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Abstract
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number of factors that have been proposed, our results show that (i) only a hand-
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1. Introduction

Which factors should enter a linear factor model, and what kind of fundamen-
tal, pervasive, non-diversifiable risks do they represent? This is a crucial question
that has haunted researchers for a long time. As more data have become avail-
able, and the cost of computation has decreased, the number of proposed factors
to explain asset returns has increased significantly. For example, Harvey et al.
(2016) document more than three hundred factors that have been proposed in the
literature1, most within the last two decades, a situation which Cochrane (2011)
has dubbed “a zoo of new factors”.

However, it is doubtful that all of these factors really matter for asset pricing;
it is more likely that some of them are redundant, or proxies for the same kind of
fundamental risk, whilst many (or even most) may just be a product of data min-
ing2. The huge number of factors that have been identified in empirical studies is
a challenge that both practitioners and academics face, in particular, considering
that earlier empirical studies suggested five to six factors3, and that prominent and
widely used models such as the ones proposed Fama & French (1992), Carhart
(1997), Pastor & Stambaugh (2003), Hou et al. (2015a) (henceforth, HXZ) and
Fama & French (2015) (henceforth, FF5) all have five or less factors. Some recent
studies, such as Harvey & Liu (2016), Green et al. (2017), Yan & Zheng (2017),
and Feng et al. (2017), have focused on investigating large numbers of factors
proposed in the literature in order to identify independent information about aver-
age stock returns.

In this study we develop a Bayesian approach to explore the space of pos-
sible linear factor models and investigate the most promising models to explain
asset returns. We propose an estimation method for the posterior probability of
the most promising models, i.e. sets of factors, rather than individual factors with
respect to certain pre-specified models such as the Fama-French five factor model.
With so many candidate factors within the factor “zoo”, the number of possible
models becomes very large, making model comparison a challenging task. We de-
velop a novel method that evaluates the space of all possible models, which would

1They also provide a taxonomy of these factors, refer to their Table 1. Also see Green et al.
(2017) and McLean & Pontiff (2016), which summarize hundreds of factors proposed in the liter-
ature.

2See Chordia et al. (2017) and Kewei et al. (2017)
3Roll and Ross (1980), Chen et al. (1986), Connor and Korajczyk (1988), and Lehmann and

Modest (1988)
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be computationally prohibitive in the conventional framework even for moderate
number of factors. For example, the total number of models is over 1 billion with
30 factors because the number of possible models with K factors is 2K .

For this purpose, we introduce a Bayesian variable selection method that ex-
plores the model space, i.e. posterior probabilities of the most promising models.
For the K candidate predictor variables, a vector of the joint posterior distribution
of γ = (γ1, . . . , γK)′ of dummy variable γ j can be defined to represent whether
the j − th predictor should be included in the model. A non-hierarchical model
is employed, where the prior distribution of the regression coefficients (the factor
sensitivities or βs in a multi-factor asset pricing model) is independent from the
value of each γ j. The introduction of γ makes it possible to explore the space
of possible models, even with large numbers of factors. Our contribution in the
methodology can be summarized as follows. First, we propose a simple approach
by specifying independent priors for γ and the βs, extending the univariate re-
gression model proposed by Kuo & Mallick (1998) to the multivariate seemingly
unrelated regressions (SUR) model. Second, we derive a sequential algorithm to
estimate the regression coefficients (factor sensitivities) of each response variable
(each asset) using the Gibbs sampler4. This provides an efficient way to estimate
the model even when the number of assets and factors is large, which allows the
application of the method to sets of individual stocks, instead of portfolios5.

The Bayesian approach overcomes the multiple comparison problem raised by
Harvey et al. (2016) and others. When a large number of signals are tested to in-
vestigate cross-sectional asset returns, some signals will appear to be statistically
significant by random chance even if they have no genuine predictive ability. Our
procedure allows us to simultaneously assess the most promising models within
the space of all possible models, instead of statistical inference based on a “sin-
gle” test perspective, and therefore, all individual signals are evaluated together as
(argued) in Sullivan et al. (1999, 2001). The Bayesian framework differs from the
frequentist perspective of Harvey et al. (2016) who propose a t-statistic greater
than 3 for any new factor. Our approach can be applied to thousands of individ-
ual assets together with hundreds of potential factors, and thus does not require
that portfolios from grouping firm characteristics be used as test assets (Lo &

4See Kim & Nelson (1999) for a review of Gibbs sampling estimation in Econometric models.
5In terms of methodology, our approach is mostly related to the literature on variable selection

in multivariate regression models, of which the SUR model is a special case, see Brown et al.
(1998), Smith & Kohn (2000), Hall et al. (2002), Wang (2010), Ando (2011), Ouysse & Kohn
(2010), and Puelz et al. (2017).
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Mackinlay (1990), Ferson et al. (1999), Berk (2000)). In addition, the complex
cross-sectional dependencies can also be considered in this framework as all pos-
sible combinations of factors are evaluated. Any result with a large number of
independent variables is likely to suffer from multi-collinearity problems when
the number increases6. As our approach is to select the best possible models from
the posterior probability of γ, the multi-collinearity problem should not be an
issue.

In this work, we consider a set of 83 candidate asset pricing factor. In addi-
tion to the market factor, we compute 82 tradable factors by sorting stocks into
deciles based on various firm characteristics and variables that have been pro-
posed in the literature, and forming value-weighted hedge portfolios that buy the
stocks in the highest decile and sell the stocks in the lowest deciles. We apply
our Bayesian variable selection methodology to all available stocks in different
subsamples spanning the period from 1980 to 2016. We also consider 20 different
sets of portfolios of stocks, comprising over 300 individual portfolios.

Our empirical results with individual stocks suggest that only a small number
of factors (5 to 6) are important to explain the return on stocks. From these, the
only factor which is consistently selected over time is the market excess return.
Other factors that appear to be important for specific periods are not those in
widely used factor models such as FF5 or HXZ, but include factors related to
short-term reversal, change in 6-month momentum, change in number of analysts
following stocks, and industry concentration. Our results are robust to different
specifications of the prior distribution of the factor sensitivities.

In comparison with some recent studies such as Green et al. (2017) and Bar-
illas & Shanken (2017), our results show a smaller number of important factors.
For example, Green et al. (2017) use a set of 94 firm characteristics in Fama-
MacBeth regressions and show that 12 characteristics are important to explain
returns on stocks over the period 1985-20147. Barillas & Shanken (2017) find ev-

6Although Green et al. (2017) and Feng et al. (2017) evaluate the effects of the multi-
collinearity problem carefully, this problem does not disappear with the large number of inde-
pendent variables that are possibly cross-correlated.

7The 12 characteristics identified in the study are book-to-market, cash, change in the number
of analysts, earnings announcement return, one-month momentum, change in six-month momen-
tum, number of consecutive quarters with earnings higher than the same quarter a year ago, annual
R&D to market cap, return volatility, share turnover, volatility of share turnover, and zero trading
days. The authors also find that this number reduces to only 2 (industry-adjusted change in em-
ployees and number of earnings increases) since 2003, with the returns to hedge portfolios that
attempt to exploit this predictability becoming insignificant.
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idence supporting a six-factor model including the the market return, investment,
profitability, size, book-to-market, and momentum factor. Other recent studies
with a large number of candidate factors, such as Harvey et al. (2016) and Feng
et al. (2017), have also found that the market factor is the most important one,
with a possible role for profitability and investment.

