Testing Ex-post Implications of Asset Pricing Models

using Individual Stocks*

Soohun Kim! Georgios Skoulakis?*
Georgia Institute of Technology University of British Columbia

December 4, 2017

*We are grateful to Markus Baldauf, Murray Carlson, Adlai Fisher, Neil Galpin, Will Gornall, Ravi Jagannathan,
Raymond Kan, Hernan Ortiz-Molina, Elena Pikulina, Chen Xue, seminar participants at KAIST, the University of
British Columbia, and HEC Montreal, as well as conference participants at the Society for Financial Econometrics
2016 Conference (Hong Kong), the Financial Econometrics & Empirical Asset Pricing 2016 Conference (Lancaster), the
European Finance Association 2016 Meeting (Oslo), the Northern Finance Association 2016 Meeting (Mont Tremblant),
and the Midwest Finance Association 2017 Meeting (Chicago) for their comments and suggestions. We also thank
Chen Xue for providing factor data. Any errors are our responsibility. Comments and suggestions are welcome at
soohun.kim@scheller.gatech.edu and georgios.skoulakis@sauder.ubc.ca.

TFinance Department, Scheller College of Business, Georgia Institute of Technology, Atlanta, GA 30308; Email:
soohun.kim@scheller.gatech.edu.

#Finance Department, Sauder School of Business, University of British Columbia, Vancouver, BC, Canada V6T 1Z2;
Email: georgios.skoulakis@sauder.ubc.ca.



Testing Ex-post Implications of Asset Pricing Models
using Individual Stocks

Abstract

This paper develops an over-identified IV approach that uses past beta estimates and firm characteris-
tics as instruments for estimating ex-post risk premia while addressing the error-in-variables problem
in the two-pass cross-sectional regression method. The approach is developed in the context of large
cross sections of individual stocks and short time series. We establish the N-consistency of the result-
ing IV ex-post risk premia estimator and obtain its asymptotic distribution along with an estimator
of its asymptotic variance-covariance matrix. These results are then employed to develop new tests
for various asset pricing model implications that we empirically use to evaluate a number of popular

asset pricing models.
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1 Introduction

Asset pricing models suggest that an asset’s average return should be related to its exposure to
systematic risk. Models differ in the factors they identify as sources of relevant systematic risk. A
typical model identifies a small number of pervasive risk factors and postulates that the average return
on an asset is a linear function of the factor betas. The quest for the identification of relevant risk
factors at the theoretical level can be traced back to the works of Sharpe| (1964), Lintner| (1965)
and Mossin (1966) on the CAPM and Ross| (1976) on the APT. On the empirical front, a long line
of research on the evaluation of such models has been developed, starting with [Black, Jensen, and
Scholes| (1972) and Fama and MacBeth/| (1973).

One important aspect of empirical evaluation of an asset pricing model involves determining the
cross section of test assets. On standard approach in the literature, introduced by [Black, Jensen, and
Scholes (1972) and |[Fama and MacBeth| (1973), is to perform the asset pricing tests on a small number
of portfolios. Indeed, following Fama and French (1992), it has become standard practice to sort
stocks according to some firm characteristic in order to form sets of portfolios, typically deciles, that
are subsequently used as test assets. However, as Lewellen, Nagel, and Shanken (2010)) and Daniel and
Titman| (2012) demonstrate, inference regarding the performance of an asset pricing model crucially
depends on the choice of test assets.The method used to form the test portfolios could indeed affect the
inference results in undesirable ways. As Roll (1977)) points out, in the process of forming portfolios,
important mispricing in individual stocks can be averaged out within portfolios, making it harder to
reject the wrong model. Lo and MacKinlay (1990) are concerned about the exact opposite error: if
stocks are grouped into portfolios with respect to attributes already observed to be related to average
returns, the correct model may be rejected too often. In a recent contribution to the literature, Kogan
and Tian (2015) question the standard practice used in the literature to form portfolio deciles by sorting
firms on various characteristics, construct factors as long-short portfolio spreads, and finally using the
portfolio deciles as test assets. They point out that, by searching through the firm characteristics
known to be associated with substantial spreads in stock returns, it is easy to construct seemingly

successful empirical factor pricing models and argue that factor model mining can be a serious concern.

Motivated by this findings, we develop a framework for estimating and evaluating asset pricing
factor models using large cross sections of individual stock return data, instead of employing portfolios
as test assets, as originally suggested by |Litzenberger and Ramaswamy| (1979). We only consider short
time horizons so that we can evaluate the implications of asset pricing models locally in time. The
implications we test involve ex-post risk premia, when the factors are traded portfolio returns or
spreads (see Shanken| (1992)), as well as measures of potential mispricing at the individual stock level.

The existing methodological literature on the estimation and evaluation of asset pricing models
mainly focuses the case in which the time-series sample size, T, is large while the size of the cross
section of test assets, IV, is small. This scenario is suitable when portfolios, as opposed to individual

stocks, are used as test assetsE] The analysis of linear asset pricing factor models when the number

!The long list of related papers includes, among others, [Gibbons| (1982), |Shanken| (1985), |Connor and Korajczyk
(1988)), ILehmann and Modest| (1988]), |(Gibbons, Ross, and Shanken| (1989)), [Harvey| (1989)), [Lo and MacKinlay| (1990)),



of test assets IV is large has been the subject of a few recent papers. |Gagliardini, Ossola, and Scail-|
(2012) extend the two-pass cross-sectional methodology to the case of a conditional factor model

incorporating firm characteristics. Their asymptotic theory, based on N and T jointly increasing to

infinity at suitable rates, facilitates studying time varying risk premia. |Chordia, Goyal, and Shanken|

(2015)), building on (1992), use bias-corrected risk premia estimates in a context with individ-

ual stocks and time variation in the betas through macroeconomic variables and firm characteristics.

Their focus is the relative contribution of betas and characteristics in explaining cross-sectional dif-
ferences in conditional expected returns. More closely related to our paper is the recent paper by
Jegadeesh, Noh, Pukthuanthong, Roll, and Wang| (2015)) which employs an instrumental variable (IV)

approach to deal with the EIV problem in the risk premia estimation using individual stocks, where

the instruments are betas estimated over separate time periods. Our paper differs from their work in
the following important aspects. First, we develop a consistent estimator of the variance-covariance
matrix of the ex-post risk premia estimator. In contrast, they resort to the original Fama-MacBeth
approach for computing standard errors and test statistics. We provide simulation evidence that using
Fama-MacBeth standard errors in our small T-large N context can lead to wrong inferences. Second,
in addition to beta estimates from past periods, our overidentified IV approach also uses firm char-
acteristics as instruments. Third, while they focus only on risk premia, we address other important
implications of asset pricing models examining potential mispricing at the individual stock level.

We contribute to the extant literature by developing an instrumental variable-generalized method
of moments (IV-GMM) approach for estimating ex-post risk premia when the number of assets, N,
tends to infinity while the time-series length T is fixed. In addition, we propose statistics for testing ex-
post asset pricing implications, in terms of risk premia and potential mispricing at the individual stock

level, and develop the associated asymptotic theory. In particular, we develop the analogues, suitable

for our small T-large N context, of the tests developed in [Brennan, Chordia, and Subrahmanyam|
(1998), relating mispricing to firm characteristics, and |Gibbons, Ross, and Shanken| (1989)), examining

the magnitude of the average squared pricing error. In the standard two-pass procedure used for

estimating risk premia, the second step is a regression of average returns on estimated betas. As
explained in Section 6 in , when T is fixed and N tends to infinity, the orthogonality
condition required for consistency in the second pass is not satisfied rendering the two-pass CSR
estimator inconsistent. This is a manifestation of the well-known EIV problem which emerges from
using beta estimates instead of the true betas. Our approach uses past beta estimates and firm
characteristics as instrumental variables in order to deal with the EIV problem. We establish that the
overidentified IV-GMM ex-post risk estimator is IN-consistent and show that it asymptotically follows
a normal distribution. Finally, incorporating a cluster structure for idiosyncratic shock correlations,
we obtain an IN-consistent estimator of the asymptotic variance-covariance matrix which we use to
develop statistics for testing ex-post asset pricing model implications.

Zhou| (1991)), |Shanken| (1992), |Connor and Korajczyk| (1993), [Zhou| (1993), Zhou| (1994), Berkl (1995), |[Hansen and
Jagannathan| (1997), |Ghysels| (1998), |Jagannathan and Wang| (1998), [Kan and Zhou (1999), Jagannathan and Wang
(2002)), |Chen and Kan| (2004), [Lewellen and Nagell (2006), |[Shanken and Zhou| (2007), [Kan and Robotti| (2009), [Hou and

Kimmel| (2010), Lewellen, Nagel, and Shanken| (2010), |[Nagel and Singleton| (2011), |/Ang and Kristensen| (2012), Kan,
Gospodinov, and Robotti| (2013) and [Kan, Robotti, and Shanken| (2013)).




We examine the performance of the IV-GMM ex-post risk premia estimator, in terms of bias reduc-
tion, and the associated test statistics, in terms of size and power properties, for empirically relevant
sample sizes, in a number of Monte Carlo simulation experiments. In our empirical investigation, we
use the IV-GMM estimator to test the implications of four popular asset pricing model: the CAPM,
the [Fama and French| (1993) three-factor model (FF3), the [Hou, Xue, and Zhang] (2015)) four-factor
model (HZX4) and the Fama and French| (2015) five-factor model (FF5). To make them relevant
for our empirical exercise, we calibrate our simulations to the CAPM, the FF3 model and the HXZ4
model. The simulation results clearly show the significant bias reduction in the cross-sectional regres-
sion intercept and ex-post risk premia estimates achieved by the IV-GMM approach and the good
performance of our asset pricing tests for relevant sample sizes. Empirically, we find that the CAPM
is strongly rejected in all testing periods, while the FF3 and FF5 models are rejected in seven out
of eight testing periods, with the exception of the 2005-2009 period, and overall perform similarly.
Finally, according to our various tests, the HZX4 model is supported in the first half of the overall
sample period, covering the years 1975-1994, while it is rejected in the second half, covering the years
1995-2004.

The rest of the paper is organized as follows. In Section [2| we describe the general econometric
framework and develop the IV-GMM ex-post risk premia estimator using past beta estimates and firm
characteristics as instruments. We further establish the N-consistency of the IV-GMM estimator,
obtain its asymptotic distribution, provide an estimator of its asymptotic variance-covariance matrix
and develop novel asset pricing tests. In Section [3] we provide Monte Carlo evidence on the finite
sample behavior of the IV-GMM estimator and the associated tests. Section [4] presents empirical
evidence on four popular asset pricing models. Finally, Section [5| concludes. Proofs are collected in

the Appendix and additional results are delegated to the Online Appendix.

2 Econometric Framework

2.1 Model specification

Consider an economy with N traded assets and K factors. Let ry = [ r;; --- ry, |’ be the vector
of returns of the N traded assets in excess of the risk-free return and fy = [ f1, -+ fx. ]|’ be the
vector of factor realizations at time t. We assume that data are available over times 1 through T,
where T is finite and fixed, and formally consider the case in which the number of assets, IV, tends to
infinity.

We refer to the periods covering times 1 through 71 and 71 + 1 through T' = 7 +7» as the pretesting
and testing periods, respectively. That is, 71 and 79, that are fixed throughout our analysis, are the
pretesting and testing time-series sample sizes. We are interested in testing the implications of an
asset pricing model over the period from time 71 + 1 through 7' = 7 + 9.

The expectations of the excess return r; and the factor f; are denoted by p, = E[r;] and By =

E[f;], respectively. Furthermore, the K x K factor variance-covariance matrix is denoted by X, =



E[(f; — ) (f — ps)], while the N x K excess return-factor covariance matrix is denoted by X, =
El(r; — p,)(f — ps)’]. The N x K beta matrix is then defined by

B=[8 - Bn]=3%,%;", (1)

where 3; denotes the beta vector for the i-th asset, ¢ = 1,...,N. Letting d; denote the vector of
ex-ante risk premia, the corresponding linear beta model implies the pricing equation p, = Béy. If
the factors comprising f; belong to the return space, then we have d; = py.

Defining the residual u; = r; — Bf;, we can then write u; = (r; — ) — B (f; — ps), which implies
Euw] =0y and E[wf]] =E[(r; — p) ] — B (f; — py) f]] = X, —BXf = Onyx i, where Oy and Onx g
denote the N x 1 vector and N x K matrix of zeros, respectively. Hence, by imposing the pricing

restriction p, = B, we obtain the following time-series regression representation:
ry = B(ft + ((5]0 — [,Lf)) + Uy, with E[ut] = ON, E[utfﬂ = ONXK- (2)

Over the testing period, covering times t = 7 + 1,..., 7 + 72, the data generating process in
implies that

T2 =1xy) +BA;+ 1y (3)
with
X =0, Xp=TF2+ (0 — py),

where we use the generic notation y, = 7—12 Z?:J;Tj_l y: for a vector time series {yr 41, Yri+m}-

Recall that, since T is finite and fixed, our analysis is conducted conditionally on the factor
realizations. Hence, following Shanken (1992), among others, we refer to Ay as the ex-post risk
premia. When the linear factor model holds and the factors belong to the return space, the vector of
ex-post risk premia Ay equals the average factor realization over the testing period, namely fy. The

object of our inference is the (K + 1) x 1 vector
A= X1 (1)
Defining the N x (K + 1) matrix X by

X=[1y B ()



we can rewrite equation as

fgle)\0+B>\f+ﬁ2:X)\+ﬁ2. (6)

2.2 Estimating ex-post risk premia

If the true beta matrix B were known, an N-consistent estimator of A could be obtained by regressing
the average excess return vector ro on a vector of ones and the beta matrix B, under the reasonable
assumption of zero limiting cross-sectional correlation between the betas and the shocks. However, the
beta matrix B is not known and has to be estimated using the available data. Natural proxies for B
are the time-series OLS estimators of B obtained using data from the pretesting period or the testing
period. When 71 and 19 are fixed, as in our framework, the two-pass CSR approach with either proxy
yields an inconsistent estimator. This is a manifestation of the well-known EIV problem as pointed
out in Shanken (1992), |Jagannathan, Skoulakis, and Wang| (2010), and Kim and Skoulakis| (2017)).

Various approaches have been advanced in the statistics and econometrics literature for dealing with
the EIV problem. One such approach, particularly suitable for the case in which multiple proxies of
unobserved quantities are available, is the instrumental variable (IV) approach. Starting with the early
works of Wald, (1940)), Reiersgl (1941), and |Geary| (1943), a long related literature was subsequently
developedE] Chapter 6 of |Carroll, Ruppert, Stefanski, and Crainiceanu| (2006) offers a comprehensive
account of the IV method, where they state that “One possible source of an instrumental variable is a
second, possibly biased, measurement of the (true unobserved) regressor obtained by an independent
measuring method.”E] The recent paper by |Jegadeesh, Noh, Pukthuanthong, Roll, and Wang (2015)
also uses an IV approach in the context of asset pricing tests. Our paper differ from the aforementioned
paper in a number of important aspects. First, we use beta estimates obtained in the pretesting period
and therefore, given that our pretesting and testing periods are non-overlapping and consecutive, our
approach is less prone to potential serial correlations in the real data. Second, in addition to past
beta estimates, we also use firm characteristics as instruments. As a result, our estimator is an
overidentified IV-GMM estimator and not a standard two-stage IV estimator. Third, focusing on the
case of fixed T" and large IV, we develop a statistic for jointly testing ex-post asset pricing implications
in terms of risk-premia and potential mispricing at the individual stock level. Finally, we develop
a fully operational asymptotic theory for our tests. That is, we show consistency and asymptotic
normality of the joint test statistic, and N tends to infinity, and, furthermore, construct an estimator
of its asymptotic variance-covariance matrix that we then use to develop novel asset pricing tests.

To develop the IV risk premia estimator, we need to introduce some notation. Define the N x 7|
excess return matrix R; and the K x 71 factor realization matrix Fi, over the pretesting period, the

N X 19 excess return matrix Ro and the K x 7o factor realization matrix Fo, over the testing period,

ZDurbin| (1954) provides a review of the early EIV literature. |Aldrichl (1993) offers a historical account of the
development of the IV approach to the EIV problem in the 1940s.

3In the Online Appendix, we illustrate how the IV method can be used in the context of a linear regression model
with regressors subject to the EIV problem.



Ri=[r - vy ], Fu=[fi - £, ] (7)

and
Ry = [ Tr+1 0 Trt4m ]? Fo = [ f7'1+1 le-‘rTz ] (8)

Then, using the quantities defined in ([7]) and , we express the time-series OLS estimators of the

beta matrix B over the pretesting and testing periods, denoted by ]§1 and ]§2, respectively, as follows:

B) = (RiJ,FY) (F1JF}) " By = (RoJoF)) (Fol o Fh) (9)

where J,, = 1, — %1,”1;71, with I,, and 1,, denoting the m x m identity matrix and the m x 1 vector
of ones, respectively, for any positive integer mE]
We introduce the N x 71 idiosyncratic shock matrix Uy, over the pretesting period, and the N x 1

idiosyncratic shock matrix Us, over the testing period, defined by
U, = [ up - Up }7 U, = [ Ur+1 ~ Ur4mn ] (10)

Alternatively, letting u’l’m and u/27[i] denote the i-th row of Uy and Us, respectively, for i =1,..., N,
we can write
/

U =[uypy -~ wmpls Uz = [upy - ug |- (11)

Observe that us, the disturbance term in equation (@, and U, are related by

1
g = fUQlTZ. (12)
T2

Noting that Ry = BF; + U; and Ry = BF3 4+ Us, we can decompose the beta estimators ]§1 and
]§2, defined in @, respectively, into the true beta matrix B and the corresponding estimation error

terms as follows:
B, =B+ UG, B;=B+UGo, (13)

where the 71 X K matrix G1 and the 7o x K matrix Go are defined by

1

G =J,F (F1J,F)", Gy=J,F, (FJ,,F)) . (14)

“Standard matrix algebra shows that J,,, is a symmetric and idempotent matrix, and that tr (J,,) = m — 1.



