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Oil and Equity Index Return Predictability:

The Importance of Dissecting Oil Price Changes

Abstract

Using data until 2015, we document that oil price changes no longer predict G7 country
equity index returns, in contrast to evidence based on earlier samples. Using a structural VAR
approach, we decompose oil price changes into oil supply shocks, global demand shocks, and
oil-specific demand shocks. The conjecture that oil supply shocks and oil-specific demand shocks
(global demand shocks) predict equity returns with a negative (positive) slope is supported by
the empirical evidence over the 1986-2015 period. The results are statistically and economically

significant and do not appear to be consistent with time-varying risk premia.
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1 Introduction

The impact of oil price fluctuations on equity markets and the real economy has been of great
interest to academics, policy makers, and market participants alike. Oil, as the major source of
energy, plays a crucial role in the modern global economy. Oil price changes could be interpreted
in different ways. On one hand, an oil price increase could be considered bad news for the econ-
omy and equity markets as it increases the cost of production in a significant number of sectors
and causes consumers to reduce their consumption. Following the same line of thinking, an oil
price drop would have the opposite effect and would be perceived as good news. On the other
hand, lower oil prices imply lower profits for the oil sector. This will likely cause oil company
shares to lose value and, to some extent, drag down the aggregate market. Analogously, higher
oil prices is good news for the oil sector and could affect positively the broader market. The
conventional wisdom in the past was that the former effect dominates implying that an oil price
hike is considered to be bad news for equity markets. A Financial Times 2008 article was titled
“US stocks rally as oil prices fall”ﬂ Accordingly, a possible conjecture is that positive (nega-
tive) oil price changes should predict lower (higher) subsequent stock returns. In line with this
conjecture, Driesprong, Jacobsen, and Maat| (2008) document that, based on data until 2003, oil
price changes predict Morgan Stanley Capital International (MSCI) equity index returns with a
negative and statistically significant predictive slope for a large number of countries. However,
the relationship between oil price movements and stock returns evolves over timeE| Indeed, the
correlation between oil price changes and subsequent equity index returns has turned positive
over the last ten years. Figure [I| where we present the two scatter plots of MSCI World index
return versus the one-month lagged log growth rate of West Texas Intermediate (WTI) spot price
over the 1982-2003 and 2004-2015 periods, clearly illustrates the shift over time. As a result,
the predictive ability of oil price change has been dramatically reduced over the sample period

covering the last thirty years. This structural change is striking and begs for an explanation.

! See Financial Times, August 8, 2008 (https://www.ft.com/content/59891010-6545-11dd-a352-
0000779£d18c). 2 The financial press closely follows the dynamic relationship between oil and the stock
market. Two recent articles, related to this point, in the Wall Street Journal are titled “Oil, stocks at
tightest correlation in 26 years” on January 25, 2016 (https://www.wsj.com/articles/oil-stocks-dance-
the-bear-market-tango-1453722783) and “Stocks and oil prices: correlation breakdown” on April 18,
2016 (https://www.wsj.com/articles/stocks-and-oil-prices-correlation-breakdown-1461003126). It is
worth pointing out that, while most of the discussion in the financial press is concerned with contemporaneous
correlations, we focus on the predictive relationship between oil price changes and future stock returns.
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At the most fundamental level, oil prices move when there is a misalignment between supply
and demand. Understanding what causes the oil price change in the first place can be crucial
for determining the potential impact of such a change on equity markets. For instance, lower
oil prices due to a slowdown in global economic activity should be viewed as bad news. As
Ethan Harris, a Bank of America chief economist, put it “If you think oil prices are dropping
because of the global economy is sick, then you are less likely to see lower prices as a windfall”ﬁ
But prices could also fall because of excess supply of oil, in which case the message would be
different. To provide an explanation for the recent positive correlation between oil price changes
and aggregate US market returns, |Bernanke (2016) decomposes oil price change into a demand-
related component and a residual. He documents that the correlations of the two components
with market returns are different and states about his finding: “That’s consistent with the idea
that when stock traders respond to a change in oil prices, they do so not necessarily because the
oil movement is consequential in itself, but because fluctuations in oil prices serve as indicators
of underlying global demand and growth”. Recent academic literature has also discussed the
potential differential effects of demand and supply shocks associated with oil price fluctuations.
Although oil price shocks were often associated with oil production disruptions in the 1970s and
1980s, it has been argued that the role of global demand for oil, especially from fast-growing
emerging economies, should also be emphasized (Hamilton, 2003} Kilian, [2009; Kilian and Park,
2009)). Furthermore, [Kilian (2009) points out that oil supply shocks, global demand shocks, and
other types of shocks, all of which can cause oil prices to fluctuate, should have different effects
on the macroeconomy and the stock market. Building on these ideas, we suggest that oil price
changes do contain useful information for predicting future stock returns in a real-time fashion,

once these changes are suitably decomposed into supply and demand shocks.

We start our empirical analysis by demonstrating that the ability of oil price changes to
forecast G7 country MSCI index excess returns at the monthly frequency has diminished over
the extended sample period ending in 2015, using both statistical and economic significance
metrics. Employing formal structural break tests, we provide evidence of a break in the predictive
relationship in the third quarter of 2008 for most of these indexes. At first sight, these results

might suggest that oil price changes are useless for forecasting international equity index returns.

3 See Fortune, October 15, 2014 (http://fortune.com/2014/10/15/stock-market-plunge-oil-prices/).


http://fortune.com/2014/10/15/stock-market-plunge-oil-prices/

However, we contend that information contained in oil price changes becomes useful once it is
suitably complemented with relevant information about oil supply and global economic activity.
The key observation, as made by Kilian| (2009), is that oil price changes are driven by various
supply and demand shocks that fundamentally play different roles. Accordingly, using a variant
of the structural VAR approach of Kilian| (2009), we obtain an oil price change decomposition
into an oil supply shock, a global demand shock, and an oil-specific demand shock and argue that
these three different shocks should have different implications for international equity markets.
Subsequently, we illustrate the ability of these three shocks to predict G7 country MSCI index
excess returns, using metrics of both statistical and economic significance, and the structural

stability of this predictive relationship over the last thirty years.

This paper relates to a growing literature that examines the impact of oil price shocks on
the real economy and equity markets. Chen, Roll, and Ross| (1986)), Jones and Kaul (1996)), and
Kilian and Park (2009), among others, examine the contemporaneous relationship between the
price of oil and stock pricesEI Kilian and Park (2009) augment the structural VAR model of
Kilian| (2009) by adding the US real stock return in the vector of variables and study contem-
poraneous relationships between shocks embedded in oil price changes and stock returns. They
examine cumulative impulse responses of real stock returns to one-time shocks to oil supply,
global demand, and oil-specific demand in the crude oil market. Their results, using data in
the period of 1975-2006, show that an unexpected decrease in oil production has no significant
effect on cumulative US real stock returns and a positive surprise to global demand (oil-specific
demand) leads to a subsequent increase (decrease) in US real stock returns. In addition, several
recent papers, including Driesprong, Jacobsen, and Maat| (2008), (Casassus and Higueral (2012)),
and Narayan and Guptal (2015), investigate the ability of oil price shocks to forecast equity in-
dex returns and document a negative predictive slope of oil price changes. Unlike Kilian and
Park| (2009)), and in line with the recent finance literature and Driesprong, Jacobsen, and Maat
(2008) in particular, we use a predictive regression framework to examine whether information
contained in oil price changes can be used to forecast future stock returns. Although we utilize

the structural VAR model by [Kilian| (2009)), we approach the question from the perspective of an

4 The contemporaneous relationship between the volatility of oil prices and stock returns has been studied by
several papers, such as |Chiang, Hughen, and Sagi| (2015) and |Christoffersen and Pan| (2014)).



investor who wishes to use the real-time information embedded in oil price changes and captured

by the three aforementioned shocks to predict future MSCI equity index returns.

Our work is also related to some recent empirical research that focuses on disentangling the
intrinsic shocks embedded in oil price changes. Rapaport| (2014) and Ready| (2016) propose to
use information from the stock market to identify the underlying types of shocks in oil price
changes. [Rapaport| (2014]) argues that using the sign and magnitude of the correlation between
daily oil price changes and aggregate stock market returns, excluding oil companies, allows one
to identify shocks specific to the oil market and shocks that affect the overall economy. |[Ready
(2016)) uses crude oil futures returns, returns on a global equity index of oil producing firms, and
innovations to the VIX index to identify demand and supply shocks. [Ready| (2016) focuses on the
contemporaneous relationship between aggregate market returns and the three shocks obtained
from his decomposition. In contrast, since we focus on the ability of the various shocks embedded
in oil price changes to forecast equity index returns, we adopt the approach advanced by [Kilian
(2009), which utilizes more direct proxies for oil supply and global demand and does not require

information from the stock market in the decomposition.

In this paper, we make a number of contributions to the literature studying the impact of
oil price fluctuations on international equity returns. First, we document that the ability of oil
price changes to forecast G7 country MSCI index returns has declined significantly over the last
decade. In particular, using formal structural break tests, we detect a break in the predictive

relationship in the third quarter of 2008 for most of the indexes under examination.

Second, using a variant of the structural VAR approach of [Kilian| (2009)), we obtain a decom-
position of oil price change into an oil supply shock, a global demand shock, and an oil-specific
demand shock. To do so, we use the first principal component of the log growth rates of WTI,
Dubai, and Arab Light spot prices as a comprehensive proxy for oil price change. Moreover, we
employ two proxies for global real economic activity, namely a shipping cost index and global
crude steel production, and use the first principal component of their log growth rates as a com-
prehensive proxy for global demand growth. Importantly, all the variables that we use in our

empirical tests are constructed based on real-time available information.



Third, we illustrate the ability of these three shocks to predict G7 country MSCI index re-
turns, denominated in both local currency and US dollars. In particular, the conjecture that
oil supply shocks and oil-specific demand shocks (global demand shocks) predict equity returns
with a negative (positive) slope is supported by the empirical evidence over the 1986-2015 pe-
riod. Moreover, we detect no structural breaks in the predictive relationship between the three
aforementioned shocks and G7 country MSCI equity index returns. We also demonstrate the
advantage of using the oil price decomposition instead of just the oil price change, in economic
terms, by the substantial and statistically significant improvement in the performance of simple
mean-variance trading strategies. Specifically, for the case of the MSCI World index, the cer-
tainty equivalent return and Sharpe ratio increase from 3.88% to 7.90% and from 0.30 to 0.56,

respectively.

