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possibly driven by exogenous variables. The factor copula model retains computational
tractable as the copula density is available in closed form, which proves beneficial for
parameter estimation. We apply our new approach to daily equity returns, realized
variances and realized equi-correlations of 100 stocks of the S&P 500 index over the
period 2001 to 2014. One-step ahead copula-density forecasts of the whole support
and in the joint lower tail based on multi-factor copula models significantly improve
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ized measures into the factor copula specification statistically improves the density
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1 Introduction

Copulas are an important tool in financial econometrics for risk management and asset
allocation decisions of financial institutions as they are able to measure the dependence
between two or more random variables. They offer a great flexibility in building multivariate
stochastic models (see for example Patton (2009); Cherubini et al. (2011); Fan and Patton
(2014) and McNeil et al. (2015) for an overview). While initially the copula parameters
where assumed to be fixed, the literature has developed time-varying copulas (Patton, 2006;
Hafner and Manner, 2012), such that the dependencies may change over time. Patton
et al. (2012) reviews various copula based approaches that are suitable for modeling and
forecasting risk when the dimension of the assets is relatively small.

The recently developed (dynamic) factor copula models (Oh and Patton, 2017a,b; Creal
and Tsay, 2015) provide a general approach to model the time-varying dependence among
(financial) variables for large dimensions. Oh and Patton (2017b) apply their copula to
model time-varying systemic risk of 100 assets, whereas Creal and Tsay (2015) model the
dynamic correlations between 200 stock returns. The crucial advantage of factor copulas is
their ability to avoid the ‘curse of dimensionality’: the rapidly growing number of model
parameters to be estimated when the dimension increases. This leads in general to huge
computational costs. Moreover, parameter estimation could be infeasible. The copula ap-
proach disentangles the multivariate distribution into marginals and a dependence structure
that can be estimated separately and the factor copula structure models the dependency
across all assets by a couple of latent variables, with possibly time-varying factor loadings.
In this way the number of estimated parameters stays reasonably small while (the inverse
of) large covariance matrices cain be computed straightforwardly.

Although the dynamic factor copulas of Oh and Patton (2017b) and Creal and Tsay
(2015) (henceforth OP2017b and CT2015) are a big step forward towards modeling high-
dimensional dependence, they are limited with respect to their factor structure: they both

consider just one factor. This seems restrictive when modeling the dependencies between



a large number of financial asset returns. From an asset-pricing point of view, we nowa-
days use models with multiple factors, such as three- or five-factor model of Fama and
French (1993, 2016), and (affine) term structure models. Adding more factors is possible in
both aforementioned studies, but this will considerably increase the computational burden.
OP2017b propose a skewed-t distribution for the latent factor such that the copula density
is not available in closed form, hence numerical methods are required to estimate the pa-
rameters. This requires considerable computational effort, and will even become worse if
one consider more factors. With respect to the second study, CT2015 proposes a stochastic
copula (see also Hafner and Manner, 2012) where the factor loadings evolve by a stochastic
transition equation. Hence massive Bayesian simulation techniques are used as again the
implied copula density is unknown in closed form. Introducing more factors will therefore
cost additional computing power.

This paper extends the factor copulas of OP2017b and CT2015 with respect to the factor
structure. More specifically, this structure ranges from a simple one-factor model to copula
models with multi group-specific factors and/or time-varying group-specific factor loadings.
In addition, we propose score-driven dynamics for these factor loadings, by adopting the
Generalized Autoregressive Score (GAS) framework of Creal et al. (2013). This recent
general framework provides intuitive parameter updates via one-step improvements of the
local likelihood. Moreover, the tractability is achieved by ensuring that the copula density
is available in closed form. Hence, parameter estimation is possible quite straightforwardly
by means of Maximum Likelihood. This contrasts with the stochastic copula of CT2015
and the skew-factor copula of OP2017b.

A further extension of our multi-factor copulas is the easy allowance to incorporate ex-
ogenous variables into the specification of the factor loadings. We exploit this advantage by
evaluating the possible influence of ‘realized measures” in the factor copula specification.
These high-frequency based measures of the variance and correlations lead in general to
an improvement in volatility modeling, estimation and prediction (Andersen et al., 2003;

Hansen and Lunde, 2011). Salvatierra and Patton (2015) show the added value of introduc-



ing realized measures into a bivariate copula. We extend this approach by considering an
(group) equi-based realized correlation that feeds the dynamics of the factor loadings. An
important implication of our proposed dynamics is that we do not require to pre-construct
a large realized covariance matrix which should be positive definite, which might become
troublesome if the number of assets gets large. Instead, we retain the added value of realized
volatilities in the specification of the marginal specification while using the equi-correlation
into the factor copula specification.!. Hence this paper can also be seen as an extension of
multivariate realized volatility models for large dimensions.

We apply our factor structures with new score-driven dynamics on a panel of daily re-
turns, realized variances and realized equi-correlations of 100 stocks listed at the S&P 500
index over the period 2001-2014 and benchmark our models against the cDCC model of En-
gle (2002); Aielli (2013) and the (Block) DECO model of Engle and Kelly (2012). We find
in-sample that our multi-factor t-copula models produce a better fit than one-factor models
and the benchmarks. Allowing for industry-specific factors increases the fit considerably
compared to one- or two-factor copula models with possible industry-specific loadings. Fur-
ther, including the realized equi-correlation has a positive effect on the fit of factor copula
models, although this effect declines when the model specification (i.e. the factor struc-
ture) enriches. Out-of-sample we compare one-step ahead copula density forecasts using the
density forecast accuracy test for copulas proposed by Diks et al. (2014), and the Model
Confidence Set approach of Hansen et al. (2011). We compare the dynamic copula models
both in terms of their fit across the entire support, but also on the left tail of the distri-
bution. The results suggest that our multi-factor copula is superior against the one-factor
copula models, cDCC and (Block) DECO models in case of the whole support, and the joint
5%, 10% and 25% lower tails. At the 1% lower tail, the predictive accuracy is at par with
the ¢cDCC model. Finally, we show that including realized equi-correlations into the factor
copula specification improves one-step ahead density forecasts. This confirms the result of

Salvatierra and Patton (2015) in their setting of bivariate copula’s. However, this effect

f the number of assets exceed the number of intra-day observations (typically 78 5-minute returns),
then the realized covariance matrix is not positive definite by definition.



vanishes when the factor structure becomes richer.

This paper touches various strands of the literature on factor (copula) models, obser-
vation driven models and multivariate volatility models. First of all, there is an extensive
literature on factor models and the computation of large covariance matrices, see for ex-
ample Fan et al. (2008) and Fan et al. (2011). Engle et al. (1990) develop factor ARCH
models with an application in asset pricing with many assets. These models are related to
our approach, however the benefit of our factor copula approach is the flexibility in choosing
the models and distributional assumptions, both with respect to the marginals as well as to
the copula specification. Second, factor copula’s has been recently introduced by Krupskii
and Joe (2013); Oh and Patton (2017a), among others. Oh and Patton (2017b) introduce
the GAS framework of Creal et al. (2013) within factor copulas. This recently developed
framework provides a new intuitive way to update time-varying parameters within obser-
vation driven models, and has been applied in various fields with promising results in for
example credit risk modeling (Creal et al., 2014) and systemic risk modeling (Lucas et al.,
2014, 2017). Third, we refer to Creal and Tsay (2015) for references of Bayesian analysis of
(factor) copula’s. Galeano et al. (2017) apply Bayesian inference in different specifications
of the class of dynamic one-factor copula models. Examples of other studies using dynamic
copula models in high dimensions are Christoffersen et al. (2012, 2014), where the latter
study combines a skew-t copula with DCC models to study the diversification benefits of
a panel of more than 200 asset returns. This lead us finally to the relation between factor
copula’s and multivariate volatility models with possible incorporation of realized measures
(e.g. the DCC model of Engle (2002) or the Multivariate HEAVY model of Noureldin et al.
(2012)). These models suffers in general from the aforementioned curse of dimensionality
when the dimension gets large. In addition, (large) covariance/correlation matrices need to
be inverted many times during parameter estimation, which becomes computationally and
numerically problematic.

The rest of this paper is set up as follows. In Section 2, we introduce the factor cop-

ula model with various factor structures for the multivariate distribution of returns, while



allowing for possible incorporation of realized measures into the dependency specification.
We provide a simulation experiment in Section 3 to show the performance of the model
and estimation procedure. In Section 4, we apply the model to a panel of 100 daily equity
returns, realized variances and equi-correlations from the S&P 500 index. We conclude in

Section 5.

