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Abstract

We introduce parsimonious extensions of the Realized Exponential GARCH
model (REGARCH) to capture evident long-range dependence in the con-
ditional variance process. The extensions decompose conditional variance
into a short-term and a long-term component. The latter utilizes mixed-data
sampling or a heterogeneous autoregressive structure, avoiding parameter
proliferation otherwise incurred by using the classical ARMA structures
embedded in the REGARCH. The proposed models are dynamically complete,
facilitating multi-period forecasting. A thorough empirical investigation with
an exchange-traded fund that tracks the S&P 500 Index and 20 individual
stocks shows that our models better capture the autocorrelation structure
of volatility. This leads to substantial improvements in empirical fit and
predictive ability (particularly beyond short horizons) relative to the original
REGARCH.
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I. Introduction

The Realized GARCH model (RGARCH) and Realized Exponential GARCH model®
(REGARCH) (Hansen, Huang, and Shek, 2012; Hansen and Huang, 2016) provide
an advantageous structure for the joint modeling of stock returns and realized
measures of their volatility. The models facilitate exploitation of granular infor-
mation in high-frequency data by including realized measures, which constitute
a much stronger signal on the latent volatility than squared returns (Andersen,
Bollerslev, Diebold, and Labys, 2001, 2003). Various models have been proposed
to utilize similar information with notable innovations including the GARCH-X
model (Engle, 2002), the multiplicative error model (Engle and Gallo, 2006), and
the HEAVY model (Shephard and Sheppard, 2010).

It is, however, generally recognized that volatility is highly persistent. This
persistence is typically documented via a positive and slowly decaying autocorre-
lation function (long-range dependence) or a persistence parameter close to unity,
known as the "integrated GARCH effect". Despite the empirical success of the
R(E)GARCH models, these models do not adequately capture this dependency
structure in volatility (both latent and realized) without proliferation in param-
eters. Indeed, Hansen and Huang (2016) point out that the REGARCH does a
good job at modeling the returns, but falls short in terms of describing the dy-
namic properties of the realized measure. In the class of GARCH models without
realized measures, several contributions have been made to account for these
two stylized features. A few notable references include the Integrated GARCH
(Engle and Bollerselv, 1986), the Fractionally Integrated (E)GARCH (Baillie,
Bollerslev, and Mikkelsen, 1996; Bollerslev and Mikkelsen, 1996), FIAPARCH
(Tse, 1998), regime-switching GARCH (Diebold and Inoue, 2001), HYGARCH
(Davidson, 2004), the Spline-GARCH (Engle and Rangel, 2008), and the time-
varying component GJR-GARCH (Amado and Terésvirta, 2013). In the class
of R(E)GARCH models, Vander Elst (2015) proposed a fractionally integrated
REGARCH, whereas Huang, Liu, and Wang (2016) suggested the addition of a

weekly and monthly averaged realized measure in the GARCH equation of the

IThe REGARCH is a generalization of the RGARCH model with a more flexible specification
of the leverage function supposed to better capture the asymmetric relationship between stock
returns and volatility.



RGARCH.

In this paper, we introduce parsimonious extensions of the REGARCH to capture
this evident high persistence by means of a decomposition of the conditional vari-
ance. We utilize a multiplicative decomposition into a short-term and long-term
component. This structure is particularly useful since it enables explicit mod-
elling of a "baseline volatility", whose level arguably shifts over time, and is the
basis around which short-term movements occur. Such as structure is motivated
by Mikosch and Starica (2004), who show that long-range dependence and the
integrated GARCH effect may be explained by level shifts in the unconditional
variance, and by Amado and Terasvirta (2013), who support this finding empiri-

cally in a multiplicative component version of the GJR-GARCH model.?

The idea of decomposing volatility originates from Engle and Lee (1999) and
has primarily been used to empirically support countercyclicality in stock market
volatility (see e.g. Engle, Ghysels, and Sohn (2013) and Dominicy and Vander Elst
(2015)). The multiplicative component structure (see e.g. Feng (2004), Engle and
Rangel (2008), Engle et al. (2013) and Laursen and Jakobsen (2017)) is appealing
since it is intuitive and facilitates parsimonious specifications of a slow-moving
component in volatility. Moreover, it allows for great flexibility as opposed to
formal long-memory models employing, e.g., fractional integration. Whether
the high persistence arises due to structural breaks, fractional integration or
another source (see e.g. Lamoureux and Lastrapes (1990), Diebold and Inoue
(2001), Hillebrand (2005), McCloskey and Perron (2013), and Varneskov and
Perron (2017)) our proposed models are able to reproduce the high persistence
of volatility observed in stock return data and alleviate the integrated GARCH
effect, without formally belonging to the class of long-memory models. This plays
an important role in stationarity of the short-term component and existence of
the unconditional variance (which requires the persistence parameter | 8| < 1), but
also provides a means to obtain improved multi-step forecasts by reducing the
long-lasting impact of the short-term component and its innovations (via faster

convergence to the baseline volatility).

2Conrad and Kleen (2016) also show formally that the autocorrelation function of squared
returns is better captured by a multiplicative GARCH specification rather than its nested
GARCH(1,1) model, arising from the persistence in the long-term component.



When specifying our models, we retain the dynamics of the short-term component
like those from a first-order REGARCH, but model the long-term component ei-
ther via mixed-data sampling (MIDAS) or a heterogeneous autoregressive (HAR)
structure. The former specifies the slow-moving component as a weighted average
of weekly or monthly aggregates of the realized measure with the backward-
looking window and weights estimated from the data. The MIDAS concept was
originally introduced in a regression framework (Ghysels, Santa-Clara, and Valka-
nov, 2004, 2005; Ghysels, Sinko, and Valkanov, 2007), allowing for the left-hand
and right-hand variables to be sampled at different frequencies. It has recently
been incorporated successfully into the GARCH framework with the GARCH-
MIDAS proposal of Engle et al. (2013). The latter is motivated by the simple,
yet empirically successful HAR model by Corsi (2009), which approximates the
dependencies in volatility by a simple additive cascade structure of a daily, weekly
and monthly component of realized measures. Both our extensions introduce
only two or three additional parameters, hence avoid parameter proliferation
otherwise incurred by means of the classical ARMA structures embedded in the
original REGARCH. Moreover, they remain dynamically complete. That is, the
models fully characterize the dynamic properties of all variables included in the
model. This property is especially relevant for forecasting purposes, since it
allows for multi-period forecasting. This contrasts GARCH-X models, which only
provide forecasts one period into the future, and related extensions including
macroeconomic factors who typically rely on questionable assumptions about the

included variables’ dynamics.?

We apply our REGARCH-MIDAS and REGARCH-HAR to the exchange traded
index fund, SPY, which tracks the S&P500 Index, and 20 individual stocks and
compare their performances to a quadratic REGARCH-Spline and a fractionally
integrated REGARCH, the FIoEGARCH, (Vander Elst, 2015). We find that both
our proposed models better capture the autocorrelation structure of latent and

realized volatility relative to the original REGARCH, which is only able to capture

3For instance, the assumption of a random walk (Dominicy and Vander Elst, 2015)), use of
outside-generated forecasts (usually from a standard autoregressive specification) of the exogenous
variables in the model (Conrad and Loch, 2015) or the assumption that the long-term component
is constant for the forecasting horizon (Engle et al., 2013).



the dependency over the very short term. This leads to substantial improve-
ments in empirical fit (log-likelihood and information criteria) and predictive
ability, particularly beyond shorter horizons, when benchmarked to the original
REGARCH. We document, additionally, that the backward-looking horizon of
the HAR specification is too short to sufficiently capture autocorrelation beyond
approximately one month. While the REGARCH-Spline comes short relative to
our proposals (with four-five extra parameters), the FloOEGARCH performs well.
It does, however, not perform better than our best-performing REGARCH-MIDAS
specifications in-sample and lack predictive accuracy in the short-term. This
leaves the REGARCH-MIDAS as a very attractive model for capturing volatility

persistence in the REGARCH framework and improving forecasting performance.

The remainder of the paper is laid out as follows. Section II introduces our exten-
sions to the original REGARCH: the REGARCH-MIDAS and the REGARCH-HAR.
Section III outlines the associated estimation procedure. Section IV summarizes
our data set, examines the empirical fit and predictive ability of our proposed
models, and introduces a procedure for generating multi-period forecasts. Section
V concludes. Technical details concerning Proposition 1 are presented in the

Appendix.

II. Persistence in a multiplicative Realized EGARCH

Let {r;} denote a time series of returns, {x;} a (vector) time series of realized
measures, and {%;} a filtration so that {r;,x;} is adapted to &;. We define the con-
ditional mean by u; = E[r;|%;_1] and the conditional variance by U? = Var[r:|%;_11.
Our aim is to allow for more flexible dependence structures in the state-of-the-art
specification of conditional variance provided by the REGARCH of Hansen and
Huang (2016). To that end, we define

ry =+ 024, (1)

where {z;} is an i.i.d. innovation process with zero mean and unit variance, and

assume that the conditional variance can be multiplicatively decomposed into two



components
02 =hig. (2)

We refer to h; as the short-term component, supposed to capture day-to-day (high-
frequency) fluctuations in the conditional variance (see e.g. Engle et al. (2013), and
Wang and Ghysels (2015)). On the contrary, g; is supposed to capture secular (low-
frequency) movements in the conditional variance, henceforth referred to as the
long-term component or baseline volatility. With the multiplicative decomposition
in (2), we extend a daily REGARCH(1,1) (with a single realized measure) to

ri= s+ 02, 3)
logh; = flogh;—1+7(24-1) + auy-1, (4)
logx; = &+ Pploga? +8(zy) + uy, (5)
logg: =w+ f(xs-2,%-3,...5M), (6)

where f(-;n) is a &;_1-measurable function, which can be linear or non-linear.
The equations are labelled as the "return equation”, the "GARCH equation", the
"measurement equation", and the "long-term equation", respectively. For identifi-
cation purposes, we have omitted an intercept in (4). The leverage functions, 7(-)
and 6(-), facilitate modeling of the dependence between return innovations and
volatility innovations shown to be empirically important (see e.g. Christensen,
Nielsen, and Zhu (2010)). In addition, they play an important role in making the
assumption of independence between z; and u; empirically realistic (Hansen and
Huang, 2016). We adopt the quadratic form of the leverage functions based on

the second-order Hermite polynomial,

1(2)=T12+19(z% - 1), )]

6(z) =61z +69(z2 - 1). (8)

The leverage functions have a flexible form and imply E[7(z)] = E[6(z)] = 0 when
E[z] =0 and Var[z] = 1. Thus, if |B| < 1, our identification restriction implies that
E[logh;]= 0 such that E[logo?] =E[logg;].* In the (Quasi-)Maximum Likelihood

4The GARCH equation implies that logh; = 8/ logh;_j+ Z{;é B [1(z4-1-;) + aus_1—;] such that
logh; has a stationary representation if || < 1.



analysis below, we employ a Gaussian specification like Hansen and Huang (2016)
with z; ~N(0,1) and u; ~N(O, 03), and z;,u; mutually and serially independent.®
We check the validity of this approach via a parametric bootstrap in Section IIT

below.

The return and GARCH equation are canonical in the GARCH literature. In
the return equation, the conditional mean, u;, may be modeled in various ways
including a GARCH-in-Mean specification or simply as a constant.® Following
the latter approach, we estimate the constant y; = y. In our multiplicative specifi-
cation, the GARCH equation drives the dynamics of the high-frequency part of
latent volatility. The dynamics are specified as a slightly modified version of the
EGARCH model of Nelson (1991) (different leverage function) with the addition
of the term au; 1 that relates the latent volatility with the innovation to the
realized measure. Hence, a represents how informative the realized measure is
about future volatility. The persistence parameter  can be interpreted as the

AR-coefficient in an AR(1) model for logh; with innovations 7(z;-1) + aus—1.

The measurement equation is the true innovation in the R(E)GARCH, which
makes the model dynamically complete. The equation links the ex-post realized
measure with the ex-ante conditional variance. Discrepancies between the two
measures are expected, since the conditional variance (and returns) refers to a
close-to-close market interval, whereas the realized measure is computed from a
shorter, open-to-close market interval. Hence, the realized measure is expected to
be smaller than the conditional variance on average. Additionally, the realized
measure may be an imperfect measure of volatility. Therefore, the equation in-
cludes both a proportional, ¢, and an exponential, ¢, correction parameter. The
innovation term, u;, can be seen as the true difference between ex-ante and

ex-post volatility.

5Watanabe (2012), Louzis, Xanthopoulos-Sisinis, and Refenes (2013) and Louzis, Xanthopoulos-
Sisinis, and Refenes (2014) assumed a skewed t-distribution in their Value-at-Risk applications.

6The mean is typically modeled as a constant since stock market returns generally are found to
be close to serially uncorrelated, see e.g. Ding, Granger, and Engle (1993) and references therein.
Sometimes the assumption of zero mean, u =0, is imposed for simplicity and may in fact generate
better out-of-sample performance, see e.g. Hansen and Huang (2016). However, in option-pricing
applications a GARCH-in-Mean specification is usually employed, see e.g. Huang, Wang, and
Hansen (2017).



Given the high persistence of the conditional variance (documented in the em-
pirical section below), simply including additional lags in the ARMA structure
embedded in the original REGARCH is not a viable solution, keeping parameter
proliferation in mind (cf. Section IV). Instead, we utilize the multiplicative com-
ponent structure, which is both intuitively appealing and maintain parsimony.
This is motivated by Mikosch and Starica (2004) who showed that the high per-
sistence can be explained by level shifts in the unconditional variance (see also
Diebold (1986) and Lamoureux and Lastrapes (1990)). On this basis, Amado and
Terasvirta (2013) proposed a multiplicative decomposition of the GJR-GARCH
model, where the "baseline volatility" changes deterministically according to the
passage of time. We may, therefore, enable capturing high persistence via the
structure proposed above, when the long-term component in (6) is specified as
a slow-moving baseline volatility around which stationary short-term fluctua-
tions occur via the standard GARCH equation. Naturally, this interpretation
(and the existence of the unconditional variance) depends on whether || < 1
holds in practice, which may be questionable on the basis on former evidence
for the original REGARCH (confirmed in Section IV). However, this integrated
GARCH effect is alleviated in our proposed models, where f is notably below unity.

Whether high persistence of the conditional variance process arises due to struc-
tural breaks, fractional integration or any other source, the long-term component,
if modeled accurately, facilitates high persistence in the REGARCH framework.
That is, we do not explicitly take a stance on the reason for the presence of
high persistence. We resort to this approach rather than developing a formal
long-memory model (see e.g. Bollerslev and Mikkelsen (1996) and Vander Elst
(2015)), since prevailing ambiguity about the origination of long memory some-
what distorts the judgement on the correct formal modeling. There exists a
long list of explanations for long memory in a time series of which a few are; (i)
cross-sectional aggregation of short-memory time series (Granger, 1980; Abadir
and Talmain, 2002; Zaffaroni, 2004; Haldrup and Valdés, 2017), (ii) temporal
aggregation across mixed-frequency series (Chambers, 1998), (iii) aggregation
through networks (Schennach, 2013), (iv) hidden cross-section dependence in

large-dimensional vector autoregressive systems (Chevillon, Hecq, and Laurent,



2015), (v) structural breaks (Granger and Ding, 1996; Parke, 1999; Diebold and
Inoue, 2001; Perron and Qu, 2007), (vi) certain types of nonlinearity (Davidson
and Sibbertsen, 2005; Miller and Park, 2010), and (vii) economic agents’ learning
(Chevillon and Mavroeidis, 2017). The various explanations do, however, not
necessarily imply the same type of long memory (see e.g. Haldrup and Valdés
(2017) for several definitions). For instance, Parke (1999) formalizes the relation
between structural changes and fractional integration, whereas the expectation
formation of economic agents in Chevillon and Mavroeidis (2017) do not yield
fractional integration, but rather apparent or spurious long memory (see e.g.
Davidson and Sibbertsen (2005) and Haldrup and Kruse (2014)).