To illustrate the effect of the beta estimation error in the case that we use Bs as a beta matrix proxy
in the second-pass CSR, we observe that equation @ is reexpressed as Ty = }A(g)\ + (X - Xg))\ + Uy

or

o = Xg)\ + w2, (15)
where

X; = [1y By, (16)

Wy = (X*Xg))\jLﬁQ (17)

Using equations and , the disturbance term wo defined in can be expressed as

1
wo = —(UaG2) Ay + U2 = Uy ( 17, - G2>‘f> = Uagy, (18)

™
where the 7 x 1 vector of go is given by

1 1 1
g2 = 717_2 — G’QAf = 717_2 — J7—2Fl2 (F2J7—2F/2) Af. (19)
T2 T2
It follows from equations and that the orthogonality condition, necessary for consistency,
is violated in the cross-sectional regression . In the next subsection, we start our analysis by

developing a consistent ex-post risk premia estimator using an instrumental variable approach.

It follows from the expressions and that the regressor and disturbance terms in the cross-
sectional regression are correlated through the beta estimation error contained in ]§2. Hence,
ignoring the error-in-variables problem, one would obtain an inconsistent ex-post risk premia estimator.
We develop an instrumental variable approach to deal with the error-in-variables problem using past
beta estimates and firm characteristics as instruments. Next, we explain that, under mild assumptions,
]§1 can serve as an instrumental variable for constructing an N-consistent estimator of A using the

cross-sectional regression (|15]).

Assumption 1 (i) As N — oo, +U'ly 25 07 and +UB 2 0py i, where U=[ U, U, |. (i)
As N — o0, U Uy 2 0., 5r,. (iii) As N — 00, 2B'1y = 25N 8 — pg. (iv) As N — oo,

% Ziﬁl(ﬁi — p3)(Bi — pg) — Vg, where Vg is a symmetric and positive definite matriz.

Assumption (1) states that, at each time ¢, the cross-sectional average of the shocks u;; converges
to zero, and the limiting cross-sectional correlation between the shocks wu;; and the betas 3; is also
zero, as the number of assets N tends to co. For 1 <t <7 and 71 +1 <t/ < 11 + 7», Assumption
(ii) states that the limiting cross-sectional correlation between w;; and wu; vanishes. That is, the

pretesting-period and the testing-period shocks are assumed to be cross-sectionally uncorrelated in



the limit N — ooﬂ Assumption (iii) states that the limiting cross-sectional average of the betas (3;
exists while Assumption (iv) states that the limiting cross-sectional variance of the betas 3; exists

and is a symmetric and positive definite matrix.

In light of equation , it follows from Assumption |1| that ]§1 is correlated with the explanatory
variable ]§2 in the cross-sectional regression , in the sense that ]/_5)’1]§2 /N converges in probability to
Mg =Vg+ H,Bﬂ’ga which is symmetric and positive definite, and hence invertible matrix, as N — oo.
Furthermore, based on equations and , Assumptions i) and (ii) imply that the proposed
instrumental variable ]§1 is uncorrelated with the disturbance term ws in the cross-sectional regression
1} in the sense that ]§’1w2 /N 250 K, as N — oo. These properties are formally established in
Theorem [I| below, where we establish the N-consistency of the proposed IV-GMM estimator.

In our empirical applications, the factors are returns on spread portfolios constructed after sorting
stocks with respect to a certain firm characteristic, such as size and book-to-market ratio. In this
context, it is expected that characteristics and betas with respect to the corresponding spread are
highly correlated. We indeed provide evidence that this is the case in Section [4], where we empirically
evaluate a number of popular asset pricing models. Hence, naturally, we also employ the characteristics
that are related to the spread factors as instrumental variables. Moreover, we utilize additional firm
characteristics, not directly related to the factors, to examine whether characteristics can explain
potential mispricing at the individual stock level. For the purposes of the theoretical development, we
make the following assumption on firm characteristics, for which we need to introduce some additional
notation. Let C =[ C; C, | denote the N x .J matrix of characteristics observed in the pretesting
period. The N x L matrix C; contains the characteristics to be used as instruments, while the
N x (J — L) matrix C, contains the additional characteristics to be used to detect mispricing. For

i=1,...,N,let ¢, c’f’i7 and ciw. be the i-th row of C, Cy, and C,, respectively.

Assumption 2 (i) As N — oo, C'U;/N L Vo, where Vi is an J X 7 matriz. (ii) As N — oo,
C'Uy/N 25 074r,. (iii) For each N, C'1y/N = L SN ¢; =0,. (iv) As N — oo, C'C/N — V,,
where Ve is a J x J symmetric and positive definite matriz. (iv) As N — co, C'B/N 2> Ve =

[ (Vgﬁ)’ (V‘Clﬁ)’ |, where Vg, Vfﬁ, and Vig are JXK, LXK, and (J—L)x K matrices, respectively.

Assumptions [2[i) and [2[(ii) state that firm characteristics observed in the pretesting period are poten-
tially correlated with idiosyncratic shocks in the pretesting period but not with those in the testing
period. In light of equation , Assumption (ii) states that C is uncorrelated with the disturbance
term wsy. Assumption (iii), without loss of generality, postulates that the first cross-sectional mo-
ments of firm characteristics are zero, while Assumption (iv) states that the second cross-sectional
moments of the firm characteristics are well-defined. Finally, Assumption 2(v) states that the firm

characteristics observed in the pretesting period are correlated with the true betas.

5 As long as the pretesting and testing periods do not overlap and the shocks over the two periods are cross-sectionally
uncorrelated when N — oo, the IV approach would provide valid inference. In our analysis, we consider the two periods
to be consecutive so as to mitigate the effect of potential serial correlation in the real data.



Under the aforementioned assumptions, and in particular Assumptions (1] (ii) and [2] (ii), the past
beta estimates ]§1 and the characteristics Cy can be used as instruments in the estimation of ex-post
risk premia, giving rise to the following overidentified IV-GMM estimator:

~ A, A~ -1 ~ o~

M= |[(XZ)W(ZiX)| - (X521 W(ZiT), (20)
where the N x (K + L + 1) instrument matrix Z; is defined by
Z,=[1y B, C;], (21)

and W is a (K+L+1)x (K + L+ 1) symmetric weighting matrix of full rank which can be computed
using the available data. The weighting matrix W is assumed to converge to a symmetric and positive
definite matrix W, as N — oo. Note that, if we only use the past beta estimates as instruments,
ie., if 21 = )Ail =] 1y ]§1 ], then the weighting matrix is irrelevant and the estimator assumes the
usual exactly identified TV form: Ay = ()/i’l)/ig)_l(/\’lfg). We will establish the N-consistency and
asymptotic normality of the estimator Xg’;“ for a generic weighting matrix and then show how to obtain
the efficient IV-GMM estimator by suitably selecting W and W. Note that equation implies

X =2+ (AWQ) T W (Ziws/N). (22)
where

o 1 A~
Q= ZX, 2,0, (23)

and Q is a full-rank (K + L + 1) x (K + 1) matrix (see equation in the Appendix). Moreover,

GMM

fwa/N converges to a vector of zeros, and hence N-consistency of A%

is shown. The proof of the
following theorem contains the details.
Theorem 1 Under Assumptions and@ the IV-GMM ex-post risk premia estimator 3\%”, defined in

(@), is an N -consistent estimator of .

Having established the N-consistency of the proposed IV-GMM estimator o

" we proceed to define

a measure of aggregate mispricing, that takes into account the time-series alphas of all individual

stocks, and describe its limit as the number of stocks increases to infinity.

2.3 Two metrics of ex-post mispricing

It is common practice to evaluate asset pricing models by examining the corresponding pricing errors.

Given the ex-post risk premia estimator X%P‘}M, obtained in the previous subsection, we define the vector



of ex-post pricing error estimates, traditionally referred to as alphas, as follows
A =Ty — Xo A8 (24)

Invoking equation @), we obtain a = Uy +X)\—)223\§5M =uy— (XQ —X)X%M —X(X%M —A). Moreover,
combining and yields XQ — X =[ 0y UG, |, and so, using equation , we obtain that

& = Usgy — X (X%M - >\> , (25)
where

~ 1 ENCL

g2 = ;217'2 -Gy 1w, f <26)

!/
~ ~ o~ ~ /
and the K x 1 vector A®™. is determined by A%™ = { s ( o ) ] .

w,f iy 1,0 w,f
In what follows, we focus on two aspects of ex-post mispricing based on which we develop associated
tests. First, in the spirit of Brennan, Chordia, and Subrahmanyam| (1998)), we examine whether
characteristics can explain any potential ex-post mispricing by estimating the so-called characteristics
rewards. Second, in the spirit of Gibbons, Ross, and Shanken (1989), we investigate the magnitude of

the ex-post alpha vector & by considering the average squared pricing error.

2.3.1 A characteristics-based mispricing metric

The first mispricing metric is obtained by considering whether the ex-post alpha estimates are re-
lated to firm characteristics. Specifically, following the approach advanced by |[Brennan, Chordia,
and Subrahmanyam, (1998), we estimate the characteristics rewards by regressing & on the matrix of
characteristics C = [ C; C, ]. The resulting estimator isﬁ

é=(C'Cc)' (Ca). (27)
Under the null hypothesis of correct model specification, characteristics should not be able to explain

any patterns of mispricing reflected in the ex-post alphas. Namely, as we illustrate next, the vector of

estimated characteristics rewards gg should converge to a vector of zeros, when N — oo.
Using the definition of $ in and equation , we obtain

¢ = (C'C/N) ™' [(C'U/N) g — (C'X/N) (A% = A)]. (28)

5Note that we do not include an intercept in this regression. This choice does not pose any problem given our
assumption that the characteristics have zero cross-sectional means and given that we do not use the residuals of this
regression in the subsequent analysis.
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It follows from definitions and and Theorem (1| that, as N — oo,

g = go. (29)

According to Assumption as N — 00, we have CITC — V,, C;\I,JQ SN 07xr, and C/TX =105 Vg |
Hence, invoking Theorem

again, we obtain from equation that, as N — oo, qg — 0y. The

following proposition formally states the result.

Proposition 2 Let Assumptions[1] and[3 be in effect. Then, as N — oo, the characteristics rewards
estimator ¢ = (C'C)™' (C'&), where the vector of estimated ex-post alphas & is defined in ,

converges to ¢ = 0.

In what follows, we obtain the asymptotic distribution of qg based on which we then build statistics

that can be used to test the null hypothesis of correct model specification.

2.3.2 Average squared pricing error

To gauge the magnitude of the ex-post alpha vector & given by , we use as a metric the following

average squared pricing error

Q= %a’a. (30)

Note that O is the analogue to the well-known and widely used GRS statistic of (Gibbons, Ross, and
Shanken| (1989) in the small T-large N context. When the asset pricing model is correctly specified,
the number of test assets N is small and fixed and T tends to infinity, then all individual alphas, as
well as @, vanish in the limit. In contrast, in our context @ converges to a positive quantity that
we denote by Q. To study the sampling properties of @, we make the following mild assumption on
the limiting behavior of the second moment of the disturbances u;s, i =1,...,N and s = 1,..., 79,

allowing for time-series heteroscedasticity.

Assumption 3 As N — oo, %UQUQ SN Vo, where Vo is a diagonal matriz with (s,s) element

equal to a positive constant vy s, s =1,..., 7.

Next, we describe the probability limit of Q. Tt follows from definition and equation that
Q =g (UhU2/N) & + (A" = N (X'X/N) AF - A) - 28) (ULX/N) A = 0. (31)

Note that Assumptions (iii) and iv) together imply that the matrix XITX converges to a finite

(K 4+ 1) x (K + 1) matrix and Assumption (1) implies that U]%,X L 0, x(k+1)- Hence, using the

probability limit in , Theorem (1| and Assumption {3, we obtain from equation that @ SN

11



g5 Vags. Using fact (F2), we obtain the following proposition which characterizes the probability limit

~

Q of the aggregate mispricing metric Q.

Proposition 3 Under Assumptions @ (md@ 05 Q, as N — oo, where

Q= (g2 ®82) va, (32)
the vector go is defined in (@), and the vector vo is given by

vy = vec(Va). (33)

To further study the sampling distribution of the aggregate mispricing metric @, we need an estimator

of Q@ = (g2 ® g2)' vo. Such an estimator can be obtained by employing estimators of g and vs.

First, note that go can be consistently estimated by go as it follows from . Next, we propose
an estimator of the vector vo. To do so, we introduce the time-series regression residuals over the
testing period, us = (rs — T2) — ﬁ(fs —f3),s=71+1,...,71 + 7, gathered in the N x 75 matrix

U, = RyJ,, — BoFoJ,,. (34)

Noting that Ry = B (dy — puy) 17, + BF2 + Uy and using equation along with the property of

~

J;, 1., =0, we can express Uy as

U, = UyHsy, (35)
where the matrix Hy is defined byﬂ

Hy = J,, — J,,F (FoJ,Fy)  Fad,,. (36)

We assume throughout that the 7 x 79 Hadamard product matrix Ho ® Hy is of full rank, and hence

invertibleﬁ The following proposition provides an N-consistent estimator of vs.

"Standard matrix algebra shows that Hs is symmetric and idempotent. Moreover, it follows from the properties of
the trace operator that tr (Hz) =7 — K — 1.

8 It is straightforward to establish that the matrix Hy is equal to the projection matrix My = I, — F (ﬁ;E)ﬁ;,
where Fy = [ 1, 5 ]. The Hadamard product Ma ® Ma, and its invertibility, has come up in early studies of linear
models with heteroscedasticity. [Hartley, Rao, and Kiefer| (1969) and |[Rao| (1970) provide sufficient conditions for the
invertibility of My ® M2, while Mallela) (1972) provides a necessary and sufficient condition. It follows from the results in
Mallelal (1972)) that a necessary condition for the invertibility of Ho ® Hs is 72 > 2K + 3. When this condition is satisfied
and the factors are normally distributed, extensive simulation evidence suggests that Ho ® Hs is indeed invertible. In
fact, Hy ® Hy is always invertible in our empirical applications, where 72 = 60 and K takes values up to 5.

12



Proposition 4 Under Assumption[3, the vector
i/'\g = |8 (Hg ® Hg)_l Sl} vec <6/262/N) (37)

1s an N-consistent estimator of va, where IAJQ is defined in , H, is defined in (@/, and 8 is the
73 X 19 selection matriz such that the (1o (s — 1) + s,s) element of S is 1, for s = 1,..., 72, and all

other elements are zero.
The following theorem follows from Theorem [I] and Propositions [3] and [4]

Theorem 5 Let Assumptions (1] and[3 be in effect. Then, as N — oo,

Q —(82® §2),92 L50. (38)

GMM

In the previous two subsections, we describe the limits of the ex-post risk premia estimator er ,

the characteristics rewards estimator qg, and the aggregate mispricing metric 0. In the following
subsection, we obtain their asymptotic distributions based on which we will devise empirical test

statistics.

2.4 Asymptotic distributions

The objective in this subsection is to obtain the asymptotic distributions of the following three statis-
tics: (i) VN <:\‘I’{§M - /\>, (ii) VN <$ — ¢) and (iii) vV N <@ —(82® §2)’62>. To state the results, we

need to introduce the following 7-dimensional random vector

/
ei=| e, e ey ey e e | (39)
where
€1 =Uy[j], €2;=Ug[;)®@Uy[), e€3;=Uy[] R LG, (40)
€4, = Uy [j] [ Cri, €55 = Ug[j & Caji, €6, = VEC (uzmué’[ﬂ — VQ) , (41)

and 7 = m(m1+m+K+J+1). Assumptions i), (ii), (ii), andtogether imply that - Zz]\il e; —
07, as N — oco. In order to obtain the asymptotic distributions of interest, we make the following
mild assumption, where 9, denotes convergence in distribution, postulating that e; satisfies a cross-

sectional central limit theorem.

Assumption 4 As N — oo, ﬁzlil e; 4, N(07,V.), where V¢ is a symmetric and positive

definite T X T matrix.

13



2.4.1 Asymptotic distribution of the ex-post risk premia estimator

Note that equation yields

~ oL~ 1 A

VN (A‘;ﬁ“ - A) - <Q’WQ> VA <\/Nz'1w2> : (42)
where © = %2’15&2 It is shown in the proof of Theorem [1| that Q-2 2, where Q is the full-rank
(K 4+ L+1)x (K + 1) matrix defined in equation (95]) in the Appendix. Letting

¥, = (Wa) oW, (43)
we have

v, 2w, (44)
where

v, = (QWQ)IQW. (45)

Hence, to determine the asymptotic distribution of P

g it suffices to determine the asymp-

totic distribution of ﬁA’lwg. It turns out that 2’1w2 = II, Zf\;l e;, where II, is a suitable ma-
trix (see equations (L0I)) and (102) in the Appendix) and e; is defined in (39). It follows that
VN (X?&M — )\) = \IIAHA\/—IN Ef\il €; + op(1). The proof of the following theorem, which provides

the asymptotic distribution of the estimator X?ﬂ”, contains the details.