2 Observation driven dynamic factor Copulas

Let yi = (Y1, Yor, - - -, yne) | € RY denote the vector of asset returns over day ¢, t =1,...,T.
We aim to model the conditional joint distribution of y;, which we decompose into N

marginals and a conditional copula (Patton, 2006):

Yt‘}—t—l ~F; = Ct(Flt(ylt ‘ 0M)>F2t(y2t | OM), cee >FNt(Z/Nt ’ 9M)§ 90) (1)

with F;_; the information set containing all information up to and including time t —
1, C(:|0¢) the conditional copula given the copula parameter vector O¢ and Fj;(yi|0a)
denotes the marginal distribution of asset i, given the marginal parameter vector 8,,. We
will elaborate about the model and distribution choice of the marginals later on in this paper.
Note that the conditional copula C; can also be interpreted as the conditional distribution
of the probability integral transforms (PITs) of y;;. Put differently, define for i = 1,..., N
the PIT as

Ui = Fit(yu | 0M)7 (2)
then it holds that
Uy|Fi1 ~ C(6¢) (3)

The advantage of decomposing the multivariate (conditional) distribution into marginals



and a copula compared to immediately modeling the conditional joint distribution F; is
twofold: (1) when the dimension is high, multi-stage estimation reduces the number of
parameter to be estimated, and (2), modeling a univariate distribution is relatively simple,
hence the problem of modeling F; is reduced to modeling C;.

The challenging task is to model the conditional Copula C;, given the estimated PITs
from a large number of marginals. There is an extensive literature about copulas (see for
example Patton, 2009; Fan and Patton, 2014, for an overview), although literature about
copulas in large dimensions is rather scarce. This paper builds upon a recently developed
class of ‘Factor Copulas’ with time-varying factor loadings (Oh and Patton, 2017a,b; Creal
and Tsay, 2015). These models aim to reduce the dimension by making use of a factor
structure for the density C;. We build upon the factor structure of Creal and Tsay (2015)

by assuming the following specification:

Uit = P(:Eit|00), Zzl,N, (4)

-
Tit = AyZt + Oi€ir zy ~ p(z:|0¢), €ir ~ p(€r]|0c)

where A;; is a px 1 vector of scaled factor loadings, z, is a px 1 vector of common latent factors
with a zero mean vector, Var(z;) = I, and ¢;; are idiosyncratic shocks. Further, P(z;|6¢),
p(z:|0¢) and p(e;|6c) denote the marginal distribution of x;; and the distributions for the
common factors and the idiosyncratic vector respectively. We assume that there is no
correlation between the common factors and the idiosyncratic shocks. The scaled factor
loading vector S\u and oy are defined in such a way that they are positive and imply a unit

variance of x;:

L exp(Ait)
it = \/1 + exp(Ai) T exp(Ait) (5)
02 = 1 (6)

1+ exp(Ai) T exp(Ai)

Within our choice of distributions, which we will elaborate later on in this paper, the



associated correlation matrix of x; equals
~ T ~
Rt - Lt Lt + Dt (7)

=T ST LT < T
with L, = (A, Ay, -, Ayy) @ N X p matrix of scaled loadings and Dy a N x N diagonal
matrix with entries 0Z. A huge computational advantage of these factor copulas is that the

inverse and determinant of R; are known in closed form (Creal and Tsay, 2015):
1 -1 17T o I N FTN-17
R,'=D;'-D;'L, (L, +L/D;'L) LD;', [R|=L+L/D;'L{DJ (8

We only have to compute the inverse of the p x p matrix I, 4 f/tT D, 'L,. This reduces the
computational costs dramatically compared to inverting an N x N matrix at each time ¢
as p << N. The above class of copula is very flexible, depending on the number of factors,
the distributional assumptions of the common factors and ideosyncratic shocks and the
proposed time-varying dynamics for the factor loadings. The following subsections discuss

these choices in more detail.

2.1 The factor structure

The main goal of this paper is to exploit the factor structure within our general specification
of (4). We extend both OP2017b and CT2015 by considering more than one factor, as this
seems too restrictive when modeling a large number of assets. This subsection will present
different structures for z, and the associated loading matrix 1}: . In addition, we will show
the consequences for the correlation matrix by showing the upper triangular part of the
matrix R; in an simplified example of four assets, divided into two equal groups of two.
Let us start with the one equi-factor copula model, implying that z,; is a univariate
random variable with a N x 1 loading vector 13: = M\t with ¢ a N x 1 vector of ones.
This one-factor model is related to the DECO model of Engle and Kelly (2012), where each

pairwise correlation is assumed to be the same. From an asset pricing point of view, this



factor can be seen as the market factor, with a identical ‘beta’ (factor loading) for all assets.
We will denote this factor copula (FC) model as ‘FC-1{-Equi’.

A first building block to bring more flexibility in the factor loadings of the FC-1f-Equi
model is to make them group specific, see also OP2017b. The ‘beta’ could have a different
loading across region, country, industry or other characteristics that are of interest of the
researcher. In this paper, we consider a panel of stocks, which are classified into G different
industries. Hence we have now different ‘betas’ of the market factor with respect to each
industry. To provide an toy-example, suppose we have G = 2 groups and N = 4 assets,

=T
with 2 assets per group. L, is now given by

e
) 5
=", (9)
Aot
- X2t -

where the order of the loadings is arbitrarily chosem. The corresponding upper triangular

part R; is denoted as

1 A3 Midar Aoy

1 Ao Aoy
Rt: _ . (10)
1 A3,

1

Hence within a group ¢, we have a group specific correlation ;\ft, whereas the correlation
between group i and j is given by S\itS\jt. We will label this one-factor copula with group-
specific loadings as ‘FC-1f-Group’.

Apart from varying the loadings (betas) of one factor per group, we can also add a

different group factor as a second building block. In the above example of four assets and



two groups, we have a 4 x 2 matrix of (scaled) factor loadings

A; O

N A; O

=" (11)
0 Ay
0 Ay

In general, we would have G different factors, while each group (industry) factor has is own
factor loading. It can easily be seen from the example above that here the correlation differs
within a group, while the correlation between groups equals zero.

The above building blocks of industry specific loadings and group factors can easily
be combined with a equi-factor to create a multi-factor copula model. To save space, we
will only show the combination of an equi-factor with group-specific factors, although we
also consider a two-factor model with an equi-loading and group-specific loadings, denoted
as ‘FC-2f-Group-Equi’. Combining an equi-factor with group-specific factors leads in our

example to the following loading matrix:

At A O

~ Mot Ay O

LtT _ ’ 0t 1t ) 7 (12)
Aot 0 Ay
At 0 Ay

such that the implied correlation matrix is given by

L +M B N

LA A

f
I
—~
—_
w
N~—

1AL+,

The resulting correlation matrix differs from (10) in an important way: the between group



correlation contains only the parameter S\Ot, hence 5\” and 5\2,5 have much more freedom for
the within correlation, while in the group-specific loading case, an increase in A;; will also
effect the correlation between group 1 and 2. This factor copula model with multi factors
(Mf) is denoted as ‘FC-Mf-Equi-Group’.

We can even go a step further and also add another factor with industry-specific loadings

to the aforementioned specification, such that (12) changes into

Xt Ae Az O

t ~ - ~ 9 (14)
)\Ot )\Qt O >\4t
i ot Ao 0 Ay |
with corresponding dependence matrix
1 A2+ 202,402, A+ M A%+ A
R, — 1 th + 5\11&5\215 ~5\3t +~S\It5\2~t | (15)
1 Ao+ ATy + Ay
1

Hence the between group correlation is more flexible compared to (12), as they are now
also affected by 5\1,5 and S\Qt, while 5\3t and 5\41‘, only appear in the within correlation block.
Hence this model, denoted as ‘FC-Mf-Full’, contains two market factors with fixed and
time-varying betas per group (industry), and G industry factors.

To summarize this subsection, given that the assets belong to a certain group based on
some characteristic, we are able to create various factor structures to the basic one-factor
model by introducing group-specific loadings and/or group-specific factors. Table 1 lists the
resulting factor structures with their properties, such as the number of factors, number of

S =T
different \'s, and the associated dimension of L, .

[insert Table 1]
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2.2 Distributional assumptions

Given the various factor structures proposed in the previous subsection, the next step is to
specify a distribution for the common factors and the idiosyncratic term of (4). OP2017b
assume a skewed-t and a Student’s-t density for the common factor z; and the idiosyncratic
shock ¢; respectively. This implies that the copula density of x; is analytically unknown.
Hence parameter estimation is computationally involved as numerical techniques are needed
in order to evaluate the copula density. Likewise, CT2015 propose a stochastic transition
equation for the factor loading A\;. Again, the copula density is analytically unavailable
in closed form. Bayesian (numerical) techniques are required to estimate the parameters,
which is computationally costly for increasing dimensions.

We will retain the tractability of the model by choosing two particular choices for p(z:|0¢)
and p(e;|0¢) such that the implied copula density is available in closed form, at the cost of
possible skewness. Although skewed copulas exists (by means of the Generalized Hyperbolic
copula or the skewed-¢ distribution of Azzalini and Capitanio (2003)), it is not possible to
maintain the factor copula structure as given in (4) combined with a closed form copula
density. Besides, we also lose the analytic expressions for the inverse and determinant of
R; (see (7)-(8)) which is again computationally inconvenient. We therefore stick to two
elliptical copulas, the Gaussian factor copula and the ¢-factor copula.?

