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Abstract

This paper identifies a new common risk factor in stock returns
related to the fear of future jumps: the Jump Factor. It is possible to
include the factor in standard asset-pricing models leading to a five-
factor model which is directed at capturing the size, value, profitability,
momentum and jump expectation in stock returns. Standard analysis
show that the jump component proxy, in stock returns, for sensitivity to
a common risk factor and that the Jump Factor is able to explain much
of the variation in returns both in time and cross-section. Moreover, the
risk premia associated with the Jump Factor is negative, significant,
and close to its factor portfolio mean excess returns.

Introduction

Finance literature has been focusing for decades on the patterns that asset
returns follow. A cornerstone in the description of market returns is the
asset-pricing model of Sharpe (1964), Lintner (1965), Mossin (1966) and
Black (1972). According to the CAPM the market portfolio is mean-variance
efficient in the sense of Markowitz (1959). The efficiency implies that only
systematic market risk, measured by the beta of an asset, should be priced.
Several studies, for example Reinganum (1981), Lakonishok and Shapiro
(1986), and Fama and French (1992), challenge the ability of the CAPM to
explain the cross-section of expected stock returns. Fama and French (1993)
propose an extension of the one-beta CAPM starting from the observation
that there is not a positive relation between average stock returns and market
betas. They suggest that stock risks are multidimensional and include other
two sources of risk: one proxied by size (or market value, or market equity
price, or ME), and one proxied by value (or BE/ME), defined as the ratio
of book value (or BE) to market value (or ME). Carhart (1997) showed that
there are patterns in average returns related to the momentum factor (or
MOM) based on Jegadeesh and Titman (1993).

In this paper we examine if perceptions of price uncertainty, the fear of
sharp price movements, constitute a common risk factor in returns and how
they impact on asset prices. Uncertainty plays a primary role in economics,
finance, and decision sciences and may help explaining the empirical “fat
tails” we observe in stock returns. A possible explanation for the leptokur-
tosis lies in the presence of discontinuous variations in the price process.
There is evidence, Ball and Torous (1983), Jarrow and Rosenfeld (1984),
and Jorion (1988) among others, that stock prices show sudden but infre-
quent movements of large magnitude, that are commonly known as jumps.
The first models that incorporate jumps in the dynamic of stock prices are
those of Press (1967) and Merton (1976), and several subsequent studies
show that such a structure is necessary to fit the observed prices. There
exist several studies that provide evidence of this for the option market,
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among others Ball and Torous (1985), Naik and Lee (1990), Bakshi et al.
(1997), Duffie et al. (2000), Andersen et al. (2002), and Eraker et al. (2003).
In particular Pan (2002) shows the presence of a priced aggregate jump risk
in option prices. The Bates (2000) model, who extends the Heston (1993)
stochastic volatility model by incorporating jumps, analysis the existence of
the jump premium. More recently, Bollerslev et al. (2016) study the contri-
bution of jump risk in explaining the cross-section of expected stock returns.
They extend the CAPM by decomposing the market beta into three separate
parts, continuous, discontinuous and overnight, and find that there are sig-
nificant risk premiums, in the cross-section, for discontinuous and overnight
movements and that their estimated betas are generally higher that the
corresponding continuous betas.

Our work differs from these studies since it analyses the presence of
a jump risk factor and relates to Yan (2011) and Cremers et al. (2015).
Both studies use option prices because they contain forward-looking infor-
mation that helps matching the time-varying nature of the jump risk. Fo-
cusing on the behaviour of put prices around the crash of October 1987,
Bates (1991) finds that jump expectations in stock market returns change
over time. Christoffersen et al. (2012) find that jump intensity is signifi-
cantly time-varying and that discrete-time models have better performances
when incorporating jumps. Yan (2011) proxies the average jump size using
the slope of option implied volatility smile and finds that stocks with high
positive (negative) slopes more probably will have large positive (negative)
jumps in the future. He also highlights the existence of a negative relation
between average jumps sizes and expected stock returns. Cremers et al.
(2015) study the effect of jump risk using factor-mimicking portfolios that
they build using straddles. Their results show that stocks with high sensi-
tivity to jump risk present lower expected returns and that the aggregate
stock market jump risk is significantly priced in the cross-section of returns.

While the precedent researchers justify their use of the option market
recalling the synchronized information content of stock and option markets,
we make a step further by focusing directly on the former. In order to main-
tain a forward-looking perspective, we focus on the market expectation of
future jumps encoded in stock prices. To this end we follow Chan and Maheu
(2002) who propose a model for stock returns with time-varying conditional
jump intensity. After estimating the model, using past stock returns, it is
possible to compute the expected jump component as a function of both the
mean of the conditional jump size and the time-varying jump intensity. It
follows that we can construct the factor-mimicking portfolio for the jump
risk in the same way Fama and French (1993) build the portfolio mimicking
the BE/ME risk source.

Our work is also related to the literature about rare disasters and tail
risk. Relative to the former, it is important to notice that, even if jumps and
disasters show various similarities, jumps happen more frequently than dis-
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asters. About the latter, Bollerslev and Todorov (2011) and Gabaix (2012),
among others, show that jump tail risk may explain an important part of the
aggregate equity risk premium and embedded temporal variation. According
to Bollerslev and Todorov (2011) compensation for rare events accounts for a
large fraction of the average equity and variance risk premia. By using high-
frequency intraday data and short maturity out-of-the-money options they
show that the market usually incorporates the possible occurrence of rare
disasters in the way it prices risky payoffs. Furthermore, they discuss how
the fear of these events account for a large part of the historically observed
premia.

The main contribution of this paper is the construction of a jump factor
(or JF) capturing investors fear of future sudden and sharp price movements,
using a dataset of considerable dimension: 89 years of assets prices and more
than 24,000 stocks. We model our factor, using all CRSP stocks over the
1925-2014 sample period, as the return differential between the high and
low expected jump component quantile portfolios. The simple plot of JF
time series, makes clear its ability of capturing jump forecasts changes over
time. This is important since it confirms that our factor is able to reflect the
jump probability evolution over time.

The factor average return is significantly different from zero, negative,
and about |1.6|% per year. Since low and high expected jump portfolios are
formed, respectively, by assets with negative and positive expected jump
component, the observation of a negative mean monthly JF return (-0.13%)
indicates that assets with negative expected jump present higher returns. It
is possible to explain this result by considering the concepts of loss aversion
and probability weighting in the field of prospect theory (see among others
Kahneman and Tversky (1979), Barberis and Thaler (2003), and Barberis
(2013)). Indeed, investors show greater sensitivity to large negative expected
jumps and overweight low probabilities, pushing them to demand an insur-
ance over large negative expected jumps.

To empirically test the relevance of the JF in explaining time-series and
cross sectional return variations, we add the factor to the Carhart 4-factor
model. The high mean and variance values and the low correlations with
the other factors suggest that our new factor is relevant. We also test the
usefulness of adding the JF to the Carhart (1997) asset-pricing model. Our
empirical investigation makes use of the one-month abnormal returns from
the Fama-French model which become the dependent variables in time-series
regressions that investigate if we can consider JF and MOM missing factors
in the 3-factor model. Estimated factor loadings show, especially when fo-
cusing on short time-windows, similar outcomes for the two factors. The
highly positive significance slope results, both for JF and MOM, justify the
extension of the Carhart (1997) model with the inclusion of our new factor.

Time series regressions results for our 5-factor model, both on the full
sample period and on sub-periods, confirm that the JF captures common
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variation in stock returns. We compute factor loadings and coefficients of
determination using as dependent variables two different sets of portfolios. In
all cases we observe that the estimated jump factor loadings are statistically
different from 0, at conventional levels, in a relevant number of regressions
and that their values are also large. Specifically, the fraction of slopes on JF
that are more than 1.645 standard errors from 01 are 52% and 56%. For all
time-series regressions we also obtain important increases in the coefficient of
determination by adding the jump factor to the asset-pricing model. Factor
loadings and R2 results suggest that the expected jump component proxy,
in stock returns, for sensitivity to a common risk factor.

Lastly, we compute the risk premiums associated with the five factors of
our 5-factor model using two approaches, Black, Jensen and Scholes (1972)
and Fama and MacBeth (1973), and applying the Hou and Kimmel (2006)
extrapolation correction. The risk premiums are not significantly different
from their factor means, and, with the exception of the JF, they are always
positive. JF risk premiums range from -0.22 to -0.01 and are significantly
different from 0 (90% confidence level) in two out of four cases.

The paper proceeds as follows. Section 1 presents the models we em-
ploy to study the presence of a priced risk factor in stock returns. It also
describes the construction of our jump risk factor-mimicking portfolio. Sec-
tion 2 presents and describes summary statistics for the jump factor and
other factors returns. It also introduces and describes some portfolios that
will be useful for the subsequent analysis. Section 3 investigates if the jump
factor is a missing factor in a standard asset-pricing model. Section 4 presents
our main results on the ability of the jump factor to capture common vari-
ation in stock returns. It also describes how well a model including our
jump factor explains average returns in the dependent portfolios. Section 5
presents the same results of Section 4 but for sub-periods. Section 6 presents
the estimated risk premiums. Section 7 concludes.

1 Jump factor and relative asset-pricing model

1.1 Modelling returns with jumps

Our goal is the construction of a risk factor reflecting the jump impact on
returns in a forward-looking perspective. This requires a preliminary step:
we must recover a measure of jump sensitiveness. To this end, we refer
to Chan and Maheu (2002) who propose a model for stock returns with
GARCH volatility and time-varying conditional jump intensity. In the vast
literature focusing on jumps, only few works analyse the presence of a jump
risk factor. They recover a Jump Factor from a specific option database and

1Since we are testing using a 10% significance level, we consequently expect to obtain
10% false rejections even if the coefficient is null under the true model.
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check if the jump component is priced by the market (see for example Yan
(2011) and Cremers et al. (2015)). The model of Chan and Maheu (2002)
differs from the previous ones by the possibility of recovering asset-specific
jump expectations and, in turn, to use them for pricing, at the market level,
the jump risk.

According to Chan and Maheu (2002) we model stock returns including
a jump component, Zt:

Rt = µ+
l∑

i=1

φiRt−i + Zt + εt, (1)

where Rt is the daily stock log return, Φt = {Rt, ..., R1} is the information set
at time t, Zt =

∑Nt
k=1 Yt,k is the sum of the conditional jump sizes Yt,k, and εt

follows a conditionally normal density with GARCH error. The conditional
jump size, given the information set Φt−1, is normally and independently
distributed: Yt,k|Φt−1 ∼ N(Θ,∆) with constant mean and variance. It is
possible to obtain the jump component by summing up the sizes of the
jumps arriving between t − 1 and t, where the number of jumps, Nt, is a
Poisson random variable with parameter λt > 0. Recalling that the mean
and variance of a Poisson random variable both equal its parameter, it is
easy to compute the conditional mean of the counting process:

λt ≡ E[Nt|Φt−1] ≡ V ar[Nt|Φt−1].

