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Abstract

We show that time variation in both conditional mean and volatility of consumption

growth affects option returns. We estimate the conditional moments of consumption

growth from a Markov-switching process. Using option portfolio returns in cross-

sectional pricing tests, we show that loadings on consumption growth and expected

consumption growth significantly positively forecast delta-hedged returns and those on

consumption growth volatility significantly negatively forecast delta-hedged returns.

Applying an alternative empirical specification, we confirm that exposure to consump-

tion growth is a positively priced source of risk in both simple and delta-hedged option

returns. Our findings lend strong support for a preference for early resolution of uncer-
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1 Introduction

It has been widely studied how moments of consumption growth are priced in stock returns.

Surprisingly, the impact of moments of consumption growth on option returns has received little

attention in empirical tests of consumption-based pricing models. The contribution of this paper

is to show that exposures to consumption growth, expected consumption growth and consumption

growth volatility lead to risk premiums in cross-sectional delta-hedged option returns. Options

exposed more to consumption growth risk and expected consumption growth risk, and less to

consumption volatility risk require higher expected delta-hedged returns. More importantly, this

empirical result strongly supports that investors prefer to resolve uncertainty sooner than later.

To guide the empirical exercise, we adopt the model framework of Kandel and Stambaugh

(1991), Bansal and Yaron (2004) and Lettau, Ludvigson, and Wachter (2008). The representative

agent has recursive Epstein and Zin (1989) preferences, and the conditional first and second mo-

ments of consumption growth follow two independent two-state Markov chains with unobservable

states. The model setting implies that the agent’s beliefs in those unobservable consumption states

or the agent’s estimates of the conditional first and second moments of consumption growth are

priced. When the elasticity of intertemporal substitution (EIS) is greater than the inverse of the

relative risk aversion (RRA), the agent prefers that intertemporal risk from unobservable Markov

states be resolved sooner than later. Consequently, the agent demands positive and negative prices

of risk for shocks to the conditional expectation and volatility of consumption growth respectively.

Following Hamilton (1994), we estimate a Markov chain for the first and second moments

of consumption growth. We retain the common assumption that the representative agent has

preferences over total consumption, defined as the sum of nondurable and service consumption

expenditures. Following Cao and Han (2013), we calculate simple and delta-hedged call option

returns. And we form 10 equally-weighted option portfolios based on lag-one-period moneyness,

defined as underlying stock price divided by option strike price. To exclude the influence of time-

to-maturity, we specify the range of lag-one-period time-to-maturities of call options before forming

portfolios.

Our first set of empirical evidence on the pricing of moments of consumption is based on market

prices of risk obtained from regressions of option portfolio returns on estimated loadings on log con-
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sumption growth, as well as changes in the perceived mean and volatility of consumption growth.

For delta-hedged returns, empirical analysis shows no evidence that changes in the expected con-

sumption growth are priced. However, consumption growth and consumption growth volatility are

robustly priced in the cross-section of delta-hedged returns. Importantly, the price of consumption

volatility risk is negative, consistent with preference for early resolution of uncertainty. This is

a crucial assumption in the long-run risk framework of Bansal and Yaron (2004) and our finding

strongly supports it. For simple returns, risk loading on consumption growth is not priced. But

mean and volatility of consumption growth are positively priced in the cross-section. Positive price

of consumption expectation risk implies preference for early resolution of risk, while positive price

of consumption volatility risk implies preference for late resolution of risk. Contradictory results

occur in simple call option returns.

Applying an alternative numerical approximation, we have an alternative empirical test specifi-

cation. We run rolling quarterly time-series regressions of option portfolio returns on consumption

growth as well as log changes in the perceived mean and volatility of consumption growth to obtain

time-varying risk loadings. We study the relation between risk loadings and future returns. Con-

sistent with former results in delta-hedged returns, price for consumption growth risk and price for

consumption volatility risk are positive and negative respectively. Moreover, loadings on expected

consumption growth significantly positively forecast cross-sectional differences in delta-hedged re-

turns. That provides further evidence that the representative agent prefers to resolve uncertainty

early. More importantly, we can even decide the value of EIS and RRA with three significant

risk premiums. Inconsistent with former results in simple returns, market prices for consumption

growth risk and consumption mean risk are positive and negative respectively. And no evidence

shows that consumption volatility risk is priced in the cross-section of simple call option returns.

The inconsistency between results from different empirical specifications makes it difficult to draw

inferences on model parameters from simple call option returns.

To figure out why empirical results are different for simple and delta-hedged returns, we use

the third empirical test specification. To estimate risk loadings, we run rolling quarterly time-

series regressions of option portfolio returns on consumption growth as well as changes in beliefs in

high mean-low variance, high mean-high variance, and low mean-low variance consumption states.
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Similarly, we study the relation between risk loadings and future returns. For both simple and delta-

hedged returns, consumption growth is robustly priced in the cross-section and the market price of

consumption growth risk is positive. With the EIS larger than the inverse of RRA, risk premiums

for loadings on beliefs in high mean-low variance, high mean-high variance, and low mean-low

variance consumption states should all be positive. However, empirical evidence shows that the

market price for loading on belief in high mean-high variance is negative for simple option returns.

The mispricing of belief in high mean-high variance consumption state causes the mispricing of

consumption volatility risk in the first set of empirical results in simple returns. We have not found

the reason for the mispricing.

Pricing of volatilities in cross-sectional option returns has received attention in the literature

recently. Cao and Han (2013) presents a robust new finding that delta-hedged equity option return

decreases monotonically with an increase in the idiosyncratic volatility of the underlying stock.

Aretz, Lin, and Poon (2016) use a model of the stochastic discount factor to show that the expected

returns of European options are not unambiguously related to their underlying asset’s volatility.

Hu and Jacobs (2017) show that returns on call (put) option portfolios decrease (increase) with

underlying stock volatility in the cross-section of stock option returns. These papers study the

relation between underlying stock volatility and cross-sectional option returns.

Motivated by the long-run risk model of Bansal and Yaron (2004), several important papers

study the relation between consumption volatility and prices. Bansal, Khatchatrian, and Yaron

(2005) find that measures of economic uncertainty (conditional consumption volatility) predict and

are predicted by valuation ratios at long horizons. Lettau, Ludvigson, and Wachter (2008) estimate

a Markov model with learning to show that learning about declining consumption volatility can

explain the decrease in equity risk premium during the 1990s. Calvet and Fisher (2007) introduce a

parsimonious equilibrium model with regime shifts of heterogeneous durations in fundamentals and

estimate specifications with up to 256 states on daily aggregate returns. We extend this literature

by studying the cross-section of option returns rather than aggregate valuation ratios.

