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Abstract

This paper develops multi-factor copula models to capture the time-varying depen-

dence across a large panel of financial assets. The factor structures are based on group

characteristics of financial assets, which allows for different patterns of within and be-

tween group dependencies. We build score-driven dynamics for the factor loadings,

possibly driven by exogenous variables. The factor copula model retains computational

tractable as the copula density is available in closed form, which proves beneficial for

parameter estimation. We apply our new approach to daily equity returns, realized

variances and realized equi-correlations of 100 stocks of the S&P 500 index over the

period 2001 to 2014. One-step ahead copula-density forecasts of the whole support

and in the joint lower tail based on multi-factor copula models significantly improve

upon one-factor models and recently developed benchmarks. Finally, including real-

ized measures into the factor copula specification statistically improves the density

forecasts, although the influence vanishes when the factor structure enriches.
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1 Introduction

Copulas are an important tool in financial econometrics for risk management and asset

allocation decisions of financial institutions as they are able to measure the dependence

between two or more random variables. They offer a great flexibility in building multivariate

stochastic models (see for example Patton (2009); Cherubini et al. (2011); Fan and Patton

(2014) and McNeil et al. (2015) for an overview). While initially the copula parameters

where assumed to be fixed, the literature has developed time-varying copulas (Patton, 2006;

Hafner and Manner, 2012), such that the dependencies may change over time. Patton

et al. (2012) reviews various copula based approaches that are suitable for modeling and

forecasting risk when the dimension of the assets is relatively small.

The recently developed (dynamic) factor copula models (Oh and Patton, 2017a,b; Creal

and Tsay, 2015) provide a general approach to model the time-varying dependence among

(financial) variables for large dimensions. Oh and Patton (2017b) apply their copula to

model time-varying systemic risk of 100 assets, whereas Creal and Tsay (2015) model the

dynamic correlations between 200 stock returns. The crucial advantage of factor copulas is

their ability to avoid the ‘curse of dimensionality’: the rapidly growing number of model

parameters to be estimated when the dimension increases. This leads in general to huge

computational costs. Moreover, parameter estimation could be infeasible. The copula ap-

proach disentangles the multivariate distribution into marginals and a dependence structure

that can be estimated separately and the factor copula structure models the dependency

across all assets by a couple of latent variables, with possibly time-varying factor loadings.

In this way the number of estimated parameters stays reasonably small while (the inverse

of) large covariance matrices cain be computed straightforwardly.

Although the dynamic factor copulas of Oh and Patton (2017b) and Creal and Tsay

(2015) (henceforth OP2017b and CT2015) are a big step forward towards modeling high-

dimensional dependence, they are limited with respect to their factor structure: they both

consider just one factor. This seems restrictive when modeling the dependencies between
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a large number of financial asset returns. From an asset-pricing point of view, we nowa-

days use models with multiple factors, such as three- or five-factor model of Fama and

French (1993, 2016), and (affine) term structure models. Adding more factors is possible in

both aforementioned studies, but this will considerably increase the computational burden.

OP2017b propose a skewed-t distribution for the latent factor such that the copula density

is not available in closed form, hence numerical methods are required to estimate the pa-

rameters. This requires considerable computational effort, and will even become worse if

one consider more factors. With respect to the second study, CT2015 proposes a stochastic

copula (see also Hafner and Manner, 2012) where the factor loadings evolve by a stochastic

transition equation. Hence massive Bayesian simulation techniques are used as again the

implied copula density is unknown in closed form. Introducing more factors will therefore

cost additional computing power.

This paper extends the factor copulas of OP2017b and CT2015 with respect to the factor

structure. More specifically, this structure ranges from a simple one-factor model to copula

models with multi group-specific factors and/or time-varying group-specific factor loadings.

In addition, we propose score-driven dynamics for these factor loadings, by adopting the

Generalized Autoregressive Score (GAS) framework of Creal et al. (2013). This recent

general framework provides intuitive parameter updates via one-step improvements of the

local likelihood. Moreover, the tractability is achieved by ensuring that the copula density

is available in closed form. Hence, parameter estimation is possible quite straightforwardly

by means of Maximum Likelihood. This contrasts with the stochastic copula of CT2015

and the skew-factor copula of OP2017b.

A further extension of our multi-factor copulas is the easy allowance to incorporate ex-

ogenous variables into the specification of the factor loadings. We exploit this advantage by

evaluating the possible influence of ‘realized measures” in the factor copula specification.

These high-frequency based measures of the variance and correlations lead in general to

an improvement in volatility modeling, estimation and prediction (Andersen et al., 2003;

Hansen and Lunde, 2011). Salvatierra and Patton (2015) show the added value of introduc-
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ing realized measures into a bivariate copula. We extend this approach by considering an

(group) equi-based realized correlation that feeds the dynamics of the factor loadings. An

important implication of our proposed dynamics is that we do not require to pre-construct

a large realized covariance matrix which should be positive definite, which might become

troublesome if the number of assets gets large. Instead, we retain the added value of realized

volatilities in the specification of the marginal specification while using the equi-correlation

into the factor copula specification.1. Hence this paper can also be seen as an extension of

multivariate realized volatility models for large dimensions.

We apply our factor structures with new score-driven dynamics on a panel of daily re-

turns, realized variances and realized equi-correlations of 100 stocks listed at the S&P 500

index over the period 2001-2014 and benchmark our models against the cDCC model of En-

gle (2002); Aielli (2013) and the (Block) DECO model of Engle and Kelly (2012). We find

in-sample that our multi-factor t-copula models produce a better fit than one-factor models

and the benchmarks. Allowing for industry-specific factors increases the fit considerably

compared to one- or two-factor copula models with possible industry-specific loadings. Fur-

ther, including the realized equi-correlation has a positive effect on the fit of factor copula

models, although this effect declines when the model specification (i.e. the factor struc-

ture) enriches. Out-of-sample we compare one-step ahead copula density forecasts using the

density forecast accuracy test for copulas proposed by Diks et al. (2014), and the Model

Confidence Set approach of Hansen et al. (2011). We compare the dynamic copula models

both in terms of their fit across the entire support, but also on the left tail of the distri-

bution. The results suggest that our multi-factor copula is superior against the one-factor

copula models, cDCC and (Block) DECO models in case of the whole support, and the joint

5%, 10% and 25% lower tails. At the 1% lower tail, the predictive accuracy is at par with

the cDCC model. Finally, we show that including realized equi-correlations into the factor

copula specification improves one-step ahead density forecasts. This confirms the result of

Salvatierra and Patton (2015) in their setting of bivariate copula’s. However, this effect

1If the number of assets exceed the number of intra-day observations (typically 78 5-minute returns),
then the realized covariance matrix is not positive definite by definition.
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vanishes when the factor structure becomes richer.

This paper touches various strands of the literature on factor (copula) models, obser-

vation driven models and multivariate volatility models. First of all, there is an extensive

literature on factor models and the computation of large covariance matrices, see for ex-

ample Fan et al. (2008) and Fan et al. (2011). Engle et al. (1990) develop factor ARCH

models with an application in asset pricing with many assets. These models are related to

our approach, however the benefit of our factor copula approach is the flexibility in choosing

the models and distributional assumptions, both with respect to the marginals as well as to

the copula specification. Second, factor copula’s has been recently introduced by Krupskii

and Joe (2013); Oh and Patton (2017a), among others. Oh and Patton (2017b) introduce

the GAS framework of Creal et al. (2013) within factor copulas. This recently developed

framework provides a new intuitive way to update time-varying parameters within obser-

vation driven models, and has been applied in various fields with promising results in for

example credit risk modeling (Creal et al., 2014) and systemic risk modeling (Lucas et al.,

2014, 2017). Third, we refer to Creal and Tsay (2015) for references of Bayesian analysis of

(factor) copula’s. Galeano et al. (2017) apply Bayesian inference in different specifications

of the class of dynamic one-factor copula models. Examples of other studies using dynamic

copula models in high dimensions are Christoffersen et al. (2012, 2014), where the latter

study combines a skew-t copula with DCC models to study the diversification benefits of

a panel of more than 200 asset returns. This lead us finally to the relation between factor

copula’s and multivariate volatility models with possible incorporation of realized measures

(e.g. the DCC model of Engle (2002) or the Multivariate HEAVY model of Noureldin et al.