For the remainder of this paper, we assume for clarity of exposition that x;
is one-dimensional, containing a single (potentially robust) realized measure con-
sistently estimating integrated variance (see e.g. (Andersen et al., 2001, 2003)),
such as the realized variance or the realized kernel (Barndorff-Nielsen, Hansen,
Lunde, and Shephard, 2008).” We facilitate level shifts in the baseline volatility
via the function f(-;n), which takes as input past values of the realized measure.
We make the dependence on 7 explicit in the function f(-;n), and prefer that it is
low-dimensional. If f(-;n) is constant, we obtain the REGARCH as a special case.
If f(-;n) is time-varying, past information may assist in capturing the dependency
structure of conditional variance better, potentially leading to improved in-sample
and out-of-sample properties of the models. We propose in the following sections
two ways to parsimoniously formulate f(-;n) using non-overlapping weekly and
monthly averages of the realized measure to be consistent with the idea of a
slow-moving, low-frequency component.® We model low-frequency movements in
conditional variance using (aggregates of) past information of the realized mea-
sure rather than tying it to macroeconomic state variables as in Engle et al. (2013)

and Dominicy and Vander Elst (2015). Besides proving empirically preferable

"This assumption is without loss of generality in the sense that additional realized measures
(and their associated measurement equations) can be added, though we still approximate the
long-range dependence using only past information of the realized variance, realized kernel or
another related consistent estimator for integrated variance.

8Excluding information in the realized measure on day ¢—1 from the function f(-;7) is consistent
with the formulations in the GARCH-MIDAS framework of Engle et al. (2013). The idea is to
separate the effects of the realized measure into two, such that the day-to-day effects is (mainly)
contained in the short-term component 4; via u;_; and the long-term component captures the
information contained in the realized measure further back in time.



(see e.g. Andersen and Varneskov (2014)), such a procedure renders the model in
(3)-(6) complete with dynamic specifications of all variables included in the model.
Consequently, forecasting can be conducted on the basis of the (jointly estimated)
empirical dynamics, which stands in contrast to incomplete specifications using
exogenous information (from e.g. macroeconomic variables). The latter usually
relies on unrealistic assumptions on the dynamics of the exogenous variables (e.g.
random walks (Dominicy and Vander Elst, 2015)), outside-generated forecasts
(usually from a standard autoregressive specification) of the exogenous variables
in the model (Conrad and Loch, 2015) or the assumption that the long-term com-
ponent is constant for the forecasting horizon (Engle et al., 2013). We do, however,
emphasize that our proposed model accommodates well the inclusion of exogenous

information if deemed appropriate.

In the following, we introduce two ways of modeling the low-frequency com-
ponent, g;, via formulations of f(:;n) that parsimoniously enable high persistence
in the REGARCH formulation, leading to the REGARCH-MIDAS model and the
REGARCH-HAR model.

A. The Realized EGARCH-MIDAS model

Inspired by the GARCH-MIDAS model of Engle et al. (2013), we consider the
following MIDAS specification of the long-term component

K
loggi=w+1 ) Tr(y) v 4 ©)
k=1

where I';, (y) is a parametrized (by the vector y) non-negative weighting function
satisfying the restriction Zlel“k (y) =1, and yg) = %VZ?L 110gx:-N(-1)-i 1s an
N-day average of the logarithm of the realized measure. Hence, the value of N
determines the frequency of the data feeding into the low-frequency component.
We consider in the following N € {5,22}, corresponding to weekly and monthly

averages.

By estimating y, for a given weighting function and choice of K, the term
z{j:lrk (Y) y+-1 acts as a filter, which extracts the empirically relevant infor-

mation from past values of the realized measure with assigned importance given

9



by the estimated A. That is, the lag selection process is allowed to be data driven.
In practice, we need to choose a value for K and a weighting scheme. Conventional
weighting schemes are based on the exponential, exponential Almon lag, or the
beta-weight specification. A detailed discussion can be found in Ghysels et al.
(2007), who studied the choice of weighting function in the context of MIDAS
regression models. We employ in the following the two-parameter beta-weight
specification defined by
(RIK)Y1(1 - R/K)271

Ty (y17s) = 10
e(rore) Y GERT - Ky 1o

due to its flexible form. We restrict y2 > 1, which ensures a monotonically de-
creasing weighting scheme and avoid counterintuitive schemes with, e.g., most
weight assigned to the most distant observation (see Engle et al. (2013) and
Asgharian, Christiansen, and Hou (2016) for a similar restriction).” We then
examine a single-parameter case in which we impose y; =1 and a case where Y1
is a free parameter. More rich structures for the weighting scheme can obviously
be considered by introducing additional parameters, but we will not explore that

route, since one important aim of the MIDAS models is parsimony.

As long as the weighting function is reasonably flexible, the choice of lag length
of the MIDAS component, K, is of limited importance if chosen reasonably large.
The reason is that the estimated y assigns the relevant weights to each lag simul-
taneously while estimating the entire model. Should one want to determine an
‘optimal’ K, we simply suggest to estimate the model for a range of values of K
and choose that for which higher values lead to no sizeable gain in the maximized

log-likelihood value (see also the empirical section below).

The REGARCH-MIDAS framework proposed here is easily extendable in several
ways. For instance, a multivariate extension is simply obtained by adding addi-
tional MIDAS components to (9). Hence, we may add additional high-frequency
based measures such as the daily range, the realized quarticity (see e.g. Bollerslev,
Patton, and Quaedvlieg (2016)) or additional, different estimators of integrated

variance. If the relationship between macroeconomic variables and volatility is

9We found in our empirical section below that this restriction was only binding in a few cases.

10



of interest, one may also include indicators such as GDP and production growth
rates, or inflation rates (see e.g. Engle et al. (2013)), despite them being of differ-
ent frequencies. Another direction of interest is the understanding of different
aggregation schemes of higher-frequency variables. For example, by considering a
rolling window of non-overlapping averages, our approach differs slightly from
that initially proposed in Engle et al. (2013) who used overlapping averages in
the GARCH-MIDAS context.

B. The Realized EGARCH-HAR model

Inspired by Corsi (2009), we suggest the following HAR-specification of the long-

term component

22
Zlogxt_i_l. (11)

i=i

5

logg:=w+ Yl% i:Zilngt—i—l +regg
The argument for this particular lag structure is motived by the heterogeneous
market hypothesis (Miiller et al., 1993), which suggests an account of the hetero-
geneity in information arrival due to e.g. different trading frequencies of financial
market participants. See Corsi (2009) for a more detailed discussion. This par-
ticular choice of lag structure including the lagged weekly and monthly average
of the logarithm of the realized measure is intuitive and has been empirically
successful, but is not data driven as opposed to the MIDAS lag structure. The lag
structure can be seen as a special case of the step-function MIDAS specification
in Forsberg and Ghysels (2007), which was, indeed, inspired by Corsi (2009).

ITII. Estimation

We estimate the models using (Quasi-)Maximum Likelihood (QML) consistent
with the procedures in Hansen et al. (2012) and Hansen and Huang (2016). The

log-likelihood function can be factorized as

T T
L(r,x;0) =) 0y(ry,x:50) = Y [04(rs;0) + Colacs|r;0)], (12)
t=1 t=1

where 6 = (u, 8,171,732, a,é,(p,51,62,w,n,03)’ is the vector of parameters in (3)-(6),

and ¢4(r;;0) is the partial log-likelihood, measuring the goodness of fit of the return

11



distribution. Given the distributional assumptions, z; ~ N(0,1) and u; ~ N (0,03),

and z;,u; mutually and serially independent, we have

1
li(rey;0) = -3 [log2m +loga? +22], (13)
1 2 u?
Oi(xt|rs;0) = —= [log2m +logo, + — |, (14)
2 o2

u

where z; = 24(0) = (r; — w)/o;. We initialize the conditional variance process to be
equal to its unconditional mean, i.e. loghg = 0. Alternatively, one can treat logh
as an unknown parameter and estimate it as in Hansen and Huang (2016), who
show that the initial value is asymptotically negligible. To initialize the long-term
component, logg;, at the beginning of the sample, we simply set past values of
logx; equal to logxq for the length of the backward-looking horizon in the MIDAS-
filter. This is done to avoid giving our proposed models an unfair advantage by
utilizing more data than the benchmark REGARCH. To avoid inferior local optima
in the numerical optimization, we perturb starting values and re-estimate the

parameters for each perturbation.

A. Score function

Since the scores define the first order conditions for the maximum-likelihood
estimator and facilitate direct computation of standard errors for the coefficients,
we present closed-form expressions for the scores in the following. To simplify
notation, we write 7(2) = 7'a(z) and 6(2) = §'b(z) with a(z) = b(z) = (2,22 - 1)', and
let d,, = 0a(z;)/0z; and 62t = 0b(z;)/0z;. In addition, we define 61 = (8,71,72,a),

62 = (€,¢;51,52),7 m; = (loght’a(zt)lyut),’ and ng = (1)10g0-?’ b(zt),),-

Proposition 1 (Scores). The scores, % = Zthl %, are given from

A Ut g 1
B(zg,uphys— |2: -6 ébzt o
B(zt,ut)ho,

0ty B(ztﬂut)h02,t+;t_§nt (15)
06 Bz, ut)hos+ Dz u)g oy ,

B(zt,ut)hr},t +D(z¢,us)gn,

2 2
1U;—0y

2 ot

12



where

Ologh 1 .
A(zy) = ﬁ = (,3— a¢) + 5 (a6’bzt _T,dzt)zt, (16)
t
0¢ 1 u .
B(zs,uy) = Ologtht =-3 [(1—z?)+ U—; (5’bztzt—2(/))] , (17)
u
dlogh 1 .
C(zp) = % :—a(p+§(a6'bzt—‘[/dzt)zt, (18)
¢
o¢ 1 u .
D(zy,u;) = alogtgt =-3 [(l—z?)+a—;(6'bzt2t—2¢)]. (19)
Furthermore, we have
: Ologh . . o 1
Pl = T”l = A(zp)h,, + (ad'b,, —T’azt)a—t, (20)
. Ologh .
ho 41 = % =A(zp)hg, 1 + my, (21)
. Ologh .
hopie1 = % = Az)hgy s + any, 22)
2
. Ologh .
hoi1 = % = Az)hy +C(2), 23)
. Ologh .
hpo1 = % = A2y +C(z)éns, (24)

where g, depends on the specification of f(-;n) and is therefore presented in
Appendix A.

By corollary, the score function is a Martingale Difference Sequence (MDS), pro-
vided that E[z:|F_1]1=0, E [22|F;_1] = 1, E[uslzs, Fi-11 =0, and E [u?|z;, Fi1] =
03, which is useful for future analysis of the asymptotic properties of the QML

estimator.?

B. Asymptotic Properties

It is commonly acknowledged that the asymptotic analysis of even conventional
GARCH models is challenging (see e.g. Francq and Zakoian (2010)), causing
most models to be introduced without accompanying asymptotic properties of
their estimators. Most recently, the asymptotic theory of the EGARCH(1,1) model

10These are the same conditions as in Hansen and Huang (2016) and we refer the reader hereto
for further details.
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was developed by Wintenberger (2013). Han and Kristensen (2014) and Han
(2015) conclude that inference for the QML estimator is quite robust to the level
of persistence in covariates included in GARCH-X models, irrespective of them
being stationary or not. However, no such analysis has, to our knowledge, been
developed for the original REGARCH. The MDS properties following Proposition
1 apply to the original REGARCH as well, leading Hansen and Huang (2016) to
conjecture that the limiting distribution of the estimators is normal. We follow
the same route and leave the development of the asymptotic theory for estimators
of the REGARCH-MIDAS and REGARCH-HAR for future research. Hence, we

conjecture that
VT(@-6)L N©O,TT 1Y), (25)

where I is the limit of the outer-product of the scores and ¢/ is the negative limit
of the Hessian matrix for the log-likelihood function. In practice, we rely on
estimates of these two components in the sandwich formula for computing robust

standard errors of the coefficients.

To check the validity of this approach, we employ a parametric bootstrapping
technique (Paparoditis and Politis, 2009) with 999 replications and a sample size
of 2,500 observations (approximately 10 years, similar to the size of the rolling
in-sample window used in the forecasting exercise below). Figure 1 depicts the

empirical standardized distribution of a subset of the estimated parameters.
< Insert Figure 1 about here >

It stands out that the in-sample distribution of the estimated parameters for
both the REGARCH, REGARCH-MIDAS and REGRACH-HAR is generally in
agreement with a standard normal distribution. We also compared the boot-
strapped standard errors with the robust QML standard errors computed from
the sandwich-formula in (25), which are reported in the empirical section below.
The standard errors were quite similar, which suggests in conjunction with Figure
1 that the QML approach and associated inferences are valid. We do, however,
note that the QML standard errors are slightly smaller on average relative to the
bootstrapped standard errors, causing us to be careful in not putting too much

weight on the role of standard errors in the interpretation of the results below.
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IV. Empirical results

In this section, we examine the empirical fit as well as the forecasting perfor-
mance of the REGARCH-MIDAS and REGARCH-HAR, including an outline of the
forecasting procedures involved with the proposed models. We mainly comment
on the weekly REGARCH-MIDAS, since its empirical results are qualitatively

similar to those from the monthly version.

A. Data

The full sample data set consists of daily close-to-close returns and the daily
realized kernels (RK) of the SPY exchange traded fund that tracks the S&P500
Index and 20 individual stocks for the 2002/01-2013/12 period. In the computation
of the realized kernel, we use tick-by-tick data, restrict attention to the official
trading hours 9:30:00 and 16:00:00 New York time, and employ the Parzen kernel
as in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011). See also Barndorff-
Nielsen et al. (2008) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009)
for additional details.!! For each stock, we remove short trading days where
trading occurred in a span of less than 20,000 seconds (compared to typically
23,400 for a full trading day). We also remove data on February 27, 2007, which
contains an extreme outlier associated with a computer glitch on the New York
Exchange that day. This leaves a sample size for each stock of about 3,000
observations. Table 1 reports summary statistics of the daily returns and the
logarithm of daily realized kernels. Figure 2 depicts the evolution of returns,
squared returns, realized kernel and the autocorrelation function (ACF) of the
logarithm of the realized kernel for SPY.

« Insert Table 1 about here >
« Insert Figure 2 about here >

We compute outlier-robust estimates of return skewness and kurtosis (Kim and
White, 2004; Terasvirta and Zhao, 2011) along with their conventional estimates.
The robust measures point to negligible skewness and quite mild kurtosis in

the return series. This stands in contrast to the moderately skewed, severely

HThe data was kindly provided to us by Asger Lunde.

15



fat-tailed distributions suggested by the conventional measures, corroborating
the findings in Kim and White (2004) that stylized facts of returns series change

when using robust estimators.