In addition, we examine various other aspects of the predictive relationship. To address real-
time data availability concerns, we construct returns with a delay of one and two weeks and
show that the results are essentially identical. We further demonstrate that, as the forecasting
horizon increases from one to six months, the predictive ability of the three shocks gradually
diminishes. For the case of the United States, we document that the forecasting ability of the
three shocks is robust in the cross section of industries; we further show that the three shocks have
low correlations with the standard macroeconomic variables used to predict aggregate market
returns and that the three shocks remain strong predictors in the presence of these alternative
predictors. Moreover, the estimated conditional expected returns based on the three shocks
exhibit high volatility and low persistence in comparison to risk premia estimates available in
the literature. Finally, these three shocks do not appear to have an effect on conditional return
volatility. Collectively, these results do not appear to be consistent with the notion of time-

varying risk premia.

The rest of the paper proceeds as follows. In Section 2] we describe the data that we use in our
empirical exercises. In Section 3] we describe the metrics of statistical and economic significance
that we employ to evaluate the ability of the various quantities of interest to predict G7 country
MSCI equity index returns at the monthly frequency. In Section[d] we present empirical evidence

on the forecasting ability of oil price changes and how it has changed over the last decade. In



Section[5] we introduce a decomposition of oil price changes into oil supply shocks, global demand
shocks, and oil-specific demand shocks and illustrate the ability of these three shocks to forecast

GT7 country MSCI index returns. In Section [6] we offer some concluding remarks.

2 Data

We use five different types of data: returns on international equity indexes, short-term interest
rates, oil price proxies, proxies for global economic activity, and global oil production. The full

sample period is from January 1982 to December 2015.

We use returns on MSCI equity indexes for the G7 countries, denominated in both local cur-
rency and US dollarsﬂ We collect monthly short-term interest rates from the International Mon-
etary Fund (IMF) and the Organisation for Economic Cooperation and Development (OECD).
We use IMF Treasury bill rates when these rates are available and short-term interest rates

obtained from the OECD otherwise [l

We use three proxies for oil price, namely the WTT spot price, the Dubai spot price, and the
Arab Light spot pricem Note that 75% (83%) of the log growth rates of WTI (Arab Light) prices
from October 1973 to September 1981 are zero. Therefore, it is problematic to use WTI and
Arab Light prices before September 1981. Therefore, in our empirical analysis, we use oil price
data from 1982 onwards. Following Driesprong, Jacobsen, and Maat| (2008), we use nominal oil

prices.

We combine the information contained in the three proxies for crude oil spot price into a
single proxy using Principal Component Analysis (PCA). The single proxy, denoted by ¢° where
P stands for price, is represented by the first principal component of the log growth rates of WTI,

Dubai, and Arab Light spot prices. The details of the construction of the single PCA proxy

5 Specifically, data on MSCI indexes for the G7 countries, i.e., Canada, France, Germany, Italy, Japan, the United
Kingdom, and the United States, as well as the World MSCI index are obtained from Datastream. ¢ For Canada,
France, Italy, Japan, and the United Kingdom, we use Treasury bill rates from the IMF. For Germany, we use
Treasury bill rates from the IMF and, from September 2007, short-term interest rates from the OECD. For the
United States, we use the 1-month Treasury bill rate taken from Kenneth French’s website. 7 Data on the Dubai
and Arab Light spot prices are obtained from Bloomberg. Data on WTI spot oil prices for the period of between
January 1982 and August 2013 are obtained from the website of St. Louis Fed. Data for the period between
August 2013 and December 2015 are obtained from Bloomberg.



for oil price change are given in Appendix To make the proxy ¢g¥ comparable to the three
individual proxies, we rescale it so that its standard deviation equals 0.09 over the sample period
of January 1983 to December 2015. Table [I] presents summary statistics, including correlations,
for g* and the log growth rates of the three oil price proxies. Over the subsample period ending
in April 2003, which is the last month in the sample used in [Driesprong, Jacobsen, and Maat
(2008)), as well as the full sample period, ¢° is highly correlated with the log growth rates of the

three individual proxies. Figure 2] also shows that the four series track each other quite closely.

We use two proxies for global economic activity to capture changes in global demand. The
first proxy is a shipping cost index constructed from data on dry cargo single voyage rates and
the Baltic Dry Index (BDI). Since the supply of bulk carriers is largely inelastic, fluctuations in
dry bulk cargo shipping cost are thought to reflect changes in global demand for transporting raw
materials such as metals, grains, and coals by sea. Therefore, shipping cost is considered to be
a useful leading indicator of global economic activity. We hand-collect data on dry cargo single
voyage rates from Drewry Shipping Statistics and Economics for the period between January
1982 and January 1985. Rates for seven representative routes are reported each month. We
compute the monthly log growth rates of the shipping cost for each route, and then, following
Kilian| (2009), obtain their equally-weighted averageﬁ Data on the BDI from January 1985 to

December 2015 are obtained from Bloomberg.

The second proxy for global economic activity is global crude steel production. |Ravazzolo and
Vespignani (2015) argue that world steel production is a good indicator of global real economic
activity. Steel is widely used in a number of important industries, such as energy, construction,
automotive and transportation, infrastructure, packaging, and machinery. Therefore, fluctuations
in world crude steel production reflect changes in global real economic activity. We obtain
monthly crude steel production data for the period between January 1990 and December 2015
from the website of the World Steel Association. The reported monthly figure represents crude
steel production in 66 countries and accounts for about 99% of total world crude steel production.

In addition, we hand-collect monthly data for the period between January 1968 to October 1991

8 It is, however, worth noting that there is an important difference between our proxy for global economic activity
and the one constructed in Kilian| (2009). Specifically, in |[Kilian|(2009)), the average growth rate is cumulated, then
deflated using the US CPI and finally detrended. In that sense, the proxy in Kilian| (2009) is a level variable. In
contrast, our proxy is a growth rate.



from the Steel Statistical Yearbook published by the International Iron and Steel Institute.

Crude steel production exhibits strong seasonality and, hence, we seasonally adjust the data, as

we explain in Appendix

As in the case of oil price proxies, we use PCA to construct a single proxy for global demand
growth. The single proxy, denoted by ¢° where D stands for demand, is represented by the first
principal component of the log growth rates of the shipping cost index and global crude steel
production. The details of the construction of the single PCA proxy for global demand growth
are given in Appendix The correlations between ¢° and the log growth rates of the shipping
cost index and global crude steel production are 0.82 and 0.74, respectively. Figure [3| shows that
g tracks closely the two individual proxies most of time, except for a few instances in which one

of the two proxies takes extreme values.

Finally, we obtain oil production data, covering the period between January 1982 and Decem-
ber 1991, from the website of the US Energy Information Agencyﬂ In addition, we hand-collect
data on the total supply of crude oil, natural gas liquids, processing gains, and global biofuels,
for the period between December 1991 and December 2015, from the monthly Oil Market Report
obtained from the website of the International Energy Agency. Combining data from the two

sources, we construct a time series of monthly log growth rates of world crude oil production.

3 Evaluation of predictive ability

In this paper, we examine the ability of (i) oil price changes and (ii) the oil supply, global demand,
and oil-specific demand shocks embedded in these changes to forecast G7 country MSCI excess

returns. We do so in the context of linear predictive regressions of the following type:

T?Jrl =+ ,BIXt + Ut41, (1)
where rf, ; is the excess return on a G7 country MSCI index, x; = [z1; -+ @pny] is a vector of
predictors, 3 = [B1 --- Bn] is the vector of predictive slope coefficients, and w41 is a zero-mean

9 Specifically, we use Table 11.1b (World Crude Oil Production: Persian Gulf Nations, Non-OPEC, and World).



random disturbance. Specifically, x; is a scalar (n = 1) when we evaluate oil price change as a
predictor, while x; is a three-dimensional vector (n = 3) when we evaluate the three different
shocks as predictors. We also consider the i.i.d. model for 7§, ; in which case the vectors 3 and
X; are null and equation reduces to rg,; = a+wuzy1. We provide evidence on predictive ability

in terms of statistical as well as economic significance.

The question we wish to address is whether x; can forecast the MSCI index excess return r¢, ;.
Hence, we are interested in testing the null hypotheses Hy : 5; = 0, for i = 1,...,n. We evaluate
the statistical significance of predictive ability of x; using standard metrics. Specifically, we obtain
two-sided p-values for the null hypotheses Hy : 5; = 0, ¢ = 1,...,n based on standard errors
computed according to two well-established approaches: the method advanced by Newey and
West| (1987), where the optimal bandwidth is selected following the approach in |[Newey and West
(1994), as well as the method developed by [Hodrick (1992)) that imposes the no-predictability

condition. Finally, we also report adjusted R-squares.

To gauge the economic significance of the predictive ability of x;, we consider a mean-variance
investor who can invest in an MSCI index and the corresponding short-term Treasury bill. The
investor uses the regression model to forecast MSCI index excess returns. A trading strategy
is then developed based on the resulting estimates of the conditional mean and variance of
excess returns. We evaluate economic significance in terms of two commonly used metrics: (i)
the certainty equivalent return (CER) and (ii) the Sharpe ratio (SR) of the associated optimal

portfolio returns.

Following |(Campbell and Thompson| (2008)), we assume that the risk aversion coefficient of
the mean-variance investor is v = 3. At the end of each period ¢, the investor uses all available
data to estimate the parameters of the linear predictive regression (|1)). Using these parameter
estimates, the investor then obtains estimates of the mean and the variance of the MSCI index
excess return rf, ; at time ¢, denoted by fi;11 and v 1, respectively. These estimates give rise to

the following optimal portfolio weight on the MSCI index:

_ L ®

Wt = — .
Y Vt41



The rest of the investor’s wealth is invested in the short-term Treasury bill. We assume that the
portfolio weight on the MSCI index is constrained between a minimum and maximum feasible
weight, denoted by w and w, respectively. The minimum weight w is set equal to zero so that
short-selling is precluded. Following (Campbell and Thompson| (2008), we set the maximum
weight w equal to 150% so that the investor is allowed to borrow up to 50% and invest the
proceeds in the MSCI index. Optimal weights are determined according to equation and
then the realized portfolio returns are computed. Below, we describe the two metrics, CER and

SR, used in our evaluation of economic significance of predictability.