Papers closely related to our work are Jagannathan and Wang (2007), Bansal, Kiku, and Yaron

(2007), Romeo (2013) and Boguth and Kuehn (2013). Jagannathan and Wang (2007) point out that

the consumption-based asset pricing model (CCAPM) explains the cross-section of stock returns
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as well as the Fama and French (1993) three-factor model when consumption betas are computed

using year-over-year consumption growth based upon the fourth quarter. Bansal, Kiku, and Yaron

(2007) empirically evaluate the ability of the long-run risks model to explain asset returns. They

highlight the importance of low-frequency movements and time-varying uncertainty in economic

growth for understanding risk-return tradeoffs in financial markets. Romeo (2013) shows that

changes in consumption volatility are the key driver for explaining major asset pricing anomalies

across risk horizons. Boguth and Kuehn (2013) show that consumption volatility is a negatively

priced source of risk for a wide variety of test portfolios and exposure to consumption volatility

risk predicts future returns at the firm level. These studies investigate the pricing of moments of

consumption growth in stock returns while our work in option returns.

Recent extensions to the long-run risk framework that study the pricing implications of time-

varying uncertainty include the following papers. Drechsler and Yaron (2011) extend the long-run

risks model. They demonstrate that time-varying economic uncertainty and a preference for early

resolution of uncertainty are required to generate a positive time-varying variance premium that

predicts excess stock market returns. Bansal and Shaliastovich (2011) model optimal decisions of

investors to learn the unobserved state. Their model predicts that income volatility predicts future

jump periods while income growth does not. Bollerslev et al. (2009) study the pricing implications

from a stylized self-contained general equilibrium model incorporating the effects of time-varying

economic uncertainty. While we also study the effect of time-varying uncertainty in a framework

with Epstein-Zin preferences, we focus on cross-sectional pricing.

The remainder of the paper is organized as follows. In Section 2, we describe the theoretical

framework which motivates our empirical analysis in Section 3. In Section 3, we test whether

loadings on consumption growth and its conditional moments forecast returns in the cross-section.

Section 4 concludes. The Appendix contains derivations and additional results.

2 Model

In this section, we describe the consumption-based asset pricing model developed by Lettau,

Ludvigson, and Wachter (2008). In the model, the consumption growth rate follows a Markov-

switching process, and the representative agent has recursive preferences of Epstein and Zin (1989).
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We then follow Boguth and Kuehn (2013) and linearize the pricing kernel to derive an equation of

expected returns for empirical testing.

2.1 Consumption

We assume that the log of consumption growth follows a Markov-switching process in which

the conditional mean and volatility states follow two independent Markov chains. To be specific,

log consumption growth, ∆ct+1, follows

∆ct+1 ≡ ln

(
Ct
Ct−1

)
= µt + σtεt+1, εt+1 ∼ N(0, 1),

where µt represents the conditional expectation and σt the conditional standard deviation. We

assume two states for the mean, µt ∈ {µl, µh}, and two for the volatility, σt ∈ {σl, σh}. The

transition matrices for the mean and volatility states are P µ and P σ respectively, given by

P µ =

 phhµ 1− pllµ

1− phhµ pllµ

 P σ =

 phhσ 1− pllσ

1− phhσ pllσ

 . (1)

Since the mean and volatility states switch independently, the joint transition matrix is the product

of the marginal transition probabilities for mean and volatility states and can be fully characterized

by pllµ, phhµ , pllσ, and phhσ . As stated by Boguth and Kuehn (2013), independent switching for mean

and volatility states do not imply that the beliefs about mean and volatility states are independent.

We assume that the representative agent does not observe the state of the economy and must

infer it from observable consumption data. The posterior belief that the economy is in specific

states at date t + 1 conditional on observations obtained through date t is denoted by the vector

ξt+1|t. The Bayesian inference implies that the belief vector evolves according to

ξt+1|t = P

(
ξt|t−1 � ηt

)
1′
(
ξt|t−1 � ηt

) . (2)

where ηt is a vector of conditional Gaussian densities, � represents element-by-element multipli-

cation, P = P µ ⊗ P σ denotes the joint transition matrix, and ⊗ is the symbol for the Kronecker

product.
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2.2 Model Framework

We apply a standard asset pricing model with a representative agent and recursive preferences

as in Epstein and Zin (1989) and Weil (1989). The indirect utility at time t, Ut is given by

Ut =

(1− δ)C
1− 1

ψ

t + δ
[
Et

(
U1−γ
t+1

)] 1− 1
ψ

1−γ

 1

1− 1
ψ

. (3)

Ct is consumption, δ is the time discount factor, γ determines the degree of relative risk aversion,

and ψ is the elasticity of intertemporal substitution (EIS). And parameters γ and ψ are required

to satisfy γ > 0, ψ > 0 and ψ 6= 1. For γ = 1
ψ the representative agent has standard CRRA

preferences. γ > 1
ψ indicates a preference for the early resolution of uncertainty and γ < 1

ψ

indicates a preference for late resolution. The general asset pricing equation to price any asset i is

given by

Et [Mt+1Ri,t+1] = 1. (4)

And the stochastic discount factor is

Mt+1 = δ

1−γ
1− 1

ψ

(
Ct+1

Ct

)−γ ( Zt+1

Zt − 1

) 1
ψ
−γ

1− 1
ψ , (5)

and Zt = Wt
Ct

, denotes the wealth-consumption ratio. A log-linear approximation of the pricing

kernel implied by (5) is

mt+1 ≈

(
1− γ
1− 1

ψ

)
ln δ − γ∆ct+1 +

(
1
ψ − γ
1− 1

ψ

)
∆zt+1. (6)

In an endowment economy where the consumption growth is only driven by independent and

identically distributed (i.i.d.) shocks, the wealth-consumption ratio is constant. We assume that

the conditional expectation and volatility of consumption growth follow a Markov chain. Under

this setting, the agent’s posterior beliefs over the moments characterize the state of the economy

due to the unobservability of the Markov states. Consequently, the wealth-consumption ratio is a

function of the agent’s beliefs, Zt = Z(ξt+1|t).
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2.3 Numerical Approximation

Define the posterior belief that the mean or volatility state is high tomorrow conditional on the

current information set Ft by

bµ,t = P (µt+1 = µh|Ft) bσ,t = P (σt+1 = σh|Ft) . (7)

And define the perceived first and second moments of consumption growth as belief-weighted av-

erages

µ̂t = bµ,tµh + (1− bµ,t)µl σ̂t = bσ,tσh + (1− bσ,t)σl. (8)

The corresponding changes in the perceived moments are denoted by

∆µ̂t = µ̂t − µ̂t−1 ∆σ̂t = σ̂t − σ̂t−1, (9)

and log changes in the perceived moments are

∆ ln µ̂t = ln µ̂t − ln µ̂t−1 ∆ ln σ̂t = ln σ̂t − ln σ̂t−1. (10)

To conduct empirical analyses, we we assume that changes in the log wealth-consumption ratio

can be approximated by changes or log changes in perceived moments of consumption growth

linearly.