We estimate the fractional integrated parameter d in the logarithm of the realized
kernel with the two-step exact local Whittle estimator of Shimotsu (2010). Over
the full sample all series have d > 0.5, suggesting that volatility is highly persis-

t.12 This finding is supported by the slowly decaying ACF of the logarithm of

ten
the realized kernel for SPY. Since the conventional ACF may be biased for the
unobserved ACF of the logarithm conditional variance due to the presence of mea-

13 we also compute the instrumented ACF proposed by Hansen

surement errors,
and Lunde (2014). We use the authors’ preferred specification with multiple
instruments (four through ten) and optimal combination. The instrumented ACF
show a similar pattern as the conventional ACF, but points toward an even higher
degree of persistence. We also conducted a (Dickey-Fuller) unit root test across all

asset considered using the instrumented persistence parameter (cf. Table 2).
« Insert Table 2 about here >

The (biased) conventional least square estimates point to moderate persistence
and strong rejection of a unit root. The persistence parameter is, as expected,
notably higher when using the instrumented variables estimator of Hansen and
Lunde (2014), however the null hypothesis of a unit root remains rejected for all
assets. Collectively, these findings motivate a modeling framework that is capable
of capturing a high degree of persistence. Given the requirement that || <1,
this also motivates a framework that pulls f away from unity. This is where the
proposed REGARCH-MIDAS and REGARCH-HAR prove useful.

B. In-sample results

In this section, we examine the empirical fit of the proposed REGARCH-HAR
and REGARCH-MIDAS using the full sample of observations for SPY and the

12We estimated the parameters with m = [T9] for ¢ =€ {0.5,0.55,...,0.8}, leading to no alter-
ations of the conclusions obtained for ¢ = 0.65. See also Wenger, Leschinski, and Sibbertsen (2017)
for a comprehensive empirical study on long memory in volatility and the choice of estimator of d.

13The element of microstructure noise is, arguably, low, given the construction of the realized
kernel, however sampling error may still be present, causing the differences in the conventional
and instrumented ACF.
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20 individual stocks. We start out by discussing the choice of lag length for the
MIDAS component, K, in the following subsection.

B.1. Choice of lag length, K

As noted above, the REGARCH-HAR utilizes by construction lagged information
equal to four weeks (approximately one month) to describe the dynamics of
the realized measure, whereas the REGARCH-MIDAS allows the researcher
to explore and subsequently choose a suitable lag length, possibly beyond four
weeks. For the original two-parameter setting as well as the single-parameter
setting, Figure 3 depicts the estimated lag weights and associated maximized
log-likelihood values of the weekly REGRACH-MIDAS on SPY for a range of K
starting with four lags up to 104 lags (approximately two years).

« Insert Figure 3 about here >

The figure yields a number of interesting insights. First, the maximized log-
likelihood values and associated patterns are very similar across the single-
parameter and two-parameter case. The maximized log-likelihood values initially
increase until lag 25-50, after which the values reach a ceiling. This observation is
corroborated by the estimated lag functions in the lower panel of the figure. Their
patterns show that recent information matters the most with the information
content decaying to zero for lags approximately equal to 20 in the two-parameter
setting and 25 in the single-parameter setting. Hence, based on the figure we
may conclude that information up to half a year in the past is most important for
explaining the dynamics of the conditional variance. This is generally supported
by a similar analysis using monthly averages rather than weekly in the MIDAS
component, but the monthly specification seems to indicate that additional past

information is relevant (cf. Figure 4).

Secondly, a REGARCH-MIDAS with information only up to the past four weeks
provides only a slightly greater log-likelihood value than the REGARCH-HAR
(cf. Table 3 below). This indicates that the step-function approximation in the
REGARCH-HAR does a reasonable job at capturing the information content up
to four weeks in the past. Collectively, however, these findings also suggest that
the information lag in the REGARCH-HAR is too short. Based on these findings,
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we proceed in the following with a value of K = 52 for the weekly MIDAS and
K =12 for the monthly MIDAS uniformly in all subsequent analyses, including
the individual stock results. Note that we choose K larger than what the initial
analysis suggests for the weekly specification, since we want consistency between
the weekly and monthly specifications and greater flexibility when applying the
choice to the individual stocks. We do, however, emphasize that it is free for the
researcher to optimize over the choice of K for each individual asset to achieve an

even better fit.

B.2. Benchmark models

For comparative purposes, we estimate (using QML) two direct antecedents of
the REGARCH-MIDAS and REGARCH-HAR proposed in this paper. The first
is a REGARCH-Spline (REGARCH-S), with the only difference stemming from
the specification of the long-term component. That is, we consider the quadratic

spline formulation

t X t th 2
loggt:w+cof+kglck(max{?—%,O}) , (26)

where {tg =0,%1,t9,...,tg = T} denotes a partition of the time horizon T in K + 1
equidistant intervals. Consequently, the smooth fluctuations in the long-term
component arises from the (deterministic) passage of time instead of (stochastic)
movements in the realized kernel as prescribed by the REGARCH-HAR and
REGARCH-MIDAS.™ The formulation of the long-term component originates
from Engle and Rangel (2008) and is also examined in Engle et al. (2013) and
Laursen and Jakobsen (2017), to which we refer for further details. The number

of knots, K, is selected using the BIC information criterion.'®

The second benchmark is the FlIoEGRACH of Vander Elst (2015), which incor-
porates fractional integration in the GARCH equation of the REGARCH in a
similar vein to the development of the FI(E)GARCH model of Baillie et al. (1996)
and Bollerslev and Mikkelsen (1996). The model, thus, explicitly incorporates

14When the long-term component is specified as a deterministic component it follows that
Ellogo?] =logg:.

1511 a similar spirit to the choice of K for the REGARCH-MIDAS, we apply the number of knots
determined in the estimation on SPY uniformly in all subsequent analyses.
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long-memory via fractionally integrated polynomials in the ARMA structure de-
fined via the parameter d. In contrast to our proposals and the REGARCH-S, the
FloEGARCH do not formulate a multiplicative component structure. Following
Vander Elst (2015), we implement a FloOEGARCH(1,d, 1), which is defined as

re=pu+0z;, (27)
logo? =w+(1- AL A -L) 4 (1(z,-1) + aus-1), (28)
logx; = &+ ploga? +8(z;) + uy, (29)

where (1—L)? is the fractional differencing operator. The infinite polynomial can

be written as

1-pL'a-Ly %=y ( ﬁmW—d,n—m)L", (30)
0

n=0\m=

where y_q 1 = W—d,k—l% and y_g 0 = 1. In the implementation, we truncate

the infinite sum at 1,000, similar to Bollerslev and Mikkelsen (1996) and Van-
der Elst (2015), and initialize the process similarly to Vander Elst (2015).

For completeness, we also estimate a multiplicative version of the EGARCH(1,1)
model (Nelson, 1991) defined by

ry=pH+0zg, (31)
logh, :,Bloght_l+rlzt_1+a(lzt—1|— v2/n), (32)
logg: = w. (33)

B.3. Results for the S&P500 Index

In Table 3, we report estimated parameters, their standard errors, and the

associated maximized log-likelihood values for the models under consideration.
« Insert Table 3 about here >

We derive a number of notable findings. First, the multiplicative component
structures lead to substantial increases in the maximized log-likelihood value
relative to the original REGARCH. It is worth noting that the null hypothesis of
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no MIDAS component, A =0 such that f(-;n) =0, renders y; and y2 unidentified
nuisance parameters. Hence, assessing the statistical significance of the differ-
ences in maximized log-likelihood values via a standard LR test and a limiting
y2 distribution is infeasible. We follow conventional approaches (see e.g. Hansen
et al. (2012); Engle et al. (2013); Hansen and Huang (2016)) and comment only
on log-likelihood differences relative to the original REGARCH, but note that
comparing twice this difference with the critical value of the y? distribution with
appropriate degrees of freedom can be indicative of significance.'® For instance,
the LR statistic associated with the log-likelihood gain of the weekly REGARCH-
MIDAS is 92.06, compared to a 5% critical value of 5.99, which strongly indicates
significance of the log-likelihood improvement. On a similar data set, Huang
et al. (2016) find a log-likelihood gain of approximately 16.5 points (LR statistic
of 32.91), when introducing a HAR modification of the RGARCH of Hansen et al.
(2012).17 Addressing this issue, we nuance our interpretation of the log-likelihood
gains by information criteria, which hold the number of parameters up against

the maximized log-likelihood.

The substantial increases in log-likelihood value by only a small increase in
the number of parameters in the REGACRH-MIDAS and REGARCH-HAR lead to
systematic improvements in information criteria. Despite the noticeably greater
number of parameters in the REGARCH-S, the increase in the log-likelihood
value is only comparable to that of the REGARCH-HAR, leading to a modest
improvement in the AIC, only a slight improvement in the BIC, and even a wors-
ening of the HQIC. The FIoEGARCH comes closest to the REGARCH-MIDAS
specifications, but is still short about seven likelihood points. Since it only in-
troduces one additional parameter, the information criteria are comparable to
those of the REGARCH-MIDAS.'® We have also considered higher-order versions
of the original REGARCH(p,q), with p,q € {1,...,5}. The best fitting version,

16Most recently, Conrad and Kleen (2016) have developed a misspecification test for comparison
of the GARCH-MIDAS model of Engle et al. (2013) and its nested GARCH model.

1"The RGARCH by Hansen et al. (2012) is obtained as a special case of the REGARCH (with
similar realized measures) by a proportionality restriction on the leverage function in the GARCH
equation, (4), via 1(z;) = ad(z;).

181t is also noteworthy that the FloOEGARCH attaches a positive weight to information four
years in the past (1,000 daily lags), whereas the REGARCH-MIDAS only carries information from
the last year. This suggests that the outperformance of the REGARCH-MIDAS relative to the
FloEGARCH is somewhat conservative.
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the REGARCH(5,5), provides a likelihood gain close to, but still less than the
REGARCH-MIDAS models. This gain is, however, obtained with the inclusion of

an additional eight parameters, causing the information criteria to deteriorate.'®

Secondly, we confirm the finding in the former section that the single-parameter
REGARCH-MIDAS performs comparable to the two-parameter version. Addition-
ally, for the same number of parameters, the single-parameter REGARCH-MIDAS
provides a considerable 16-point likelihood gain relative to the REGARCH-HAR.
This suggests that the HAR formulation is too short-sighted to fully capture the
conditional variance dynamics (despite providing a substantial gain relative to
the original REGARCH) by using only the most recent month’s realized kernels.
The differences of the lag functions, as depicted in Figure 5, corroborate this point,

by attaching a positive weight on observations further than a month in the past.
<« Insert Figure 5 about here >

The cascade structure as evidenced in Corsi (2009) and Huang et al. (2016) of the
HAR formulation is clear from the figure as well, leading to the conclusion that
it constitutes a rather successful, yet suboptimal, approximation of the beta-lag
function used in the MIDAS formulation.

In Figure 6, we depict the fitted conditional variance along with the long-term

components of each multiplicative component model under consideration.
« Insert Figure 6 about here >

The long-term component of the REGARCH-MIDAS models appear smooth and do,
indeed, resemble a time-varying baseline volatility. The long-term component in
the REGARCH-HAR is less smooth in contrast to that from the REGACRH-Spline,
which is excessively smooth. To elaborate on the pertinence of the long-term

component, we compute for each model the variance ratio given by

_ Varllog g;]

= °°9" 34
Var[logh;g:1’ (34)

191¢ also stands out from Table 3 that the improvements in maximised value from all models
under consideration arises from a better modeling of the realized measure and not returns,
which comes as no surprise given the motivation behind their development and that the original
REGARCH is already a very successful model in fitting returns while lacking adequate modelling
of the realized measure, as put forward in Hansen and Huang (2016).
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which reveals how much of the variation in the fitted conditional variance can be
attributed to the long-term component. The last row in Table 3 suggests that the
long-term component contribution is important with more than two-thirds of the
variation for the REGARCH-HAR and REGARCH-MIDAS formulations - notice-
ably larger than that for the REGARCH-S. Moreover, the monthly aggregation
scheme for the realized kernel leads to a smoother slow-moving component and,

by implication, a smaller VR ratio.

In terms of parameter estimates and associated standard errors, the values
are very similar across the various REGARCH extensions for most of the in-
tersection of parameters. The leverage effect appears to be supported in all
model formulations, and estimated values of ¢ are less than unity with relatively
small standard errors, consistent with the realized measure being computed from
open-to-close data and conditional variance referring to the close-to-close period.
Moreover, estimated A is close to 0.9 and precisely estimated, suggesting that past
information in the realized kernels are highly informative on conditional variance.
The fractional integration parameter, d, is estimated to 0.65 in the FloEGARCH,
confirming the high persistence in the conditional variance process also suggested
by the summary statistics presented above. Note also that the parameters of the
beta-weight function are imprecisely estimated when y; = 1 is not imposed. The
reason is that two almost identical weight structures may be obtained for two
(possibly very) different combinations of y; and y9, leaving the pair imprecisely
estimated. Importantly, the estimated values of 8 are considerably smaller in
our proposed models relative to the original REGARCH. A similar, but less pro-
nounced result, is obtained for the REGARCH-S. This reduction in estimated S
plays an important role in satisfying the condition that || < 1 and alleviating the
integrated GARCH effect. This occurs intuitively since we enable a flexible level of
the baseline volatility which the short-term movements fluctuates around. Lastly,
the measurement equations in the REGARCH-MIDAS and REGARCH-HAR have
smaller estimated residual variances, 02, than the original REGARCH. This may
indicate that the new models also provide a better empirical fit of the realized

measure via the multiplicative component specifications proposed here.
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B.4. Autocorrelation function of conditional variance and realized kernel

In this section, we consider the implications of the REGARCH-HAR and REGARCH-
MIDAS on the ACF of the conditional variance and the realized kernel relative
to the original formulation in REGARCH. We depict in Figure 7 the simulated
and sample ACF of the logarithm of the conditional variance, logaf, for the RE-
GARCH, REGARCH(5,5), REGARCH-HAR, single-parameter and two-parameter
REGARCH-MIDAS, and FIoOEGARCH on SPY. The simulated ACF is obtained
using the estimated parameters in Table 3 with a sample size of 3,750 (approxi-
mately 15 years) and 10,000 Monte Carlo replications, whereas the sample ACF

is based on the fitted conditional variance.
< Insert Figure 7 about here >

In general and for a given model, the closer the simulated and sample ACF are
to each other, the larger is the degree of internal consistency in modeling the
dependency structure of conditional variance. We note that the original RE-
GARCH is only able to capture the autocorrelation structure over the very short
term. Moreover, the REGARCH(5,5) does not substantially improve upon the
REGARCH. The simulated ACF of the REGARCH-HAR is closer to the sample
ACEF, but starts diverging at about lag 30. Only the REGARCH-MIDAS models
and the FIoEGARCH are capable of capturing the pattern of the autocorrelation
structure over a long horizon. It should also be noted that the results for the
REGARCH-MIDAS is for a particular choice of K =52 and K = 12 for the weekly
and monthly versions, respectively. Larger values of K, for a given model, may
provide an even greater degree of fit. Indeed, the monthly REGARCH-MIDAS
trades off some fit in the short term for improved accuracy in the long term by

using a cruder aggregation scheme of the realized measure.

In Figure 8, we depict simulated and sample ACF's of the logarithm of the realized
kernel for each model to provide an insight into whether the models are able to

capture the autocorrelation structure of the market realized variance.
« Insert Figure 8 about here >

The picture is, expectedly, similar to the one in Figure 7. With only two or three ad-
ditional parameters, the REGARCH-HAR and especially the REGARCH-MIDAS
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specifications provide a noticeable increase in the ability to capture the dynam-
ics of the realized measure relative to the REGARCH. This suggests that the
multiplicative component structure used in the REGARCH-HAR and REGARCH-
MIDAS constitutes a very appealing and parsimonious way of capturing high
persistence in the REGARCH framework.