The CER of the resulting optimal portfolio from period 1 to period T" based on the predictive
regression is given by
1

CER = Jip *57@97 (3)

with the mean i, and the variance v, of the realized optimal portfolio simple returns being

defined by

S
-

T-1

_ 1 5, = fip)”

Pp = T Z(Tfﬂ + WtTteH) and U, = T ((rf+1 + wtr?ﬂ) o Mp) ’ (4)
t=0 ¢

Il
o

and where rf | and rf,; denote the excess return on the MSCI index and the corresponding

Treasury bill rate at time ¢ + 1, respectively.

The SR of the resulting optimal portfolio from period 1 to period T based on the predictive

regression is given by

-e
So= fz, (5)
o

with the mean and the variance of the realized optimal portfolio excess returns being defined by

T-1 r-1

N 1 1 —~

iy = T E wirgyy  and  Up = T (wergyq — N;)2- (6)
t=0 t=0

We express the CERs obtained from equation in annualized percentages by multiplying by
1,200 and annualize the monthly SRs from equation by multiplying by v/12. CER represents

the equivalent risk-free rate of return that a mean-variance investor would require in exchange

10



of a risky portfolio return series, while SR measures the average portfolio excess return per unit

of risk as measured by the portfolio excess return standard deviation.

If the variables in the vector x; have nontrivial predictive ability, then using the predictive
regression model is expected to generate a higher CER and/or SR than using an i.i.d. model
for the MSCI index excess returns 77, ;. In this context, we naturally refer to the i.i.d. model as
the baseline model (Model 1) and the predictive regression model using the vector of predictors
x¢ as the augmented model (Model 2). Denote by CER; and SR; the CER and SR of Model j, for
j = 1,2. Even if the point estimate of the CER and/or SR generated by the augmented model
is higher that its counterpart generated by the baseline model, i.e., CER; < EE\RQ, one might be
concerned whether this is due to genuine predictive ability of x; or simply to sample variability.
Therefore, it is important to test the statistical significance of any differences in CER and/or
SR. We follow |Garlappi, Skoulakis, and Xue| (2016) who develop asymptotic tests for the null

CER

hypothesis Hj= : CER; = CER9 against the one-sided alternative HjER : CER; < CER9 and similarly
the null hypothesis Hg® : SRy = SRy against the one-sided alternative H> : SRy < SRy. Our
purpose is to evaluate the incremental predictive ability of x; compared to the i.i.d. model for
MSCI index excess returns and, hence, we naturally focus on one-sided alternative hypotheses.
The same framework can be used to compare the predictive ability of oil price change to that
of the vector of oil supply, global demand, and oil-specific demand shocks. For this comparison,
Model 1 (baseline) would correspond to the predictive regression with x; consisting of the oil
price change while Model 2 (augmented) would correspond to the predictive regression with
x; consisting of the three different shocks. The tests are based on standard heteroscedasticity
and autocorrelation consistent (HAC) variance-covariance matrix estimators. The reported p-
values are based on the [Newey and West| (1987) procedure with a Bartlett kernel and optimal

bandwidth selected as in |[Newey and West/ (1994)). Details about the computation of p-values are

presented in Appendix [A22]

11



4 Qil price change as a predictor of MSCI index excess returns

To examine whether oil price changes can predict equity returns, we start by revisiting the
evidence documented in Driesprong, Jacobsen, and Maat| (2008) who consider a sample period
ending in April 2003. In particular, we estimate the following standard predictive regression
model:

Tiil = of +67g7 + utp+17 (7)

where 7, is the excess return on an MSCI index and the oil price change proxy gt is the first
principal component obtained from three oil spot price log growth rates: WTI, Dubai, and Arab
Light. We construct excess returns by subtracting the particular country short-term rate from
each MSCI index return in the case of local-currency denominated indexes and by subtracting

the US T-bill rate from each MSCI index return in the case of US-dollar denominated indexes[/]

We consider the MSCI indexes for the G7 countries as well as the World MSCI index, de-
nominated both in local currencies and US dollars. The oil price change proxy we use is the first
principal component obtained from the WTI, Dubai, and Arab Light spot prices as explained
in Section Driesprong, Jacobsen, and Maat (2008) document negative and statistically sig-
nificant estimates of the predictive slope coefficient 6° for a large number of countries based on
a sample that ends in April 2003. We first run the predictive regression for the sample ending
in April 2003 and then consider the extended sample period ending in December 2015. We first
examine the statistical significance of predictability in terms of p-values and adjusted R-squares.
Furthermore, we examine its economic significance by evaluating the performance of the resulting

trading strategies in terms of certainty equivalent returns and Sharpe ratios.

4.1 Evidence based on data until 2003

In Table 2, we present statistical significance results for the predictive regression based on
MSCI index excess returns, denominated in both local currencies and US dollars. The sample

period we consider starts in January 1983 and ends in April 2003. We first focus our analysis

10 While Driesprong, Jacobsen, and Maat| (2008) use log returns in their empirical analysis, it is more convenient
for us to use excess returns for the purpose of assessing the economic significance of the predictive ability of oil
price changes. The results for log returns, available upon request, are very similar.

12



on this sample period to facilitate comparison of our results with the evidence presented in

Driesprong, Jacobsen, and Maat| (2008) who also use a sample ending in April 2003.

For local-currency denominated returns, the point estimate of the predictive slope 6° in
regression is negative for all six cases. The null hypothesis Hy : 6° = 0 is rejected in six (four)
out of six cases at the 10% (5%) level of significance according to Newey and West| (1987)) standard
errors. When [Hodrick| (1992) standard errors are used, Hy : ¥ = 0 is rejected in five (four) out of
six cases at the 10% (5%) level of significance, with Japan yielding the highest p-value equal to
0.12. The adjusted R-square is higher than 2% in five out of six cases, with Canada yielding the
lowest adjusted R-square equal to 1.0%@ Hence, even though we use our own oil price change
proxy, our sample starts at a different point in time, and we use excess returns as opposed to
log returns, our results confirm the evidence reported in |Driesprong, Jacobsen, and Maat| (2008])
on the relationship between oil price changes and subsequent global equity returns for the time

period extending until April 2003.

In Table (3], we present economic significance results on the ability of oil price changes to
predict MSCI index excess returns in terms of the certainty equivalent return (CER) and the
Sharpe ratio (SR) of the associated trading strategies, as explained in Section 3l These results

reinforce the statistical significance results reported in Table

Let CER11p and SRr1p denote the CER and SR achieved by the trading strategy assuming that
the MSCI index excess returns are i.i.d., and CERp and SRp denote the CER and SR achieved by

the trading strategy using the predictive regression model .

For local-currency denominated returns, the augmented model using the oil price change proxy
g° as predictor generates significantly higher (point estimates of) CERs and SRs compared to
the baseline model that assumes that MSCI index excess returns are i.i.d. across all six cases.

More importantly, the null hypothesis Hi* : CERip = CERp is rejected in six (five) out of

' The results for US-dollar denominated returns are qualitatively similar. Specifically, the point estimate of the
predictive slope 6° in regression is negative for all eight cases. The null hypothesis Hp : 6° = 0 is rejected in
seven (six) out of eight cases at the 10% (5%) level of significance according to Newey and West| (1987)) standard
errors. When [Hodrick| (1992) standard errors are used, Ho : ¥ = 0 is rejected in six (six) out of eight cases at the
10% (5%) level of significance, with Japan again yielding the highest p-value equal to 0.27. The adjusted R-square
is higher than 2% in six out of eight cases, with Canada yielding the lowest adjusted R-square equal to 0.7%.
Importantly, for the case of the World MSCI index, Hy : 6° = 0 is strongly rejected by both methods and the
adjusted R-square is equal to 5.6% which is rather high for monthly returns.
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six cases at the 10% (5%) level of significance, respectively, against the one-sided alternative
HGS® : CERyp < CERp. The null hypothesis HE® : SRiip = SRp is rejected against the one-sided
alternative H>* : SRip < SRp in all six cases at the 5% level of signiﬁcanceE Overall, the
economic significance results confirm the evidence reported in [Driesprong, Jacobsen, and Maat

(2008) on the ability of oil price changes to forecast international equity index returns.

4.2 Evidence based on data until 2015

In this subsection, we extend the sample period to December 2015 and run the same predictive
regressions again. As in the previous subsection, we examine both the statistical and economic

significance of the predictive ability of oil price changes.

In Table [ which corresponds to Table [2| we present statistical significance results. The
evidence obtained from the extended sample is quite different: the predictive ability of oil price

changes has mostly disappeared.

For local-currency denominated returns, the point estimates of the predictive slope 6 in
regression are still negative in all six cases. However, they are much smaller in absolute
value. For instance, for Japan and the UK, the §° point estimates obtained over the 1983.01—
2003.04 period are -0.11 and -0.11, while they fall to -0.05 and -0.06 over the 1983.01-2015.12
period, respectively. The null hypothesis Hy : 6° = 0 is now rejected in only three (two) out
of six cases at the 10% (5%) level of significance according to |Newey and West| (1987) standard
errors. Moreover, we observe a substantial reduction in adjusted R-squares. For instance, for
Japan and the UK, the adjusted R-squares obtained over the 1983.01-2003.04 period are 2.9%
and 4.1%, while they fall to 0.3% and 1.4% over the 1983.01-2015.12 period, respectively. In the

case of Canada, the adjusted R-square even becomes negative.