(2012)). These models suffers in general from the aforementioned curse of dimensionality

when the dimension gets large. In addition, (large) covariance/correlation matrices need to

be inverted many times during parameter estimation, which becomes computationally and

numerically problematic.

The rest of this paper is set up as follows. In Section 2, we introduce the factor cop-

ula model with various factor structures for the multivariate distribution of returns, while
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allowing for possible incorporation of realized measures into the dependency specification.

We provide a simulation experiment in Section 3 to show the performance of the model

and estimation procedure. In Section 4, we apply the model to a panel of 100 daily equity

returns, realized variances and equi-correlations from the S&P 500 index. We conclude in

Section 5.

2 Observation driven dynamic factor Copulas

Let yt = (y1t, y2t, . . . , yNt)
> ∈ RN denote the vector of asset returns over day t, t = 1, . . . , T .

We aim to model the conditional joint distribution of yt, which we decompose into N

marginals and a conditional copula (Patton, 2006):

yt|Ft−1 ∼ Ft = Ct

(
F1t(y1t | θM), F2t(y2t | θM), . . . , FNt(yNt | θM);θC

)
(1)

with Ft−1 the information set containing all information up to and including time t −

1, Ct(·|θC) the conditional copula given the copula parameter vector θC and Fit(yit|θM)

denotes the marginal distribution of asset i, given the marginal parameter vector θM . We

will elaborate about the model and distribution choice of the marginals later on in this paper.

Note that the conditional copula Ct can also be interpreted as the conditional distribution

of the probability integral transforms (PITs) of yit. Put differently, define for i = 1, . . . , N

the PIT as

Uit ≡ Fit(yit | θM), (2)

then it holds that

Ut|Ft−1 ∼ Ct(θC) (3)

The advantage of decomposing the multivariate (conditional) distribution into marginals

5



and a copula compared to immediately modeling the conditional joint distribution Ft is

twofold: (1) when the dimension is high, multi-stage estimation reduces the number of

parameter to be estimated, and (2), modeling a univariate distribution is relatively simple,

hence the problem of modeling Ft is reduced to modeling Ct.

The challenging task is to model the conditional Copula Ct, given the estimated PITs

from a large number of marginals. There is an extensive literature about copulas (see for

example Patton, 2009; Fan and Patton, 2014, for an overview), although literature about

copulas in large dimensions is rather scarce. This paper builds upon a recently developed

class of ‘Factor Copulas’ with time-varying factor loadings (Oh and Patton, 2017a,b; Creal

and Tsay, 2015). These models aim to reduce the dimension by making use of a factor

structure for the density Ct. We build upon the factor structure of Creal and Tsay (2015)

by assuming the following specification:

uit = P (xit|θC), i = 1, . . . N, (4)

xit = λ̃
>
itzt + σitεit zt ∼ p(zt|θC), εit ∼ p(εit|θC)

where λ̃it is a p×1 vector of scaled factor loadings, zt is a p×1 vector of common latent factors

with a zero mean vector, Var(zt) = Ip and εit are idiosyncratic shocks. Further, P (xit|θC),

p(zt|θC) and p(εit|θC) denote the marginal distribution of xit and the distributions for the

common factors and the idiosyncratic vector respectively. We assume that there is no

correlation between the common factors and the idiosyncratic shocks. The scaled factor

loading vector λ̃it and σit are defined in such a way that they are positive and imply a unit

variance of xit:

λ̃it =
exp(λit)√

1 + exp(λit)> exp(λit)
(5)

σ2
it =

1

1 + exp(λit)> exp(λit)
(6)

Within our choice of distributions, which we will elaborate later on in this paper, the
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associated correlation matrix of xt equals

Rt = L̃
>
t L̃t + Dt (7)

with L̃
>
t = (λ̃

>
1t, λ̃

>
2t, . . . , λ̃

>
Nt) a N × p matrix of scaled loadings and Dt a N ×N diagonal

matrix with entries σ2
it. A huge computational advantage of these factor copulas is that the

inverse and determinant of Rt are known in closed form (Creal and Tsay, 2015):

R−1t = D−1t −D−1t L̃
>
t

(
Ip + L̃

>
t D−1t L̃t

)−1
L̃tD

−1
t , |Rt| =

∣∣∣Ip + L̃
>
t D−1t L̃t

∣∣∣ |Dt|. (8)

We only have to compute the inverse of the p× p matrix Ip + L̃
>
t D−1t L̃t. This reduces the

computational costs dramatically compared to inverting an N × N matrix at each time t

as p << N . The above class of copula is very flexible, depending on the number of factors,

the distributional assumptions of the common factors and ideosyncratic shocks and the

proposed time-varying dynamics for the factor loadings. The following subsections discuss

these choices in more detail.

2.1 The factor structure

The main goal of this paper is to exploit the factor structure within our general specification

of (4). We extend both OP2017b and CT2015 by considering more than one factor, as this

seems too restrictive when modeling a large number of assets. This subsection will present

different structures for zt and the associated loading matrix L̃
>
t . In addition, we will show

the consequences for the correlation matrix by showing the upper triangular part of the

matrix Rt in an simplified example of four assets, divided into two equal groups of two.

Let us start with the one equi-factor copula model, implying that zt is a univariate

random variable with a N × 1 loading vector L̃
>
t = λ̃tι with ι a N × 1 vector of ones.

This one-factor model is related to the DECO model of Engle and Kelly (2012), where each

pairwise correlation is assumed to be the same. From an asset pricing point of view, this

7



factor can be seen as the market factor, with a identical ‘beta’ (factor loading) for all assets.

We will denote this factor copula (FC) model as ‘FC-1f-Equi’.

A first building block to bring more flexibility in the factor loadings of the FC-1f-Equi

model is to make them group specific, see also OP2017b. The ‘beta’ could have a different

loading across region, country, industry or other characteristics that are of interest of the

researcher. In this paper, we consider a panel of stocks, which are classified into G different

industries. Hence we have now different ‘betas’ of the market factor with respect to each

industry. To provide an toy-example, suppose we have G = 2 groups and N = 4 assets,

with 2 assets per group. L̃
>
t is now given by

L̃
>
t =



λ̃1t

λ̃1t

λ̃2t

λ̃2t


, (9)

where the order of the loadings is arbitrarily chosem. The corresponding upper triangular

part Rt is denoted as

Rt =



1 λ̃21t λ̃1tλ̃2t λ̃1tλ̃2t

1 λ̃1tλ̃2t λ̃1tλ̃2t

1 λ̃22t

1


. (10)

Hence within a group i, we have a group specific correlation λ̃2it, whereas the correlation

between group i and j is given by λ̃itλ̃jt. We will label this one-factor copula with group-

specific loadings as ‘FC-1f-Group’.

Apart from varying the loadings (betas) of one factor per group, we can also add a

different group factor as a second building block. In the above example of four assets and
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two groups, we have a 4× 2 matrix of (scaled) factor loadings

L̃
>
t =



λ̃1t 0

λ̃1t 0

0 λ̃2t

0 λ̃2t


. (11)

In general, we would have G different factors, while each group (industry) factor has is own

factor loading. It can easily be seen from the example above that here the correlation differs

within a group, while the correlation between groups equals zero.