Our work also differs markedly from previous studies that apply a Bayesian
approach to select asset pricing factors, such as Ericsson & Karlsson (2003),
Ouysse & Kohn (2010), Puelz et al. (2017) and Barillas & Shanken (2017). These
studies have focused on a smaller number of candidate factors, with a relatively
small number of portfolios as test assets. In particular, the Bayesian approach
proposed by Barillas & Shanken (2017) is designed to test individual asset pric-
ing models, so it is not suitable to explore the space of all possible models when
the number of candidate factors is large, since this would be computationally pro-
hibitive. In contrast, our methodology allows us to explore a larger model space
with many possible factors, using thousands of individual stocks simultaneously,
therefore bypassing the problem of using as test assets portfolios that may be re-
lated to the factors by construction. In fact, we also apply our methodology to
20 different sets of portfolios (300 portfolios in total), and show that there is a
very strong dependence between the portfolio formation criteria and the posterior
probability of factors. For example, when portfolios are formed on firm char-
acteristics, models with the factors formed on these characteristics are selected
with high posterior probability8. To alleviate this dependence, we focus on testing
individual stocks.

The rest of this paper is organized as follows. We introduce the model and
briefly discuss the estimation method in Section 2. The explanation of the data set
and factor construction follow in Section 3. Section 4 provides the main empiri-
cal results of the paper, as well as robustness tests and comparison with previous
studies. Section 5 concludes. The Bayesian estimation of the SUR model is re-
viewed in Appendix A. Appendix B contains detailed explanations of the variable
selection model and its estimation. Appendix C provides the full list of firm char-
acteristics used in this study, and the associated references.

8This is related to the concerns expressed by Lo & Mackinlay (1990), Ferson et al. (1999),
Berk (2000), Roll (1977) and Lewellen et al. (2010) in the context of bias in asset pricing tests
using portfolios related to the factors. A similar conclusion is reached by Harvey & Liu (2016).
They argue that dispersion in portfolios is largely driven by a few portfolios that are dominated
by small stocks, which leads asset pricing tests to identify factors that can explain these extreme
portfolios.
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2. Methodology

Consider N assets and K predictor variables (factors) over T periods. The
factor model is a multivariate linear regression with N equations:

ri = Xβi + ei, i = 1, . . . ,N (1)

where, for each asset i, ri is the T × 1 vector of excess returns, X is the matrix
of factors with dimension T × K, βi = (βi,1, . . . , βi,K)′ is a vector of unknown re-
gression coefficients (factor sensitivities), and ei is a T ×1 vector of disturbances9.
If the error terms are contemporaneously cross-correlated across assets, the sys-
tem of regressions above is a special case of the Seemingly Unrelated Regressions
(SUR) model, where the predictor variables are the same for all equations10.

The system can be stacked in a single equation r̃ = X̃β̃ + ẽ in the following
way: 

r1

r2
...

rN

 =


X 0 · · · 0
0 X · · · 0
...

...
. . .

...
0 0 · · · X



β1

β2
...
βN

 +


e1

e2
...

eN

 . (2)

In this case, letting ẽ = (e′1 e′2 . . . e′N)′, the basic assumption of the SUR
model is E(ẽẽ′) = Ω = Σ ⊗ IT.

Bayesian inference in the SUR model can be carried out in a relatively straight-
forward manner, see for example Giles (2003). Since our variable selection pro-
cedure will rely on a Markov Chain Monte Carlo (MCMC) approach using the
Gibbs sampler11, we start by reviewing the estimation of the SUR through this
approach. We assume ẽ ∼ N(0,Σ ⊗ IT) and the following prior distributions for β̃
and Σ:

β̃ ∼ N(b0,B0) (3)
Σ ∼ IW(ν0,Φ0),

9To avoid ambiguity, throughout this article we use the subscripts i and j for assets and predic-
tor variables, respectively.

10The SUR model, introduced by Zellner (1962), consists of N regression equations, each with
T observations, which are linked solely through the covariance structure of error terms at each
observation, i.e. errors are contemporaneously correlated but not autocorrelated.

11See Kim & Nelson (1999) for a review of Gibbs sampling estimation in Econometric models.
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where IW(ν0,Φ0) denotes the inverted-Wishart distribution with ν0 degrees of
freedom and parameter matrix Φ0. With these choices, it can be shown that the
conditional posterior distributions required for the Gibbs sampler are as follows12:

β̃|Σ, r ∼ N(b1,B1) (4)
Σ|β̃, r ∼ IW(ν1,Φ1),

where

b1 = (B−1
0 + X̃′Ω−1X̃)−1(B0b0 + X̃′Ω−1r̃)

B1 = (B−1
0 + X̃′Ω−1X̃)−1

ν1 = ν0 + T, Φ1 = Φ0 + S.

In the above, S is the matrix of cross-products of the residuals, that is, if E =

[e1 . . . eN], then S = E′E. We also note that Ω−1 = Σ−1 ⊗ IT.
The approach above may be computationally intensive if the number of equa-

tions is large, since it requires multiplication and inversion of large matrices. For
example, X̃ has dimension NT ×NK and Ω−1 has dimension NT ×NT . We derive
an alternative and quicker approach for large panels, by sampling each βi condi-
tionally on the remaining β j, j , i and Σ. Let β̃−i denote the full vector β̃ omitting
βi. Assume that

βi|β̃−i,Σ ∼ N(b0,i,B0,i).

Then βi|β̃−i,Σ, r ∼ N(b1,i,B1,i), with

b1,i = (B−1
0,i + σiiX′X)−1(B0,ib0,i + σiiX′r∗i )

B1 = (B−1
0,i + σiiX′X)−1,

where σii denotes the (i, i) element of Σ−1 and r∗i is suitably defined based on a
partition of the systems of equations, see Appendix A.2. Note that the expressions
above depend only on the smaller matrices X and Σ. In the Gibbs sampler, each
βi can be generated, in random order, based on the above.

2.1. Bayesian Variable Selection in the SUR Model
There is a vast literature focusing on Bayesian variable selection in linear mod-

els with a single response variable, see for example George & McCulloch (1993,

12The full derivation of all the conditional distributions required for the Gibbs sampler estima-
tion is provided in Appendix A.
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1997); Kuo & Mallick (1998); Dellaportas et al. (1999); Hans et al. (2007);
Clyde & George (2004); O’Hara & Sillanpää (2009). For a single regression
equation, Bayesian variable selection is generally done by first introducing a vec-
tor γ = (γ1, . . . , γK)′ of dummy variables, where if γ j = 1, the j − th predictor
is included in the model. Each element represents a possible model, and thus
the vector of K dummy variables supports on a 2K space. When the number of
variables is small (say, less than 10), it is possible to directly calculate the poste-
rior probability of all models. However, this becomes computationally infeasible
for even moderate numbers of regressors. In these situations, MCMC methods
provide a fast way to obtain consistent estimates of model probabilities, see for
example George & McCulloch (1997).

Many variable selection procedures follow the hierarchical approach intro-
duced by George & McCulloch (1993), which defines the distribution of β con-
ditionally on γ. This is done by specifying a “slab and spike” mixture distribu-
tion which places a spiked prior on zero for β j|γ j = 0 and a slab or flat prior
on β j|γ j = 1. One disadvantage of this approach is that it often requires data-
dependent tuning of the hyper-parameters. Therefore, we assume a priori inde-
pendence between β j and γ j which requires no tuning and extend the univariate
regression model proposed by Kuo & Mallick (1998) to the case of the SUR model
with common regressors.

Variable selection in the multivariate regression models (of which the SUR
model is a special case) has been the subject of a number of studies, mostly focus-
ing on generalizations of the hierarchical Bayesian model of George & McCul-
loch (1993). One of the first examples of this approach is Brown et al. (1998).
Smith & Kohn (2000) introduced a Bayesian hierarchical model which considers
variable selection by explicitly allowing the possibility that some coefficients are
equal to zero. Hall et al. (2002) consider a hierarchical Bayesian model related to
Smith & Kohn (2000) to choose style factors in models for global stock returns.
Wang (2010) also follows the hierarchical setup of George & McCulloch (1993),
considering structured covariance matrices within the context of normal graphical
models. Ando (2011) proposes a Direct Monte Carlo method estimation for a hi-
erarchical model related to Smith & Kohn (2000). Ouysse & Kohn (2010) apply
a model related to Brown et al. (1998) to simultaneously make inferences on as-
set pricing factors and estimate factor risk premia. Puelz et al. (2017) consider
the case of treating the regressor variables as random, and propose strategies for
model summarization.