Theorem 6 Under Assumptions@, and as N — 0o, VN (X?’;”— A) 4N (Ox+1, V), where
Vi = ULILV IL P, (46)

W, is defined in equation , II) is defined in equation in the Appendiz, and V. is defined in
Assumption [4)

It follows from a standard argument, typically employed in a GMM context, that the optimal (most
efficient) IV-GMM estimator is obtained when the weighting matrix is W* = (II AVeH’/\)_l, in which

~1
case we obtain V) = <Q’ (I1 >\V6H’)\)_1 Q> H In the following subsection, we obtain an N-consistent

estimator of ITyV IT}, based on which an N-consistent estimator of V) is readily constructed using

9Note that 1/,g2 = 1 which implies that go # 0,. Hence, it follows from equation || in the Appendix that Iy
has full rank equal to K + L +1 and so IT\V.IT} is invertible, given that V. is positive definite according to Assumption

&
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equation . As expected, the optimal IV-GMM estimator A% s at least as efficient as the IV

v
estimator Xw. We formally establish this property in the Online Appendix.
2.4.2 Asymptotic distribution of the characteristics rewards estimator

We next turn to the asymptotic distribution of the characteristics rewards estimator (Z defined in
equation . Under the correct model specification, $ LN ¢ = 0;, as stated in Proposition

Combining equations , , and yields

(C'X/N) @y (2/1w2> - (C,U2> @2] : (47)

\/N(a_(ﬁ):_(C/C/N)il VN VN

It follows from Assumption 4| and equations and that (?}%2) g = ?}%2 + 0p(1). Hence,

recalling that Z, = [ 1y B C;]and C=[ C; C, |, we obtain that

VN (-0)=w, (i;) +op(1), (48)

where

Z,=[2 C,]=[1y By C], (49)
and ¥, is a suitable matrix (see equation (109)) in the Appendix). Moreover, it turns out that
2’14.;2 =1II, Zf\i 1 €i, where II; is given in (112)) in the Appendix. It follows that VN ((;AS — (;S) =
‘I’¢>H¢>ﬁ Zl]\i 1 €+ 0p(1). The proof of the following theorem, which provides the asymptotic distri-

bution of the characteristics rewards estimator $, contains the details.

Theorem 7 Under Assumptions[1],[3, and[f], as N — oo, we have

VN (6-9) <5 N (04, Vs), (50)
where

V, = W, I,V IT, ¥, (51)

W, and I1y are defined by (109) and (112)) in the Appendix, respectively, and V. is defined in As-

sumption [{.
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2.4.3 Asymptotic distribution of the average squared pricing error

Next we provide the asymptotic distribution of the centered version of the aggregate mispricing metric
Q. Recall equation which states that

Q =g (UU2/N) 8 — 285 (URX/N) (A = A) + (A = M) (X'X/N)AF - N).

Assumption [1| implies that U,X/N - 0., (k+1) and X’X/N converges to a finite matrix while,

according to Theorem VN (X‘%M — )\) converges to a normal distribution, as N — oo. Hence,
using fact (F2) and the probability limit in (29), we obtain

VN (Q- (@ © &) %2) = (2@ 82) VN (vec (UyU2/N) = ¥2) + 0,(1), (52)

Then, it can be shown that v N (@ — (82 ® @2)/92) = ﬂ'(llﬁ Zfil e; + 0p(1), where 7, is a suitable
vector (see equation ([117) in the Appendix). The proof of the following theorem, which provides the

asymptotic distribution of the centered version of Q, contains the details.

Theorem 8 Let Assumptions [1], [3, [3, and [{] be in effect. Then, the asymptotic distribution of the

centered version of 0= %a’a, as N — oo, is given by

VN (9~ (82982) %2) < N (0,va). (53)
where Vo is defined in (37),

Vo = Tr(’lVeﬂ'a, (54)

o 1S defined in in the Appendix, and V. is defined in Assumption .

According to Theorem VN ( 0 - (g2 ® @2)'?2) converges to a zero-mean normal distribution

with variance v,. Hence, one could use v N (@ — (g2 ® @2)'92) /o as a statistic for testing for the
magnitude of aggregate mispricing, where v, is a suitable estimator of v,. Building on the results of

the next subsection, we construct such a statistic in subsection

2.4.4 Joint asymptotic distribution of the ex-post risk premia estimator, the character-

istics rewards estimator, and the average squared pricing error

According to Theorems @ and the three test statistics v N (X%M — A), VN <$ - ¢>, and
VN (@ —(82®82) 92) asymptotically follow normal distributions. The first statistic can be used to

test ex-post risk premia implications while the last two can be used to test mispricing captured by the
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ex-post alpha estimates. We next combine the three statistics to obtain a comprehensive statistic that
can be used to test all model implications simultaneously. To this end, we define the (K + J +2) x 1

vector

g
5= b— o . (55)
Q— (B2®82) Vo

It follows from the proofs of Theorems|§|, ﬁ and [8| that v N (X%M - )\) = \Il,\H,\ﬁ Ef\il e; + op(1),
VN (8- 6) = I XN e + 0(1), and VN (O - (g2 @ 82)/ ¥2) = mhhe S e+ 0,(1),
where the matrices Wy, II, W4, and II; are defined in equations (45, , , and ,
respectively, while the vector 7, is defined in equation . Note that the J x (K + J + 1) matrix
W, can be partitioned as Wy = [ ¥,; W45 |, where Wy and Wy o are matrices of dimensions
Jx (K+L+1)and J x (J— L). Moreover, note that equation implies the relationship

IT\ =I14 ;. Then, combining the above expressions, we obtain that
1N
VNG = WsI—— > e + 0,(1), (56)
VN i=1

where the (K + J + 2) x (K + J + 2) matrix ¥s and the (K + J + 2) x 7 matrix IIs are given by

¥y Oxinyx(-r) Okx+1

W, = LS Wy o 0, ; (57)

0% ir41 0)_p 1
and
II

H¢ ¢,1

II; = , = | 2 |- (58)
! s

0

a

The following theorem summarizes the above results and provides the asymptotic distribution of the

joint statistic 5.

Theorem 9 Let Assumptions @ @ and|Z| be in effect. Then, the asymptotic distribution of 5=

/

[ (X%M o }‘>/ ($ - ¢)/ @ —(82® gz)/Gg ] is given by

VNS -5 N0k 440, Vs), (59)
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where
Vs = \panéveng\pg, (60)

W and Ils are defined in equations and @, respectively, and V. is defined in Assumption .

To make operational the asymptotic distribution obtained in Theorem [0 and obtain feasible test

statistics, we need to obtain a consistent estimator of V. This is the subject of the next subsection.

2.5 Estimation of the asymptotic variance-covariance matrix Vj

According to equation , the variance-covariance matrix Vy involves the matrix V. which, according
to Assumption is limiting variance-covariance matrix of ﬁ Zi\;1 e;. Hence, the structure of Vj
depends on the structure of V. which, in turn, depends on potential cross-sectional correlations of the
shocks e;. Note that in the return generating process described by , the disturbance vector u; could
potentially exhibit cross-sectional correlation due to economic links such as industry effects. In that
case, the vectors e; would be correlated across firms as it follows from definition . To incorporate
such correlations, we use a clustering approach that we describe nextm

We assume that there are My clusters and that the m-th cluster consists of IV, stocks, for m =
1,...,Mp, so that 2%21 N, = N. For all N, we assume that the cluster sizes N,,,, m =1,..., My
are bounded. As N — oo, the number of clusters, M, is assumed to increase so that MLN — G, where
G is to be interpreted as the limiting average cluster size. For m = 1,..., My, let I, be the set of all

indices ¢ for which the i-th stock belongs to the m-th cluster, and define the aggregate cluster shocks

NMm = Zielm €;. (61)

In the next assumption, we postulate that the central limit theorem applies to the random sequence

M, Mm=1,2,...

Assumption 5 The aggregate cluster shocks n, are independent across clusters and, as N — oo,

L %21 Mm 4N (07,Vy,), where

vVMpn
1 My
V, = p-lim —— - 62
n=0D lmMNn;"m”m (62)

0ur empirical applications, following standard economic intuition, we use an industry classification to determine
the clusters. In addition, for robustness purposes, we consider clusters based on firm characteristics such as size and
book-to-market ratio.
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Utilizing Assumption [}, we obtain

1 My 1 X
Y==Y. -L N (07, V,/C
\/N v ez N \/m — nm ( T> 7’]/ ) )

and so it follows that V., = éVn. Equation then yields V5 = é\Il(; (I15V, IT5) ¥ In light of ,
to estimate Wy, we need to estimate Wy and Wy, defined in and , respectively. According
to , \TJA is a consistent estimator of Wy. Moreover, as suggested by , W, is consistently
estimated by

T, = (C'c/N)™" ((C/}ACQ/N)\TIAZ] - 12) : (63)
where Z7 and Zs are defined in (107). The matrix \il¢ can be partitioned as \i&;s = {I\l¢71 \TI@Q ],
where \/I\l(b’l and \/I\l¢,2 are matrices of dimensions J x (K + L+ 1) and J x (J — L). Hence, it follows
from that ¥, is consistently estimated by

o, Ok+1)x(s-1) Ok+1

Us=| W, T, o 0, |- (64)

/ /
Ok ir1 0, 1 1

Therefore, to estimate the asymptotic variance-covariance matrix Vy, it suffices to obtain an estimator
of the (K + J +2) x (K + J + 2) matrix © defined by

O =TIV, IT;. (65)

To construct such an estimator, we need to introduce some additional notation. Define the cluster

selection My x N matrix C with (m, i) element given by

C(m,i) = 1yer,), m=1,...,My, i=1,...,N, (66)
the N x T matrix of E, stacking the firm shocks e; in , by

E=[e - en], (67)
and the My x T matrix of H, stacking the cluster aggregate shocks n,, in , by

H=[m - nuy | (68)
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so that
‘H = CE. (69)

For any N x 1 vector x = (21,...,2y)’, let diag(x) be the N x N diagonal matrix with (4,4) element
equal to z;, for i = 1,..., N. Furthermore, let 2372- denote the i-th row of Z; defined in and wy ;
denote the i-th element of wy defined in . It follows from the proof of Theorem [7| (see equation
in the Appendix) that, for ¢ = 1,..., N, 2j w2, equals ITye;, which implies that

diag(wa)Z1 = | Zigwa o Zinwan | = EITj. (70)
Moreover, note that equation yields wo ; = u’27[i] g and so, using fact (F2) stated in the Appendix,

we obtain w%’i = (g2 ® g2)' vec (ugy[i] ulz,[i])' In addition, equation implies Uy ;; = Hauy |; and so,

using fact (F2) again, we obtain

vec (ﬁQ,[Z]GIZ,[z]> = (Hy ® Hy) vec (ugymu’zm) . (71)
Therefore,
WBi— (g2 @ g2) [ S (H2 0 Hy) ™ 8| vee (i ity ) = mhes, (72)

where e; is defined in and 7, is defined in ([117)) in the Appendix. It follows that

wy O wy — Uy [8 (H, ®H2)‘1Sﬂ (82 ® g2) = Ema, (73)
where 5[2 is N x 7'22 matrix given by
Z//\IIQ = [ vec <ﬁ27[1]ﬁ’2’[1]) <e.vec (GQ’[NP/_\I,Z[N]) } . (74)
Aggregating and , in light of , we obtain

E= [ diag (w2) Z wOwy—Usy [8 (Hy ® Hy) ! 8'} (g2 ® g2) } = EITj. (75)

Let é; denote the i-th row of the matrix & so that

E=la - & (76)
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For each cluster m = 1,..., My, we define

On =) &, (77)

1€l
~ ~ ~ /
so that CE€ = [ 0, --- 0Oy, |. Note that, since H = CE, we have
6,, = TL51,,. (78)

It follows that one could consistently estimate & by

6 — A;N (E'ccz). (79)

Indeed, as N — oo,

_ 1 My 1 My
©=—> 6,6, =1, (MN > nmn:n> 5 = TV, I = ©,

m=1
where, in the last step, we make use of definition in Assumption |5} Note, however, that the matrix
E , and hence @, depends on wy which can be thought of as the vector of residuals in the second-pass
cross-sectional regression obtained after imposing the null hypothesis. Instead of using ws, we proceed

in the traditional fashion and define residuals without imposing the null hypothesis as follows
Wy =Ty — XQX%M (80)
Replacing we by @y in and incorporating the standard degrees-of-freedom adjustmentE-] we

propose estimating © by

_ 1 PPN
= MN_K_lf:CCg, (81)

@

where € is the N x (K + J + 2) matrix defined by
E=| diag (@) 21 ®20@—Us |S(H, 0Hy) ™! Sl} (82 ®82) } : (82)

Next, we provide a mild regularity condition under which © is indeed an N-consistent estimator of

®. The following theorem provides the desired consistent estimator of Vs based on which we can

"The degrees-of-freedom adjustment does not affect the asymptotic properties of e) but, following standard econo-
metric practice, we use it to improve the finite sample behavior of the estimator.
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construct feasible test statistics. To this end, for each ¢ = 1,..., N, we define the vector ; by
/
Q':[e% hé} ; (83)

where e; is defined by and

/

h; = [1 uiy Bioc (Bi®B) Bivc:) (Bi® ul,[i])/ (Bi® u2,[i])l (a2, ® u2,[i])l] . (84)

Then, for each cluster m = 1,..., My, we define

$Pm = Zielm Cia (85)

and make the following assumption which amounts to the existence of cross-sectional second moments

of pp,.

Assumption 6 As N — oo, ﬁ 2%21 PmPl, converges in probability to a finite matriz.
The following theorem summarizes the preceding discussion and provides an N-consistent estimator

of the asymptotic variance-covariance matrix V.

Theorem 10 Under Assumptions [, as N — oo,

~ My ~ ~ ~
Vs = TN\I’(;@% vy,

where the matrices \il(; and © are defined in and , respectively.

In the next subsection, we put together the results obtained in the last two subsections and
derive novel test statistics that can be used to test the ex-post risk premia and aggregate mispricing

implications of the asset pricing model under consideration.

2.6 Test statistics

Combining Theorems [9] and we can readily obtain statistics for testing the various implications
of the asset pricing model. Formally, the null hypothesis we test is that the asset pricing model is
correctly specified.

First, to examine the ex-post risk premia implications of the model, we propose using the quadratic
form J(A) = N(AZ — AV (A% — X), where V), is the (K + 1) x (K + 1) upper-left block of the
matrix \A/'g. The statistic J(X) asymptotically follows a x? distribution with K + 1 degrees of freedom

under the null hypothesis. Focusing on the cross-sectional intercept, which should be equal to zero
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under the null hypothesis, we can use the ¢ statistic
t(\o) = —m—— (86)

where /)\\0 denotes the first element of X%M and vy o denotes the (1,1) element of the matrix \A/',\. The
t statistic t(\g) asymptotically follows a standard normal distribution. Focusing on the k-th factor
ex-post risk premium, for £k = 1,..., K, which should be equal to the k-th factor’s average realization,

we can use the t statistic
t() = —(———=, (87)

where \j, denotes the (k + 1)-th element of X‘I’ﬁ” and vy j denotes the (k + 1,k + 1) element of the
matrix V. The asymptotic distribution of ¢ statistic ¢(\x) is also standard normal.

Second, to gauge the importance of characteristics in explaining mispricing at the individual stock
level as captured by the characteristics rewards estimator $, we propose using the quadratic form
J(p) = N&’V;la, where {/'d, is the J x J matrix with (j1, j2) element equal to the (K +1+j1, K+1+j2)
element of the matrix Vg, with j; and jo ranging from 1 to J. The statistic J(¢) asymptotically follows
a x? distribution with J degrees of freedom under the null hypothesis. To examine the importance of

a particular characteristic, we can use the t statistic

~

?;

t(¢;) = \/ﬁ’
J

(83)

where $j denotes the j-th element of qg and vy ; denotes the (j,j) element of the matrix {7(]5, for
j=1,...,J. The t statistic ¢(¢;) asymptotically follows a standard normal distribution.
Third, focusing on the aggregate mispricing implications of the model, we propose using the t

statistic

~

Q — (82 ®g2)'Va

2N )
Vs k+J+2/N

ta) = (89)

where Vs gy742 is the (K + J + 2, K 4+ J + 2) element of the matrix V5. It follows from Theorems
and (10 that the test statistic t(a) asymptotically follows a standard normal distribution under the
null hypothesis.

Both ex-post risk premia and individual stock alpha implications can be tested jointly using the
quadratic form J(d) = N (’5\/{,—6—13\ which asymptotically follows a x? distribution with K + J + 2
degrees of freedom under the null hypothesis of correct model specification. However, simulation
evidence suggests that the joint test statistics J(d) typically overreject the null hypothesis exhibiting

poor performance for empirically relevant finite sample sizes. It appears that the reason is that the
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variance-covariance matrix estimator {\75 can be ill-conditioned in small samples. Motivated by this

observation, we propose using the following quadratic form

PN

Ja(6) = N (3— 5) D;! (3— a) , (90)

where Dy is the (K 4+ J + 2) x (K 4 J + 2) diagonal matrix consisting of the diagonal elements of
\75. While the test statistic J;(d) does not asymptotically follow a standard distribution, such as x?2,
under the null hypothesis, one can easily compute p-values associated with J;(d) using simulation.
Let Qs be the Cholesky factor of V5 so that Vs = QsQj. Then, the asymptotic distribution of
J4(8) is the same as the distribution of the quadratic form ¢ = ¢’ [QnglQ(g} ¢, where Dg is the
(K +J+2) x (K + J + 2) diagonal matrix with (j,j) element equal to the (j,;j) element of V,
for j =1,...,K +J+ 2, and ¢ follows a (K + J + 2)-dimensional standard normal distribution.
The matrix Ps = QSD(S_lQ(; can be N-consistently estimated by Ps = ng)(s_lég, where Q; is the
Cholesky factor of \75 so that {/'5 = Q(;Qg. Let {¢i:i=1,...,I} be alarge sample of simulated draws
from N(Ox+ji2, Ikt s42) and define ¢; = C{f’gci, i=1,...,1. It follows by the Monte Carlo principle
that the distribution function of ¢, F¢(a) = P[¢ < a], can be approximated by % Zle li¢,<a)> With the
approximation becoming better as N and I increase. In our simulation exercises and empirical tests,
we use I = 100, 000.

In the same spirit, we can modify J(A) and J(¢) by using diagonal weighting matrices. Specifically,

we propose the quadratic forms

JiN) = N (3= ) Dyt (g - a), (91)

Ji(®) =N (3-9) D, ($-9), 92)

where D), and ]3¢ are the (K +1) x (K +1) and J x J diagonal matrices consisting of the diagonal
elements of V and \A/'¢, respectively. We compute p-values for the Jy(X) and J;(¢) test statistics by
simulation, as described above.