The above building blocks of industry specific loadings and group factors can easily

be combined with a equi-factor to create a multi-factor copula model. To save space, we

will only show the combination of an equi-factor with group-specific factors, although we

also consider a two-factor model with an equi-loading and group-specific loadings, denoted

as ‘FC-2f-Group-Equi’. Combining an equi-factor with group-specific factors leads in our

example to the following loading matrix:

L̃
>
t =



λ̃0t λ̃1t 0

λ̃0t λ̃1t 0

λ̃0t 0 λ̃2t

λ̃0t 0 λ̃2t


, (12)

such that the implied correlation matrix is given by

Rt =



1 λ̃20t + λ̃21t λ̃20t λ̃20t

1 λ̃20t λ̃20t

1 λ̃20t + λ̃22t

1


. (13)

The resulting correlation matrix differs from (10) in an important way: the between group
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correlation contains only the parameter λ̃0t, hence λ̃1t and λ̃2t have much more freedom for

the within correlation, while in the group-specific loading case, an increase in λ̃1t will also

effect the correlation between group 1 and 2. This factor copula model with multi factors

(Mf) is denoted as ‘FC-Mf-Equi-Group’.

We can even go a step further and also add another factor with industry-specific loadings

to the aforementioned specification, such that (12) changes into

L̃
>
t =



λ̃0t λ̃1t λ̃3t 0

λ̃0t λ̃1t λ̃3t 0

λ̃0t λ̃2t 0 λ̃4t

λ̃0t λ̃2t 0 λ̃4t


, (14)

with corresponding dependence matrix

Rt =



1 λ̃20t + λ̃21t + λ̃23t λ̃20t + λ̃1tλ̃2t λ̃20t + λ̃1tλ̃2t

1 λ̃20t + λ̃1tλ̃2t λ̃20t + λ̃1tλ̃2t

1 λ̃20t + λ̃21t + λ̃24t

1


. (15)

Hence the between group correlation is more flexible compared to (12), as they are now

also affected by λ̃1t and λ̃2t, while λ̃3t and λ̃4t only appear in the within correlation block.

Hence this model, denoted as ‘FC-Mf-Full’, contains two market factors with fixed and

time-varying betas per group (industry), and G industry factors.

To summarize this subsection, given that the assets belong to a certain group based on

some characteristic, we are able to create various factor structures to the basic one-factor

model by introducing group-specific loadings and/or group-specific factors. Table 1 lists the

resulting factor structures with their properties, such as the number of factors, number of

different λ̃′s, and the associated dimension of L̃
>
t .

[insert Table 1]

10



2.2 Distributional assumptions

Given the various factor structures proposed in the previous subsection, the next step is to

specify a distribution for the common factors and the idiosyncratic term of (4). OP2017b

assume a skewed-t and a Student’s-t density for the common factor zt and the idiosyncratic

shock εit respectively. This implies that the copula density of xit is analytically unknown.

Hence parameter estimation is computationally involved as numerical techniques are needed

in order to evaluate the copula density. Likewise, CT2015 propose a stochastic transition

equation for the factor loading λit. Again, the copula density is analytically unavailable

in closed form. Bayesian (numerical) techniques are required to estimate the parameters,

which is computationally costly for increasing dimensions.

We will retain the tractability of the model by choosing two particular choices for p(zt|θC)

and p(εit|θC) such that the implied copula density is available in closed form, at the cost of

possible skewness. Although skewed copulas exists (by means of the Generalized Hyperbolic

copula or the skewed-t distribution of Azzalini and Capitanio (2003)), it is not possible to

maintain the factor copula structure as given in (4) combined with a closed form copula

density. Besides, we also lose the analytic expressions for the inverse and determinant of

Rt (see (7)-(8)) which is again computationally inconvenient. We therefore stick to two

elliptical copulas, the Gaussian factor copula and the t-factor copula.2

The conditional Gaussian factor copula reads

uit = Φ(xit), i = 1, . . . N, (16)

xit = λ̃
>
itzt + σitεit zt ∼ N(0, Ip), εit ∼ N(0, 1),

with Φ(·) the cumulative distribution function (cdf) of the Gaussian distribution function.

The Gaussian copula density does not contain any additional parameters beyond the pa-

rameters associated with the dynamics of the factor loadings. Although this factor copula

2We have estimated a DECO model of Engle and Kelly (2012) with the skewed-t distribution of Azzalini
and Capitanio (2003). Initial results showed that the maximized log-likelihood of the skewed-t distribution
is only marginally higher than the log-likelihood of the (nested) Student’s t distribution.
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is easy to estimate (as we only have to compute the inverse xit = Φ−1(uit) once), it does not

contain any tail dependence (see Embrechts et al., 2005). Therefore, our main focus lies in

the conditional Student’s t factor copula, which is given by

uit = T (xit | νC), i = 1, . . . N, (17)

xit =
√
ζt

(
λ̃
>
itzt + σitεit

)
zt ∼ N(0, Ip), εit ∼ N(0, 1)

ζt ∼ Inv-Gamma
(νC

2
,
νC
2

)
.

where T (· | νC) denotes the cdf of the univariate Student’s t distribution with νC degrees

of freedom and ζt denotes a Inverse-Gamma distribution. Note that our proposed factor

structures of the previous subsection easily fit into both assumed distributions without

considerably computational costs, as the copula density remains analytically tractable. This

contrast to the stochastic copulas of CT2015 and the skewed-t factor copula of OP2017b,

as adding more factors would considerably increase the computational burden.

2.3 Dynamics of factor loadings

The final step to complete our factor copula specification is to impose dynamics on the factor

loadings λit. In general, there are two approaches to model time-varying factor loadings.

The first approach is parameter driven (Hafner and Manner, 2012; Creal and Tsay, 2015,

e.g.) where λit evolves as in stochastic volatility models. This leads to so-called stochastic

copula models. The second approach is observation driven with loadings depending on past

observable variables. This paper considers the second method, avoiding a computational

burden involved on stochastic copula models as they typically require to integrate out the

random innovation term apparent in the process of the loadings. In particular, we follow

OP2017b and adapt the generalized autoregressive score framework of Creal et al. (2013),

see also Harvey (2013). The GAS framework uses the score of the conditional density

function to drive the dynamics of a time-varying parameter by adjusting it in the direction

of steepest ascent of the local log likelihood function. Blasques et al. (2015) show that score
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driven dynamics possess information theoretic optimality properties even if the model is

mis-specified. The framework is very general and has recently been applied to various areas,

such as multivariate volatility modeling (Opschoor et al., 2017), credit risk management

(Creal et al., 2014), and systemic risk management (Lucas et al., 2014).

Let us start with the simple FC-1f-Equi model. In this case, we have L̃
>
t = λ̃tι, which

depends on the unscaled scalar parameter λt. The GAS dynamics for λ are given by

λt+1 = ω + Ast +B λt (18)

st = St ·
(∂ log ct(xt | λt, θC)

∂λt

)
, (19)

with ω,A and B scalars, st the scaled score and St a scaling factor. We follow OP2017b

and put all scaling factors to one for computational reasons. The score is defined as the

partial derivative of the log Gaussian or Student’s t copula density with respect to λt. Put

differently, λt will be updated in that direction such that the one-step improvement of the

local likelihood is maximized.

As indicated by Table 1, the more richer the copula structure, the more λ′s we have.

Theoretically, we could impose for each λ a different ω, A and B. However, in order to keep

a tractable model with a reasonable amount of parameters to be estimated, we assume that

B is the same across all factors. In addition, when considering group-specific loadings, we

allow for different intercepts ωg but keep A and B the same. Finally, we allow for three

different values of A in case of the FC-MF-Full copula model: one for the equi-factor, one

for the industry-specific loadings and one for all industry factors.