We generalize the method proposed by Kuo & Mallick (1998) to the SUR
model as follows. Let Xγ represent the matrix X where each column has been
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multiplied by the corresponding γ j. Then we can write the model with variable
selection as ri = Xγβi + ei, i = 1, . . . ,N, or stacking the N equations as before,

r̃ = X̃γβ̃ + ẽ,

where X̃γ is defined analogously as before.
An equivalent representation is to define a new variable θi = βi � γ, where

� represents element-wise multiplication. The system can then be represented by
r̃ = X̃θ̃ + ẽ. Analysis of the posterior distribution of θ̃ can be useful to understand
which variables are important for each equation.

To derive the conditional distributions required for the Gibbs sampler, we need
to specify the prior distribution for γ. We follow Kuo & Mallick (1998) and set
independent priors as γ j ∼ B(1, π j), j = 1, . . . ,K. Therefore, the prior distribution
of γ is given by

f (γ) =

K∏
j=1

π
γ j

j (1 − π j)1−γ j .

Note that, conditional on a known value of γ, the model reduces to a SUR with
the corresponding predictors for which γ j = 1. Therefore, using the same prior
distributions for β̃ and Σ in Equation (3), the conditional distributions for β̃ and Σ

are those given in equation (4), with X̃ replaced by X̃γ. Thus we have

β̃|γ,Σ, r ∼ N(b1,B1) (5)
Σ|γ, β̃, r ∼ IW(ν1,Φ1),

where

b1 = (B−1
0 + X̃′γΩ

−1X̃γ)−1(B0b0 + X̃′γΩ
−1r̃)

B1 = (B−1
0 + X̃′γΩ

−1X̃γ)−1

ν1 = ν0 + T, Φ1 = Φ0 + S.

Like before, if the number of equations is large, we may sample each βi, i =

1, . . . ,N in turn from βi|β̃−i,γ,Σ, r̃ ∼ N(b1,i,B1,i), where

b1,i = (B−1
0,i + σiiX′γXγ)

−1(B0,ib0,i + σiiX′γr
∗
i )

B1 = (B−1
0,i + σiiX′γXγ)

−1.

To generate γ, the simplest choice is to use the Gibbs sampler to generate
each value of γ as in Kuo & Mallick (1998). The relevant conditional posterior
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probability of γ j = 1 for the SUR model is given by

P(γ j = 1|γ− j, β̃,Σ, r̃) =

(
1 +

1 − π j

π j
exp(−0.5 Tr(Σ−1(S1

γ − S0
γ))

)−1

, (6)

where S1
γ and S0

γ represent the matrices of residuals when γ j = 1 and γ j = 0,
respectively. Each γ j can be generated, preferably in random order, using the
expression above13.

2.2. Prior Distributions
The most important prior distribution is the one for β̃. As discussed by O’Hara

& Sillanpää (2009), the MCMC algorithm might not mix well in the γ space if the
prior for β̃ is too vague. The reason for this is that, when a particular γ j = 0, the
βi j, i = 1, . . . ,N are sampled from the full conditional distribution, which is the
prior. In this case, it may be difficult for the model to transition between γ j = 0
and γ j = 1, since the generated βi j will be unlikely to be in the region where θi j

has higher posterior probability.
We propose a few choices for the priors on β̃. The first is to select β̃ ∼

N(0, cI). This choice reflects a complete lack of knowledge about the predic-
tors, both in terms of which predictors should enter the model as well as regard-
ing the dependence structure of the regression coefficients. A second possibility
is β̃ ∼ N(0, c(X̃′X̃)−1), which makes the prior covariance structure equal to the
design covariance structure, as suggested by Zellner (1971). A final possibil-
ity is to center each βi around their OLS or maximum likelihood estimate, i.e.
βi ∼ N((X′X)−1X′ri, ci(X′X)−1). All of these choices can be made less informa-
tive by increasing c.

For asset pricing linear factor models, we include the intercept as a factor,
and therefore specify a different prior variance for the first component of each βi

(i.e. the alpha of each regression), in order to have a reasonable prior from an
economic point of view. In our applications we have chosen β̃ ∼ N(0, cI) with
different choices for c, while choosing a prior variance for the first component
that reflects a prior range of between -5% and 5% for the implied annual alphas.

The standard choice for the prior for Σ is to set ν0 = N and Φ0 = I. Another
possibility is to choose the parameters so that the prior variance will be equal to
a given number, which may come from knowledge of the problem. For the prior

13An alternative approach is to apply a Metropolis-within-Gibbs step of the type suggested by
Brown et al. (2002), see also George & McCulloch (1997) .
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of π j, the prior probability that predictor j is included in the model, we choose
an equal probability of 1

2 for all factors. This prior reflects the lack of knowledge
about the inclusion of the predictors, and implies that any model, regardless of its
size, has an equal prior probability of 1

2K . Prior information regarding predictors
the analyst knows should be included in the model can be incorporated by letting
π j = 1. For example, if we want to reflect a prior belief that the market factor
should always be included, we can set the corresponding π j equal to 1.

2.3. Comparison with other variable selection models
The model we propose has two main differences compared to other approaches.

The first one is that we do not follow the hierarchical structure as in Brown
et al. (1998); Smith & Kohn (2000); Ouysse & Kohn (2010); Wang (2010); Ando
(2011) and Puelz et al. (2017). This results in perhaps the simplest model for vari-
able selection in SUR models, with the advantage that it does not require complex
tuning of the hyperparameters.

Another important aspect is that our specification focuses on finding a single
set of predictors for the N equations, while other authors such as Wang (2010) and
Puelz et al. (2017) propose models that can identify different sets of predictors for
each equation. Since it is possible to make inference about which variables matter
for each asset (equation) by summarizing the posterior distribution of θi = βi � γ,
we are able to identify common pricing factors in the multi-factor models.

3. Data and Factor Construction

3.1. Firm Characteristics and Factor Construction
We start by replicating the database of firm characteristics used by Green et al.

(2017)14. We obtain data on 94 firm characteristics as well as monthly stock prices
and returns for all available U.S. stocks by combining information from the CRSP,
Compustat and I/B/E/S databases. Following Green et al. (2017), characteristics
are updated on a monthly basis using the available accounting information15. The
data covers the period from January 1980 to December 2016, a total of 37 years
(444 months). The complete set of characteristics, as well as the original refer-
ences, are listed on Table C.11 in the Appendix.

Using these data, we calculate monthly returns for 82 tradable factors by sort-
ing stocks into deciles based on each of the corresponding characteristics. We do

14We thank Jeremiah Green for making his SAS code available online.
15The details are described in pg. 4398 of Green et al. (2017)
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not calculate tradable factors for characteristics for which deciles would not be
meaningful; we exclude characteristics which are indicator variables, whose dis-
tribution has only a few distinct values, or which have too many missing values16.
The factor returns are the differences between the value-weighted returns on the
highest and lowest decile portfolios17.

In the calculation of factor returns, we consider all common stocks listed on
the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX),
and NASDAQ. We exclude financial stocks (Standard Industrial Classification
code from 6000 to 6999) because the accounting practices and variables of the
financial sector are not compatible with those of the other sectors. We also ex-
clude microcap stocks, defined as any stocks for which the latest available market
capitalization is lower than the 20th percentile of market cap using all NYSE
stocks. In addition to these calculated factors, we also consider the market excess
return18. Since we also consider the intercept as a factor for the purposes of our
Bayesian variable selection procedure, the total number of factors is 84. Due to
differences in data availability, different factors are available for different periods.
In particular, factors whose construction relies on I/B/E/S variables are available
only more recently.