When we use both past betas and characteristics as instruments, ex-post risk premia are estimated
by the IV-GMM estimator (with L > 1). In this case, the test statistics described above could be used
for inference for any generic weighting matrix W. However, as discussed in Subsection [2.4.1] selecting
W* = (II )\Vel'I'A)_1 yields the efficient IV-GMM estimator. We follow standard GMM practice and
obtain the two-step estimator as follows. First, we set W=1 K+L+1 to obtain an initial N-consistent
estimator of A, say X%v Then, using X%V, we obtain an N-consistent estimator of ® from 1' which
then provides an N-consistent estimator of W*, say W Using W* as a weighting matrix in the
second step, we obtain the two-step IV-GMM estimator of A which is efficient. In addition, we obtain
the iterated IV-GMM estimator by repeating the above process of successively obtaining estimators
of the risk premia and the asymptotic variance-covariance matrix, in an alternate fashion, till the
sequence of risk premia estimators converges. In practice, we stop the iteration when the Li-norm of

the difference between two successive risk premia estimates becomes less than 107%. We denote the
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two-step and iterated IV-GMM estimators by 3\'{\5, and Xﬁ, respectively, and use both of them in our

simulations and empirical applications.

3 Monte Carlo Simulation Evidence

In this section, we investigate the properties of the IV-GMM ex-post risk premia estimator X%M and
the various tests on ex-post implications of asset pricing models for empirically relevant finite sample
sizes through a number of Monte Carlo simulation experiments. We illustrate the importance of the
EIV correction offered by our IV approach in terms of bias reduction and efficiency enhancement by
comparing two versions of the IV-GMM ex-post risk premia estimator with two alternative estimators
that do not use an EIV correction. We report the bias as well as the root mean squared error
of all estimators under consideration. Furthermore, we investigate the finite sample performance
of the various test statistics in terms of size and power properties. Finally, we illustrate that the
traditional Fama and MacBeth| (1973)) approach for computing standard errors is not suitable in our
small-T" context as it leads to severe underrejection. As we explain below, we use three popular asset

pricing models in our calibration.

Next, we provide the details of our simulation design. We consider all individual stocks in the
CRSP universe, trading between 2005 and 2014, i.e., the last ten years of the sample in our empirical
exercise presented in the next section, with price above one dollar and, among those, we select the
1,000 stocks with longest time series histories. We jointly calibrate the betas and the idiosyncratic
shock variances of those 1,000 stocks in order to simulate excess return data according to the data
generating process . Our simulation is based on the following three linear asset pricing models:
the single-factor CAPM, the three-factor model of Fama and French| (1993)) and the four-factor model
of Hou, Xue, and Zhang| (2015). The factors in the second model, which we refer to as the FF3
model, are the market excess return (MKT), the small size minus big size spread portfolio return
(SMB), and the high book-to-market minus low book-to-market spread portfolio return (HML)F—_ZI
The factors in the third model, which we refer to as the HXZ4 model, are the market excess return
(MKT), the difference between the return on a portfolio of small size stocks and the return on a
portfolio of big size stocks (ME), the difference between the return on a portfolio of low investment
stocks and the return on a portfolio of high investment stocks (I/A), and the difference between the
return on a portfolio of high profitability (return on equity) stocks and the return on a portfolio
of low profitability stocks (ROE)F_EI In the case of the CAPM, we do not use any characteristics as
instruments, i.e., the matrix C; is empty, and therefore the IV-GMM estimator becomes the standard
exactly identified IV estimator, which we denote by XIV. We use the size and book-to-market ratio
characteristics averaged over the 2005-2014 period as C,. For the FF3 and HXZ4 models, we use the
firm characteristics associated with the factors of each model as instrumental variables. Specifically,

for the FF3 model, the instrumental variables are the size and book-to-market ratio averaged over

12The data on the three factors of the[Fama and French| (1993) model are obtained from Kenneth French’s data library.
13We thank the authors for providing the data on the four factors of the Hou, Xue, and Zhang| (2015 model.
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the 20052014 period. For the HXZ4 model, the instrumental variables are the size, investment
over asset, and return on equity averaged over the 2005-2014 periodfz] To mitigate the effect of
pronounced skewness and extreme outliers, we apply the rank-based inverse normal transformation
to the cross-sectional distribution of each characteristic at each time period. Specifically, using the
raw characteristics data 71,...,vn, we (i) compute the corresponding ranks &1, ...,&y, (ii) convert
them into quantiles ¢1,..., ¢y, where ¢; = %&7 for i = 1,..., N, and (iii) obtain the transformed
values cy,...,cn, given by ¢; = ® !(g), for i = 1,..., N, where ®(-) is the CDF of the standard
normal distribution. Finally, for each characteristic, we demean the transformed values to ensure the
cross-sectional zero-mean condition. For both the FF3 and HXZ4 models, we consider two efficient

versions of the IV-GMM estimator, namely the two-step estimator X;S, and the iterated estimator Xg

We pay particular attention to the following two aspects of the simulation design: (i) the number
of clusters in the stock universe and (ii) the correlation structure among stock returns within clusters.
Due to space limitations, we only consider clusters of equal size and assume that correlations within
clusters are constant. In the first part of the simulation exercise, that focuses on the bias and the mean
squared error of the IV-GMM estimators, we set the number of clusters, My, equal to 50 and the
pairwise correlation p, within each cluster, equal to 0.10. In the second part of the simulation exercise,
that focuses on the finite sample behavior of the various asset pricing test statistics, we let the number
of clusters My take the values 50 and 100 and the within-cluster correlation take the values 0, 0.10,
and 0.20. Note that in the empirical investigation of Section [4, we consider clustering based on the
49-industry classification of Kenneth FrenchE] Following this classification, we estimate an average
correlation within industries around 0.10 based on an industry residual model for the shocks, in the
spirit of |Ang, Liu, and Schwarz| (2010)) (see their Appendix F.2). Hence, the range of correlation values
that we employ in our simulation is empirically relevant.

First, we illustrate the importance of the IV-GMM approach in dealing with the EIV problem
by comparing the two IV-GMM estimators, 3@3 and X;T,, with two alternative estimators, A1 and
/)\\2, in terms of finite sample bias. The first alternative estimator, denoted by 3\1, ignores the EIV
problem and regresses average excess returns over the testing period on a constant and beta estimates
obtained by standard time series regression over the pretesting period, that is 3\\1 = (Xgil)*lﬁ’@,
where )Ail =] 1y ]§1 |. Similarly, the second alternative estimator, denoted by 3\\2, also ignores
the EIV problem but uses beta estimates from the testing period, that is Xg = ()A('Q)A(Q)*lﬁéfg. We
compute the bias of all four estimators as the average of estimation errors over 10,000 Monte Carlo
repetitions. We consider pretesting and testing periods that consist of 60 months and, to provide a
comprehensive picture, we repeat the exercise over eight testing periods from 1975-1979 to 2010-2014.
In the baseline scenario, the idiosyncratic shocks are assumed to follow a normal distribution. The
results, reported in Table [l in annualized basis points (bps), clearly illustrate the bias reduction gains

provided by the IV estimators for all three models. For brevity, we only comment on the results for the

4 1/A is defined as change in inventory, property, plant and equipment (PP&E) over the previous year’s total asset.
ROE is defined as (IB - DVP + TXDI) over book value of equity where IB is the total earnings before extraordinary
items, DVP is the preferred dividends (if available), and TXDI is the deferred taxes (if available).

5The classification is available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data-Library/
det-49-ind-port.html.
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HXZ4 model. The average absolute biases of A; (3\2) are 757.9 (728.4), 477.8 (471.8), 434.6 (348.4),
366.6 (305.6), and 484.8 (474.0) annualized bps for Ao, Mgr, A, A, and Agge, respectively. When
3\'{‘5, (3\\%5) is used, the corresponding values are 45.8 (46.3), 22.8 (21.3), 30.9 (33.0), 20.3 (23.8),
and 42.1 (46.4) annualized bps. While this evidence is based on normally distributed disturbances,

additional simulation experiments show that these results are robust to the assumption of normalitym

Next, we compare the IV-GMM estimators to the alternative estimators in terms of mean squared
error. The purpose of this exercise is to examine whether the gain in bias reduction comes at the cost of
a higher variance and perhaps efficiency loss. We compute the root mean squared error (RMSE) of each
estimator as the square root of the sample mean of squared estimation errors over 10,000 Monte Carlo
simulations. The simulation setup is identical to the one used above to examine the finite sample bias.
In Table[2], we report, in units of annualized bps, the RMSE of the IV-GMM estimators along with those
of the alternative estimators :\1 and /):2. The results clearly illustrate that the IV-GMM estimators
achieve much lower mean squared errors in comparison with the alternative estimators for all three
models. Again, for brevity, we only comment on the results for the HZX4 model. The average RMSEs
of Ay (3\2) are 785.4 (756.4), 523.9 (515.8), 463.0 (384.6), 381.6 (321.3), and 499.4 (489.2) annualized
bps for Ao, Awr, Ave, Ar/s, and Aggs, respectively. When X%S, (XH) is used, the corresponding values are
465.5 (466.6), 367.2 (367.9), 338.1 (339.4), 283.2 (285.4), and 448.3 (450.9) annualized bps. As in the
case of bias, while this evidence is based on normally distributed disturbances, additional simulation
experiments show that the results on mean squared error are robust to the assumption of normalitym
Collectively, the simulation evidence, which is robust across different factor model specifications and
distributional assumptions, illustrates that the IV-GMM estimators exhibit superior performance in

terms of bias reduction without sacrificing efficiency.

In our next simulation exercise, we investigate the behavior of various tests on the ex-post asset
pricing implications. Specifically, we focus on empirical rejection frequencies of (i) the ¢ statistic ¢(Ao),
that focuses on the cross-sectional intercept, given in ; (ii) the t statistic t(A\g), k =1,..., K, that
focuses on the k-th factor ex-post risk premium, given in ; (iii) the statistic J4(A), that jointly
tests the ex-post risk premia model implications, given in ; (iv) the t statistic t(¢;), 7 =1,...,J,
that examines the ability of the j-th characteristic to explain mispricing at the individual stock level,
respectively, given in ; (v) the statistic Jy(¢), that examines the ability of characteristics to jointly
explain mispricing at the individual stock level, given in (92)); (vi) the ¢ statistic ¢(c), that focuses on
aggregate mispricing, given in ; and (vii) the statistic J4(8), that jointly tests all ex-post risk premia
and individual stock alpha model implications, given in . We fix the factors for the pretesting and
testing periods, consisting of 7 = 60 and 7 = 60 observations, as the historical factors over 2005 to

2009 and 2010 to 2014, respectively. Using the factor realizations and the calibrated pairs of betas and

16 We repeat the same exercise under the assumption that the idiosyncratic disturbances follow a Student-¢ distribution
with 6 degrees of freedom. The results, reported in Table [AT]in the Online Appendix, are almost identical. Hence, our
conclusions regarding the superior performance of the IV-GMM estimators in terms of bias reduction is robust to the
assumption of normally distributed disturbances.

1"We repeat the same exercise under the assumption that the idiosyncratic shocks follow a Student-t distribution with
6 degrees of freedom. Table in the Online Appendix reports the results that are almost identical to the ones obtained
under the assumption of normally distributed shocks.
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idiosyncratic shock variances, we simulate individual stock returns using the data generating process
for t =1,...,120. Since the asymptotic variance of the IV-GMM estimators crucially depends on
the cluster structure, we consider a number of difference scenarios. Specifically, we let the number of
clusters My take the values 50 and 100 and assume that, within each cluster, pairwise correlations
are equal to p which takes the following three values: 0, 0.10, and 0.20. We consider three nominal
levels of significance, 1%, 5%, and 10%, and compute the corresponding empirical rejection frequencies
from 10,000 Monte Carlo repetitions. The simulation exercise is first performed for idiosyncratic shocks
following a normal distribution and the results are reported in Table[3] We observe that the ¢ statistics
t(Ao), t(Ak), k=1,...,K,t(¢;),j=1,...,J, and t(cx) as well as the joint test statistics Jq(\), Ja(¢),
and Jy(d) all yield empirical rejection frequencies that are reasonably close to the corresponding
nominal levels of significance. The simulation is repeated for shocks following a Student-¢ distribution
with 6 degrees of freedom and the results are almost identical[™| The conclusions hold for all three

asset pricing factor models considered and under both distributional assumptions.

Next, we illustrate the importance of using the variance-covariance estimator \A/')\ for obtaining
ex-post risk premia tests with good size properties@ We do so by examining the empirical rejection
frequencies of the various tests when the variance-covariance matrix of the IV ex-post risk premia
estimator is estimated using the Fama and MacBeth| (1973) (FMB) procedure as suggested by \Je-
gadeesh, Noh, Pukthuanthong, Roll, and Wang (2015)), for the CAPM, the FF3 model, and the HXZ4
model. It is important to emphasize the difference between our setting and the setting in |Jegadeesh,
Noh, Pukthuanthong, Roll, and Wang| (2015). We perform our simulations and empirical tests over
short time intervals, covering 120 months, while they use much longer horizons, ranging from 480 to
720 months. The point of our simulation is to illustrate that using the FMB procedure results in
misleading inference about ex-post risk premia in a small T context like ours. Table 4] presents the
empirical rejection frequency results for the case of idiosyncratic shocks following a normal distribu-
tion under two scenarios. In the first scenario, the pretesting and testing periods are 2000-2004 and
2005-2009, respectively, while in the second scenario, the pretesting and testing periods are 2005-2009
and 2010-2014, respectively. The factor betas and the characteristics are calibrated as before and
the factor realizations are kept fixed over simulation repetitions during both pretesting and testing
periods. For the majority of the tests, we consistently find that the FMB variance-covariance matrix
leads to severe underrejection under both scenarios. The simulation is repeated for shocks following a
Student-t distribution with 6 degrees of freedom and the results are almost identical@ The conclusion
that the FMB procedure leads to severe underrejection holds for all three asset pricing factor models

and under both distributional assumptions considered.

18The results are reported in Table in the Online Appendix.
Recall that Vy is the (K + 1) x (K + 1) upper-left block of the estimator Vs provided in Theorem
20The results are reported in Table in the Online Appendix.
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4 Empirical Evidence

In this section, we use the IV-GMM approach developed in Section [2| to empirically evaluate a number
of popular factor models that have been proposed in the asset pricing literature. Specifically, we
focus on four models: (i) the standard single-factor CAPM, (ii) the three-factor Fama and French
(1993)) model (FF3), (iii) the four-factor Hou, Xue, and Zhang (2015) model (HXZ4), and (iv) the
five-factor Fama and French| (2015) model (FF5). The factors involved in the CAPM, FF3, and FF5
models are obtained from Kenneth French’s website. In particular, the market excess return (MKT) is
used by all three aforementioned models; the small size minus big size spread portfolio return (SMB)
and the high book-to-market minus low book-to-market spread portfolio return (HML) are used by
both the FF3 and FF5 modelsﬂ and, finally, the robust minus weak spread portfolio return (RMW)
and conservative minus aggressive spread portfolio return (CMA) are used by FF5. The four factors
involved in the HXZ4 g-factor model are the market excess return (MKT), the difference between the
return on a portfolio of small size stocks and the return on a portfolio of big size stocks (ME), the
difference between the return on a portfolio of low investment stocks and the return on a portfolio of
high investment stocks (I/A), and the difference between the return on a portfolio of high profitability
(return on equity) stocks and the return on a portfolio of low profitability stocks (ROE)@ We use
individual stock data at the monthly frequency covering the time period between 1970 and 2014 from
the CRSP universe and apply the following filters: (i) we require that the share code (SHRCD) is equal
to 10 or 11 to keep only ordinary common shares, (ii) we require that the exchange code (EXCHCD) is
equal to 1, 2, or 3 to keep only stocks traded at NYSE, AMEX, or NASDAQ), and (iii) we keep a stock
in the sample only for the months in which its price (PRC) is at least 1 dollar. When we use clustering
based on the 49-industry classification of Kenneth French for estimating the variance-covariance matrix
of the IV-GMM estimators, we further we require that stocks have a Standard Industry Classification
(SIC) code[|

Our pretesting and testing periods consist of five years (71 = 72 = 60 months) resulting in 8 non-
overlapping testing periods from 1975 to 2014. The cross section of our test assets consists of all stocks
with full histories over both the pretesting and testing periods. Our empirical evidence consists of (i)
estimates of A = [ Ao )\} ]/, where A = [ A1 -+ Mg | is the vector of ex-post factor risk premia
for the CAPM, FF3, HXZ4, and FF5 models, which they employ K =1, K =3, K =4, and K =5
factors, respectively, and (ii) various test statistics for evaluating the implications of each model and
their corresponding p-values.

When estimating ex-post risk premia for the FF3, HXZ4, and FF5 models, in addition to past
beta estimates, we employ as instrumental variables the firm characteristics based on which the various
factors are constructed. Specifically, for the FF3 model, we use market capitalization (SIZE) and book-

to-market ratio (BTM) as firm characteristics. For the HXZ4 model, we use SIZE, investment over

21 The SMB factor used by the FF3 model is slightly different from the SMB factor used by the FF5 model. Details
on how the SMB factor is constructed for each model are provided in Kenneth French’s data library website.