∆zt ≈ κ1 +A1∆µ̂t +A2∆σ̂t, (11)

∆zt ≈ κ2 +B1∆ ln µ̂t +B2∆ ln σ̂t. (12)

Also we assume that changes in the log wealth-consumption ratio are approximately affine in the

changes of beliefs, that is

∆zt ≈ κ3 + C1∆ξ1,t + C2∆ξ2,t + C3∆ξ3,t. (13)

∆ξ1, ∆ξ2 and ∆ξ3 are changes in beliefs for high mean-low variance, high mean-high variance and
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low mean-low variance consumption growth states respectively.

As presented in Table 1, changes in the log wealth-consumption ratio are proportional to changes

in beliefs, changes in the perceived moments and log changes in the perceived moments. That can

be confirmed by high R2 in each panel. Panel A displays the situation where the RRA is greater

than the inverse of EIS and the EIS is greater than 1 while panel B presents when EIS is smaller

than 1. Panel C and panel D show the opposite cases for panel A and panel B respectively, namely

when the RRA is smaller than the inverse of the EIS. In panel A and panel C, coefficients of changes

in beliefs (∆ξ1, ∆ξ2 and ∆ξ3) are all positive. Meanwhile, coefficients of ∆µ̂ and ∆ ln µ̂ are positive,

whereas those of ∆σ̂ and ∆ ln σ̂ are negative. In contrast, in panel B and panel D, coefficients of

∆ξ1, ∆ξ2 and ∆ξ3 are all negative and those of ∆µ̂ and ∆ ln µ̂ are negative while those for ∆σ̂ and

∆ ln σ̂ are positive.

Insert Table 1 here

2.4 Asset Pricing Implications

We have shown that changes in the log wealth-consumption ratio can be linearly approximated

by changes in beliefs. From an empirical asset pricing perspective, this implies that changes in

beliefs about the conditional moments of consumption growth are priced in the cross-section since

they affect the wealth-consumption ratio.

To test the model in the cross-section of returns, it is convenient to restate the Euler equation

in terms of betas1,

Et [Ri,t+1]−Rft ≈ βic1,tλc1,t + βiµ,tλµ,t + βiσ,tλσ,t. (14)

Rft is the risk-free rate, βic1,t, β
i
µ,t, β

i
σ,t denote risk loadings of asset i at date t with respect

to consumption growth and changes in the perceived first and second moments of consumption

growth, and λc1,t, λµ,t, λσ,t are market prices of those betas.

1Detailed derivations for equations (14), (15) and (16) are shown in the Appendix.
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Also we have

Et [Ri,t+1]−Rft ≈ βic2,tλc2,t + βilnµ,tλlnµ,t + βilnσ,tλlnσ,t, (15)

similarly, βic2,t, β
i
lnµ,t, β

i
lnσ,t are risk loadings of asset i at date t with respect to consumption growth

and log changes in the perceived first and second moments of consumption growth, and λc2,t, λlnµ,t,

λlnσ,t are market prices of those betas.

Alternatively we have

Et [Ri,t+1]−Rft ≈ βic3,tλc3,t + βiξ1,tλξ1,t + βiξ2,tλξ2,t + βiξ3,tλξ3,t. (16)

βic3,t, β
i
ξ1,t

, βiξ2,t, β
i
ξ3,t

denote risk loadings of asset i at date t with respect to consumption growth

and changes in beliefs of high mean-low variance, high mean-high variance and low mean-low

variance consumption growth states, and λc3,t, λξ1,t, λξ2,t, λξ3,t are market prices of those betas.

The model always predicts a positive risk premium for the consumption growth beta, since the

RRA (γ) is positive. Table 2 reports signs of risk premiums when EIS is greater than and less than

the inverse of the RRA. When EIS is greater than the inverse of the RRA, λµ, λlnµ, λξ1 , λξ2 , and

λξ3 are positive while λσ and λlnσ are negative. Those signs go opposite if EIS is less than the

inverse of the RRA.

Insert Table 2 here.

The main cross-sectional implications of the model are summarized here. Assuming that the

EIS is greater than the inverse of RRA (ψ > 1
γ ), the agent requires higher expected excess returns

for options that load more on changes in expected consumption growth and less on changes in

consumption growth volatility. In this case, the agent prefers that intertemporal risk due to the

unobservable Markov states to be resolved sooner than later. Thus the agent likes positive shocks to

expected consumption growth and requires a positive market price of risk. Meanwhile, she dislikes

positive shocks to the conditional volatility of consumption growth and requires a negative market

price of risk.
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3 Empirical Tests

In this section, we estimate the Markov model and investigate the pricing implications of changes

in consumption moments and beliefs of consumption states cross-sectionally.

3.1 Estimating Consumption Dynamics

Total consumption is defined as the sum of nondurable and services consumption expenditures.

To estimate the model, we obtain data on quarterly per capita real consumption expenditures on

nondurable goods and services from the Bureau of Economic Analysis (BEA). It is observed that

consumption behavior in the United States following World War II is systematically different from

later years. Following Yogo (2006), Lettau, Ludvigson, and Wachter (2008), and Boguth and Kuehn

(2013), we restrict our time series from the first quarter of 1952 to the fourth quarter of 2016.

The parameter estimates of the Markov chains are reported in Table 3. Panel A shows that

expected consumption growth is always positive and is 0.0844% and 0.5741% in low and high states

respectively. State-conditional consumption volatilities are σl = 0.2151% and σh = 0.4894%. The

probability of remaining in a given regime for the mean is 0.87 in the low state and 0.96 in the high

state. Both volatility regimes are persistent, with probabilities of 0.94 in the low state and 0.95

in the high state. Our estimates differ from those presented by Lettau, Ludvigson, and Wachter

(2008). They present volatilities in both states to be more persistent, 0.991 and 0.994 respectively.

Since there are differences in the consumption measure, uncertainty after the financial crisis in our

analysis greatly reduces the persistence of volatility regimes.