Moreover, λt, the conditional jump intensity, follows an approximate
autoregressive moving average (ARMA) process:

λt = λ0 +

r∑
i=1

ρiλt−i +

s∑
i=1

γiξt−i, (2)

where ξt, the innovation, equals:

ξt ≡ E[Nt|Φt]− λt ≡ E[Nt|Φt]− E[Nt|Φt−1]. (3)

In other words, the innovation results as the difference between the expecta-
tion of the Poisson random variable conditional to time t and its expectation
conditional to time t− 1.

In this framework, it is possible to show that, conditional to the informa-
tion set, the expected jump component equals the mean of the conditional
jump size, Θ, times the time-varying jump intensity, λt:

E[Zt|Φt−1] = Θλt. (4)

We can not directly recover from market data the parameters of the model,
but it is possible to estimate the elements of interest, Θ and λt. Chan and
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Maheu (2002) model conditional jump intensity and size as function of ob-
servables and allow simple maximum likelihood estimation. We refer the
reader to Chan and Maheu (2002) for further details about the model and
the estimation approach. Differently from Chan and Maheu (2002) we set
the parameters of Yt,k to be time invariant.

1.2 Jump factor construction

Our large dataset includes all the Center for Research in Security Prices
(CRSP) assets with share code equal to 10 or 11, which covers NYSE and
AMEX stocks until 1973 and adds NASDAQ stocks after that date. The
sample includes a total of 24,122 equities over 89 years, from December
1925 until December 2014.2 We obtain the parameters of the model using
overlapping rolling windows with a size of one year each. Maximum likeli-
hood estimations take place every year at the end of each month, in order to
stick with the timing commonly in use to construct the mimicking portfo-
lios for the momentum risk source. We run about a few millions estimations
where each of them uses previous year simple daily returns as defined by
CRSP.3

In order to capture the temporary presence of serial correlation, we con-
sider an AR(2) process in equation 1 by imposing l = 2. The resulting
equation does not change in time and across assets,

Rt = µ+ φ1Rt−1 + φ2Rt−2 + Zt + εt.

We restrict legs to one for the jump intensity process; this allows us to
rewrite equation 2 as:

λt = λ0 + λt−1(ρ1 − γ1) + γ1E[Nt−1|φt−1].

Lastly, it is important to point out that we focus on the one-step-ahead
values of the expected jump component in Equation 4. In this way we obtain
the asset jump expectation for the following day.

Since each asset can show either positive or negative jumps, the range of
values of the expected jump component (Equation 4) spans from negative to
positive values. This comes from the sign of Θ that can be either positive or
negative while λt is always positive. Figure I shows, for each estimation date,
the number of assets with positive and negative expected jump component.
The figure shows how the gap between the two groups tends to increase
over time and that in almost 100% of the cases the number of positive
expectations (expected jumps with positive sign) overcomes the number of
negative expectations (expected jumps with negative sign).

2See Section A.1 of the Appendix for a detailed description of the monthly dataset
dimension.

3CRSP daily return: Rt = Pricet×PriceAdjustmentFactort+CashAdjustmentt
Pricet−1

− 1.
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Figure I Expected Jump Factor sign. For each estimation date, from December 1925
till December 2014, it reports the number of assets for which the expected jump component
(Θλt) is positive or negative. The estimation of the parameters uses overlapping rolling
windows with a size of one year. Estimations take place every year at the end of each
month and use previous year simple daily returns as defined by CRSP.

We then propose to recover a Jump Factor (or JF) as a factor-mimicking
portfolio for the jump risk. For its construction we follow the approach that
Fama and French (1993) use to build the size and value factors. In fact, both
are portfolios mimicking risk sources, the size and BE/ME respectively. At
the end of each month from January 1926 to December 2014, we sort all
NYSE stocks on CRSP by size to determine the median breakpoint. The
subsequent step is the allocation of all NYSE, Amex, and NASDAQ stocks
to the two portfolios, Small and Big, according on the NYSE breakpoint.
At the same dates we also split the NYSE, Amex, and NASDAQ stocks
into three expected jump groups using E[Zt|Φt−1]: Low, Medium, and High.
Using the ranked values of Expected jump component for NYSE stocks, we
determine the breakpoints for the bottom 30%, the medium 40%, and the
top 30%. From the intersection of the two size and the three expected jump
groups we construct six portfolios: S/L, S/M, S/H, B/L, B/M, and B/H;
adopting the same notation of Fama and French (1993). The re-balance of
the portfolios takes place at the end of the each month, and for the time
between two rebalances we calculate the monthly value-weighted returns for
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four of the six portfolios - S/L, S/H, B/L, and B/H. We then construct
he Jump factor (JF) as the monthly difference between the average of the
returns on the two low expected jump portfolios and the average of the
returns on the two high expected jump portfolios:

JF = (1/2 rS/H + 1/2 rB/H)− (1/2 rS/L + 1/2 rB/L).

Coherently with Fama and French (1993), we believe that there exists a
limited influence of the size, therefore, we focus only on the different return
behaviours of low and high expected jump stocks.

To understand which is the proportion of assets that present a negative
(positive) expectation with respect to the total number of assets, we report
in Figure II the composition of the Low and High expected jump portfolios
at each estimation date. It is clear that assets with negative expected jump

Figure II JF portfolios composition. For each estimation date, from December 1925
till December 2014, it shows the number of assets with positive and negative expected
jump component (Θλt). The top panel plots the total number of assets with positive
and negative expected jump component, considering only the stocks that are in the Low
expected jump portfolio (expected jump component < bottom 30% breakpoint). Similarly,
the bottom panel plots the same indicators but taking into account only the stocks that are
in the High expected jump portfolio (expected jump component > top 30% breakpoint).
The estimation of the parameters uses overlapping rolling windows with a size of one
year. Estimations take place at the end of each month and use previous year simple daily
returns as defined by CRSP.

component almost exclusively belong to the Low portfolio. Similarly, almost
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all assets with positive expected jump component flow into the High port-
folio. The two portfolios, consequently, represent two opposite strategies:
stocks with negative expected jumps versus stocks with positive expected
jumps. From a risk-premium perspective, the sign of the expectation is use-
ful in forecasting and understanding the sign of the factor loading. Investors
demand a positive risk premium, measured as the extra return relative to
the risk-free rate, for investing in risky assets. To understand the sign of the
JF premium, we should focus on the signs of factor and corresponding factor
loadings. If they coincide, we expect the JF premium to be positive. Since
the JF covers negative and positive values, our expectation is that also the
factor loading assumes positive and negative values.

Finally, Figure III shows the time series of the JF. The top panel com-
pares the JF and its rolling mean, where the latter makes use of the last
twelve monthly values of the JF. The bottom panel, instead, reports JF val-
ues that are preceded by a Jump Factor value of the same sign, that is we
focus on the JF runs. The goal is to obtain a clear image of the JF clusters.

The plots not only make clear the tendency of the jump factor values
to be clustered by sign, but also show some peculiar behaviours associated
with the JF levels.4 The top panel, in particular, shows that the factor and
its mean assume values far from zero in periods of market turmoils as the
1929-1932 crises and the dot-com bubble crash around 2000. It is reasonable
to forecast that the fear of future jumps increases and is more relevant in
periods of greater market uncertainty. The empirical findings of Chan and
Maheu (2002) suggest an explanation to this behaviour: autocorrelation in
the conditional jump intensity is positive and persistent, which means that
high probability of few (many) jumps today is generally followed by a high
probability of few (many) jumps tomorrow. The JF historical behaviour sug-
gests that its use could be relevant especially in periods of market turmoils.

1.3 A model including Jump Factor

We now briefly describe and evaluate traditional asset pricing models with
a double objective: first of all, our interest is to verify the postulated impact
of the JF on returns and the sign of its factor loading; secondly, we want to
detect potential changes on other more traditional factors, both in terms of
their loadings as well as for their significance. We empirically assess this goal
by starting from a model that can work as benchmark due to its recognized
performances: the Carhart (1997) 4-factor model. We will then extend the

4We identify the processes in charge of them by focusing on the behaviour of the jump
probability. The Press (1967) hypothesis of a constant Poisson distribution has been un-
dermined by Bates (1991) who verified that jump probability changes over time. Following
this intuition Chan and Maheu (2002) assumes that the conditional jump intensity follows
an ARMA process, thus we expect the transmission of this property to the factor via the
time-varying jump intensity, λt.
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Carhart (1997) model by adding the JF returns and thus putting forward
a 5-factor model. We thus follow the existing standard in the literature,
with results comparable to the reference works in this field of study (see for
example Fama and French (1993) and Fama and French (2015)).

In line with the common interpretation of factor asset-pricing models, we
can consider our 5-factor model as a performance-attribution model where
coefficients and premia, on the factor-mimicking portfolios, represent the
proportion of mean return due to five elementary strategies. For the 4-factor
model these strategies cover stocks with high or low betas, stocks with large
or small market capitalization, value or growth stocks, and one-year return
momentum or contrarian stocks. Our new factor represents, instead, the
elementary strategy of high versus low expected jump stocks.

It is now clear that our contribution to the existing models centers on
the inclusion of a measure of jump sensitiveness, JFt, that is the differ-
ence between the returns on portfolios of stocks with high and low jump
expectations. Our 5-factor model time-series regression representation is:

(5)
Ri,t −RF,t =

αi + βiMKTt + βSMB,iSMBt + βHML,iHMLt
+ βMOM,iMOMt + βJF,iJFt + ei,t,

where Ri,t is the return on a security or portfolio i, RF,t is the risk-free
return, MKTt = (RM,t − RF,t) is the excess return on a value weighted
market portfolio, and eit is a zero-mean residual. SMBt (Small [market
capitalization] Minus Big), HMLt (High [book-to-market ratio] Minus Low),
and MOMt are the returns on value-weighted factor-mimicking portfolios
for, respectively, Size, book-to-market equity, and one-year momentum. For
βJF,i = 0 we fall back to the benchmark case: the Carhart (1997) 4-factor
model.

If the exposure to the five factors, βi, βSMB,i, βHML,i, βMOM,i and βJF,i
capture all variation in expected returns, the intercept αi in Equation 5 is
zero for all securities and portfolios i.

2 Jumps factors and other factors returns

2.1 JF and other risk factors

Tables 1 and 2 show the summary statistics for the monthly returns of
the market portfolio of stocks (MKT)and the mimicking portfolios for size
(SMB), book-to-market equity (HML), momentum (MOM), and expected
jump (JF).

