret+1 = α+ β′xt + ut+1, (1)

where ret+1 is the excess return on a G7 country MSCI index, xt = [x1,t · · · xn,t]′ is a vector of

predictors, β = [β1 · · · βn]′ is the vector of predictive slope coefficients, and ut+1 is a zero-mean

9 Specifically, we use Table 11.1b (World Crude Oil Production: Persian Gulf Nations, Non-OPEC, and World).
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random disturbance. Specifically, xt is a scalar (n = 1) when we evaluate oil price change as a

predictor, while xt is a three-dimensional vector (n = 3) when we evaluate the three different

shocks as predictors. We also consider the i.i.d. model for ret+1 in which case the vectors β and

xt are null and equation (1) reduces to ret+1 = α+ut+1. We provide evidence on predictive ability

in terms of statistical as well as economic significance.

The question we wish to address is whether xt can forecast the MSCI index excess return ret+1.

Hence, we are interested in testing the null hypotheses H0 : βi = 0, for i = 1, . . . , n. We evaluate

the statistical significance of predictive ability of xt using standard metrics. Specifically, we obtain

two-sided p-values for the null hypotheses H0 : βi = 0, i = 1, . . . , n based on standard errors

computed according to two well-established approaches: the method advanced by Newey and

West (1987), where the optimal bandwidth is selected following the approach in Newey and West

(1994), as well as the method developed by Hodrick (1992) that imposes the no-predictability

condition. Finally, we also report adjusted R-squares.

To gauge the economic significance of the predictive ability of xt, we consider a mean-variance

investor who can invest in an MSCI index and the corresponding short-term Treasury bill. The

investor uses the regression model (1) to forecast MSCI index excess returns. A trading strategy

is then developed based on the resulting estimates of the conditional mean and variance of

excess returns. We evaluate economic significance in terms of two commonly used metrics: (i)

the certainty equivalent return (CER) and (ii) the Sharpe ratio (SR) of the associated optimal

portfolio returns.

Following Campbell and Thompson (2008), we assume that the risk aversion coefficient of

the mean-variance investor is γ = 3. At the end of each period t, the investor uses all available

data to estimate the parameters of the linear predictive regression (1). Using these parameter

estimates, the investor then obtains estimates of the mean and the variance of the MSCI index

excess return ret+1 at time t, denoted by µ̂t+1 and v̂t+1, respectively. These estimates give rise to

the following optimal portfolio weight on the MSCI index:

ωt =
1

γ

µ̂t+1

v̂t+1
. (2)
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The rest of the investor’s wealth is invested in the short-term Treasury bill. We assume that the

portfolio weight on the MSCI index is constrained between a minimum and maximum feasible

weight, denoted by ω and ω, respectively. The minimum weight ω is set equal to zero so that

short-selling is precluded. Following Campbell and Thompson (2008), we set the maximum

weight ω equal to 150% so that the investor is allowed to borrow up to 50% and invest the

proceeds in the MSCI index. Optimal weights are determined according to equation (2) and

then the realized portfolio returns are computed. Below, we describe the two metrics, CER and

SR, used in our evaluation of economic significance of predictability.

The CER of the resulting optimal portfolio from period 1 to period T based on the predictive

regression (1) is given by

ĈER = µ̂p −
1

2
γv̂p, (3)

with the mean µ̂p and the variance v̂p of the realized optimal portfolio simple returns being

defined by

µ̂p =
1

T

T−1∑
t=0

(rft+1 + ωtr
e
t+1) and v̂p =

1

T

T−1∑
t=0

(
(rft+1 + ωtr

e
t+1)− µ̂p

)2
, (4)

and where ret+1 and rft+1 denote the excess return on the MSCI index and the corresponding

Treasury bill rate at time t+ 1, respectively.

The SR of the resulting optimal portfolio from period 1 to period T based on the predictive

regression (1) is given by

ŜR =
µ̂ep√
v̂ep

, (5)

with the mean and the variance of the realized optimal portfolio excess returns being defined by

µ̂ep =
1

T

T−1∑
t=0

ωtr
e
t+1 and v̂ep =

1

T

T−1∑
t=0

(ωtr
e
t+1 − µ̂ep)2. (6)

We express the CERs obtained from equation (3) in annualized percentages by multiplying by

1,200 and annualize the monthly SRs from equation (5) by multiplying by
√

12. CER represents

the equivalent risk-free rate of return that a mean-variance investor would require in exchange
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of a risky portfolio return series, while SR measures the average portfolio excess return per unit

of risk as measured by the portfolio excess return standard deviation.

If the variables in the vector xt have nontrivial predictive ability, then using the predictive

regression model (1) is expected to generate a higher CER and/or SR than using an i.i.d. model

for the MSCI index excess returns ret+1. In this context, we naturally refer to the i.i.d. model as

the baseline model (Model 1) and the predictive regression model using the vector of predictors

xt as the augmented model (Model 2). Denote by CERj and SRj the CER and SR of Model j, for

j = 1, 2. Even if the point estimate of the CER and/or SR generated by the augmented model

is higher that its counterpart generated by the baseline model, i.e., ĈER1 < ĈER2, one might be

concerned whether this is due to genuine predictive ability of xt or simply to sample variability.

Therefore, it is important to test the statistical significance of any differences in CER and/or

SR. We follow Garlappi, Skoulakis, and Xue (2016) who develop asymptotic tests for the null

hypothesis HCER
0 : CER1 = CER2 against the one-sided alternative HCER

A : CER1 < CER2 and similarly

the null hypothesis HSR
0 : SR1 = SR2 against the one-sided alternative HSR

A : SR1 < SR2. Our

purpose is to evaluate the incremental predictive ability of xt compared to the i.i.d. model for

MSCI index excess returns and, hence, we naturally focus on one-sided alternative hypotheses.

The same framework can be used to compare the predictive ability of oil price change to that

of the vector of oil supply, global demand, and oil-specific demand shocks. For this comparison,

Model 1 (baseline) would correspond to the predictive regression (1) with xt consisting of the oil

price change while Model 2 (augmented) would correspond to the predictive regression (1) with

xt consisting of the three different shocks. The tests are based on standard heteroscedasticity

and autocorrelation consistent (HAC) variance-covariance matrix estimators. The reported p-

values are based on the Newey and West (1987) procedure with a Bartlett kernel and optimal

bandwidth selected as in Newey and West (1994). Details about the computation of p-values are

presented in Appendix A.2.
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4 Oil price change as a predictor of MSCI index excess returns

To examine whether oil price changes can predict equity returns, we start by revisiting the

evidence documented in Driesprong, Jacobsen, and Maat (2008) who consider a sample period

ending in April 2003. In particular, we estimate the following standard predictive regression

model:

ret+1 = αP + δPgPt + uPt+1, (7)

where ret+1 is the excess return on an MSCI index and the oil price change proxy gPt is the first

principal component obtained from three oil spot price log growth rates: WTI, Dubai, and Arab

Light. We construct excess returns by subtracting the particular country short-term rate from

each MSCI index return in the case of local-currency denominated indexes and by subtracting

the US T-bill rate from each MSCI index return in the case of US-dollar denominated indexes.10

We consider the MSCI indexes for the G7 countries as well as the World MSCI index, de-

nominated both in local currencies and US dollars. The oil price change proxy we use is the first

principal component obtained from the WTI, Dubai, and Arab Light spot prices as explained

in Section 2. Driesprong, Jacobsen, and Maat (2008) document negative and statistically sig-

nificant estimates of the predictive slope coefficient δP for a large number of countries based on

a sample that ends in April 2003. We first run the predictive regression for the sample ending

in April 2003 and then consider the extended sample period ending in December 2015. We first

examine the statistical significance of predictability in terms of p-values and adjusted R-squares.

Furthermore, we examine its economic significance by evaluating the performance of the resulting

trading strategies in terms of certainty equivalent returns and Sharpe ratios.

4.1 Evidence based on data until 2003

In Table 2, we present statistical significance results for the predictive regression (7) based on

MSCI index excess returns, denominated in both local currencies and US dollars. The sample

period we consider starts in January 1983 and ends in April 2003. We first focus our analysis

10 While Driesprong, Jacobsen, and Maat (2008) use log returns in their empirical analysis, it is more convenient
for us to use excess returns for the purpose of assessing the economic significance of the predictive ability of oil
price changes. The results for log returns, available upon request, are very similar.
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on this sample period to facilitate comparison of our results with the evidence presented in

Driesprong, Jacobsen, and Maat (2008) who also use a sample ending in April 2003.