12 The results for US-dollar denominated returns are qualitative similar. The augmented model based on the

predictive regression model still generates significantly higher (point estimates of) CERs and SRs compared
to the baseline i.i.d. model for MSCI index excess returns across all eight cases. Importantly, for the case of
the World MSCI index, when gP is used as predictor, the CER increases from C/E\RHD = 2.26% to ﬁp = 7.79%
and, similarly, the SR increases from SR = 0.19 to CERp = 0.43. The null hypothesis HSER : CERip = CERp is
rejected in five (three) out of eight cases at the 10% (5%) level of significance, respectively, against the one-sided
alternative HSE® : CERip < CERp, with Canada yielding the highest p-value equal to 0.15. The null hypothesis
HGR : SRy = SRp is rejected against the one-sided alternative H3® : SRip < SRp in six (three) out of eight cases at
the 10% (5%) level of significance, respectively, with Japan yielding the highest p-value equal to 0.14.
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The results for US-dollar denominated returns are even weaker. While the 6 point estimates
are still negative in seven out of eight cases, they are even smaller in absolute value than their
counterparts obtained for local-currency denominated returns and in the case of Canada the
predictive slope estimate turns out to be positive. The null hypothesis Hy : 6 = 0 is rejected
only in the case of Italy at the 10% level of significance, regardless of whether we use Newey
and West| (1987) or Hodrick (1992) standard errors. Importantly, the corresponding p-values for
the USA and the World MSCI indexes are 0.22 and 0.22, respectively, according to Newey and
West| (1987) standard errors. In addition, the adjusted R-squares are rather low: they are less
than 1% in seven out of eight cases, and even negative in the case of Canada. Hence, our results
show substantially weaker statistical evidence on the relationship between oil price changes and
subsequent global equity excess returns over the sample extending to December 2015 compared

to the sample period ending in April 2003.

Table [ which corresponds to Table [3| reports results on the economic significance of the
predictive ability of oil price changes in terms of the CER and the SR of the associated trading
strategies. These results reinforce the message conveyed by Table [4] that the forecasting ability
of oil price changes has essentially disappeared over the extended sample ending in December

2015.

For local-currency denominated returns, the null hypothesis H§® : CER;;p = CERp is not
rejected against the one-sided alternative H3™ : CER11p < CERp in four out of six cases at the 10%
level of significance, with Italy and the UK being the exceptions. We obtain the same results

when we test H3F : SRimp = SRp against H3' : SRrrp < SRs.

The results for US-dollar denominated returns are even weaker. The null hypothesis H§™ :
CER11p = CERp is not rejected against the one-sided alternative HS® : CER1p < CERp in any case,
out of eight, at the 10% level of significance. Importantly, the corresponding p-values for the

USA and the World MSCI indexes are 0.37 and 0.30, respectively.

Collectively, the statistical as well as economic significance results presented in this subsection
illustrate that the forecasting ability of oil price changes has been diminished over the extended

sample ending in December 2015. In the next subsection, we provide further corroborating
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evidence by examining the stability, or lack thereof, of the predictive relation between MSCI

index excess returns and past oil price changes.

4.3 Instability of the predictive slope coefficients

The empirical evidence gathered in the previous two subsections suggests that the ability of oil
price changes to predict MSCI index excess returns is not stable over time. We confirm extant
results on the oil price change predictive ability using data until April 2003, consistent with the
evidence in Driesprong, Jacobsen, and Maat| (2008), but also show that these results do not hold
in the extended sample ending in December 2015. While we obtain negative and statistically
significant predictive slope estimates in the early sample, these estimates become much closer to

zero and lose their statistical significance in the extended sample.

As a first attempt to shed some light on these striking findings, we estimate the predictive
regression model over different samples using an expanding window with the first sample
being 1983.01-1993.01 and the last sample being 1983.01-2015.12. Figures [4 and [5] present the
predictive slope estimates along with 95% confidence intervals, based on [Newey and West| (1987))
standard errors, over the period 1993.01-2015.12 for local-currency and US-dollar denominated
MSCI index returns, respectively. The pattern evident in these graphs is rather revealing. For
the majority of the cases, the predictive slope estimates are negative and frequently statistically
significant until the third quarter of 2008. For many cases, however, after that point in time
the estimates start increasing to zero and quickly lose their statistical significance. This effect is

more noticeable for US-dollar denominated returns.

In addition to the informal analysis based on the predictive slope estimates presented in
Figures [4] and |5, we also perform formal structural break tests. Specifically, we employ the
methodology developed by Bai and Perron| (2003) to test for multiple structural breaks in the
predictive slope coefficients. We use the Bayesian Information Criterion (BIC) to select the

number of breaks.

Table |§| presents Bai and Perron| (2003) structural break tests in the slope coefficient for the

predictive regression . The second column presents the BIC values assuming no break. The
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third and fourth columns provide the BIC values and the corresponding break dates for the case
of the one-break model. The last column shows the number of breaks selected by the BIC. For
local-currency denominated index returns, the test identifies the presence of one structural break
in five out of six cases, with UK being the only exception. For US-dollar denominated index
returns, the test identifies the presence of one structural break in seven out of eight cases, with
France being the only exception. The break dates identified in most cases fall in the third quarter
of 2008. However, the break dates for Italy and Japan are October 2003 and September 1990,
respectively. Overall, the structural break tests provide additional evidence against the stability
of the slope coefficient in the predictive relationship between MSCI index excess returns and past

oil price changes.

5 The differential roles of the various shocks embedded in oil

price changes

In the previous section, we confirm the finding of |Driesprong, Jacobsen, and Maat| (2008]) that oil
price changes predict international equity index returns at the monthly frequency with a negative
predictive slope based on data up to April 2003. However, we also provide compelling evidence
that the predictive power of oil price changes has practically disappeared over the extended sample
ending in December 2015. For most of the G7 MSCI indexes, the predictive slope estimates based
on expanding windows become closer to zero and turn statistically insignificant after the third
quarter of 2008. Moreover, the formal econometric tests of Bai and Perron (2003) indicate the
existence of a structural break in the third quarter of 2008 for the majority of the cases, especially
when US-dollar denominated returns are used. The dramatic reduction in the predictive ability

of oil price changes, therefore, begs for an explanation.

In this paper, we offer an explanation that emphasizes the differential roles of the various
shocks embedded in oil price changes. In particular, we adapt the structural VAR framework of
Kilian| (2009) that provides a decomposition of oil price changes into oil supply shocks, global
demand shocks, and oil-specific demand shocks. As pointed out by Kilian (2009) and Kilian

and Park (2009), oil price shocks cannot be treated as strictly exogenous with respect to the
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global economy. In particular, they argue that oil supply shocks, global demand shocks, and
oil-specific demand shocks, the combination of which leads to the observed aggregate oil price

changes, should have different effects on the macroeconomy and the stock market.

Alternatively, [Rapaport| (2014) and |[Ready| (2016) propose to use information from the stock
market to identify the underlying types of shocks in oil price changes. Rapaport| (2014)) identifies
shocks specific to the oil market and shocks that affect the overall economy using the sign and
magnitude of the correlation between daily oil price changes and aggregate stock market returns,
excluding oil companies. Ready| (2016|) uses crude oil futures returns, returns on a global equity
index of oil producing firms, and innovations to the VIX index to identify demand and supply
shocks. He documents a strong contemporaneous relationship between aggregate market returns
and the demand /supply shocks from his decomposition based on data from 1986 to 2011. We have
confirmed that his results remain strong using data until 2015. However, the shocks identified by
Ready| (2016) cannot forecast future stock market returns. In contrast, the focus of our paper is
the predictive relationship between the various shocks embedded in oil price changes and equity
index returns. Hence, we find the approach advanced by Kilian| (2009), which utilizes more direct
proxies for oil supply and global demand and does not require stock market information to obtain

the decomposition, more suitable for our purposes.

Kilian and Park (2009) augment the structural VAR model of Kilian| (2009) by adding the
US real stock return in the vector of variables and study contemporaneous relationships between
shocks embedded in oil price changes and stock returns. They examine cumulative impulse re-
sponses of real stock returns to one-time shocks to oil supply, global demand, and oil-specific
demand in the crude oil market. Their results, using data in the period of 1975-2006, show that
an unexpected decrease in oil production has no significant effect on cumulative US real stock
returns and a positive surprise to global demand (oil-specific demand) leads to a continuous
increase (decrease) in US real stock returns. In this paper, we follow the recent finance litera-
ture, Driesprong, Jacobsen, and Maat| (2008) in particular, we cast the question in a predictive
regression framework using short-horizon, i.e., one-month-ahead, forecasts. Although we utilize
the framework proposed by [Kilian| (2009), we approach the question from the perspective of an

investor who wishes to use the real-time information embedded in oil price changes and captured
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by the three aforementioned shocks to predict subsequent equity index returns.

5.1 A decomposition based on a structural VAR model

To disentangle the supply shocks, demand shocks, and oil-specific demand shocks embedded in the
observed oil price changes, we employ a variant of the structural Vector Autoregressive (VAR)
framework of Kilian| (2009). Specifically, we consider a VAR model based on three variables
capturing changes in the (i) supply of oil; (ii) demand for oil; and (iii) price of oil. The first
variable, denoted by gf where S stands for supply, is the log growth rate of world crude oil
production. The second variable, denoted by gP where D stands for demand, is the first principal
component of the log growth rates of the dry bulk cargo shipping cost index and global crude steel
production. It has been argued in the literature, e.g., Kilian (2009)) and Ravazzolo and Vespignani
(2015)), among others, that fluctuations in shipping cost and global crude steel production capture
changes in global economic activity growth and demand for oil. The third variable, denoted by
gf where P stands for price, is the first principal component of the log growth rates of West Texas
Intermediate, Dubai, and Arab Light spot prices. We provide a detailed explanation of the data

sources and construction in Section 2l

Our purpose is to employ the structural VAR model to obtain a decomposition of oil price
changes into three types of shocks and use them as predictors of MSCI index returns. We do so
by, first, using real-time available information and, second, constructing three variables that are
stationary in a consistent way. As a result, the choice of variables in our implementation of the
structural VAR model differs from that used by Kilian (2009) in two aspects. First, the index
of global real economic activity constructed in |Kilian| (2009)) is a level variable constructed by
first cumulating the average growth rate of dry bulk cargo freight rates, then deflating by the US
CPI, and finally linearly detrending. Our proxy for global economic activity is the first principal
component the log growth rates of two indicators, the shipping cost index and world crude steel
production, constructed in a real-time fashion. Second, |Kilian| (2009) uses log real oil prices,
measured by US refiners’ acquisition costs deflated by the US CPI. We use an oil price change
proxy, obtained as the first principal component of the log growth rates of three proxies for crude

oil spot prices. Importantly, as pointed out by |Apergis and Miller| (2009), the variables of global
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real economic activity and log real oil price used in the structural VAR model in Kilian (2009)

appear to be non-stationary. On the contrary, our variables are, by construction, stationary.