Volatilities and correlations give a perspective about the model capabil-
ity of explaining time-series variations. For the former we can observe that
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Table 1 Factors summary statistics. Summary statistics for the monthly factor re-
turns in percent. RF is the one-month Treasury bill return. MKT is the market proxy.
SMB and HML are Fama and French’s factor-mimicking portfolios for size and book-to-
market equity. MOM and JF are the factor-mimicking portfolio respectively for one-year
momentum and expected jump component.

Factor Mean monthly Standard t-statistic for
portfolio return % deviation Mean=0

RF 0.28 0.25 36.38
MKT 0.65 5.40 3.94
SMB 0.22 3.23 2.22
HML 0.40 3.54 3.65
MOM 0.67 4.74 4.62
JF -0.13 1.87 -2.32

the JF variance is the smaller among the factor-mimicking portfolio vari-
ances but it is still relatively high. For the latter, instead, factor-mimicking
portfolio correlations, both among each other and with the market proxy,
are low. In addition, all the correlations among factors and Risk-Free rate
are not significantly different from zero at the 99% confidence level. Focusing
on the JF for all but one correlations we reject the null hypothesis (zero cor-
relation) at 1% significance level, and their values run from a minimum (in
absolute value) 0.00 with HML to a maximum 0.58 with the market factor.
The combined observation of high variances and low correlations suggests
that the 5-factor model, and our new factor, can describe sizeable time-series
variation. In addition, the low values of the cross-correlations indicate that
multicollinearity should not affect the estimation of the factor loadings.

Turning now our attention to the first moment, we observe a range of
values that goes from |0.67|% per month for the momentum to a still con-
siderably high |0.13|% per month for the JF. In a time-series regression
approach, they correspond to the average premiums per unit of risk and,
from a statistical point of view, they are all significantly different from zero
(5% significance level). Mean values reach the minimum with the JF but,
from an investment perspective, it is still large (about |1.6|% per year). The
high value of the JF mean also suggests that it explains a considerable part
of the mean return variation on stock portfolios, at the cross-sectional level.

Lastly, it is interesting to notice that the mean monthly JF return is
negative. As previously discussed, we construct the JF as the monthly return
difference between High and Low expected jump portfolios. We also learnt
from Figure II that Low and High expected jump portfolios are formed,
respectively, by assets with negative and positive expected jump component.
Thus, a negative mean value signals that assets with negative expected jump
components are associated with higher returns than assets with positive
expectations. This result is in line with the findings in the field of prospect
theory (see among others Barberis and Thaler (2003) and Barberis (2013)).
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Table 2 Factors correlations. RF is the one-month Treasury bill return. MKT is the
market proxy. SMB and HML are Fama and French’s factor-mimicking portfolios for size
and book-to-market equity. MOM and JF are the factor-mimicking portfolio respectively
for one-year momentum and expected jump component.

Factor
Cross correlations

RF MKT SMB HML MOM JF

RF 1.00
MKT -0.07 1.00
SMB -0.05 0.33 1.00
HML 0.02 0.23 0.11 1.00
MOM 0.05 -0.34 -0.15 -0.40 1.00
JF -0.05 0.58 0.42 0.00 -0.18 1.00

P-value for corr=0

RF MKT SMB HML MOM JF

RF 0.00
MKT 0.03 0.00
SMB 0.08 0.00 0.00
HML 0.62 0.00 0.00 0.00
MOM 0.08 0.00 0.00 0.00 0.00
JF 0.09 0.00 0.00 0.97 0.00 0.00

In particular, Kahneman and Tversky (1979) propose a model for gam-
bles with two non-zero outcomes, which incorporates, among others, the
concepts of loss aversion, diminishing sensitivity, and probability weighting.
Some features of the model are useful in explaining the observed negative
mean value. First, the model accounts for the greater sensitivity of people to
losses (even small losses) than to gains with the same magnitude. In our con-
text, the concept of loss aversion suggests that investors are more sensitive
to large negative expected jumps than large positive expected jumps, thus
leading to higher returns. Second, Kahneman and Tversky design the eval-
uation process of the agents to reflect the tendency of people to overweight
(underweight) low (high) probabilities. In our framework this means that
individuals overweight the negative tail of the expected jump distribution,
thus putting to much weight on unlikely extreme outcomes.

Moreover, Kahneman and Tversky (1979) model helps explaining prefer-
ences for insurance. In this field Barberis and Thaler (2003) underline that,
while according to the Kahneman and Tversky agents are risk-seeking over
losses, the overweight of small probabilities leads to risk aversion for gam-
bles that can cause large losses even if with a small probability. A similar
reasoning can be applied to our case: agents require an insurance over large
negative expected jumps.
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2.2 JF and sorted portfolios

It is possible to use the five risk sources of our 5-factor model, alone or in
combination, to form portfolios of stocks. Among all the possible combina-
tions of two risk sources, we focus on those that are more relevant for our
case study: stock portfolios formed according to size and book-to-market
equity (or Size-BE/ME portfolios), and stock portfolios formed on the basis
of size and expected jump (or size-expected jump portfolios).

The size-BE/ME portfolios were first introduced by Fama and French
in 1993 who also proposed their use as dependent variables in time-series
regressions. They not only produce a wide range of average excess returns,
but also allow to study if SMB and HML capture common factors in stock
returns. Similar reasons drive the choice of the second group of portfolios.

When used as dependent variables, our portfolios values define the range
of returns that competing sets of risk factors must explain. In our case, these
competing factors, are those forming the 4-factor and the 5-factor models
since our interest is in understanding the importance and relevance of the
JF.

2.2.1 Size-BE/ME portfolios

In June of each year we allocate NYSE, Amex, and NASDAQ stocks into five
size quintiles and five book-to-market quintiles, using NYSE breakpoints. We
then calculate value-weighted monthly excess returns from July of year t to
June year t+ 1, when portfolios are reformed.

Table 3 shows the average monthly excess returns for the 25 size-BE/ME
portfolios. The 25 stock portfolios produce a wide range of average excess
returns, from 0.58% to 1.38% per month. The patterns in average returns
confirm the presence of size and value effects: controlling for book-to-market,
returns tend to decrease from small to big stocks, and controlling for size
average returns tend to increase with BE/ME. The only exceptions for the
size effect are in the first two columns: the first does not show a clear relation
between size and average return, while in the second the only outlier is the
low average return for the microcap. All but one average returns are more
than two standard errors away from 0. The low-small portfolio shows a high
standard deviation (12.36% per month) that makes its average return not
significantly different from 0. This is a well-known problem already under-
lined by Merton (1980). Lastly, note that in each column volatility falls from
small to big stocks, with the only exception of the High BE/ME portfolios
(last column). For them we observe, in all but the small portfolio case, stable
standard deviations with a value of about 8.6% per month.
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Figure III JF historical values. At the end of each month from December 1926 to
December 2014, all NYSE, Amex, and NASDAQ stocks are allocated to the two size port-
folios (Small and Big) and the three expected jump portfolios (Low, Medium, and High)
according on the NYSE breakpoints. From their intersection we construct six portfolios:
S/L, S/M, S/H, B/L, B/M, and B/H. The re-balance of the portfolios takes place at the
end of each month, and for the time between two rebalances we calculate the monthly
value-weighted returns for four of the six portfolios - S/L, S/H, B/L, and B/H. We then
construct the Jump factor (JF) as the monthly difference between the average of the re-
turns on the two low expected jump portfolios and the average of the returns on the two
high expected jump portfolios. Top panel plots the time series of the JF and its mean. For
the JF mean we use overlapping rolling windows with a size of one year. The calculation
of the mean takes place at the end of every month and uses previous year monthly JF
values. The bottom panel plots the monthly Jump Factors that are preceded by a Jump
Factor of the same sign.
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2.2.2 Size-expected jump portfolios

The modelling of the size-expected jump portfolios is much like the six ex-
pected jump portfolios discussed in subsection 1.2. Using only NYSE stocks,
we compute the breakpoints for size and expected jump that we then use to
allocate NYSE, Amex, and NASDAQ stocks into five size groups and five
expected jump groups at the end of each month. From the intersection of the
groups we construct the 25 portfolios for which we then compute the value
weighted excess returns monthly, from the end of one month to the end of
the following month.

Table 4 reports average monthly excess returns for the 25 size-expected
jump portfolios. The range of average excess returns covered by the stock
portfolios goes from 0.58% to 3.61% per month. Similarly to Table 3, there
is a negative relation between size and average return, when controlling for
expected jump. When controlling for size there is no evidence of a clear pat-
tern between expected jump and average excess returns. All average excess
returns are more than two standard errors away from 0, and correspondent
standard deviations fall from small to big stocks when considering a single
column. Focusing on the first three rows, we observe very high values for the
standard deviations, and in particular for the microcaps. High volatility is
a characteristic of the small stocks already observed in Table 3. In this case,
however, standard deviations for small portfolios are particularly high: from
14.43 to 25.66.

3 Missing factor

This section evaluates the appropriateness of adding the JF to the asset-
pricing model by measuring its marginal effect on the abnormal performance.

Each month we estimate the 3-factor model loadings. Estimations cover
the prior three years excess returns for all the 25 dependent portfolios, using
a minimum of 30 observations. We report here the corresponding time-series
regression equation:

Ri,t −RF,t = αi + βiMKTt + βSMB,iSMBt + βHML,iHMLt + ei,t,

where Ri,t is the return on a security or portfolio i, RF,t is the risk-free
return, MKTt = (RM,t − RF,t) is the excess return on a value weighted
market portfolio, SMBt is the return on a value-weighted factor-mimicking
portfolio for Size, HMLt is the return on a value-weighted factor-mimicking
portfolio for book-to-market equity, and ei,t is a zero-mean residual.

We then use the results to compute the one-month abnormal return from
the 3-factor model:

α̌i,t = (Ri,t −RF,t)− β̂iMKTt − β̂SMB,iSMBt − β̂HML,iHMLt. (6)
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We consider two different sets of dependent portfolios: (i) 25 size-BE/ME
portfolios, and (ii) 25 size-expected jump portfolios. For each kind of depen-
dent variable, we estimate three different time series regressions:

α̌i,t = ai + βM,iMOMt + ξi,t, (7)

α̌i,t = ai + βJ,iJFt + ξi,t, (8)

α̌i,t = ai + βM,iMOMt + βJ,iJFt + ξi,t. (9)

Equations 7, 8, and 9 use data from either the previous three years and the
full sample.

To understand how well MOM and JF help in explaining the abnormal
return, we focus on estimated factor loadings resulting from equations 7, 8,
and 9. The significance of the corresponding betas, using standard errors
consistent to heteroscedasticity and autocorrelation, signals that the factors
explain shared variation in stock returns that MKT, SMB, and HML are
not able to capture, thus suggesting that MOM and JF are missing factors
in the 3-factor model.