3.2. Test Assets
Our main results are obtained using as test assets all available non-microcap

stocks in the period being analyzed. The data on individual stocks’ returns was
obtained from the Center for Research in Stock Prices (CRSP) data file. When
dealing with individual stocks there is a potential survivorship bias, and thus we
do not carry out the analysis with the full sample, which would contain only the
stocks that survived throughout the whole period of almost 40 years. Instead,

16The characteristics for which we do not calculate tradable factors are convind (convertible
debt indicator), divi (dividend initiation), divo (dividend omission), dy (dividend yield), ipo (new
equity issue), nincr (number of earnings increases), rd (R&D increase), rd mve (R&D to market
capitalization), rd sale, secured (secured debt), securedind (secured debt indicator) and sin (Sin
stocks).

17We follow this procedure for all characteristics; therefore for some characteristics the expected
factor premium may be positive (e.g. book-to-market ratio) or negative (e.g. market value of
equity).

18The market excess return is taken from Prof. French’s data library. It is calculated as the
excess return on the market, value-weight return of all CRSP firms incorporated in the US and
listed on the NYSE, AMEX, or NASDAQ that have a CRSP share code of 10 or 11 at the beginning
of month t, minus the one-month Treasury bill rate.
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we consider subsample periods to minimize survivorship bias and capture time
variation in factor selection. When deciding the length of the subsamples, we are
faced with a trade-off between precision (using more data to conduct inference on
factor selection) and the potential for survivorship bias. We also face a natural
limit given the large number of candidate factors i.e. the number of months in
each subsample should not be too low relative to the number of factors.

We consider two different approaches to balance these concerns. First, we di-
vide our sample into three subsamples of 144, 144 and 156 months each, respec-
tively, and apply the methodology using all available factors in each subperiod.
This approach allows us to study a larger set of candidate factors, with some re-
duction in survivorship bias. The second approach consists of dividing the sample
into 5 subsamples, with the first 4 containing 90 months each, and the last con-
taining 84 months. Given the shorter time series, we consider a reduced set of
candidate factors, by choosing as candidate factors only the factors that shown
significance in any of the regressions of Green et al. (2017)19.

In each of these subsample periods, we exclude all stocks that have a price
lower than US$1 at the beginning of that subsample period, to remove any unde-
sirable effect from penny stocks. For robustness purposes, we later also investigate
factor selection within the group of microcap stocks.

For comparison with previous studies and to assess differences in factor se-
lection when portfolios of stocks are used, rather than individual stocks, we also
consider an extensive set of portfolios formed by sorting stocks according to dif-
ferent criteria. The data on the portfolios was obtained from Kenneth French’s
data library20. The portfolios are listed in Table 1. The portfolio formation crite-
ria include portfolios formed on univariate and bivariate sorts, as well as industry
classification. The total number of portfolios considered is over 300.

[Table 1 about here.]

3.3. Preliminary Analysis of Candidate Factors
Table 2 reports basic descriptive statistics for the factors used in this study.

For each factor, we calculate and report statistics using all the available returns.
We calculate Dependent False Discovery Rate (DFDR) p-values using the method

19This reduces the number of total candidate factors to 55, after we include the market excess
return and the intercept.

20http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.

html
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of Benjamini & Yekutieli (2001), which takes into account the fact that multiple
tests are being run simultaneously. The factors with a DFDR p-value inferior to
0.05 are shown in bold, and the corresponding t-statistic includes an asterisk.

The average returns on tradable factors based on well-known characteristics
such as mve (market cap), bm (book-to-market ratio) and mom12m (12-month
momentum) are in line with numbers reported on the literature. It is noteworthy
that only 6 of the 83 factors are significant when DFDR p-values are considered,
despite the fact that 27 factors have t-statistics higher than 2.0 in absolute value,
reflecting the much higher burden of significance when multiple testing is taken
into account. These factors are: acc (working capital accruals), chcsho (change in
shares outstanding), chinv (change in inventory), invest (capital expenditures and
inventory), nanalyst (number of analysts covering stock), and sfe (scaled earnings
forecast). Despite the differences in approach with respect to Green et al. (2017),
we note that half of the tradable factors that we find significant are also significant
characteristics in their univariate cross-sectional regressions. The exceptions are
acc, nanalyst, and sfe.

On the other hand, some characteristics which are significant in their univariate
regressions do not result in tradable factors with significant returns, although most
have large t-statistics. This is the case of agr (asset growth, t-stat = -2.9), chatoia
(industry-adjusted change in turnover, t-stat = 2.85), ear (earnings announcement
return, t-stat = 2.93), egr (growth in common shareholder equity, t-stat = -2.84),
grcapx (growth in capital expenditures, t-stat -2.70), grltnoa (growth in long term
net operating assets, -3.20), pchsalepchnvt (change in sales - change in inventory,
t-stat = 1.58), and sue (unexpected quarterly earnings, t-stat = 2.57).

[Table 2 about here.]

Table 3 reports statistics of the absolute pairwise correlations between the fac-
tors. We consider the longest period for which data is available for the set of 83
factors, a total of 114 months from July 2007 to December 2016. There are 3403
total pairwise correlations. The median absolute correlation is 0.179, and 90% of
all absolute correlations are below 0.498. We also report the 10 largest absolute
correlations. We note that only 4 correlations are higher than 0.90. Overall, we do
not find a pattern of extreme correlations within the set of factors. Figure 2 plots
the distribution of the absolute correlations.

[Table 3 about here.]

[Figure 1 about here.]
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3.4. Stability of Factor Returns Over Time
An interesting question concerns the performance of portfolios formed by

combining the tradable factors. Similar approaches are used by many quantita-
tive hedge funds, who attempt to explore factors such as the ones considered in
this study. Green et al. (2017) use firm characteristics to forecast individual stock
returns in cross-sectional regressions, and form hedge portfolios that buy (sell) the
stocks with highest (lowest) predicted return. They find statistically and economi-
cally significant returns from such a strategy, which however seem to be confined
to the pre-2003 period.

We consider this question by forming equally-weighted portfolios of factors
considering two approaches21. In the first approach, we attempt to include every
factor available at each point in time. That is, for each month t, starting in January
1981, we form an equally-weighted portfolio of all factors with valid data from
t − 12 to t − 1. Each factor is bought or sold according to the direction or sign as
reported in the literature, i.e. we do not attempt to “time” factors or only consider
the ones with positive returns22. We refer to this portfolio of factors as AF (All
Factors). In the second approach, we test the significance of each factor using
rolling 10-year windows, and form portfolios that invest only in the significant
factors. That is, for each month t, starting in January 1990, we test the significance
of factors with valid data from t − 120 to t − 1, and construct equally-weighted
portfolios of the factors for which the p-value is lower than 0.05. We refer to the
portfolio obtained under this approach as SF (Significant Factors).

Table 4 reports statistics for the AF and SF portfolios for the full sample, the
pre-2003 and post-2003 periods. We note that the SF portfolio is available start-
ing in 1990, while the AF portfolio is available from 1981. For the purposes
of this analysis, we consider different methodologies of factor construction. In
Panel A, we report results when the factors are value-weighted decile hedge port-
folios constructed using NYSE breakpoints for the characteristics, and all avail-
able stocks. In Panel B, we report results using equally-weighted factors based
on non-microcap breakpoints and all non-microcap stocks. Finally, Panel C re-
ports results for equally-weighted factors using NYSE breakpoints and all stocks.

21Although we form equally-weighted portfolios of factors, the factors themselves are value-
weighted.

22Some of the characteristics do no have a clear sign in the original study in which they we
published. One example is salecash (sales-to-cash), as reported in Ou & Penman (1989), which
has opposite signs in different periods in their study. In these cases, we disregard the associated
factor.
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Therefore, similar to Green et al. (2017), it is possible to investigate the influence
of microcap stocks on the factor premia.

The magnitude of the monthly returns of the AF and SF portfolios is much
lower than the ones reported in Green et al. (2017), which is not surprising given
the differences in the approaches, and the fact that their approach is specifically
designed to forecast individual stock returns using all firm characteristics. Despite
this difference, the results are qualitatively identical, and show that the returns
on factors constructed using firm characteristics are significant only during the
pre-2003 period, except when factors are equally-weighted and include microcap
stocks.