Letting g = [¢7 g7 ¢F] denote the vector of the three variables described above, the

structural VAR model is stated as:

P
Aogi=a+ )y Aigite, (8)
i=1
where Ag is a 3 x 3 lower triangular matrix, a is a 3x 1 vector, A; is a 3x 3 matrix, fori =1,...,p,

and g; = [ef €D €U5P]’ is a vector of uncorrelated standardized shocks. The interpretation of the

fundamental shocks is as follows: &} is the oil supply shock, €? is the global demand shock, and
e%P is the oil-specific demand shock. The structural innovation vectors €; are, by assumption,
serially and cross-sectionally uncorrelated. The reduced-form VAR innovation is e; = Ay Le,,
where Ayt is simply the Cholesky factor of the covariance matrix X, = Var[e;]. Multiplying

both sides of the above equation by Ay ! yields
P
g =b+ Z Bigiit+e: 9)
i=1

where b = Aala and B; = AalAi, i =1,...,p. The parameters b and B; are estimated by
standard OLS and the VAR order p is selected using the BIC criterion. Writing the VAR(p)
system in VAR(1) form, we obtain

yi = Cyi1 + w, (10)

where y; and u; are 3p X 1 vectors defined by

— /
ye=lg —my 81— Hy - 8y —Hy (11)
w=[e 05 --- 05], (12)
[ty is the mean of g; and C is a suitable 3p x 3p matrix (involving the matrices B;, i =1,...,p).

The Wold representation of y; reads y; = Z;ﬁo Ciu;_;. Denoting by D; the 3 x 3 upper-left block
of the matrix C* and defining the matrix F; = DiAgl, we can express 8¢ as 8t = g+ 0o Fi€i—i.

The third element of the vector g; is the oil price change proxy denoted by g°. Hence, we obtain
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the following decomposition of ¢g° into three components
g; =y + i +ag + 2™, (13)

where yj is the mean of the oil price change gf, zf = > 72,(Fi)s1€_; is the oil supply shock,
z) = > 2 (Fi)s2e?_, is the global demand shock, and z?%° = >"°(F;)33e22 is the oil-specific

demand shock.

We estimate the VAR model in equation @ using OLS and order p = 2, as selected according
to BIC, and obtain the decomposition in equation in a real-time fashion. Specifically, for
each month in the period between January 1986 and December 2015, we estimate the VAR
model using all available data starting in February 1982 and ending in that month. Then, we
obtain the time series of three shocks in the decomposition , but keep the vector of the oil
supply, global demand, and oil-specific demand shocks only for the last month. Our approach of
the real-time decomposition reflects all revisions to historical data of crude oil and crude steel
productionE We plot the time series of the oil supply, global demand, and oil-specific demand
shocks from January 1986 to December 2015 in Figure [f] All three series are rescaled so that
they have standard deviation equal to one. Supply shocks become less volatile after 2004 while
global demand shocks become more volatile after 2007. The volatility of the oil-specific demand

shocks appears stable across the sample period.

5.2 The predictive power of oil supply, global demand, and oil-specific de-

mand shocks

In this section, we examine the ability of the three shocks obtained by the oil price change
decomposition to forecast next-month MSCI index excess returns over the sample period

from January 1986 to December 2015. We do so by running the following predictive regression:

DEC S,..S D,_D 0SD,,.0SD DEC
T§+1:OZ —|—53§'t+,8$t+ﬁ Ty +ut+17 (14)

13 We have also obtained the full-sample version of the decomposition in equation (13)) using all data from February
1982 to December 2015. The two versions resulted in very similar results in the subsequent analysis, indicating
that the impact of the VAR estimation error is minimal.
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where 77, ; is excess return on an MSCI index and x5, 22, 2950 are the oil supply, global demand,

oil-specific demand shocks obtained in the decomposition , respectively. We gauge the fore-
casting ability of the three shocks using measures of both statistical and economic significance
as in the previous section. Furthermore, we offer comparisons between model that uses oil

price change as the sole predictor and the decomposition-based model .

The three shocks identified by the decomposition are anticipated to have different impacts
on future equity returns. Under the assumption of inelastic demand for oil in the short run, a
disruption in oil production would result in an oil price increase. This would be potentially
bad news for the real economy and the stock market while the corresponding shock x° would
be positive. Hence, one expects 35 to be negative in the predictive regression . Second,
positive global demand shocks stimulate the global economy as a whole, although the impact
might differ across countries. One, therefore, expects a positive global demand shock to be good
news for equity markets. At the same time, a positive global demand shock could drive up the
price of oil, which, in turn, could have a slowing down effect on certain economies. However, the
overall effect should be dominated by the first direct impact and, hence, one expects a positive
slope AP in the predictive regression . Third, following the interpretation in Kilian| (2009),
an oil-specific demand shock is thought to capture changes in the demand for oil driven by
precautionary motives. Accordingly, a positive oil-specific demand shock is thought to originate
from the increased demand for oil due to uncertainty regarding future availability of oil and so
it is perceived to be bad news for the global economy and the stock market. Hence, one expects

B%P to be negative in the predictive regression .

In Table [7], we present statistical significance results for the predictive regression over
the 1986.01-2015.12 sample period using MSCI index excess returns, denominated in both local
currencies and US dollars. To provide a direct comparison between model , which uses oil
price change as the only predictor, and model , we also estimate model over the same
sample period. The standard errors are computed using the [Newey and West| (1987)) method

with optimal bandwidth selected as in Newey and West| (1994).

As expected, given the evidence presented in Section [d] the forecasting power of oil price

changes is diminished over 1986.01-2015.12 sample period. The results are very similar to the
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ones presented in Table 4| corresponding to the 1983.01-2015.12 sample period. In particular,
the adjusted R-square for both the World and the US index is 0.5%. In stark contrast, we find

strong evidence of predictability using the decomposition-based model .

For local-currency denominate returns, the adjusted R-squares for the Canada, France, Ger-
many, Italy, Japan, and UK MSCI indexes are 1.5%, 2.9%, 3.1%, 9.5%, 1.9%, and 2.3%, respec-
tively. The point estimates of the slope coefficient 3P are positive in all six cases and statistically
significant in four (five) cases at the 5% (10%) level of significance. The point estimates of the
slope coefficient 3%5P are negative in all six cases and statistically significant in four (five) cases
at the 5% (10%) level of significance. The estimates of the slope coefficient 3° are negative in

four out of six cases, although statistically significant only in one case.

For US-dollar denominated returns, the results are very similar. The adjusted R-squares for
the Canada, France, Germany, Italy, Japan, UK, USA, and World MSCI indexes are 1.5%, 1.5%,
1.9%, 6.6%, 0.7%, 2.1%, 4.3%, and 3.6%, respectively. The 8P point estimates are positive in all
eight cases and statistically significant in four (six) cases at the 5% (10%) level of significance.
The 3°P point estimates are negative in all eight cases and statistically significant in five (six)
cases at the 5% (10%) level of significance. The estimates of the slope coefficient 3% are negative

in six out of eight cases, although statistically significant only in one case.

We repeat the above analysis computing standard errors according to the Hodrick| (1992
method. The results, reported in Table [§], are similar and convey the same message. Collectively,
we conclude that there is strong statistical evidence supporting the usefulness of the decompo-
sition and the ability of the three associated shocks to forecast the World and G7 country

MSCI index excess returns.

In addition to the evidence on statistical significance, we also provide evidence on the economic
significance of the ability of the oil supply, global demand, and oil-specific demand shocks to
predict G7 country MSCI index returns. We refer the model described by the decomposition-
based predictive regression as the augmented model and compare it to three baseline models.
The first baseline model assumes that the MSCI index excess return r¢, is i.i.d. The second

baseline model is described by the predictive regression that uses the oil price change ¢° as
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predictor. The third baseline model is described by the predictive regression

iy = o) +00g) +uy, (15)

which uses the global demand growth proxy ¢° as predictor.

Let CERpgc and SRpgc denote the CER and SR achieved by the trading strategy using the
decomposition-based predictive regression model . Analogously, we denote by CER11p, CERp,
and CERp (SRrrp, SRp, and SRp) the CERs (SRs) achieved by the trading strategies using the
i.i.d. model, the predictive regression , and the predictive regression , respectively. To
gauge the predictive ability of the shocks z7, zP, and z?%®, we test the null hypotheses HG™ :
CER1rp = CERpgc, H§™ : CERp = CERpgc, and H§™ : CERp = CERpgc against their one-sided
alternatives. Furthermore, in a similar fashion, we test the null hypotheses H® : SRrip = SRpec,

HGER : SRp = SRpgc, and H® : SRp = SRpgc against their one-sided alternatives. The economic

significance test results are reported in Table [9]

For local-currency denominated index returns, the decomposition-based model generates
CERs that are higher than their counterparts generated by the i.i.d. model in all six cases.
The difference is sizable, e.g., more than 3.76%, in annualized terms, for Japan and the UK,
and statistically significant in five out of six cases at the 10% level of significance. Moreover,
the decomposition-based model generates CERs that are higher than their counterparts
generated by model based on oil price change in five out of six cases, with the exception
of France. In the remaining cases, the difference is higher than 1.2%, in annualized terms, and
statistically significant in the case of Japan at the 10% level of significance. The decomposition-
based model also performs substantially better than the model based on global demand
growth in terms of CER. It produces CERs that are higher in all six cases and statistically
significant in four out of six cases at the 10% level of significance. The SR results are in line with
the CER results. The decomposition-based model generates SRs that are higher than their
counterparts generated by the i.i.d. model in all six cases. The increase in SR is sizable, e.g.,
from 0.19 to 0.53 for the UK, and the difference is statistically significant in four out of six cases

at the 5% level of significance. Moreover, the decomposition-based model generates SRs that
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are at least as high as their counterparts generated by the model based on oil price change
in all six cases. The differences again are sizable and statistically significant in the case of Japan
at the 5% level of significance. The decomposition-based model also performs substantially
better than the model based on global demand growth in terms of SR. It produces SRs that
are higher in all six cases and statistically significant in five out of six cases at the 10% level of

significance.