22 We are grateful to the authors for providing the data on the factors of the [Hou, Xue, and Zhang| (2015) model.

2381IC codes are obtained from Compustat. If the SIC code does not exist in Compustat, it is obtained from CRSP.
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asset (I/A), and return on equity (ROE) as firm characteristics. Lastly, for the FF5 model, we use
SIZE, BTM, operating profitability (OP) and asset growth (AG) as firm characteristics. Next, we
describe how the above characteristics are computed. The SIZE characteristic for month m is defined
as the ratio of the market capitalization a given firm at the end of month m —1 to the aggregate market
capitalization at the end of month m — 1. The BTM characteristic from July of year y + 1 till June
of year y + 2 is defined as the ratio of book equity (BE) in the accounting data of fiscal year y to the
market capitalization at the end of year y. BE is computed following the method in Kenneth French’s
database, i.e., BE is defined the book value of stockholders equity (SEQ), plus balance sheet deferred
taxes and investment tax credit (TXDITC, if available), minus the book value of preferred stock@
The I/A characteristic from July of year y + 1 till June of year y + 2 is defined as change in inventory,
property, plant and equipment (PP&E) from year y — 1 to year y over the year y — 1 total assets. The
ROE characteristic from July of year y+ 1 till June of year y + 2 is defined as the ratio of (IB — DVP
+ TXDI) for the year y over BE of year y, where IB is the total earnings before extraordinary items,
DVP is the preferred dividends (if available), and TXDI is the deferred taxes (if available). The OP
characteristic from July of year y + 1 till June of year y + 2 is defined as the ratio of (REV — COGS
— XINT — XSGA) for year y over BE of year y, where REV is revenue, COGS is cost of goods sold,
XINT is interest expense, and XSGA is selling, general and administrative expenses. Finally, the AG
characteristic from July of year y+ 1 till June of year y+ 2 is defined as the ratio of change in the total
assets from year y — 1 to year y over the year y — 1 total assets. The cross-sectional distributions of
the majority of these characteristics are highly skewed and contain extreme outliers. To deal with this
issue, as we did in our simulation exercise, we apply the rank-based inverse normal transformation to

the cross-sectional distribution of each characteristic at each time period. Specifically, using the raw

characteristics data ~1,...,7n, we (i) compute the corresponding ranks &i,...,&y, (ii) convert them
into quantiles q1, ..., qy defined by ¢; = 5i;\,()'5, fori=1,...,N, and (iii) compute the transformed

values ci,...,cn, given by ¢; = ® 1(g;), for i = 1,..., N, where ®(-) is the CDF of the standard
normal distribution. Finally, we demean the transformed values of each characteristic to impose the

cross-sectional zero-mean condition.

The asset pricing models under examination employ factors that are constructed as differences
between returns on top and bottom portfolios, or vice versa, after sorting according to a particular
firm characteristic. As a result, we expect a firm characteristic to be cross-sectionally correlated with
the beta with respect to the corresponding spread factor. This provides a clear rationale for using firm
characteristics as instrumental variables, in addition to past beta estimates. In Table |5, we provide
evidence supporting this rationale. Specifically, for each characteristic, we consider decile portfolios
sorted according to that characteristic and estimate their betas with respect to the related spread
factor within the context of each model that we evaluate. For each asset pricing model, the portfolio
betas are estimated jointly for all factors using data from 07/1970 to 12/2014. As illustrated in Table
there is a clear monotonic pattern in the betas for each spread factor within each model. This

evidence justifies our choice of firm characteristics as instruments in the estimation of ex-post risk

24For a more detailed description, the reader is referred to the definition of BE at Kenneth French’s website http:
//mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/variable_definitions.html|
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premia.

We present our empirical results in Tables [6] through [9] We report results on (i) the ¢ statistic
t(Ao), that focuses on the cross-sectional intercept, given in ; (ii) the ¢ statistic t(A\g), k =1,..., K,
that focuses on the k-th factor ex-post risk premium, given in (87); (iii) the statistic J4(A), that jointly
tests the ex-post risk premia model implications, given in ; (iv) the t statistic t(¢;), 7 =1,...,J,
that examines the ability of the j-th characteristic to explain mispricing at the individual stock level,
respectively, given in ; (v) the statistic Jy(¢), that examines the ability of characteristics to jointly
explain mispricing at the individual stock level, given in (92); (vi) the ¢ statistic ¢(ct), that focuses
on aggregate mispricing, given in ; and (vii) the statistic Jy(d), that jointly tests all ex-post risk
premia and individual stock alpha model implications, given in @ In our discussion of the results,

we consider both of the conventional 5% and 10% level of significance.

The results for the CAPM, based on the IV estimator er and using past beta estimates as instru-
ments, are reported in Table[6] Overall, our evidence points to overwhelming rejection of the CAPM.
The t statistics t(Ag) and t(Agr) and the joint statistic Jg(X) reject the null hypothesis in five (five),
five (seven), and five (six) out of eight periods at the 5% (10%) level of significance, respectively. The
t statistics t(¢siz), t(Psm) and the joint statistic Jy(¢) reject the null hypothesis in seven (seven),
one (one), and seven (eight) out of eight testing periods, respectively at the 5% (10%) level of signifi-
cance. Regarding the aggregate mispricing test, the ¢ (a) statistic rejects the null hypothesis in six and
seven out of eight testing periods at the 5% and 10% levels of significance. Finally, the statistic Jy(d),
which jointly tests ex-post risk premia, characteristics rewards, and aggregate mispricing implications,
rejects the null hypothesis in all of eight testing periods with p-values less than or equal to 0.01. These
findings are not very surprising given that the CAPM has been frequently rejected in the literature

using portfolios of stocks.

The results for the FF3 model, based on the two-step and iterated IV-GMM estimators, i.e., X;S,
and Xﬁ, where we use the SIZE and BTM characteristics as instruments in addition to past beta
estimates, are reported in Table [7] Since the two IV-GMM estimators overall yield similar results,
we only discuss the results based on the Xﬁ estimator. The ¢(Ag) and t(A\y) statistics both reject
the null hypothesis in four out of eight testing periods at the 5% level of significance. The t(Agg)
statistic rejects the null hypothesis in six out of eight testing periods with p-values less than or equal
to 0.03, while the t(\y) statistic rejects the null hypothesis in three out of eight testing periods with
p-values less than or equal to 0.04. The Jy(A) statistic, which jointly tests risk premia implications,
rejects the null hypothesis in six out of eight testing periods with the exception of the 1975-1979 and
2005-2009 periods, at the 5% level of significance. The ¢ statistics ¢(¢siz), t(dsn) and the joint statistic
Ja(¢) reject the null hypothesis only in one (two), two (two), and three (three) out of eight testing
periods, respectively at the 5% (10%) level of significance. Moreover, the aggregate mispricing test
statistic ¢ (o) rejects the null hypothesis in four (five) out of eight testing periods at 5% (10%) level of
significance. Finally, the J;(8) statistic, which jointly tests all model implications under consideration,

rejects the null hypothesis in six out of eight testing periods at the 5% level of significance. Although

25 As mentioned in Section [3] the joint test statistic J(8) tends to overreject the null hypothesis in small samples.
That is why we focus on the Ja(X), Ja(¢), and Jq(d) joint test statistics.
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overall the results for the FF3 model are slightly better than those for the CAPM, the null hypothesis of
correct model specification is rejected by the majority of the tests, with the exception of the 2005-2009
period.

In Table |8 we report the results for the HZX4 model, based on the two-step and iterated IV-
GMM estimators, i.e., X;S, and XE The SIZE, I/A, and ROE characteristics are used as instruments
in addition to past beta estimates. The two IV-GMM estimators again yield similar results, and hence
we only discuss the results based on the Xg estimator. The t(\g) and ¢(Ay;) statistics reject the null
hypothesis only in two and one out of eight testing periods at the 5% level of significance, respectively.
The t(\y) statistic rejects the null hypothesis in three out of eight testing periods with p-values less
than or equal to 0.02, while the t(\;/,) and t(Agge) statistics reject the null hypothesis only in two out
of eight testing periods with p-values less than or equal to 0.03. Accordingly, the J;(\) statistic, which
jointly tests risk premia implications, rejects the null hypothesis in three out of eight testing periods,
at the 5% level of significance. The t statistics t(¢sizz), t(¢rn), t(Pne) and the joint statistic Ji(¢p)
reject the null hypothesis in two, one, two, and one out of eight testing periods, respectively at the 5%
level of significance. Moreover, the aggregate mispricing test statistic ¢ () rejects the null hypothesis
in four out of eight testing periods with p-values less than or equal to 0.03. Finally, the J;(8) statistic,
which jointly tests all model implications under consideration, rejects the null hypothesis in the last
four out of eight testing periods at the 5% level of significance. While we document rejection of the
implications of the HXZ4 model in several testing periods, the model clearly performs better that the
CAPM and the FF3 model.

The results for the FF5 model, based on the two-step and iterated IV-GMM estimators, i.e., X;S,
and Xﬂ, where we use the SIZE, BTM, OP, and AG characteristics as instruments in addition to
past beta estimates, are reported in Table [0} As before, the results are consistent across the two
IV-GMM estimators. Hence, we focus on the results based on S\ﬂ In terms of testing the risk premia
implications, the statistics t(Ao), t(Awr), t(Asis), (M), t(Aaw), and t(Aqy) reject the null hypothesis in
four, four, five, four, three, and three out of testing periods at the 5% level of significance, respectively.
The J4(A) statistic, which jointly tests risk premia implications, rejects the null hypothesis in seven
out of eight testing periods with the exception of the 2005-2009 period, at the 5% level of significance.
As far as characteristics rewards are concerned, the t statistics t(Psize), t(Gem), t(¢o), t(¢ae) and the
joint statistic Jy(¢) reject the null hypothesis in two, one, two, one, and three out of eight testing
periods, respectively at the 5% level of significance. In addition, the aggregate mispricing test statistic
t (a) rejects the null hypothesis in three (four) out of eight testing periods at the 5% (10%) level of
significance. Finally, the J;(6) statistic, which jointly tests all model implications under consideration,
rejects the null hypothesis in seven out of eight testing periods at the 5% level of significance, with the
exception of the 2005-2009 testing period. Overall, the evidence suggests that, based on individual
stock data, the performance of the FF5 model is very similar to that of the FF3 model.

Collectively, our results show that the CAPM is strongly rejected by our IV-GMM tests while
the FF3 and the FF5 models are rejected by our tests in all but one testing period (2005-2009). In
contrast, the HZX4 model appears to perform better, although it is supported over the first half of
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our overall sample period (1975-1994) while it is rejected in the second half (1995-2014). In the Online
Appendix, we report the test statistics and the corresponding p-values for the four models examined
above using alternative clustering schemes and price filters. Tables [A5}- contain the results based
on 49 industry clusters and a $3 price filter. Tables contain the results based on 49 industry
clusters and a $5 price filter. Finally, tables contain the results based on 30 industry clusters

and a $1 price filter. The results of our tests remain very similar under all alternative scenarios.

5 Conclusion

A linear asset pricing factor model characterizes the average return of an asset as a linear function of
its factor betas with the risk premia being the slopes. In theory, such a relationship is supposed to
be valid for all individual assets. However, the majority of empirical tests of asset pricing models are
based on portfolios. One of the main reasons for this practice is that individual stock beta estimates are
plagued by significant sampling error giving rise to the well-known error-in-variables (EIV) problem.
When the size of the cross section IV is large, as is the case when individual stocks are used as test
assets, while the the time series sample size T is small and fixed, the EIV problem is so severe that it
renders the standard two-pass cross-sectional regression (CSR) risk premia estimator inconsistent. To
deal with the EIV problem, we develop a modification of the two-pass CSR approach that employs past
beta estimates and firm characteristics as instrumental variables and yields an IV-GMM ex-post risk
premia estimator, which is shown to be consistent and asymptotically normal. We further contribute
to the literature by developing an estimator of the asymptotic variance-covariance matrix of the risk
premia estimator, based on a cluster structure for idiosyncratic shock correlations, which is used to
build tests of important asset pricing implications. These include implications about (i) ex-post risk
premia (ii) the ability of characteristics to explain potential mispricing at the individual stock level,
and (iii) aggregate mispiricing as captured by the average squared pricing error.

The good performance of the IV-GMM estimator and the associated tests of various asset pricing
implications for empirically relevant finite sample sizes is illustrated through a number of Monte Carlo
simulations. Using three different asset pricing models for calibration, we show that (i) the IV-GMM
approach leads to significant bias reduction in the cross-sectional regression intercept and ex-post
risk premia estimates without sacrificing efficiency, and (ii) the associated asset pricing test statistics
yield empirical rejection frequencies very close to the desired levels of significance. In our empirical
investigation, we estimate and evaluate four popular linear asset pricing factor models: the CAPM,
the three-factor of model of Fama and Frenchl (1993), the g-factor model of Hou, Xue, and Zhang
(2015)), and the five-factor model of |[Fama and French (2015). We find that the CAPM is strongly
rejected in all testing periods, while the FF3 and FF5 models perform similarly and are rejected in
seven out of eight testing periods, with the exception of the 2005-2009 period. Finally, according to
our evidence, the HZX4 model is supported in the first half of the overall sample period, covering the
years 1975-1994, while it is rejected in the second half, covering the years 1995-2004.
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A  Proofs

A few facts from matrix algebra are used in the main text and/or in the subsequent proofs. We collect them
here for the convenience of the reader. In terms of notation, vec denotes the column-stacking operator and ®

denotes the Kronecker product.

(F1) For column vectors x and y, we have vec (xy’) =y ® x.
(F2) For conformable matrices A, B and C, we have vec (ABC) = (C' ® A) vec (B).
(F3) For conformable matrices A, B, C, and D, we have (AC) ® (BD) = (A ® B) (C ® D).

(F4) Let S be the 73 x 7 selection matrix such that the (72 (s — 1) + s, s) element of Sis 1, for s = 1,..., 7o,
and all other elements are zero. Then, A ® B = §'(A ® B)S, for any 75 x 72 matrices A and B.

The facts (F1), (F2), (F3), and (F4) follow from Theorem 8.9, Theorem 8.11, Theorem 8.2, and Section 8.5 in
Schott| (2017)), respectively.

Proof of Theorem [I} Recall from equation that

o= A+ (W0) “aw (Ziws/N) 93)

where € = %2’1)22 In light of , it follows from Assumption [1| that, as N — oo, Bj1y/N = B'1y/N +
G| (Uj1x/N) = pg, Byly/N = B'1y/N +G4H(Uhln /N) 25 pg, and B, By /N = B'B/N + G} (U,B/N) +
(B'Uy/N)Gy + G/ (U, Uy/N)Gy 2+ Mg, where Mg = Vi + Hpps. Moreover, using again, it follows
from Assumption iii) that C’1y/N = 0, and from Assumption i) and Assumption iv) that le]/_)\)Q/N =
CB/N +(B'Uy/N)G: RLAN Vr{ﬁ' It then follows from definitions and and the above probability limits

that
Q=7X,/N 2 Q, (94)
where
1 u%
Q= | py My |- (95)
0, V/,

According to Assumption (1} Vg is positive definite. Since Mg = Vg + pgpuj, it follows that the (K + L+ 1) x
(K + 1) matrix € has full rank. Thus, to prove the theorem, it suffices to show that, as N — oo, 2’1(412/]\[
converges to a vector of zeros. Using equations , and , and invoking Assumption i)7 Assumption ii),
and Assumption (ii)7 we obtain that, as N — oo, 1ywy/N = (15, Us/N)gz - 0, Blwy/N = (B'Uy/N)gs +
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G/ (U} Uy/N)gs L5 0k, and C}wg/N = (CIJ‘-UQ/N)gQ 5 0.. Then, using equation , we obtain
Z/wy /N 25 0y pin. (96)

Combining with the probability limits in and yields the N-consistency of X%M |

Proof of Proposition [4 Using equation , we obtain vec (ﬁéﬁg/N) = vec (Hy (U4Uy/N)Hs) = (Hy ® Hy) vec (UL U,/
where the last equality follows from fact (F2). It then follows from that

V2= |S(Hy © Hp) ™' S| (Ha @ Hy) vee (U U /N) (97)

Invoking Assumption we obtain Vo — [8 (Hy ® H2)—1 S’} (Hs ® Hs) vo. Let da be the 75 X 1 vector with
s-th element equal to vg 5, s =1,..., 72, so that vy = Sda.

It follows that [s (Hy & Hy) ™! s’} (Hy ® Ho)vo = S (Ho © Hy) ' [S' (Hy ® Hy) S]ds. Finally, fact (F4)
yields 8’ (Hy ® Hy) S = Hy ® Hy and so

[5 (Hy @ Hy) ' Sl} (Hy ® Hy) v = 8dy = vy, (98)

implying that Vo — vo, as N — cc. W

Proof of Theorem [6l Equations and yield

VN (ng” - )\) =¥, (\;NZM) . (99)

Let 7 ; denote the i-th row of Z, defined in , ,@iz denote the i-th row of ]?)17 and wy; denote the i-

PN
th element of wsy defined in . Hence, we have z;; = { 1 ﬁll,i C/f,i } , 2y = | Zi1 - 7N ]’ and
wy=[wyy -+ wany |- It follows that
N
N Dim1 W2
lewQ = Zizl/z\l*iwli = Zi\il al,iWZi : (100)

N
> im1 CFiW2,i

It follows from equation that ws,; = uj ;8 = ghuly ;). Hence, using equations and , we obtain
Briwa: = Biuy ;82 + Gruy u; 182 = (85 © Ix)(ug) ® Bi) + (82 ® Gh)(ug) ® uy ), and cpiws; =
Cf,iuIQ,mg2 = (g5 ®1IL)(ug,; ®cy,), where we use facts (F1), (F2), and (F3). Combining the last two equations,

we obtain that
71w, = Il\e;, (101)
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where e; is defined by and ITy is the (K 4+ L+ 1) x T matrix, with 7 = 7o(7 + 72 + K + J + 1), defined by

’ ’ ’ / ’ ’
g2 0T1T2 OKTz OLTz O(J*L)TQ 07—22

I\ = | Okxxr, 8,®G] g,®0Ik Ogyiir) Oxrx(J—L)m O xrz |- (102)

Orxry OLx(rim) OLx(Km) gy ®I 0Lx(1-Lym 0L><7'22

It follows from (101]) that
R N
Ziw, =TI,) e;. (103)
i=1
Combining , (103)), and , we obtain that
1 X
\/N(X%”—A) =TI = > e + 0,(1). (104)
VNS
Finally, invoking Assumption [4] yields the desired result. B

Proof of Theorem According to Assumption [2| as N — oo, we have C'C/N — V., and C'X/N — V,,

where

Vee=[0; Vg | (105)

Moreover, it follows from Assumption 4| and equations and that (C\//%Z) g = (3}1\)/2 + op(1). Hence,
in light of , equation implies

VN ($-0) = -V [V\If (%) - (Cj]%)] T o(1). (106)

It follows from that 21 = 211'/1 and C = 211'/2 where

Ty =[Ikso41 Okyrsyx—r) b Ze=[0,k41y Iy ] (107)
Hence,
2/
~ w
VN (¢ - ¢) -, < j{) +o0,(1). (108)

where the J x (K + J + 1) matrix ¥, is defined by

Wy =-V_ 1 (V,U\Z, - TI,). (109)
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Let 7 ; and 27 ; denote the i-th row of Z, and Z,, defined in and (49)), respectively, and wo; denote the
~/
i-th element of w; defined in . Tt follows that 2wy = S | 21w, with 21, = [ 3, ¢ . |/ and

1,2 a,i

~ El,iw2,i
21w = . (110)
Cq,iW2,;

According to equation (101), we have Zj ;ws; = Il e;. Also, definition yields cq w2, = ca,iu’Q’mgg =
(g5 ® Iy_)(ugj) @ cq4,5), where we use facts (F1) and (F2). Combining the last two equations with the
definition of e; given by , we obtain that

21,1'602,1' = Ilge;, (111)

where e; is defined by and I1y is the (K +J +1) x T matrix, with 7 = 7 (11 + 72 + K + J + 1), defined by

I I
H¢ = A = @,1 . (112)
O(-L)yxm(+n+K+L) 8 @Lj_p 0(s—Lyxr2 I,
It follows from (111)) that
, N
Zl(-UQ :H,z)Zez (113)
i=1

Combining ((108]) and (113)), we obtain that
1
\/N(A— ):foH— e; + 0, (1). 114
¢—¢ oMo 7% ; p(1) (114)
Finally, invoking Assumption [4] yields the desired result.