For example, in Panel A, the average raw monthly return of the AF portfolio
over the full sample is 0.24%, with a standard deviation of 0.95%, which results
in a significant t-statistic of 5.36. The SF portfolio has a similar average return of
0.22%, however with much higher volatility (std. deviation = 1.70%), resulting
in a much lower t-statistic of 2.36. The average returns of the two portfolios in
the pre-2003 period are much higher than in the post-2003 period, and in the post-
2003 the returns are not statistically significant. The results with equally-weighted
factors excluding microcaps (Panel B) are quite similar.

When microcap stocks are allowed and factors are equally-weighted (Panel
C), we find higher and more statistically significant average returns, particularly
for the SF portfolio. For example, the average return of the SF portfolio over the
full sample in Panel C is 0.54%, compared to 0.22% in Panel A. Additionally,
the returns of both the AF and SF portfolios remain significant in the post-2003
period, although average returns are less than half of those in the pre-2003 period.

Overall, these results confirm those obtained by Green et al. (2017) using
cross-sectional regression forecasts, and may reflect increased arbitrage activity
as suggested in that study. As it relates to factor selection, these results suggest
that it is unlikely that a large number of factors based on characteristics would
be consistently selected over time to explain non-microcap stocks, while some
factors might be relevant only to explain microcap stocks, specially after 2003.

[Table 4 about here.]

[Figure 2 about here.]

4. Selection of Asset Pricing Factors

This section reports our main empirical findings. First, we report the results
using individual stocks, followed by the results using portfolios. Our main results
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have been obtained using an empirical Bayes prior for the factor sensitivities, i.e.
we center each βi around their OLS estimate by setting βi ∼ N((X′X)−1X′ri, ci(X′X)−1),
with ci = 1, while choosing a prior variance for the first component of β̃ that re-
flects a prior range between -5% and 5% for the annual alphas. We consider an
equal prior probability for each factor: π j = π = 0.5. The results for individual
stocks are based on 10,000 iterations of the MCMC algorithm, while those for
portfolios are based on 50,000 iterations. In the end of this section we analyze the
robustness of our results with respect to these choices.

4.1. Individual Stocks as Test Assets
In this section, we apply our Bayesian variance selection methodology using

all available individual stocks and considering the two approaches to choosing
subsamples and the initial set of candidate factors, as explained in Section 3.2.

For each subsample, we consider all available non-microcap stocks with valid
data over the whole subsample. We do not include any stocks with price below
US$1. By focusing on individual stocks, we eliminate the biases inherent in us-
ing portfolios formed on characteristics which may be related to the factors we
study, as discussed by Lo & Mackinlay (1990), Ferson et al. (1999), Berk (2000),
Lewellen et al. (2010) and others. We consider all available factors within each
subsample, i.e. all factors with valid data in the period.

4.1.1. Results using three subsamples and the full set of factors
We start by analyzing the results obtained when we consider three subsamples,

and the set of all factors in each one of them. The results are reported in Table 5.
The three subsamples comprise the following periods: January 1980 to December
1991, January 1992 to December 2003, and January 2004 to December 2016. The
total number of stocks in each period are 807, 893 and 967, respectively, while
the number of candidate factors are 75, 81 and 83.

[Table 5 about here.]

For all periods, we find that parsimonious models with at most 5 factors are
selected by our Bayesian variable selection procedure. This is quite surprising,
as the number of possible models is enormous, varying from 275 in the first sub-
period to 281 in the last subperiod. However, we do not find that a single model
or factor (other than the market factor) is consistently selected across subsamples.
Additionally, we find that, out of the large number of candidate factors, only 10
are ever selected. The factors are mkt (the market return), chmom (change in
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6-month momentum), mom1m (1-month momentum), ms (Mohanram (2005a)’s
financial statement score), ep (earnings-to-price ratio), tb (tax income to book in-
come), aeavol (abnormal earnings announcement volume), pctacc (percent accru-
als), chanalyst (change in number of analysts covering stock), and herf (industry
sales concentration). Of these, only 5 have high marginal posterior probability
(above 0.5): mkt, chmom, chanalyst, herf, and mom1m23.

During the first subsample, from January 1980 to December 1991, there is a
substantial amount of model uncertainty, as the posterior probability of the best
model is quite low. The best model includes the market factor and chmom (change
in 6-month momentum), with a posterior probability of 0.24. Other models in-
clude either mom1m (1-month momentum) and/or ms (Mohanram (2005a)’s fi-
nancial statement score). Lower probability models include other factors formed
on ep (earnings-to-price) or tb (tax income to book income). The only factors that
have a marginal posterior probability higher than 0.5 (our prior) during this period
are the market factor and chmom (change in 6-month momentum).

In the second subsample, which comprises the period January 1992 to Decem-
ber 2003, model uncertainty is much lower, with the best model including only
the market factorm, i.e. the CAPM, with a high posterior probability of 0.64. The
second best model includes aeavol (abnormal earnings announcement volume) or
pctacc (percent accruals), the latter with very low posterior probability.

Finally, in the last subsample, from January 2004 to December 2016, model
uncertainty is very low, as the best model, which includes 4 factors, has a 0.96 pos-
terior probability. In addition to the market return, this model includes chanalyst
(change in number of analysts covering stock), herf (industry sales concentration)
and mom1m (1-month momentum)24.

We summarize these results as follows. First, factor selection varies quite a
lot through time, with no specific model dominating the others. The only factor
for which we find consistent evidence across all subsamples is the market ex-
cess return. The only other factor to be selected in more than one subsample is
mom1m (1-month momentum), which is included in the best models in the first
and last subsamples. Second, the high posterior probability models typically do
not include the additional factors (other than the market return) in widely used
factor models such as the ones proposed by Fama & French (1992, 1996), Chen

23The marginal posterior probabilities are available upon request.
24We note that there is a small posterior probability (0.04) that the intercept might be required

in the second best model.
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& Zhang (2010), Hou et al. (2015b) and Fama & French (2015). The additional
factors that are selected to explain individual stocks are related to other anomalies
or characteristics such as short-term reversal, momentum, earnings announcement
volume, change in the number of analysts covering stocks, and industry concen-
tration. Third, the total number of factors selected in these models over all sub-
samples is small relative to the total number of candidate factors. Only 10 factors
(out of more than 80) are ever selected by the variable selection methodology, and
from these, only 5 have a marginal posterior probability higher than 0.5.

4.1.2. Results using five subsamples and the reduced set of factors
We now turn to the results obtained when we consider five shorter subsamples,

and the reduced set of factors formed on characteristics which are significant in
Green et al. (2017) . The results are reported in Table 6. The five subsamples
comprise the following periods: January 1980 to June 1987, July 1987 to Decem-
ber 1994, January 1995 to June 2002, July 2002 to December 2009, and January
2010 to December 2016. The number of stocks varies from 1,014 in the first sub-
sample to 1,225 in the last subsample, while the number of factors varies from 44
to 49.

[Table 6 about here.]

The results shows similarities with those using 3 subsamples and the full set
of candidate factors. We find that parsimonious models, this time with at most
4 factors, are selected by our Bayesian variable selection procedure, and that no
single model or factor (other than the market factor) is consistently selected across
subsamples. Additionally, we find that, out of the large number of candidate fac-
tors, only 10 factors (out of almost 50) are ever selected by the variable selection
methodology. These are: mkt (market excess return), chmom (change in 6-month
momentum), mom1m (1-month momentum), ear (earnings announcement return),
pctacc (percent accruals), aeavol (abnormal earnings announcement volume), bm
(book-to-market), sue (unexpected quarterly earnings), pchsale pchrect (change
in sales - change in A/R) and mve ia (industry adjusted size). From these, only 6
have marginal posterior probabilities higher than 0.5 (mkt, chmom, ear, mom1m,
mve ia, and sue).