B.5. Results for individual stocks

The conclusions for the SPY above also apply to individual stocks, for which
detailed results are presented in Appendix D. In summary, Table 4 reports the
differences in log-likelihood values for our proposed models and their benchmarks
relative to the original REGARCH.

« Insert Table 4 about here >

First, the REGARCH-HAR and REGARCH-MIDAS provide systematically large
gains relative to the original REGARCH for all stocks. The two competing bench-
marks, REGARCH-S and FloEGARCH, also provide sizeable gains. Despite this,
the REGARCH-MIDAS specification is the preferred choice for all but two stocks.
It also stands out that the weekly REGARCH-MIDAS consistently outperforms
the REGARCH-HAR. This is generally the case for the monthly REGARCH-
MIDAS as well, albeit with a few exceptions. These exceptions may relate to its
crude aggregation scheme, which sacrifices too much fit of the autocorrelation
structure in the short term for better fit in the long-term compared to the rela-
tively short-sighted formulation in the REGARCH-HAR. On this basis, we may
conjecture that a framework which incorporates both daily, weekly and monthly
aggregates (sort of hybrid between a HAR and MIDAS specification) would fit par-

ticularly well. The information criteria in the Appendix corroborate these findings.

In Table 5 we report the estimated g for all stocks.
« Insert Table 5 about here >

They are all very similar and close to unity in the original REGARCH, but are
substantially reduced in the REGARCH-MIDAS and REGARCH-HAR - even
more so than for the S&P500 Index.
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C. Forecasting with the REGARCH-MIDAS and REGARCH-HAR

In this section, we detail how to generate one- and multi-step forecasts using
the REGARCH-MIDAS and REGARCH-HAR. We note that our models are dy-
namically complete. By implication, they are capable of generating multi-period
forecasts without imposing (unrealistic) assumptions on the dynamics of the
realized measure (such as the random walk), as usually done in the GARCH-
X model that otherwise are only suitable for one-step ahead forecasting. This
feature turns out to be valuable below, when we evaluate the predictive ability
of the REGARCH-MIDAS and REGARCH-HAR relative to that of the original
REGARCH and the benchmark models.

C.1. One-step and multi-step forecasting

Denote by %, k£ = 1, the forecast horizon measured in days. Our aim is to forecast
the conditional variance & days into the future. To that end, we note that for
k =1 one-step ahead forecasting can be easily achieved directly via the GARCH
equation in (4). For multi-period forecasting (£ > 1), we note that recursive
substitution of the GARCH equation implies

k .
loghtir, = ,Bk logh;+ Z ,Bj_l (T(Zt+k—j) + aut+k—j) ) (35)
j=1

such that

ko
10g‘7?+k =loghsirgt+k = ,Bk logh;+ Z ,BJ_I (T(Zt+k—j) + aut+k—j) +loggiir. (36)
j=1

Multi-period forecasts of logaf ', may then be obtained via
logaiklt = [E[loga?+k|,95t] = ﬁk logh, + ,Bk_l (1(z¢)+ auy)+log giti. 37

Consequently, the contribution of the short-term component to the forecast is
easily computed with known quantities at time ¢, namely A;,us,2z;. To obtain
gt+k, We generate recursively, using estimated parameters, the future path of
the realized measure using the measurement equation in (5). It is worth noting

that for multi-step forecast horizons a lower magnitude of 8 causes the forecast
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to converge more rapidly towards the baseline volatility, determined by (the fore-
cast of) the long-term component. Because this baseline volatility is allowed to
be time-varying, a lower magnitude of  is preferable since it generates more
flexibility and reduces a long-lasting impact on the forecast from the most recent
h; and its innovation. By implication, the ability to generate reasonable forecasts
of the long-term component is valuable, which strongly motivates the dynamic

completeness of the models.?’

Jensen’s inequality stipulates that exp {E[log U? |1} # Elexp {logaf 1| Ft] such

2
t+k|t

As a solution, we utilize a simulation procedure with

that we need to consider the distributional aspects of logo to obtain an un-

biased forecast of 0? Rl
empirical distributions of z; and u;. Using M simulations and re-sampling the

estimated residuals, the resulting forecast of the conditional variance given by

1 M
T = 37 L, P IOET ) 39)
m:

is unbiased. In the implementation, we estimate model parameters on a rolling
basis with 10 years of data (2,500 observations) and leave the remaining (about
500) observations for (pseudo) out-of-sample evaluation. The empirical distri-
bution of z; and u; is similarly obtained using the same historical window of
observations. Forecasting with the REGARCH follows directly from the above
with logg;.n = 0.

C.2. Forecast evaluation

Given the latent nature of the conditional variance, we require a proxy, 6?, of U?
for forecast evaluation. To that end, we employ the adjusted realized kernel in line
with e.g. Huang et al. (2016) and Sharma and Vipul (2016) given by 6? =xRK;,
where

Zthl ry

K== = (39)
thlRKt

20We found, indeed, that setting g;.% = g leads to notably inferior forecasting performance
relative to the case that exploits the estimated dynamics of the realized kernel.
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The adjustment is needed since the realized measure is a measure of open-to-
close variance, whereas the forecast generated by the REGARCH framework
measures close-to-close variance. We compute « on the basis of the out-of-sample
period. A second implication of using the realized kernel as proxy is that we
implicitly restrict ourselves to the choice of robust loss functions (Hansen and
Lunde, 2006; Patton, 2011) when quantifying the forecast precisions in order

to obtain consistent ranking of forecasts. Let L; r+p (62 ) denote the loss

t+k’ t+k|t
function for the i’th k-step ahead forecast. Two such robust functions are the
Squared Prediction Error (SPE) and Quasi-Likelihood (QLIKE) loss function

given as

(SPE) .2 9 9
LI, Ltk (Ut+k’0t+k|t) (0t+k - 0t+k|t) ) (40)
A2 ~92
o o
(QLIKE) t+k t+k
Lz t+k (0t+k’0t+k|t) = - log( 2 ) - 1. (41)
at+k|t Ut+k|t

In both cases, a value of zero is obtained for a perfect forecast. The SPE (QLIKE)
loss function penalizes forecast error symmetrically (asymmetrically), and the
QLIKE often gives rise to more power in statistical forecast evaluation procedures,
especially when comparing losses across different regimes (see e.g. Borup and
Thyrsgaard (2017)).

Given the objective of evaluating whether the REGARCH-MIDAS and REGARCH-
HAR provide an improvement in forecasts relative to the REGARCH, we use the
Diebold-Mariano test (Diebold and Mariano, 1995).2! Let the loss differentials
from the i’th model relative to the REGARCH (abbreviated REG) be given by
dis= Li,t+k(6?,0?+k|t) _LREG’t+k(a?’U?+k|t)' The Diebold-Mariano test of equal

21We acknowledge that the Diebold-Mariano test is technically not appropriate for comparing
forecasts of nested models since the limiting distribution is non-standard under the null hypothesis
(see e.g. Clark and McCracken (2001) and Clark and West (2007)). The adjusted mean squared
errors of Clark and West (2007) or the bootstrapping procedure of Clark and McCracken (2015)
are appropriate alterations to standard inferences. However, since we estimate our models on a
rolling basis with a finite, fixed window size, the asymptotic framework of Giacomini and White
(2006) provides a rigorous justification for proceeding with the Diebold-Mariano test statistic
evaluated in a standard normal distribution. See also Diebold (2015) for a discussion.
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predictive ability can be conducted using the conventional t-statistic

g=112 % (42)

VY

where d = T! Zthl d;:and V is an estimate of the long-run variance of the loss
differentials. We employ in the following a HAC estimator and follow state-of-the
art good practice by using the data-dependent bandwidth selection by Andrews

1.22 We perform

(1991) based on an AR(1) approximation and a Bartlett kerne
the test against the alternative that the i’th forecast losses are smaller than the
ones arising from the original REGARCH and evaluate S in the standard normal

distribution.

We also do a Model Confidence Set (MCS) procedure (Hansen, Lunde, and Nason,
2011) to compare the predictive accuracy of all our proposed models to that of
the REGACRH-Spline and the FIoEGARCH. For a fixed significance level, a, the
procedure identifies the MCS, M =, from the set of competing models, My, which
contains the best models with 1 — a probability (asymptotically as the length
of the out-of-sample window approaches infinity). The procedure is conducted
recursively based on an equivalence test for any M < M and an elimination rule,
which identifies and removes a given model from M in case of rejection of the
equivalence test. The equivalence test is based on pairwise comparisons using the
statistic S;; in (42) for all i,j € M and the range statistic Ty = max; jep {1S;;l},
where the eliminated model is identified by argmax;cys sup;cp{S;;}. Following
Hansen et al. (2011), we implement the procedure using a block bootstrap and

10 replications.

22 Admittedly, the high persistence in both the realized kernels and the forecasts generated by
the models under consideration may transmit to the loss differentials, leading to a potential need
for a long-memory robust variance estimator in (42). In fact, Kruse, Leschinski, and Will (2016)
show that the standard Diebold-Mariano test statistic is most likely oversized in these cases.
However, this transmission critically depends on the unbiasedness and (loading on) a common
long memory between the forecasts (see their Propositions 2-4), leaving a further examination out
of the scope of this paper.
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C.3. Forecasting results

Figure 9 depicts Theil’s U statistic in terms of the ratio of forecast losses on the
SPY arising from forecasts generated by the original REGARCH to those from
the REGARCH-HAR and the weekly REGARCH-MIDAS (single-parameter) on
horizons k£ =1,...,22. It depicts their associated statistical significance, too. Quan-
titatively and qualitatively similar results for the remaining MIDAS specifications

are left out, but are available upon request.
« Insert Figure 9 about here >

The figure convincingly concludes that both the REGARCH-HAR and REGARCH-
MIDAS improve upon the forecasting performance of the original REGARCH
for all forecast horizons. These improvements tend to grow as the forecast hori-
zon increases from a few percentages to roughly 30-40% depending on the loss
function. This indicates the usefulness of modeling a slow-moving component,
particularly for forecasting beyond short horizons. In general, the improvements
are statistically significant for all horizons, except for the shorter horizons in the
REGARCH-MIDAS case.?? Table 6 reports results from a similar analysis on the
20 individual stocks.

<« Insert Table 6 about here >

Also on the individual stock basis, both the REGARCH-HAR and REGARCH-
MIDAS provide substantial improvements on the original REGARCH, in particu-
lar at longer horizons. The REGARCH-MIDAS outperforms the REGARCH-HAR
with a systematically larger improvement for all horizons and based on statis-

tical significance. Moreover, only a few stocks are not significantly favoring the
REGARCH-MIDAS over the original REGARCH.

Having established the improvement upon the original REGARCH, we turn
to a complete comparison of all our proposed models, the REGARCH-Spline and
the FIoEGARCH. Table 7 reports the percentage of stocks (including SPY) for

which a given model is included in the MCS at an @ = 10% significance level.

23We have also examined the models’ predictive ability of cumulative forecasts for a 5,10, and
22 horizon. Consistent with the findings for the point forecasts, both the REGARCH-HAR and
REGARCH-MIDAS provide substantial and statistically significant improvements relative to the
original REGARCH.
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« Insert Table 7 about here >

The inclusion frequency of our proposed REGARCH-MIDAS models are high
and indicate superiority over all competing models in both the short-term and
beyond. Interestingly, the cruder, monthly aggregation scheme dominates for
longer horizons, whereas the finer, weekly scheme is preferred for short hori-
zons. The REGARCH-Spline shows moderate improvement over the original
REGARCH, but is less frequently included in the MCS compared to our proposed
REGARCH-MIDAS and REGARCH-HAR. The FIoEGARCH performs relatively
bad for horizons 2,3,4 and 5, but is increasingly included in the MCS as the fore-
cast horizon increases, reaching similar performance as the REGARCH-MIDAS
models at monthly predictions. These findings indicate the usefulness of the
flexibility obtained via the multiplicative component structure as opposed to, e.g.,

incorporating fractional integration as in the FloEGARCH.

V. Conclusion

We introduce two extensions of the otherwise successful REGARCH model to
capture the evident high persistence observed in stock return volatility series.
Both extensions exploit a multiplicative decomposition of the conditional variance
process into a short-term and a long-term component. The latter is modeled either
using mixed-data sampling or a heterogeneous autoregressive structure, giving
rise to the REGARCH-MIDAS and REGARCH-HAR models, respectively. Both
models lead to substantial in-sample improvements of the REGARCH with the
REGARCH-MIDAS dominating the REGARCH-HAR. Evidently, the backward-
looking horizon of the HAR specification is too short to adequately capture the

autocorrelation structure of volatility for horizons longer than a month.

Our suggested models are dynamically complete, facilitating multi-period fore-
casting in contrast to e.g. the GARCH-X or models tying the slow-moving behavior
of volatility to e.g. macroeconomic state variables. Coupled with a lower estimated
fB and time-varying baseline volatility, we show in a forecasting exercise that the
REGARCH-MIDAS and REGARCH-HAR leads to significant improvements in
predictive ability of the REGARCH, particularly beyond short horizons.
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Similarly to the original REGARCH, our proposed models involve an easy mul-
tivariate extension, enabling the inclusion of for instance additional realized
measures, macroeconomic variables or event-related dummies (e.g. from policy
announcements). Some additional questions remain for future research. On the
empirical side, applications to other asset classes exhibiting high persistence such
as commodities,?* bonds or exchange rates, or the use of our proposed models
in estimating the (term structure of) variance risk premia, or investigating the
risk-return relationship via the return equation (see e.g. Christensen et al. (2010))
are of potential interest. On the theoretical side, development of a misspecification
tests for comparison of our models with the nested REGARCH and asymptotic

properties of the QML estimator would prove very useful.

248ee e.g. Lunde and Olesen (2013) for an application of the REGARCH to commodities.
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A. Derivation of score function

First, consider A(z;) = dlogh;+1/0logh; and C(z;) = dlogh;+1/0logg;. From z; =
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= £ it can easily be shown that
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Inserting the above components in the following expressions for A(z;) and C(z;)
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Next, we turn to B(z;,u;) = 0¢;/0logh; and D(z;,u;) = 0¢;/0logg;. The terms
logh; and logg; enter the log-likelihood contribution at time ¢ directly due to
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loga? =logh;+logg; and indirectly through z? and u? Thus, we have
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Now, we turn to the derivatives of logh;,1 with respect to the different parameters.
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Inserting (A.16) and (A.17) in (A.15) and rearranging yields
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For kgl’t+1 =0h;,1/001, we have
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However, we remember that 7(z;) and u; only depend on 0, through logh; such

that we can reduce the first three terms into one
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respectively. Finally, we turn to the scores. The parameter u enters the log-

likelihood contribution at time ¢ through logh;, z;, and u? such that
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Since 01 only enters the log-likelihood contribution at time ¢ indirectly through

logh;, an application of the chain-rule yields
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The parameter vector 69 also enters through u?,
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The parameter 03 only enters directly in the log-likelihood contribution such that
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Stacking the above scores,
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yields the result in Proposition 1.