Proof of Theorem [8 It follows from equation that

VN (9- @08 %)

~ (g2 @ g2)' (VNvec (UyUs/N = V3) = VN (%2 = v2) ) + 0,(1). (115)
In addition, from (37), (35), fact (F2), and the symmetry of Hy, it follows that

Gy = [s (Hy ® Hy) " s'} vec (ﬁgﬁz/zv) - [s (Hy & Hy) ™! s’} (H, ® Hy) vec (U, U, /N) .
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Hence, upon using equation , we obtain
VN (%2 — v3) = [s (H, & Hy) ™" s'} (H, ® Hy) VNvec (UyUs /N — V). (116)

Therefore, by substituting (116 into (115) and using the definition of e; in and the symmetry of Hy, we
obtain that v N (@ — (82 ® @g)’?z) = ﬁg\/% Zf\; e; + 0,(1), where

Ta = [ 0r2ry(1+K+L4m) L2 ]/ (ITS — (Hz ® Hy) [5 (Hy ©Hy) ™' S/D (82 ®82). (117)

Finally, invoking Assumption [f] completes the proof of the theorem. W

Proof of Theorem [10} Let &, denote the i-th row of the matrix :‘:’, defined by , so that

~ !
g:[gl By | (118)
Y ~ Y /\ I
For each cluster m = 1,..., My, we define 8,, = ZieIm €, so that CE = [ 6, - O, } . Definition 1}

then yields

-~ 1 '

Moreover, it follows from definitions and that

E=E+[D, D, (120)
where

D, = diag (& — w2) 21, (121)

Dy =Wy O Wy —wy Ows —az [5 (H; ® H2)71 5/} (82 ®82 — 82 ®82). (122)

It follows from definition and fact (F1) that the i-th column of the matrix ﬁ;, fori=1,...,N,is
~ -~/ /
vec (u2,[i]u2,[z']> = (Hs ® Hy) vec <u27[i]u2,[i]> = (H; ® Hy) (u2,[i] ® ug,[i]).

Therefore, in light of equations and (118), it follows from equations (120), (121)), and (122) that, for
i=1,...,N,

2 i (:.\I i — W
g =8+ 1 (B2 = w2) , (123)

@3, —wi; — (B2 @82 — 82 ®82) (i

38



where (; is defined in and @, is a suitable matrix that depends on Hs.
Equations (IEI), 7 and imply Wy = wy — X, (X?\ﬁ” — )\) and so
Do = wa i — R (AW — N), (124)
which then yields 21 ; (Wi — w2) = —21,iX5; <3\§3M - A). Using fact (F2) and then fact (F1), we obtain

~ —~ li
21X (’\%M - )\) = (()‘?\;M - )\) ® IK+L+1) (Xo,i ® Z14) - (125)

It follows from 1} that Xo =[ 1y B+UyG, Jand 2, =] 15, B+U,;G, C ]andso

1
~ 1 ,
X2, = y L= | B+ Glul,[z’]
Bi + Gayuy [
c;

Hence,

1
Bi + Gluy
>A<2,i & 21,2’ =Ky - ’
Bi + Ghuy
(Bi + Ghuy ;) ® (Bi + Gluy [)
(Bi + Ghuy ) @ ¢

where IC,, is a suitable (K + 1)(K + J + 1) x (K + 1)(K + J + 1) matrix with elements equal to 0 or 1 (see
Theorem 8.26(e) in |Schott| (2017)). Fact (F3) implies

(Bi + Ghug i) ® (Bi + Ghuy ) =i @ Bi + (Gy @ Ix)(ug 1 ® By)

+ (I ® GY)(Bi @ uy ) + (G5 ® G (ug, ) ® uy )
and
(Bi + Ghuy ) @ ¢c; = B @ ¢i + (GH @I ) (ug ) @ ¢;).
It follows from the last three equations that
552,1‘ ® 21, = 2., (126)
where (; is defined in and ¥, is a suitable matrix that depends on G; and G,. Combining equations
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(125)) and (126)) then yields
-~ ~ o> o 3 GMM 3 GMM !
21, (w2,i - w27i) = TZ1,iXg (’\Iv - )‘) = ((’\Iv - )‘) ® IK+J+1> .. (127)
Next, we investigate the term @g)i - w%)i — (82 ® 82 — 82 ® 82)' ®,4¢;. Note that equation (124) implies
~ ~ / ~
B8, - = 2w, (A0 = A) + (R - A) Reuh; (A0 - A) (128)

The first term in the right hand side of equation ((128) depends on

- , 1 85Uz [i
W2,i X2 = (gzuz,[i]) , = , , ,
/Gi + G2u2,[i] ﬂiugy[i]gQ + G2u2,[i]u2’[i]g2

Note that B;u; ;82 = (85 ® Ix) (uz, ® B;) and Ghuy jju; (182 = (85 ® GY) (uz,y ®uy ), as it follows from
facts (F1) and (F2). Hence,

wa,iX2; = Puwzlis (129)

where (; is defined in and ®,,, is a suitable matrix that depends on go and Go. Using fact (F2) and then
fact (F1), we can express the second term in the right hand side of equation (128) as

~ / —~ ~ —~ /

(Rer=2) %omh, (35— A) = (A= 2) @ (R = A)) (Rai @ %2,). (130)
Since

N 1

XQ’Z‘ = 5 (131)

Bi + Ghuy ;)
we obtain
1
Bi + Ghuy pj)

X2, @Ko = Kan )
Bi + Ghug [y

(Bi + Ghus ;) @ (B; + Ghuy ;)

where IC,, is a suitable (K +1)2 x (K +1)? matrix with elements equal to 0 or 1 (see Theorem 8.26(e) in Schott
(2017)). Moreover, using fact (F3), we obtain

(Bi + Gouy ;) ® (Bs + Ghuy ) =6 @ Bi + (G @ Ik)(ug, ) ® Bi)

+ (Ix ® G3)(Bi @ ug ) + (G5 @ GH)(ug ;) @ ug ).
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It follows that
X2, ® Xo; = ®uuCi, (132)

where (; is defined in and ®,, is a suitable matrix that depends on Gs. In light of equations (129)), ,
and (132)), it follows from equation (128]) that

2, — k= -2 (N - A) ut+ (- 2) @ (3 - 2)) @ (133)

Hence, combining equations (123)), (127)), and (133) yields

2 (Do — wo s
i P =&~ ¢, (134)
W3, —ws,; — (82 @82 — 82 ®82) B¢

)

where
y_| T , (135)
Ty
with
= ((A‘fﬁ” - ) ®IK+J+1)/ Pz, (136)
T, ()\G”” )\) b, — ((X‘fﬂ“ - A) ® (X%M - A))/ Py + (B2 @82 — 82 ® 82)' Py (137)

In light of equations 7 and , equation 1) yields that ,, = >icr,, € = snym — Ly, It then

follows from equation (119)) that

My —K -1~ 1 My 1 My
— 0O =II; | — m S+Y ([ — m Y’
M 6<MNZ nnm) st (MNZmlcp 90m>
1 My / / 1 My / / /
-7 (A/IN Zm:l somnm> ITs — II; (1\41\7 Zm:1 somnm) . (138)

Inspection of definitions , 7 7 , and reveals that 7, is a subvector of ,,, and so Assumption
|§|implies that, as N — oo, both ﬁ Zﬁfﬁ 1 Pmer, and ﬁ Zﬁfﬁ 1 PmM,, converge in probability to some finite
matrices. Moreover, in light of Theorem (1| and the probability limit in , it follows from definitions ,
, and , that Y converges in probability to a matrix of zeros. Hence, in light of equation , it follows
from equation that © -2 IT;V,II§ = © and thus the proof of the theorem is complete.
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Table 1: Bias in the estimation of A with normally distributed shocks: the role of the EIV correction
through the IV-GMM approach. This table presents simulation results on the absolute bias, in annualized basis
points, in the estimation of A =[ Xo A} ], where Ay =[ A1 .-+ Ak |"is the vector of ex-post risk premia and K is the
number of factors. The shocks u;; are assumed to follow a normal distribution and the factor realizations are kept fixed
throughout. The number of individual stocks, N, is equal to 1,000 and the number of clusters, Mn, is set equal to 50.
The pairwise correlation of shocks, assumed to be constant within each cluster, is set equal to 0.10. The simulation is
calibrated to the following three linear asset pricing models: the single-factor CAPM, the three-factor
model (FF3), and the four-factor Hou, Xue, and Zhang| (2015) model (HXZ4). For the CAPM, K =1 and Aur is
the ex-post risk premia of MKT. For FF3, K = 3 and Awr, Asws, and Ama. are the ex-post risk premia of MKT, SMB, and
HML, respectively. For HXZ4, K = 4 and Axr, A, Ar/a, and Apge are the ex-post risk premia of MKT, ME, I/A, and
ROE, respectively. For the CAPM, we consider the IV es/,\timator/\xlv, while for the FF3 and HXZ4 models, we consider
both the two-step and iterated IV-GMM estimators, i.e., AL and ALy, In addition, we consider two alternative estimators
A = (XiX;) 7' X T2 and A2 = (X4X2) ' X4 that ignore the EIV problem. The results are based on 10,000 Monte
Carlo repetitions.

CAPM
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Average Factor Realizations
?MKT 1118.2 453.0 1248.8 483.0 2069.4  -310.0 -43.4 15524
Arv
Ao 6.0 3.2 1.5 2.6 0.9 1.1 0.8 4.0
AukT 6.0 3.6 2.6 1.5 2.0 1.3 0.2 5.1
A1
Ao 356.2 180.9 467.1 159.1  1001.9 131.6 14.2 571.0
AMKT 361.2 183.8 472.0 162.3 1013.8 133.2 15.2 578.1
Xo
Ao 441.6 170.3 415.4 233.7 882.0 109.0 15.0 711.8
AMKT 447.7 172.9 419.8 237.9 892.7 110.3 15.9 720.6

Continued on next page
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Table 1 — continued from previous page

FF3 Model
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04  05-09 10-14
Average Factor Realizations
Fruxr 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 15524
Foum 1576.0 470.2  -451.6 158.0 -369.4 1002.4 1314 149.2
i 651.0 931.4 251.8 269.4 -549.4 1510.8 210.8 -88.0
A
Ao 4.6 6.4 14.0 3.6 16.3 14.7 6.3 2.0
AukT 3.4 4.6 10.7 4.0 14.5 11.6 5.7 6.1
AsMB 3.4 0.4 0.3 0.5 0.6 0.4 2.5 4.0
AmL 2.4 1.1 7.2 1.3 4.5 7.4 0.0 6.1
N
Ao 4.5 3.2 12.2 2.7 13.0 14.4 6.3 0.4
AukT 3.2 1.8 9.0 2.9 11.7 11.1 5.7 4.1
Asmp 3.8 0.5 0.1 0.6 0.6 1.0 2.6 4.3
AHML 2.7 0.7 74 1.6 3.7 7.9 0.1 6.7
A1
Ao 779.9 389.9 633.3 368.3 834.8 756.2 77.3 573.6
Akt 301.4 122.0 741.5 230.2 1140.7 78.1 3.7 683.9
Aswp 595.3 147.1 339.5 106.9 374.3 657.0 76.7 50.9
AHML 498.5 508.9 208.4 238.8 227.9 912.9 97.5 170.4
Xo
Ao 601.4 684.8 555.2 382.6 788.7 596.3 6.8 695.0
Aukt 158.2 332.8 623.7 278.4 1013.8 37.0 77.8 798.7
AsyB 684.7 305.5 291.8 7T 308.4 567.5 82.6 73.7
AHML 282.4 538.6 240.7 192.4 111.8 7176 112.1 115.9

Continued on next page
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Table 1 — continued from previous page

HXZ4 Model
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04  05-09 10-14
Average Factor Realizations
Fruxr 1115.2 404.8 1212.8 455.0 2014.4  -244.8 37.6 1420.2
Fue 1726.6 420.2  -3914 225.4  -436.2 1435.6  258.2 188.4
?I/A 302.8 875.4 657.4 364.4 75.4 11134  -56.6 362.6
Frox 359.8 1022.8 921.0 1116.4 731.8 593.2  348.0 186.4
g
Ao 34.5 37.3 56.9 60.4 73.6 39.1 21.0 43.7
AMKT 13.3 12.4 26.2 16.4 44.9 24.5 15.6 29.1
AME 39.2 27.1 36.9 60.8 35.3 20.3 9.3 18.0
A1/a 5.4 36.3 38.2 35.4 23.9 8.4 4.9 10.0
ARQE 48.5 30.7 41.9 89.8 52.0 20.5 18.3 35.4
i
Ao 36.9 36.0 57.9 63.2 70.1 40.9 22.2 43.4
AMKT 13.4 8.6 24.5 15.2 40.1 24.7 16.3 27.6
AME 43.0 28.6 38.5 65.2 36.2 22.5 10.4 19.3
A1/a 7.6 424 44.6 41.4 27.4 10.5 4.8 11.8
AROE 54.0 33.5 45.4 98.9 56.4 23.4 19.9 39.4
by
Ao 1067.7 580.1 721.7 514.1 11475 946.5 175.2 910.5
AMKT 465.5 129.8 669.9 232.7  1252.1 175.8 107.1 789.7
AME 946.4 465.5 163.8 3224 276.5 1087.9 139.0 75.0
A1/a 323.3 695.6 487.8 306.8 109.0 674.5 57.3 278.4
AROE 445.8 618.8 480.7 848.8 460.9 476.5 217.5 329.4
Ao
Ao 860.0 667.8 768.7 548.5  1272.5 699.6 169.9 840.2
AMKT 273.6 256.3 659.3 288.2 1271.0 199.0 59.2 768.2
AME 958.7 429.5 86.5 299.1 74.1 709.4  206.6 23.3
A1/ 233.8 618.1 527.6 272.7 90.0 449.5 39.6 213.3
ARoE 440.3 642.3 643.7 852.4 547.5 193.9 2715 200.6
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Table 2: Root mean squared error in the estimation of A with normally distributed shocks: the role of
the EIV correction through the IV-GMM approach. This table presents simulation results on the root mean
squared error (RMSE), in annualized basis points, in the estimation of A = [ Ao A} ], where Ay = [ A1 --- Ax ]
is the vector of ex-post risk premia and K is the number of factors. The shocks u;; are assumed to follow a normal
distribution and the factor realizations are kept fixed throughout. The number of individual stocks, IV, is equal to 1,000
and the number of clusters, My, is set equal to 50. The pairwise correlation of shocks, assumed to be constant within
each cluster, is set equal to 0.10. The simulation is calibrated to the following three linear asset pricing models: the
single-factor CAPM, the three-factor [Fama and French| (1993)) model (FF3), and the four-factor |Hou, Xue, and Zhang|
model (HXZ4). For the CAPM, K = 1 and Ar is the ex-post risk premia of MKT. For FF3, K = 3 and Awr,
Aswg, and Ama. are the ex-post risk premia of MKT, SMB, and HML, respectively. For HXZ4, K = 4 and Awr, A, A1/a,
and Apgr are the ex-post risk premia of MKT, ME, I/A, and ROE, respectively. For the CAPM, we consider the IV
estimator XIV, while for the FF'3 and HXZ4 models, we consider the two-step and iterated IV-GMM estimators, i.e., Xﬁ
and Aly. In addition, we consider two alternative estimators A1 = (X;X1) 'X|T2 and Ay = (X4X2) ' X,F2 that ignore
the EIV problem. The results are based on 10,000 Monte Carlo repetitions.