The results for US-dollar denominated index returns convey the same message. Importantly,
in the case of the USA MSCI index, the decomposition-based model generates an annualized
CER equal to 9.28% compared to 6.52%, 6.08%, and 6.20% generated by the i.i.d. model,
model , and model , respectively. The corresponding p-values are 0.11, 0.08, and 0.05,
respectively. Even stronger results are obtained for the World MSCI index. The decomposition-
based model generates an annualized CER equal to 7.90% compared to 4.03%, 3.88%, and
3.30% generated by the i.i.d. model, model , and model , respectively. The difference
is statistically significant in all three comparisons with p-values equal to 0.04, 0.07, and 0.03,
respectively. Strong results are obtained in terms of SR as well. In the case of the USA MSCI
index, the decomposition-based model generates an annualized SR equal to 0.65 compared
to 0.48, 0.45, and 0.46 generated by the i.i.d. model, model , and model , respectively.
The corresponding p-values are 0.12, 0.09, and 0.05, respectively. For the World MSCI index,
the decomposition-based model generates an annualized SR equal to 0.56 compared to 0.31,
0.30, and 0.27 generated by the i.i.d. model, model , and model , respectively. The
difference is statistically significant in all three comparisons with p-values equal to 0.04, 0.06,

and 0.03, respectively.

So far, in this subsection, we have provided strong statistical as well as economic significance
in support of the ability of the oil supply, global demand, and oil-specific demand shocks to
predict the World and G7 country MSCI index excess returns. Next, we provide further corrob-
orating evidence on the stability of this predictive relation between MSCI index excess returns
and these three shocks. As in the case on the predictive regression model , we use the Bai
and Perron| (2003|) methodology to test for structural breaks in the decomposition-based model

(14). The results are presented in Table The test does not identify breaks in all 14 cases
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considered, 6 local-currency and 8 US-dollar denominated MSCI indexes. Hence, the predictive
regression model appears to be a stable and robust specification illustrating the importance

of disentangling oil price changes into oil supply, global demand, and oil-specific demand shocks.

In the next subsection, we examine various aspects of the relationship between these three
shocks embedded in oil price changes and future stock returns. In particular, we provide evidence
suggesting that the documented predictability does not appear to be consistent with time-varying

risk premia.

5.3 Additional evidence and robustness checks

First, to alleviate any concerns regarding the real-time availability of the data required to obtain
the oil price change decomposition , we estimate the predictive regression er = oPEC +
B3a? + BPad + 9P PP 4 uPES | where r{, ;| is the monthly (simple) return on the World or a G7
country MSCI index constructed with a delay of one or two WeeksE The results, reported in
Table illustrate the robustness of the forecasting ability of oil supply, global demand, and

oil-specific demand shocks with respect to one- or two-week delays in the construction of the

World and G7 country MSCI index excess returns.

When studying return predictability, one natural question that emerges is whether the pre-
dictors under examination can forecast asset returns over long horizons. In Table we present
statistical evidence on whether the oil supply, global demand, and oil-specific demand shocks
obtained in the decomposition can predict three-month and six-month G7 country MSCI
equity returns. The evidence suggests that the predictive ability of the three shocks gradually
diminishes as the horizon gets longer. In particular, at the 5% level of significance, the slope
corresponding to the oil-specific demand shock is statistically significant only for Italy. Moreover,
the statistical significance of the slope corresponding to the global demand shock is reduced as we
move from the three-month to the six-month horizon. This evidence is reinforced by the adjusted
R-squares over two-, three-, four-, five-, and six-month horizons that we report in Table The

adjusted R-squares exhibit a declining pattern as the horizon increases and they are less than

1 We do not use excess returns for this exercise due to lack of availability of interest rate data for the relevant
time periods.
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2% for eight out of 14 cases for six-month horizon. As argued by Fama and French| (1989) and
Driesprong, Jacobsen, and Maat| (2008), among others, predictability typically associated with
time-varying risk premia is long-lived and persists over long horizons. We document that this
is not the case for the oil supply, global demand, and oil-specific demand shocks and, hence, we

conclude that the documented predictability is not consistent with time-varying risk premia.

We also examine whether the results on the predictability of aggregate equity index returns
are robust in the cross section of US industries. Specifically, we use the 17 Fama-French value-
weighted industry portfoliosE First, we conduct [Bai and Perron| (2003)) structural break tests
for (i) the predictive regression using oil price change as the predictor, for the 1983.01-2015.12
sample period, and (ii) the predictive regression using the oil supply, global demand, and oil-
specific demand shocks as predictors, for the 1986.01-2015.12 sample period. Table shows
that the tests identify the presence of one structural break in 14 of 17 industry portfolios when
oil price change is used as the sole predictor, with the exception of Mining and Minerals, Oil
and Petroleum Products, and Utilities. In contrast, the tests do not identify a break for any
industry when the three shocks embedded in oil price changes are used as predictors. Second, we
examine the ability of the three shocks to forecast industry portfolio excess returns. The results
are presented in Table where we also provide the results of the predictive regression using
oil price change as the sole predictor. Given the results of the structural break tests discussed
before, the results of the oil price change regression are meaningful only for the three industries
that do not exhibit a break. As expected, the estimated predictive slope on oil price change
is positive for the Oil and Petroleum Products industry, although not statistically significant.
Overall, there is no evidence of predictability based on oil price change alone, with 15 out of 17
adjusted R-squares being less than 1%. In contrast, there is strong evidence of predictability
across the various industries based on the three shocks embedded in oil price changes, according
to |[Newey and West| (1987)) standard errors. The 3P estimates are positive for all 17 industries

and statistically significant for 12 (13) industries at the 5% (10%) level. The S%P estimates are

15 We use monthly returns on the 17 Fama-French value-weighted industry portfolios from Kenneth French’s web-
site. The abbreviations (descriptions) of the 17 industries are Food (Food), Mines (Mining and Minerals), Oil (Oil
and Petroleum Products), Clths (Texiles, Apparel and Footware), Durbl (Consumer Durables), Chems (Chemi-
cals), Cnsum (Drugs, Soap, Perfumes, Tobacco), Cnstr (Construction and Construction Materials), Steel (Steel
Works Etc), FabPr (Fabricated Products), Machn (Machinery and Business Equipment), Cars (Automobiles),
Trans (Transportation), Utils (Utilities), Rtail (Retail Stores), Finan (Banks, Insurance Companies, and Other
Financials), and Other (Other).
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negative for 15 industries and statistically significant for seven (eight) industries at the 5% (10%)
level. The 3% estimates are negative for all 17 industries, although statistically significant only
for four industries at the 10% level. Moreover, the adjusted R-square is higher than 1.5% for
12 out of 17 industries. Overall, these results demonstrate that the predictive ability of the oil
supply, global demand, and oil-specific demand shocks is strong not only for the aggregate equity

index, but also across different industry portfolios.

Another natural question in the context of equity return predictability is how the proposed
predictors relate to macroeconomic variables that have been extensively used in the extant liter-
ature to model time-varying expected equity returns. Due to data limitations, we examine this
issue only for the case of the US. Table presents the contemporaneous correlations between
the oil supply, global demand, and oil-specific demand shocks and four macroeconomic variables:
the log dividend yield, the term spread, the default yield spread, and the one-month T-bill rate.
Results are reported for both the real-time and full-sample decompositions. The correlations are
rather low in magnitude with the largest (in absolute value) being the correlation between the
global demand shock and the default yield equal to -0.17 (-0.16) for the real-time (full-sample)

decomposition.

In addition, we examine whether the forecasting ability of the oil supply, global demand, and
oil-specific demand shocks is robust to the presence of the macroeconomic predictors in the case
of the US. We examine the following linear predictive regressions rf ; =~" + 6°g; + 0'z; + vf,
and 7§, =P + B52F + BPa? + BOPaPSP 4 N'zy + vPE§ over various sample periods, where 7§,
is the USA MSCI index excess return and z; is the vector of the four macroeconomic variables
mentioned above. The results are reported in Table[I8] According to the evidence, the inference
results we have reported so far in the paper are robust to the presence of the macroeconomic
variables. In particular, the forecasting ability of oil price change over the early 1982.01-2003.04
sample period is unaffected. Moreover, over the 1986-2015 sample period, the slopes of the
global demand shock and the oil-specific demand shock are negative and positive, respectively,

and significant at the 5% level of significance.

In our next empirical exercise, we examine the descriptive statistics of the conditional ex-

pected excess returns based on the oil supply, global demand, and oil-specific demand shocks. In
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particular, we focus on the mean, the standard deviation, and the first three autocorrelations.
This evidence can shed light on the issue of whether the documented predictive ability of the
three shocks is consistent with time-varying risk premia. For the purposes of comparison, we use
two benchmarks. The first benchmark is the predicted MSCI USA index excess return based on
the four macroeconomic variables discussed above in terms of descriptive statistics. We report
the results, for the time period 1986.01-2015.12, in Table Overall, the predicted expected
excess returns based on the three shocks are more volatile and much less persistent compared to
their analogues obtained from the macroeconomic variables. One might argue that the predicted
excess returns based on the macroeconomic variables are just too persistent, given the nature
of these macroeconomic predictors. To address this concern, in our second comparison, we use
as benchmark the equity risk premium estimates obtained by Martin (2017) based on option
prices over different maturities, ranging from one month to one yearE We report the results for
the time period 1996.01-2012.01, over which the estimates from Martin (2017)) are available, in
Table The main message from the second comparison remains the same. In particular, the
second and third order autocorrelations of the predicted expected excess returns based on the
three shocks are much lower than their counterparts obtained from either the predicted excess
returns based on the macroeconomic predictors or the risk premium estimates of Martin/ (2017).
Collectively, this evidence suggests that the forecasting ability of the three shocks is not consis-
tent with time-varying risk premia, in line with the evidence of predictability diminishing over

longer horizons reported above.

We conclude this section by investigating whether there is a more direct link between time
variation in expected returns and changes in risk, as captured by return volatility. Such an
exercise can shed more light to the question of whether the predictive ability of the oil supply,
global demand, and oil-specific demand shocks is associated with changes in risk premia. To
this end, we employ an augmented EGARCH(1,1) model that includes these three shocks in the
volatility equation as exogenous regressors. If the variation of expected returns is to be attributed
to time-varying risk premia, we would expect that any of these three shocks has the same effect
on both the drift and the volatility. In the context of the EGARCH model, we would be expect

the coefficient on any of these shocks to have the same sign as in the drift equation and be

16 We thank Tan Martin for making the data available on his website.
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statistically significant. The econometric specification is:

i = 0T 4 5 0D+ G50 4 B (1)
’LLtDE(i = OtZt+1, 241 ™~ 11d(0, 1), (17)
log(o7) = 7o + Tu|z| + 221 + 3 log(of ) + ¢Paf + (Paf + (PP (18)

As argued above, time-varying risk premia would be consistent with ¢5 < 0, ¢° > 0, and (%P < 0.
We estimate the model using monthly excess returns on the MSCI indexes for the G7 countries
as well as the World MSCI index, denominated both in local currencies and US dollars, over
the 1986.01-2015.12 sample period. We consider three distributions for the disturbances z;y1:
Normal, Student-t, and GED. The Student-t distribution was selected according to the Bayesian
Information Criterionﬂ The results are presented in Table In the majority of the cases,
the estimates ¢5 < 0, ¢° > 0, and (%P < 0 are statistically insignificant at conventional levels.
More importantly, whenever there is significance, the sign is the opposite of what would be
consistent with time-variation of risk premia, e.g., in five out of 14 instances the estimates of
(P are statistically significant but negative. This evidence is inconsistent with the notion of

time-varying risk premia, reinforcing the message of the evidence documented earlier.