A. Derivatives specific to the long-run component

In the REGARCH-HAR with f(-;n) given by (11), we have 1 = (y1,y2)’ such that
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In the two-parameter REGARCH-MIDAS with £(-;n) given by (9), we have n =

(A,71,y2) such that
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In the single-parameter REGARCH-MIDAS with f(-;n) given by (9), we have

n=(A,y2) such that
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Figure 1: Standardized empirical distribution of estimated parameters
This figure depicts the standardized empirical distribution of a subset of the QML pa-
rameters using a parametric bootstrap with resampling of the empirical residuals from
the estimation on SPY (Paparoditis and Politis, 2009). We use 999 bootstrap replications
and a sample size of 2500 observations in the estimation. The left column depicts re-
sults for the original REGARCH, the middle column for the weekly, single-parameter
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Figure 2: Summary statistics for SPY daily returns and realized kernel
This figure depicts the evolution of SPY daily returns (upper-left panel), annualized
squared returns (upper-right panel), annualized realized kernel (lower-left panel), and
autocorrelation function of the logarithm of the realized kernel (lower-right panel). The
solid line indicates the conventional autocorrelation function, whereas the dashed line
indicates the instrumented variable autocorrelation function of Hansen and Lunde (2014)
using their preferred instruments (four through ten) and optimal combination.
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Figure 3: Lag length, K, for weekly REGARCH-MIDAS
This figure depicts in the upper panel the maximized log-likelihood values for SPY in
the weekly two-parameter setting (left panel) and weekly single-parameter setting (right
panel) for K =4,...,104 weeks. The lower panel depicts the estimated lag function for a
range of values of K.
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Figure 4: Lag length, K, for monthly REGARCH-MIDAS

This figure depicts in the upper panel the maximized log-likelihood values for SPY in the
monthly two-parameter setting (left panel) and monthly single-parameter setting (right
panel) for K =4,...,104 weeks. The lower panel depicts the estimated lag function for a

range of values of K.
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Figure 5: Estimated SPY weighting functions
This figure depicts the estimated weighting functions in our proposed models for SPY
with K =52 and K = 12 in the weekly and monthly REGARCH-MIDAS, respectively.
Blue lines relate to the weekly REGARCH-MIDAS, red lines relate to the monthly
REGARCH-MIDAS, and the green line to the REGARCH-HAR. Solid lines refer to the
two-parameter weighting function, whereas dashed lines refer to the restricted, single-
parameter weighting function.
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Figure 6: Fitted conditional variance and the long-term component
This figure depicts the evolution of the fitted annualized conditional variance together
with its long-term component from the multiplicative REGARCH modifications in Table

3.
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Figure 7: Simulated and sample autocorrelation function of loga?
This figure depicts the simulated (dashed line) and sample (solid line) autocorrelation
function of logaf for the REGARCH, REGARCH(5,5), REGARCH-MIDAS, REGARCH-
HAR and the FIoEGARCH. We use the estimated parameters for SPY reported in Table
3 and K =52 (K =12) for the weekly (monthly) REGARCH-MIDAS. See Section B.4 for
additional details on their computation.
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Figure 8: Simulated and sample autocorrelation function of logRK;
This figure depicts the simulated (dashed line) and sample (solid line) autocorrelation
function of logRK; for the REGARCH, REGARCH(5,5), REGARCH-MIDAS, REGARCH-
HAR and the FIoOEGARCH. We use the estimated parameters for SPY reported in Table
3 and K =52 (K =12) for the weekly (monthly) REGARCH-MIDAS. See Section B.4 for
additional details on their computation.
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Figure 9: Forecast evaluation of REGARCH-MIDAS and REGARCH-HAR
This figure depicts the ratio of forecast losses of the REGARCH-MIDAS and REGARCH-
HAR to the original REGARCH. Values exceeding unity indicate improvements in predic-
tive ability of our proposed models. Full circles indicate whether difference in forecast
loss (for a given forecast horizon) is significant on a 5% significance level using a Diebold-
Mariano test for equal predictive ability. Empty circles indicate insignificance. See Section
C.2 for additional details. The left panel uses the QLIKE loss function in (41), whereas
the right panel uses the SPE loss function in (40). The upper panel reports results for the
weekly single-parameter REGARCH-MIDAS and the lower panel for the REGARCH-HAR
(results for the remaining REGARCH-MIDAS specifications are similar and are available
upon request).
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Table 2:

Persistence parameters (7) and unit root tests (DF)
This table reports estimated autoregressive persistence param-
eters, 7, and unit root tests, DF. The first column contains the
conventional least squares estimator, whereas the following
two columns contain the instrumented variables estimator
from Hansen and Lunde (2014) using the first lag as instru-
ment and their preferred specification (four through ten) with
optimal combination, respectively. The following three columns
contain the Dickey-Fuller unit root test using each estimate of
the persistence parameter. The 1%, 5% and 10% critical values
are -20.7, -14.1 and -11.3, respectively (see Fuller (1996), Table
10.A.1).

TOLS 1 74:10 DFoLs DF1  DFg4q9
SP500 0.883 0.959 0.985 -354.3 -124.8 -45.8
AA 0.865 0.961 0.985 -405.3 -116.6 -44.8
AIG 0.919 0.966 0.990 -2424 -103.1  -30.5
AXP 0.926 0.980 0.992 -222.7 -59.0 -23.5
BA 0.847 0.956 0.987 -458.6 -131.7 -37.4
CAT 0.866 0.949 0.988 -400.6 -151.9 -35.6
DD 0.856 0.952 0.983 -431.6 -143.8 -51.8
DIS 0.866 0.956 0.986 -401.6 -132.3 -414
GE 0.904 0.969 0.990 -287.6 -93.8 -30.6
IBM 0.870 0.959 0.983 -389.5 -122.3 -52.0
INTC 0.869 0.951 0.985 -395.4 -148.0 -45.5
JNJ 0.852 0.955 0.988 -443.6 -134.3 -37.0
KO 0.836 0.953 0.985 -492.7 -1404  -45.7
MMM 0.833 0.940 0.981 -499.5 -178.2 -57.3
MRK 0.815 0.942 0.983 -552.7 -174.7 -49.6
MSFT 0.857 0.951 0.981 -429.7 -146.7 -56.3
PG 0.818 0.937 0.980 -546.2 -188.9 -58.5
VZ 0.861 0.961 0.987 -414.7 -118.0 -38.5
WHR 0.823 0.938 0.986 -5284 -186.6 -41.5
WMT 0.844 0.957 0.985 -4674 -127.8 -43.8
XOM 0.878 0.954 0.980 -366.7 -137.8 -59.4

57



070 L0 65°0 190 S9°0 €L°0 qA

09'T9¢°TT $€°L9%TT €9'86¢°TT 6L798°TT 0%'6LETT LEFIETT I7'6LETT 68'63V‘TT OIOH
S%'G9% ‘1T TI1°838‘TT LEF6GTT 3909311 3% L9311 03093 ‘TT €3°L9%°T1T $5°96€°TT o1d
63661 °TT L8FIGTT 02915 TT 9%'28T ‘11 $0'€8T‘TT €0'28T ‘1T $0'€8T TT 01'69%°TT oIV
$G'%91 ‘¥~ 39'8VT V- 33091 ‘¥— 0T'9GT ‘¥~ 09'99T ‘¥— eV LT V- 0L'6ST ‘¥~ TL8YT v~ P8EIG P~  a 30]
G9'¥8G ‘G- 9685 G~ 01'G6S‘G— €3'8LG ‘G~ 39'LLG G~ 30'8LG ‘G~ 8SLLS G~ GG'€29 ‘G~ & 801
4 8T €1 €1 4t €T 4! 1T g d
(3¥10°0)6¥79°0 P
(19%0°0)029°0 (S9€¥°1)805°8 (T€¥8°2)€90°% (67€8'T)S¥S 31 (92€€°9)LE€°9 (¢
(6270°0)¥62°0 (998L°0)81S0— (SL¥¥°0)S50°0 ¢
(L6€0°0)888°0 (92%0°0)%16°0 (L3€0°0)906°0 (8630°0)L¥6°0 Y
(0L9T°0)260°0— (99€3°0)SLT'0  (98€0°0)9€3°0 (STS0°0)ETT 0 (66%0°0)352°0 (89%0°0)922°0 (L6€0°0)EVT 0 (SS2T°0)680°0— (3€91°0)850°0 ”
(1€20°0)696'0  (3€30°0)T96°0  (€9T0°0)¥96°0 (1030°0)0L6°0 (8610°0)0L6°0 (L810°0)696°0 (L910°0)896°0 (89%0°0)296°0 ¢
(6500°0)TS0°0  (3900°0)0S0°0  (0900°0)TS0°0 (6500°0)0S0°0 (6500°0)0S0°0 (6500°0)050°0 (0900°0)150°0 (6500°0)670°0 9
(3800°0)STT0— (¥800°0)ZTT0— (€800°0)¥IT 0— (€800°0)STT 0— (€800°0)STT 0— (€800°0)STT 0— (€800°0)STT'0—  (€800°0)ETT 0— o
(¥900°0)IS0°0  (IS00°0)T¥0°0  (9900°0)L70°0 (1S00°0)¥%0°0 (1S00°0)%%0°0 (€900°0)S%0°0 (9500°0)L%0°0 (6%00°0)0%0°0 (3
(€800°0)0LT"0— (SL00°0)0ST'0— (S800°0)TLTI0— (6L00°0)€9T°0— (6L00°0)¥9T 0~ (1800°0)99T°0— (#800°0)0LT°0—  (¥L00°0)8¥T°0— (8TT0'0)SET 0~ T
(LS00°0)0ST'0  (LS00°0)€ST'0  (LS00°0)IST'O (LS00°0)0ST 0 (LS00°0)0ST 0 (LS00°0)0ST 0 (LS00°0)0ST 0 (8500°0)SST 0 70
(L9%0°0)7L20— (¥930°0)¥92°0— (8920°0)3L5 0— (6920°0)69% 0~ (6920°0)69% 0~ (69%0°0)0L% 0~ (6920°0)1L3°0—  (L930°0)S9% 0— ?
(9330°0)0LE£°0  (9T30°0)¥2€'0  (0LZ0"0)SSE°0 (8620°0)¥2€°0 (6€20°0)¥2€°0 (05%0°0)62€°0 (#L20°0)LEE0 (9330°0)8¢€°0  (FF10°0)IZT 0 4
(¥7L30°0)9LT°0  (8300°0)€¥6°0  (08T00)¥EL0 (¥600°0)088°0 (8600°0)3L8°0 (8110°0)2%8°0 (9910°0)T9L°0 (9€00°0)246'0  (S300°0)186°0 g
(I0T0°0)STO0  (EFT0°0)¥200  (F¥T0°0)¥T0°0 (€%10°0)910°0 (€¥10°0)910°0 (€¥10°0)ST0°0 (F¥10°0)ST0°0 (L3T0°0)9T0°0  (S€10°0)0%0°0 1
(19jouresed-a[3urs) (197ouresed-o[3urs)
(£1gyuour) (Argyuowr) (A1700m) (Ap1oom)

HOUVOHOId S-HOYVODHY YVH-HOYVDHY SVAIN-HOUVOHY SVAIN-HOUVOHY SVAIAN-HOYVOAY SVAIN-HOYVODHY HOYVDHY HOYVOH

‘ased (A[qpuour) A{eeM oY) UI (ZT = I) gS = X 10 918 SVATIN-HOYVOHY 9Y) 0] SHNSSY "UOTIRISPISUOD Jopun [opout
[[0€d J0J 9N[eA PooYI[dYI[-S0] PAZIWIXEW [[N] Sk [[oM St ‘[erpred pue (Fg) WOJJ OIjed JUBLIBA ‘@LIDLI Uorjeurioyul ‘(d) siojourered jo
Joqunu ‘(sesayjuared ur pajrodol pue B[NULIOJ YIIMPpUES 9} SUISN) SIOLIS pIepue)s isngod ‘siojourered pajewnso sprodal a[qe) SIy,

AdS 103 synsaa apdures [[nq :g 9[qeL

58



0'6¢ RS L'Gg G'8¢ T°'6¢ 8v¥y VLy RS

6'8¢€ Tv€ '8¢ €9y 09y GGy 0'9% 006dS
¢9T 8'G¢6 8'GE §€'G¢ 0°9¢ €0y (N7 WOX
¥'8¢ Tv¢ G'8¢C €635 ¥'65 T°9€ 9'0% LIAM
¥'89 0'8% 0°L9 6'89 ¢'69 T°69 8'TL dHM
708 LT LVT L'€8 L'€3 6'8% 0'65 ZA
€'1¢ G'G¢% 8'LE L'LG ¥'8% €ay L9V Dd
9'9¢ 7'9€ 6'GE T’y vy 9'€Y 9Ly LASIN
9'LG 0°9€ 0’13 0°€g 9'€g L'LG €'1¢ MYIN
0°g¢ L°0g GG 6'G% G¢'9% L'GE 0°GE WININ
0ve v'1€ €'G6E 0'TE 6'1€ G'LE 91V (0)’ 1
L'9¢g ¥'€¢8 6l q'1¢ 44 8'0€ 8'0€ NP
LGS €'ey 9'G¥y 8'0G 8'09 709 7'€9 OLNI
69T 66T G961 G'Cao G'ce €'L¢8 T'T€ WdI
€Ty v'LE 0'8¢ 0¥y T°0% 9'0¥% 6°0% O
L'€YV 67¢ '8¢ 8'9¢ 9'LE L'09 0°€g SId
€65 6'¢E 661 ¢'0¢ 9'0¢ 0'TE 67€ aa
9'cv G'€% g1y v've 8'V¢ gLy 909 LVD
768 L'Lg ¢'8% 6'9¢€ 6'9¢ v'ey G'EV vd
a0y 8'GE Vv'LC 7y 91V 6'0¥% 9’1V dXVv
G'€a1 €601 L'6TT G'¢cIt €911 0°0¢T G921 DIV
T°0v '8¢ 6'G€ 6'0% g1y 0's¥y g 97 Vv
6'8¢€ Tv€ G'8% £'9v 0'9% GGy 0'9¥% 008dS
(19jowreIRd-0713UIs) (19r0wreaed-0[3UIS)
(ATyguour) (ATyyuour) (A1eam) (AT1eam)

HOUEVOHOd S-HOUVOHY YVH-HOUVOHY SVAIN-HOUVOHY SVAIN-HOYVOHY SVAIN-HOYVOHY SVAIN-HOYVOHY

‘HOYVOHY °Y3 0} 8AnjE[al
ured pooyI[ayI] 3S0YSIY o) )M [9pOW 8Y) 9)BIIPUL SBaIR papeys Aeiy) ‘sesodind aarjeredurod 10J X JS OPN[OUL PUR S300]S [BNPIAIpUL
03 [1® 10J sy nsax J10dod op\ "1 [BOLIIdWe Ul SJUSWSA0LIdWI 8)BITPUL SON[RA 9AINSOd "HOUVHHY [BULSLIO o) 03 9ATIR[ad HOYVHHOLA
pue surdS-HOYVHHAY 2y} pue s[epouwr pasodoad ano 10j senjeA pooyI[oyI[-S0] POZIWIXBW 9} Ul S90UI9JJIP oY)} syrodad a[qe) SIy,