For local-currency denominated returns, the point estimate of the predictive slope δP in

regression (7) is negative for all six cases. The null hypothesis H0 : δP = 0 is rejected in six (four)

out of six cases at the 10% (5%) level of significance according to Newey and West (1987) standard

errors. When Hodrick (1992) standard errors are used, H0 : δP = 0 is rejected in five (four) out of

six cases at the 10% (5%) level of significance, with Japan yielding the highest p-value equal to

0.12. The adjusted R-square is higher than 2% in five out of six cases, with Canada yielding the

lowest adjusted R-square equal to 1.0%.11 Hence, even though we use our own oil price change

proxy, our sample starts at a different point in time, and we use excess returns as opposed to

log returns, our results confirm the evidence reported in Driesprong, Jacobsen, and Maat (2008)

on the relationship between oil price changes and subsequent global equity returns for the time

period extending until April 2003.

In Table 3, we present economic significance results on the ability of oil price changes to

predict MSCI index excess returns in terms of the certainty equivalent return (CER) and the

Sharpe ratio (SR) of the associated trading strategies, as explained in Section 3. These results

reinforce the statistical significance results reported in Table 2.

Let CERIID and SRIID denote the CER and SR achieved by the trading strategy assuming that

the MSCI index excess returns are i.i.d., and CERP and SRP denote the CER and SR achieved by

the trading strategy using the predictive regression model (7).

For local-currency denominated returns, the augmented model using the oil price change proxy

gP as predictor generates significantly higher (point estimates of) CERs and SRs compared to

the baseline model that assumes that MSCI index excess returns are i.i.d. across all six cases.

More importantly, the null hypothesis HCER
0 : CERIID = CERP is rejected in six (five) out of

11 The results for US-dollar denominated returns are qualitatively similar. Specifically, the point estimate of the
predictive slope δP in regression (7) is negative for all eight cases. The null hypothesis H0 : δP = 0 is rejected in
seven (six) out of eight cases at the 10% (5%) level of significance according to Newey and West (1987) standard
errors. When Hodrick (1992) standard errors are used, H0 : δP = 0 is rejected in six (six) out of eight cases at the
10% (5%) level of significance, with Japan again yielding the highest p-value equal to 0.27. The adjusted R-square
is higher than 2% in six out of eight cases, with Canada yielding the lowest adjusted R-square equal to 0.7%.
Importantly, for the case of the World MSCI index, H0 : δP = 0 is strongly rejected by both methods and the
adjusted R-square is equal to 5.6% which is rather high for monthly returns.
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six cases at the 10% (5%) level of significance, respectively, against the one-sided alternative

HCER
A : CERIID < CERP. The null hypothesis HSR

0 : SRIID = SRP is rejected against the one-sided

alternative HSR
A : SRIID < SRP in all six cases at the 5% level of significance.12 Overall, the

economic significance results confirm the evidence reported in Driesprong, Jacobsen, and Maat

(2008) on the ability of oil price changes to forecast international equity index returns.

4.2 Evidence based on data until 2015

In this subsection, we extend the sample period to December 2015 and run the same predictive

regressions again. As in the previous subsection, we examine both the statistical and economic

significance of the predictive ability of oil price changes.

In Table 4, which corresponds to Table 2, we present statistical significance results. The

evidence obtained from the extended sample is quite different: the predictive ability of oil price

changes has mostly disappeared.

For local-currency denominated returns, the point estimates of the predictive slope δP in

regression (7) are still negative in all six cases. However, they are much smaller in absolute

value. For instance, for Japan and the UK, the δP point estimates obtained over the 1983.01–

2003.04 period are -0.11 and -0.11, while they fall to -0.05 and -0.06 over the 1983.01–2015.12

period, respectively. The null hypothesis H0 : δP = 0 is now rejected in only three (two) out

of six cases at the 10% (5%) level of significance according to Newey and West (1987) standard

errors. Moreover, we observe a substantial reduction in adjusted R-squares. For instance, for

Japan and the UK, the adjusted R-squares obtained over the 1983.01–2003.04 period are 2.9%

and 4.1%, while they fall to 0.3% and 1.4% over the 1983.01–2015.12 period, respectively. In the

case of Canada, the adjusted R-square even becomes negative.

12 The results for US-dollar denominated returns are qualitative similar. The augmented model based on the
predictive regression model (7) still generates significantly higher (point estimates of) CERs and SRs compared
to the baseline i.i.d. model for MSCI index excess returns across all eight cases. Importantly, for the case of
the World MSCI index, when gP is used as predictor, the CER increases from ĈERIID = 2.26% to ĈERP = 7.79%
and, similarly, the SR increases from ŜRIID = 0.19 to ĈERP = 0.43. The null hypothesis HCER

0 : CERIID = CERP is
rejected in five (three) out of eight cases at the 10% (5%) level of significance, respectively, against the one-sided
alternative HCER

A : CERIID < CERP, with Canada yielding the highest p-value equal to 0.15. The null hypothesis
HSR

0 : SRIID = SRP is rejected against the one-sided alternative HSR
A : SRIID < SRP in six (three) out of eight cases at

the 10% (5%) level of significance, respectively, with Japan yielding the highest p-value equal to 0.14.

14



The results for US-dollar denominated returns are even weaker. While the δP point estimates

are still negative in seven out of eight cases, they are even smaller in absolute value than their

counterparts obtained for local-currency denominated returns and in the case of Canada the

predictive slope estimate turns out to be positive. The null hypothesis H0 : δP = 0 is rejected

only in the case of Italy at the 10% level of significance, regardless of whether we use Newey

and West (1987) or Hodrick (1992) standard errors. Importantly, the corresponding p-values for

the USA and the World MSCI indexes are 0.22 and 0.22, respectively, according to Newey and

West (1987) standard errors. In addition, the adjusted R-squares are rather low: they are less

than 1% in seven out of eight cases, and even negative in the case of Canada. Hence, our results

show substantially weaker statistical evidence on the relationship between oil price changes and

subsequent global equity excess returns over the sample extending to December 2015 compared

to the sample period ending in April 2003.

Table 5, which corresponds to Table 3, reports results on the economic significance of the

predictive ability of oil price changes in terms of the CER and the SR of the associated trading

strategies. These results reinforce the message conveyed by Table 4 that the forecasting ability

of oil price changes has essentially disappeared over the extended sample ending in December

2015.

For local-currency denominated returns, the null hypothesis HCER
0 : CERIID = CERP is not

rejected against the one-sided alternative HCER
A : CERIID < CERP in four out of six cases at the 10%

level of significance, with Italy and the UK being the exceptions. We obtain the same results

when we test HSR
0 : SRIID = SRP against HSR

A : SRIID < SRP.

The results for US-dollar denominated returns are even weaker. The null hypothesis HCER
0 :

CERIID = CERP is not rejected against the one-sided alternative HCER
A : CERIID < CERP in any case,

out of eight, at the 10% level of significance. Importantly, the corresponding p-values for the

USA and the World MSCI indexes are 0.37 and 0.30, respectively.

Collectively, the statistical as well as economic significance results presented in this subsection

illustrate that the forecasting ability of oil price changes has been diminished over the extended

sample ending in December 2015. In the next subsection, we provide further corroborating
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evidence by examining the stability, or lack thereof, of the predictive relation between MSCI

index excess returns and past oil price changes.

4.3 Instability of the predictive slope coefficients

The empirical evidence gathered in the previous two subsections suggests that the ability of oil

price changes to predict MSCI index excess returns is not stable over time. We confirm extant

results on the oil price change predictive ability using data until April 2003, consistent with the

evidence in Driesprong, Jacobsen, and Maat (2008), but also show that these results do not hold

in the extended sample ending in December 2015. While we obtain negative and statistically

significant predictive slope estimates in the early sample, these estimates become much closer to

zero and lose their statistical significance in the extended sample.

As a first attempt to shed some light on these striking findings, we estimate the predictive

regression model (7) over different samples using an expanding window with the first sample

being 1983.01–1993.01 and the last sample being 1983.01–2015.12. Figures 4 and 5 present the

predictive slope estimates along with 95% confidence intervals, based on Newey and West (1987)

standard errors, over the period 1993.01–2015.12 for local-currency and US-dollar denominated

MSCI index returns, respectively. The pattern evident in these graphs is rather revealing. For

the majority of the cases, the predictive slope estimates are negative and frequently statistically

significant until the third quarter of 2008. For many cases, however, after that point in time

the estimates start increasing to zero and quickly lose their statistical significance. This effect is

more noticeable for US-dollar denominated returns.