We further extend the GAS model of (18) by allowing for the influence of exogenous

variables, such as realized correlations. Realized measures use intra-day data to estimate a

variance or correlation, which improves modeling volatility and correlations (e.g. see Ander-

sen et al. (2003)). Salvatierra and Patton (2015) show the influence of realized correlations

by specifying bivariate GRAS copula models. Given our various factor structures, we can
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easily insert a realized correlation by extending (18) into

λt+1 = ω + Ast +B λt + γRC log
√
RCORReq,t, (20)

with RCORReq,t the average of all pairwise realized correlations between all assets:

RCORReq,t =
1

N(N − 1)

∑
i<j

RCORRij,t. (21)

The non-linear transformation of RCORRij,t serves for easy parameter interpretation of

γRC : a value of one implies that the correlation of xit exactly equals the realized equi-

correlation. Note that in case of different group factor(s) (loadings), we could also compute

a ‘heterogenous’ realized equi-correlation by taking the average of all pairwise correlations

RCORRij,t within one particular group or industry.

We would like to emphasize the difference between the approach of this paper and a

multivariate volatility model that inserts realized covariance matrix, such as the the Multi-

variate HEAVY model of Noureldin et al. (2012). Such a model requires an N ×N positive

definite matrix. As noted earlier, this may become troublesome if the number of assets

increases, hence shrinkage techniques are needed to retain a positive definite matrix (Ledoit

and Wolf, 2003). We avoid these problems in our factor copula by easily computing realized

variances first, which will be inserted in the marginals. For the correlations, we will we av-

erage out all pairwise correlations in (21). The cost is that we only deal with (heterogenous)

realized equi-correlations.

Finally, note that beyond including the realized correlation, equation (18) allows us also

to include any other possible exogenous variable Xt into the model specification that might

influence the factor loadings and hence the correlations. Besides, it is important to realize

that the GAS dynamics of (18) does not require any restrictions on RCORReq,t or γRC due

to the rescaling of λ as given in (5). This contrasts with any multivariate volatility model

that aims to connect the covariance matrix with past realized covariances or any other

exogenous variable. In that case, one should always pay attention to keep the covariance
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matrix positive definite.

2.4 Estimation

We estimate the parameters of the marginals and the factor copula by Maximum Likelihood.

The decomposition of the joint distribution into the marginals and the copula enables us

to employ a two-step estimation approach: we first estimate the marginals (separately) and

then the copula parameters conditional on the marginals. This approach follows directly

from decomposing the joint likelihood as:

L(θ) ≡
T∑
t=1

log ft(yt;θ) =
N∑
i=1

T∑
t=1

log fi,t(yit;θM) (22)

+
T∑
t=1

log ct (F1,t(y1t;θM), . . . , FN,t(yNt;θM);θC)

with θ = {θM ,θC}. According to Salvatierra and Patton (2015), the implied efficiency loss

is small compared to estimating the full likelihood in one step.

3 Simulation experiment

We perform a Monte Carlo study to investigate the finite sample properties of maximum

likelihood estimation of θC for our factor copulas with different factor structures. We sim-

ulate time series of T daily returns of dimension k = 100, which corresponds with our

empirical application. T is set equal to 500 and 1000 respectively. For brevity, we only con-

sider the multi-factor class of copula models as the true data-generating processs (DGP).

The models within this class are denoted as FC-Mf-Equi-Group and FC-Mf-Full, where the
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latter is represented by

xit =
√
ζt

(
λ̃
>
itzt + σitεit

)
, (23)

λ̃
>
it =

[
λeq1,t λ

gr,f
21,t λ

gr,f
22,t . . . , λ

gr,f
2G,t λ

gr,l
3g,t

]>
,

λeq1,t+1 = ωeq + Aeq s
eq
t +B λeq1,t, (24)

λgr,f2g,t+1 = ωg + Agr,f s
gr,f
g,t +B λgr,f2g,t , g = 1, . . . , G (25)

λgr,l3g,t+1 = ωgr,l + Agr,l s
gr,l
g,t +B λgr,l3g,t, g = 1, . . . , G (26)

with zt ∼ N(0, IG+2), εit ∼ N(0, 1) and ζt ∼ Inv-Gamma
(
νC
2
, νC

2

)
. Hence the Factor-Copula

Multi-factor Full (FC-Mf-Full) model consists of three different types of λ′s which has their

own GAS dynamics: one lambda for the equi factor (λeq), G factor loadings for the group

specific factors λgr,f and G factor loadings of one additional factor. Note that λgr,f2g,t is zero if

asset i does not belong to group g. Each type of lambda has is own value of A and ω·, whereas

within the group specific factor, each factor has also its own intercept ωg (g = 1, . . . , G).

The other considered multi-factor model is obtained by dropping equation (26). Guided

by the empirical application, we consider G = 10 groups, where each group consists of 10

assets, and put ωeq = ωgr,l = 0.01, ωg is equally spaced in the interval [−0.05 , 0.01]. Further,

we set νC = [30,∞], where the latter corresponds with the Gaussian factor copulas. Finally,

the values of Aeq, Agr,f , Agr,l and B vary slightly across the two distributions but are all

around 0.02 and 0.95 respectively.

[insert Table 2]

Table 2 presents the results based on 1000 replications. Panel A denotes the results of

the multi-factor model with one equi-factor and 10 group-specific factors, while Panel B

presents results of one-equi, 10 group-specific and one additional factor with group-specific

loadings (the FC-Mf-Full model). All parameters are estimated near their true values, and

the standard deviation decreases in general when the sample size T increases. In Panel A,

there is a small downward bias in the group specific intercepts ωi (i = 1, 2, 3) when the
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sample size is 500, which is more severe for the Gaussian factor copulas than for the t-factor

copulas. Note that the standard errors are also higher for these intercepts compared to the

remaining intercepts. This bias shrinks when the simple size increases to 1000. Panel B

shows that also in case of the FC-Mf-Full-N model there is a downward bias for ωi (i = 1, 2, 3)

when the sample size is small. Again the standard errors are also relatively high. Based

on these two different DGPs, we conclude that the finite sample properties of the t-factor

copulas are slightly better than the statistical properties of the Gaussian factor copulas.

4 Empirical application

4.1 Data

The data consist of daily open-to-close returns and daily realized covariances measures for

100 U.S. equities. Table 3 provides an overview of the Tickers of each company, grouped into

10 different industries. The data spans the period January 2, 2001 until December 31, 2014

and contains T = 3521 trading days. The Financial industry covers the most companies

(i.e. 19), followed by Consumer Services and Energy respectively. Each industry covers at

least four companies.

[insert Table 3]

We retrieve consolidated trades (transaction prices) from the Trade and Quote (TAQ)

database from 9:30 until 16:00 with a time-stamp precision of one second. After clean-

ing the high-frequency data following the guidelines of Barndorff-Nielsen et al. (2009) and

Brownlees and Gallo (2006), we construct realized variances as well as pairwise realized

covariances based on 5-minute returns. Both quantities are used to back out pairwise re-

alized correlations. Figure 1 shows RCORReq,t of (21), the average of all pairwise realized

correlations between the 100 stock returns. The figure shows that the average correlation is

quite noisy over time. Note that the average correlation is relatively high during the global
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financial crisis (around 2008/2009), but even higher in 2011. This could represent the fears

of contagion of the European sovereign debt crisis to Spain and Italy.