The conditional Gaussian factor copula reads

Uit — (I)<Iit)7 Zzl,N, (16)

Tit = A;Zt —+ 0;1€t Zy ~ N(O, Ip), € N(07 1),

with ®(-) the cumulative distribution function (cdf) of the Gaussian distribution function.
The Gaussian copula density does not contain any additional parameters beyond the pa-

rameters associated with the dynamics of the factor loadings. Although this factor copula

2We have estimated a DECO model of Engle and Kelly (2012) with the skewed-t distribution of Azzalini
and Capitanio (2003). Initial results showed that the maximized log-likelihood of the skewed-t distribution
is only marginally higher than the log-likelihood of the (nested) Student’s ¢ distribution.
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is easy to estimate (as we only have to compute the inverse x; = ®~!(u;) once), it does not
contain any tail dependence (see Embrechts et al., 2005). Therefore, our main focus lies in

the conditional Student’s t factor copula, which is given by

uy = T(xy|ve), i=1,...N, (17)

=T
Ty = \/Z (Aitzt -+ O-iteit) Zi ~ N(O, Ip), Eit ™~ N(O, ].)

(¢ ~ Inv-Gamma <V70, I%C) .

where T'(- | v¢) denotes the cdf of the univariate Student’s ¢ distribution with vo degrees
of freedom and (; denotes a Inverse-Gamma distribution. Note that our proposed factor
structures of the previous subsection easily fit into both assumed distributions without
considerably computational costs, as the copula density remains analytically tractable. This
contrast to the stochastic copulas of CT2015 and the skewed-t factor copula of OP2017b,

as adding more factors would considerably increase the computational burden.

2.3 Dynamics of factor loadings

The final step to complete our factor copula specification is to impose dynamics on the factor
loadings A;. In general, there are two approaches to model time-varying factor loadings.
The first approach is parameter driven (Hafner and Manner, 2012; Creal and Tsay, 2015,
e.g.) where \; evolves as in stochastic volatility models. This leads to so-called stochastic
copula models. The second approach is observation driven with loadings depending on past
observable variables. This paper considers the second method, avoiding a computational
burden involved on stochastic copula models as they typically require to integrate out the
random innovation term apparent in the process of the loadings. In particular, we follow
OP2017b and adapt the generalized autoregressive score framework of Creal et al. (2013),
see also Harvey (2013). The GAS framework uses the score of the conditional density
function to drive the dynamics of a time-varying parameter by adjusting it in the direction

of steepest ascent of the local log likelihood function. Blasques et al. (2015) show that score
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driven dynamics possess information theoretic optimality properties even if the model is
mis-specified. The framework is very general and has recently been applied to various areas,
such as multivariate volatility modeling (Opschoor et al., 2017), credit risk management
(Creal et al., 2014), and systemic risk management (Lucas et al., 2014).

Let us start with the simple FC-1f-Equi model. In this case, we have i;: = :\tl,, which

depends on the unscaled scalar parameter \;. The GAS dynamics for A are given by

)\t+1:w—|—A8t+B)\t (18)
dlogcy(x; | A, 0
stzst.< & t(a;’ ! C>>, (19)
t

with w, A and B scalars, s; the scaled score and S; a scaling factor. We follow OP2017b
and put all scaling factors to one for computational reasons. The score is defined as the
partial derivative of the log Gaussian or Student’s ¢ copula density with respect to ;. Put
differently, A\; will be updated in that direction such that the one-step improvement of the
local likelihood is maximized.

As indicated by Table 1, the more richer the copula structure, the more \'s we have.
Theoretically, we could impose for each A a different w, A and B. However, in order to keep
a tractable model with a reasonable amount of parameters to be estimated, we assume that
B is the same across all factors. In addition, when considering group-specific loadings, we
allow for different intercepts w, but keep A and B the same. Finally, we allow for three
different values of A in case of the FC-MF-Full copula model: one for the equi-factor, one
for the industry-specific loadings and one for all industry factors.

We further extend the GAS model of (18) by allowing for the influence of exogenous
variables, such as realized correlations. Realized measures use intra-day data to estimate a
variance or correlation, which improves modeling volatility and correlations (e.g. see Ander-
sen et al. (2003)). Salvatierra and Patton (2015) show the influence of realized correlations

by specifying bivariate GRAS copula models. Given our various factor structures, we can
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easily insert a realized correlation by extending (18) into
M1 =w+As, + BN+ Yrelog VRCORR, 4, (20)
with RCORR,,; the average of all pairwise realized correlations between all assets:

RCORR,,, = > RCORR;;,. (21)

i<j

NN —1)

The non-linear transformation of RCORR;;; serves for easy parameter interpretation of
Yre: a value of one implies that the correlation of x; exactly equals the realized equi-
correlation. Note that in case of different group factor(s) (loadings), we could also compute
a ‘heterogenous’ realized equi-correlation by taking the average of all pairwise correlations
RCORR;;+ within one particular group or industry.

We would like to emphasize the difference between the approach of this paper and a
multivariate volatility model that inserts realized covariance matrix, such as the the Multi-
variate HEAVY model of Noureldin et al. (2012). Such a model requires an N x N positive
definite matrix. As noted earlier, this may become troublesome if the number of assets
increases, hence shrinkage techniques are needed to retain a positive definite matrix (Ledoit
and Wolf, 2003). We avoid these problems in our factor copula by easily computing realized
variances first, which will be inserted in the marginals. For the correlations, we will we av-
erage out all pairwise correlations in (21). The cost is that we only deal with (heterogenous)
realized equi-correlations.

Finally, note that beyond including the realized correlation, equation (18) allows us also
to include any other possible exogenous variable X; into the model specification that might
influence the factor loadings and hence the correlations. Besides, it is important to realize
that the GAS dynamics of (18) does not require any restrictions on RCORR,,; or yrc due
to the rescaling of A\ as given in (5). This contrasts with any multivariate volatility model
that aims to connect the covariance matrix with past realized covariances or any other

exogenous variable. In that case, one should always pay attention to keep the covariance
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matrix positive definite.

2.4 Estimation

We estimate the parameters of the marginals and the factor copula by Maximum Likelihood.
The decomposition of the joint distribution into the marginals and the copula enables us
to employ a two-step estimation approach: we first estimate the marginals (separately) and
then the copula parameters conditional on the marginals. This approach follows directly

from decomposing the joint likelihood as:

L(O) = Zlog fi(y:; 0) = Z Zlog fia(Yir: Onr) (22)

i=1 t=1

T
+> log ey (Fry(yii; Onr), - -, Fxa(yni; Oar); 0¢)

t=1

with @ = {0)s,0¢}. According to Salvatierra and Patton (2015), the implied efficiency loss

is small compared to estimating the full likelihood in one step.

3 Simulation experiment

We perform a Monte Carlo study to investigate the finite sample properties of maximum
likelihood estimation of 64 for our factor copulas with different factor structures. We sim-
ulate time series of T daily returns of dimension & = 100, which corresponds with our
empirical application. T is set equal to 500 and 1000 respectively. For brevity, we only con-
sider the multi-factor class of copula models as the true data-generating processs (DGP).

The models within this class are denoted as FC-Mf-Equi-Group and FC-Mf-Full, where the

15



latter is represented by

- T
Ty = \/E <)‘itzt + Uz’t@'t) ) (23)

Sno= [esigd g
)\iqtﬂ = Wegt+ Aegsy' + B )\i?u (24)
)\g;{H = Wyt Agry ngnt’f +B Ag;{’ g=1....G (25)
Ag;lw%l = wgry + Agry Sggl +B )‘g;:lt’ g="1....G (26)

with z, ~ N(0,Ig2), €4 ~ N(0,1) and {; ~ Inv-Gamma, (”70, ”70) Hence the Factor-Copula
Multi-factor Full (FC-Mf-Full) model consists of three different types of X's which has their
own GAS dynamics: one lambda for the equi factor (A\°?), G factor loadings for the group
specific factors A"/ and G factor loadings of one additional factor. Note that )\%:{ is zero if
asset ¢ does not belong to group g. Each type of lambda has is own value of A and w., whereas
within the group specific factor, each factor has also its own intercept w, (¢ = 1,...,G).
The other considered multi-factor model is obtained by dropping equation (26). Guided
by the empirical application, we consider G = 10 groups, where each group consists of 10
assets, and put we, = wy,; = 0.01, w, is equally spaced in the interval [—0.05,0.01]. Further,
we set vo = [30, 00|, where the latter corresponds with the Gaussian factor copulas. Finally,

the values of Agq, Ay s, Agry and B vary slightly across the two distributions but are all

around 0.02 and 0.95 respectively.
[insert Table 2]

Table 2 presents the results based on 1000 replications. Panel A denotes the results of
the multi-factor model with one equi-factor and 10 group-specific factors, while Panel B
presents results of one-equi, 10 group-specific and one additional factor with group-specific
loadings (the FC-Mf-Full model). All parameters are estimated near their true values, and
the standard deviation decreases in general when the sample size T increases. In Panel A,

there is a small downward bias in the group specific intercepts w; (i = 1,2,3) when the
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sample size is 500, which is more severe for the Gaussian factor copulas than for the ¢-factor
copulas. Note that the standard errors are also higher for these intercepts compared to the
remaining intercepts. This bias shrinks when the simple size increases to 1000. Panel B
shows that also in case of the FC-Mf-Full-N model there is a downward bias for w; (i = 1,2, 3)
when the sample size is small. Again the standard errors are also relatively high. Based
on these two different DGPs, we conclude that the finite sample properties of the t-factor

copulas are slightly better than the statistical properties of the Gaussian factor copulas.