3.1 25 size-BE/ME portfolios

Full sample results in Table 5, highlight the importance of including the
momentum factor in the 3-factor model. The absolute t-statistics on βM
greater than 1.645 are six in the single factor regressions, and nine in the
multi-factor regressions, out of 25. The average value of the MOM slope,
considering just those significantly different from 0, is in both cases about
-0.04. Differently from the MOM, the relevance of the JF is less clear: in
the single and in the multi-factor regressions, we observe respectively two
and six portfolios for which βJ is more than 1.65 standard errors from 0 and
with values from |0.05| to |0.29|. The weaker performance of the JF may be
due to the long time windows that we employ in the second regressions.
To further investigate this point it is useful to consider the three-years

regressions. We present the results by focusing on portfolios, Table 6, and
estimation dates, Figure IV. Table 6 shows, for each portfolio, the fraction of
significant βM and βJ , when considering a 90% confidence level. Even if sig-
nificance percentages are generally greater for momentum, results for MOM
and JF are not too different and suggest that both factors are relevant. βM ,
from Equation 7, is on average significant in 25.18% of the regressions with
a minimum of 13.9% and a maximum of 36.3%. Correspondent values for
βJ , resulting from Equation 8, are slightly different: from 14.8% to 39.3%,
with an average value of 21.84%. When we include both factors in the regres-
sion, Equation 9, we observe a small variation in average, 24.95%, minimum,
13.3%, and maximum, 36.4%, significance of βM . For the JF, instead, only
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the minimum decreases to 14.6% while the maximum and the average
show a small increase, respectively to 41.4% and 22.32%.

From Figure IV we obtain, for each estimation date, information on
the fraction of portfolios for which the slopes are significant at the 90%
confidence level. In the top panel there are the results for βM of Equation 7

Figure IV Size-BE/ME portfolios, three years window missing factors. Regres-
sions of excess stock returns of 25 size-BE/ME portfolios on the excess market return
(MKT) and the mimicking returns for the size (SMB), and book-to-market equity (HML)
factors: December 1925 to December 2014. Using a rolling window of three years, it is
possible to compute the correspondent monthly abnormal returns that we then use to test
if MOM and JF are missing factors. To estimate the parameters of equations 7, 8, and 9
we use the prior three years of monthly data. For each estimation date, the graph shows
the fraction of portfolios with significant slopes (10% significance level). The top panel
plots results for βM of Equation 7 and βJ of Equation 8, while the bottom panel plots
results for the slopes of Equation 9.

and βJ of Equation 8, while in the bottom panel the results for the slopes
of Equation 9. Not only the two factors show similar behaviours, but in
41.43% and 40.42% of the dates in, respectively, the single- and multi-factor
regressions, the fraction of significant βJ is greater than the corresponding
fraction of βM .

A global interpretation of the results requires a preliminary considera-
tion: since jumps are short-time phenomena, regressions that use short time
windows can better capture and describe their behaviour. In line with this
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statement, the use of the full time window leads to poor results for the JF. It
is, however, more relevant to consider the results on shorter time-windows.
In this last case performances for MOM and JF are similar and suggest that
they are missing factors in the 3-factor model.

3.2 25 size-expected jump portfolios

Table 7 shows stronger results in favour of the inclusion in the 3-factor model
for the JF with respect to the MOM. Considering a 90% confidence level,
significant βM are twenty in the single factor regressions and fourteen in
the multi-factor regressions. The average absolute values of the MOM slope,
considering just those significantly different from 0, are respectively 0.14 and
0.50. For the JF, instead, the number of portfolios for which βJ is more than
1.645 standard errors from 0 is six in both cases, with an average absolute
slope (for significant portfolios) of 0.15.

As discussed before, since long time-windows impact on JF performance,
we expect better results when using time-windows of three years. Results in
Table 8 and Figure V confirm the importance of the JF.

In Table 8, the fraction of regressions with significant βJ is usually
smaller than the corresponding fraction with significant βM (10% signifi-
cance level). Relative to the single-factor case, significance values on βM ,
from Equation 7, show greater values with respect to the 25 size-BE/ME
case: average, minimum and maximum values are 39.82%, 20.8%, and 53.8%.
βJ , from Equation 8, shows a wider range of significance percentages, from
15.2% to 84.4%, and a lower average value, 30.07%.
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Figure V Size-expected jump portfolios, three years window missing factors.
Regressions of excess stock returns of 25 size-expected jump portfolios on the excess market
return (MKT) and the mimicking returns for the size (SMB), and book-to-market equity
(HML) factors: December 1925 to December 2014. Using a rolling window of three years,
it is possible to compute the correspondent monthly abnormal returns that we then use
to test if MOM and JF are missing factors. To estimate the parameters of equations 7, 8,
and 9 we use the prior three years of monthly data. For each estimation date, the graph
shows the fraction of portfolios with significant slopes (10% significance level). The top
panel plots results for βM of Equation 7 and βJ of Equation 8, while the bottom panel
plots results for the slopes of Equation 9.
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Results for the JF do not change when we include both factors in the
regressions, Equation 9. For the MOM, instead, we observe a decrease in
average, 24.39%, minimum, 11.6%, and maximum, 51.0%, significance with
respect to the single-factor regressions.

Figure V shows, for each estimation date, the fraction of portfolios slopes
different from 0 using a 10% significance level. Both in the top panel, which
considers the single-factor regressions (Equation 7 and Equation 8), and in
the bottom panel, that focuses on the multi-factor regressions (Equation 9)
we observe a general higher level of significance with respect to the size-
BE/ME case (Figure IV). We obtain similar results for MOM and JF when
using single-factor regressions, and in 43.04% of the dates the fraction of
significant βJ is greater than the corresponding fraction of βM . Results are
even more in favour of the JF when considering multi-factor regressions:
levels of significance differs often substantially and in 60.79% of the dates
the percentage of significant βJ is larger than the percentage of significant
βM .

Lastly, Table 9 reports the values, and corresponding P-values, of a Wald

Table 9 3-Factor regression, missing factor slope test. Regressions of excess stock
returns of 25 size-BE/ME portfolios and 25 size-expected jump portfolios on the excess
market return (MKT) and the mimicking returns for the size (SMB), and book-to-market
equity (HML) factors: December 1925 to December 2014. Using a rolling window of three
years, it is possible to compute the correspondent monthly abnormal returns that we then
use to test if MOM and JF are missing factors. The table reports the test values, β

′
Ω−1β,

checking H0 : β = 0, and the corresponding P-values. We substitute the unknown quan-
tities β, and Ω with their estimated correspondents β̂, and Ω̂ = 1

T

∑T
t=1 ξ̂tξ̂

′
t. The test

statistic, under H0, has asymptotic distribution χ2
N , where N = 25.

P-value

Portfolios Single regression Multiple regression

βM βJ βM βJ
size-BE/ME 1.00 1.00 1.00 1.00
size-exp Jump 1.00 1.00 1.00 1.00

Test-value

Portfolios Single regression Multiple regression

βM βJ βM βJ
size-BE/ME 0.0067 0.0247 0.0074 0.0283
size-exp Jump 0.0630 0.4754 0.6893 0.4767

test statistics that verifies that the betas (βs) from full sample regressions
are simultaneously equal to zero: β = 0. The correspondent test, β

′
Ω−1β

is distributed as a χ2
N where N equals the number of dependent portfolios,

so in our case N = 25. To empirically compute the test it is necessary to
substitute the unknown quantities β, and Ω with their estimated correspon-
dents β̂, and Ω̂ = 1

T

∑T
t=1 ξ̂tξ̂

′
t. β̂ is the vector of estimated betas, Ω̂ is the
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variance-covariance matrix of the regression residuals, and T is the length
of the portfolios time series. Each row focus on a different set of dependent
portfolios and reports, respectively, the P-values for βM of Equation 7, βJ
of Equation 8, and βM and βJ of Equation 9. It is clear from the results
that it is not possible to reject the null hypothesis in all the cases in anal-
ysis. A possible motivation for the negative results lies in the use of such
a long time-window. The test assumes greater values in the size-expected
jump cases but βM and βJ test values are closer in the size-BE/ME case.

The analysis in this section support the inclusion of the JF, as well
the MOM, in the 3-factor model. Results for the JF are stronger when
focusing on short time-windows, reflecting the short-term peculiarity of the
jumps, and when using 25 size-expected jump portfolios. This last evidence,
suggests that the inclusion of the JF is relevant, in particular, for portfolios
with strong size and expected jump tilts.

4 Common variation in stock returns

We turn now to the asset-pricing tests: we use time series regressions to anal-
yse if the JF captures common variation in stock returns. In a time-series
regressions framework, variables related to average returns must proxy for
sensitivity to common (shared and thus undiversifiable) risk factors in re-
turns, when assets are priced rationally. Slopes and R2

adj values give evidence
if the JF captures shared variation in stock returns that other factors are
not able to explain. To judge the improvements that it is possible to obtain
using our new factor we employ three different sets of dependent variables:
25 size-BE/ME portfolios, 25 size-expected jump portfolios, and all CRSP
single assets with share code 10 or 11.5

4.1 25 size-BE/ME portfolios

To analyse the role of the JF we follow a process in two steps. We examine
(a) regressions that use the four-factor model (βJF,i = 0) and (b) regressions
that use the five-factor model (Equation 5). Table 10 shows the results using
model (a) while Table 11 summarizes the results for model (b).

The tables make clear the importance of the standard three Fama and
French factors: market, size and value. For β, βSMB, and βHML values we
observe minor changes when moving from the 4-factor to the 5-factor model.
Their statistical behaviour is also very similar; market βs are always more
than three standard errors from 0; and, with few exceptions, the absolute
t-statistics on the SMB and HML slopes are greater than 1.645 in both
tables. Our results confirm previous Fama and French findings: the three
factors capture strong common variation in stock returns.

5We report single assets regression results in Section A.2 of the Appendix.
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When focusing, instead, on the momentum factor we still do not notice
relevant variations in the significance and values of βMOM . The slopes on
MOM that are significant (10% significance level) are 40% of the portfolios
in both cases.

The most interesting results are those about the JF: βJF assumes values
from -0.39 to the maximum of 0.97, and in 52% of the cases its absolute
t-statistic is greater than 1.645 (in eleven cases even greater than 2). Con-
sidering also Table 12, it is clear that the JF captures shared variation in
stock returns that MKT, SMB, HML, and MOM are not able to explain.
The values of the coefficient of determination, do not decrease 80% of the
times when we include the JF in the regressions. The lower values of R2

adj

are, in the 4-factor case, in correspondence of the small portfolios (first row)
where R2

adj spans from 65.7% to 94.1%. This apparent lower ability of the
model, that is a consequence of the high volatility of microcaps (see Table 3),
seems only limitedly captured by the JF.6

Table 12 Size-BE/ME portfolios, R2
adj . Regressions of excess stock returns of 25 size-

BE/ME portfolios on the returns of the 4-factor model (excess market return (MKT) and
the mimicking returns for the size (SMB), book-to-market equity (HML), and momentum
(MOM) factors), and on the returns of the 5-factor model (excess market return (MKT)
and the mimicking returns for the size (SMB), book-to-market equity (HML), momentum
(MOM), and expected jump (JF) factors). December 1925 to December 2014.

