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Previous research has demonstrated that portfolios based on low-volatility stocks tend to out-
perform portfolios based on high-volatility stocks (Ang et al., 2006; Bali and Cakici, 2008). In our
paper, we propose a new model selection criterion for low-volatility investing. Our procedure is
based on the decomposition of any Bregman loss function into a weighted integral of elementary
scores (Ehm et al., 2016) for defining forecast errors that are directly related to the problem of
choosing the future 20%-quintile of low-volatility stocks.

Until now, high-frequency data based times series models are not widely used for constructing
low-volatility portfolios even though they are considered to issue better predictions than models
based on daily data. One explanation may be that it is not clear which model to choose for
this particular problem. When comparing several models at hand, superior models are typically
selected by evaluating past forecast performance with respect to some loss function, e.g. squared
error or QLIKE loss. Thereafter, these losses are used to conduct tests on whether differences
in forecast accuracy are statistically significant or due to chance. However, those loss functions
evaluate overall forecast performance instead of the binary decision problem of choosing stocks for
which next period’s volatility is (relatively) low.

With our proposed loss function we closely match the portfolio choice problem at hand, which
enables us to choose among volatility models in a problem-specific way. Creating portfolios of
individual stocks from a large cross-section of 987 S&P500 stocks for the period 1998 to 2017 re-
sults in higher returns for both the HAR model and our elementary score compared to a widely
used benchmark based on daily returns. These gains are even more pronounced when considering

low-high portfolios.

First, the main contribution of our paper is to use recent advances in forecast evaluation theory

for constructing a loss function that has a direct translation into the economic decision of financial

*Corresponding author: Bergheimer Str. 58, 69115 Heidelberg, Germany. +49 6221 54 2908.
onno.kleen@awi.uni-heidelberg.de. onnokleen.de



investors. As mentioned above, a problem for portfolio sorts based on time series models is the
inherent problem of choosing the “best” model. A natural choice is to evaluate out-of-sample
forecasts y and corresponding realizations x using a loss function that is consistent for the mean
functional, meaning that the expected loss should be minimized by the conditional mean forecast.
However, the class of loss functions that is consistent for the mean, the so-called class of Bregman

loss functions, consists of every function of the form

S(z,y) = ¢(y) — ¢(x) — ¢'(x)(y — ),

where ¢(x) is convex with subgradient ¢’. Hence, the widely used forecast evaluation measures
squared error (SE), L(z,y) = (y — z)?, and QLIKE loss, L(z,y) = y/x —log(z/y) — 1, are only two
examples of infinitely many. Additionally, Patton (2016) showed that the ranking of conditional
mean models differ across consistent loss functions if models are misspecified, which is the case in
almost all applications. Therefore, the choice of loss function matters in this regard.

Ehm et al. (2016) showed recently that any Bregman loss function L(x,y) can be expressed as

an integral of elementary scores Lg(z,y):

Lay) = [ Lole,y)dH (o)

with

0 else

ly — 0| if min(x,y) < 6 < max(z,y)
Lo(z,y) =

and H(6) being a positive weighting function on R*.! In words, Ly(z,y) assigns a penalty if
and only if € lies in between z and y. Regarding portfolio sorts, the choice of H can be moti-
vated economically: For example, consider the simple problem of whether or not to buy one unit
of a risky asset. In this problem, it may matter whether the volatility is 5 or 10 (this may be
the difference between buying versus not buying), whereas the distinction between volatilities of

200 and 300 may be irrelevant because the risky asset would be unattractive in either of these cases.

Second, in our empirical application we use a data set containing every stock that has been
part of the S&P500 in between January 1998 and July 2017. The one-minute stock market
prices are provided by QuantQuote? and are aggregated to five-minute log-returns. We use this
data for calculating various high-frequency realized volatility measures (Andersen et al., 2012;
Patton and Sheppard, 2015) on a daily frequency. This enables us to estimate a wide variety
of volatility models for dynamically selecting the best model for each stock.

As an ideal forecast, we define the “oracle” low-volatility portfolio to consist of those stocks for
which the realized variance is below the empirical 20%-quantile of the cross-section. This portfolio

has an average annualized return of 13.28 compared to 9.49 when sorting by the sum of last month’s

!SE is obtained by H(#) = 1 and QLIKE by H(0) = 1/6.
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squared returns, which is often used by low-volatility funds. This indicates that there actually is
a margin for improvement when using more accurate volatility forecasts. Our preliminary results
for equally-weighted monthly portfolio sorts indicate an increase of average annualized returns for
the HAR model by 0.17 and for the elementary score by 0.10. Moreover, the average difference of
the lowest- and highest-quintile portfolio returns increases from 7.80 when sorting by last month’s
squared returns to 10.01 when sorting by the elementary score, making it a good candidate for
constructing long-short portfolios. The improvements rely on including the volatility of overnight-
returns in our HAR models, even though these are less accurately measured than intraday volatility.
This is not typically done in HAR model applications and may be an explanation for other authors
not finding significantly higher returns with model-based portfolio sorts - combining high-frequency

data with overnight returns seems to be crucial.

Until your conference “Frontiers of Factor Investing”, we intend to incorporate transaction
costs, weekly portfolio sorts, forecasting idiosyncratic volatility instead of volatility itself, value-
weighted portfolios, and robustness checks relative to the Fama, French and Carhart four-factor
model (Fama and French, 1993; Carhart, 1997). Summing up, our paper is a novel approach for
exploiting recent advances in forecast evaluation to a decision-theoretical question in financial

markets.
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