4 Empirical application

4.1 Data

The data consist of daily open-to-close returns and daily realized covariances measures for
100 U.S. equities. Table 3 provides an overview of the Tickers of each company, grouped into
10 different industries. The data spans the period January 2, 2001 until December 31, 2014
and contains T" = 3521 trading days. The Financial industry covers the most companies
(i.e. 19), followed by Consumer Services and Energy respectively. Each industry covers at

least four companies.
[insert Table 3]

We retrieve consolidated trades (transaction prices) from the Trade and Quote (TAQ)
database from 9:30 until 16:00 with a time-stamp precision of one second. After clean-
ing the high-frequency data following the guidelines of Barndorff-Nielsen et al. (2009) and
Brownlees and Gallo (2006), we construct realized variances as well as pairwise realized
covariances based on 5-minute returns. Both quantities are used to back out pairwise re-
alized correlations. Figure 1 shows RCORR,,; of (21), the average of all pairwise realized
correlations between the 100 stock returns. The figure shows that the average correlation is

quite noisy over time. Note that the average correlation is relatively high during the global
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financial crisis (around 2008/2009), but even higher in 2011. This could represent the fears

of contagion of the European sovereign debt crisis to Spain and Italy.

[insert Figure 1]

4.2 Marginals

Using the full sample of 3521 trading days, we first estimate the parameters of the marginal
distributions. We model these distributions using univariate volatility models, using daily
returns and daily realized variances. Typically, both quantities are fat-tailed. Opschoor
et al. (2017) argue that this should be taken into account when proposing a statistical model
for the (co)variance of returns as large returns and realized (co)variances may potentially
disrupt the time series of (co)variances. They therefore adopt the GAS framework of Creal
et al. (2013), that uses the score of the conditional density function to drive the dynamics
of the latent covariance matrix. More specifically, they propose a fat-tailed Student’s-¢ for
the returns and a matrix-F distribution the realized covariance matrix respectively, where
both densities depends on a latent covariance matrix. The score is then defined as the sum
of the partial derivative of both individual observation densities with respect to the time-
varying covariance matrix. Applying this to the univariate setting, we assume a Student’s ¢
distribution for the individual returns y; ; with vy; degrees of freedom, and an F-distribution
with 14; and vy; degrees of freedom for the realized variance RV;;. The univariate HEAVY

GAS tF model is then given by:

Yig ~ t(yi,t 1,y hi,ta Vm') RVi,t ~ F(Rw,t ‘ hi,ta V14, sz')
Q
Yie = Qoit Z Gq,ilit—q + \/h_z‘tm,t
q=1
hity1 = wi+ ;Sip+ Bihiy (27)
Sit = SitVig

0log t(yi|Po, his, Vi) n Olog F(RV; 4, | iy, 114, v2i)
oh, Ol ’

Vie = Vyit+ Veyi =
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with h;, the conditional variance of asset 7 at time ¢, and V;; the score at time ¢. We follow
Opschoor et al. (2017) by scaling the score s;; with 2h7,. The interpretation of the scaled
score is intuitive here: large values of y;;, and RV;; will be downweighted since the possible
outlier (jump) might just appear as an result of the assumed fat-tailedness of the returns of
realized variances.

We estimate the univariate HEAVY GAS tF model of (27) on the 100 time series. For the
conditional mean model, we find some significance of the first two AR lags. Table 4 shows
the mean and several quantiles of the estimated parameters in the cross-section. The table
shows the fat-tailed nature of both the stock returns and realized variances, as the mean of
vy and v, are equal to 8.47 and 14.68 respectively. We follow CT2015 and evaluate the fit of
the marginal distributions by transforming the PIT 4 into Gaussian variables 7; = ®L.
Then we test for each series 4, (i = 1,...,100) on normality by the Kolmogorov-Smirnov
test. Across the 100 firms, only in case of 11 models the null-hypothesis of normality is
rejected. Although the size exceeds the nominal test level of 5%, we restrict ourself to the

current marginal distribution for the sake of parsimony and comparability.

[insert Table 4]

4.3 Factor copula results

After estimating the parameters of the marginal distributions, we estimate the parameters
of the factor copula models with various factor structures on the full sample of 3521 ob-
servations. Beyond differentiating across the factor structure, we also pay attention to the
distribution (Gaussian vs. Student’s ¢) and the inclusion of the realized equi-correlation.
The groups are formed according to the specific industry of a particular stock (see Table 3).

We benchmark our factor copula models with new factor structures against the cDCC

model (Engle, 2002) (with the correction of Aielli (2013)) and the (Block-) DECO model of
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Engle and Kelly (2012). These models are governed by

Qi1 = Q+AQIXtXtTQ:+BQt

RgDCC — :71Qt :71
1
RDECO — TRCDCC - N 28
t N(N . 1) (L t L ) ( )

with Q; a diagonal matrix with entries ¢;;, A and B scalars and 2 a N x N matrix.
In addition, we consider the Block-DECO model where each block represents a specific
industry and could have a potentially different correlation. See Engle and Kelly (2012) for
more details about this model specification.

In order to compare our models with the benchmarks, we put them in a copula frame-
work. That is, z; = P~ (uy) with uy estimated in a first step by the marginals, and P~*
the inverse pdf of the copula at hand. For the DECO models, we assume both a Gaussian
and Student’s ¢t copula for the dependencies. We estimate the cDCC model by means of
the Composite Likelihood method of Engle et al. (2008). Further, the Block DECO model

parameters can only be estimated by assuming a Gaussian distribution.?
[insert Table 5]

Table 5 shows the parameter estimates and maximized log-likelihoods from Factor Cop-
ula GAS (FC GAS) models with one factor (with homogenous or group-specific loadings),
two factors (one equi factor with fixed and one factor with group-specific loadings), 11 fac-
tors (one equi factor and 10 group factors, denoted as Mf-Equi-Group) and 10 + 2 factors
(the Mf-Equi-Group model plus a factor with group-specific loadings). To save space, we do
not report the intercepts w, that varies per group of each factor copula that contains group
factors or group-specific loadings. Panel A.1 and A.2 lists the results from the Gaussian
en t-factor copulas respectively, Panel B shows parameter estimates from the benchmark

models.

3In this model, the multivariate Gaussian density is divided into a sum of overlapping bivariate Gaussian
densities, see Engle and Kelly (2012). This can not be done in case of a Student’s ¢ distribution with v
degrees of freedom.
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The main result from the table is that multi-factor models provide a much better fit
than the one-factor copula models. For example, the log-likelihood difference between the
Mf-Full-t model and the 1f-Equi-t model exceeds the striking amount of 15,000 points. The
most gain with respect to the factor structure is obtained by including industry factors, as
the log likelihood increases almost 10,000 points in both the Gaussian and ¢-factor copula’s.
The Gaussian multi-factor models also perform relatively better than the DECO and ¢cDCC
model, while the multi-factor ¢-copula models outperform the Block DECO model as well.

Table 5 shows two additional interesting results beyond our main result. First, the
fit of t-factor copulas is considerably better than the Gaussian factor copula models with
differences around 2000 points in the maximized log-likelihood. Second, there is a strong
persistence in the time-varying factor loadings, as the value of B is around 0.97 for most of

the estimated (¢-) factor copula models. These two findings confirm the empirical analysis

of OP2017b on the log-differences of U.S. CDS spreads.

[insert Figure 2]

Figure 2 shows the different factor loadings corresponding with the FC-Mf-Full-t model,
which has the richest factor structure and the best statistical fit. The top sub-figure shows
the equi-factor loading, hence the systemtic part that hits the dependence structure between
all 100 assets. The equi factor loading increases in particular during crises periods, such
as 2003, 2008-2009 and in the end of 2011. The middle sub-figure shows the differential
effects of three industries with respect to the equi factor loading: the Capital Goods (blue
line), Financials (red line) and the Health industry (yellow line). Notably, the loadings
of the Financials with respect to the latent factor exceed the loadings of the Health and
Capital Goods industries during the period 2001-2009 and after 2013. Huge upward spikes
are visible as well for the Financials during the heat of the global financial crisis (2007-
2009). The lower sub-figure depicts the evaluation of the industry-specific factor loadings.
The main take-away is that the three depicted industry factors behave quite differently: the

Capital Goods factor loadings are considerably lower than the Health and Financial factor
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loadings, while the last two industries seems negatively related to each-other. Hence allowing
for different industry factors with their own GAS loadings shows distinctive patterns, which

has a enormous effect on the statistical fit of the model, as shown before.
[insert Figure 3]

Figure 3 plots the implied within correlation of Financials and Capital Goods industry
factor loadings according to the Mf-Full-t model and a benchmark (i.e. the Block-DECO
model). The sub-figures shows a similar pattern of the factor loadings, although the correla-
tion within Financials is around 0.8 or higher in 2003, 2008 and 2011 (crisis periods) for the
multi-factor copula, while according to the Block-DECO model these within correlations are
around 0.7. In addition, the differences between the within correlations of both industries
are much smaller in the period January 2007-June 2008 implied by the Multi-factor ¢-copula
model than implied by the benchmark model. We would like to emphasize that these find-
ings does not imply that one pattern is automatically better, as we do not know the true
correlation pattern. We therefore conduct an out-of-sample density forecast exercise in the
next sub-section to discriminate between the forecasting power of factor copulas and the
c¢DCC/DECO models.