[insert Figure 1]

4.2 Marginals

Using the full sample of 3521 trading days, we first estimate the parameters of the marginal

distributions. We model these distributions using univariate volatility models, using daily

returns and daily realized variances. Typically, both quantities are fat-tailed. Opschoor

et al. (2017) argue that this should be taken into account when proposing a statistical model

for the (co)variance of returns as large returns and realized (co)variances may potentially

disrupt the time series of (co)variances. They therefore adopt the GAS framework of Creal

et al. (2013), that uses the score of the conditional density function to drive the dynamics

of the latent covariance matrix. More specifically, they propose a fat-tailed Student’s-t for

the returns and a matrix-F distribution the realized covariance matrix respectively, where

both densities depends on a latent covariance matrix. The score is then defined as the sum

of the partial derivative of both individual observation densities with respect to the time-

varying covariance matrix. Applying this to the univariate setting, we assume a Student’s t

distribution for the individual returns yi,t with ν0i degrees of freedom, and an F-distribution

with ν1i and ν2i degrees of freedom for the realized variance RVi,t. The univariate HEAVY

GAS tF model is then given by:

yi,t ∼ t(yi,t | µ, hi,t, ν0i) RVi,t ∼ F (RVi,t | hi,t, ν1i, ν2i)

yi,t = φ0,i +

Q∑
q=1

φq,iyi,t−q +
√
hitηi,t

hi,t+1 = ωi + αi si,t + βi hi,t (27)

si,t = Si,t∇i,t

∇it = ∇y,it +∇RV,it =
∂ log t(yi,t|φ0, hi,t, νi)

∂ht
+
∂ logF (RVi,t, | hi,t, ν1i, ν2i)

∂hi,t
,
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with hi,t the conditional variance of asset i at time t, and ∇it the score at time t. We follow

Opschoor et al. (2017) by scaling the score si,t with 2h2i,t. The interpretation of the scaled

score is intuitive here: large values of yi,t and RVi,t will be downweighted since the possible

outlier (jump) might just appear as an result of the assumed fat-tailedness of the returns of

realized variances.

We estimate the univariate HEAVY GAS tF model of (27) on the 100 time series. For the

conditional mean model, we find some significance of the first two AR lags. Table 4 shows

the mean and several quantiles of the estimated parameters in the cross-section. The table

shows the fat-tailed nature of both the stock returns and realized variances, as the mean of

ν0 and ν2 are equal to 8.47 and 14.68 respectively. We follow CT2015 and evaluate the fit of

the marginal distributions by transforming the PIT ûit into Gaussian variables x̄it = Φ−1.

Then we test for each series i, (i = 1, . . . , 100) on normality by the Kolmogorov-Smirnov

test. Across the 100 firms, only in case of 11 models the null-hypothesis of normality is

rejected. Although the size exceeds the nominal test level of 5%, we restrict ourself to the

current marginal distribution for the sake of parsimony and comparability.

[insert Table 4]

4.3 Factor copula results

After estimating the parameters of the marginal distributions, we estimate the parameters

of the factor copula models with various factor structures on the full sample of 3521 ob-

servations. Beyond differentiating across the factor structure, we also pay attention to the

distribution (Gaussian vs. Student’s t) and the inclusion of the realized equi-correlation.

The groups are formed according to the specific industry of a particular stock (see Table 3).

We benchmark our factor copula models with new factor structures against the cDCC

model (Engle, 2002) (with the correction of Aielli (2013)) and the (Block-) DECO model of
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Engle and Kelly (2012). These models are governed by

Qt+1 = Ω + AQ∗txtx
>
t Q∗t +BQt

RcDCC
t = Q∗−1t QtQ

∗−1
t

RDECO
t =

1

N(N − 1)
(ι>RcDCC

t ι−N) (28)

with Q∗t a diagonal matrix with entries qii,t, A and B scalars and Ω a N × N matrix.

In addition, we consider the Block-DECO model where each block represents a specific

industry and could have a potentially different correlation. See Engle and Kelly (2012) for

more details about this model specification.

In order to compare our models with the benchmarks, we put them in a copula frame-

work. That is, xit = P−1(uit) with uit estimated in a first step by the marginals, and P−1

the inverse pdf of the copula at hand. For the DECO models, we assume both a Gaussian

and Student’s t copula for the dependencies. We estimate the cDCC model by means of

the Composite Likelihood method of Engle et al. (2008). Further, the Block DECO model

parameters can only be estimated by assuming a Gaussian distribution.3

[insert Table 5]

Table 5 shows the parameter estimates and maximized log-likelihoods from Factor Cop-

ula GAS (FC GAS) models with one factor (with homogenous or group-specific loadings),

two factors (one equi factor with fixed and one factor with group-specific loadings), 11 fac-

tors (one equi factor and 10 group factors, denoted as Mf-Equi-Group) and 10 + 2 factors

(the Mf-Equi-Group model plus a factor with group-specific loadings). To save space, we do

not report the intercepts ωg that varies per group of each factor copula that contains group

factors or group-specific loadings. Panel A.1 and A.2 lists the results from the Gaussian

en t-factor copulas respectively, Panel B shows parameter estimates from the benchmark

models.
3In this model, the multivariate Gaussian density is divided into a sum of overlapping bivariate Gaussian

densities, see Engle and Kelly (2012). This can not be done in case of a Student’s t distribution with ν
degrees of freedom.
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The main result from the table is that multi-factor models provide a much better fit

than the one-factor copula models. For example, the log-likelihood difference between the

Mf-Full-t model and the 1f-Equi-t model exceeds the striking amount of 15,000 points. The

most gain with respect to the factor structure is obtained by including industry factors, as

the log likelihood increases almost 10,000 points in both the Gaussian and t-factor copula’s.

The Gaussian multi-factor models also perform relatively better than the DECO and cDCC

model, while the multi-factor t-copula models outperform the Block DECO model as well.

Table 5 shows two additional interesting results beyond our main result. First, the

fit of t-factor copulas is considerably better than the Gaussian factor copula models with

differences around 2000 points in the maximized log-likelihood. Second, there is a strong

persistence in the time-varying factor loadings, as the value of B is around 0.97 for most of

the estimated (t-) factor copula models. These two findings confirm the empirical analysis

of OP2017b on the log-differences of U.S. CDS spreads.

[insert Figure 2]

Figure 2 shows the different factor loadings corresponding with the FC-Mf-Full-t model,

which has the richest factor structure and the best statistical fit. The top sub-figure shows

the equi-factor loading, hence the systemtic part that hits the dependence structure between

all 100 assets. The equi factor loading increases in particular during crises periods, such

as 2003, 2008-2009 and in the end of 2011. The middle sub-figure shows the differential

effects of three industries with respect to the equi factor loading: the Capital Goods (blue

line), Financials (red line) and the Health industry (yellow line). Notably, the loadings

of the Financials with respect to the latent factor exceed the loadings of the Health and

Capital Goods industries during the period 2001-2009 and after 2013. Huge upward spikes

are visible as well for the Financials during the heat of the global financial crisis (2007-

2009). The lower sub-figure depicts the evaluation of the industry-specific factor loadings.

The main take-away is that the three depicted industry factors behave quite differently: the

Capital Goods factor loadings are considerably lower than the Health and Financial factor
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loadings, while the last two industries seems negatively related to each-other. Hence allowing

for different industry factors with their own GAS loadings shows distinctive patterns, which

has a enormous effect on the statistical fit of the model, as shown before.

[insert Figure 3]

Figure 3 plots the implied within correlation of Financials and Capital Goods industry

factor loadings according to the Mf-Full-t model and a benchmark (i.e. the Block-DECO

model). The sub-figures shows a similar pattern of the factor loadings, although the correla-

tion within Financials is around 0.8 or higher in 2003, 2008 and 2011 (crisis periods) for the

multi-factor copula, while according to the Block-DECO model these within correlations are

around 0.7. In addition, the differences between the within correlations of both industries

are much smaller in the period January 2007-June 2008 implied by the Multi-factor t-copula

model than implied by the benchmark model. We would like to emphasize that these find-

ings does not imply that one pattern is automatically better, as we do not know the true

correlation pattern. We therefore conduct an out-of-sample density forecast exercise in the

next sub-section to discriminate between the forecasting power of factor copulas and the

cDCC/DECO models.

The effect of including realized equi-correlation into the model specification of the factor

loadings is listed in Table 6, where parameter estimates are shown of the Gaussian and t-

factor copula models including the high-frequency based correlation (see (20)).4 Comparing

this table with Table 5 clearly suggests that including the realized correlation improves the

fit of the model, especially for one- and two-factor copula models. For example, the log-

likelihood of the FC-1f-Group N model increases with more than 700 points from 66,030 to

66,766 by including only one exogenous variable to the specification of the factor loadings.