In addition to the informal analysis based on the predictive slope estimates presented in

Figures 4 and 5, we also perform formal structural break tests. Specifically, we employ the

methodology developed by Bai and Perron (2003) to test for multiple structural breaks in the

predictive slope coefficients. We use the Bayesian Information Criterion (BIC) to select the

number of breaks.

Table 6 presents Bai and Perron (2003) structural break tests in the slope coefficient for the

predictive regression (7). The second column presents the BIC values assuming no break. The
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third and fourth columns provide the BIC values and the corresponding break dates for the case

of the one-break model. The last column shows the number of breaks selected by the BIC. For

local-currency denominated index returns, the test identifies the presence of one structural break

in five out of six cases, with UK being the only exception. For US-dollar denominated index

returns, the test identifies the presence of one structural break in seven out of eight cases, with

France being the only exception. The break dates identified in most cases fall in the third quarter

of 2008. However, the break dates for Italy and Japan are October 2003 and September 1990,

respectively. Overall, the structural break tests provide additional evidence against the stability

of the slope coefficient in the predictive relationship between MSCI index excess returns and past

oil price changes.

5 The differential roles of the various shocks embedded in oil

price changes

In the previous section, we confirm the finding of Driesprong, Jacobsen, and Maat (2008) that oil

price changes predict international equity index returns at the monthly frequency with a negative

predictive slope based on data up to April 2003. However, we also provide compelling evidence

that the predictive power of oil price changes has practically disappeared over the extended sample

ending in December 2015. For most of the G7 MSCI indexes, the predictive slope estimates based

on expanding windows become closer to zero and turn statistically insignificant after the third

quarter of 2008. Moreover, the formal econometric tests of Bai and Perron (2003) indicate the

existence of a structural break in the third quarter of 2008 for the majority of the cases, especially

when US-dollar denominated returns are used. The dramatic reduction in the predictive ability

of oil price changes, therefore, begs for an explanation.

In this paper, we offer an explanation that emphasizes the differential roles of the various

shocks embedded in oil price changes. In particular, we adapt the structural VAR framework of

Kilian (2009) that provides a decomposition of oil price changes into oil supply shocks, global

demand shocks, and oil-specific demand shocks. As pointed out by Kilian (2009) and Kilian

and Park (2009), oil price shocks cannot be treated as strictly exogenous with respect to the
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global economy. In particular, they argue that oil supply shocks, global demand shocks, and

oil-specific demand shocks, the combination of which leads to the observed aggregate oil price

changes, should have different effects on the macroeconomy and the stock market.

Alternatively, Rapaport (2014) and Ready (2016) propose to use information from the stock

market to identify the underlying types of shocks in oil price changes. Rapaport (2014) identifies

shocks specific to the oil market and shocks that affect the overall economy using the sign and

magnitude of the correlation between daily oil price changes and aggregate stock market returns,

excluding oil companies. Ready (2016) uses crude oil futures returns, returns on a global equity

index of oil producing firms, and innovations to the VIX index to identify demand and supply

shocks. He documents a strong contemporaneous relationship between aggregate market returns

and the demand/supply shocks from his decomposition based on data from 1986 to 2011. We have

confirmed that his results remain strong using data until 2015. However, the shocks identified by

Ready (2016) cannot forecast future stock market returns. In contrast, the focus of our paper is

the predictive relationship between the various shocks embedded in oil price changes and equity

index returns. Hence, we find the approach advanced by Kilian (2009), which utilizes more direct

proxies for oil supply and global demand and does not require stock market information to obtain

the decomposition, more suitable for our purposes.

Kilian and Park (2009) augment the structural VAR model of Kilian (2009) by adding the

US real stock return in the vector of variables and study contemporaneous relationships between

shocks embedded in oil price changes and stock returns. They examine cumulative impulse re-

sponses of real stock returns to one-time shocks to oil supply, global demand, and oil-specific

demand in the crude oil market. Their results, using data in the period of 1975–2006, show that

an unexpected decrease in oil production has no significant effect on cumulative US real stock

returns and a positive surprise to global demand (oil-specific demand) leads to a continuous

increase (decrease) in US real stock returns. In this paper, we follow the recent finance litera-

ture, Driesprong, Jacobsen, and Maat (2008) in particular, we cast the question in a predictive

regression framework using short-horizon, i.e., one-month-ahead, forecasts. Although we utilize

the framework proposed by Kilian (2009), we approach the question from the perspective of an

investor who wishes to use the real-time information embedded in oil price changes and captured
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by the three aforementioned shocks to predict subsequent equity index returns.

5.1 A decomposition based on a structural VAR model

To disentangle the supply shocks, demand shocks, and oil-specific demand shocks embedded in the

observed oil price changes, we employ a variant of the structural Vector Autoregressive (VAR)

framework of Kilian (2009). Specifically, we consider a VAR model based on three variables

capturing changes in the (i) supply of oil; (ii) demand for oil; and (iii) price of oil. The first

variable, denoted by gSt where S stands for supply, is the log growth rate of world crude oil

production. The second variable, denoted by gDt where D stands for demand, is the first principal

component of the log growth rates of the dry bulk cargo shipping cost index and global crude steel

production. It has been argued in the literature, e.g., Kilian (2009) and Ravazzolo and Vespignani

(2015), among others, that fluctuations in shipping cost and global crude steel production capture

changes in global economic activity growth and demand for oil. The third variable, denoted by

gPt where P stands for price, is the first principal component of the log growth rates of West Texas

Intermediate, Dubai, and Arab Light spot prices. We provide a detailed explanation of the data

sources and construction in Section 2.

Our purpose is to employ the structural VAR model to obtain a decomposition of oil price

changes into three types of shocks and use them as predictors of MSCI index returns. We do so

by, first, using real-time available information and, second, constructing three variables that are

stationary in a consistent way. As a result, the choice of variables in our implementation of the

structural VAR model differs from that used by Kilian (2009) in two aspects. First, the index

of global real economic activity constructed in Kilian (2009) is a level variable constructed by

first cumulating the average growth rate of dry bulk cargo freight rates, then deflating by the US

CPI, and finally linearly detrending. Our proxy for global economic activity is the first principal

component the log growth rates of two indicators, the shipping cost index and world crude steel

production, constructed in a real-time fashion. Second, Kilian (2009) uses log real oil prices,

measured by US refiners’ acquisition costs deflated by the US CPI. We use an oil price change

proxy, obtained as the first principal component of the log growth rates of three proxies for crude

oil spot prices. Importantly, as pointed out by Apergis and Miller (2009), the variables of global
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real economic activity and log real oil price used in the structural VAR model in Kilian (2009)

appear to be non-stationary. On the contrary, our variables are, by construction, stationary.

Letting gt = [gSt gDt gPt ]
′ denote the vector of the three variables described above, the

structural VAR model is stated as:

A0gt = a +

p∑
i=1

Aigt−i + εt, (8)

where A0 is a 3×3 lower triangular matrix, a is a 3×1 vector, Ai is a 3×3 matrix, for i = 1, . . . , p,

and εt = [εSt εDt εOSDt ]′ is a vector of uncorrelated standardized shocks. The interpretation of the

fundamental shocks is as follows: εSt is the oil supply shock, εDt is the global demand shock, and

εOSDt is the oil-specific demand shock. The structural innovation vectors εt are, by assumption,

serially and cross-sectionally uncorrelated. The reduced-form VAR innovation is et = A−1
0 εt,

where A−1
0 is simply the Cholesky factor of the covariance matrix Σe = Var[et]. Multiplying

both sides of the above equation by A−1
0 yields

gt = b +

p∑
i=1

Bigt−i + et (9)

where b = A−1
0 a and Bi = A−1

0 Ai, i = 1, . . . , p. The parameters b and Bi are estimated by

standard OLS and the VAR order p is selected using the BIC criterion. Writing the VAR(p)

system in VAR(1) form, we obtain

yt = Cyt−1 + ut, (10)

where yt and ut are 3p× 1 vectors defined by

yt = [ g′t − µ′g g′t−1 − µ′g · · · g′t−p+1 − µ′g ]′, (11)

ut = [ e′t 0′3 · · · 0′3 ]′, (12)

µg is the mean of gt and C is a suitable 3p× 3p matrix (involving the matrices Bi, i = 1, . . . , p).