Book-to-market equity quintiles

Size quintile Low 2 3 4 High

R2
adj 4-factor model

Small 0.657 0.820 0.892 0.927 0.941
2 0.909 0.931 0.938 0.951 0.951
3 0.932 0.926 0.926 0.932 0.928
4 0.934 0.922 0.914 0.921 0.915
Big 0.955 0.933 0.908 0.925 0.840

R2
adj 5-factor model

Small 0.669 0.820 0.892 0.928 0.941
2 0.909 0.935 0.940 0.952 0.951
3 0.933 0.929 0.928 0.936 0.927
4 0.935 0.928 0.921 0.921 0.915
Big 0.955 0.936 0.909 0.925 0.844

4.2 25 size-expected jump portfolios

Similarly to the previous case, we consider (a) regressions that use the four-
factor model, Table 13, and (b) regressions that use the five-factor model,

6We present a comparison of the models in terms of residuals correlation and het-
eroskedasticity in section A.3 of the Appendix.
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Table 14.
The slopes of the standard three Fama and French factors show minor

changes when moving from the 4-factor to the 5-factor model. We observe
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greater changes for β, βSMB and βHML when using as dependent vari-
ables size-expected jump portfolios with respect to the size-BE/ME portfo-
lios. Similarly to the size-BE/ME case, the absolute t-statistics on the MKT
slopes are always greater than 3, and the βs of SMB and HML are, with few
exceptions, significant at the 10% significance level.

The values of βMOM never change considerably, while the slopes on
MOM that are significant considering a 90% confidence interval increase
from 76% to 88% of the portfolios.

In Section 1.2 we underlined how in order to get a positive JF premium
the sign of the factor loading must coincide with the sign of the factor. As
shown in Figure II, assets with negative (positive) expected jump principally
belong to lower (higher) JF portfolios. To read JF slope results in Table 14,
it is however important to remind that the mean monthly JF return is
negative, thus leading to forecast a negative JF premium.

Focusing on the fourteen (56% of the portfolios) significant βJF s (10%
significance level), it is possible to note that the value of βJF increases with
the expected jump, controlling for the size. Moreover, in correspondence of
lower JF portfolios (left columns) JF slopes are < 0, while for higher JF
portfolios (right columns) the slopes are > 0. Thus, for portfolios composed
by assets with negative expected jump (left columns) the exposition to the
JF has a positive impact on return since the signs of factor and loadings
are both negative. The opposite holds for portfolios formed by assets with
positive expected jump (right columns), with divergent signs of JF premium
and JF slopes. Results are coherent with the observations in Section 2, where
we underlined how investors seek an insurance against large losses related
to large negative expected jumps, even if they present a small probability.

Adding the information content of Table 15, it is possible to infer that
the JF captures common variation that the other factors miss. When we add
the JF in the regressions, the values of the R2

adj do not decrease 76% of the

times.7

In Section 2 we observed how the 25 size-expected jump portfolios present
peculiar high volatility. By comparing Table 4 and Table 15 it is evident a
correspondence between higher volatilities and lower R2

adj . The first three

rows show volatilities from 9.20 to 25.66 and R2
adj from 0.326 to 0.869 in the

5-factor model. For the microcaps R2
adj assumes values from a minimum of

32.6% (5-factor model) to a maximum of 42.0% (4-factor model). The mi-
crocaps R2

adj average increase when moving from the 4-factor to the 5-factor
is of 0.04 basis points; it was 0.25 basis points in the size− BE/ME case.
Anyway, the table shows major improvements for the big portfolios. The
R2
adj performance is good and we observe comparatively more significance

for the βJF than in the size−BE/ME case. The bottom line is that, also in

7We also compare the models in terms of residuals correlation and heteroskedasticity,
results are available in Section A.3 of the Appendix.
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Table 15 Size-expected jump portfolios, R2
adj . Regressions of excess stock returns of

25 size-expected jump portfolios on the returns of the 4-factor model (excess market return
(MKT) and the mimicking returns for the size (SMB), book-to-market equity (HML), and
momentum (MOM) factors), and on the returns of the 5-factor model (excess market re-
turn (MKT) and the mimicking returns for the size (SMB), book-to-market equity (HML),
momentum (MOM), and expected jump (JF) factors). December 1925 to December 2014.

Expected jump quintiles

Size quintile Low 2 3 4 High

R2
adj 4-factor model

Small 0.404 0.347 0.420 0.327 0.353
2 0.680 0.605 0.668 0.709 0.605
3 0.817 0.791 0.830 0.869 0.852
4 0.937 0.913 0.917 0.955 0.932
Big 0.946 0.961 0.951 0.950 0.952

R2
adj 5-factor model

Small 0.404 0.346 0.419 0.326 0.357
2 0.680 0.606 0.668 0.709 0.611
3 0.826 0.796 0.833 0.869 0.856
4 0.944 0.920 0.919 0.956 0.942
Big 0.958 0.968 0.951 0.951 0.965

this case, the JF is able to capture the variation in the dependent variables
left unexplained by the 4-factor model.

4.3 Model performance

The regression slopes and R2
adj values in Tables 10 to 15 establish that the

JF proxy for a common risk factor in stock returns. We now study how
well the 4-factor and the 5-factor models explain average excess returns
on the portfolios of Table 3 and Table 4. The focus is on their relative
performances since they allow to judge the improvements that the JF brings.
The time-series regressions in this section use excess returns, on portfolios
and single assets, as dependent variables. The explanatory variables are,
instead, either excess returns (MKT = RM − RF ) or returns on zero-
investment portfolios (SMB, HML, MOM, and JF). In these regressions if
the asset-pricing model completely captures expected returns, the intercept
must be indistinguishable from 0 (Merton (1973)). We use the estimated
intercepts to test whether the average premiums for the common risk factors
in returns explain the cross-section of average returns. In addition to the
simple comparison of the estimated values, we present three indicators, first
introduced by Fama and French (2015), and one test on the intercepts.
Table 16 reports a detailed description of both the indicators and the test.

The first indicator (A1) considers the average absolute intercepts. The
interpretation is straightforward: the model that better describes the cross-
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Table 16 Intercept indicators and test. ai is the estimated intercept for portfolio
i. r̄i is the deviation of portfolio i from the cross-sectional average: r̄i = R̄i − R̄ where
R̄i is the time-series mean for portfolio i and R̄ = 1

n

∑n
i=1 R̄i. α̂

2
i = A(a2

i ) − SE2
ai

and
µ̂2
i = A(r̄2

i )−SE2
r̄i where SE are the standard errors. T is the length of the portfolios time

series, N is the number of portfolios, and K is the number of factors. f̄ is the vector of mean
value of the factors. Σ̂f is the estimated variance-covariance matrix of the factors. α̂ is the
vector of estimated intercepts for the 25 portfolios. Ω̂ is the estimated variance-covariance
matrix of the regression residuals.

A1 1
n

∑n
i=1|ai|

A2
1
n

∑n
i=1|ai|

1
n

∑n
i=1|r̄i|

A3
1
n

∑n
i=1|α̂2

i |
1
n

∑n
i=1|µ̂2

i |

A4 T−N−K
N

(
1 + f̄Σ̂−1

f f̄
)−1

α̂′Ω̂−1α̂

section of returns, has intercepts that, on average, are closer to zero. The
other two ratios allow to compare the models in terms of proportion of cross-
section of expected returns left unexplained. The numerators measure the
dispersion of the estimated intercepts produced by a given model (4-factor or
5-factor model) for a set of dependent variables. The denominators, instead,
measure the dispersion of the excess returns in the dependent portfolios (25
size-BE/ME portfolios or 25 size-expected jump portfolios).

The second ratio (A2) has as numerator the average absolute intercept
and as denominator the average absolute deviation. We obtain r̄i, the devia-
tion of portfolio i from the cross-sectional average, as the difference between
its time-series average excess return, R̄i, and the cross-sectional average of all
the 25 R̄i: r̄i = R̄i− R̄. It is important to notice that we are using estimated
values and not true values. As a consequence estimation errors inflate both
the numerator and the denominator: the true intercept is just the difference
between the estimated intercept and the estimation error, αi = ai − ei, and
the expected deviation results by subtracting from the estimated deviation
the estimation error, µi = r̄i − εi.

The last ratio (A3), has a design that should help to correct the mea-
surement errors affecting (A2). Consider first the denominator where µi is
the deviation of portfolio i from the mean: µi = xi − x̄. Its average value is
zero, E(µi) = E(xi − x̄) = E(xi) − E(x̄) = x̄ − x̄ = 0, and its variance is
V ar(µi) = E[µ2

i ]− [E(µi)]
2 = E[µ2

i ]. It is now clear that the average value of
µ2
i , A(µ2

i ), is the cross-section variance of expected portfolio returns. Focus
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now on the numerator: αi is a constant (E(αi) = αi and V ar(αi) = 0) and,
consequently, E(a2

i ) = E[(αi + ei)
2] = E[α2

i + e2
i + 2αiei] = α2

i + E(e2
i ).

The estimates of α2
i and µ2

i are respectively α̂2
i = A(a2

i ) − SE2
ai and µ̂2

i =
A(r̄2

i )−SE2
r̄i where SE are the standard errors. Summing up it is possible to

rewrite (A2) in terms of squared intercepts and deviations, the proportion
of portfolios variance left unexplained by a model.

Lastly, test (A4) is the Gibbons, Ross and Shanken (1989) or GRS test
statistic that allows to investigate if the intercepts (α) are simultaneously
equal to 0.8 The test statistic, under the null hypothesis, has distribution
FN,T−N−K , where N equals the number of dependent portfolios, so in our
case N = 25, T is the length of the portfolios time series and K is the
number of factors, consequently K = 4 or K = 5.

Table 17 shows the results using the 4-factor and the 5-factor models
when considering 25 size-BE/ME portfolios.

Table 18 reports the results for the 25 size-expected jump portfolios both
for the 4-factor model and the 5-factor model.

The first thing to notice is that the number of intercepts significantly
different from 0 (90% confidence level), employing HAC standard errors,
never increase when the 5-factor model is in use. In the 25 Size−B/M case
they are 7 in both cases while in the size-expected jump case they move
from 18 to 10.