The effect seems somewhat stronger for the Gaussian factor copulas than for the t-factor

copulas. Moreover, the effect declines rapidly when the factor structure enriches: in case

4We have also experienced with heterogeneous realized group correlations, where we average each pair-
wise realized correlation within an industry. The results did not improve upon including the simple realized
equi-correlation into the specification of the factor loadings.
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of the MF-Full-t model, the log-likelihood increase equals just 14 points (from 83,262 to

83,278). Finally, note that the inclusion of the realized equi-correlation negatively affects

the persistence parameter B. Hence the importance of the High-Frequency based innova-

tion increases relative to the score-based innovation. This result has also been found in

(multivariate) volatility models (Noureldin et al., 2012, see for example). The HF-based

innovation is more important than the score-based innovation based on daily returns which

is not surprising as the former contains more information.

Figure 4 shows the impact of including the realized correlation on the fit of the cor-

relations according to the FC-1f-Group-t model. The upper panel depicts the correlation

within Capital Goods company returns (blue line) and Financial company returns (red line)

without the realized correlation, the lower panel shows the same correlations, but now with

inclusion of the realized equi-correlation. The figure shows that including this variable into

the factor model produces more dynamic correlation patterns, especially in crises periods.

Hence High-Frequency based information adjust changes in dependence much faster than

information based on daily returns.

To summarize the in-sample findings, the statistical fit of multi-factor models is con-

siderably higher than the fit of one-factor models. In addition, the multi-factor models

outperform recent benchmarks as the cDCC and (block) DECO models. Including realized

equi-correlation has a positive effect on the fit, although this effect declines when the factor

structure of the copula enriches.

4.4 Multivariate Density Forecasts

A natural way to assess the out-of-sample (OOS) forecasting performance of our various

factor copula models is to consider multivariate density forecasts, as we have closed-form

copula densities. We follow Salvatierra and Patton (2015) as we do not only compute

density forecasts over the entire support, but also on the left joint tail, using the approach

of Diks et al. (2014). Using the log scoring rule (see Mitchell and Hall (2005), Amisano and

Giacomini (2007), the multivariate one-step ahead density forecasts boils down to the OOS
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copula log-likelihood. Note that the marginal distributions drop out from the multivariate

density forecasts as all considered (factor-) copulas and benchmarks has similar marginal

specifications.

Using a moving-window with an in-sample period of 1000 observations (which corre-

sponds roughly to four calender years), leaves P = 2521 observations for the out-of-sample

period, starting at 28 December 2004. Hence the OOS period includes the Great Financial

Crisis. We re-estimate each model after roughly two calender months (i.e. 50 observations).

Define the difference in the log score between two copula density forecasts M1 and M2

as

dls,t = Sls,t(ut,M1)− Sls,t(ut,M2) (29)

for t = 1001, 1002, . . . , T − 1 with Sls,t(ut,Mj) (j = 1, 2) the log score at time t of the

density forecast corresponding to model Mj,

Sls,t(ut,Mj) = log ct(ut|Rt,Ft−1,Mj) (30)

where ct(·) is the Gaussian or t-copula density. The null- and alternative hypotheses of

equal predictive ability are now given by

H0 : E[dls] = 0 (31)

HA : E[dls] 6= 0 (32)

for all P OOS forecasts. This hypothesis can be tested by means of a Diebold and Mariano

(1995) (DM) test statistic

DMls =
d̄√
σ̂2/P

(33)

with d̄ the out-of-sample average of the log score differences and σ̂2 a HAC-consistent vari-

ance estimator of the true variance σ2 of dls. This test-statistic is asymptotically N(0,1)

distributed under the assumptions of the framework of Giacomini and White (2006). A sig-

nificantly positive value of DMls means that model M1 has superior forecast performance
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over model M2.

Diks et al. (2014) propose to use the conditional likelihood (cl) score function to compare

density forecasts instead of the log score, which is in our case given by

Scl,t(ut,Mj) = [log ct(ut|Rt,Ft−1,Mj)− logCt(q)] I[ut < q] (34)

where q is a N × 1 vector and Ct(·) the conditional Copula function. Hence (34) is the

log-likelihood of model Mj conditional on the fact that ut < q. For any q between 0 and 1,

this boils down to the joint lower region
∏N

i=1[0, q]. Obviously, when q = 1 we are back to

the log score. The above test-framework can now be used again, where H0 and HA change

into E[dcl] = 0 vs. E[dcl] 6= 0 and

dcl,t = Scl,t(ut,M1)− Scl,t(ut,M2). (35)

We consider q = [0.01, 0.05, 0.10, 0.25] such that we compare the copula density forecasts in

the joint lower 1, 5, 10 and 25% tail.

Since we deal with a lot of models due to various factor structures and hence many

different density forecasts, we also consider the Model Confidence Set (MCS) of Hansen

et al. (2011) with a significance level op 5%, applied to the (minus) log score values and

conditional likelihoods, to correct for the interdependence between all models.

[insert Table 7]

Table 7 shows the results of comparing copula density forecasts over the whole region

(Panel A) and over the joint lower tails (Panels B.1-B.4), based on the factor copula’s and

the benchmarks. We show the mean of the log score (conditional likelihood) as well as the

pair-wise DM test statistics of the Mf-Full-t model against all other models. Finally, we

show the p-values of the Model-Confidence-Set approach. The table shows three interesting

results. First, Panel A shows that the Mf-Full-t model has superior predictive ability of the

whole support of the copula density compared to all one- and two-factor copulas and the
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benchmarks, as indicated by both the the pairwise DM test-statistics and the MCS results.

Hence allowing for different industry-factors and an additional factor with industry-specific

loadings leads to superior density forecasts of the copula density. Second, when considering

the 5, 10 and 25% joint left tail of the copula density, again the Multi-factor t-copula model

significantly outperforms our competitors. In case of the lower 1% joint tail, this model

plays at par with the cDCC model. The superiority of the multi-factor copula models in

density forecasts is an important result, as the left joint tail is of particular interest with

respect to risk-management purposes. Third, similar to the in-sample results, the most gain

is obtained by allowing for industry factors. For example, adding one factor with time-

varying loadings to the 1f-Group-t model increases the average log-score by 1.4 points (from

20.96 to 22.31), however allowing for different industry factor loadings implies an additional

increase in 2.4 points as the average log-score of the Mf-t model equals 24.76.

[insert Table 8]

Table 8 confirms our in-sample results on including the realized correlation into the

factor loading specification. The table shows pair-wise DM test statistics on equal predictive

ability on the whole support and the lower 1,5, 10 and 25% joint lower tail of the copula

density of each type of factor copula, with and without including the realized correlation.

For the most one-factor models, the difference in the log score or conditional likelihood

is statistically significant. Hence including the realized correlation improves the density

forecasts. This result confirms Salvatierra and Patton (2015), who find a similar result in

bivariate copula’s. Notably, the impact is higher in the class of Gaussian factor copulas

than t-factor copulas. When the factor structure enriches, this effect becomes insignificant

or even becomes negatively significant, hence including the realized equi-correlation worsens

the predictive ability. Only in case of the lower joint 1% tail, the effect seems positive for all

considered factor copulas, but it is not statistically significant for the two- and multi-t-factor

copulas.

[insert Table 9]

26



Finally, Table 9 shows the MCS results applied to the set all of factor copula models,

hence with and without including the realized correlation, and in including the benchmark

models. We present only the models that stay within the confidence set plus the associated

p-value. We find again that the Mf-Full-t copula model is superior in the full support, as well

as in the 5, 10 and 25% joint lower tail. Further, it predicts at-par with the cDCC model in

the 1% lower tail. Moreover, including realized measures into the loading specification has

some positive influence as the MF-Full-t (RM) model also belongs to the confidence set in

case of the 1 and 5% joint lower tail.

In sum, we conclude that the one-step ahead copula density forecast of the whole support

as well as the left 5, 10 and 25% joint lower tail of multi-(t)-factor models are superior

against one-factor models and the DCC/DECO class of models. Including the realized

equi-correlation improves the accuracy of the density forecasts of one- and two-factor copula

models, but the effect vanishes for multi-factor t-copula models.