The Wold representation of yt reads yt =
∑∞

i=0 Ciut−i. Denoting by Di the 3×3 upper-left block

of the matrix Ci and defining the matrix Fi = DiA
−1
0 , we can express gt as gt = µg+

∑∞
i=0 Fiεt−i.

The third element of the vector gt is the oil price change proxy denoted by gP. Hence, we obtain
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the following decomposition of gP into three components

gPt = µPg + xSt + xDt + xOSDt , (13)

where µPg is the mean of the oil price change gPt , x
S
t =

∑∞
i=0(Fi)31ε

S
t−i is the oil supply shock,

xDt =
∑∞

i=0(Fi)32ε
D
t−i is the global demand shock, and xOSDt =

∑∞
i=0(Fi)33ε

OSD
t−i is the oil-specific

demand shock.

We estimate the VAR model in equation (9) using OLS and order p = 2, as selected according

to BIC, and obtain the decomposition in equation (13) in a real-time fashion. Specifically, for

each month in the period between January 1986 and December 2015, we estimate the VAR

model using all available data starting in February 1982 and ending in that month. Then, we

obtain the time series of three shocks in the decomposition (13), but keep the vector of the oil

supply, global demand, and oil-specific demand shocks only for the last month. Our approach of

the real-time decomposition reflects all revisions to historical data of crude oil and crude steel

production.13 We plot the time series of the oil supply, global demand, and oil-specific demand

shocks from January 1986 to December 2015 in Figure 6. All three series are rescaled so that

they have standard deviation equal to one. Supply shocks become less volatile after 2004 while

global demand shocks become more volatile after 2007. The volatility of the oil-specific demand

shocks appears stable across the sample period.

5.2 The predictive power of oil supply, global demand, and oil-specific de-

mand shocks

In this section, we examine the ability of the three shocks obtained by the oil price change

decomposition (13) to forecast next-month MSCI index excess returns over the sample period

from January 1986 to December 2015. We do so by running the following predictive regression:

ret+1 = αDEC + βSxSt + βDxDt + βOSDxOSDt + uDECt+1, (14)

13 We have also obtained the full-sample version of the decomposition in equation (13) using all data from February
1982 to December 2015. The two versions resulted in very similar results in the subsequent analysis, indicating
that the impact of the VAR estimation error is minimal.

21



where ret+1 is excess return on an MSCI index and xSt , x
D
t , x

OSD
t are the oil supply, global demand,

oil-specific demand shocks obtained in the decomposition (13), respectively. We gauge the fore-

casting ability of the three shocks using measures of both statistical and economic significance

as in the previous section. Furthermore, we offer comparisons between model (7) that uses oil

price change as the sole predictor and the decomposition-based model (14).

The three shocks identified by the decomposition (13) are anticipated to have different impacts

on future equity returns. Under the assumption of inelastic demand for oil in the short run, a

disruption in oil production would result in an oil price increase. This would be potentially

bad news for the real economy and the stock market while the corresponding shock xS would

be positive. Hence, one expects βS to be negative in the predictive regression (14). Second,

positive global demand shocks stimulate the global economy as a whole, although the impact

might differ across countries. One, therefore, expects a positive global demand shock to be good

news for equity markets. At the same time, a positive global demand shock could drive up the

price of oil, which, in turn, could have a slowing down effect on certain economies. However, the

overall effect should be dominated by the first direct impact and, hence, one expects a positive

slope βD in the predictive regression (14). Third, following the interpretation in Kilian (2009),

an oil-specific demand shock is thought to capture changes in the demand for oil driven by

precautionary motives. Accordingly, a positive oil-specific demand shock is thought to originate

from the increased demand for oil due to uncertainty regarding future availability of oil and so

it is perceived to be bad news for the global economy and the stock market. Hence, one expects

βOSD to be negative in the predictive regression (14).

In Table 7, we present statistical significance results for the predictive regression (14) over

the 1986.01–2015.12 sample period using MSCI index excess returns, denominated in both local

currencies and US dollars. To provide a direct comparison between model (7), which uses oil

price change as the only predictor, and model (14), we also estimate model (7) over the same

sample period. The standard errors are computed using the Newey and West (1987) method

with optimal bandwidth selected as in Newey and West (1994).

As expected, given the evidence presented in Section 4, the forecasting power of oil price

changes is diminished over 1986.01–2015.12 sample period. The results are very similar to the
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ones presented in Table 4 corresponding to the 1983.01–2015.12 sample period. In particular,

the adjusted R-square for both the World and the US index is 0.5%. In stark contrast, we find

strong evidence of predictability using the decomposition-based model (14).

For local-currency denominate returns, the adjusted R-squares for the Canada, France, Ger-

many, Italy, Japan, and UK MSCI indexes are 1.5%, 2.9%, 3.1%, 9.5%, 1.9%, and 2.3%, respec-

tively. The point estimates of the slope coefficient βD are positive in all six cases and statistically

significant in four (five) cases at the 5% (10%) level of significance. The point estimates of the

slope coefficient βOSD are negative in all six cases and statistically significant in four (five) cases

at the 5% (10%) level of significance. The estimates of the slope coefficient βS are negative in

four out of six cases, although statistically significant only in one case.

For US-dollar denominated returns, the results are very similar. The adjusted R-squares for

the Canada, France, Germany, Italy, Japan, UK, USA, and World MSCI indexes are 1.5%, 1.5%,

1.9%, 6.6%, 0.7%, 2.1%, 4.3%, and 3.6%, respectively. The βD point estimates are positive in all

eight cases and statistically significant in four (six) cases at the 5% (10%) level of significance.

The βOSD point estimates are negative in all eight cases and statistically significant in five (six)

cases at the 5% (10%) level of significance. The estimates of the slope coefficient βS are negative

in six out of eight cases, although statistically significant only in one case.

We repeat the above analysis computing standard errors according to the Hodrick (1992)

method. The results, reported in Table 8, are similar and convey the same message. Collectively,

we conclude that there is strong statistical evidence supporting the usefulness of the decompo-

sition (13) and the ability of the three associated shocks to forecast the World and G7 country

MSCI index excess returns.

In addition to the evidence on statistical significance, we also provide evidence on the economic

significance of the ability of the oil supply, global demand, and oil-specific demand shocks to

predict G7 country MSCI index returns. We refer the model described by the decomposition-

based predictive regression (14) as the augmented model and compare it to three baseline models.

The first baseline model assumes that the MSCI index excess return ret+1 is i.i.d. The second

baseline model is described by the predictive regression (7) that uses the oil price change gP as
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predictor. The third baseline model is described by the predictive regression

ret+1 = αD + δDgDt + uDt+1, (15)

which uses the global demand growth proxy gD as predictor.

Let CERDEC and SRDEC denote the CER and SR achieved by the trading strategy using the

decomposition-based predictive regression model (14). Analogously, we denote by CERIID, CERP,

and CERD (SRIID, SRP, and SRD) the CERs (SRs) achieved by the trading strategies using the

i.i.d. model, the predictive regression (7), and the predictive regression (15), respectively. To

gauge the predictive ability of the shocks xSt , x
D
t , and xOSDt , we test the null hypotheses HCER

0 :

CERIID = CERDEC, H
CER
0 : CERP = CERDEC, and HCER

0 : CERD = CERDEC against their one-sided

alternatives. Furthermore, in a similar fashion, we test the null hypotheses HSR
0 : SRIID = SRDEC,

HSR
0 : SRP = SRDEC, and HSR

0 : SRD = SRDEC against their one-sided alternatives. The economic

significance test results are reported in Table 9.

For local-currency denominated index returns, the decomposition-based model (14) generates

CERs that are higher than their counterparts generated by the i.i.d. model in all six cases.

The difference is sizable, e.g., more than 3.76%, in annualized terms, for Japan and the UK,

and statistically significant in five out of six cases at the 10% level of significance. Moreover,

the decomposition-based model (14) generates CERs that are higher than their counterparts

generated by model (7) based on oil price change in five out of six cases, with the exception

of France. In the remaining cases, the difference is higher than 1.2%, in annualized terms, and

statistically significant in the case of Japan at the 10% level of significance. The decomposition-

based model (14) also performs substantially better than the model (15) based on global demand

growth in terms of CER. It produces CERs that are higher in all six cases and statistically

significant in four out of six cases at the 10% level of significance. The SR results are in line with

the CER results. The decomposition-based model (14) generates SRs that are higher than their

counterparts generated by the i.i.d. model in all six cases. The increase in SR is sizable, e.g.,

from 0.19 to 0.53 for the UK, and the difference is statistically significant in four out of six cases

at the 5% level of significance. Moreover, the decomposition-based model (14) generates SRs that
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are at least as high as their counterparts generated by the model (7) based on oil price change

in all six cases. The differences again are sizable and statistically significant in the case of Japan

at the 5% level of significance. The decomposition-based model (14) also performs substantially

better than the model (15) based on global demand growth in terms of SR. It produces SRs that

are higher in all six cases and statistically significant in five out of six cases at the 10% level of

significance.