Tables 17 and 18 show that the average absolute intercept (A1) is always
smaller for the five-factor model. A1 decreases of 18% and 6% respectively for
the 25 Size−B/M portfolios and the 25 size-expected jump portfolios. These
results suggest that applying the 4-factor model to portfolios with strong size
and value inclinations or to portfolios with strong size and expected jump
tilts may lead to poor results.

Also for A2 and A3 we observe positive results for both sets of portfolios.
A2 and A3 decrease respectively of 18% and 47% in the Size − B/M case
and of 6% and 5% in the size-expected jump case.

Lastly, the P-values of test A4, reject the null hypothesis (H0 : α = 0)
for both the 4-factor and the 5-factor regressions when using size-BE/ME
dependent portfolios as well as using size-expected jump portfolios. The clear
results of the tests on the intercepts in favour of the 5-factor model, together
with the increase in 80% (Size − B/M) and 76% (size-expected jump) of
the portfolios R2

adj suggest that the 5-factor model outperforms the 4-factor
model.

8For more details on the GRS test statistic, we refer the reader to Section A.4 of the
Appendix.
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5 Sub periods

From section 4, where we obtain the results using the full sample, we learned
that the JF proxies for common risk factors in stock returns, and that the
5-factor model outperforms the 4-factor model in explaining average excess
returns on the dependent portfolios. In this section we repeat the tests to
judge how the relevance of the JF changes in different periods. To this end,
we consider four equally spaced sub-periods of 267 months: from December
1925 till March 1948, from April 1948 till June 1970, from July 1970 till
September 1992, and from October 1992 till December 2014.

We present the results separately for regressions that use as dependent
portfolios: 25 size-BE/ME portfolios, and 25 size-expected jump portfolios.
For each dependent variable we compare results for (a) the four-factor model
(βJF,i = 0) and (b) the five-factor model (equation 5). We refer the reader
to Section A.5 of the Appendix for full results about estimated parameters,
coefficients of determination, and intercept tests.

5.1 25 size-BE/ME portfolios

Estimated coefficient results for market, size, and value are in line with full-
sample regressions: no important changes when moving from the 4-factor
to the 5-factor model in all sub-periods. While market betas are always
significant (90% confidence level), βSMB and βHML show little variation
in time and a minimum significance level in the first sub-period for both
models.

Relative to the momentum we observe an increase in the significance
level for the second sub-period when adding the JF. It is however in the last
sub-period that the momentum factor seems to have greater importance,
with a percentage of βMOM significantly different from 0, considering a 10%
significance level, of 36%.

The most interesting results are for the JF, which slope average value
spans from |0.012| in the third sub-period to |0.185| in the fourth sub-period.
Moreover, JF slopes show high levels of significance in all the sub-periods
with the minimum in the 1925-1948 window, 16%, and the maximum in the
1970-1992 and 1992-2014 windows, 64%.

Considering also the coefficients of determination, it is clear that the
JF captures shared variation in stock returns that MKT, SMB, HML, and
MOM miss. The R2

adjs, in each sub-period, are higher when using the 5-
factor model with respect to the 4-factor model for 52%, 64%, 88%, and
92% of the 25 dependent portfolios.

Information on JF slopes and coefficients of determination suggest that
the JF ability to capture common variation in stock returns is stronger in
the two last sub-periods.

To study how well the 5-factor model explains average excess returns,

39



we investigate the behaviour of estimated αs and intercept tests (A1, A2,
A3 , and A4). The fraction of intercepts different from 0 (90% confidence
level) decreases in the first, second, and last sub-periods when we use the
5-factor model. Intercept tests reinforce the idea of a superiority of model
(b), as the values of the tests A1, A2, and A3 do not increase when we add
the JF to the model in all but the first sub-period. Nonetheless, in three
out of four sub-periods, the P-values of test A4 does not allow to reject the
null hypothesis that H0 : α = 0, at the 1% significance level, when using
the 5-factor model. This means that the model is a complete description of
expected returns.

5.2 25 size-expected jump portfolios

Similarly to the full-sample case, market, size, and value show minor changes
when moving from the 4-factor to the 5-factor model. Both βSMB and βHML

experience little variation in time and high percentages of significance.
For the momentum factor, instead, we report a decrease in significance

for the second sub-period and an increase in the third sub-period. Model (a)
leads to significance percentages of 48% (1948-1970) and 40% (1970-1992)
that become 44% and 44% with model (b).

Relative to the JF, we not only obtain large average slope values, from
-0.282 to 0.288, but also high levels of significance (90% confidence level).
In the two last sub-periods βJF is more than 1.645 standard errors from 0
for more than 60% of the portfolios (76% in the 1970-1992 window and 64%
in the 1992-2014 window). Stunning significance percentages, suggest that
the JF captures shared variation in stock returns that is missed by MKT,
SMB, HML, and MOM. A comparison of the coefficients of determinations
for the 4-factor and the 5-factor models, reinforce this finding. In each sub-
period, the R2

adjs from the 5-factor model are higher than the correspondent
values in the 4-factor case for 52%, 64%, 88%, and 72% of the 25 dependent
portfolios. As in the size − BE/ME case, the ability of the JF to capture
common variation in stock returns seems to be stronger in the last two
sub-periods.

As previously discussed, to judge the ability of the model of explaining
the cross-section of average returns we focus on estimated αs and tests on
the intercepts. The inclusion of the JF in the model has a positive effect
on α for which the fraction of intercepts different from 0 (90% confidence
level) decreases in the first, second and last sub-periods respectively from
60% to 44%, from 32% to 28% and from 36% to 32%. Tests on the intercept
give clear evidence of a superiority of the 5-factor model. A1-A3 test values
decrease or do not vary in the great majority of the cases when the model
includes the JF. The P-values of test A4 are, instead, clearly in favour of
the 5-factor model: when we add the JF to the model the test never allows
to reject the null hypothesis that H0 : α = 0.
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6 Risk Premium

In section 1.3 we introduced our 5-factor model, designed such as the assets
excess returns obey a linear relationship with their exposures to various
sources of risk, equation 5. Our interest is now in understanding what are
the risk premia associated with those factors.

The risk premium, γ, measures the extra return an investor demands for
investing in the asset relative to the risk-free rate. So, in our case, the total
risk premium is the sum of different premiums:

γtot = γMKT + γSMB + γHML + γMOM + γJF .

To empirically compute the risk premiums we employ two similar ap-
proaches: Black, Jensen and Scholes (1972) and Fama and MacBeth (1973).
Both approaches use a two pass technique.
In the first step, it is necessary to regress each asset’s return on the time
series of the factor realizations, to obtain the estimated beta coefficients of
the portfolios on the factors:

(10)
Ri,t −RF,t =

αi + βiMKTt + βSMB,iSMBt + βHML,iHMLt
+ βMOM,iMOMt + βJF,iJFt + ei,t.

The second pass, instead, requires to regress, at each time t, the cross-section
of assets returns against their beta coefficients:

(11)

Ri,t −RF,t =

β̂iγMKT,t + β̂SMB,iγSMB,t + β̂HML,iγHML,t

+ β̂MOM,iγMOM,t + β̂JF,iγJF,t + εi,t.

In this way we obtain five time series of risk premia coefficients, γ̂, each of
length T .

It is important to notice that the regressors we use in the second step are
not the real betas, which are unknown, but the estimated betas. This intro-
duces the error-in-the-variables problem. As suggested among the others by
Fama and MacBeth (1973), we attenuate this problem by using portfolios, 25
size-BE/ME portfolios and 25 size-expected jump portfolios, instead of as-
sets as dependent variables. The β̂’s of portfolios are more precise estimates
of true β’s than β̂’s for single assets.

The difference between the Black et al. (1972) approach and the Fama
and MacBeth (1973) approach lies in the choice of the explanatory vari-
ables in the second pass, β̂s. According to the former we use full sample β
estimates, while for the latter rolling β estimates.
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Table 19 shows the estimated monthly percentage risk premia using
Black et al. (1972) approach, γ̆, and Fama and MacBeth (1973) approach,
γ̃, and the correspondent t-statistics for H0 : γ̆ = 0 and H0 : γ̃ = 0.9

Focusing on γ̆, we observe that in the size-BE/ME case, with the excep-
tion of the JF factor portfolio for which we observe a negative, even if not
statistically significant, risk premium, all other estimates are positive and
fairly close to their factor portfolio mean monthly percentage excess return.
Moreover, the estimated risk premiums for MKT and HML are more than
two standard errors from 0. For the size-expected jump case, instead, we ob-
serve a negative risk premium for the SMB, MOM, and JF factor portfolios.
In this case all absolute t-statistics on the risk premiums are greater than 2.

When considering, instead, γ̃ we obtain in the size-BE/ME case positive
estimated values, which are also fairly close to their factor portfolio mean
monthly percentage excess return and often statistically different from zero.
In particular, the absolute t-statistics on risk premiums for MKT, SMB, and
HML are greater than 2. In the size-expected jump case, instead, we observe
a negative and statistically significant risk premium for MOM and JF.

We further test if the differences between estimated parameters and fac-
tor means (or f̄) are statistically simultaneously different from 0.10 Table 20
reports the P-values of the tests for the 25 size-BE/ME portfolios and 25
size-expected jump portfolios. It is possible to observe that, using the Black
et al. (1972) approach as well as the Fama and MacBeth (1973) approach,
we can reject the null hypothesis at the 10% significance level only for the
second group of portfolios.

The presence of factors not spanned by the assets might explain the
unsatisfactory results. The following section presents the variation to the
standard two pass technique, the Hou and Kimmel (2006) correction, we
use to attenuate this problem and the corresponding corrected results.

6.1 Hou and Kimmel extrapolation correction

Hou and Kimmel (2006) define extrapolation as the phenomenon that arises
when the factors of a linear factor model are not spanned by assets. In this
case, in fact, the risk premium of a factor presents two components: the risk
premium of the factor mimicking portfolio and an extrapolation of the risk
premiums of the factors spanned components to the unspanned components.
By purchasing the appropriate securities we can realize only the former. We
can consider the latter a real risk premium only if additional assets that
complete the market exist and the model is able to price them correctly.

Using 25 size-BE/ME portfolios, and 25 size-expected jump portfolios

9Sections A.6.1 and A.6.2 of the Appendix report detailed descriptions of the processes
in place to compute risk premiums and correspondent t-statistics, both in the Black et al.
(1972) case and in the Fama and MacBeth (1973) case.

10For further details about the tests we refer the reader to Section A.6.3 of the Appendix.
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in the Black et al. (1972) and the Fama and MacBeth (1973) approaches,
leads to compute risk premiums that are affected by extrapolation. In fact,
we treat the factors as if they are unspanned even if they are traded assets
that investors can buy. An investor who can only trade in the 25 portfolios
(25 size-BE/ME portfolios or 25 size-expected jump portfolios) is not able
to perfectly replicate the returns on the 5 factor portfolios. Hou and Kimmel
(2006) suggest to augment the 25 dependent portfolios with the five factor
portfolios, thus making the factors spanned.