5 Conclusions

We have introduced various factor structures within the class of closed-form factor copula

models for high dimensions, building on recent work of Oh and Patton (2017b) and Creal

and Tsay (2015). The factor structures are based on group-specific characteristics. We in-

troduce new score-driven dynamics for the time-varying factor loadings. The resulting factor

copula specification is computationally tractable and in closed form such that parameters

can straightforwardly be estimated by Maximum Likelihood. In addition, an important

feature of our model is that it easily allows for inclusion of covariates into the model, while

avoiding any positive definite restrictions.

We model the dependency across 100 equity returns listed at the S&P 500 index over

the period 2001-2014 and show that the multi-factor copula model based on industry char-

acteristics has a better fit than one-factor models and benchmarks such as the cDCC and

(Block-)DECO models. Out of sample, one-step ahead density forecasts are superior to or
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competes with our benchmarks when considering the whole support, as well as the 1, 5, 10 or

25% joint lower tail of the copula density. Finally, the inclusion of realized equi-correlation

into the factor copula specification improves density forecasts, although the effect diminishes

when the factor specification enriches.
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Table 1: Various factor structures and their properties
This table summarizes the various factor structures that are proposed given that there are N assets allocated
to G different groups. We show the number of factors, the number of different scaled factor loadings, the
dimension of the scaled factor loading matrix and the existence of an equi factor, group-specific factor
and/or group-specific loadings.

Name # factors # λ′s eq-factor gr-factor gr-loading dim L̃
>
t

FC-1f-Equi 1 1 yes no no N × 1
FC-1f-Group 1 G yes no yes N × 1
FC-2f-Equi-Group 2 G+1 yes no yes N × 2
FC-Mf-Equi-Group G+1 G+1 yes yes no N × (G+ 1)
FC-Mf-Full G+2 2G+1 yes yes yes N × (G+ 2)
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Table 2: Parameter estimates of Multi-Factor-Copula DGP
This table provides Monte Carlo results of parameter estimates from simulated multi-factor Gaussian and
t-copula processes, as given in (23)-(26). B(N) and B(t) denote the value of B in case of the Guassian (N)
and t-factor copulas respectively. The table reports the mean and standard deviation in parentheses based
on 1000 replications.

Coef. True FC-N FC-t FC-N FC-t
T = 500 T = 1000

Panel A: FC-Mf-Equi-Group model
ωeq 0.010 0.012 (0.005) 0.011 (0.003) 0.011 (0.003) 0.011 (0.002)
ω1 -0.050 -0.058 (0.014) -0.057 (0.011) -0.054 (0.009) -0.055 (0.009)
ω2 -0.043 -0.051 (0.012) -0.049 (0.010) -0.047 (0.008) -0.047 (0.007)
ω3 -0.037 -0.043 (0.010) -0.042 (0.009) -0.039 (0.007) -0.040 (0.006)
ω4 -0.030 -0.035 (0.009) -0.034 (0.007) -0.032 (0.006) -0.033 (0.005)
ω5 -0.023 -0.027 (0.007) -0.027 (0.006) -0.025 (0.005) -0.026 (0.004)
ω6 -0.017 -0.019 (0.006) -0.019 (0.005) -0.018 (0.004) -0.018 (0.003)
ω7 -0.010 -0.012 (0.005) -0.011 (0.003) -0.011 (0.003) -0.011 (0.003)
ω8 -0.003 -0.004 (0.005) -0.004 (0.003) -0.004 (0.003) -0.004 (0.002)
ω9 0.003 0.004 (0.005) 0.004 (0.003) 0.004 (0.003) 0.004 (0.002)
ω10 0.010 0.012 (0.005) 0.011 (0.003) 0.011 (0.003) 0.011 (0.002)
Aeq 0.010 0.010 (0.001) 0.010 (0.002) 0.010 (0.001) 0.010 (0.001)
Agr.f 0.020 0.019 (0.004) 0.018 (0.004) 0.019 (0.003) 0.019 (0.003)
B(N) 0.920 0.907 (0.020) 0.915 (0.013)
B(t) 0.970 0.966 (0.007) 0.967 (0.005)
νC 30 30.37 (2.33) 30.27 (1.50)

Panel B: FC-Mf-Full model
ωeq 0.010 0.010 (0.009) 0.010 (0.003) 0.010 (0.005) 0.010 (0.002)
ω1 -0.050 -0.057 (0.016) -0.053 (0.011) -0.053 (0.009) -0.053 (0.011)
ω2 -0.043 -0.049 (0.014) -0.046 (0.009) -0.046 (0.008) -0.046 (0.008)
ω3 -0.037 -0.042 (0.016) -0.039 (0.006) -0.039 (0.007) -0.038 (0.005)
ω4 -0.030 -0.034 (0.013) -0.031 (0.005) -0.032 (0.006) -0.031 (0.004)
ω5 -0.023 -0.026 (0.008) -0.025 (0.004) -0.025 (0.005) -0.024 (0.003)
ω6 -0.017 -0.019 (0.008) -0.017 (0.003) -0.018 (0.004) -0.017 (0.002)
ω7 -0.010 -0.011 (0.005) -0.010 (0.002) -0.010 (0.003) -0.010 (0.001)
ω8 -0.003 -0.004 (0.004) -0.003 (0.002) -0.004 (0.003) -0.004 (0.001)
ω9 0.003 0.004 (0.004) 0.004 (0.002) 0.004 (0.003) 0.003 (0.001)
ω10 0.010 0.011 (0.005) 0.010 (0.002) 0.010 (0.003) 0.010 (0.002)
ωgr.l 0.010 0.011 (0.009) 0.010 (0.002) 0.010 (0.004) 0.010 (0.001)
Aeq 0.020 0.021 (0.005) 0.019 (0.005) 0.020 (0.003) 0.020 (0.003)
Agr.f 0.015 0.014 (0.005) 0.013 (0.003) 0.014 (0.003) 0.014 (0.002)
Agr.l 0.010 0.011 (0.008) 0.010 (0.002) 0.010 (0.003) 0.010 (0.001)
B(N) 0.920 0.909 (0.029) 0.915 (0.014)
B(t) 0.980 0.979 (0.003) 0.980 (0.002)
νC 30 30.42 (2.32) 30.26 (1.61)
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Table 4: Marginal distribution parameter estimates
This table reports summaries of the maximum likelihood parameter estimates of the HEAVY GAS tF models
of (27) on 100 different daily time series of equity returns and realized variances. The columns present the
mean and quantiles from the cross-sectional distribution of the parameters listed in the rows. Data are
observed over the period January 2, 2001 until December 31, 2014 (T = 3521 trading days).

Mean 5% 25% Med 75% 95%
φ0 0.029 -0.031 0.012 0.027 0.046 0.092
φ1 -0.009 -0.053 -0.026 -0.009 0.009 0.027
φ2 -0.013 -0.048 -0.029 -0.011 0.000 0.019
ω 0.055 0.027 0.034 0.044 0.068 0.126
α 0.831 0.621 0.746 0.826 0.910 1.016
β 0.982 0.969 0.978 0.982 0.989 0.996
ν0 8.47 4.84 6.32 8.17 9.95 13.28
ν1 22.87 16.87 20.35 22.30 25.00 30.71
ν2 14.68 10.67 12.92 14.86 16.39 19.07

] of rejections
KS test for Student’s t dist of std. residuals 10
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Table 5: Factor Copula parameter estimates and benchmarks
This table reports maximum likelihood parameter estimates of various factor copula models, the (Block)
DECO model of Engle and Kelly (2012) and the cDCC model of Engle (2002), applied to daily equity
returns of 100 assets listed at the S&P 500 index. We consider five different factor copula models, see Table
1 for the definition of their abbreviations. Panel A.1 denote the factor models with a Gaussian copula
density, Panel A.2 list the parameter estimates corresponding with the t-factor copula. Further, Panel B
denotes the estimates of our benchmark models. In case of the cDCC model, the table shows parameters
estimates obtained by the Composite Likelihood (CL) method. Standard errors are provided in parenthesis
and constructed from the numerical second derivatives of the log-likelihood function. We report the copula
log-likelihood for all models. The sample is January 2, 2001 until December 31, 2014 (3521 observations).