HOUVOHY 0} 2AI)B[3X POOYI[SYI[-S0] POZIWIXBUI UI 30USIIJI(] ¥ IqBL

59



9€T0 €6 0 0650 0¥8°0 8€8°0 LS9 0 ¢19°0 €L6°0 Ues]N

0ST°0 Lv6°0 T96°0 088°0 €L8°0 0190 865°0 L96°0 NOX
€IT'0 Lv6°0 005°0 058°0 3580 G850 9€5°0 6L6°0 LINM
G60°0 G06°0 1€5°0 GvL’0 SvL0 1€9°0 G50 €96°0 dHM
94T°0 €96°0 665°0 TL8°0 GL8°0 169°0 679°0 6L6°0 ZA
8ET°0 0€6°0 1250 LES'0 1€8°0 L9G°0 LvS0 196°0 Od
8¢T°0 L16°0 G8G°0 €80 928°0 689°0 €190 896°0 LASIN
80T°0 926°0 767°0 6¥8°0 7980 LS9°0 ¢SS0 TL6°0 MUN
LET0 8€6°0 7650 948°0 €98°0 7€9°0 L8G0 L96°0 NN
121°0 G€6°0 84G°0 628°0 L28'0 LT19°0 G950 €L6°0 (0):]
€60°0 056°0 0LS°0 948°0 058°0 0290 L29'0 9L6°0 FNrP
TIET°0 €160 G960 ¢180 ¢I80 ¥59°0 ¢09°0 GL6°0 OLNI
T9T°0 876°0 89G°0 €68°0 168°0 8€9°0 G190 ¥L6°0 N4l
LTIT°0 G€6°0 T08°0 §¥8°0 €¥8°0 L0 L1I8°0 G86°0 )
080°0 cv6°0 80G°0 I¥8°0 GE8°0 650 0250 186°0 SI1d
6LT°0 G€6°0 165°0 TL8°0 7980 0TL°0 €290 GL6'0 aa
Y010 176°0 LES0 1€8°0 G280 ¥85°0 €9G°0 €L6°0 LVO
€ET°0 966°0 €859°0 9€8°0 LEY0 9590 909°0 LL6°0 vd
G61°0 €76°0 T18°0 G98°0 T98°0 06L°0 0TL°0 L86°0 dXV
T21°0 7980 8LG°0 LELO L0 €29°0 LLG0 GL6°0 OIV
G61°0 €€6°0 8€9°0 7680 028°0 TIL°0 679°0 GL6°0 Vv
9LT0 €76°0 YELO 088°0 GL8'0 80 T9L°0 GL6°0 005dS
(10rowreIRd-03UIS) (1ojowreaed-o13uls)
(A1qyuour) (A1yyuour) (Ap1eam) (£1e0m)

HOUVOHOd S-HOUVODHY YVH-HOUVOHY SVAIN-HOYVOHY SVAIN-HOYVOHAY SVAIN-HOEVOHY SVAIN-HOYVOHY HOYVOHY

‘sosodund saryereduwod 10] X JS 9pPNOUL PUE SIYI03S [ENPIAIPUL OF [[€ 10J S}[NSaI }10dax dp

"HOYVOHY [BUISLIO 8} 0} 9ANB[I HOYVOHOIL PUe surdS-HOYVOHY oY) pue s[opowt pasodoad umo 1oj g pejeurr)ss sytodat a[qe) STy,
suonedyroads HOUYVOHY SNOLIBA SSOI0E ¢ pajewir)sy :¢ a[qe],

60



381 9 I I I T 8% = 8T (4 I 0 (4 a1 8% =
61T 9 I 0 I a1 eI =9 08T (4 I (4 I A gT =1
11 L 0 0 I a1 0T =3 LTT (4 (4 0 g e1 0T =1
70°T L (4 I (4 8 g=9 60'T g € I i 6 g=9
70°T L g 0 g L y=1 80'T (4 i 0 g 6 y=1
€01 L (4 0 g 9 g=9 80'T (4 i I i 6 g=1
30T 8 I (4 g i z=1 70'T g i I (4 01 g=1
00'T T T I i € =9 10T L i T (4 9 =9
OSSOl mowvomd  uSSUL 90T %8 %1 wozmoH SOl powyomy  uSsul 90T %G % uozuoH
UBIpOI . . UBIpO . .
YVH-HOUVOHY SVAIN-HOY VDAY A1oom
UO0I)oUNJ SSO[ IOLIY UOTIIPAIJ patenbg :g [oued
92°T (4 i 0 T €1 8% = €8T (4 (4 I 0 q1 8% =1
oT'T i (4 I I 31 g1 =9 31 i I 0 4 €1 GT =1
60°T g (4 (4 I 01 0T =1 IT1 i I (4 (4 T 0T =1
€01 9 i (4 I L g=9 50T i g I I 6 g=9
30T 8 (4 g 0 L v=7 50T g 9 I I 6 v=1
30T L i I i i g=7 S0'T g i (4 (4 6 g=1
30T L L I (4 g g=1 €01 i g (4 g 9 g=1
10T 6 g I I i =9 301 g g g (4 g =9
oT)RI SSO[ ) oTjer SSO| .
werpopy  HOUVOEM  USISUL 90T %G T UOZLOH werpopy  HOUVOEY  USISUL 90T ¢ %I UOZLOH
YVH-HOUVOHY SVAIN-HOUVOAY £1ooM

uonpouny ssof ANI'TO :V [oued

‘S[TejOp [BUOIIPPR 10} g'() U0T}0eg 99g ‘[opowr pasodoud ano jo soururiojiod Jorodns s9jeoIpul A31un 9A0qe
Joquinu Y "HOYVHHAY [BULSLIO oY) 0] 9A1jR[a. S[opoul pasodoad Ino Jo SSO[ 1S8I8.10§ JO O1je.d URIPOUL Y[} J10dad 0S[e oM ‘YustusAoidur Jo
2INseoW I9Yjour SY '389q oY) Sutuniofrad sem HOYVHHY OY) SOWT) (g/g Pue JuedyIudISUul Sem 90urULIOfIad 1SBI9.10] UL 90USISJIP 91}
SOWIT) ()G/g SeadoUMm ‘([oAd] 9T PUR 9,G 8YJ JB J0U JN() [9AJ] 90URIYIUSIS 9,0 93 J© SOWI) (/] PUR [9AS] 90URBIYTUSIS 9T oY) Je Sour)
02/ST HOYVOHHAY swiojredino SYAIN-HOUVOHY A e0Mm o) )sedato] peaye sdes-gg aY) 10J 18} S91edIpul y [Ued 9Jo] 8Y) Ul M0l
1Se[ 9} ‘©0URISUL 10, ‘O[qe)} 9} Ul A10301e) Yord ojul SUl[[e} SYI03S JO Joqunu 9y} J10da pue anjea-d ay) Jo ozIs o) 03 SUIPI0IOR. }Sa)
9} JO SWI02)NO J[} 9ZLI0SIBI 9M JD0)S pUR UOZLIOY }SBIDI0J Yora 10, A)I[Iqe oA13dTpad [enba 10J 1591 OURLIBIA-P[OQOL(] 9} JO SUBAW
AQ possosse SI S9SSO[ JSB00.10] UL S8OUDISJJIP 9Y) JO 9ourdUIUSIS [Bo11S1IRIS "HOYVHHY [BULSLIo ay) jsurese posrewyousq SYIIIN
-HOYVHHY 1erewered-o[3uls A[eom pue YYH-HOYVHHAY 2U3 Jo £L1]iqe aAnaipaad peaye sdejs-y o) Jo Arewrmuns © syrodad a[qe) s1yJ,

SY0019S [enpPIAIPUI J0J UOIJeN[BAD }SBIII0] :9 d[qe],

61



98°0 L9°0 L9°0 98°0 98°0 9L°0 TL°0 ¥1°0 ¢c=1
18°0 9L°0 9L°0 98°0 06°0 98°0 TL°0 ¥6'0 gT=9
9L.°0 90 9L°0 98°0 18°0 18°0 TL°0 0T°0 0T =%
€€°0 ¢s0 TL°0 9L°0 9L°0 18°0 9L°0 650 g=3
6T°0 ¢s0 90 LGS0 L9°0 18°0 9L°0 €€°0 =9
01’0 €70 L9°0 L9°0 L9°0 18°0 9L°0 €60 €=3
6T°0 87°0 90 TL°0 L9°0 18°0 9L°0 650 ¢=9
98°0 ¢S0 cS0 L9°0 LGS0 TL°0 LGS0 €70 =9
uo1)ouUNy SSO[ JIOLIY UOT)IPaIJ patenbg :g [oueq
980 9L°0 TL°0 06°0 06°0 9L°0 9L°0 €€°0 ¢c=1
18°0 ¢S0 TL°0 9L°0 06°0 98°0 TL°0 650 qT=9
9.0 ¢s0 L9°0 9L°0 I8°0 9L°0 L9°0 65°0 0T =%
8€°0 ¢s0 L9°0 9L°0 I8°0 9L°0 TL°0 €70 g=9
¥1°0 €70 L9°0 L9°0 L0 18°0 9L°0 8€°0 =1
01’0 €70 L9°0 LGS0 (40 TL°0 L9°0 €€°0 €=3
G0°0 8€°0 L9°0 ¢S0 [4<N0) TL°0 L9°0 6G°0 ¢=9
9.0 8€°0 TL°0 LGS0 (40 18°0 L9°0 LGS0 =3
(191owreIRd-913UIS) (191owreIRd-913UIS)
(Aqpuow) (A1qpuow) (£1e0m) (£1¥700m)

HOUVOEO S-HOUVOAY UVH-HOUVOTY SVAIN-HOUVOEY SVAIN-HOMVOEY SVAIN-HOMVOEY SVAIN-HOMVOTY HOWVOHY UOZLIOH
uonouny ssof FAI'TH *V [Pued

"S[Te19p [BUOH)IPPE I0J 7)) U0IDAG 90g "uoTjejuswedwr oy) Ut 0T Ym der)sjooq YI0[q B oSN 9p) "SYI09S 93 JO 906 10§
SOIN Y3 ut papnput sem SYATIN-HOYVOHY ATYIUOW oY} SBaIOYM ‘U0IOUN] SSO] HYITO oYt SUISN PoIen[eAd usym gg = ¥ Jo uozLioyg
1SBI9I0J B [[1IM S}001S 83 JO %€ 10J SOIN Y3 Ul pepnul sem HOYVHHY oY) ‘@oue)sul 10 "Surjsessao] pesaye dejs-1jnwt pue dejs-auo
pue [9A9] souBOYIUSIS 9,()T B U0 SOJA 92 UL POPN[OUL ST [POUT USALS B UIIYM J0J X JS PUB S)001S Jo aSejuasdtad ay) sjtodal o[qe) SIyf,

AdS pue s}00)s [enpPIAIPUI J10J UOIJEN[BAD 19§ OUIPYUO)) [OPOIA :L d[qelL

62



D. In-sample results for individual stocks

Table 8: REGARCH
This table reports full-sample estimated parameters, information criteria as well as full
maximized log-likelihood value for the original REGARCH.

AA AIG AXP BA CAT DD DIS GE IBM INTC
u 0.015 -0.017 0.051 0.074 0.074 0.041 0.053 0.021 0.029 0.026
B 0.972 0.972 0.987 0.977 0.973 0.972 0.981 0.982 0.974 0.972
a 0.355 0.606 0.394 0.322 0.376 0.413 0.356 0.418 0.438 0.478
¢ -0.518 -0.296 -0.385 -0.446 -0.590 -0.207 -0.327 -0.342 -0.375 -0.285
a2 0.136 0.201 0.148 0.135 0.130 0.147 0.146 0.153 0.129 0.129
T1 -0.054 -0.086 -0.085 -0.062 -0.056 -0.076 -0.076 -0.063 -0.072 -0.051
Ty 0.039 0.039 0.039 0.036 0.016 0.023 0.022 0.029 0.014 0.021
o1 -0.061 -0.049 -0.065 -0.054 -0.069 -0.071 -0.079 -0.045 -0.063 -0.038
02 0.063 0.042 0.060 0.076 0.043 0.048 0.047 0.049 0.037 0.036
¢ 1.055 0.855 0.993 1.046 1.105 0.961 0.981 0.985 0.962 0.924
1] 1.544 1.513 1.135 1.041 1.155 0.770 1.067 0.865 0.549 1.353

log¥ -7,883.37 -8,493.81 -7,122.76 -7,000.25 -7,237.72 -6,751.76 -6,965.93 -6,832.49 -6,176.02 -7,343.71
AIC 15,788.74 17,009.63 14,267.52 14,022.51 14,497.45 13,525.52 13,953.85 13,686.98 12,374.05 14,709.42
BIC 15854.83 17,075.70 14,333.57 14,088.57 14,563.51 13,591.57 14,019.91 13,753.08 12,440.11 14,775.55
HQIC 15942.92 17,163.77 14,421.62 14,176.62 14,651.58 13,679.63 14,107.98 13,841.17 12,528.17 14,863.68

JNJ KO MMM MRK MSFT PG VZ WHR WMT XOM
u 0.030 0.029 0.044 0.023 0.035 0.026 0.028 0.074 0.017 0.042
B 0.976 0.973 0.967 0.971 0.968 0.961 0.979 0.963 0.979 0.967
a 0.359 0.399 0.357 0.257 0.447 0.373 0.334 0.287 0.307 0.357
13 -0.123 -0.150 -0.342 -1.017 -0.381 -0.159 -0.185 -1.112 -0.259 -0.291
a? 0.151 0.144 0.147 0.191 0.137 0.151 0.153 0.171 0.137 0.123
T1 -0.066 -0.065 -0.080 -0.034 -0.044 -0.059 -0.064 -0.040 -0.035 -0.087
T2 0.038 0.027 0.010 0.001 0.013 0.025 0.039 0.024 0.028 0.041
01 -0.031 -0.053 -0.071 -0.057 -0.036 -0.053 -0.061 -0.043 -0.028 -0.105
b2 0.058 0.064 0.041 0.010 0.033 0.056 0.059 0.068 0.058 0.050
¢ 0.961 0.949 1.067 1.450 1.003 1.084 1.009 1.344 1.120 1.082
1] -0.071 0.112 0.437 0.974 0.900 0.021 0.530 1.538 0.350 0.554

log? -5426.50 -5,694.49 -6,291.30 -7,470.15 -6,832.84 -5,651.66 -6,419.04 -8,210.50 -5,951.18 -6,113.27
AIC 10,875.01 11,410.98 12,604.59 14,962.29 13,687.67 11,325.33 12,860.09 16,443.00 11,924.36 12,248.54
BIC 10,941.07 11,477.05 12,670.64 15,028.34 13,753.80 11,391.39 12,926.14 16,509.04 11,990.44 12,314.61
HQIC 11,029.13 11,565.12 12,758.68 15,116.40 13,841.94 11,479.46 13,014.20 16,597.08 12,078.52 12,402.69
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Table 9: Weekly REGARCH-MIDAS
This table reports full-sample estimated parameters, information criteria, variance ratio
from (34) as well as full maximized log-likelihood value for the weekly two-parameter
REGARCH-MIDAS. Results are for K = 52.