Starting in Panel A, during the first subsample the variable selection method-
ology converges to a single model, which includes the mkt (market excess return)
and chmom (change in 6-month momentum) factors. Panel B shows that, during
the period from July 1987 to December 1994, these two factors are also selected,
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however the ear (earnings announcement return) and mom1m (1-month momen-
tum) factors are also important. Model uncertainty is still very low, with only two
models having relevant posterior probabilities.

The next three subsamples show much higher model uncertainty, and different
factors are included in the best models. In the period from January 1995 to June
2002 (Panel C), the best model includes only the market return (i.e. the CAPM),
with a posterior probability of 0.44. The next best models add either pctacc (per-
cent accruals), mom1m (1-month momentum), or aevol (abnormal earnings an-
nouncement volume), although with much lower probabilities.

During the period from July 2002 to December 2009 (Panel D), the best model
includes the market return and sue (unexpected quarterly earnings), with a poste-
rior probability of 0.44. The next best models include bm (book-to-market) or
pchsale pchrect (change in sales - change in A/R), but these also have low poste-
rior probability.

Finally, in the last period, from January 2010 to December 2016, we see more
ambiguity regarding the best model, as the posterior probabilities of the three
best models are quite similar (0.36, 0.28, and 0.24). The best models include, in
addition to the market return, mom1m (1-month momentum), mve ia (industry-
adjusted market value of equity), sue (unexpected quarterly earnings) or a combi-
nation thereof.

These results are quite similar to those obtained in Section 4.1.1. The only
factor for which we find consistent evidence for all subsamples is the market
excess return. Other factors which are selected in some subsamples, such as
chmom (change in 6-month momentum), sue (unexpected quarterly earnings) and
mom1m (1-month momentum), are not those in models such as FF5 and HXZ.
Exceptions are the inclusion of bm (book-to-market) in Panel D (although with
low posterior probability) and a size factor (mve ie) in Panel E. The additional
factors that are selected to explain individual stocks are related to other anomalies
such as short-term reversal, earnings announcement returns, surprise earning etc.

4.1.3. Which factors explain the returns on microcap stocks?
Our main results were obtained with non-microcap stocks, as including a large

number of microcap stocks, which represent only a small share of the whole mar-
ket, would bias the results. Our previous exploratory analysis of the tradable
factors in Section 3.4 suggests that some factors remain significant only in the
microcap space, especially more recently. Therefore, in this section, we apply our
methodology to the set of all microcap stocks in each subsample, to investigate
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which factors are important to explain their returns25.

[Table 7 about here.]

The results are reported in Table 7. There are similarities between the fac-
tors selected in each subsample to explain microcap stocks, relative to the ones
selected for non-microcap stocks in Table 6. For example, chmom (change in
6-month momentum) is selected for both groups of stocks during the first sub-
sample and ear (earnings announcement return) is selected in the second subsam-
ple. One interesting result is that, during the period January 1995 to June 2002
(Panel C), the two highest posterior probability models do not include the market
return factor. The two best models, with together represent a posterior probability
of 0.88, include aeavol (abnormal earnings announcement volume) and chanalyst
(change in number of analysts covering stock). We note that this period includes
the high-tech bubble of the 1990s. A possible explanation is that the microcap
universe during this period includes a high number of small technology stocks
whose prices were extremely sensitive to these variables during this unusual pe-
riod, and not very sensitive to overall market movements, as many investors were
captivated by the possibility of finding the next “hot” technology stock (during the
build-up of the bubble) or concerned about any news regarding their technology
stocks during the bursting of the bubble.

Overall, many of our remarks regarding the results for non-microcap stocks
also apply for the microcap universe: a small number of factors is selected overall,
and they are not the factors in widely used factor models.

4.2. Portfolios as Test Assets
In this section, we report the results from applying the Bayesian variable se-

lection procedure to each set of portfolios described in Table 1. For the whole
sample from 1980 to 2016, the best model for each set of portfolios and the asso-
ciated posterior probabilities are reported in Table 8.

[Table 8 about here.]

We note that model uncertainty varies significantly across the different sets
of portfolios. The posterior probability of the best model varies from 0.10 for

25We report results for five subsamples and the reduced set of factors. The results with three
subsamples and the full set of factors do not differ significantly and are available upon request.
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the portfolios formed using a univariate sort on long-term reversal to 0.57 for the
portfolios formed using a univariate sort on operating profitability. The results
reveal that, when portfolios are formed on firm characteristics, factors related to
these characteristics are typically included in the best models. In untabulated
results, we calculated the average posterior probability of all factors across all
sets of portfolios. The results show than the only factor with an average posterior
probability higher than 0.5 is the market excess return, which reflects the results
we obtained using individual stocks.

4.2.1. Portfolios formed on univariate sorts
The results show that none of the high posterior probability models include

the intercept, which is not surprising given the large set of candidate factors we
employ. The best models for sets of portfolios formed on univariate sorts typically
include the market return and at least one factor directly related to the firm char-
acteristic in question, or highly correlated with it. For example, the best model
to explain portfolios formed on size includes mve ia (industry-adjusted size); for
portfolios formed on book-to-market, the bm factor is included; for portfolios
formed on operating profitability, roic (return on invested capital), which is highly
correlated with the factor formed on roe (return on equity), is included, and so on.
This pattern holds for every single portfolio formed on univariate sorts.

For portfolios formed on past return data (momentum, short and long-term re-
versal), the best models include the correlated factor formed on past returns. For
example, the mom12m (12-month momentum) factor is selected for the portfo-
lios formed on momentum portfolios, the mom1m (1-month momentum) factor is
selected for the short-term reversal portfolios, and the mom36m (36-month mo-
mentum) factor is selected for the portfolios formed on long-term reversal.

Finally, for the portfolios formed on beta, variance, and residual variance, the
beta, retvol (return volatility) and idiovol (idiosyncratic return volatility) factors,
respectively, are selected.

4.2.2. Portfolios formed on bivariate sorts
Moving to portfolios formed on double sorts, we obtain similar results. For

example, the 25 Fama-French portfolios formed on size and book-to-market re-
quire a size factor (mve ia) and lev (leverage, which has almost 0.70 correlation
with the bm factor). We note that even for the portfolios formed on characteristics
related to widely used factor models, the best models also include other factors,
suggesting many possible factor models may be able to explain these portfolios
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as well as, or better, than the models proposed by, for example, Fama & French
(2015), Hou et al. (2015b), and others.

The pattern of dependence between the variable used for portfolio forma-
tion and the selected factors reflects the concerns expressed by Lo & Mackinlay
(1990), Ferson et al. (1999), Berk (2000), Roll (1977) and Lewellen et al. (2010)
in the context of bias in asset pricing tests, and suggests caution in interpreting
these results. A similar conclusion is reached by Harvey & Liu (2016). They
argue that dispersion in portfolios is largely driven by a few portfolios dominated
by small stocks, which leads asset pricing tests to identify factors that can explain
these extreme portfolios.

Overall, our interpretation of these results is that the use portfolios of stocks
formed on firm characteristics to carry out factor selection or model comparison,
an approach commonly used in many studies, is not advisable and introduces
significant biases.

4.2.3. Sector Portfolios
One set of portfolios that may mitigate this problem to some extent is the set of

49 industry portfolios, since these portfolios are not directly constructed based on
characteristics related to factors (although industry portfolios will naturally have
factor tilts).

The results for this set of portfolios support a five-factor model with the market
factor, and factors related to beta, illiquidity, leverage and organizational capital26.
The inclusion of the factor formed on beta for this and other sets of portfolios
suggests that, despite being the most important factor across all portfolios, when
portfolios are used, the market return is not priced as predicted by the CAPM.

4.3. Robustness of Results
We perform robustness test by varying the value of c, a scaling parameter

related to the prior variance of the regression coefficient vector β. Our main results
were obtained using c = 1. In this section, we obtain results with c = 5, a much
less informative prior, in order to investigate whether our procedure is sensitive to
the choice of this parameter. We perform the calculations for non-microcap and
microcap stocks using the five subsamples, and for each set of portfolios using the
whole sample.