6 Conclusion

As the modern global economy heavily depends on oil, the price of oil is widely thought to affect
global real economic activity and consequently the global equity market. An oil price drop has
been considered in the past to be good news as it lowers the cost of production in a significant
number of sectors and allows consumers to boost their consumption. Accordingly, one could con-
jecture that negative (positive) oil price changes should predict higher (lower) subsequent equity
returns. [Driesprong, Jacobsen, and Maat| (2008)) document that this is indeed the case for a large
number of MSCI equity indexes based on data until 2003. However, this predictive relationship
has dramatically changed over the last ten years. Specifically, the correlation between the World

MSCI index return and the lagged one-month log growth rate of West Texas Intermediate spot

17 The results are very similar across all three distributional assumptions.
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price has increased from -0.22 over the 1982-2003 period to 0.26 over the 2004-2015 period. As
a result, the ability of oil price change to forecast future equity returns has diminished over the
sample period extending to 2015. Furthermore, using the formal econometric test of Bai and
Perron (2003), we detect a structural break in the predictive relationship in the third quarter of

2008 for most of the G7 country MSCI index returns.

In this paper, we suggest that oil price changes do contain useful information for forecasting
subsequent equity indexes, provided that these changes are suitably disentangled into supply and
demand shocks. Using a variant of the structural VAR approach of Kilian| (2009), we obtain an oil
price change decomposition into an oil supply shock, a global demand shock, and an oil-specific
demand shock and argue that these three different types of shocks should have different effects
on equity markets. The conjecture that oil supply shocks and oil-specific demand shocks (global
demand shocks) predict equity returns with a negative (positive) slope is supported by the
empirical evidence over the 1986-2015 sample period. Using the oil price decomposition instead
of just oil price change increases the annualized certainty equivalent return and Sharpe ratio of a
mean-variance trading strategy for the World MSCI index from 3.88% to 7.90% and from 0.30 to
0.56, respectively, with the differences being statistically significant. Importantly, we detect no
structural breaks in the predictive relationship between equity index returns and the three shocks
in any of the 14 MSCI equity indexes that we consider. These results survive in the presence of
traditional macroeconomic predictors for the case of the USA MSCI index and, in general, do

not appear to be consistent with time-varying risk premia.
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A Appendices

A.1 Data construction

The single oil price change proxy g° is constructed in a real-time fashion using PCA. Specifically,
for each month ¢ between January 1983 and December 2015, we use data on three proxies for
oil price change starting in February 1982 and ending in month ¢. We first rescale the three log
growth rates, obtained from the West Texas Intermediate, the Dubai, and the Arab Light spot
prices, so they all have variance equal to one over the given sample period and then perform
PCA. The first PCA corresponding to month ¢ is kept each time and the process is repeated

using expanding windows until December 2015 is reached.

To address the strong seasonality of the global crude steel production data, we use X-
13ARIMA-SEATS to compute seasonally adjusted level data from which we compute log growth
rates in a real-time fashionF;g] Specifically, for each month in the period between February 1982
and December 2015, we perform seasonal adjustment on the level data starting in January 1968
and ending in that month, compute the log growth rates of the seasonally adjusted level data,

and finally keep the log growth rate over the last month.

The single global demand growth proxy ¢® is also constructed in a real-time fashion using
PCA. Specifically, for each month ¢ between January 1983 and December 2015, we use data on
two proxies for global economic activity starting in February 1982 and ending in month ¢. We
first rescale the two log growth rates, obtained from the shipping cost index and the global crude
steel production data, so they all have variance equal to one over the given sample period and
then perform PCA. The first PCA corresponding to month t is kept each time and the process

is repeated using expanding windows until December 2015 is reached.

18 We use the X-13 Toolbox for Matlab, written by Yvan Lengwiler, to perform seasonal filtering. The source
codes are retrieved from http://www.mathworks.com/matlabcentral/fileexchange/49120-x-13-toolbox-for-
seasonal-filtering/content/x13tbx/x13.m.
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A.2 Testing for equality in certainty equivalent return and Sharpe ratio

In this appendix, we follow (Garlappi, Skoulakis, and Xue| (2016) who provide asymptotic tests
for comparing two models and the corresponding trading strategies in terms of their certainty
equivalent returns (CER) and Sharpe ratios (SR). Model 1 is the baseline model while Model 2
is the augmented one. The null hypothesis of interest is that the CERs or SRs obtained by two
models are equal. Denote by CER; and SR; the CER and SR of Model j, for j = 1,2. The purpose
of these tests is to evaluate the increment value of the augmented model in terms of performance
and, therefore, we naturally consider one-sided alternative hypotheses. Specifically, we test (i)
HS®® : CER; = CERg against HS" : CER; < CERy and (ii) H3® : SR; = SRq against H> : SRy < SRa.
Note that, in the context of our mean-variance framework, the CER of the portfolio is expressed
as a function of the first two moments of simple portfolio returns while the SR of a portfolio is

expressed as a function of the first two moments of the portfolio excess returns.

Let ry = (r1,, T27t)l denote the pair of returns on the two portfolios at time ¢. These returns
could be either simple or excess depending on whether we focus on the CER or the SR. Denote
the mean, variance and noncentral second moment of r;; by u;, o5, and v}, respectively for the
portfolios 7 = 1, 2. Note that 0]2 =Vj— u?. It follows that, in the case of simple returns, the CERs
for an investor with mean-variance preferences and risk aversion coefficient equal to v are given

by CER; = 1 — %fy (yj — M?), j =1,2. Similarly, in the case of excess returns, the SRs are given

by SR; = \/L, 7 = 1,2. Therefore, the relevant hypotheses can be stated using a suitable
vj ,LLJ

function of the parameter vector @ = (u1, j2,v1,v2). We estimate @ by the sample analogue

6 = (fi1, fia, 71, v2)', where fi; = 1 Zthl rjt and V; = %Zle 7"]2‘715’ for j = 1,2. Under regularity

conditions, such as stationarity and ergodicity, 0 asymptotically follows a normal distribution

described by
VT(0 — \th X N(0, W), (19)

where W is the long-run variance-covariance matrix of

!/

yi = (rie — pn,rag — pio, ri, — 11,75, — v2) (20)
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The matrix W is given by ¥ = To + > ;0 (T¢ + I')), where T'y = E [y;y;_,], for £=0,1,... and

is estimated by a heteroscedasticity and autocorrelation consistent (HAC) estimator of the form

T
~ o~ 12 PN
% =T+ 3o () Bt B, (21)
br
/=1
where
1 T
N N R . . N N/
Le= T/ YiVi—es Ve = (rie— i, 720 — fiz, T%,t -V Tg,t — ), (22)
t=0+1

(-) is a kernel function, and by is the bandwidth. HAC estimators have been developed by several
authors including Newey and West| (1987)), Andrews (1991)), Andrews and Monahan| (1992), and
Newey and West| (1994). We report p-values based on the Newey and West (1987) approach
with the Bartlett kernel and the optimal bandwidth computed as suggested in |[Newey and West

(1994).

Consider testing the null hypothesis Hy : f(0) = 0 against the alternative hypothesis H4 :
f(8) < 0, where f(0) is a smooth real-valued function of 8. Applying the delta method, we
obtain

VT (£(8) ~ 1 (0)) =% N (0,V'f(0) ¥V [(6)). (23)

-~

where V f(-) is the gradient of f. For large T', the standard error of f(8) is given by

~ 1 ~~ ~
se(f(0)) = \/TV/f(O)‘I’Vf(O), (24)
and, therefore, the corresponding t-statistic is t(f, 5) = se{;?%)), yielding the one-sided p-value

~

p(f,0) = ®(t(f,8)), where ® (-) is the cumulative distribution function of the standard normal

distribution.

To test for equality of CERs, we use simple returns and the function f takes the form

feer (0) = (Ml - %’Y (v — M%)) — <M2 — %’Y (v2 — M%)) ; (25)
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with gradient equal to

11\
foER(e) = (1 + yp1, —1 — yu2, _§'Ya 27> . (26)

To test for equality of SRs, we use excess returns and the function f takes the form

_ H1 _ H2
Y oy e 4 0

with gradient equal to

/
1 1
vaR(e) _ V1 - 1) = M1 = M2 ; . (28)
(1 —pi)z (v2—p3) 2 >

IS
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Table 1: Oil price change summary statistics. This table presents summary statistics for three oil spot
price log growth rates, i.e., West Texas Intermediate (WTI), Dubai, and Arab Light, and their first principal
component g°. Results are presented for the 1983.01-2003.04 and the 1983.01-2015.12 sample periods. All
reported numbers are in percentages.