The results for US-dollar denominated index returns convey the same message. Importantly,

in the case of the USA MSCI index, the decomposition-based model (14) generates an annualized

CER equal to 9.28% compared to 6.52%, 6.08%, and 6.20% generated by the i.i.d. model,

model (7), and model (15), respectively. The corresponding p-values are 0.11, 0.08, and 0.05,

respectively. Even stronger results are obtained for the World MSCI index. The decomposition-

based model (14) generates an annualized CER equal to 7.90% compared to 4.03%, 3.88%, and

3.30% generated by the i.i.d. model, model (7), and model (15), respectively. The difference

is statistically significant in all three comparisons with p-values equal to 0.04, 0.07, and 0.03,

respectively. Strong results are obtained in terms of SR as well. In the case of the USA MSCI

index, the decomposition-based model (14) generates an annualized SR equal to 0.65 compared

to 0.48, 0.45, and 0.46 generated by the i.i.d. model, model (7), and model (15), respectively.

The corresponding p-values are 0.12, 0.09, and 0.05, respectively. For the World MSCI index,

the decomposition-based model (14) generates an annualized SR equal to 0.56 compared to 0.31,

0.30, and 0.27 generated by the i.i.d. model, model (7), and model (15), respectively. The

difference is statistically significant in all three comparisons with p-values equal to 0.04, 0.06,

and 0.03, respectively.

So far, in this subsection, we have provided strong statistical as well as economic significance

in support of the ability of the oil supply, global demand, and oil-specific demand shocks to

predict the World and G7 country MSCI index excess returns. Next, we provide further corrob-

orating evidence on the stability of this predictive relation between MSCI index excess returns

and these three shocks. As in the case on the predictive regression model (7), we use the Bai

and Perron (2003) methodology to test for structural breaks in the decomposition-based model

(14). The results are presented in Table 10. The test does not identify breaks in all 14 cases
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considered, 6 local-currency and 8 US-dollar denominated MSCI indexes. Hence, the predictive

regression model (14) appears to be a stable and robust specification illustrating the importance

of disentangling oil price changes into oil supply, global demand, and oil-specific demand shocks.

In the next subsection, we examine various aspects of the relationship between these three

shocks embedded in oil price changes and future stock returns. In particular, we provide evidence

suggesting that the documented predictability does not appear to be consistent with time-varying

risk premia.

5.3 Additional evidence and robustness checks

First, to alleviate any concerns regarding the real-time availability of the data required to obtain

the oil price change decomposition (13), we estimate the predictive regression rdt+1 = αDEC +

βSxSt + βDxDt + βOSDxOSDt + uDECt+1, where rdt+1 is the monthly (simple) return on the World or a G7

country MSCI index constructed with a delay of one or two weeks.14 The results, reported in

Table 11, illustrate the robustness of the forecasting ability of oil supply, global demand, and

oil-specific demand shocks with respect to one- or two-week delays in the construction of the

World and G7 country MSCI index excess returns.

When studying return predictability, one natural question that emerges is whether the pre-

dictors under examination can forecast asset returns over long horizons. In Table 12, we present

statistical evidence on whether the oil supply, global demand, and oil-specific demand shocks

obtained in the decomposition (13) can predict three-month and six-month G7 country MSCI

equity returns. The evidence suggests that the predictive ability of the three shocks gradually

diminishes as the horizon gets longer. In particular, at the 5% level of significance, the slope

corresponding to the oil-specific demand shock is statistically significant only for Italy. Moreover,

the statistical significance of the slope corresponding to the global demand shock is reduced as we

move from the three-month to the six-month horizon. This evidence is reinforced by the adjusted

R-squares over two-, three-, four-, five-, and six-month horizons that we report in Table 13. The

adjusted R-squares exhibit a declining pattern as the horizon increases and they are less than

14 We do not use excess returns for this exercise due to lack of availability of interest rate data for the relevant
time periods.
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2% for eight out of 14 cases for six-month horizon. As argued by Fama and French (1989) and

Driesprong, Jacobsen, and Maat (2008), among others, predictability typically associated with

time-varying risk premia is long-lived and persists over long horizons. We document that this

is not the case for the oil supply, global demand, and oil-specific demand shocks and, hence, we

conclude that the documented predictability is not consistent with time-varying risk premia.

We also examine whether the results on the predictability of aggregate equity index returns

are robust in the cross section of US industries. Specifically, we use the 17 Fama-French value-

weighted industry portfolios.15 First, we conduct Bai and Perron (2003) structural break tests

for (i) the predictive regression using oil price change as the predictor, for the 1983.01–2015.12

sample period, and (ii) the predictive regression using the oil supply, global demand, and oil-

specific demand shocks as predictors, for the 1986.01–2015.12 sample period. Table 15 shows

that the tests identify the presence of one structural break in 14 of 17 industry portfolios when

oil price change is used as the sole predictor, with the exception of Mining and Minerals, Oil

and Petroleum Products, and Utilities. In contrast, the tests do not identify a break for any

industry when the three shocks embedded in oil price changes are used as predictors. Second, we

examine the ability of the three shocks to forecast industry portfolio excess returns. The results

are presented in Table 16, where we also provide the results of the predictive regression using

oil price change as the sole predictor. Given the results of the structural break tests discussed

before, the results of the oil price change regression are meaningful only for the three industries

that do not exhibit a break. As expected, the estimated predictive slope on oil price change

is positive for the Oil and Petroleum Products industry, although not statistically significant.

Overall, there is no evidence of predictability based on oil price change alone, with 15 out of 17

adjusted R-squares being less than 1%. In contrast, there is strong evidence of predictability

across the various industries based on the three shocks embedded in oil price changes, according

to Newey and West (1987) standard errors. The βD estimates are positive for all 17 industries

and statistically significant for 12 (13) industries at the 5% (10%) level. The βOSD estimates are

15 We use monthly returns on the 17 Fama-French value-weighted industry portfolios from Kenneth French’s web-
site. The abbreviations (descriptions) of the 17 industries are Food (Food), Mines (Mining and Minerals), Oil (Oil
and Petroleum Products), Clths (Texiles, Apparel and Footware), Durbl (Consumer Durables), Chems (Chemi-
cals), Cnsum (Drugs, Soap, Perfumes, Tobacco), Cnstr (Construction and Construction Materials), Steel (Steel
Works Etc), FabPr (Fabricated Products), Machn (Machinery and Business Equipment), Cars (Automobiles),
Trans (Transportation), Utils (Utilities), Rtail (Retail Stores), Finan (Banks, Insurance Companies, and Other
Financials), and Other (Other).
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negative for 15 industries and statistically significant for seven (eight) industries at the 5% (10%)

level. The βS estimates are negative for all 17 industries, although statistically significant only

for four industries at the 10% level. Moreover, the adjusted R-square is higher than 1.5% for

12 out of 17 industries. Overall, these results demonstrate that the predictive ability of the oil

supply, global demand, and oil-specific demand shocks is strong not only for the aggregate equity

index, but also across different industry portfolios.

Another natural question in the context of equity return predictability is how the proposed

predictors relate to macroeconomic variables that have been extensively used in the extant liter-

ature to model time-varying expected equity returns. Due to data limitations, we examine this

issue only for the case of the US. Table 17 presents the contemporaneous correlations between

the oil supply, global demand, and oil-specific demand shocks and four macroeconomic variables:

the log dividend yield, the term spread, the default yield spread, and the one-month T-bill rate.

Results are reported for both the real-time and full-sample decompositions. The correlations are

rather low in magnitude with the largest (in absolute value) being the correlation between the

global demand shock and the default yield equal to -0.17 (-0.16) for the real-time (full-sample)

decomposition.