[Insert Table 3 here]

[Insert Figure 1 here]

Figure 1 shows the filtered beliefs for the regimes. The upper panel depicts the belief dynamics

for mean consumption growth, bµ,t, and the lower panel for the standard deviation, bσ,t. Shown

in those graphs, the mean regimes are more persistent than the volatility regimes. The parameter

estimates of transition probabilities from high to high state for the mean regimes and the volatility

regimes are 0.96 and 0.95 respectively. Imply that high mean states last 25 quarters whereas high
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volatility states last 20 quarters on average. Furthermore, a shift towards low volatility regimes

from 1990s onward can be easily observed, as pointed out by Kim and Nelson (1999) and Boguth

and Kuehn (2013). However, the 2000 dot-com and the 2008 financial crisis periods prove that the

shift is not permanent.

3.2 Cross-Sectional Return Predictability

3.2.1 Data

We use data from the US equity option market. For the January 1996 to April 2016 sample

period, we obtain call option data on US individual stock options from the Ivy DB database provided

by OptionMetrics. The data fields include daily closing bid and ask quotes, trading volume, strike

price, and expiration date of each option, and the option’s delta computed by OptionMetrics based

on standard market conventions. Also, we obtain the close prices and dividend distribution of

underlying stocks of options and risk-free rates from OptionMetrics.

3.2.2 Sorting Portfolios

We calculate quarterly and monthly simple returns as well as delta-hedged returns for each

option. To calculate monthly and quarterly simple option returns, we first keep end of month and

quarter option prices. And apply several filters to the extracted option data, following Cao and Han

(2013). First, we exclude an option if the underlying stock paid a dividend during the remaining

life of the option. Second, we exclude call options that violate obvious no-arbitrage bounds such as

S ≥ C ≥ max(0, S −Ke−rT ), where C is the call option price, S is the underlying stock price, K

is the strike price, T is time to maturity of the option, and r is the risk-free rate. Third, to avoid

microstructure-related bias, we only retain options that have positive trading volume and positive

bid quotes, with the bid price strictly smaller than the ask price, and the midpoint of bid and ask

prices being at least 1/8. We only keep the options whose last trade dates match the record dates

and whose option price dates match the underlying stock price dates.

Following Cao and Han (2013), we also calculate quarterly and monthly delta-hedged option

returns. First, define delta-hedged option gain, which is change in the value of a self-financing

portfolio consisting of a long call option, hedged by a short position in the underlying stock. This
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portfolio is not sensitive to stock price movement and the net investment earns risk-free rate.

Following Bakshi and Kapadia (2003), consider a call option that is hedged discretely N times over

a period [t, t+ τ ], where the hedge is rebalanced at each of the dates tn, n = 0, 1 . . . , N − 1 (where

we define t0 = t, tN = t+ τ). The discrete delta-hedged call option gain is given by

Π (t, t+ τ) = Ct+τ − Ct −
N−1∑
n=0

∆c,tn [S (tn+1)− S (tn)]

−
N−1∑
n=0

anrtn
365

[C (tn)−∆C,tnS (tn)] , (17)

where Ct is the call option price on date t, ∆C,tn , S(tn) and rtn are the delta of the call option, the

annualized risk-free rate and the underlying stock price on date tn. an is the number of calendar

days between tn and tn+1. The delta-hedged call option return is given by the scaled delta-hedged

call option gain, Π (t, t+ τ) / (∆tSt − Ct) and we hedge call options on a daily basis.

To exclude the influence of time-to-maturity, we keep observations with lag-one-period time-

to-maturity between 30 to 90 days for monthly returns and 106 to 176 days for quarterly returns.

Observations with those lag-one-period time-to-maturities account for around 47.87% and 47.94%

for simple returns and 49.56% and 51.12% for delta-hedged returns among total monthly and

quarterly observations. And we sort both simple and delta-hedged option returns into 10 equally-

weighted portfolios based on lag-one-period moneyness. Portfolios are rebalanced each period.

Moneyness is defined as the underlying stock price divided by the strike price of an option.

[Insert Table 4 here]

Table 4 reports the average returns of equally-weighted decile portfolios as well as a long-short

strategy that each period invests $1 into decile 10 (high moneyness) and sells $1 of decile1 (low

moneyness). In panel A, portfolios are formed with simple option returns. Both quarterly and

monthly portfolio returns drop as moneyness increases, as what has been pointed out by Coval and

Shumway (2001). Low-moneyness portfolios are more risky, and thus should be compensated with

higher returns. The H-L portfolio has a quarterly return of -1.8509 and a monthly return of -0.9568.

Panel B displays delta-hedged return portfolios. In contrast, both quarterly and monthly portfolio

returns increase as moneyness increases. The quarterly and monthly returns for the long-short
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strategy are 0.0257 and 0.0135 respectively.

3.2.3 Risk Loadings

Based on numerical approximations in section 2, we specify two time-series regressions to ob-

tain risk loadings. The first specification is regressing quarterly option portfolio returns on log

consumption growth, ∆ct, and changes in the perceived conditional mean, ∆µ̂t, and volatility of

consumption growth, ∆σ̂t. We use log changes of the perceived conditional mean, ∆ ln µ̂t, and

volatility of consumption growth, ∆ ln σ̂t, in the second specification. In particular, for each op-

tion portfolio, we estimate factor loadings in a quarter t∗ using the previous 10 years of quarterly

observations from

RiQ,t = αi1,t∗ + βic1,t∗∆ct + βiµ,t∗∆µ̂t + βiσ,t∗∆σ̂t + εi1,t, (18)

RiQ,t = αi2,t∗ + βic2,t∗∆ct + βilnµ,t∗∆ ln µ̂t + βilnσ,t∗∆ ln σ̂t + εi2,t, (19)

where RiQ,t denotes quarterly option portfolio returns and t ∈ {t∗ − 39, t∗}.

Figure 2 2 presents time-series average of β̂ic1, β̂
i
µ, β̂iσ, β̂ic2, β̂

i
lnµ, and β̂ilnσ for each portfolio

formed with simple option returns. As observed from Figure 2, there does not exist a very clear

pattern in β̂iµ, β̂iσ, β̂ilnµ or β̂ilnσ. In terms of consumption mean betas, β̂iµ tends to decrease as

moneyness of portfolios increases and β̂ilnµ is quite stable among portfolios, if those of portfolio

1 are excluded. At the same time, β̂iσ and β̂ilnσ are quite volatile among portfolios. But we can

observe from the graph that low-moneyness portfolios have relatively higher consumption growth

betas (β̂ic1 and β̂ic2) and high-moneyness portfolios have lower consumption growth betas. That is to

say, low-moneyness portfolios have higher consumption growth risks. However, different situation

applies in risk loadings for delta-hedged option portfolio returns, as shown in Figure 3 3. Low-

moneyness portfolios tend to have larger negative consumption growth betas (β̂ic1 and β̂ic2). For

delta-hedged returns, low-moneyness portfolios also load more on consumption growth risks than

high-moneyness portfolios. For consumption mean betas, both β̂iµ and β̂ilnµ display a sharp drop

2Data used in Figure 2 are presented in Table 7 in the Appendix.
3Data used in Figure 3 are presented in Table 8 in the Appendix.
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from portfolio 1 to portfolio 2 and stay relatively stable among other portfolios. As for consumption

volatility betas, both β̂iσ and β̂ilnσ increase sharply from portfolio 1 to portfolio 4 and drop slightly

from portfolio 4 to portfolio 10.