To understand the change in the investment opportunities that we would
introduce by the Hou and Kimmel (2006) correction, we regress the monthly
returns of the factor portfolios on the monthly returns of the 25 other port-
folios:

MKTt = αMKT + βMKT,1R1,t + · · ·+ βMKT,25R25,t + εMKT,t,
SMBt = αSMB + βSMB,1R1,t + · · ·+ βSMB,25R25,t + εSMB,t,
HMLt = αHML + βHML,1R1,t + · · ·+ βHML,25R25,t + εHML,t,
MOMt = αMOM + βMOM,1R1,t + · · ·+ βMOM,25R25,t + εMOM,t,

JFt = αJF + βJF,1R1,t + · · ·+ βJF,25R25,t + εJF,t.

The corresponding R2 values in Table 21 give us an idea of how well, using
the 25 portfolios, we can replicate the returns of the factor portfolios. In
the size-BE/ME case the high R2 values for MKT, SMB, and HML suggest
that the part not spanned by the 25 portfolios of the three Fama and French
factors is small. The same conclusion does not hold for MOM and JF. Their
low R2 values, respectively 0.30 and 0.53, tell us that an investor who can
only purchase the 25 size-BE/ME portfolios is not able to replicate the
returns on MOM and JF. In the size-expected jump case, instead, we observe
large R2 values for MKT, SMB, and JF. The R2 values for HML and MOM
are both very low: 0.40 for the former and 0.28 for the latter.

The addition of the five factor portfolios significantly changes the invest-
ment opportunity set both in the size-BE/ME case and in the size-expected
jump case. These results justify the inclusion of the factor portfolios in the
set of dependent assets.

We repeat the regressions of the previous subsections but applying the
Hou and Kimmel (2006) extrapolation correction. Tables 22 and 23 present
the results for both the Black et al. (1972) approach and the Fama and
MacBeth (1973) approach.

Relative to the Black et al. (1972) approach, we observe that in the
size-BE/ME case all but the JF estimates are positive and close to their
factor portfolio mean monthly percentage excess returns. In addition, results
show that not only the absolute t-statistics on the risk premiums for MKT
and HML, and MOM are greater than 3, but also that the estimated JF
risk premium is significantly different from 0, at the 5% significance level.
For the size-expected jump case, the correction resolves the anomaly we
observed in the uncorrected case of negative risk premiums for SMB and
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MOM. Estimated premiums are also, with the exception of the JF, more
than two standard errors from 0.

In the Fama and MacBeth (1973) case, we observe positive estimated
values, both using the size-BE/ME and the size-expected jump portfolios,
for all but the JF. Also in this case, the negative estimated risk premium
observed in the uncorrected case is no longer present when we apply the
Hou and Kimmel (2006) extrapolation correction. In the size-BE/ME case
we obtain four significant risk premiums: 5% significant level for SMB, and
1% significant level for MKT, HML, and MOM. In the size-expected jump
case, instead, only for SMB and MOM we cannot reject the null, while the
other risk premiums, and in particular the JF, are significant at the 95%
confidence level.

Lastly, comparing Table 20 and Table 23 we do not observe large dif-
ferences in the P-values. Therefore, also using Hou and Kimmel (2006) cor-
rected regressions, we can reject the null hypothesis that the differences be-
tween estimated risk premiums and factor means are simultaneously equal
to 0 only in the size-expected jump case.

7 Conclusions

This paper investigates the presence of a new common jump risk factor in
stock returns and tests whether it captures the cross-section of average re-
turns. We construct our factor, the Jump Factor (or JF), starting from the
observation that it is possible to infer market fear of future jumps from ob-
served returns using a model for stock returns with time-varying conditional
jump intensity: the model of Chan and Maheu (2002). The large values of JF
mean (-0.13% monthly return) and volatility (1.87) and its low correlations
with the other factors (minimum and maximum correlations are respectively
-0.18 and 0.58), show that the JF can explain much of the variation in re-
turns both in time and cross-section.

Missing factor analysis provides supporting results about the usefulness
of adding the JF to the Carhart (1997) asset-pricing model and justifies its
inclusion. JF and MOM slopes, resulting from correspondent regressions,
show similar behaviours thus suggesting that both factors are relevant and
that it is possible to consider them missing factors in the Fama and French
(1993) 3-factor model.

Empirical evidence also supports the hypothesis that the expected jump
component proxy, in stock returns, for sensitivity to a common risk factor.
We empirically investigate an extended CAPM model, our 5-factor model,
and find that the new factor captures shared variation in stock returns that
the four factors of the Carhart (1997) model (MKT, SMB, HML, and MOM)
are not able to explain. The slopes on JF (or βJF ), resulting from 5-factor
time series regressions, range respectively from -0.39 to 0.97 using 25 size-
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BE/ME dependent portfolios, and from -0.66 to 1.17 for 25 size-expected
jump dependent portfolios. They are not only large, in absolute value, but
also often statistically different from 0. Indeed, considering a 90% confidence
level, we obtain respectively 52% and 56% significant βJF . A confirm to the
power of our factor in capturing common variation comes also from the
values of the coefficients of determination: the inclusion of the JF in the
asset-pricing model, does not decrease R2

adj values at least 76% of the times.
Lastly, we compute the risk premiums associated with the five factors of

our new model (γMKT , γSMB, γHML, γMOM , and γJF ), and find that they
are close to their factor portfolio mean monthly percentage excess returns.
Risk premiums signs and values are in line with our expectations since the
premiums reflect the extra return that an investor demands for investing
in the asset relative to the risk-free rate. Note that only for the JF we
obtain a negative risk premium, reflecting investors desire to be insured
against large negative expected jumps. We also observe that there is no
statistical difference between estimated premiums and factor means and
that risk premiums are, in most of the cases, statistically different from 0 at
standard confidence levels.
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Table 19 5-factor risk premiums. Two-pass estimated risk premia of the 5-factor
model, using monthly excess stock returns of 25 size-BE/ME portfolios and 25 size-
expected jump portfolios: December 1925 to December 2014. The table reports the mean
monthly percentage excess return of each factor portfolio, Mean return %, the Black et al.
(1972) monthly percentage risk premia, γ̆, and the corresponding t-statistic for γ̆ = 0,
the Fama and MacBeth (1973) monthly percentage risk premia, γ̃, and the corresponding
t-statistic for γ̃ = 0.

Factor Mean 25 size-BE/ME portfolios

portfolio return % γ̆ t-statistic γ̃ t-statistic

γMKT 0.65 0.63 3.70 0.71 4.27
γSMB 0.22 0.16 1.47 0.28 2.57
γHML 0.40 0.45 3.97 0.43 3.68
γMOM 0.67 0.63 1.04 0.27 1.26
γJF -0.13 -0.28 -1.78 0.04 0.41

25 size-Expected jump portfolios

γ̆ t-statistic γ̂ t-statistic

γMKT 0.65 0.42 2.31 0.45 2.30
γSMB 0.22 -0.40 -2.35 -0.05 -0.37
γHML 0.40 1.85 3.91 0.43 2.12
γMOM 0.67 -1.48 -2.99 -0.88 -3.02
γJF -0.13 -0.23 -2.42 -0.29 -3.14

Table 20 Risk premiums/factor means divergence tests. Two-pass regressions of
the 5-factor model using monthly excess stock returns of 25 size-BE/ME portfolios and 25
size-expected jump portfolios: December 1925 to December 2014. The table reports the
P-values of the tests that check if the differences between estimated parameters and factor
means are statistically simultaneously equal to 0. The null hypothesis for the Black et al.
(1972) and the Fama and MacBeth (1973) approaches are respectively H0 : γ̆ − f̄ = 0
and H0 : γ̃ − f̄ = 0, where f̄ is the vector of the factor means.

Dependent P-value P-value
portfolio H0 : γ̆ − f̄ = 0 H0 : γ̃ − f̄ = 0

25 size-BE/ME 1.000 0.996
25 size-Expected jump 0.010 0.002

Table 21 Factor portfolios, R2. Table reports the R2 values resulting from regressions
of excess returns of 5 factor portfolios (MKT, SMB, HML, MOM, and JF) on the returns of
25 size-BE/ME portfolios or 25 size-expected jump portfolios: December 1925 to December
2014.

R2 for the dependent portfolio
Explanatory portfolios MKT SMB HML MOM JF

25 size-BE/ME 0.99 0.97 0.96 0.30 0.53
25 size-Expected jump 1.00 0.88 0.40 0.28 0.93
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Table 22 5-factor corrected risk premiums. Two-pass estimated risk premia of the
5-factor model, using monthly excess stock returns of 25 size-BE/ME portfolios and 25
size-expected jump portfolios augmented by the 5 factor portfolios: December 1925 to
December 2014. The table reports the mean monthly percentage excess return of each
factor portfolio, Mean return %, the Black, Jensen and Scholes (1972) monthly percentage
risk premia, γ̆, and the corresponding t-statistic for γ̆ = 0, the Fama and MacBeth (1973)
monthly percentage risk premia, γ̃, and the corresponding t-statistic for γ̃ = 0.

Factor Mean 25 size-BE/ME portfolios + 5 factor portfolios

portfolio return % γ̆ t-statistic γ̃ t-statistic

γMKT 0.65 0.63 3.77 0.71 4.32
γSMB 0.22 0.16 1.55 0.26 2.44
γHML 0.40 0.43 3.88 0.44 3.84
γMOM 0.67 0.68 4.65 0.52 3.46
γJF -0.13 -0.22 -2.04 -0.01 -0.13

25 size-Expected jump portfolios + 5 factor portfolios

γ̆ t-statistic γ̂ t-statistic

γMKT 0.65 0.41 2.30 0.44 2.26
γSMB 0.22 0.36 2.63 0.18 1.33
γHML 0.40 0.65 4.81 0.36 2.56
γMOM 0.67 0.45 2.57 0.26 1.36
γJF -0.13 -0.12 -1.32 -0.20 -2.32

Table 23 Corrected risk premiums/factor means divergence tests. Two-pass re-
gressions of the 5-factor model using monthly excess stock returns of 25 size-BE/ME
portfolios and 25 size-expected jump portfolios augmented by the 5 factor portfolios: De-
cember 1925 to December 2014. The table reports the P-values of the tests that check
if the differences between estimated parameters and factor means are statistically simul-
taneously equal to 0. The null hypothesis for the Black et al. (1972) and the Fama and
MacBeth (1973) approaches are respectively H0 : γ̆ − f̄ = 0 and H0 : γ̃ − f̄ = 0, where
f̄ is the vector of the factor means.