Model ωeq Aeq Aind Agr B νC LogL

Panel A.1: Gaussian factor copula’s
FC-1f-Equi -0.036 0.007 0.886 63,888

(0.009) (0.001) (0.026)
FC-1f-Group 0.011 0.979 66,030

(0.001) (0.005)
FC-2f-Equi-Group -0.021 0.008 0.025 0.942 70,979

(0.007) (0.001) (0.002) (0.016)
FC-Mf-Equi-Group -0.019 0.008 0.030 0.928 80,121

(0.005) (0.001) (0.003) (0.014)
FC-Mf-Full -0.004 0.025 0.015 0.025 0.985 80,426

(0.005) (0.002) (0.002) (0.002) (0.003)

Panel A.2: t-factor copula’s
FC-1f-Equi -0.020 0.020 0.934 38.49 67,256

(0.005) (0.002) (0.013) (1.65)
FC-1f-Group 0.007 0.988 35.63 69,604

(0.001) (0.003) (1.12)
FC-2f-Equi-Group -0.012 0.019 0.032 0.955 41.98 72,796

(0.007) (0.002) (0.004) (0.019) (1.74)
FC-Mf-Equi-Group -0.006 0.020 0.026 0.973 48.02 82,445

(0.003) (0.002) (0.003) (0.008) (0.43)
FC-Mf-Full 0.000 0.062 0.013 0.018 0.992 46.47 83,262

(0.002) (0.009) (0.001) (0.002) (0.001) (1.61)

Panel B: Benchmarks
cDCC(CL) 0.019 0.964 75,604

(0.001) (0.001)
DECO N 0.067 0.903 63,374

(0.002) (0.004)
DECO t 0.065 0.908 33.66 67,049

(0.004) (0.006) (0.88)
Block-DECO 0.046 0.932 80,886

(0.000) (0.001)
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Table 6: Inserting the realized equi-correlation into Factor Copulas
This table reports maximum likelihood parameter estimates of various factor copula models applied to daily
equity returns of 100 assets and their realized equi-correlations. We consider five different factor copula
models, see Table 1 for the definition of their abbreviations. Panel A.1 denote the factor models with a
Gaussian copula density, Panel A.2 list the parameter estimates corresponding with the t-factor copula.
Standard errors are provided in parenthesis and constructed from the numerical second derivatives of the
log-likelihood function. We report the copula log-likelihood for all models. The sample is January 2, 2001
until December 31, 2014 (3521 observations).

Model ωeq Aeq Aind Agr γRC B νC LogL

Panel A.1: Gaussian factor copula’s
FC-1f-Equi 0.113 0.006 0.261 0.730 64,373

(0.016) (0.001) (0.032) (0.035)
FC-1f-Group 0.013 0.155 0.862 66,766

(0.001) (0.009) (0.011)
FC-2f-Equi-Group 0.016 0.008 0.016 0.015 0.996 71,513

(0.006) (0.001) (0.001) (0.008) (0.001)
FC-Mf-Equi-Group 0.108 0.006 0.042 0.213 0.808 80,455

(0.015) (0.001) (0.003) (0.026) (0.022)
FC-Mf-Full 0.138 0.011 0.030 0.052 0.313 0.878 80,561

(0.016) (0.001) (0.002) (0.005) (0.040) (0.021)

Panel A.2: t-factor copula’s
FC-1f-Equi 0.116 0.014 0.249 0.761 40.57 67,398

(0.013) (0.002) (0.025) (0.023) (1.42)
FC-1f-Group 0.010 0.080 0.930 38.54 69,926

(0.001) (0.020) (0.017) (0.74)
FC-2f-Equi-Group 0.074 0.015 0.045 0.157 0.843 44.24 72,908

(0.011) (0.002) (0.005) (0.022) (0.024) (1.97)
FC-Mf-Equi-Group 0.065 0.015 0.040 0.123 0.894 50.66 82,500

(0.016) (0.002) (0.003) (0.028) (0.020) (2.30)
FC-Mf-Full 0.037 0.060 0.013 0.018 0.046 0.992 46.79 83,278

(0.016) (0.008) (0.001) (0.002) (0.022) (0.002) (1.68)
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Table 9: Model Confidence Set results on copula density forecasts of all models

This table reports test results on equal predictive accuracy of one-step ahead copula density forecasts by
means of the Model Confidence Set (MCS) procedure of Hansen et al. (2011). The copula density forecast
are obtained from 24 different models, applied to daily equity returns of 100 assets listed at the S&P 500
index. We have five different types of Factor Copula models: two types of one-factor copulas (one equi-factor
or one factor with group-specific loadings), one two-factor model (an equi-factor plus a factor with group-
specific loadings) and two types of multi-factor copula models (the Mf model that contains one equi-factor
and G group specific factors and the Mf-Full model that adds another factor with group-specific loadings to
the Mf model). Each type of model is further discriminated across distribution (Gaussian vs. a Student’s t)
and inclusion of the realized equi-correlation into the factor copula model specification (RM). This results
in 20 different factor copulas. In addition, we have the cDCC model of Engle (2002) and the (Block) DECO
model of Engle and Kelly (2012) as benchmarks. Panel A denotes the accuracy of the full support of the
density, whereas Panel B.1 - Panel B.4 list results of the joint lower 1,5,10 and 25% tail of the copula density.
The table reports the models that stay within the MCS, as well as the associated p-value. The out-of-sample
period goes from January 2005 until December 2014 and contains 2519 observations.

Models in MCS MCS p-value

Panel A: full support
Mf-Full-t (1,00)

Panel B.1: 1% joint lower tail
Mf-t (0.12)
Mf-t (RM) (0.35)
Mf-Full-t (0.57)
Mf-Full-t(RM) (0.62)
cDCC (1.00)

Panel B.2: 5% joint lower tail
Mf-Full-t (RM) (0.39)
Mf-Full-t (1.00)

Panel B.3: 10% joint lower tail
Mf-Full-t (1.00)

Panel B.4: 25% joint lower tail
Mf-Full-t (1.00)
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Figure 1: Realized equi-correlations
This figure shows the daily averaged pairwise realized correlations between 100 stocks listed at the S&P
500 index. Pairwise realized correlations are backed out from the 5-minute realized covariance and realized
variance respectively. The sample spans the period from January 2, 2001 until December 31, 2014 (T = 3521
days).
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Figure 2: Factor loadings of the Multi-factor-Full t-copula
This figure shows within dependencies through time of stock returns of three types of industries: Financials,
Capital Goods and Health companies, according to the Multi-factor-Full t copula model. This model consists
of one equi factor (upper panel), one factor with industry-specific loadings (middle panel) and industry-
specific factors (lower panel). The sample spans the period from January 2, 2001 until December 31, 2014
(T = 3521 days).
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Figure 3: Within group dependencies
This figure shows the within dependence between stock returns of 19 Financial companies (red line) and
11 Capital Goods companies (blue line) through time, according to the Multi-Factor-Full t-copula model
(upper panel) and the Block-DECO model (lower panel). The sample spans the period from January 2,
2001 until December 31, 2014 (T = 3521 days).
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Figure 4: Within group correlations and the effect of realized equi-correlations
This figure shows the within dependence between stock returns of 19 Financial companies (red line) and 11
Capital Goods companies (blue line) through time, according to the factor copula model with one factor with
group-specific loadings (upper panel) and the same model with including the realized equi-correlation into
the model specification (lower panel). The sample spans the period from January 2, 2001 until December
31, 2014 (T = 3521 days).
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