[Insert Figure 2 here.]

[Insert Figure 3 here.]

3.2.4 Fama-MacBeth Regressions

As in Boguth and Kuehn (2013), we cross-sectionally regress monthly option portfolio returns

on their latest available risk loadings:

RiM,t+1 = ϕ0,t+1 + ϕ1,t+1β̂
i
c1,t + ϕ2,t+1β̂

i
µ,t + ϕ3,t+1β̂

i
σ,t + ηi1,t+1, (20)

RiM,t+1 = φ0,t+1 + φ1,t+1β̂
i
c2,t + φ2,t+1β̂

i
lnµ,t + φ3,t+1β̂

i
lnσ,t + ηi2,t+1. (21)

RiM,t+1 is monthly option portfolio return. The risk loadings β̂ic1,t, β̂
i
µ,t, β̂

i
σ,t, β̂

i
c2,t, β̂

i
lnµ,t and β̂ilnσ,t

are estimated from the first-pass regression (18) and (19).

[Insert Table 5 here]

The results of the Fama-MacBeth regressions are presented in Table 5. Panel A displays Fama-

MacBeth regression coefficient estimates of two specifications for simple option portfolio returns.

In specification 1, risk loading on consumption growth do not predict cross-sectional differences in

returns, as indicated by the insignificant average coefficient on βic1,t. β
i
µ,t and βiσ,t have significantly

positive cross-sectional risk premiums at the same time, which is not consistent with the theoretical

prediction. Because risk premiums for βiµ,t and βiσ,t should have opposite signs no matter whether

EIS is greater than or less than the inverse of RRA. Coefficient estimations of specification 2 are

completely different with those of specification 1. Risk premiums for βic2,t and βilnµ,t are significantly

positive and negative. And risk loading on log change of perceived consumption volatility, βilnσ,t,

can not predict variations in cross-sectional returns. The inconsistency of significant cross-sectional
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risk premiums between specification 1 and 2 makes it difficult to draw reliable inferences on model

parameters.

Panel B demonstrates estimates for delta-hedged option portfolio returns. Different from results

shown in panel A, estimations of specification 1 and 2 are consistent, which provides strong evidence

to infer model parameters described in Section 2. In both specifications, consumption growth betas

(βic1,t and βic2,t) have a strong power to predict cross-sectional variations in returns. Portfolios with

high consumption growth betas will have higher returns next period, which is consistent with the

theoretical prediction. And portfolios with high consumption volatility betas will have lower returns

next period, as indicated by significantly negative risk premiums of βiσ,t and βilnσ,t. Moreover,

βilnµ,t has a positive risk premium at the same time. The estimated price of consumption growth

risk, expected consumption growth risk and consumption volatility risk are significantly positive

and negative, suggesting that EIS should be greater than the inverse of RRA. This empirical

finding strongly supports the long-run risk model of Bansal and Yaron (2004), and with those three

significant risk premiums for βic2,t, β
i
lnµ,t and βilnσ,t, we can even infer the value range of γ and ψ.

3.2.5 Pricing of Changes in Prior Beliefs

The theory outlined in Section 2 implies that changes in beliefs about consumption growth

states are priced sources of risk, and thus exposure to these risks should predict a spread in future

returns. To examine how changes in beliefs are priced, similarly, we use two-pass regressions. First,

for each portfolio, we estimate risk loadings from a time-series regression of quarterly portfolio

returns on consumption growth (∆ct), and changes in beliefs about high mean-low variance (∆ξ1,t),

high mean-high variance (∆ξ2,t), and low mean-low variance (∆ξ3,t) consumption growth states. In

the second pass, the prices of risk are estimated by cross-sectionally regressing monthly portfolio

returns on first-pass loadings. The exact empirical specification is given by

RiQ,t = αi3,t∗ + βic3,t∗∆ct + βiξ1,t∗∆ξ1,t + βiξ2,t∗∆ξ2,t + βiξ3,t∗∆ξ3,t + εi3,t, (22)

RiM,t+1 = ω0,t+1 + ω1,t+1β̂
i
c3,t + ω2,t+1β̂

i
ξ1,t + ω3,t+1β̂

i
ξ2,t + ω4,t+1β̂

i
ξ3,t + ηi3,t+1. (23)
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where β̂ic3,t, β̂
i
ξ1,t

, β̂iξ2,t and β̂iξ3,t are estimated from the first pass regression (22) and t ∈ {t∗ − 39, t∗}.

[Insert Table 6 here]

The Fama-MacBeth regression estimations are reported in Table 6. Panel A presents estimates

for simple option portfolio return, and panel B for delta-hedged option portfolio return. In panel

B, risk premiums for βic3,t and βiξ3,t are significantly positive, which is consistent with empirical

results in Section 3.2.4 and supports that EIS is greater than the inverse of RRA. In panel A, risk

premiums for βic3,t, β
i
ξ1,t

and βiξ3,t are significantly positive, however, βiξ2,t has a significantly negative

risk premium. Risk premiums for βic3,t, β
i
ξ1,t

, βiξ2,t and βiξ3,t should all be positive, assuming that

EIS is larger than the inverse of RRA. With these results, we can figure out that the mispricing of

changes in beliefs of high mean-high variance consumption growth state caused the mispricing of βiσ,t

in Section 3.2.4. More importantly, for both simple and delta-hedged option returns, consumption

growth beta has a strong power to predict returns next period.

4 Conclusion

We follow Lettau, Ludvigson, and Wachter (2008), who generalize Bansal and Yaron (2004) to

account for the latent nature of the conditional first and second moments of consumption growth.

In the model, we identify conditional mean and volatility of consumption growth as two variables

that affect the wealth-consumption ratio and thus asset prices.