26The corresponding characteristic is capitalized SG&A expenses, see Eisfeldt & Papanikolaou
(2013).
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The results for non-microcap stocks with c = 5 are identical to those with
c = 1 in terms of factor selection and model probabilities, indicating that for this
group of assets, our procedure is not sensitive to the choice of this parameter. We
omit the results. For microcap stocks, the results are reported in Table 9, and are
identical to those obtained with c = 1 and reported in Table 7, with the exception
of a small difference in the first subsample, where the model with the market factor
has a posterior probability of 0.64, compared to 0.44.

[Table 9 about here.]

Table 10 reports the best models and associated posterior probabilities for the
different sets of portfolios when the procedure is run with c = 5. In most cases,
the best model includes fewer factors compared to the results obtained with c = 1,
which is expected as the prior is less informative. In a few cases, some factors are
dropped and others are included, however the pattern we reported previously is
kept, i.e. factors related to the characteristics used for portfolio formation remain
in the model. Another difference is that model uncertainty is smaller, in the sense
that the best models have higher posterior probabilities, which reflects the fact
that, as the prior becomes more diffuse, fewer factors are selected, increasing
model probabilities.

[Table 10 about here.]

Overall, we conclude that our results are not sensitive to the prior specification,
particularly for individual stocks, where we find virtually identical results.

4.4. Comparison with Other Studies
Although there have been several studies that apply a Bayesian approach to as-

set pricing, comparison is challenging due to the differences in data, both in terms
of factors as well as test assets. Specifically, compared to previous studies that
use a Bayesian variable selection procedure to identify asset pricing factors (Eric-
sson & Karlsson (2003), Ouysse & Kohn (2010), Puelz et al. (2017)), the most
important difference is that we also apply our method to thousands of individual
stocks, while these studies only use portfolios. Another relevant difference is that
Ericsson & Karlsson (2003) and Ouysse & Kohn (2010) include macroeconomic
factors, while we chose to focus on tradable factors based on cross-sectional pat-
terns reported in the literature. Our set of candidate factor is also much larger.

Our tests using a large collection of sets of portfolios revealed a strong pattern
of dependence between the portfolio formation criteria and the selected factors,
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suggesting skepticism in interpreting results of studies that apply these techniques
using portfolios which are related to the candidate factors. Our results using a set
of 49 industry portfolios (which are not directly formed based on sorting account-
ing or return characteristics) suggest a model which includes, in addition to the
market factor, factors related to beta, illiquidity, leverage, and organizational cap-
ital. In comparison, e.g. Ericsson & Karlsson (2003)’s results using 10 industry
portfolios support the Carhart model with the addition of macroeconomic factors
(credit risk spread and industrial production). For portfolios formed on size and
book-to-market ratio, our results are comparable to Puelz et al. (2017) and Er-
icsson & Karlsson (2003), but not surprisingly they favor model which include
factors (co)related to size and book-to-market, with the addition of illiquidity in
our case.

Recently, Barillas & Shanken (2017) developed a Bayesian asset pricing test
which can be calculated in closed form and, in principle, be used to test all possible
models using a set of candidate factors. However, in their empirical tests they
only considered the factors in FF5, HXZ, as well as a different version of HML
proposed by Asness & Frazzini (2013) and momentum (a total of 10 factors).
Their tests, conducted on the factors themselves and on sets of portfolios formed
on either size and momentum or book-to-market and investment, support a six-
factor model with the market return, the HXZ versions of investment (IA) and
profitability (ROE), the FF5 version of size (SMB), the modified HML factor from
Asness & Frazzini (2013), and the momentum factor. Given the issues we identify
when using portfolios of stocks, these results are not unexpected, as the portfolios
are related to the factors.

Since we build tradable factors based on the characteristics studied by Green
et al. (2017), it is interesting to compare our results with theirs. They iden-
tify 9 characteristics which are significant determinants of non-microcap stocks
returns27. In comparison with our results, the only commonalities are earnings
announcement return and 1-month momentum, while we also find that change in
6-month momentum, market value of equity, and unexpected quarterly earnings
are important factors, at least for some periods. When they include microcaps,
3 additional characteristics (book-to-market, change in 6-month momentum, and
zero trading days) are also significant. There are similarities with our results,

27These are cash, change in the number of analysts, earnings announcement return, one-month
momentum, the number of consecutive quarters with an increase in earnings over the same quarter
a year ago, annual R&D to market cap, return volatility, share turnover, and volatility of share
turnover.
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as we find that change in the number of analysts, earnings announcement, and
change in 6-month momentum are important factors to explain microcap stocks.
However, our results suggest that these factors are not consistently selected in dif-
ferent subsamples. Also, similarly to Green et al. (2017), we find that the factors
from prominent models such as FF and HXZ are not relevant to explain individual
stocks. Finally, the returns on our tradable factors confirm their results that fac-
tor premia or predictability of these characteristics appears to be significant only
during the pre-2003 period.

Our work is also related to recent studies that test factors using procedures
to directly account for data mining issues. For example, using a multiple testing
framework based on a bootstrapping procedure with individual stocks, Harvey &
Liu (2016) test a set of 14 factors that includes many of the ones in our study,
and find evidence that the most important factor is, by far, the market return, with
only a small role for the profitability factor. We note that, while Harvey & Liu
(2016)’s approach and set of factors is quite different from ours, their conclusion
regarding the importance of the market return for individual stocks is mirrored in
our results.

5. Conclusion

The asset pricing literature has proposed hundreds of factors to explain asset
returns, most within the last ten years. It is unlikely that so many factors mat-
ter to determine security prices; rather, some are likely to be redundant, while
others (or even most) may be product of data mining. In this paper we propose
a Bayesian variable selection methodology to explore the most promising linear
factor models, given a set of candidate factors and a set of assets. The proposed
methodology builds on the literature on Bayesian variable selection in multivari-
ate regression models and provides a computationally feasible means of exploring
model selection in large panels of data.

We apply the methodology to identify the most relevant factors to explain
returns on individual stocks, as well as an extensive set of portfolios. We consider
a large set of 83 candidate factors, including 82 tradable factors based on various
firm characteristics identified in the literature, as well as the original factor, the
market return suggested by Sharpe (1964). Our results using different sets of
portfolios reveal a strong pattern of dependence between the portfolio formation
criteria and the factors included in the models with highest posterior probability.
We interpret this as related to the concerns expressed by Lo & Mackinlay (1990),
Ferson et al. (1999), Berk (2000), Roll (1977) and Lewellen et al. (2010), in
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the context of bias in asset pricing tests when the test assets are portfolios formed
on variables related to the factors being tested. These results suggest caution in
the application of Bayesian variable selection models using portfolios of assets,
an approach that many previous studies follow. Because of this, we focus on the
results using individual stocks, which we believe are much more robust.

Using individual stocks, we find that (i) the only factor for which there is
consistent evidence across all subsamples is the market excess return; (ii) fac-
tor selection varies quite a lot through time, with no specific model dominating
the others in the various subsamples we use; (iii) other factors (in addition to the
market return) which are selected for specific subsamples are not the factors in
widely used models such as the ones proposed by Fama & French (1992, 1996),
Chen & Zhang (2010), Hou et al. (2015b) and Fama & French (2015). The ad-
ditional factors that are selected in certain periods to explain individual stocks are
related to other anomalies or characteristics such as short-term reversal, change in
6-month momentum, earnings announcement return, change in the number of an-
alysts covering stocks, industry concentration, unexpected quarterly earnings, and
industry-adjusted size; (iv) the total number of factors selected in these models
over all subsamples is small relative to the total number of candidate factors, i.e.
only 10 factors (out of more than 80) are ever selected by the variable selection
methodology, and from these, only 5 to 6 have a marginal posterior probability
higher than 0.5; and (v) the factors that matter to explain microcap stocks include
factors formed on change in six-month momentum, abnormal earnings announce-
ment volume and change in number of analysts covering stock.