AA AIG AXP BA CAT DD DIS GE IBM INTC
I 0.011 -0.016 0.056 0.078 0.071 0.044 0.063 0.025 0.033 0.031
B 0.649 0.577 0.710 0.606 0.553 0.623 0.520 0.817 0.612 0.602
a 0.392 0.589 0.410 0.360 0.432 0.455 0.429 0.452 0.479 0.531
13 -0.487 -0.291 -0.392 -0.441 -0.572 -0.202 -0.322 -0.333 -0.378 -0.276
o2 0.133 0.191 0.144 0.132 0.126 0.144 0.142 0.149 0.127 0.125
71 -0.062 -0.094 -0.096 -0.076 -0.062 -0.090 -0.089 -0.068 -0.086 -0.061
T2 0.044 0.050 0.048 0.047 0.022 0.025 0.029 0.035 0.015 0.018
01 -0.063 -0.048 -0.065 -0.054 -0.069 -0.071 -0.080 -0.046 -0.064 -0.040
02 0.061 0.047 0.059 0.075 0.042 0.047 0.045 0.050 0.037 0.032
¢ 1.039 0.872 0.999 1.044 1.093 0.959 0.976 0.978 0.963 0.920
w 0.538 0.361 0.402 0.448 0.547 0.224 0.340 0.362 0.392 0.331
A 0.900 1.117 0.973 0.908 0.873 0.999 0.993 0.945 0.981 1.038
Y1 -0.156 -0.577 -0.041 -0.214 -0.822 -0.758 -0.866 2.003 -0.971 -0.296
Y2 6.538 1.481 6.938 6.994 2.134 1.000 1.130 27.928 1.004 4.883

log¥ -7,836.88 -8,367.58 -7,081.18 -6,956.80 -7,187.14 -6,716.86 -6,912.97 -6,791.63 -6,144.97 -7,280.34
AIC 15,701.75 16,763.15 14,190.36 13,941.60 14,402.28 13,461.72 13,853.93 13,611.26 12,317.94 14,588.67
BIC 15,785.86 16,847.24 14,274.42 14,025.67 14,486.36 13,545.79 13,938.01 13,695.38 12,402.01 14,672.84

HQIC 15,897.98 16,959.33 14,386.49 14,137.75 14,598.44 13,657.86 14,050.09 13,807.49 12,514.09 14,785.01

VR 0.82 0.87 0.89 0.85 0.85 0.82 0.89 0.80 0.83 0.84
JNJ KO MMM MRK MSFT PG VZ WHR WMT XOM

u 0.034 0.032 0.045 0.025 0.038 0.028 0.031 0.067 0.021 0.051
I5} 0.627 0.562 0.587 0.552 0.613 0.547 0.649 0.554 0.536 0.598
a 0.411 0.453 0.415 0.297 0.492 0.416 0.384 0.315 0.342 0.382
3 -0.128 -0.149 -0.340 -1.002 -0.365 -0.158 -0.177 -1.055 -0.254 -0.288
o2 0.147 0.141 0.143 0.188 0.133 0.147 0.150 0.164 0.133 0.120
T1 -0.076 -0.071 -0.086 -0.039 -0.048 -0.068 -0.071 -0.048 -0.045 -0.102
Ty 0.049 0.036 0.018 0.002 0.015 0.031 0.048 0.032 0.036 0.046
01 -0.029 -0.053 -0.070 -0.057 -0.038 -0.053 -0.060 -0.045 -0.027 -0.105
02 0.058 0.065 0.041 0.010 0.033 0.055 0.058 0.067 0.056 0.049
¢ 0.958 0.936 1.060 1.437 0.986 1.071 1.000 1.315 1.117 1.084
w 0.103 0.149 0.324 0.712 0.391 0.132 0.192 0.861 0.225 0.279
A 0.949 1.017 0.873 0.647 0.951 0.863 0.938 0.701 0.855 0.851
Y1 1.471 -0.875 -0.638 -0.563 -0.477 -0.957 0.001 -0.034 -0.776 -1.116
Y2 48.950 1.000 3.334 4.365 3.124 1.000 11.393 7.918 2.321 1.000

log¥ -5,395.67 -5,652.84 -6,256.25 -7,438.83 -6,785.22 -5,604.99 -6,390.01 -8,138.73 -5,910.60 -6,069.31
AIC 10,819.34 11,333.68 12,540.50 14,905.66 13,598.45 11,237.98 12,808.02 16,305.46 11,849.19 12,166.62
BIC 10,903.42 11,417.77 12,624.56 14,989.73 13,682.61 11,322.06 12,892.09 16,389.52 11,933.29 12,250.72
HQIC 11,015.50 11,529.86 12,736.61 15,101.79 13,794.78 11,434.14 13,004.16 16,501.58 12,045.39 12,362.82
VR 0.83 0.84 0.80 0.83 0.82 0.80 0.84 0.81 0.87 0.80
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Table 10: Weekly REGARCH-MIDAS (single-parameter)
This table reports full-sample estimated parameters, information criteria, variance ratio
from (34) as well as full maximized log-likelihood value for the weekly single-parameter
REGARCH-MIDAS. Results are for K = 52.

AA AIG AXP BA CAT DD DIS GE IBM INTC
I 0.011 -0.017 0.057 0.078 0.071 0.044 0.064 0.025 0.033 0.032
I5} 0.711 0.623 0.790 0.656 0.584 0.710 0.554 0.742 0.638 0.654
a 0.390 0.592 0.408 0.359 0.433 0.451 0.431 0.459 0.482 0.532
13 -0.491 -0.301 -0.392 -0.442 -0.573 -0.204 -0.321 -0.333 -0.378 -0.276
a2 0.133 0.191 0.144 0.132 0.126 0.144 0.142 0.149 0.127 0.125
71 -0.062 -0.095 -0.095 -0.076 -0.061 -0.089 -0.089 -0.068 -0.085 -0.060
T2 0.043 0.049 0.046 0.046 0.022 0.025 0.029 0.036 0.016 0.018
01 -0.063 -0.048 -0.065 -0.054 -0.069 -0.071 -0.079 -0.046 -0.063 -0.040
02 0.061 0.047 0.059 0.075 0.043 0.048 0.045 0.049 0.037 0.032
¢ 1.041 0.876 1.000 1.045 1.093 0.959 0.975 0.978 0.962 0.920
w 0.563 0.406 0.409 0.459 0.571 0.256 0.358 0.356 0.398 0.353
A 0.878 1.078 0.959 0.889 0.844 0.945 0.964 0.964 0.942 1.014
Y2 22.519 26.382 17.205 27.678 40.966 27.351 39.739 19.960 44.999 25.944

log -7,838.40 -8,373.86 -7,081.88 -6,957.85 -7,190.46 -6,720.73 -6,915.24 -6,791.92 -6,148.72 -7,283.34
AIC 15,702.80 16,773.72 14,189.76 13,941.71 14,406.93 13,467.46 13,856.48 13,609.84 12,323.44 14,592.68
BIC 15,780.90 16,851.80 14,267.82 14,019.78 14,485.01 13,545.53 13,934.55 13,687.95 12,401.51 14,670.83

HQIC 15,885.01 16,955.88 14,371.88 14,123.85 14,589.08 13,649.59 14,038.63 13,792.06 12,505.58 14,774.99

VR 0.80 0.86 0.87 0.83 0.84 0.78 0.88 0.84 0.82 0.82
JNJ KO MMM MRK MSFT PG VZ WHR WMT XOM

u 0.034 0.032 0.045 0.024 0.038 0.028 0.031 0.068 0.021 0.050
B 0.620 0.617 0.634 0.657 0.689 0.567 0.691 0.631 0.582 0.610
a 0.411 0.453 0.414 0.293 0.492 0.420 0.381 0.315 0.343 0.388
13 -0.129 -0.150 -0.343 -1.012 -0.364 -0.157 -0.177 -1.052 -0.256 -0.287
o2 0.147 0.141 0.144 0.188 0.134 0.148 0.150 0.164 0.134 0.120
T1 -0.076 -0.071 -0.086 -0.039 -0.048 -0.068 -0.071 -0.048 -0.045 -0.103
T2 0.049 0.036 0.017 0.002 0.015 0.031 0.048 0.032 0.036 0.046
01 -0.029 -0.053 -0.070 -0.057 -0.038 -0.054 -0.060 -0.044 -0.027 -0.105
b2 0.058 0.064 0.041 0.010 0.033 0.055 0.058 0.067 0.056 0.048
] 0.958 0.939 1.064 1.446 0.986 1.073 1.001 1.313 1.119 1.082
] 0.104 0.148 0.332 0.723 0.407 0.125 0.197 0.871 0.229 0.288
A 0.953 0.973 0.838 0.625 0.920 0.820 0.923 0.691 0.828 0.820
Y2 37.685 35.949 35.219 28.038 24.932 46.647 28.890 20.578 39.253 53.373

log¥ -5,395.73 -5,657.00 -6,258.62 -7,442.47 -6,789.21 -5,609.35 -6,390.15 -8,141.40 -5,915.05 -6,072.96
AIC 10,817.46 11,340.01 12,543.24 14,910.94 13,604.43 11,244.70 12,806.31 16,308.79 11,856.10 12,171.92
BIC 10,895.53 11,418.09 12,621.29 14,989.00 13,682.59 11,322.78 12,884.37 16,386.85 11,934.20 12,250.01
HQIC 10,999.61 11,522.17 12,725.34 15,093.06 13,786.74 11,426.86 12,988.44 16,490.90 12,038.29 12,354.10
VR 0.83 0.83 0.78 0.79 0.79 0.78 0.83 0.79 0.86 0.79
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Table 11: Monthly REGARCH-MIDAS
This table reports full-sample estimated parameters, information criteria, variance ratio
from (34) as well as full maximized log-likelihood value for the monthly two-parameter
REGARCH-MIDAS. Results are for K = 12.

AA AIG AXP BA CAT DD DIS GE IBM INTC
I 0.011 -0.018 0.057 0.078 0.071 0.044 0.064 0.025 0.034 0.032
I5} 0.820 0.742 0.861 0.837 0.825 0.864 0.832 0.843 0.891 0.812
a 0.383 0.590 0.404 0.345 0.414 0.432 0.390 0.445 0.451 0.515
13 -0.492 -0.306 -0.391 -0.441 -0.567 -0.201 -0.335 -0.333 -0.379 -0.276
o2 0.133 0.193 0.144 0.132 0.127 0.144 0.143 0.149 0.127 0.126
71 -0.062 -0.092 -0.094 -0.073 -0.063 -0.086 -0.087 -0.069 -0.078 -0.060
T2 0.041 0.048 0.044 0.042 0.020 0.023 0.026 0.034 0.014 0.018
01 -0.063 -0.048 -0.065 -0.054 -0.070 -0.071 -0.080 -0.046 -0.063 -0.040
02 0.061 0.049 0.059 0.075 0.044 0.048 0.044 0.050 0.036 0.033
¢ 1.042 0.881 0.999 1.044 1.089 0.957 0.987 0.978 0.966 0.920
w 0.577 0.405 0.404 0.467 0.565 0.241 0.361 0.355 0.390 0.349
A 0.864 1.080 0.959 0.869 0.842 0.951 0.951 0.952 0.897 1.009
Y1 -0.583 -1.605 0.025 1.398 -0.865 -0.266 -0.878 0.424 0.800 1.028
Y2 4.112 1.000 5.262 13.651 3.036 2.728 1.933 8.113 6.714 9.921

log¥ -7,842.06 -8,377.55 -7,081.13 -6,963.39 -7,202.89 -6,721.18 -6,928.36 -6,792.40 -6,153.55 -7,292.92
AIC 15,712.13 16,783.10 14,190.26 13,954.77 14,433.77 13,470.37 13,884.72 13,612.79 12,335.11 14,613.85
BIC 15,796.24 16,867.19 14,274.33 14,038.85 14,517.86 13,554.44 13,968.80 13,696.91 12,419.18 14,698.01

HQIC 15,908.35 16,979.28 14,386.39 14,150.92 14,629.94 13,666.51 14,080.88 13,809.03 12,531.26 14,810.18

VR 0.72 0.82 0.83 0.73 0.70 0.65 0.76 0.78 0.60 0.74
JNJ KO MMM MRK MSFT PG VZ WHR WMT XOM

u 0.034 0.032 0.045 0.024 0.038 0.028 0.031 0.067 0.021 0.049
B 0.850 0.827 0.863 0.864 0.826 0.831 0.875 0.745 0.852 0.873
a 0.388 0.434 0.380 0.277 0.476 0.400 0.359 0.314 0.325 0.361
3 -0.127 -0.149 -0.344 -1.006 -0.367 -0.159 -0.180 -1.032 -0.256 -0.294
o2 0.148 0.142 0.144 0.188 0.134 0.149 0.151 0.165 0.134 0.121
T1 -0.074 -0.069 -0.084 -0.038 -0.050 -0.065 -0.069 -0.048 -0.040 -0.095
Ty 0.045 0.033 0.013 0.001 0.014 0.028 0.044 0.031 0.032 0.044
01 -0.030 -0.053 -0.070 -0.057 -0.039 -0.053 -0.060 -0.045 -0.028 -0.105
02 0.058 0.064 0.041 0.010 0.033 0.056 0.058 0.067 0.057 0.049
¢ 0.958 0.941 1.071 1.439 0.988 1.080 1.005 1.301 1.120 1.089
w 0.082 0.141 0.330 0.730 0.407 0.118 0.205 0.874 0.225 0.297
A 0.914 0.962 0.783 0.595 0.906 0.794 0.877 0.686 0.807 0.761
Y1 -1.427 -1.388 2.524 3.325 0.013 -0.931 1.769 3.777 1.456 -0.651
Y2 1.000 1.000 18.021 21.725 5.094 1.783 13.707 33.579 13.546 2.319

log? -5,404.34 -5,662.62 -6,265.13 -7,446.52 -6,791.44 -5,623.29 -6,395.34 -8,141.29 -5,921.83 -6,087.31
AIC 10,836.68 11,353.24 12,558.27 14,921.04 13,610.88 11,274.58 12,818.68 16,310.58 11,871.65 12,202.61
BIC 10,920.76 11,437.32 12,642.32 15,005.10 13,695.05 11,358.66 12,902.75 16,394.64 11,955.75 12,286.71
HQIC 11,032.84 11,549.41 12,754.38 15,117.17 13,807.22 11,470.75 13,014.82 16,506.70 12,067.85 12,398.81
VR 0.67 0.70 0.58 0.63 0.69 0.59 0.68 0.74 0.72 0.54
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Table 12: Monthly REGARCH-MIDAS (single-parameter)
This table reports full-sample estimated parameters, information criteria, variance ratio
from (34) as well as full maximized log-likelihood value for the monthly single-parameter
REGARCH-MIDAS. Results are for K = 12.