To test theoretical predictions, we estimate a Markov model with two states for the conditional

mean and two states for the conditional volatility of consumption growth. Using estimated beliefs

and parameters from the Markov model, we empirically test the pricing implications for the cross-

section of simple and delta-hedged option returns. We sort simple and delta-hedged option returns

with specified time-to-maturities into 10 equally weighted portfolios based on moneyness. Using

option portfolio returns in cross-sectional pricing tests, we show that loadings on consumption

growth and changes in expected consumption growth significantly positively forecast delta-hedged

returns and those on consumption growth volatility significantly negatively forecast delta-hedged

returns. However, no clear evidence shows how consumption mean beta and consumption volatility

beta are priced in the cross-section of simple option returns.
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To figure out what caused the inconsistency between empirical evidences in simple and delta-

hedged returns, we apply the third empirical test specification. We confirm that exposure to

consumption growth is a positively priced source of risk in both simple and delta-hedged option

returns. The mispricing of beliefs in high mean-high variance consumption growth state leads to

the mispricing of changes in expected consumption growth and consumption volatility in simple

option returns. In the context of our model, our findings lend strong support for the long-run risk

model of Bansal and Yaron (2004), in particular, preference for early resolution of uncertainty.
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Table 1: Change of Wealth-Consumption Ratio

We simulate 500 economies for 150 years at the quarterly frequency. Panel A displays regression results when γ > 1
ψ

and ψ > 1, panel B when γ > 1
ψ

and ψ < 1, panel C when γ < 1
ψ

and ψ > 1 and panel D when γ < 1
ψ

and ψ < 1. In
all the panels, the representative agent has a rate of time preference of 0.995. The first, second and third regressions
are regression (13), regression (11) and regression (12) respectively. We report the average regression coefficient and
average R2. We do not report the intercepts since they are very close to 0.

∆ξ1 ∆ξ2 ∆ξ3 ∆µ̂ ∆σ̂ ∆ ln µ̂ ∆ ln σ̂ R2

Panel A: γ > 1
ψ , ψ > 1

γ = 10, ψ = 1.5

0.0104 0.0100 0.0006 0.9982

2.0196 -0.1684 0.9981

0.0067 -0.0015 0.9280

Panel B: γ > 1
ψ , ψ < 1

γ = 10, ψ = 0.5

-0.0301 -0.0289 -0.0016 0.9983

-5.8516 0.4784 0.9982

-0.0195 0.0043 0.9285

Panel C: γ < 1
ψ , ψ > 1

γ = 0.65, ψ = 1.5

0.0092 0.0092 0.0001 0.9999

1.8696 -0.0255 0.9999

0.0063 -0.0009 0.9472

Panel D: γ < 1
ψ , ψ < 1

γ = 1.9, ψ = 0.5

-0.0272 -0.0270 -0.0005 0.9999

-5.4822 0.1205 0.9999

-0.0184 0.0028 0.9450
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Table 2: Signs of Risk Premiums

This table reports signs of risk premiums (λµ, λσ, λlnµ, λlnσ, λξ1 , λξ2 , and λξ3) when EIS is greater than and less
than the inverse of the RRA.

λµ λσ λlnµ λlnσ λξ1 λξ2 λξ3

ψ > 1
γ + − + − + + +

ψ < 1
γ − + − + − − −

Table 3: Markov Model of Consumption Growth

This table reports parameter estimates of the Markov model for log consumption growth,

∆ct+1 = µt + σtεt+1,

where µt denotes the conditional mean, σt denotes the conditional standard deviation and εt+1 is standard normal.
The conditional first and second moments of the consumption growth process switch jointly with transition matrices
P µ and P σ, respectively, given by

P µ =

[
phhµ 1 − pllµ

1 − phhµ pllµ

]
P σ =

[
phhσ 1 − pllσ

1 − phhσ pllσ

]
.

The estimation procedure follows Hamilton (1994). We use quarterly per capita real consumption expenditure for
nondurable goods and services for the years 1952.Q1 to 2016.Q4. t-statistics are reported in parentheses.

Panel A: Total Consumption Growth (%)

µl µh σl σh

0.0844 0.5741 0.2151 0.4894

(1.44) (14.31) (7.85) (8.99)

Panel B: Marginal Transition Probabilities

pllµ phhµ pllσ phhσ

0.87 0.96 0.94 0.95

(14.89) (42.72) (18.96) (20.75)
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Figure 1: Bayesian Beliefs about the Mean and Volatility State

This figure displays the estimated Bayesian belief processes for being in the high expected growth rate state (top
figure) and high volatility state (bottom figure). The estimation procedure follows Hamilton (1994). We use quarterly
per capita real consumption expenditure for nondurable goods and services for the years 1952.Q1 to 2016.Q4.
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Table 4: Portfolios Formed on Moneyness

This table reports average equally-weighted quarterly and monthly returns of independent univariate sorts based
on lag-one-period moneyness. Lag-one-period time-to-maturities for quarterly and monthly returns are 106 to 176
days and 30 to 90 days respectively. Panel A are portfolios formed with simple option returns and panel B with
delta-hedged option returns. t-statistics are reported in parentheses. The sample period is 1996.Q1 to 2016.Q1 for
quarterly returns and January 1996 to April 2016 for monthly returns.

Panel A: Panel B:

Simple Returns Delta-Hedged Returns

Moneyness Portfolio Quarterly Monthly Quarterly Monthly

Low 1 1.4862 0.7414 -0.0357 -0.0174

(6.71) (13.54) (-8.65) (-15.38)

2 0.6039 0.4906 -0.0305 -0.0143

(6.33) (10.77) (-7.02) (-12.13)

3 0.2686 0.3170 -0.0229 -0.0113

(3.82) (8.64) (-5.38) (-9.96)

4 0.1930 0.2049 -0.0216 -0.0098

(2.60) (6.10) (-5.35) (-9.44)

5 0.0396 0.0865 -0.0177 -0.0083

(0.71) (2.93) (-4.77) (-8.41)

6 -0.0712 -0.0048 -0.0167 -0.007

(-1.60) (-0.18) (-4.62) (-7.81)

7 -0.1477 -0.088 -0.0149 -0.0067

(-3.49) (-3.77) (-4.46) (-7.56)

8 -0.236 -0.1400 -0.0141 -0.0055

(-5.96) (-6.89) (-4.34) (-6.66)

9 -0.3017 -0.1772 -0.0132 -0.0047

(-8.92) (-9.78) (-4.15) (-5.90)

High 10 -0.3647 -0.2153 -0.0099 -0.0039

(-11.68) (-14.03) (-3.57) (-5.24)

H-L 10-1 -1.8509 -0.9568 0.0257 0.0135

(-9.00) (-21.25) (8.58) (17.02)
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Figure 2: Risk Loadings for Simple Option Portfolio Returns