CAPM
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04 05-09 10-14
Average Factor Realizations
?MKT 1118.2 453.0 1248.8 483.0 2069.4  -310.0 -43.4 15524
Arv
Ao 216.7 231.8 226.6 214.9 272.4 238.0 217.5 234.0
AMKT 225.7 241.2 235.9 224.1 280.5 248.2 2259 242.8
A1
Ao 386.7 233.3 489.7 217.7 1012.5 195.2  148.5 590.4
AMKT 390.7 233.4 493.6 219.3  1022.9 193.6  146.5 596.3
Xo
Ao 464.6 224.7 441.3 272.3 894.5 184.1 145.7 726.2
AMKT 469.1 224.4 444.9 272.3 904.0 184.0 142.6 733.6

Continued on next page
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Table 2 — continued from previous page

FF3 Model
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04  05-09 10-14
Average Factor Realizations
Fruxr 1118.2 453.0 1248.8 483.0 2069.4 -310.0 -43.4 15524
Foum 1576.0 470.2  -451.6 158.0 -369.4 1002.4 1314 149.2
i 651.0 931.4 251.8 269.4 -549.4 1510.8 210.8 -88.0
A
Ao 311.5 285.5 346.4 335.0 364.3 414.9  307.5 270.7
AMKT 278.5 267.3 296.4 274.9 320.1 347.1  269.1 264.9
AsMB 190.2 194.0 197.2 194.3 199.9 202.8 173.7 195.0
AmL 224.7 231.8 227.3 248.5 244.3 256.1  196.1 218.9
A
Ao 312.6 286.1 346.7 335.4 365.1 4154  308.1 271.2
AMKT 279.1 268.0 296.8 275.5 320.7 3476  269.6 265.4
Asmp 190.9 194.7 198.0 195.0 200.8 203.7 174.6 195.6
\HML 225.8 233.1 227.9 249.1 245.1 256.8  196.8 219.7
A1
Ao 798.4 424.9 653.9 402.9 850.3 7727 180.4 600.2
AukT 345.4 195.7 758.3 282.4 1150.7 176.6  160.5 701.5
Aswp 608.6 183.7 355.6 149.2 389.9 668.9 153.5 115.6
AHML 512.5 520.0 240.9 258.2 253.3 920.1  159.9 204.1
Xo
Ao 625.9 704.1 579.1 414.4 804.1 620.2 171.7 714.9
Aukt 225.0 367.7 645.7 315.2  1025.7 171.0 171.7 811.9
AsyB 693.8 323.3 309.9 131.9 332.8 584.0 130.8 121.3
AHML 303.1 551.6 260.7 220.4 159.0 729.6  158.2 148.2
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Table 2 — continued from previous page

HXZ4 Model
Pretesting Period 70-74 75-79 80-84 85-89 90-94 95-99  00-04 05-09
Testing Period 75-79 80-84 85-89 90-94 95-99 00-04  05-09 10-14
Average Factor Realizations
Fruxr 1115.2 404.8 1212.8 455.0 2014.4  -244.8 37.6 1420.2
Fue 1726.6 420.2  -3914 225.4  -436.2 1435.6  258.2 188.4
?I/A 302.8 875.4 657.4 364.4 75.4 11134  -56.6 362.6
Frox 359.8 1022.8 921.0 1116.4 731.8 593.2  348.0 186.4
g
Ao 435.7 406.7 471.7 482.7 522.3 508.4  425.9 470.6
Aukt 337.3 353.8 385.4 357.7 420.5 390.2 344.6 348.2
AME 329.7 345.7 352.0 384.5 359.9 3319 256.9 344.4
A1/a 246.4 372.5 313.8 317.2 309.6 239.5 184.6 281.8
ARQE 418.1 488.0 461.4 493.9 503.1 463.9 317.6 440.7
i
Ao 437.3 406.5 472.8 485.0 523.2 510.0 426.9 471.3
AMKT 338.4 353.7 386.2 358.1 421.2 391.3 3453 348.7
AME 331.8 346.2 353.1 385.7 362.0 333.0 258.3 345.1
A1/a 248.3 375.6 317.1 319.7 312.0 241.0 185.7 283.6
AROE 422.5 488.6 464.1 497.4 506.9 465.7  319.1 443.2
by
Ao 1083.8 612.6 748.2 547.4 1161.3 962.5  240.3 927.0
AMKT 497.2 214.8 693.1 291.6  1262.0 241.1  186.2 805.4
AME 955.6 481.0 200.0 338.7 299.0 1095.7  200.1 134.1
A1/a 334.6 698.4 494.0 314.7 132.1 680.2 1114 287.8
AROE 460.8 628.6 494.3 854.5 471.3 486.5  252.6 346.2
Ao
Ao 881.3 695.4 792.8 576.2  1283.9 720.2  240.9 860.5
Aukt 319.5 310.7 683.7 327.6  1281.1 254.0 166.9 783.2
AME 966.0 444.5 137.9 319.6 148.2 724.3  233.8 102.7
A1/ 241.6 622.9 532.6 282.2 126.2 460.4 80.5 223.9
AROE 453.8 652.8 651.6 857.9 556.0 235.6  290.2 215.4
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Table 5: Betas of decile portfolios sorted by characteristics. In this table, we consider decile portfolios sorted
on a characteristic and present the beta estimates of these portfolios with respect to the corresponding spread factor
within the context of the three asset pricing models we empirically examine: the FF3 model, the HXZ4 model, and the
FF5 model. For each asset pricing model, the decile portfolio betas are estimated jointly for all factors using data from
07/1970 to 12/2014.

Decile Portfolios Sorted by Characteristic

LOW HIGH

Model Factor  Characteristic 1 2 3 4 5 6 7 8 9 10
FF3 SMB SIZE 1.19 1.10 092 081 069 049 038 0.28 0.07 -0.29
HML BTM -0.50 -0.10 0.04 0.28 033 036 052 0.69 0.69 0.96

HXZ4 ME SIZE 1.04 1.00 086 079 066 048 037 026 0.08 -0.27
I/A I/A 0.37 045 029 0.14 0.11 -0.03 -0.12 -0.30 -0.56 -0.42

ROE ROE -0.33  -0.25  0.01 0.01 -0.15 0.06 0.09 0.10 0.23 0.32

FF5 SMB SIZE 1.12 1.06 092 083 069 050 038 025 0.06 -0.28
HML BTM -043 -0.19 -0.06 0.22 024 035 044 070 0.69 0.97

RMW  OP -0.90 -0.41 -0.27 -0.16 0.01 -0.05 0.07 021 0.35 0.43

CMA AG 0.63 0.67 068 027 022 010 0.04 -0.14 -0.62 -0.53
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Table 6: Testing the CAPM: empirical results for 5-year testing periods from 1975 to 2014 using 49
industry clusters. This table presents the point estimates of A = [ Ao Awxr ]' and the various statistics along with the
corresponding p-values for testing the implications of the CAPM. We consider 8 non-overlapping 5-year testing periods
from 1975 to 2014. For each testing period, the pretesting period consists of the preceding five years. We report point
estimates, in annualized percentages, based on the IV estimator Ary. We further report (i) the t statistic ¢(X\o), that
focuses on the cross-sectional intercept, given in ; (ii) the ¢ statistic ¢(Aukr), that focuses on the MKT ex-post risk
premium, given in ; (iii) the statistic Jq(A), that jointly tests the ex-post risk premia model implications, given
in ; (iv) the t statistics ¢ (¢size) and ¢ (¢pm), that examine the ability of the SIZE and BTM characteristics to explain
mispricing at the individual stock level, respectively, given in ; (v) the statistic J4(¢), that examines the ability of the
SIZE and BTM characteristics to jointly explain mispricing at the individual stock level, given in ; (vi) the ¢ statistic
t(a), that focuses on aggregate mispricing, given in ; and (vii) the statistic J4(8), that jointly tests all ex-post risk
premia and individual stock alpha model implications, given in . The corresponding p-values are reported in square
brackets below the test statistics.

Pretesting Period | 70-74  75-79 80-84  85-89 | 90-94 95-99 | 00-04 05-09
Testing Period 75-79  80-84 85-89  90-94 | 95-99 00-04 | 05-09 10-14
Number of Test Assets

N | 1204 1733 | 1704 1041 | 1950 2000 | 1994 1920
Average Factor Realizations
Fcr | 1118 453 | 1249 483 | 2060 310 | 043 1552
Estimates of X: A1y
Ao 322 486 | 25.40 023 | 413 1872 | -8.59 1348
Ak 20.33 470 | -14.90 9.8 | 11.99  0.06 | 11.20  4.05
Test Statistics
t (M) 148 221 | 479 015 | 219  10.85 | -0.97  9.59
pvalue [0.14] [0.03] | [0.00] [0.88] | [0.03] [0.00] | [0.33]  [0.00]
t (Mxr) 485 009 | -534 246 | 377 179 | 187  -859
p-value 0.00] [0.93] | [0.00] [0.01] | [0.00] [0.07] | [0.06]  [0.00]
Ja(\) 25.68  4.88 | 5145  6.08 | 1898 120.94 | 442 165.78
p-value [0.00] [0.11] | [0.00] [0.08] | [0.00]  [0.00] | [0.13]  [0.00]
t (dsrze) 4.60 -294 | 239 -383 | -214  -4.37 | -140  -1.99
pvalue [0.00] [0.00] | [0.02] [0.00] | [0.03] [0.00] | [0.16]  [0.05]
t (épmw) 1.60 224 | -0.32 -041 | -0.48 004 | -0.18  0.02
p-value (0.11] [0.03] | [0.75] [0.68] | [0.63]  [0.97] | [0.86]  [0.98]
Ja(¢) 44.62 863 | 3420 20.71 | 1877 2231 | 544  77.69
p-value (0.00] [0.01] | [0.00] [0.00] | [0.00] [0.00] | [0.07]  [0.00]
t(c) 284 -1.66 | 157 -4.49 | -3.50  -4.10 | -3.99  -2.44
p-value [0.00] [0.10] | [0.12] [0.00] | [0.00]  [0.00] | [0.00]  [0.01]
Ja(8) 57.45 2127 | 59.71 41.07 | 36.06 156.82 | 22.33  175.69
p-value [0.00] [0.01] | [0.00] [0.00] | [0.00] [0.00] | [0.01]  [0.00]
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Table 7: Testing the FF3 model: empirical results for 5-year testing periods from 1975 to 2014 using
49 industry clusters. This table presents the point estimates of A = [ Ao Awkr Asvz Am ]/ and the various statistics
along with the corresponding p-values for testing the implications of the FF3 model. We consider 8 non-overlapping
5-year testing periods from 1975 to 2014. For each testing period, the pretesting period consists of the preceding five
years. We report point estimates, in annualized percentages, based on the two-step and iterated IV-GMM estimators,
i.e., Ay and Afj. We further report (i) the t statistic #(\o), that focuses on the cross-sectional intercept, given in l@l
(ii) the t statistics t(Aukr), t(Asus), and ¢(Amr.), that focus on the MKT, SMB, and HML ex-post risk premia, respectively,
given in ; (iii) the statistic Jq(A), that jointly tests the ex-post risk premia model implications, given in ; (iv)
the ¢ statistics ¢ (¢size) and ¢ (¢emm), that examine the ability of the SIZE and BTM characteristics to explain mispricing
at the individual stock level, respectively, given in ; (v) the statistic J4(¢), that examines the ability of the SIZE
and BTM characteristics to jointly explain mispricing at the individual stock level, given in ; (vi) the ¢ statistic t(ax),
that focuses on aggregate mispricing, given in ; and (vii) the statistic J4(8), that jointly tests all ex-post risk premia
and individual stock alpha model implications, given in . The corresponding p-values are reported in square brackets
below the test statistics.

Pretesting Period | 70-74  75-79 | 80-84 85-89 | 90-94 95-99 00-04 05-09

Testing Period 75-79  80-84 | 85-89 90-94 | 95-99 00-04 05-09 10-14
Number of Test Assets
N 1204 1733 1704 1941 1959 2090 1994 1920

Average Factor Realizations

Fur 11.18 4.53 | 12.49 4.83 | 20.69 -3.10 -0.43 15.52

Faup 15.76 4.70 | -4.52 1.58 | -3.69 10.02 1.31 1.49

Frn 6.51 9.31 2.52 2.69 | -5.49 15.11 2.11 -0.88
Estimates of A: X%S,

Ao 5.86 2.00 | 13.85 3.54 4.70 17.08 | -10.93 11.96
AMKT 6.62 0.79 | -1.15 1.85 9.64 -11.99 5.83 2.08
Asys 15.61 8.46 | -3.78 5.37 4.89 23.34 | 12.11 5.85
AHNL 1.49 11.83 3.06 -2.27 | -5.27 8.70 7.53 2.23

Estimates of A: 3\%3

Ao 5.56 1.10 | 18.49 2.61 4.78 18.94 | -10.93 11.82
AMKT 6.89 2.28 | -2.56 2.43 9.52  -13.53 5.79 2.23
Asws 15.60 8.63 | -3.48 4.98 4.96 24.06 | 12.17 5.81
AHNML 1.56  10.89 -6.81 -1.03 -5.32 8.28 7.46 2.16

Continued on next page
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Table 7 — continued from previous page

Pretesting Period | 70-74  75-79 | 80-84  85-89 | 90-94 95-99 00-04 05-09
Testing Period 75-79  80-84 | 85-89 90-94 | 95-99 00-04 05-09 10-14
Test Statistics: ALS

t(Xo) 2.08 0.46 2.64 2.11 1.16 5.47 -1.62 10.76
p-value (0.04] [0.65] | [0.01] [0.03] | [0.25] [0.00] | [0.11]  [0.00]
t (Aukr) -1.71 -0.96 | -2.94 -1.98 | -3.68 -3.87 0.91 -9.34
p-value (0.09] [0.34] | [0.00] [0.05] | [0.00] [0.00] | [0.36]  [0.00]
t (Asme) -0.12 3.54 0.52 4.55 5.45 5.63 2.11 2.51
p-value (0.90] [0.00] | [0.60] [0.00] | [0.00] [0.00] | [0.03]  [0.01]
t (AmmL) -2.08 0.60 0.14 -2.22 0.09 -2.36 0.99 1.28
p-value (0.04] [0.55] | [0.89] [0.03] | [0.93] [0.02] | [0.32]  [0.20]
Ja(X) 11.57 14.03 | 15.88 34.04 | 44.63 82.12 8.87 211.02
p-value (0.06] [0.03] | [0.02] [0.00] | [0.00] [0.00] | [0.10]  [0.00]
t (¢s1zE) 0.27  -1.30 0.51 -2.77 -0.87 0.44 0.72 0.77
p-value [0.79] [0.20] | [0.61] [0.01] | [0.39]  [0.66] | [0.47]  [0.44]
t (¢BTM) 1.28 -0.97 0.58 1.33 0.20 -1.01 0.41 -0.43
p-value (0.20] [0.33] | [0.56] [0.18] | [0.84] [0.31] | [0.68]  [0.66]
Ja() 4.39 2.04 0.28  12.59 0.76 5.77 1.50 2.24
p-value (0.11] [0.36] | [0.87] [0.00] | [0.68]  [0.06] | [0.47]  [0.33]
t (o) -2.66  -0.90 0.21  -4.28 | -2.08 -4.16 0.84 -1.77
p-value (0.01] [0.37] | [0.84] [0.00] | [0.04] [0.00] | [0.40]  [0.08]
Jq(8) 20.35 17.47 | 16.52 61.78 | 49.74 100.62 10.27  214.94
p-value (0.03] [0.05] | [0.06] [0.00] | [0.00] [0.00] | [0.21]  [0.00]
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Table 7 — continued from previous page

Pretesting Period | 70-74  75-79 | 80-84  85-89 | 90-94 95-99 00-04 05-09
Testing Period 75-79  80-84 | 85-89 90-94 | 95-99 00-04 05-09 10-14
Test Statistics: AT

t(Xo) 1.98 0.24 3.86 1.57 1.18 5.42 -1.62 10.73
p-value [0.05] [0.81] | [0.00] [0.12] | [0.24]  [0.00] | [0.11]  [0.00]
t (Aukr) -1.62 -0.58 | -3.40 -1.64 | -3.71 -3.96 0.91 -9.25
p-value (0.11] [0.56] | [0.00] [0.10] | [0.00] [0.00] | [0.36]  [0.00]
t (Asme) -0.14 3.56 1.07 4.06 5.50 5.63 2.12 2.49
p-value (0.89] [0.00] | [0.28] [0.00] | [0.00]  [0.00] | [0.03]  [0.01]
t (AmmL) -2.04 0.36 -2.20 -1.73 0.07 -2.42 0.97 1.26
p-value 0.04] [0.72] | [0.03] [0.08] | [0.94] [0.02] | [0.33]  [0.21]
Ja(X) 10.73  13.20 | 32.45 24.65 | 45.42 82.61 8.88  208.52
p-value (0.07] [0.04] | [0.00] [0.00] | [0.00] [0.00] | [0.10]  [0.00]
t (¢s1zE) 0.43 -0.40 1.67  -2.66 -0.65 1.34 0.74 0.74
p-value (0.67] [0.69] | [0.09] [0.01] | [0.51] [0.18] | [0.46]  [0.46]
t (¢BTM) 1.28 -0.50 2.51 -2.21 0.26 -0.91 0.43 -0.41
p-value (0.20] [0.62] | [0.01] [0.03] | [0.79]  [0.36] | [0.67]  [0.68]
Ja() 4.36 0.29 7.63  10.05 0.43 7.67 1.49 2.13
p-value [0.11] [0.86] | [0.02] [0.01] | [0.80] [0.02] | [0.47]  [0.35]
t (o) -2.65 -0.94 | -0.57 -4.30 | -2.08 -4.08 0.84 -1.77
p-value (0.01] [0.35] | [0.57] [0.00] | [0.04] [0.00] | [0.40]  [0.08]
Jq(8) 19.59 14.48 | 41.86 55.07 | 50.24 101.85 10.31  212.39
p-value (0.03] [0.09] | [0.00] [0.00] | [0.00] [0.00] | [0.21]  [0.00]
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Table 8: Testing the HXZ4 model: empirical results for 5-year testing periods from 1975 to 2014 using 49
industry clusters. This table presents the point estimates of A =[ Ao Amr Ave Ar/a Aroe ]' and the various statistics
along with the corresponding p-values for testing the implications of the HXZ4 model. We consider 8 non-overlapping 5-
year testing periods from 1975 to 2014. For each testing period, the pretesting period consists of the preceding five years.
We report point estimates, in annualized percentages, based on the two-step and iterated IV-GMM estimators, i.e. >\Iv
and A, We further report (i (i) the ¢ statistic ¢(Xo), that focuses on the cross-sectional intercept, given in , (i) the t
statistics t(Aukr), t(Ame), t(A1/a), and t(Aroe), that focus on the MKT, ME, I/A, and ROE ex-post risk premia, respectively,
given in ; (iii) the statistic J4(X), that jointly tests the ex-post risk premia model implications, given in ; (iv) the
t statistics ¢ (¢size), t (¢1/a), and ¢ (¢ree), that examine the ability of the SIZE, I/A, and ROE characteristics to explain
mispricing at the individual stock level, respectively, given in ; (v) the statistic J4(¢), that examines the ability of
the SIZE, I/A, and ROE characteristics to jointly explain mispricing at the individual stock level, given in ; (vi)
the t statistic t(a), that focuses on aggregate mispricing, given in ; and (vii) the statistic J4(d), that jointly tests
all ex-post risk premia and individual stock alpha model implications, given in . The corresponding p-values are
reported in square brackets below the test statistics.