AA AIG AXP BA CAT DD DIS GE IBM INTC
I 0.012 -0.017 0.057 0.078 0.071 0.045 0.065 0.025 0.034 0.032
I5} 0.824 0.737 0.865 0.836 0.831 0.871 0.841 0.845 0.893 0.812
a 0.383 0.591 0.404 0.345 0.413 0.431 0.387 0.445 0.450 0.515
13 -0.492 -0.311 -0.391 -0.441 -0.568 -0.201 -0.337 -0.333 -0.378 -0.276
a2 0.134 0.192 0.144 0.132 0.127 0.144 0.143 0.149 0.127 0.126
71 -0.062 -0.093 -0.094 -0.073 -0.063 -0.085 -0.087 -0.069 -0.078 -0.060
T2 0.041 0.048 0.044 0.042 0.019 0.023 0.026 0.034 0.014 0.018
01 -0.063 -0.047 -0.065 -0.054 -0.070 -0.071 -0.080 -0.046 -0.063 -0.040
02 0.061 0.048 0.059 0.075 0.044 0.048 0.044 0.050 0.036 0.033
¢ 1.042 0.883 0.999 1.045 1.090 0.957 0.988 0.978 0.966 0.920
w 0.587 0.431 0.406 0.466 0.576 0.252 0.373 0.356 0.390 0.349
A 0.855 1.054 0.955 0.871 0.828 0.930 0.933 0.950 0.894 1.009
Y2 12.772 21.575 9.843 11.378 13.169 8.224 10.921 11.252 7.447 9.787

log¥ -7,842.51 -8,381.29 -7,081.41 -6,963.39 -7,203.34 -6,721.53 -6,929.11 -6,792.42 -6,153.56 -7,292.92
AIC 15,711.02 16,788.57 14,188.81 13,952.79 14,432.67 13,469.06 13,884.22 13,610.84 12,333.13 14,611.85
BIC 15,789.13 16,866.65 14,266.87 14,030.86 14,510.75 13,547.13 13,962.29 13,688.95 12,411.20 14,690.00
HQIC 15,893.23 16,970.74 14,370.94 14,134.93 14,614.83 13,651.19 14,066.36 13,793.06 12,515.27 14,794.16

VR 0.72 0.82 0.83 0.73 0.70 0.64 0.76 0.78 0.59 0.74
JNJ KO MMM MRK MSFT PG VZ WHR WMT XOM

u 0.034 0.033 0.045 0.024 0.038 0.028 0.031 0.067 0.021 0.049
B 0.856 0.829 0.856 0.849 0.834 0.837 0.871 0.742 0.850 0.880
a 0.387 0.434 0.381 0.277 0.474 0.399 0.360 0.314 0.326 0.361
13 -0.127 -0.149 -0.345 -1.016 -0.367 -0.159 -0.180 -1.037 -0.256 -0.293
o2 0.148 0.142 0.144 0.188 0.134 0.149 0.151 0.165 0.134 0.121
T1 -0.073 -0.069 -0.085 -0.038 -0.050 -0.065 -0.069 -0.048 -0.041 -0.095
T2 0.045 0.033 0.013 0.001 0.014 0.028 0.044 0.030 0.032 0.044
01 -0.030 -0.052 -0.070 -0.058 -0.039 -0.053 -0.060 -0.044 -0.028 -0.105
b2 0.058 0.064 0.041 0.010 0.033 0.056 0.058 0.067 0.057 0.049
) 0.958 0.940 1.072 1.448 0.988 1.080 1.005 1.304 1.120 1.089
] 0.077 0.140 0.329 0.728 0.409 0.116 0.203 0.874 0.224 0.304
A 0.889 0.938 0.792 0.602 0.901 0.772 0.883 0.686 0.809 0.739
Y2 14.140 14.689 10.161 10.076 9.315 11.923 9.798 15.579 11.051 10.146

log¥ -5,405.05 -5,663.48 -6,265.40 -7,447.15 -6,791.78 -5,623.97 -6,395.39 -8,141.55 -5,921.85 -6,087.94
AIC 10,836.10 11,352.96 12,556.81 14,920.31 13,609.55 11,273.94 12,816.77 16,309.10 11,869.70 12,201.87
BIC 10,914.18 11,431.04 12,634.86 14,998.37 13,687.71 11,352.02 12,894.84 16,387.16 11,947.79 12,279.96
HQIC 11,018.25 11,535.13 12,738.91 15,102.43 13,791.87 11,456.10 12,998.90 16,491.21 12,051.89 12,384.05
VR 0.65 0.70 0.59 0.65 0.69 0.58 0.68 0.74 0.72 0.52
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Table 13: REGARCH-HAR
This table reports full-sample estimated parameters, information criteria, variance ratio
from (34) as well as full maximized log-likelihood value for the REGARCH-HAR.

AA AIG AXP BA CAT DD DIS GE IBM INTC

" 0.011 -0.017 0.056 0.077 0.071 0.043 0.063 0.024 0.032 0.030

B 0.638 0.578 0.811 0.583 0.537 0.591 0.508 0.801 0.568 0.565

a 0.396 0.585 0.420 0.367 0.434 0.465 0.438 0.459 0.486 0.538

13 -0.495 -0.310 -0.391 -0.445 -0.576 -0.203 -0.322 -0.337 -0.377 -0.280

a2 0.134 0.191 0.145 0.133 0.127 0.145 0.143 0.150 0.127 0.126
T1 -0.062 -0.094 -0.095 -0.076 -0.061 -0.089 -0.089 -0.069 -0.086 -0.060
T2 0.045 0.050 0.046 0.048 0.022 0.026 0.029 0.036 0.016 0.019
01 -0.063 -0.047 -0.065 -0.055 -0.069 -0.070 -0.080 -0.046 -0.064 -0.040
b2 0.061 0.048 0.060 0.075 0.043 0.048 0.044 0.051 0.037 0.033
) 1.043 0.881 0.998 1.047 1.096 0.958 0.976 0.980 0.959 0.922

1] 0.572 0.418 0.429 0.465 0.571 0.256 0.360 0.377 0.398 0.366

Y1 0.321 0.391 0.033 0.373 0.465 0.497 0.506 0.001 0.597 0.453
Y2 0.552 0.677 0.898 0.510 0.381 0.453 0.457 0.920 0.356 0.551

log¥ -7,847.46 -8,374.10 -7,095.31 -6,972.04 -7,196.44 -6,731.86 -6,927.53 -6,804.48 -6,156.54 -7,298.11
AIC 15,720.92 16,774.20 14,216.63 13,970.07 14,418.88 13,489.73 13,881.07 13,634.95 12,339.08 14,622.23
BIC 15,799.03 16,852.28 14,294.69 14,048.14 14,496.96 13,567.79 13,959.14 13,713.06 12,417.15 14,700.38
HQIC 15,903.13 16,956.37 14,398.75 14,152.21 14,601.04 13,671.86 14,063.21 13,817.17 12,521.22 14,804.54

VR 0.82 0.86 0.84 0.85 0.85 0.82 0.88 0.80 0.84 0.84
JNJ KO MMM MRK MSFT PG VZ WHR WMT XOM

u 0.034 0.032 0.044 0.025 0.039 0.028 0.030 0.068 0.020 0.049
B 0.570 0.558 0.554 0.494 0.585 0.521 0.599 0.531 0.500 0.561
a 0.419 0.458 0.423 0.303 0.502 0.421 0.394 0.317 0.349 0.389
3 -0.130 -0.149 -0.339 -0.998 -0.362 -0.157 -0.180 -1.066 -0.254 -0.288
o2 0.148 0.141 0.145 0.189 0.134 0.148 0.152 0.165 0.135 0.120
T1 -0.076 -0.072 -0.085 -0.039 -0.046 -0.068 -0.072 -0.047 -0.045 -0.103
Ty 0.050 0.037 0.018 0.002 0.016 0.031 0.049 0.032 0.037 0.046
01 -0.029 -0.053 -0.069 -0.056 -0.038 -0.053 -0.061 -0.044 -0.028 -0.105
02 0.059 0.065 0.042 0.010 0.033 0.055 0.059 0.066 0.056 0.049
¢ 0.959 0.936 1.058 1.433 0.982 1.069 1.001 1.321 1.117 1.082
w 0.106 0.148 0.331 0.719 0.408 0.126 0.200 0.881 0.228 0.287
1 0.480 0.499 0.457 0.356 0.423 0.500 0.437 0.246 0.472 0.556
Y2 0.474 0.480 0.388 0.275 0.501 0.329 0.485 0.435 0.361 0.273

log¥# -5407.30 -5,659.23 -6,269.06 -7,449.17 -6,796.98 -5,613.81 -6,404.37 -8,143.54 -5922.70 -6,077.50
AIC  10,840.60 11,344.46 12,564.13 14,924.33 13,619.96 11,253.63 12,834.74 16,313.08 11,871.40 12,181.01
BIC 10,918.68 1142254 12,642.18 15,002.40 13,698.11 11,331.71 12,912.80 16,391.13 11,949.49 12,259.10
HQIC 11,022.75 11,526.62 12,746.23 15,106.46 13,802.27 11,435.78 13,016.87 16,495.18 12,053.58 12,363.19
VR 0.84 0.84 0.80 0.84 0.82 0.80 0.85 0.81 0.87 0.81
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Table 14: REGARCH-Spline
This table reports full-sample estimated parameters, information criteria as well as full
maximized log-likelihood value for the REGARCH-Spline. Results are for K = 6.

AA AIG AXP BA CAT DD DIS GE IBM INTC
U -0.017 0.048 0.059 0.088 0.075 0.047 0.068 0.023 0.035 0.017
B 0.933 0.864 0.943 0.936 0.941 0.932 0.942 0.935 0.948 0.913
a 0.359 0.588 0.389 0.342 0.376 0.417 0.355 0.428 0.440 0.487
13 -0.510 -0.274 -0.379 -0.399 -0.591 -0.199 -0.328 -0.326 -0.375 -0.275
a2 0.134 0.195 0.144 0.133 0.128 0.144 0.143 0.150 0.128 0.127
T1 -0.058 -0.075 -0.088 -0.069 -0.058 -0.079 -0.081 -0.065 -0.073 -0.055
T2 0.039 0.045 0.040 0.043 0.016 0.023 0.024 0.031 0.013 0.018
01 -0.063 -0.039 -0.064 -0.055 -0.069 -0.069 -0.078 -0.045 -0.062 -0.037
b2 0.062 0.048 0.058 0.076 0.042 0.047 0.046 0.050 0.036 0.034
) 1.052 0.864 0.994 1.000 1.108 0.953 0.980 0.973 0.959 0.919
1] 1.684 1.435 1.726 2.015 1.375 1.398 2.009 1.860 1.632 2.769

log? -7,854.94 -8,390.56 -7,086.92 -6,972.56 -7,214.19 -6,718.88 -6,931.05 -6,795.12 -6,156.17 -7,300.44
AIC 15,745.89 16,817.12 14,209.84 13,981.11 14,464.37 13,473.76 13,898.10 13,626.24 12,348.33 14,636.88
BIC 15,854.03 16,925.23 14,317.92 14,089.21 14,572.48 13,581.85 14,006.20 13,734.39 12,456.43 14,745.10

HQIC 15,998.18 17,069.35 14,462.00 14,233.30 14,716.59 13,725.94 14,150.30 13,878.54 12,600.52 14,889.32

VR 0.51 0.79 0.75 0.62 0.50 0.56 0.63 0.68 0.40 0.61
JNJ KO MMM MRK MSFT PG VZ WHR WMT XOM

u 0.035 0.033 0.047 0.039 0.050 0.021 0.033 0.067 0.020 0.049

B 0.950 0.932 0.938 0.926 0.917 0.930 0.953 0.905 0.947 0.947

a 0.353 0.404 0.353 0.283 0.449 0.371 0.343 0.307 0.310 0.343

¢ -0.123 -0.147 -0.351 -0.902 -0.383 -0.143 -0.177 -0.988 -0.252 -0.295

a2 0.148 0.142 0.144 0.190 0.134 0.149 0.152 0.167 0.135 0.121
T1 -0.068 -0.067 -0.081 -0.031 -0.047 -0.059 -0.064 -0.045 -0.036 -0.087
T 0.040 0.028 0.012 0.002 0.013 0.025 0.040 0.027 0.028 0.043
01 -0.030 -0.052 -0.070 -0.052 -0.037 -0.053 -0.060 -0.044 -0.028 -0.104
02 0.057 0.064 0.040 0.011 0.032 0.055 0.058 0.069 0.057 0.050
¢ 0.964 0.941 1.077 1.349 1.002 1.087 1.004 1.273 1.113 1.094

w 0.962 0.738 0.936 1.168 2.001 0.169 1.366 1.490 1.164 1.040

log ¥ -5,403.06 -5663.08 -6,270.65 -7,434.19 -6,796.46 -5,629.11 -6,401.72 -8,162.50 -5927.05 -6,090.50
AIC  10,842.13 11,362.17 12,577.29 14,904.38 13,628.92 11,294.23 12,839.43 16,361.01 11,890.10 12,217.00
BIC 10,950.23 11,470.28 12,685.37 15,012.46 13,737.14 11,402.34 12,947.52 16,469.08 11,998.23 12,325.13
HQIC 11,094.33 11,614.40 12,829.44 15,156.55 13,881.35 11,546.45 13,091.61 16,613.15 12,142.36 12,469.26
VR 0.46 0.59 0.40 0.63 0.57 0.42 0.44 0.61 0.53 0.35
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Table 15: FloEGARCH
This table reports full-sample estimated parameters, information criteria as well as full
maximized log-likelihood value for the FlIoEGARCH.

AA AIG AXP BA CAT DD DIS GE IBM INTC
U 0.017 -0.009 0.045 0.061 0.072 0.035 0.042 0.021 0.025 0.010
B 0.195 0.121 0.195 0.133 0.104 0.179 0.080 0.117 0.161 0.131
a 0.400 0.589 0.418 0.373 0.436 0.460 0.424 0.473 0.484 0.536
13 -0.476 -0.293 -0.389 -0.440 -0.566 -0.205 -0.327 -0.332 -0.378 -0.272
a2 0.134 0.192 0.144 0.132 0.127 0.144 0.142 0.149 0.128 0.126
T1 -0.065 -0.096 -0.098 -0.078 -0.066 -0.089 -0.095 -0.072 -0.084 -0.063
T2 0.041 0.048 0.045 0.045 0.020 0.025 0.029 0.037 0.015 0.020
01 -0.063 -0.047 -0.067 -0.057 -0.069 -0.071 -0.082 -0.047 -0.064 -0.042
b2 0.060 0.048 0.060 0.076 0.043 0.047 0.045 0.050 0.036 0.033
) 1.036 0.872 0.999 1.041 1.092 0.964 0.985 0.979 0.975 0.923
1] 1.393 1.076 1.299 1.365 0.950 0.961 1.510 0.980 0.825 1.898
d 0.633 0.620 0.678 0.658 0.673 0.645 0.673 0.678 0.672 0.644

log¥ -7,843.29 -8,370.57 -7,082.26 -6,960.83 -7,195.15 -6,722.47 -6,922.21 -6,791.17 -6,159.11 -7,291.01
AIC 15,710.58 16,765.13 14,188.52 13,945.66 14,414.29 13,468.95 13,868.42 13,606.34 12,342.22 14,606.02
BIC 15,782.68 16,837.21 14,260.57 14,017.72 14,486.36 13,541.01 13,940.48 13,678.44 1241428 14,678.16

HQIC 15,878.78 16,933.28 14,356.63 14,113.79 14,582.44 13,637.07 14,036.55 13,774.54 12,510.34 14,774.31

JNJ KO MMM MRK MSFT PG VZ WHR WMT XOM

u 0.030 0.029 0.042 0.029 0.029 0.024 0.028 0.088 0.014 0.040

B 0.093 0.121 0.137 0.108 0.158 0.138 0.156 0.092 0.113 0.150

a 0.430 0.458 0.413 0.298 0.498 0.425 0.396 0.317 0.361 0.413

¢ -0.130 -0.147 -0.343 -1.010 -0.368 -0.159 -0.178 -1.062 -0.258 -0.292

a2 0.147 0.141 0.144 0.188 0.134 0.148 0.151 0.165 0.134 0.122
T1 -0.078 -0.072 -0.088 -0.041 -0.051 -0.068 -0.071 -0.051 -0.045 -0.101
T 0.049 0.035 0.015 0.002 0.015 0.031 0.049 0.030 0.035 0.049
01 -0.030 -0.053 -0.070 -0.057 -0.039 -0.055 -0.060 -0.044 -0.029 -0.106
02 0.058 0.065 0.041 0.010 0.033 0.056 0.059 0.065 0.057 0.050
¢ 0.955 0.939 1.073 1.448 0.998 1.080 1.001 1.325 1.116 1.078

w 0.300 0.367 0.466 0.827 1.307 0.307 0.726 1.171 0.643 0.832

d 0.692 0.674 0.655 0.666 0.641 0.643 0.671 0.618 0.681 0.656

log -5,399.76 -5660.47 -6,259.27 -7,442.64 -6,796.38 -5620.41 -6,398.68 -8,152.11 -5922.81 -6,097.09
AIC  10,823.52 11,344.93 12,542.53 14,909.29 13,616.76 11,264.82 12,821.36 16,328.22 11,869.62 12,218.18
BIC 10,895.59 11,417.01 12,614.58 14,981.34 13,688.90 11,336.89 12,893.42 16,400.27 11,941.70 12,290.26
HQIC 10,991.66 11,513.09 12,710.63 15,077.40 13,785.05 11,432.97 12,989.49 16,496.32 12,037.79 12,386.35
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