This graph displays time-series average of β̂ic1, β̂iµ, β̂iσ, β̂ic2, β̂ilnµ and β̂ilnσ for each portfolio formed with simple option

returns. β̂ic1, β̂iµ and β̂iσ are estimated from regression (18), and β̂ic2, β̂ilnµ and β̂ilnσ are from regression (19). In the

graph, consumption growth beta (1) represents β̂ic1, and consumption growth beta (2) represents β̂ic2. Similarly,
consumption mean beta (1) and (2) denote β̂iµ and β̂ilnµ, and consumption volatility beta (1) and (2) represent β̂iσ
and β̂ilnσ respectively. The sample period is 1996.Q1 to 2016.Q1.
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Figure 3: Risk Loadings for Delta-Hedged Option Portfolio Returns

This graph displays time-series average of β̂ic1, β̂iµ, β̂iσ, β̂ic2, β̂ilnµ and β̂ilnσ for each portfolio formed with delta-hedged

option returns. β̂ic1, β̂iµ and β̂iσ are estimated from regression (18), and β̂ic2, β̂ilnµ and β̂ilnσ are from regression (19). In

the graph, consumption growth beta (1) represents β̂ic1, and consumption growth beta (2) represents β̂ic2. Similarly,
consumption mean beta (1) and (2) denote β̂iµ and β̂ilnµ, and consumption volatility beta (1) and (2) represent β̂iσ
and β̂ilnσ respectively. The sample period is 1996.Q1 to 2016.Q1.
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Table 5: Fama-MacBeth Regressions

This table reports cross-sectional regressions of monthly returns on lagged estimated risk loadings. The first set of
risk loadings is obtained from 10-year rolling time-series regressions of quarterly simple and delta-hedged portfolio
returns on log consumption growth, βic1,t, and changes in the perceived conditional mean, βiµ,t, and volatility of
consumption growth, βiσ,t. The second set of risk loadings is estimated from regressing on log consumption growth,
βic2,t, and log changes in the perceived conditional mean, βilnµ,t, and volatility of consumption growth, βilnσ,t. We
report Fama-MacBeth regression coefficients. t-statistics are reported in parentheses. The sample period is May 2006
to April 2016.

Intercept βic1,t βiµ,t βiσ,t βic2,t βilnµ,t βilnσ,t

Panel A: Simple Option Portfolio Return

-0.1071 -0.0410 0.0957 0.1210

(-2.30) (-0.25) (2.40) (5.96)

-0.1589 0.6713 -0.6084 0.0080

(-3.71) (3.97) (-4.92) (1.12)

Panel B: Delta-Hedged Option Portfolio Return

0.0033 0.4240 0.0104 -0.0193

(2.37) (8.66) (1.12) (-3.21)

0.0040 0.4424 0.0565 -0.0548

(2.81) (8.36) (2.25) (-2.87)
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Table 6: Pricing of Changes in Beliefs

This table reports cross-sectional regressions of monthly returns on lagged estimated risk loadings. Risk loadings
are obtained from 10-year rolling time-series regressions of quarterly simple and delta-hedged portfolio returns on
log consumption growth (βic3,t), and changes in the prior beliefs of high mean-low variance (βiξ1,t), high mean-high
variance (βiξ2,t) and low mean-low variance (βiξ3,t) consumption growth states. We report Fama-MacBeth regression
coefficients. t-statistics are reported in parentheses. The sample period is May 2006 to April 2016.

Intercept βic3,t βiξ1,t βiξ2,t βiξ3,t

Panel A: Simple Option Portfolio Return

-0.2151 1.1741 0.0830 -0.2673 0.1871

(-6.16) (6.06) (2.15) (-8.75) (3.78)

Panel B: Delta-Hedged Option Portfolio Return

0.0016 0.3365 -0.0188 -0.0047 0.0711

(0.97) (7.20) (-1.12) (-0.46) (2.86)
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5 Appendix

To test the model in the cross-section of returns, it is convenient to restate the Euler equation

in terms of betas,

Et
[
Rei,t+1

]
≈ −Covt (Ri,t+1,mt+1)

= γCovt (Ri,t+1,∆ct+1)−

(
1
ψ − γ
1− 1

ψ

)
Covt (Ri,t+1,∆zt+1)

= γCovt (Ri,t+1,∆ct+1)−

(
1
ψ − γ
1− 1

ψ

)[
A1Covt (Ri,t+1,∆µ̂t+1)

+A2Covt (Ri,t+1,∆σ̂t+1)
]

= βic1,tλc1,t + βiµ,tλµ,t + βiσ,tλσ,t (24)

with

βic1,t =
Covt (Ri,t+1,∆ct+1)

Vart (∆ct+1)
βiµ,t =

Covt (Ri,t+1,∆µ̂t+1)

Vart (∆µ̂t+1)
βiσ,t =

Covt (Ri,t+1,∆σ̂t+1)

Vart (∆σ̂t+1)
,

and

λc1,t = γVart (∆ct+1) λµ,t = A1

(
γ − 1

ψ

1− 1
ψ

)
Vart (∆µ̂t+1) λσ,t = A2

(
γ − 1

ψ

1− 1
ψ

)
Vart (∆σ̂t+1) ,

βic1,t, β
i
µ,t, β

i
σ,t denote risk loadings of asset i at date t with respect to consumption growth and

changes in the perceived first and second moments of consumption growth, and λc1,t, λµ,t, λσ,t are

market prices of those betas.

Or

= γCovt (Ri,t+1,∆ct+1)−

(
1
ψ − γ
1− 1

ψ

)[
B1Covt (Ri,t+1,∆ ln µ̂t+1)

+B2Covt (Ri,t+1,∆ ln σ̂t+1)
]

= βic2,tλc1,t + βilnµ,tλlnµ,t + βilnσ,tλlnσ,t (25)

26



with

βic2,t =
Covt (Ri,t+1,∆ct+1)

Vart (∆ct+1)
βilnµ,t =

Covt (Ri,t+1,∆ ln µ̂t+1)

Vart (∆ ln µ̂t+1)

βilnσ,t =
Covt (Ri,t+1,∆ ln σ̂t+1)

Vart (∆ ln σ̂t+1)
,

and

λc2,t = γVart (∆ct+1) λlnµ,t = B1

(
γ − 1

ψ

1− 1
ψ

)
Vart (∆ ln µ̂t+1)

λlnσ,t = B2

(
γ − 1

ψ

1− 1
ψ

)
Vart (∆ ln σ̂t+1) ,

similarly, βic2,t, β
i
lnµ,t, β

i
lnσ,t are risk loadings of asset i at date t with respect to consumption growth

and log changes in the perceived first and second moments of consumption growth, and λc2,t, λlnµ,t,

λlnσ,t are market prices of those betas.