In addition, we examine whether the forecasting ability of the oil supply, global demand, and

oil-specific demand shocks is robust to the presence of the macroeconomic predictors in the case

of the US. We examine the following linear predictive regressions ret+1 = γP + δPgPt + θ′zt + vPt+1

and ret+1 = γDEC + βSxSt + βDxDt + βOSDxOSDt + λ′zt + vDECt+1 over various sample periods, where ret+1

is the USA MSCI index excess return and zt is the vector of the four macroeconomic variables

mentioned above. The results are reported in Table 18. According to the evidence, the inference

results we have reported so far in the paper are robust to the presence of the macroeconomic

variables. In particular, the forecasting ability of oil price change over the early 1982.01–2003.04

sample period is unaffected. Moreover, over the 1986–2015 sample period, the slopes of the

global demand shock and the oil-specific demand shock are negative and positive, respectively,

and significant at the 5% level of significance.

In our next empirical exercise, we examine the descriptive statistics of the conditional ex-

pected excess returns based on the oil supply, global demand, and oil-specific demand shocks. In
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particular, we focus on the mean, the standard deviation, and the first three autocorrelations.

This evidence can shed light on the issue of whether the documented predictive ability of the

three shocks is consistent with time-varying risk premia. For the purposes of comparison, we use

two benchmarks. The first benchmark is the predicted MSCI USA index excess return based on

the four macroeconomic variables discussed above in terms of descriptive statistics. We report

the results, for the time period 1986.01–2015.12, in Table 19. Overall, the predicted expected

excess returns based on the three shocks are more volatile and much less persistent compared to

their analogues obtained from the macroeconomic variables. One might argue that the predicted

excess returns based on the macroeconomic variables are just too persistent, given the nature

of these macroeconomic predictors. To address this concern, in our second comparison, we use

as benchmark the equity risk premium estimates obtained by Martin (2017) based on option

prices over different maturities, ranging from one month to one year.16 We report the results for

the time period 1996.01–2012.01, over which the estimates from Martin (2017) are available, in

Table 20. The main message from the second comparison remains the same. In particular, the

second and third order autocorrelations of the predicted expected excess returns based on the

three shocks are much lower than their counterparts obtained from either the predicted excess

returns based on the macroeconomic predictors or the risk premium estimates of Martin (2017).

Collectively, this evidence suggests that the forecasting ability of the three shocks is not consis-

tent with time-varying risk premia, in line with the evidence of predictability diminishing over

longer horizons reported above.

We conclude this section by investigating whether there is a more direct link between time

variation in expected returns and changes in risk, as captured by return volatility. Such an

exercise can shed more light to the question of whether the predictive ability of the oil supply,

global demand, and oil-specific demand shocks is associated with changes in risk premia. To

this end, we employ an augmented EGARCH(1,1) model that includes these three shocks in the

volatility equation as exogenous regressors. If the variation of expected returns is to be attributed

to time-varying risk premia, we would expect that any of these three shocks has the same effect

on both the drift and the volatility. In the context of the EGARCH model, we would be expect

the coefficient on any of these shocks to have the same sign as in the drift equation and be

16 We thank Ian Martin for making the data available on his website.
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statistically significant. The econometric specification is:

ret+1 = αDEC + βSxSt + βDxDt + βOSDxOSDt + uDECt+1, (16)

uDECt+1 = σtzt+1, zt+1 ∼ i.i.d.(0, 1), (17)

log(σ2
t ) = τ0 + τ1|zt|+ τ2zt + τ3 log(σ2

t−1) + ζSxSt + ζDxDt + ζOSDxOSDt . (18)

As argued above, time-varying risk premia would be consistent with ζS < 0, ζD > 0, and ζOSD < 0.

We estimate the model using monthly excess returns on the MSCI indexes for the G7 countries

as well as the World MSCI index, denominated both in local currencies and US dollars, over

the 1986.01–2015.12 sample period. We consider three distributions for the disturbances zt+1:

Normal, Student-t, and GED. The Student-t distribution was selected according to the Bayesian

Information Criterion.17 The results are presented in Table 21. In the majority of the cases,

the estimates ζS < 0, ζD > 0, and ζOSD < 0 are statistically insignificant at conventional levels.

More importantly, whenever there is significance, the sign is the opposite of what would be

consistent with time-variation of risk premia, e.g., in five out of 14 instances the estimates of

ζD are statistically significant but negative. This evidence is inconsistent with the notion of

time-varying risk premia, reinforcing the message of the evidence documented earlier.

6 Conclusion

As the modern global economy heavily depends on oil, the price of oil is widely thought to affect

global real economic activity and consequently the global equity market. An oil price drop has

been considered in the past to be good news as it lowers the cost of production in a significant

number of sectors and allows consumers to boost their consumption. Accordingly, one could con-

jecture that negative (positive) oil price changes should predict higher (lower) subsequent equity

returns. Driesprong, Jacobsen, and Maat (2008) document that this is indeed the case for a large

number of MSCI equity indexes based on data until 2003. However, this predictive relationship

has dramatically changed over the last ten years. Specifically, the correlation between the World

MSCI index return and the lagged one-month log growth rate of West Texas Intermediate spot

17 The results are very similar across all three distributional assumptions.
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price has increased from -0.22 over the 1982–2003 period to 0.26 over the 2004–2015 period. As

a result, the ability of oil price change to forecast future equity returns has diminished over the

sample period extending to 2015. Furthermore, using the formal econometric test of Bai and

Perron (2003), we detect a structural break in the predictive relationship in the third quarter of

2008 for most of the G7 country MSCI index returns.

In this paper, we suggest that oil price changes do contain useful information for forecasting

subsequent equity indexes, provided that these changes are suitably disentangled into supply and

demand shocks. Using a variant of the structural VAR approach of Kilian (2009), we obtain an oil

price change decomposition into an oil supply shock, a global demand shock, and an oil-specific

demand shock and argue that these three different types of shocks should have different effects

on equity markets. The conjecture that oil supply shocks and oil-specific demand shocks (global

demand shocks) predict equity returns with a negative (positive) slope is supported by the

empirical evidence over the 1986-2015 sample period. Using the oil price decomposition instead

of just oil price change increases the annualized certainty equivalent return and Sharpe ratio of a

mean-variance trading strategy for the World MSCI index from 3.88% to 7.90% and from 0.30 to

0.56, respectively, with the differences being statistically significant. Importantly, we detect no

structural breaks in the predictive relationship between equity index returns and the three shocks

in any of the 14 MSCI equity indexes that we consider. These results survive in the presence of

traditional macroeconomic predictors for the case of the USA MSCI index and, in general, do

not appear to be consistent with time-varying risk premia.
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A Appendices

A.1 Data construction

The single oil price change proxy gP is constructed in a real-time fashion using PCA. Specifically,

for each month t between January 1983 and December 2015, we use data on three proxies for

oil price change starting in February 1982 and ending in month t. We first rescale the three log

growth rates, obtained from the West Texas Intermediate, the Dubai, and the Arab Light spot

prices, so they all have variance equal to one over the given sample period and then perform

PCA. The first PCA corresponding to month t is kept each time and the process is repeated

using expanding windows until December 2015 is reached.

To address the strong seasonality of the global crude steel production data, we use X-

13ARIMA-SEATS to compute seasonally adjusted level data from which we compute log growth

rates in a real-time fashion.18 Specifically, for each month in the period between February 1982

and December 2015, we perform seasonal adjustment on the level data starting in January 1968

and ending in that month, compute the log growth rates of the seasonally adjusted level data,

and finally keep the log growth rate over the last month.

The single global demand growth proxy gD is also constructed in a real-time fashion using

PCA. Specifically, for each month t between January 1983 and December 2015, we use data on

two proxies for global economic activity starting in February 1982 and ending in month t. We

first rescale the two log growth rates, obtained from the shipping cost index and the global crude

steel production data, so they all have variance equal to one over the given sample period and

then perform PCA. The first PCA corresponding to month t is kept each time and the process

is repeated using expanding windows until December 2015 is reached.

18 We use the X-13 Toolbox for Matlab, written by Yvan Lengwiler, to perform seasonal filtering. The source
codes are retrieved from http://www.mathworks.com/matlabcentral/fileexchange/49120-x-13-toolbox-for-

seasonal-filtering/content/x13tbx/x13.m.
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A.2 Testing for equality in certainty equivalent return and Sharpe ratio

In this appendix, we follow Garlappi, Skoulakis, and Xue (2016) who provide asymptotic tests

for comparing two models and the corresponding trading strategies in terms of their certainty

equivalent returns (CER) and Sharpe ratios (SR). Model 1 is the baseline model while Model 2

is the augmented one. The null hypothesis of interest is that the CERs or SRs obtained by two

models are equal. Denote by CERj and SRj the CER and SR of Model j, for j = 1, 2. The purpose

of these tests is to evaluate the increment value of the augmented model in terms of performance

and, therefore, we naturally consider one-sided alternative hypotheses. Specifically, we test (i)

HCER
0 : CER1 = CER2 against HCER

A : CER1 < CER2 and (ii) HSR
0 : SR1 = SR2 against HSR

A : SR1 < SR2.