Dependent P-value P-value
portfolio H0 : γ̆ − f̄ = 0 H0 : γ̃ − f̄ = 0

25 size-BE/ME + 5 factor 1.000 1.000
25 size-Expected jump + 5
factor

0.044 0.003
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A Appendix

A.1 Dataset

The dataset includes all CRSP stocks, with share code equal to 10 or 11, from
December 1925 until December 2014. Of the overall 24,122 assets, figure VI
reports for each month the dimension of the dataset in terms of number of
quoted stocks. We consider as quoted those assets with at least one available
return in the window of interest.

Figure VI Monthly dataset. For each month from January 1926 till December 2014,
it shows the number quoted assets. Quoted stocks are those for which at least one return
exist in the window of interest.

A.2 Single assets regression results

We compare factor slopes and coefficients of determination resulting from
regressing single asset excess returns against the 4-factor and the 5-factor
models. For the latter we observe that adding the JF in the regression in-
creases the coefficient of determination 42.42% of the times.

Relative to the βs, instead, with the 5-factor model we obtain slopes for
MKT, SMB, HML, and MOM that are significantly different from 0 (10%
significance level) respectively in 62%, 50%, 28%, and 22% of the cases. More
importantly, βJF is significant 21% of the times.
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Single asset results reinforce the conclusions, of section 4, from regres-
sions that use portfolios as dependent variables: JF captures strong common
variation in returns.

A.3 Residuals correlation and heteroskedasticity

This section presents a comparison of the 4-factor and the 5-factor models
in terms of residuals correlation and heteroskedasticity. Table 24 shows the
P-values of the Breusch (1978)-Godfrey (1978) autocorrelation test, or AR,
while Table 25 reports the P-values of the Engle (1982) heteroskedasticity
test, or ET, both with 3 lags.

In the size-BE/ME case it is possible to observe that regression errors
are affected by heteroskedasticity and, slightly, by autocorrelation. While
for the former we do not register great differences between the models, see
left panels of Table 25, autocorrelation results improve by including the JF.
In particular, the lower values of average residual correlations and average
absolute residual correlations in Table 24, for the 5-factor model with respect
to the 4-factor model, witness the superiority of the former.

Using 25 size-expected jump portfolios, instead, we obtain errors that
are similarly affected by heteroskedasticity in the 4-factor and in the 5-
factor models, but slightly more affected by autocorrelation in the 5-factor
case with respect to the 4-factor case. In the right panels of Table 24 it is
possible to observe a small increase, when using the 5-factor model, of the
average residual correlation, from 0.212 to 0.226, and of the average absolute
residual correlation, from 0.250 to 0.258.

A.4 GRS test statistic

The Gibbons, Ross and Shanken (1989), or GRS, statistic tests if the inter-
cepts, α, are jointly zero: H0 : α = 0: It requires that the errors are normal,
uncorrelated, and homoskedastic.

Under the hypothesis of normal excess returns, the distribution of the
estimated αs, or α̂, conditional to the factors, or F , is:

α̂|F ∼ N
[
α,

1

T

(
1 + f̄ ′Σ̂−1

f f̄
)
Ω
]
,

where f̄ is the vector of the mean value of the factors, Ω is the variance-
covariance matrix of the regression residuals, T is the length of the time
series, and Σ̂f is the estimated variance-covariance matrix of the factors:

Σ̂f = 1
T

∑T
t=1 [ft − f̄ ][ft − f̄ ]′.

It follows that the test statistic takes the following form:

T −N −K
N

(
1 + f̄Σ̂−1

f f̄
)−1

α̂′Ω̂−1α̂.
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Under the null hypothesis, it has distribution FN,T−N−K , where N equals
the number of dependent portfolios, T is the length of the portfolios time
series and K is the number of factors. α̂ is the vector of estimated intercepts
for the 25 portfolios and Ω̂ is the estimated variance-covariance matrix of
the regression residuals: Ω̂ = 1

T

∑T
t=1 êtê

′
t.

A.5 Subperiods full results

This section reports the results from regressing 25 size-BE/ME portfo-
lios and 25 size-expected jump portfolios against (a) the four-factor model
(βJF,i = 0) and (b) the five-factor model (equation 5). Tables 27, and 28
report the results for the 25 size-BE/ME portfolios, while Tables 29, and 30
the results in the size-expected jump case.

In particular, we present the estimated coefficient results for model (a) in
Tables 27 and 29, and for model (b) in Tables 28 and 30. The tables not only
show the mean, the average standard error, the maximum and minimum
values of the estimated parameter across the 25 portfolios, but also the
percentage of portfolios for which the parameter of interest is significantly
different from 0 using a 90% confidence level.

Tables 26 and 31, instead, compare the models and the dependent port-
folios, respectively, in terms of variations in the coefficients of determinations
and estimated intercepts.

Table 26 Sub-periods: coefficient of determination. Regressions of excess stock
returns of 25 size-BE/ME portfolios and 25 size-expected jump portfolios on the returns of
the 4-factor model, and on the returns of the 5-factor model: December 1925 to December
2014. R2

adj increase reports the percentage of portfolios for which R2
adj increases when

moving from the 4-factor to the 5-factor model. R2
adj max and R2

adj min are respectively
the maximum and minimum R2

adj obtained using the 5-factor model.

Book-to-market equity (BE/ME) portfolios

Period R2
adj increase R2

adj max R2
adj min

Dec1925-Mar1948 52% 0.979 0.607
Apr1948-Jun1970 64% 0.957 0.732
Jul1970-Sep1992 88% 0.966 0.805
Oct1992-Dec2014 92% 0.954 0.787

Expected jump (JF) portfolios

Period R2
adj increase R2

adj max R2
adj min

Dec1925-Mar1948 52% 0.974 0.281
Apr1948-Jun1970 64% 0.962 0.241
Jul1970-Sep1992 88% 0.979 0.703
Oct1992-Dec2014 72% 0.964 0.457
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A.6 Two pass technique

The two pass technique requires as a first step to regress each asset’s return
on the time series of the factor realizations (equation 10), to obtain the
estimated betas, and in the second step to regress, at each time t, the cross-
section of assets returns against the beta coefficients (equation 11).

A.6.1 Black, Jensen and Scholes (1972) approach

Following the Black, Jensen and Scholes (1972) approach, we run the first
step using the full 1925-2014 sample of monthly percentage returns. From the
T regressions of step two, we obtain the time series of risk premia coefficients,
γ̆t, and residuals, ε̆t, that we then use to estimate γ and ε as the average of
the cross-sectional regressions:

γ̆ =
1

T

T∑
t=1

γ̆t and ε̆ =
1

T

T∑
t=1

ε̆t.

In order to test the statistical significance of the estimated risk premiums,

γ̆s, it is necessary to consider their asymptotic distribution:
√
T (γ̆ − γ)

d→
N [0, (1 + µ′fΣ

−1
f µf )(B′B)−1B′ΩB(B′B)−1 + Σf ]. Where T is the length

of the portfolios time series, B is the matrix of estimated coefficients for the
25 portfolios, µf is the vector of the expected value of the factors, Σf is the
variance-covariance matrix of the factors, and Ω is the variance-covariance
matrix of step one regression residuals. Moreover, the multiplicative term
(1 + µ′fΣ

−1
f µf ) is due to the Shanken (1992) correction for the fact that β̂

are generated regressors. To empirically test if a risk premium is equal to 0,
H0 : γ̆ = 0, we need to substitute the unknown quantities µf , Σf , and Ω

with their estimated correspondents f̄ , Σ̂f , and Ω̂ = 1
T

∑T
t=1 êtê

′
t.

A.6.2 Fama and MacBeth (1973) approach

The Fama and MacBeth (1973) approach requires the use of five-years rolling
(overlapping) windows of monthly percentage returns in the first step. We
then estimate the risk premia, γ, and the residuals, ε, as the average of the
T cross-sectional regressions of step two:

γ̂ =
1

T

T∑
t=1

γ̂t and ε̂ =
1

T

T∑
t=1

ε̂t.

We compute he sampling errors for the estimates following Fama and Mac-
Beth (1973) who suggest the use of the standard deviations of the cross-
sectional regression estimates: σ2(γ̂) = 1

T

∑T
t=1 (γ̂t − γ̂)2. We slightly di-

verge from their recommendation by using Newey-West HAC standard er-
rors. Note, since it does not correct for the fact that β̂ are generated re-
gressors, it is necessary to check that the Shanken (1992) correction factor,
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(1 +µ′fΣ
−1
f µf ), is not too large. To empirically compute the correction fac-

tor we need to substitute the unknown quantities, µf and Σf , with their
estimated correspondents, f̄ and Σ̂f . In our case for a monthly interval

f̄Σ̂
−1
f f̄ ≈ 0.09. Since it is quite small, ignoring the multiplicative term does

not make big difference.

A.6.3 Test for the differences between estimated parameters and
factor means

Our goal is to understand if the differences between estimated parameters
and factor means (or f̄) are statistically simultaneously different from 0.

In the Black et al. (1972) case we can use the time series of risk premia
estimates, γ̆t, and errors, ε̆t, to approximate the variance-covariance matrix
of the difference between estimated risk premiums and factor mean values:
γ̆ − f̄ . Renaming the differences as φ̆t = γ̆t − f t and φ̆ = γ̆ − f̄ , we can
define the variance-covariance matrix as:

˘V ar(γ̆ − f̄) ≡ ˘V ar(φ̆) =
1

T
˘V ar(φ̆t),

where ˘V ar(φ̆t) = 1
T

∑T
t=1(φ̆t − φ̆)(φ̆t − φ̆)′. It is possible to use this es-

timates to test if the differences between estimated parameters and factor
means are statistically simultaneously different from 0: H0 : γ̆− f̄ = 0. The

correspondent test statistic φ̆
′
[ ˘V ar(φ̆)]−1φ̆, under H0, has distribution χ2

N ,
where N equals the number of dependent portfolios, so in our case N = 25.

Similarly to the Black et al. (1972) case, also for the Fama and MacBeth
(1973) approach we can use the time series of risk premia estimates, γ̂t, and
errors, ε̂t to approximate the variance-covariance matrix of the difference
between estimated risk premiums and factor mean values: γ̂− f̄ . Calling the
differences φ̂t = γ̂t − f t and φ̂ = γ̂ − f̄ , we define the variance-covariance
matrix as:

ˆV ar(γ̂ − f̄) ≡ ˆV ar(φ̂) =
1

T
ˆV ar(φ̂t),

where ˆV ar(φ̂t) = 1
T

∑T
t=1(φ̂t − φ̂)(φ̂t − φ̂)′. The test φ̂

′
[ ˆV ar(φ̂)]−1φ̂ for

H0 : γ̂− f̄ = 0, under H0, has distribution χ2
N , where N equals the number

of dependent portfolios.
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