Or

= γCovt (Ri,t+1,∆ct+1)−

(
1
ψ − γ
1− 1

ψ

)[
C1Covt (Ri,t+1,∆ξ1,t+1)

+ C2Covt (Ri,t+1,∆ξ2,t+1) + C3Covt (Ri,t+1,∆ξ3,t+1)
]

= βic3,tλc3,t + βiξ1,tλξ1,t + βiξ2,tλξ2,t + βiξ3,tλξ3,t, (26)

with

βic3,t =
Covt (Ri,t+1,∆ct+1)

Vart (∆ct+1)
βiξ1,t =

Covt (Ri,t+1,∆ξ1,t+1)

Vart (∆ξ1,t+1)

βiξ2,t =
Covt (Ri,t+1,∆ξ2,t+1)

Vart (∆ξ2,t+1)
βiξ3,t =

Covt (Ri,t+1,∆ξ3,t+1)

Vart (∆ξ3,t+1)

27



and

λc3,t = γVart (∆ct+1) λξ1,t = C1

(
γ − 1

ψ

1− 1
ψ

)
Vart (∆ξ1,t+1)

λξ2,t = C2

(
γ − 1

ψ

1− 1
ψ

)
Vart (∆ξ2,t+1) λξ3,t = C3

(
γ − 1

ψ

1− 1
ψ

)
Vart (∆ξ3,t+1) ,

and βic3,t, β
i
ξ1,t

, βiξ2,t, β
i
ξ3,t

denote risk loadings of asset i at date t with respect to consumption

growth and changes in beliefs of high mean-low variance, high mean-high variance and low mean-

low variance consumption growth states, and λc3,t, λξ1,t, λξ2,t, λξ3,t are market prices of those

betas.
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Table 7: Risk Loadings for Simple Option Portfolio Returns

This table reports average β̂ic1, β̂iµ, β̂iσ, β̂ic2, β̂ilnµ and β̂ilnσ for each portfolio formed with simple option returns.

β̂ic1, β̂iµ and β̂iσ are estimated from regression (18), and β̂ic2, β̂ilnµ and β̂ilnσ are from regression (19). t-statistics are
reported in parentheses. The sample period is 1996.Q1 to 2016.Q1.

Portfolio β̂ic1 β̂iµ β̂iσ β̂ic2 β̂ilnµ β̂ilnσ

1 0.2559 -0.4515 -0.4403 0.3343 -0.5709 -0.1553

(2.55) (-3.55) (-0.68) (3.47) (-10.64) (-0.70)

2 0.3514 0.9996 -1.0515 0.3880 0.1414 -0.4178

(5.85) (7.37) (-1.83) (6.37) (3.16) (-2.14)

3 0.2929 0.8970 -1.6633 0.3336 0.1414 -0.5588

(8.50) (13.29) (-4.43) (8.82) (6.36) (-4.20)

4 0.2989 0.7934 -1.7875 0.3109 0.2119 -0.6061

(6.24) (12.92) (-5.49) (6.50) (11.45) (-5.48)

5 0.3223 0.5193 -0.3490 0.3391 0.1182 -0.1049

(14.05) (5.89) (-1.29) (12.93) (2.98) (-1.07)

6 0.2505 0.4711 -1.4082 0.2613 0.1209 -0.4532

(9.26) (6.66) (-7.85) (9.39) (4.32) (-7.24)

7 0.2518 0.5106 -0.1374 0.2621 0.1296 -0.0376

(10.57) (5.45) (-0.81) (10.35) (3.46) (-0.63)

8 0.1621 0.9540 -0.5188 0.1808 0.2446 -0.1916

(11.60) (16.63) (-3.85) (10.76) (9.30) (-4.00)

9 0.1527 0.4270 -0.4273 0.1575 0.1349 -0.1203

(17.26) (7.43) (-5.75) (15.54) (5.38) (-4.46)

10 0.1560 0.5635 -0.9449 0.1710 0.1450 -0.3145

(15.54) (15.89) (-11.71) (13.58) (8.86) (-9.94)
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Table 8: Risk Loadings for Delta-Hedged Option Portfolio Returns

This table reports average β̂ic1, β̂iµ, β̂iσ, β̂ic2, β̂ilnµ and β̂ilnσ for each portfolio formed with delta-hedged option returns.

β̂ic1, β̂iµ and β̂iσ are estimated from regression (18), and β̂ic2, β̂ilnµ and β̂ilnσ are from regression (19). t-statistics are
reported in parentheses. The sample period is 1996.Q1 to 2016.Q1.

Portfolio β̂ic1 β̂iµ β̂iσ β̂ic2 β̂ilnµ β̂ilnσ

1 -0.0469 0.0672 -0.1162 -0.0455 0.0172 -0.0488

(-23.50) (8.36) (-4.60) (-22.74) (5.18) (-6.36)

2 -0.0327 -0.0302 -0.0022 -0.0310 -0.0179 -0.0086

(-22.44) (-4.68) (-0.18) (-21.88) (-6.32) (-2.55)

3 -0.0310 -0.0100 0.0146 -0.0305 -0.0056 -0.0036

(-19.84) (-1.20) (1.10) (-20.37) (-1.49) (-0.95)

4 -0.0221 -0.0167 0.0485 -0.0210 -0.0113 0.0086

(-16.20) (-2.51) (4.30) (-15.74) (-4.07) (2.60)

5 -0.0259 0.0002 -0.0064 -0.0253 -0.0036 -0.0083

(-20.76) (0.04) (-0.89) (-21.64) (-1.24) (-3.80)

6 -0.0231 -0.0107 0.0101 -0.0229 -0.0048 -0.0029

(-20.33) (-2.02) (0.82) (-22.27) (-1.86) (-0.78)

7 -0.0161 -0.0172 0.0067 -0.0163 -0.0067 -0.0023

(-12.40) (-3.59) (1.04) (-14.20) (-2.92) (-1.19)

8 -0.0229 -0.0160 -0.0171 -0.0229 -0.0069 -0.0105

(-14.34) (-4.04) (-1.48) (-15.69) (-4.02) (-2.84)

9 -0.0170 -0.0273 -0.0060 -0.0168 -0.0113 -0.0069

(-11.81) (-6.89) (-0.88) (-12.79) (-6.91) (-3.19)

10 -0.0231 -0.0141 -0.0174 -0.0238 -0.0040 -0.0092

(-24.26) (-3.83) (-4.38) (-29.81) (-3.88) (-6.64)
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