The effect of including realized equi-correlation into the model specification of the factor
loadings is listed in Table 6, where parameter estimates are shown of the Gaussian and ¢-
factor copula models including the high-frequency based correlation (see (20)).* Comparing
this table with Table 5 clearly suggests that including the realized correlation improves the
fit of the model, especially for one- and two-factor copula models. For example, the log-
likelihood of the FC-1f-Group N model increases with more than 700 points from 66,030 to
66,766 by including only one exogenous variable to the specification of the factor loadings.
The effect seems somewhat stronger for the Gaussian factor copulas than for the t-factor

copulas. Moreover, the effect declines rapidly when the factor structure enriches: in case

4We have also experienced with heterogeneous realized group correlations, where we average each pair-
wise realized correlation within an industry. The results did not improve upon including the simple realized
equi-correlation into the specification of the factor loadings.
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of the MF-Full-t model, the log-likelihood increase equals just 14 points (from 83,262 to
83,278). Finally, note that the inclusion of the realized equi-correlation negatively affects
the persistence parameter B. Hence the importance of the High-Frequency based innova-
tion increases relative to the score-based innovation. This result has also been found in
(multivariate) volatility models (Noureldin et al., 2012, see for example). The HF-based
innovation is more important than the score-based innovation based on daily returns which
is not surprising as the former contains more information.

Figure 4 shows the impact of including the realized correlation on the fit of the cor-
relations according to the FC-1f-Group-t model. The upper panel depicts the correlation
within Capital Goods company returns (blue line) and Financial company returns (red line)
without the realized correlation, the lower panel shows the same correlations, but now with
inclusion of the realized equi-correlation. The figure shows that including this variable into
the factor model produces more dynamic correlation patterns, especially in crises periods.
Hence High-Frequency based information adjust changes in dependence much faster than
information based on daily returns.

To summarize the in-sample findings, the statistical fit of multi-factor models is con-
siderably higher than the fit of one-factor models. In addition, the multi-factor models
outperform recent benchmarks as the cDCC and (block) DECO models. Including realized
equi-correlation has a positive effect on the fit, although this effect declines when the factor

structure of the copula enriches.

4.4 Multivariate Density Forecasts

A natural way to assess the out-of-sample (OOS) forecasting performance of our various
factor copula models is to consider multivariate density forecasts, as we have closed-form
copula densities. We follow Salvatierra and Patton (2015) as we do not only compute
density forecasts over the entire support, but also on the left joint tail, using the approach
of Diks et al. (2014). Using the log scoring rule (see Mitchell and Hall (2005), Amisano and

Giacomini (2007), the multivariate one-step ahead density forecasts boils down to the OOS
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copula log-likelihood. Note that the marginal distributions drop out from the multivariate
density forecasts as all considered (factor-) copulas and benchmarks has similar marginal
specifications.

Using a moving-window with an in-sample period of 1000 observations (which corre-
sponds roughly to four calender years), leaves P = 2521 observations for the out-of-sample
period, starting at 28 December 2004. Hence the OOS period includes the Great Financial
Crisis. We re-estimate each model after roughly two calender months (i.e. 50 observations).

Define the difference in the log score between two copula density forecasts M; and M,

as

dls,t = Sls,t(“t) Ml) - Sls,t(’u'ty M2) (29)

for ¢ = 1001,1002,...,7 — 1 with S5, (us, M;) (j = 1,2) the log score at time ¢ of the

density forecast corresponding to model Mj;,

Sis(uy, Mj) = log ci(ui| Ry, Fi—1, M;) (30)

where ¢(-) is the Gaussian or t-copula density. The null- and alternative hypotheses of

equal predictive ability are now given by

Hy :Eldis] =0 (31)

Hy :E[di] #0 (32)

for all P OOS forecasts. This hypothesis can be tested by means of a Diebold and Mariano
(1995) (DM) test statistic

DM, = (33)

Va2 [P
with d the out-of-sample average of the log score differences and 6% a HAC-consistent vari-
ance estimator of the true variance o2 of dj,. This test-statistic is asymptotically N(0,1)
distributed under the assumptions of the framework of Giacomini and White (2006). A sig-

nificantly positive value of DM;; means that model M; has superior forecast performance
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over model M.
Diks et al. (2014) propose to use the conditional likelihood (cl) score function to compare

density forecasts instead of the log score, which is in our case given by
Set,i(we, M) = [log ¢, (wi| Ry, Fio1, Mj) —log Co(q)] I[uy < q (34)

where q is a N x 1 vector and Cy(-) the conditional Copula function. Hence (34) is the
log-likelihood of model M; conditional on the fact that u, < q. For any ¢ between 0 and 1,
this boils down to the joint lower region Hij\il[(), q]. Obviously, when ¢ = 1 we are back to
the log score. The above test-framework can now be used again, where Hy and H 4 change

into E[dy] = 0 vs. E[dy] # 0 and
dcl,t = Scl,t(uta Ml) - Scl,t(ut7 MQ)- (35)

We consider ¢ = [0.01,0.05,0.10, 0.25] such that we compare the copula density forecasts in
the joint lower 1, 5, 10 and 25% tail.

Since we deal with a lot of models due to various factor structures and hence many
different density forecasts, we also consider the Model Confidence Set (MCS) of Hansen
et al. (2011) with a significance level op 5%, applied to the (minus) log score values and

conditional likelihoods, to correct for the interdependence between all models.
[insert Table 7]

Table 7 shows the results of comparing copula density forecasts over the whole region
(Panel A) and over the joint lower tails (Panels B.1-B.4), based on the factor copula’s and
the benchmarks. We show the mean of the log score (conditional likelihood) as well as the
pair-wise DM test statistics of the Mf-Full-t model against all other models. Finally, we
show the p-values of the Model-Confidence-Set approach. The table shows three interesting
results. First, Panel A shows that the Mf-Full-t model has superior predictive ability of the

whole support of the copula density compared to all one- and two-factor copulas and the
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benchmarks, as indicated by both the the pairwise DM test-statistics and the MCS results.
Hence allowing for different industry-factors and an additional factor with industry-specific
loadings leads to superior density forecasts of the copula density. Second, when considering
the 5, 10 and 25% joint left tail of the copula density, again the Multi-factor ¢-copula model
significantly outperforms our competitors. In case of the lower 1% joint tail, this model
plays at par with the cDCC model. The superiority of the multi-factor copula models in
density forecasts is an important result, as the left joint tail is of particular interest with
respect to risk-management purposes. Third, similar to the in-sample results, the most gain
is obtained by allowing for industry factors. For example, adding one factor with time-
varying loadings to the 1f-Group-t model increases the average log-score by 1.4 points (from
20.96 to 22.31), however allowing for different industry factor loadings implies an additional

increase in 2.4 points as the average log-score of the Mf-t model equals 24.76.
[insert Table §]

Table 8 confirms our in-sample results on including the realized correlation into the
factor loading specification. The table shows pair-wise DM test statistics on equal predictive
ability on the whole support and the lower 1,5, 10 and 25% joint lower tail of the copula
density of each type of factor copula, with and without including the realized correlation.
For the most one-factor models, the difference in the log score or conditional likelihood
is statistically significant. Hence including the realized correlation improves the density
forecasts. This result confirms Salvatierra and Patton (2015), who find a similar result in
bivariate copula’s. Notably, the impact is higher in the class of Gaussian factor copulas
than t-factor copulas. When the factor structure enriches, this effect becomes insignificant
or even becomes negatively significant, hence including the realized equi-correlation worsens
the predictive ability. Only in case of the lower joint 1% tail, the effect seems positive for all
considered factor copulas, but it is not statistically significant for the two- and multi-t-factor

copulas.

[insert Table 9]
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Finally, Table 9 shows the MCS results applied to the set all of factor copula models,
hence with and without including the realized correlation, and in including the benchmark
models. We present only the models that stay within the confidence set plus the associated
p-value. We find again that the Mf-Full-¢ copula model is superior in the full support, as well
as in the 5, 10 and 25% joint lower tail. Further, it predicts at-par with the cDCC model in
the 1% lower tail. Moreover, including realized measures into the loading specification has
some positive influence as the MF-Full-£ (RM) model also belongs to the confidence set in
case of the 1 and 5% joint lower tail.