1983.01-2003.04 Sample Period

WTI Dubai Arab Light q°
Min —39.60 —37.76 —48.51 —49.85
Max 37.71 53.68 48.73 38.16
Mean —0.05 —0.10 —0.08 —0.26
Std. dev. 8.17 10.51 10.94 9.18
7 of obs. 244 244 244 244

Correlation Matrix

WTI Dubai Arab Light q°
WTI 1.00 0.76 0.72 0.90
Dubai 0.76 1.00 0.90 0.94
Arab Light 0.72 0.90 1.00 0.92
g° 0.90 0.94 0.92 1.00

1983.01-2015.12 Sample Period

WTI Dubai Arab Light g
Min —39.60 —49.71 —48.51 —49.85
Max 37.71 53.68 48.73 38.16
Mean 0.04 0.02 0.01 —0.09
Std. dev. 8.45 10.16 10.34 9.00
# of obs. 396 396 396 396

Correlation Matrix

WTI Dubai Arab Light g°
WTI 1.00 0.76 0.72 0.90
Dubai 0.76 1.00 0.91 0.95
Arab Light 0.72 0.91 1.00 0.93
g 0.90 0.95 0.93 1.00
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Table 17: Correlations between oil supply shocks, global demand shocks, oil-specific demand
shocks, and several US macroeconomic variables. This table presents the correlation matrix for oil
supply shock (z7), global demand shock (z?), oil-specific demand shock (29P), the log dividend yield (dy), the
term spread (tms), the default yield spread (dfy), and the one-month T-bill rate (¢bl). Results are presented
for the 1986.01-2015.12 sample period. The top (bottom) panel shows results of the three shocks obtained by
the oil price change real-time (full-sample) decomposition.

Real-time decomposition

xS P 208D dy tms dfy tbl
25 1 -0.09 0.17 -0.04 0.01 -0.01 -0.02
P -0.09 1 0.08 -0.03 0.05 -0.17 0.04
208D 0.17 0.08 1 -0.08 0.00 -0.08 0.04
dy -0.04 -0.03 -0.08 1 0.20 0.32 0.31
tms 0.01 0.05 0.00 0.20 1 0.27 -0.62
dfy -0.01 -0.17 -0.08 0.32 0.27 1 -0.27
tbl -0.02 0.04 0.04 0.31 -0.62 -0.27 1
Full-sample decomposition

xS 2P 208D dy tms dfy tbl
xS 1 -0.08 0.02 0.01 -0.01 0.04 0.02
P -0.08 1 0.04 -0.08 0.06 -0.16 0.00
208D 0.02 0.04 1 -0.08 0.00 -0.07 0.03
dy 0.01 -0.08 -0.08 1 0.20 0.32 0.31
tms -0.01 0.06 0.00 0.20 1 0.27 -0.62
dfy 0.04 -0.16 -0.07 0.32 0.27 1 -0.27
tbl 0.02 0.00 0.03 0.31 -0.62 -0.27 1
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Table 18: Robustness checks of the USA MSCI index excess return predictive regressions: the role
of macroeconomic variables. This table presents results for the predictive regressions rg,; = ¥+ 6Fgf +
0'z; +vf,, and ri | = PEC + 352F + B + BOP &P 4 N'zy + 0PES over various sample periods. The variables in
these regressions are: (i) 7§, is excess return on the USA MSCI index, (ii) the oil price change proxy g; is the
first principal component obtained from three oil spot price log growth rates: West Texas Intermediate, Dubai,
and Arab Light, (iii) 2, 22, and 2°" are the oil supply, global demand, and oil-specific demand shocks obtained
in the oil price change decomposition , and (iv) z; is the vector of macroeconomic variables including the log
dividend yield (dy), the term spread (¢ms), the default yield spread (dfy), and the one-month T-bill rate (¢bl).
The numbers in parentheses represent two-sided p-values for the null hypotheses that the slope coefficients are
zero, based on Newey and West| (1987)) standard errors with optimal bandwidth selected as in |[Newey and West
(1994). *, ** and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. The adjusted
R?, presented in percentage, is denoted by R2.

Sample Period 1983.01-2003.04 1983.01-2015.12 1986.01-2015.12 1986.01-2015.12

ar —0.11"** —0.04 —0.04
(0.00) (0.28) (0.25)
z$ —0.34
(0.38)
P 0.34%%*
(0.00)
PSP —0.06**
(0.03)
dyy 0.03** 0.03*** 0.03*** 0.03***
(0.04) (0.00) (0.00) (0.00)
tmsy —0.78 —0.43* —0.49* —0.57**
(0.14) (0.08) (0.08) (0.04)
dfy, —0.32 —1.16 —1.36 —0.99
(0.74) (0.25) (0.15) (0.17)
tbl, —0.45 —0.29** —0.33** —0.35**
(0.14) (0.02) (0.05) (0.03)
R? 6.3 2.0 2.0 5.7
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Table 19: Descriptive statistics for MSCI index predicted excess returns: 1986.01-2015.12. This
table presents the mean, the standard deviation (STD), and the first three autocorrelations (AC(k), k = 1,2, 3)
of MSCI index predicted excess returns using two sets of predictors: (i) four macroeconomic variables, i.e.,
the log dividend yield, the term spread, the default yield spread, and the one-month T—bill rate and (ii) the
oil supply, global demand, and oil-specific demand shocks obtained from the oil price decomposition. The
top panel contains the results for the MSCI USA index based on the macroeconomic variables. The middle
(bottom) panel contains the results for MSCI local-currency (US-dollar) denominated indexes based on the oil
price decomposition.

Mean STD AC(1) AC(2) AC(3)
Macroeconomic variables

USA 0.65 074 097 0.93 0.89

Oil price decomposition

Local-currency

Canada 0.40 0.67 0.56 0.14 -0.09
France 0.50 1.08 0.32 -0.02 -0.11
Germany 0.48 1.23 0.36 -0.01  -0.12
Italy 0.20 2.12 0.28 -0.03  -0.10
Japan 0.30 0.95 0.39 0.06 -0.09
UK 0.35 0.79 0.27 0.00 -0.09
US-dollar

Canada 0.57 0.85 0.61 0.19 -0.07
France 0.66 0.93 0.38 -0.03  -0.13
Germany 0.59 1.10 041 -0.02  -0.13
Italy 0.43 1.99 0.30 -0.04 -0.10
Japan 0.27 0.77 0.31 -0.02  -0.08
UK 0.56 0.87 0.46 0.09 -0.10
USA 0.65 0.99 0.44 0.04 -0.12
World 0.53 094 043 0.06 -0.12
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Table 20: Descriptive statistics for MSCI index predicted excess returns: 1996.01-2012.01. This
table presents the mean, the standard deviation (STD), and the first three autocorrelations (AC(k), k = 1,2, 3)
of MSCI index predicted excess returns using two sets of predictors: (i) four macroeconomic variables, i.e.,
the log dividend yield, the term spread, the default yield spread, and the one-month T-bill rate and (ii)
the oil supply, global demand, and oil-specific demand shocks obtained from the oil price decomposition. For
comparison purposes, the top panel reports the descriptive statistics for the equity premium estimates of Martin
(2017)), obtained from option prices, for one-month (M1), two-month (M2), three-month (M3), six-month (M6),
and one-year (M12) maturities. The second panel contains the results for the MSCI USA index based on the
macroeconomic variables. The third (fourth) panel contains the results for MSCI local-currency (US-dollar)
denominated indexes based on the oil price decomposition.

Mean STD AC(1) AC(2) AC(3)
|Martin (2017)’s equity premium

M1 0.41 1.15  0.78 0.55 0.45
M2 0.41 1.05 0.82 0.61 0.51
M3 0.41 097 085 0.67 0.57
M6 0.41 082 0.88 0.73 0.64
M12 0.39 0.69 0.90 0.80 0.72

Macroeconomic variables
USA 042 1.01 0.95 0.87 0.81

Oil price decomposition

Local-currency

Canada 0.62 1.22 0.66 0.19 -0.08
France 0.48 1.50 0.52 0.00 -0.17
Germany 0.53 1.95 0.48 -0.06  -0.19
Italy 0.25 1.77  0.43 -0.04 -0.16
Japan -0.16 1.04  0.66 0.22 -0.03
UK 0.23 0.91 0.40 -0.02  -0.12
US-dollar

Canada 0.88 1.65 0.68 0.23 -0.06
France 0.49 1.49 0.55 0.05 -0.15
Germany 0.54 1.90 0.50 -0.02  -0.18
Italy 0.39 1.77 0.47 0.01 -0.14
Japan -0.21 0.86  0.54 0.04 -0.03
UK 0.37 1.36 0.63 0.17 -0.08
USA 0.42 1.54 0.55 0.06 -0.14
World 0.32 1.39 0.58 0.11 -0.11
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Figure 1: Scatter plots of US-dollar denominated MSCI World index return versus the one-month
lagged log growth rate of West Texas Intermediate (WTI) spot price. In this figure, we present
the scatter plots of the US-dollar denominated MSCI World index return versus the one-month lagged log
growth rate of WTT spot price over the 1982.01-2003.12 and 2004.01-2015.12 sample periods. The solid lines
represent the fitted least-squares regression lines. The correlation between the MSCI World index return and
the one-month lagged log growth rate of WTI spot price is -0.22, 0.26, and -0.04 over the 1982.01-2003.12,
2004.01-2015.12, and 1982.01-2015.12 sample periods, respectively.
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Figure 2: Time series of oil price change proxies. In this figure, we plot the log growth rates of three oil
spot price proxies, i.e., WTI, Dubai, and Arab Light, along with their first principal component, g*, over the
1983.01-2015.12 sample period. All series are rescaled so that they have a standard deviation equal to 0.09.
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Figure 3: Time series of global demand growth proxies. In this figure, we plot the log growth rates
of the shipping cost index and the seasonally-adjusted crude steel production, along with their first principal
component, ¢°, over the 1983.01-2015.12 sample period. All series are rescaled so that they have a standard

deviation equal to one.
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Figure 4: Oil price change as a predictor of local-currency denominated MSCI index excess returns:

slope estimates over expanding sample periods.

In this figure, we plot the time series of the slope

estimates, along with the corresponding 95% confidence intervals based on |[Newey and West, (1987)) standard
errors, from the predictive regression model over different samples using an expanding window with the first
sample being 1983.01-1993.01 and the last sample being 1983.01-2015.12.
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Figure 5: Oil price change as a predictor of US-dollar denominated MSCI index excess returns:
slope estimates over expanding sample periods. In this figure, we plot the time series of the slope
estimates, along with the corresponding 95% confidence intervals based on Newey and West, (1987) standard
errors, from the predictive regression model over different samples using an expanding window with the first
sample being 1983.01-1993.01 and the last sample being 1983.01-2015.12.
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Figure 6: Time series of oil supply, global demand, and oil-specific demand shocks. In this figure,
we plot the time series of the oil supply, global demand, and oil-specific demand shocks obtained using the
decomposition in equation over the 1986.01-2015.12 sample period. The shocks are obtained in a real-time
fashion as described in subsection All three series are rescaled so that they have standard deviation equal
to one.
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