Note that, in the context of our mean-variance framework, the CER of the portfolio is expressed

as a function of the first two moments of simple portfolio returns while the SR of a portfolio is

expressed as a function of the first two moments of the portfolio excess returns.

Let rt = (r1,t, r2,t)
′ denote the pair of returns on the two portfolios at time t. These returns

could be either simple or excess depending on whether we focus on the CER or the SR. Denote

the mean, variance and noncentral second moment of rj,t by µj , σ
2
j , and νj , respectively for the

portfolios j = 1, 2. Note that σ2
j = νj−µ2

j . It follows that, in the case of simple returns, the CERs

for an investor with mean-variance preferences and risk aversion coefficient equal to γ are given

by CERj = µj − 1
2γ
(
νj − µ2

j

)
, j = 1, 2. Similarly, in the case of excess returns, the SRs are given

by SRj =
µj√
νj−µ2j

, j = 1, 2. Therefore, the relevant hypotheses can be stated using a suitable

function of the parameter vector θ = (µ1, µ2, ν1, ν2)′. We estimate θ by the sample analogue

θ̂ = (µ̂1, µ̂2, ν̂1, ν̂2)′, where µ̂j = 1
T

∑T
t=1 rj,t and ν̂j = 1

T

∑T
t=1 r

2
j,t, for j = 1, 2. Under regularity

conditions, such as stationarity and ergodicity, θ̂ asymptotically follows a normal distribution

described by
√
T (θ̂ − θ) =

1√
T

∑T

t=1
yt

d−→ N(0,Ψ), (19)

where Ψ is the long-run variance-covariance matrix of

yt =
(
r1,t − µ1, r2,t − µ2, r

2
1,t − ν1, r

2
2,t − ν2

)′
. (20)
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The matrix Ψ is given by Ψ = Γ0 +
∑∞

`=1 (Γ` + Γ′`), where Γ` = E
[
yty

′
t−`
]
, for ` = 0, 1, . . . and

is estimated by a heteroscedasticity and autocorrelation consistent (HAC) estimator of the form

Ψ̂ = Γ̂0 +
T∑
`=1

κ

(
`

bT

)
(Γ̂` + Γ̂′`), (21)

where

Γ̂` =
1

T − `

T∑
t=`+1

ŷtŷ
′
t−`, ŷt =

(
r1,t − µ̂1, r2,t − µ̂2, r

2
1,t − ν̂1, r

2
2,t − ν̂2

)′
, (22)

κ(·) is a kernel function, and bT is the bandwidth. HAC estimators have been developed by several

authors including Newey and West (1987), Andrews (1991), Andrews and Monahan (1992), and

Newey and West (1994). We report p-values based on the Newey and West (1987) approach

with the Bartlett kernel and the optimal bandwidth computed as suggested in Newey and West

(1994).

Consider testing the null hypothesis H0 : f (θ) = 0 against the alternative hypothesis HA :

f (θ) < 0, where f (θ) is a smooth real-valued function of θ. Applying the delta method, we

obtain
√
T
(
f(θ̂)− f (θ)

)
d−→ N

(
0,∇′f(θ)Ψ∇f(θ)

)
, (23)

where ∇f(·) is the gradient of f . For large T , the standard error of f(θ̂) is given by

se(f(θ̂)) =

√
1

T
∇′f(θ̂)Ψ̂∇f(θ̂), (24)

and, therefore, the corresponding t-statistic is t(f, θ̂) = f(θ̂)

se(f(θ̂))
, yielding the one-sided p-value

p(f, θ̂) = Φ(t(f, θ̂)), where Φ (·) is the cumulative distribution function of the standard normal

distribution.

To test for equality of CERs, we use simple returns and the function f takes the form

fCER (θ) =

(
µ1 −

1

2
γ
(
ν1 − µ2

1

))
−
(
µ2 −

1

2
γ
(
ν2 − µ2

2

))
, (25)

36



with gradient equal to

∇fCER(θ) =

(
1 + γµ1,−1− γµ2,−

1

2
γ,

1

2
γ

)′
. (26)

To test for equality of SRs, we use excess returns and the function f takes the form

fSR (θ) =
µ1√
ν1 − µ2

1

− µ2√
ν2 − µ2

2

, (27)

with gradient equal to

∇fSR(θ) =

(
ν1

(ν1 − µ2
1)

3
2

,− ν2

(ν2 − µ2
2)

3
2

,−1

2

µ1

(ν1 − µ2
1)

3
2

,
1

2

µ2

(ν2 − µ2
2)

3
2

)′
. (28)
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Table 1: Oil price change summary statistics. This table presents summary statistics for three oil spot
price log growth rates, i.e., West Texas Intermediate (WTI), Dubai, and Arab Light, and their first principal
component gP. Results are presented for the 1983.01–2003.04 and the 1983.01–2015.12 sample periods. All
reported numbers are in percentages.

1983.01–2003.04 Sample Period

WTI Dubai Arab Light gP

Min −39.60 −37.76 −48.51 −49.85
Max 37.71 53.68 48.73 38.16
Mean −0.05 −0.10 −0.08 −0.26
Std. dev. 8.17 10.51 10.94 9.18
# of obs. 244 244 244 244

Correlation Matrix

WTI Dubai Arab Light gP

WTI 1.00 0.76 0.72 0.90
Dubai 0.76 1.00 0.90 0.94
Arab Light 0.72 0.90 1.00 0.92
gP 0.90 0.94 0.92 1.00

1983.01–2015.12 Sample Period

WTI Dubai Arab Light gP

Min −39.60 −49.71 −48.51 −49.85
Max 37.71 53.68 48.73 38.16
Mean 0.04 0.02 0.01 −0.09
Std. dev. 8.45 10.16 10.34 9.00
# of obs. 396 396 396 396

Correlation Matrix

WTI Dubai Arab Light gP

WTI 1.00 0.76 0.72 0.90
Dubai 0.76 1.00 0.91 0.95
Arab Light 0.72 0.91 1.00 0.93
gP 0.90 0.95 0.93 1.00
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Table 17: Correlations between oil supply shocks, global demand shocks, oil-specific demand
shocks, and several US macroeconomic variables. This table presents the correlation matrix for oil
supply shock (xSt ), global demand shock (xDt ), oil-specific demand shock (xOSDt ), the log dividend yield (dy), the
term spread (tms), the default yield spread (dfy), and the one-month T-bill rate (tbl). Results are presented
for the 1986.01–2015.12 sample period. The top (bottom) panel shows results of the three shocks obtained by
the oil price change real-time (full-sample) decomposition.

Real-time decomposition

xS xD xOSD dy tms dfy tbl

xS 1 -0.09 0.17 -0.04 0.01 -0.01 -0.02
xD -0.09 1 0.08 -0.03 0.05 -0.17 0.04
xOSD 0.17 0.08 1 -0.08 0.00 -0.08 0.04
dy -0.04 -0.03 -0.08 1 0.20 0.32 0.31
tms 0.01 0.05 0.00 0.20 1 0.27 -0.62
dfy -0.01 -0.17 -0.08 0.32 0.27 1 -0.27
tbl -0.02 0.04 0.04 0.31 -0.62 -0.27 1

Full-sample decomposition

xS xD xOSD dy tms dfy tbl

xS 1 -0.08 0.02 0.01 -0.01 0.04 0.02
xD -0.08 1 0.04 -0.08 0.06 -0.16 0.00
xOSD 0.02 0.04 1 -0.08 0.00 -0.07 0.03
dy 0.01 -0.08 -0.08 1 0.20 0.32 0.31
tms -0.01 0.06 0.00 0.20 1 0.27 -0.62
dfy 0.04 -0.16 -0.07 0.32 0.27 1 -0.27
tbl 0.02 0.00 0.03 0.31 -0.62 -0.27 1
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Table 18: Robustness checks of the USA MSCI index excess return predictive regressions: the role
of macroeconomic variables. This table presents results for the predictive regressions ret+1 = γP + δPgPt +
θ′zt + vPt+1 and ret+1 = γDEC +βSxSt +βDxDt +βOSDxOSDt +λ′zt + vDECt+1 over various sample periods. The variables in
these regressions are: (i) ret+1 is excess return on the USA MSCI index, (ii) the oil price change proxy gPt is the
first principal component obtained from three oil spot price log growth rates: West Texas Intermediate, Dubai,
and Arab Light, (iii) xSt , x

D
t , and xOSDt are the oil supply, global demand, and oil-specific demand shocks obtained

in the oil price change decomposition (13), and (iv) zt is the vector of macroeconomic variables including the log
dividend yield (dy), the term spread (tms), the default yield spread (dfy), and the one-month T-bill rate (tbl).
The numbers in parentheses represent two-sided p-values for the null hypotheses that the slope coefficients are
zero, based on Newey and West (1987) standard errors with optimal bandwidth selected as in Newey and West
(1994). *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. The adjusted
R2, presented in percentage, is denoted by R̄2.