In sum, we conclude that the one-step ahead copula density forecast of the whole support
as well as the left 5, 10 and 25% joint lower tail of multi-(¢)-factor models are superior
against one-factor models and the DCC/DECO class of models. Including the realized
equi-correlation improves the accuracy of the density forecasts of one- and two-factor copula

models, but the effect vanishes for multi-factor ¢-copula models.

5 Conclusions

We have introduced various factor structures within the class of closed-form factor copula
models for high dimensions, building on recent work of Oh and Patton (2017b) and Creal
and Tsay (2015). The factor structures are based on group-specific characteristics. We in-
troduce new score-driven dynamics for the time-varying factor loadings. The resulting factor
copula specification is computationally tractable and in closed form such that parameters
can straightforwardly be estimated by Maximum Likelihood. In addition, an important
feature of our model is that it easily allows for inclusion of covariates into the model, while
avoiding any positive definite restrictions.

We model the dependency across 100 equity returns listed at the S&P 500 index over
the period 2001-2014 and show that the multi-factor copula model based on industry char-
acteristics has a better fit than one-factor models and benchmarks such as the ¢cDCC and

(Block-)DECO models. Out of sample, one-step ahead density forecasts are superior to or
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competes with our benchmarks when considering the whole support, as well as the 1, 5, 10 or
25% joint lower tail of the copula density. Finally, the inclusion of realized equi-correlation
into the factor copula specification improves density forecasts, although the effect diminishes

when the factor specification enriches.
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Table 1: Various factor structures and their properties
This table summarizes the various factor structures that are proposed given that there are N assets allocated
to G different groups. We show the number of factors, the number of different scaled factor loadings, the
dimension of the scaled factor loading matrix and the existence of an equi factor, group-specific factor
and/or group-specific loadings.

Name # factors  # Ns eq-factor gr-factor gr-loading dim 13:
FC-1f-Equi 1 1 yes no no N x1
FC-1f-Group 1 G yes no yes N x1
FC-2f-Equi-Group 2 G+1 yes no yes N x2
FC-Mf-Equi-Group G+1 G+1 yes yes no N x (G+1)
FC-Mf-Full G+2 2G+1 yes yes yes N x (G+2)
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Table 2: Parameter estimates of Multi-Factor-Copula DGP
This table provides Monte Carlo results of parameter estimates from simulated multi-factor Gaussian and
t-copula processes, as given in (23)-(26). B(IN) and B(t) denote the value of B in case of the Guassian (N)
and t-factor copulas respectively. The table reports the mean and standard deviation in parentheses based
on 1000 replications.

Coef. True FC-N FC-t FC-N FC-t
T = 500 T = 1000

Panel A: FC-Mf-Equi-Group model

Wegq 0.010 0.012 (0.005)  0.011 (0.003) 0.011 (0.003)  0.011 (0.002)
w1 -0.050 -0.058 (0.014) -0.057 (0.011) -0.054 (0.009) -0.055 (0.009)
wo -0.043 -0.051 (0.012) -0.049 (0.010) -0.047 (0.008) -0.047 (0.007)
w3 -0.037 -0.043 (0.010) -0.042 (0.009) -0.039 (0.007) -0.040 (0.006)
Wy -0.030 -0.035 (0.009) -0.034 (0.007) -0.032 (0.006) -0.033 (0.005)
ws -0.023 -0.027 (0.007) -0.027 (0.006) -0.025 (0.005) -0.026 (0.004)
we -0.017 -0.019 (0.006) -0.019 (0.005) -0.018 (0.004) -0.018 (0.003)
wr -0.010 -0.012 (0.005) -0.011 (0.003) -0.011 (0.003) -0.011 (0.003)
wg -0.003 -0.004 (0.005) -0.004 (0.003) -0.004 (0.003) -0.004 (0.002)
wo 0.003 0.004 (0.005)  0.004 (0.003) 0.004 (0.003)  0.004 (0.002)
w1o 0.010 0.012 (0.005)  0.011 (0.003) 0.011 (0.003)  0.011 (0.002)
Aeq 0.010 0.010 (0.001)  0.010 (0.002) 0.010 (0.001)  0.010 (0.001)
Agr s 0.020 0.019 (0.004)  0.018 (0.004) 0.019 (0.003)  0.019 (0.003)
B(N) 0.920 0.907 (0.020) 0.915 (0.013)

B(t) 0.970 0.966 (0.007) 0.967 (0.005)
ve 30 30.37 (2.33) 30.27 (1.50)
Panel B: FC-M{-Full model

Wegq 0.010 0.010 (0.009)  0.010 (0.003) 0.010 (0.005)  0.010 (0.002)
w1 -0.050 -0.057 (0.016) -0.053 (0.011) -0.053 (0.009) -0.053 (0.011)
wo -0.043 -0.049 (0.014) -0.046 (0.009) -0.046 (0.008) -0.046 (0.008)
w3 -0.037 -0.042 (0.016) -0.039 (0.006) -0.039 (0.007) -0.038 (0.005)
Wy -0.030 -0.034 (0.013) -0.031 (0.005) -0.032 (0.006) -0.031 (0.004)
ws -0.023 -0.026 (0.008) -0.025 (0.004) -0.025 (0.005) -0.024 (0.003)
we -0.017 -0.019 (0.008) -0.017 (0.003) -0.018 (0.004) -0.017 (0.002)
wr -0.010 -0.011 (0.005) -0.010 (0.002) -0.010 (0.003) -0.010 (0.001)
ws -0.003 -0.004 (0.004) -0.003 (0.002) -0.004 (0.003) -0.004 (0.001)
wo 0.003 0.004 (0.004)  0.004 (0.002) 0.004 (0.003)  0.003 (0.001)
w1o 0.010 0.011 (0.005)  0.010 (0.002) 0.010 (0.003)  0.010 (0.002)
Wgr.l 0.010 0.011 (0.009)  0.010 (0.002) 0.010 (0.004)  0.010 (0.001)
Aeq 0.020 0.021 (0.005)  0.019 (0.005) 0.020 (0.003)  0.020 (0.003)
Agr ¢ 0.015 0.014 (0.005)  0.013 (0.003) 0.014 (0.003)  0.014 (0.002)
Agrai 0.010 0.011 (0.008)  0.010 (0.002) 0.010 (0.003)  0.010 (0.001)
B(N) 0.920 0.909 (0.029) 0.915 (0.014)

B(t) 0.980 0.979 (0.003) 0.980 (0.002)
ve 30 30.42 (2.32) 30.26 (1.61)
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Table 4: Marginal distribution parameter estimates
This table reports summaries of the maximum likelihood parameter estimates of the HEAVY GAS tF models
of (27) on 100 different daily time series of equity returns and realized variances. The columns present the
mean and quantiles from the cross-sectional distribution of the parameters listed in the rows. Data are
observed over the period January 2, 2001 until December 31, 2014 (7' = 3521 trading days).

Mean 5% 25% Med 5% 95%
¢o 0.029 -0.031 0.012 0.027 0.046 0.092
¢1 -0.009 -0.053 -0.026 -0.009 0.009 0.027
¢o -0.013 -0.048 -0.029 -0.011 0.000 0.019
w 0.055 0.027 0.034 0.044 0.068 0.126
o 0.831 0.621 0.746 0.826 0.910 1.016
I} 0.982 0.969 0978 0.982 0.989 0.996
) 8.47 4.84 6.32 8.17 9.95 13.28
v 22.87  16.87 20.35 22.30 25.00 30.71
Vo 14.68 10.67 12.92 14.86 16.39 19.07

# of rejections
KS test for Student’s ¢ dist of std. residuals 10
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Table 5: Factor Copula parameter estimates and benchmarks

This table reports maximum likelihood parameter estimates of various factor copula models, the (Block)
DECO model of Engle and Kelly (2012) and the ¢cDCC model of Engle (2002), applied to daily equity
returns of 100 assets listed at the S&P 500 index. We consider five different factor copula models, see Table
1 for the definition of their abbreviations. Panel A.1 denote the factor models with a Gaussian copula
density, Panel A.2 list the parameter estimates corresponding with the t-factor copula. Further, Panel B
denotes the estimates of our benchmark models. In case of the cDCC model, the table shows parameters
estimates obtained by the Composite Likelihood (CL) method. Standard errors are provided in parenthesis
and constructed from the numerical second derivatives of the log-likelihood function. We report the copula
log-likelihood for all models. The sample is January 2, 2001 until December 31, 2014 (3521 observations).