Pretesting Period | 70-74  75-79 | 80-84  85-89 | 90-94 95-99 | 00-04 05-09
Testing Period 75-79  80-84 | 85-89 90-94 | 95-99 00-04 | 05-09 10-14

Number of Test Assets

N 1059 1597 1526 1709 1627 1737 1609 1559

Average Factor Realizations

?MKT 11.15 4.05 12.13 4.55 | 20.14 -2.45 0.38 14.20
?ME 17.27 4.20 -3.91 2.25 -4.36  14.36 2.58 1.88
?I/A 3.03 8.75 6.57 3.64 0.75 11.13 | -0.57 3.63
?ROE 3.60 10.23 9.21 11.16 7.32 5.93 3.48 1.86
Estimates of A: XIS
Ao 4.52 2.11 8.41 7.18 6.13  21.07 0.58  14.47
AMKT 7.90 2.32 5.47 -4.58 7.51  -7.48 1.43 2.03
AME 18.02 7.30 -1.02 -0.53 4.65  27.46 9.63 0.42
A1/ -1.64 12.83 0.95 -10.07 -4.94 -1.81 1.05 14.21
AROE -0.54 -3.81 10.66  -18.10 -3.42 12.22 3.31 -0.15

Estimates of A: ALl

Ao 3.01 7.22 | 10.21 10.07 | -0.96 19.34 1.83 14.35
AMKT 10.03  -4.50 3.54 -6.48 | 11.34 -5.96 | -1.93 2.10
AME 17.74 8.76 | -1.36 -0.73 7.27  35.52 | 11.22 0.23
A1/a 0.61 7.12 0.29 -9.39 | -1.27  -3.30 0.34 14.69
AROE 3.50 -8.04 8.83 -15.65 | -4.12 1734 | -1.35 -0.87
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Pretesting Period | 70-74  75-79 | 80-84 85-89 | 90-94  95-99 | 00-04 05-09
Testing Period 75-79  80-84 | 85-89 90-94 | 95-99 00-04 | 05-09 10-14
Test Statistics: ALS
t (Xo) 1.13 0.20 0.63 0.55 0.86 5.63 0.13 5.34
p-value (0.26] [0.84] | [0.53] [0.59] | [0.39] [0.00] | [0.90] [0.00]
t (Amkr) -0.78  -0.13 | -0.51 -0.66 | -2.20 -1.66 0.18 -6.72
p-value 0.43] [0.90] | [0.61] [0.51] | [0.03] [0.10] | [0.86] [0.00]
t (Ave) 0.46 1.16 1.04 -0.17 3.96 1.76 2.26 -0.47
p-value 0.65] [0.24] | [0.30] [0.86] | [0.00] [0.08] | [0.02] [0.64]
t (A1/a) -1.29 0.32 -1.44 -1.05 -2.10 -2.42 0.63 2.43
p-value 0.20] [0.75] | [0.15] [0.29] | [0.04] [0.02] | [0.53] [0.02]
t (AroE) -0.49  -1.33 0.25 -0.90 | -3.79 094 | -0.04 -0.35
p-value 0.63 [0.18] | [0.80] [0.37] | [0.00] [0.35] | [0.97] [0.72]
Ja(A) 4.01 3.29 3.87 2.69 | 40.03 44.25 5.56  79.98
p-value (0.41] [0.43] | [0.40] [0.47] | [0.00] [0.00] | [0.32] [0.00]
t (és1zs) 143 -1.36 | 172 096 | 1.32 -1.46 | -2.27  0.39
p-value 0.15 [0.17] | [0.09] [0.34] | [0.19] [0.14] | [0.02] [0.69]
t (d1/n) -1.43 -0.25 -1.09 1.40 -2.31 1.81 0.67 1.01
p-value 0.15] [0.80] | [0.28] [0.16] | [0.02] [0.07] | [0.50] [0.31]
t (¢roE) -0.83 1.50 | -0.55 -0.92 | -0.72 0.39 | -1.56  -0.92
p-value (0.41] [0.13] | [0.58] [0.36] | [0.47] [0.70] | [0.12] [0.36]
Ja() 4.34 3.69 4.20 3.70 | 21.41 6.29 5.60 1.31
p-value 0.22] [0.28] | [0.24] [0.29] | [0.00] [0.10] | [0.14] [0.72]
t (o) -3.71 -1.74 | -2.36 1.83 | -0.84 -3.91 -4.05 0.53
p-value 0.00] [0.08] | [0.02] [0.07] | [0.40] [0.00] | [0.00] [0.60]
Ja(8) 22.57 10.48 | 13.87 9.78 | 48.32 65.06 | 29.94 82.29
p-value (0.05] [0.29] | [0.18] [0.33] | [0.00] [0.00] | [0.01] [0.00]
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Pretesting Period | 70-74  75-79 | 80-84 85-89 | 90-94  95-99 | 00-04 05-09
Testing Period 75-79  80-84 | 85-89 90-94 | 95-99 00-04 | 05-09 10-14
Test Statistics: AT

t(Xo) 0.80 0.88 0.77 0.86 | -0.12 4.42 0.44 5.18
p-value (0.43] [0.38] | [0.44] [0.39] | [0.90] [0.00] | [0.66] [0.00]
t (Amkr) -0.28  -0.80 | -0.67 -0.87 | -1.48 -1.06 | -0.46 -6.58
p-value (0.78] [0.43] | [0.51] [0.38] | [0.14] [0.29] | [0.64] [0.00]
t (Ave) 0.29 2.01 0.94 -0.20 5.01 2.51 2.35 -0.52
p-value 0.77]  [0.04] | [0.35] [0.84] | [0.00] [0.01] | [0.02] [0.60]
t (A1/a) -0.74  -0.16 | -1.56 -1.07 | -0.68 -2.16 0.35 2.49
p-value (0.46] [0.88] | [0.12]  [0.28] | [0.50] [0.03] | [0.73] [0.01]
t (Anog) 001 -218 | -0.07 -0.80 | -3.82  1.62 | -1.22  -047
p-value 0.09] [0.03] | [0.95] [0.37] | [0.00] [0.11] | [0.22] [0.64]
Ja(A) 1.34 10.20 4.35 3.49 | 4235 34.25 7.57 76.78
p-value 0.79] [0.14] | [0.36] [0.40] | [0.00] [0.00] | [0.20] [0.00]
t (¢ps1ze) 1.89  -0.75 1.77 0.21 2.28 1.98 1.08 0.51
p-value 0.06] [0.45] | [0.08] [0.84] | [0.02] [0.05] | [0.28] [0.61]
t (d1/n) -1.08 -0.70 -1.23 1.48 -2.19 1.11 0.12 0.96
p-value 0.28] [0.48] | [0.22] [0.14] | [0.03] [0.27] | [0.90] [0.34]
t (¢roE) -1.18 1.96 | -0.70 -0.96 | -0.39 042 | -1.97 -0.75
p-value [0.24] [0.05] | [0.49] [0.34] | [0.70] [0.67] | [0.05] [0.45]
Ja() 4.74 5.79 4.66 3.04 | 24.55 7.7 2.68 1.40
p-value 0.19] [0.14] | [0.20] [0.38] | [0.00] [0.06] | [0.41] [0.70]
t (o) -2.84  -0.53 | -2.16 1.39 0.77  -2.64 | -2.84 0.66
p-value 0.00] [0.60] | [0.03] [0.17] | [0.44] [0.01] | [0.00] [0.51]
Ja(8) 15.55 1540 | 14.17 8.57 | 53.08 46.55 | 20.74 78.96
p-value [0.13] [0.15] | [0.17]  [0.39] | [0.00] [0.00] | [0.05] [0.00]
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Table 9: Testing the FF5 model: empirical results for 5-year testing periods from 1975 to 2014 using
49 industry clusters. This table presents the point estimates of A = [ Ao Akr Asvz Amr Amw Acva ]/ and the various
statistics along with the corresponding p-values for testing the implications of the FF5 model. We consider 8 non-
overlapping 5-year testing periods from 1975 to 2014. For each testing period, the pretesting period consists of the
preceding five years. We report point estimates, in annualized percentages, based on the two-step and iterated IV-GMM
estimators, i.e., ATy and Afj. We further report (i) the ¢ statistic £()o), that focuses on the cross-sectional intercept, given
in ; (ii) the ¢ statistics ¢(Amxr), t(Asus), t(Amw), t(Amnw), and ¢(Aeaun), that focus on the MKT, SMB, HML, RMW, and
CMA ex-post risk premia, respectively, given in ; (iii) the statistic J4(X), that jointly tests the ex-post risk premia
model implications, given in ; (iv) the t statistics ¢ (dsize), t (¢sm), t (dor), and ¢ (¢ac), that examine the ability of the
SIZE, BTM, OP, and AG characteristics to explain mispricing at the individual stock level, respectively, given in ; (v)
the statistic Jq(¢), that examines the ability of the SIZE, BTM, OP, and AG characteristics to jointly explain mispricing
at the individual stock level, given in ; (vi) the t statistic t(a), that focuses on aggregate mispricing, given in ;
and (vii) the statistic Jq(d), that jointly tests all ex-post risk premia and individual stock alpha model implications,
given in . The corresponding p-values are reported in square brackets below the test statistics.

Pretesting Period | 70-74  75-79 | 80-84 85-89 | 90-94 95-99 | 00-04 05-09
Testing Period 75-79  80-84 | 85-89 90-94 | 95-99 00-04 | 05-09 10-14
Number of Test Assets
N 1193 1717 1692 1879 1804 2042 1946 1875
Average Factor Realizations

Fugr 11.18 4.53 | 12.49 4.83 | 20.69 -3.10 | -0.43 15.52

Foms 17.33 4.14 | -4.82 1.57 | -5.30 12.78 1.63 1.54

Fa 6.53 9.35 2.57 2.70 | -5.51 15.00 2.08 -0.93

T 010 404 | 551 470 | 094 1023 | 473  0.71

Fom 1.72 6.24 5.22 1.74 | -1.69 1393 | -0.28 2.90

Estimates of A: XIS

Ao 4.23 1043 | 13.29 2.70 0.38 10.86 | -2.91 9.41
AMKT 6.64 -6.63 0.28 0.62 12.80 -8.70 6.57 5.20
AsMB 18.87 5.34 -4.53 7.24 4.65  31.89 1.41 6.20
Anmr 0.41 3.49 3.00 0.37 | -4.40 2.65 7.63 0.43
ARy -0.70  -1.97 | -1.81 -4.63 | -2.42 5.69 | -4.68 -5.17
Acva -5.23 6.65 1.01  -4.57 | -2.60 8.22 | -8.56 7.03

Estimates of A: X%

Ao 3.76 1.53 | 14.96 3.81 | -1.74 10.70 2.48 8.65
AvkT 7.60 0.04 0.51 -0.79 | 13.81 -9.12 1.13 6.28
AswB 18.49 8.77 | -3.49 6.20 552  32.27 3.65 6.40
AHML -0.17 -1.12 -4.82 1.90 -4.32 3.02 10.47 -0.45
ArMi 0.09 2.28 | -0.50 -3.44 | -1.70 542 | -4.21 -6.72
AcMa -5.17 8.59 -3.16 -4.30 -1.68 9.37 -6.09 6.79
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Pretesting Period | 70-74 75-79 | 80-84 85-89 | 90-94 95-99 | 00-04 05-09
Testing Period 75-79  80-84 | 85-89 90-94 | 95-99 00-04 | 05-09 10-14
Test Statistics: 3\'{3

t (Xo) 0.90 1.64 2.10 1.35 0.07 4.19 -0.62 7.20
p-value 0.37] [0.10] | [0.04] [0.18] | [0.94] [0.00] | [0.54]  [0.00]
t (Awkr) -1.06 -1.68 -2.00 -1.96 -2.08 -2.17 1.46 -6.38
p-value 0.20] [0.09] | [0.05] [0.05] | [0.04] [0.03] | [0.15]  [0.00]
t (Asms) 1.05 0.93 0.15 4.46 4.78 3.09 -0.06 2.94
p-value 0.20] [0.35] | [0.88] [0.00] | [0.00] [0.00] | [0.95]  [0.00]
t (AmmL) -2.59 -1.28 0.13 -0.93 0.39 -3.16 0.90 0.78
p-value 0.01] [0.20] | [0.89] [0.35] | [0.69] [0.00] | [0.37]  [0.43]
t (Arvw) -0.23 -1.70 -3.16 -3.01 -1.50 -1.40 -1.86 -3.11
p-value 0.82] [0.09] | [0.00] [0.00] | [0.13] [0.16] | [0.06]  [0.00]
t (Acma) -1.77 0.16 -1.77 -5.41 -0.20 -0.52 -1.62 2.69
p-value 008 [0.87] | [0.08] [0.00] | [0.84] [0.60] | [0.11]  [0.01]
Ja(A) 12.92 10.95 21.58 64.76 29.59  44.07 9.41 118.76
p-value 0.11] [0.14] | [0.01] [0.00] | [0.00] [0.00] | [0.19]  [0.00]
t (¢ps1ze) 1.84 0.33 -0.73 -1.65 -0.26 0.60 1.46 -0.76
p-value 007 [0.74] | [047] [0.10] | [0.79] [0.55] | [0.14]  [0.45]
t (¢BrM) 0.73 2.58 -0.17 0.52 0.83 -0.56 -0.85 1.04
p-value (0.46] [0.01] | [0.86] [0.60] | [0.41] [0.57) | [0.39]  [0.30]
t (¢or) -0.35 2.52 2.05 2.03 0.34 -1.45 -0.11 1.90
p-value 0.72] [0.01] | [0.04] [0.04] | [0.73] [0.15] | [0.91]  [0.06]
t (¢pac) -0.90 -0.70 -2.72 -0.60 0.95 -0.45 -1.18 1.52
p-value (037 [0.48] | [0.01] [0.55] | [0.34] [0.66] | [0.24]  [0.13]
Ja(P) 7.15 13.12 7.89  36.32 0.91 3.07 5.49 12.50
p-value 0.14] [0.02] | [0.11] [0.00] | [0.87] [0.52] | [0.24]  [0.02]
t(ox) -4.03 -2.09 0.62 -3.73 -1.01 -3.80 -0.75 -2.03
p-value [0.000 [0.04] | [0.54] [0.00] | [0.31] [0.00] | [0.45]  [0.04]
Ja(8) 34.03 2891 34.11 86.14 32.39 61.53 14.24 130.44
p-value 0.02] [0.03] | [0.01] [0.00] | [0.01] [0.00] | [0.25]  [0.00]
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Pretesting Period | 70-74 75-79 | 80-84 85-89 | 90-94 95-99 | 00-04 05-09
Testing Period 75-79  80-84 | 85-89 90-94 | 95-99 00-04 | 05-09 10-14
Test Statistics: 3\%6

t (Xo) 0.87 0.24 2.63 2.03 -0.35 4.13 0.52 6.09
p-value 0.39] [0.81] | [0.01] [0.04] | [0.72] [0.00] | [0.60]  [0.00]
t (Awkr) -0.88 -0.69 -2.19 -2.79 -1.84 -2.34 0.33 -5.16
p-value 0.38] [0.49] | [0.03] [0.01] | [0.07] [0.02] | [0.74]  [0.00]
t (Asms) 0.95 3.28 1.02 3.76 5.09 3.14 0.59 2.96
p-value 0.34] [0.00] | [0.31] [0.00] | [0.00] [0.00] | [0.56]  [0.00]
t (AmmL) -3.58 -2.35 -2.31 -0.32 0.40 -3.06 1.48 0.28
p-value 0.00] [0.02] | [0.02] [0.75] | [0.69] [0.00] | [0.14]  [0.78]
t (Arvw) 0.00 -0.40 -3.27 -2.66 -1.12 -1.47 -1.92 -3.54
p-value [1.00] [0.69] | [0.00] [0.01] | [0.26] [0.14] | [0.05]  [0.00]
t (Acma) -1.90 0.86 -3.51 -5.26 0.00 -0.41 -1.24 2.57
p-value 0.06] [0.39] | [0.00] [0.00] | [1.00] [0.68] | [0.21]  [0.01]
Ja(A) 18.91 17.72 41.05 60.85 30.88  44.08 8.16 91.68
p-value 0.05] [0.04] | [0.00] [0.00] | [0.00] [0.00] | [0.24]  [0.00]
t (¢ps1ze) 2.14 1.70 0.39 -2.16 1.07 0.60 1.22 -0.88
p-value 0.03] [0.09] | [0.69] [0.03] | [0.29] [0.55] | [0.22]  [0.38]
t (¢H) 1.04 1.58 1.96 -0.96 0.75 -0.55 -1.05 1.41
p-value 0.30] [0.11] | [0.05] [0.34] | [0.46] [0.58] | [0.29]  [0.16]
t (¢or) -0.56 1.73 2.41 0.69 0.19 -1.40 -0.59 1.97
p-value (0.58] [0.08] | [0.02] [0.49] | [0.85] [0.16] | [0.55]  [0.05]
t (¢pac) -0.99 -0.80 -2.33 -0.53 1.11 -0.35 -1.07 1.42
p-value (032 [0.42] | [0.02] [0.60] | [0.27] [0.73] | [0.29]  [0.15]
Ja(P) 9.58 9.14 | 22.10 33.67 1.73 2.80 4.49 13.23
p-value 0.06] [0.09] | [0.00] [0.00] | [0.73] [0.56] | [0.31]  [0.02]
t(ox) -4.14 -0.90 -0.15 -3.72 -0.75 -3.76 -0.23 -1.77
p-value [0.000 [0.37] | [0.88] [0.00] | [0.45] [0.00] | [0.82]  [0.08]
Ja(8) 43.03 27.57 | 56.25 81.01 | 34.41 60.98 | 12.29 103.48
p-value 0.01] [0.03] | [0.00] [0.00] | [0.01] [0.00] | [0.33]  [0.00]
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