Sample Period 1983.01–2003.04 1983.01–2015.12 1986.01–2015.12 1986.01–2015.12

gPt −0.11∗∗∗ −0.04 −0.04
(0.00) (0.28) (0.25)

xSt −0.34
(0.38)

xDt 0.34∗∗∗

(0.00)
xOSDt −0.06∗∗

(0.03)
dyt 0.03∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.03∗∗∗

(0.04) (0.00) (0.00) (0.00)
tmst −0.78 −0.43∗ −0.49∗ −0.57∗∗

(0.14) (0.08) (0.08) (0.04)
dfyt −0.32 −1.16 −1.36 −0.99

(0.74) (0.25) (0.15) (0.17)
tblt −0.45 −0.29∗∗ −0.33∗∗ −0.35∗∗

(0.14) (0.02) (0.05) (0.03)

R̄2 6.3 2.0 2.0 5.7
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Table 19: Descriptive statistics for MSCI index predicted excess returns: 1986.01–2015.12. This
table presents the mean, the standard deviation (STD), and the first three autocorrelations (AC(k), k = 1, 2, 3)
of MSCI index predicted excess returns using two sets of predictors: (i) four macroeconomic variables, i.e.,
the log dividend yield, the term spread, the default yield spread, and the one-month T–bill rate and (ii) the
oil supply, global demand, and oil-specific demand shocks obtained from the oil price decomposition. The
top panel contains the results for the MSCI USA index based on the macroeconomic variables. The middle
(bottom) panel contains the results for MSCI local–currency (US–dollar) denominated indexes based on the oil
price decomposition.

Mean STD AC(1) AC(2) AC(3)
Macroeconomic variables

USA 0.65 0.74 0.97 0.93 0.89

Oil price decomposition

Local-currency

Canada 0.40 0.67 0.56 0.14 -0.09
France 0.50 1.08 0.32 -0.02 -0.11
Germany 0.48 1.23 0.36 -0.01 -0.12
Italy 0.20 2.12 0.28 -0.03 -0.10
Japan 0.30 0.95 0.39 0.06 -0.09
UK 0.35 0.79 0.27 0.00 -0.09

US-dollar

Canada 0.57 0.85 0.61 0.19 -0.07
France 0.66 0.93 0.38 -0.03 -0.13
Germany 0.59 1.10 0.41 -0.02 -0.13
Italy 0.43 1.99 0.30 -0.04 -0.10
Japan 0.27 0.77 0.31 -0.02 -0.08
UK 0.56 0.87 0.46 0.09 -0.10

USA 0.65 0.99 0.44 0.04 -0.12
World 0.53 0.94 0.43 0.06 -0.12
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Table 20: Descriptive statistics for MSCI index predicted excess returns: 1996.01–2012.01. This
table presents the mean, the standard deviation (STD), and the first three autocorrelations (AC(k), k = 1, 2, 3)
of MSCI index predicted excess returns using two sets of predictors: (i) four macroeconomic variables, i.e.,
the log dividend yield, the term spread, the default yield spread, and the one-month T–bill rate and (ii)
the oil supply, global demand, and oil-specific demand shocks obtained from the oil price decomposition. For
comparison purposes, the top panel reports the descriptive statistics for the equity premium estimates of Martin
(2017), obtained from option prices, for one-month (M1), two-month (M2), three-month (M3), six-month (M6),
and one-year (M12) maturities. The second panel contains the results for the MSCI USA index based on the
macroeconomic variables. The third (fourth) panel contains the results for MSCI local–currency (US–dollar)
denominated indexes based on the oil price decomposition.

Mean STD AC(1) AC(2) AC(3)
Martin (2017)’s equity premium

M1 0.41 1.15 0.78 0.55 0.45
M2 0.41 1.05 0.82 0.61 0.51
M3 0.41 0.97 0.85 0.67 0.57
M6 0.41 0.82 0.88 0.73 0.64
M12 0.39 0.69 0.90 0.80 0.72

Macroeconomic variables

USA 0.42 1.01 0.95 0.87 0.81

Oil price decomposition

Local-currency

Canada 0.62 1.22 0.66 0.19 -0.08
France 0.48 1.50 0.52 0.00 -0.17
Germany 0.53 1.95 0.48 -0.06 -0.19
Italy 0.25 1.77 0.43 -0.04 -0.16
Japan -0.16 1.04 0.66 0.22 -0.03
UK 0.23 0.91 0.40 -0.02 -0.12

US-dollar

Canada 0.88 1.65 0.68 0.23 -0.06
France 0.49 1.49 0.55 0.05 -0.15
Germany 0.54 1.90 0.50 -0.02 -0.18
Italy 0.39 1.77 0.47 0.01 -0.14
Japan -0.21 0.86 0.54 0.04 -0.03
UK 0.37 1.36 0.63 0.17 -0.08

USA 0.42 1.54 0.55 0.06 -0.14
World 0.32 1.39 0.58 0.11 -0.11
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Figure 1: Scatter plots of US-dollar denominated MSCI World index return versus the one-month
lagged log growth rate of West Texas Intermediate (WTI) spot price. In this figure, we present
the scatter plots of the US-dollar denominated MSCI World index return versus the one-month lagged log
growth rate of WTI spot price over the 1982.01–2003.12 and 2004.01–2015.12 sample periods. The solid lines
represent the fitted least-squares regression lines. The correlation between the MSCI World index return and
the one-month lagged log growth rate of WTI spot price is -0.22, 0.26, and -0.04 over the 1982.01–2003.12,
2004.01–2015.12, and 1982.01–2015.12 sample periods, respectively.
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Figure 2: Time series of oil price change proxies. In this figure, we plot the log growth rates of three oil
spot price proxies, i.e., WTI, Dubai, and Arab Light, along with their first principal component, gP, over the
1983.01–2015.12 sample period. All series are rescaled so that they have a standard deviation equal to 0.09.
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Figure 3: Time series of global demand growth proxies. In this figure, we plot the log growth rates
of the shipping cost index and the seasonally-adjusted crude steel production, along with their first principal
component, gD, over the 1983.01–2015.12 sample period. All series are rescaled so that they have a standard
deviation equal to one.
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Figure 4: Oil price change as a predictor of local-currency denominated MSCI index excess returns:
slope estimates over expanding sample periods. In this figure, we plot the time series of the slope
estimates, along with the corresponding 95% confidence intervals based on Newey and West (1987) standard
errors, from the predictive regression model (7) over different samples using an expanding window with the first
sample being 1983.01–1993.01 and the last sample being 1983.01–2015.12.

1993 1998 2003 2008 2013

−0.1

−0.05

0

0.05

Canada

1993 1998 2003 2008 2013

−0.2

−0.1

0

France

1993 1998 2003 2008 2013
−0.3

−0.2

−0.1

0

Germany

1993 1998 2003 2008 2013

−0.4

−0.2

0

Italy

1993 1998 2003 2008 2013

−0.3

−0.2

−0.1

0

Japan

1993 1998 2003 2008 2013

−0.2

−0.15

−0.1

−0.05

0

0.05
UK

62



Figure 5: Oil price change as a predictor of US-dollar denominated MSCI index excess returns:
slope estimates over expanding sample periods. In this figure, we plot the time series of the slope
estimates, along with the corresponding 95% confidence intervals based on Newey and West (1987) standard
errors, from the predictive regression model (7) over different samples using an expanding window with the first
sample being 1983.01–1993.01 and the last sample being 1983.01–2015.12.
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Figure 6: Time series of oil supply, global demand, and oil-specific demand shocks. In this figure,
we plot the time series of the oil supply, global demand, and oil-specific demand shocks obtained using the
decomposition in equation (13) over the 1986.01–2015.12 sample period. The shocks are obtained in a real-time
fashion as described in subsection 5.1. All three series are rescaled so that they have standard deviation equal
to one.
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