Model Weq Aeq Aind Agr B Vo LogL
Panel A.1: Gaussian factor copula’s
FC-1f-Equi -0.036 0.007 0.886 63,888
(0.009) (0.001) (0.026)
FC-1f-Group 0.011 0.979 66,030
(0.001)  (0.005)
FC-2f-Equi-Group -0.021 0.008 0.025 0.942 70,979
(0.007)  (0.001) (0.002) (0.016)
FC-Mf-Equi-Group  -0.019 0.008 0.030 0.928 80,121
(0.005) (0.001) (0.003) (0.014)
FC-M{-Full -0.004 0.025 0.015 0.025 0.985 80,426

(0.005)  (0.002) (0.002) (0.002) (0.003)

Panel A.2: t-factor copula’s

FC-1E-Equi 0.020  0.020 0.934 3849 67,256
(0.005)  (0.002) (0.013)  (1.65)

FC-1f-Group 0.007  0.988  35.63 69,604
(0.001) (0.003) (1.12)

FC-2fEqui-Group ~ -0.012  0.019 0.032  0.955 41.98 72,796
(0.007)  (0.002) (0.004)  (0.019) (1.74)

FC-Mf-Equi-Group ~ -0.006  0.020  0.026 0.973  48.02 82,445
(0.003)  (0.002) (0.003) (0.008)  (0.43)

FC-Mf-Full 0.000  0.062 0013  0.018 0992 4647 83,262

(0.002)  (0.009) (0.001) (0.002) (0.001) (1.61)

Panel B: Benchmarks

«DCC(CL) 0.019 0.964 75,604
(0.001) (0.001)

DECO N 0.067 0.903 63,374
(0.002) (0.004)

DECO ¢ 0.065 0.908  33.66 67,049
(0.004) (0.006)  (0.88)

Block-DECO 0.046 0.932 80,886
(0.000) (0.001)
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Table 6: Inserting the realized equi-correlation into Factor Copulas

This table reports maximum likelihood parameter estimates of various factor copula models applied to daily
equity returns of 100 assets and their realized equi-correlations. We consider five different factor copula
models, see Table 1 for the definition of their abbreviations. Panel A.1 denote the factor models with a
Gaussian copula density, Panel A.2 list the parameter estimates corresponding with the ¢-factor copula.
Standard errors are provided in parenthesis and constructed from the numerical second derivatives of the
log-likelihood function. We report the copula log-likelihood for all models. The sample is January 2, 2001
until December 31, 2014 (3521 observations).

Model Wegq Aeq Aind Agr YRC B Ve LogL
Panel A.1: Gaussian factor copula’s
FC-1f-Equi 0.113 0.006 0.261 0.730 64,373
(0.016)  (0.001) (0.032) (0.035)
FC-1f-Group 0.013 0.155 0.862 66,766
(0.001) (0.009) (0.011)
FC-2f-Equi-Group 0.016 0.008 0.016 0.015 0.996 71,513
(0.006) (0.001) (0.001) (0.008) (0.001)
FC-Mf-Equi-Group  0.108 0.006 0.042 0.213 0.808 80,455
(0.015)  (0.001) (0.003) (0.026) (0.022)
FC-Mf-Full 0.138 0.011 0.030 0.052 0.313 0.878 80,561

(0.016)  (0.001) (0.002) (0.005) (0.040) (0.021)

Panel A.2: t-factor copula’s

FC-1f-Equi 0.116  0.014 0249 0761 4057 67,398
(0.013)  (0.002) (0.025) (0.023) (1.42)

FC-1f-Group 0.010  0.080 0930 3854 69,926
(0.001) (0.020) (0.017) (0.74)

FC-2£Equi-Group ~ 0.074  0.015 0.045  0.157  0.843 4424 72,908
(0.011)  (0.002) (0.005) (0.022) (0.024) (1.97)

FC-Mf-Equi-Group ~ 0.065  0.015  0.040 0.123  0.894  50.66 82,500
(0.016)  (0.002) (0.003) (0.028)  (0.020) (2.30)

FC-Mf-Full 0.037  0.060 0.013 0018 0046 0992 46.79 83,278

(0.016)  (0.008) (0.001) (0.002) (0.022) (0.002) (1.68)

38



(00°0) (00°0) (00°0) (000) (0o°1) (000) (000) (000) (000) (000) (000) (000) (000) (000) T1eA-d SOIN

) €181 9103 01°g GSIT LE9  98'TT LEGT TT'G GLGT L8LT  GR'AT BG6I PNa
9901 096 116 €601 60T €901 6801 0901 ST0T €26 986  ¥¥6 296 6 g
[re1 o1 Jutol %6z g [Pued

(00°0) (00°0) (000)  (000) (00°T)  (000) (000) (0000) (000) (000) (0000) (000) (0000) (000) reAd SOV
2y 0LT1 L€l L9C 966 €9F  L&6 V0l 90T 8001  PSIT  9VIT  ¥8TI PINa
1649 8¢9 961°9  908°9  TT6'9  SPL9 8689  0£L9 9799  €I€9  66F'9 9929 9689  TLT9 g
[re) o1 Jutol %01 ¢ [Pued

(00°0) (00°0) (000)  (100) (00'T) (000) (10°0) (00°0) (000) (00°0) (0000) (000) (0000) (00°0) reAd SOV
99°¢ 658 086 060 0€'L €% 9¢L  €TL  €8L  TeL .68 €I €66 SINa
G0SF 8zET 981F 657  909'%  T0SF 06T V6PV €9FF  €8¢F  6L6F  SveF  Seev  11e¥ g
[re} o1 Jutol %6 7'q [oued

(00°0) (00°0) (000)  (00°T) (gg'0)  (000)  (¥r°0) (0000) (1000) (00°0) (0000) (000) (10°0)  (00°0) reAd SOV
6L°€ 89°¢ 687 19°0- Ly ST 68V 9g'e ¢SF 08'e 8% &Fe LUV P a
L1281 6161 697’1 ALS'T  89G°T  GEG'T  P9ST  €EST  €PST  €0ST TSl 9LFT oSl 6LV g
[re3 gor Juol o1 :1°q [Pued

(00°0) (00°0) (000)  (000) (00°T)  (000) (000) (0000) (0000) (000) (0000) (000) (0000) (000) reAd SOV
6¢°9 60°8¢E £6'9¢  ¥8TI €9zl G&'8  89€T €908 €80T  L0GE  I€VE  C0LE  6LGE SIna
97 7T 72 0% 0561 651c  06%C  €CFc  9LFG  PIVG  1£C%  FP0T 9605 9661 1£0%  9£°61 55

110ddns [[nJ 1y [poueq
oodd-Td 7-0Ddd  N-0DdHd  DODd?  #4JN N-dAJN  HIN NI 3¢ NJZ #1831 N-18J1  #-bogr  N-Pog1

"STUOTIJRAIDSO GTGE SUIRIUOD pUR FT()g IOoquIood([ [1HUn GO(Og Arenue wWoly so08 porrod ojdures-Jo-ino ayJ, “10s
90USPYUO0D [9POW JY) UMM AR)S YOIYM S[OPOW 9S0Y] JuaseIdol MOI ST} UL SIOQUINU P[Og 94 G JO [9AS] 90URIYIUSIS ® UO pose( ‘(T1(g) 7P 70 USSURH JO 199
9OUdPYUO)) [9POTN 9} YIM PIjRIDOSSE anfes-d oY) yuoesoId om ‘pIIY ], "S[OPOU SAIJRULIDY[E 1] JSUIBSE S)SeIDI0] A}SUap JIorradns sey [opout 3-I-JIN U2 1ey?
sorpduur o19s19RIS-N (] 2AIIsod 7 "S[EpOW I8)0 [[R Jsurede [ppout - - AN o2 JO Aoeimodor aA1o1pald uo 9503 asmmared ® JO O1ISI)RIS-]A(] OY) ISI[ oM ‘PUO0d_g
‘S[OpPOW [[B® SSOI0€ POOYI[ONI] [RUOIIIPUOD IO 9I100s S0] 1SoySIY oY) Sey ey} [9POow 9} sjuasaIdal P[oq Ul Ioquuinu oY J, .Nﬁw pue $1g) POOYI[oI] [RUOIIIPUOD
10 2100s 30] oY} JO Ueew 9y} 9sIy juasald om ‘[eurd yore uj ‘Aysusp emdoo oY) JO [Ie} 9Gg Pue (O] ‘G ‘T Iemo[ jurol oYy Jo symsel 987 g [Pued - 1'g
[PuRd sealoym ‘AYsuop o1) Jo qr1oddns [N 1) Jo AoeInode oY) sejouep Y pPued (Z10g) A[PM pue o[8uy jo epowr ODHJ (¥o1d) o3 pue (z00g) °[8uy jo
[epour DO Y} :SYIRUIYDUS( O} JO $HNSOI MOT[S SUIUN[OD INOJ Ise] oY) ‘uonippe ul -(A[parpoadsar J-JJN se pajousp ‘s3urpro] ofwads-dnoid yjim I109oe]
[euonyippe ue snid [ppout J|\ 93 pue ([Ppouwt J\ 913 "o'T) s1030e] oyads-dnois 1) snid 10joej-mbe ouo) spopowr endod 1030e}-1ynu Jjo sodA) omy pue (jg Aq
pajousp ssurpeo] oy1oads-dnoid i 1030e] e snd 1030e}-mbe ue) [opouwt 1030rJ-0M) 9UO ‘(18- pue bo-JT Aq pejousp ‘s8urpeo] ogweds-dnois yjmm I09oej auo
1o 1030v]-mnba auo) semdoo 1030e]-0u0 Jo sedA) om) juesaider sumn(od o], (7 10 N £q PojOUSP) UOINGLIISIP 7 S HUIOPNIS IO URISSNRL) ® JUTUNSSE ‘S[9POUT
eIndoo 1030} snoLrea Aq paurelqo ‘Xopur ))GJ29S oYl JO SwInjal A[rep (0T JO sisedaioj Ajsuop vndoo peaye dojs-ouo jo Adeinode o) sopraoid o[qel SIyJ,

sjsedalo} Ajisuap endod peaye dojs-au( :2 9d[qe],

39



wexIGT—  G8°0T T6'0T  «xel8C— TLE'O  LOO'L 10T— 099F L99¥ 090 O0T9T 609T  +xl99— 8GFC 06F7C +dJIN
wx08C  L90T €901  wwsl€'€  SLLO SFLO  .F6'E  LTGT  TOST  .ws8FE OPCT  GEGT 790 9TV €CFC  N-ATN
wx88°G—  LLOT 6807  .x96'€— GE6'O 7869 YeI— TPOT  199F 260 909T 09T  .x088— 9EVT 9LVT 1IN
81T €90T 0907  «xGOFT 9929 0£L'9  .xB8°€  0TGT VO6VT  x06'€  FPST  €€GT €T STFC FI¥C NI
g90 0201 8I0T vE0— GIL'9  TTL9 9T'T— TOSV 8IGT 820 €8¢'T I8G'T 600  1€TC 1€TT Rt
06T G86 €26 wFSE  LFF9  E€TE9  ..8T'€  0LET  €8TT LLT 9TGT 09T ..16C  €F1E #90C NJC
VT 886 986  .x69T  9€99 TIV9  .kl6T LGPV O9EFT  .IT'€  69S°T 6SGT GT 6602 960T 18T
88T 196 FF6  «xxG8F  SEE'0 9970  .FVT  00ET SPET  .x66'€  S6FT OLFT  .FFC 80°0C 9661 N-ISI
k08T €96 T96  «xx8L'E  61G0 80G'0  .x88E  86ET 6SET  .wPT'E  €9GT  09GT  .xEFF  GE0T T1€0C Dol
wxGLE 8T6  TT6 0TS LETO TLTO  wxGOT  6VCT  TICT  «xs08'€  FOVT  6LFT  wxOCF  6F6T 9861  N-POJT
INa sl INa sl IWa s flg NG Sl N S SlS [PPOIN

[rey 9391 surol %6z

[re) o1 Jutol %01

[re 9391 gurol %G

[re 9391 jurol %1

jroddns [y

Arenuep woiy 008 potrod o[dures-Jo-1mo oy ], ‘A[oA1100dSor [9A9] 90T PUR %G ‘04T 92 18 00URIYIUSIS 9JeIIPUl , pUR
Jsurese s)se0al10j AYsusp Ioliedns serfdull UOTYR[SLI0D PazI[eal oY) Surpnidul jeyy serjdur o1ystyeIs-JA( 2A13sod y “A)suap evndoo a1[) Jo [1e) %Gz pue O1‘GT
Tomol jurol oY} I9A0 sk [[om se ‘pr0ddns o[oYMm 97} ISAO SUOP SI 1593 Y], 'S[OPOUW 0M] 9} UMD ADRINIOR 9AIPOIPaId U0 1507 asmmired & JO O1ISIIRIS-IN(T
o1} pPUR UOIJR[OLI0D-TNDo PoZI[eol oY) JO UOISN[OUI JNOYIIM PUe [iim [opout endod 10)0e] o) Jo (g pue *1g) POOYI[ONI] [RUOIIIPUOD 10 9100S 30[ 91[} JO U
o) IsT] 9\ (7 10 N AQ Pojouep) UOTINLIISIP 7 S JUSPNIG IO UeISSNer) © SUTWNSSE ‘UOIJR[9II00-TNDo POZI[RaI oY) JO UOISN[OUT JNOYIIM PUR [IIM S[OPOU
rIndoo 1030R] SNOLIRA AQ PauIR}qO ‘XopUl (J0G J29S 9Y) JO sSwInjal A[rep (0T JO sisesaro] Aysusp evmndoo pesye dojs-ouo jo Aoeindor o) sepraord a[qe) styg,

spsedalo} Ajisuap e[ndod peaye dojs-ouo pue suolje[olIod-mbo pozifeay :8 9[qel,

"SUOIJRATIS(O GTGT SUIRIUOD pue FI(g IOquIdd(] [1HUn ¢O0g
¢ esx S3ALIOSIOANS O T, "[OPOW 9SBq 9}

Kk kokok

40



Table 9: Model Confidence Set results on copula density forecasts of all models

This table reports test results on equal predictive accuracy of one-step ahead copula density forecasts by
means of the Model Confidence Set (MCS) procedure of Hansen et al. (2011). The copula density forecast
are obtained from 24 different models, applied to daily equity returns of 100 assets listed at the S&P 500
index. We have five different types of Factor Copula models: two types of one-factor copulas (one equi-factor
or one factor with group-specific loadings), one two-factor model (an equi-factor plus a factor with group-
specific loadings) and two types of multi-factor copula models (the Mf model that contains one equi-factor
and G group specific factors and the Mf-Full model that adds another factor with group-specific loadings to
the Mf model). Each type of model is further discriminated across distribution (Gaussian vs. a Student’s t)
and inclusion of the realized equi-correlation into the factor copula model specification (RM). This results
in 20 different factor copulas. In addition, we have the cDCC model of Engle (2002) and the (Block) DECO
model of Engle and Kelly (2012) as benchmarks. Panel A denotes the accuracy of the full support of the
density, whereas Panel B.1 - Panel B.4 list results of the joint lower 1,5,10 and 25% tail of the copula density.
The table reports the models that stay within the MCS, as well as the associated p-value. The out-of-sample
period goes from January 2005 until December 2014 and contains 2519 observations.

Models in MCS  MCS p-value

Panel A: full support

MEFull-t (1,00)
Panel B.1: 1% joint lower tail
M-t (0.12)
MEE (RM) (0.35)
MEFull-¢ (0.57)
ME-Full-#(RM) (0.62)
cDCC (1.00)

Panel B.2: 5% joint lower tail
MEFull-£ (RM) (0.39)
ME-Full-¢ (1.00)

Panel B.3: 10% joint lower tail
MEFull-¢ (1.00)

Panel B.4: 25% joint lower tail
ME-Full-¢ (1.00)
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Figure 1: Realized equi-correlations
This figure shows the daily averaged pairwise realized correlations between 100 stocks listed at the S&P
500 index. Pairwise realized correlations are backed out from the 5-minute realized covariance and realized
variance respectively. The sample spans the period from January 2, 2001 until December 31, 2014 (7' = 3521
days).
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Figure 2: Factor loadings of the Multi-factor-Full ¢-copula
This figure shows within dependencies through time of stock returns of three types of industries: Financials,
Capital Goods and Health companies, according to the Multi-factor-Full ¢ copula model. This model consists
of one equi factor (upper panel), one factor with industry-specific loadings (middle panel) and industry-
specific factors (lower panel). The sample spans the period from January 2, 2001 until December 31, 2014
(T = 3521 days).
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Figure 3: Within group dependencies
This figure shows the within dependence between stock returns of 19 Financial companies (red line) and
11 Capital Goods companies (blue line) through time, according to the Multi-Factor-Full ¢-copula model
(upper panel) and the Block-DECO model (lower panel). The sample spans the period from January 2,

2001 until December 31, 2014 (T' = 3521 days).

44



FC 1f Group t

0.9 T T T

Captital Goods
0.8 Financials _
07 f

\

% H | L
“l ‘ \W | !\ ' ‘ "y Q\Y
05 ’ﬁ» “‘ K\W\W{I j“ \M v\. M J\ I’nv w n ‘ Ju‘i' h’k ri H ‘A M .L M w NH‘N\ ‘M

0.4‘ | il |

fh ‘
03 “ NV‘J 4
02l |

011 :

0
2001 2003 2005 2007 2009 2011 2013 2015

FC 1f Group RM t
0.9 T T T

Captital Goods
08 Financials

07 ‘ .Mih (h ﬁ M ’( m ) ‘} ﬂ(
o L U Mo
| Uil W b W
ZZMM“ M ;\ 1“ M J ‘V ‘ ‘ J ’ !M 'N "

Figure 4: Within group correlations and the effect of realized equi-correlations

This figure shows the within dependence between stock returns of 19 Financial companies (red line) and 11
Capital Goods companies (blue line) through time, according to the factor copula model with one factor with
group-specific loadings (upper panel) and the same model with including the realized equi-correlation into
the model specification (lower panel). The sample spans the period from January 2, 2001 until December
31, 2014 (T = 3521 days).

45