Our work builds on the literature on asset pricing factor selection, by showing
that, despite the large number of factors that have been proposed, only a handful
appear to explain the returns on individual stocks, with the market return remain-
ing the most important factor. We leave for future research refinements of the
model to allow even more efficient exploration of the model space when the num-
bers of factors and assets are large.
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Figure 1: Histogram of absolute pairwise factor correlations

The figure plots the distribution of the pairwise absolute correlations of a set of 83 factors, includ-
ing 82 tradable factors based on value-weighted portfolios obtained by sorting all non-microcap
stocks into deciles based on several characteristics obtained following Green et al. (2017), and
the market excess return.
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Figure 2: Cumulative returns of portfolios of tradable factors

We construct portfolios of tradable factors based on firm characteristics using two approaches.
In the first approach (“All factors”), for each month t, starting in January 1981, all factors with
available data over the period t − 12 to t − 1 are combined in an equal-weighted portfolio. In
the second approach (“Significant factors”), for each month t, starting in January 1990, we test
the significance of factors with valid data from t − 120 to t − 1, and construct equally-weighted
portfolios of the factors for which the p-value is lower than 0.05. The figure plots the cumulative
returns of both portfolios.
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Table 1: Sets of Portfolios

The table shows the different sets of portfolios used to obtain posterior probabilities of mod-
els. All data was obtained from Professor Kenneth French’s data library (http://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html).

Portfolio formation # Portfolios
Univariate Sorts

Size 10
Book-to-market 10
Operating profitability 10
Investment 10
Earnings-to-price 10
Cashflow-to-price 10
Dividend Yield 10
Momentum 10
Short-term reversal 10
Long-term reversal 10
Beta 10
Variance 10
Residual variance 10

Bivariate Sorts

Size and book-to-market 25
Size and operating profitability 25
Size and investing 25
Book-to-market and operating profitability 25
Book-to-market and investment 25
Operating profitability and investment 25

Industry Portfolios

Industries 49
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Table 2: Statistics of Candidate Tradable Factors

We construct 82 tradable factors based on value-weighted portfolios obtained by sorting all non-
microcap stocks into deciles based on several characteristics obtained following Green et al.
(2017). The factors are obtained as the difference between the highest and lowest deciles. We
also report statistics for the market excess return factor, calculated as the excess return on the
market, value-weight return of all CRSP firms incorporated in the US and listed on the NYSE,
AMEX, or NASDAQ that have a CRSP share code of 10 or 11 at the beginning of month t, mi-
nus the one-month Treasury bill rate. The table reports the first date at which the factor has been
calculated, the total number of months, the average monthy return, the standard deviation, and the
t-statistic. An */bold line denotes a Dependent False Discovery Rate (DFDR) p-value lower than
0.05, calculated using the method of Benjamini & Yekutieli (2001).

Factor
First
Date #Months

Average
Return

Standard
Deviation Tstat Factor

First
Date #Months

Average
Return

Standard
Deviation Tstat

mkt 198001 444 0.65% 4.46% 3.05 lev 198001 444 0.27% 4.47% 1.29
absacc 198001 444 0.06% 3.58% 0.33 mom12m 198001 444 0.68% 7.40% 1.93
acc 198001 444 -0.45% 2.61% -3.61* mom1m 198001 444 -0.27% 5.39% -1.06
aeavol 198001 444 0.00% 2.69% 0.00 mom36m 198001 444 -0.58% 5.22% -2.35
age 198001 444 0.04% 4.46% 0.20 ms 198001 444 0.16% 3.25% 1.02
agr 198001 444 -0.45% 3.30% -2.90 mve 198001 444 -0.52% 4.68% -2.36
baspread 198001 444 -0.10% 8.25% -0.26 mve ia 198001 444 -0.16% 3.22% -1.06
beta 198001 444 -0.06% 8.79% -0.14 nanalyst 200707 114 -0.91% 2.27% -4.26*
bm 198001 444 0.44% 4.46% 2.09 operprof 198001 444 0.36% 2.98% 2.52
bm ia 198001 444 0.29% 4.44% 1.38 orgcap 198001 444 0.58% 5.29% 2.32
cash 198001 444 0.27% 4.68% 1.23 pchcapx ia 198001 444 -0.13% 3.80% -0.74
cashdebt 198001 444 0.11% 3.42% 0.71 pchcurrat 198001 444 -0.22% 1.74% -2.67
cashpr 198001 444 -0.40% 3.38% -2.47 pchdepr 198001 444 0.16% 2.34% 1.42
cfp 198001 444 0.47% 4.90% 2.01 pchgm pchsale 198001 444 0.20% 2.36% 1.78
cfp ia 198001 444 -0.05% 4.27% -0.24 pchsaleinv 198001 444 0.20% 2.34% 1.83
chatoia 198001 444 0.34% 2.52% 2.85 pchsale pchinvt 198001 444 0.17% 2.29% 1.58
chcsho 198001 444 -0.51% 3.01% -3.54* pchsale pchrect 198001 444 0.08% 2.10% 0.77
chempia 198001 444 0.00% 2.97% 0.02 pchsale pchxsga 198001 444 -0.14% 2.83% -1.06
chfeps 198901 336 0.25% 3.73% 1.23 pctacc 198001 444 -0.17% 2.74% -1.28
chinv 198001 444 -0.57% 2.98% -4.05* pricedelay 198001 444 0.04% 2.59% 0.31
chmom 198001 444 -0.49% 4.64% -2.23 ps 198001 444 0.49% 4.24% 2.42
chnanalyst 198904 333 -0.02% 2.20% -0.20 realestate 198501 384 0.26% 4.57% 1.12
chpmia 198001 444 -0.17% 3.55% -1.02 retvol 198001 444 -0.31% 7.78% -0.83
chtx 198001 444 0.18% 3.15% 1.18 roaq 198001 444 0.37% 4.17% 1.87
cinvest 198001 444 0.07% 2.09% 0.66 roavol 198001 444 -0.18% 4.49% -0.86
currat 198001 444 -0.14% 4.59% -0.64 roeq 198001 444 0.34% 4.34% 1.63
depr 198001 444 0.06% 5.20% 0.23 roic 198001 444 0.35% 3.98% 1.84
disp 198901 336 -0.35% 5.00% -1.30 rsup 198001 444 -0.23% 3.53% -1.40
ear 198001 444 0.32% 2.33% 2.93 salecash 198001 444 -0.04% 4.26% -0.20
egr 198001 444 -0.43% 3.18% -2.84 saleinv 198001 444 0.25% 2.95% 1.80
ep 198001 444 0.29% 5.41% 1.14 salerec 198001 444 0.44% 3.51% 2.63
fgr5yr 198901 336 0.15% 6.59% 0.43 sfe 198901 336 -1.06% 4.88% -3.99*
gma 198001 444 0.17% 3.21% 1.11 sgr 198001 444 -0.15% 3.66% -0.86
grcapx 198001 444 -0.37% 2.88% -2.70 sp 198001 444 0.44% 4.25% 2.17
grltnoa 198001 444 -0.42% 2.76% -3.20 stdcf 198001 444 -0.28% 4.12% -1.42
herf 200001 204 -0.11% 4.29% -0.38 std dolvol 198001 444 0.24% 3.19% 1.57
hire 198001 444 -0.34% 3.33% -2.12 std turn 198001 444 0.00% 5.50% 0.00
idiovol 198001 444 -0.21% 7.82% -0.56 sue 198001 444 0.41% 3.34% 2.57
ill 198001 444 0.31% 3.78% 1.70 tang 198001 444 0.17% 3.89% 0.94
indmom 199408 269 0.26% 6.80% 0.63 tb 198001 444 0.10% 2.69% 0.81
invest 198001 444 -0.54% 3.08% -3.68* turn 198001 444 -0.10% 5.78% -0.38

zerotrade 198001 444 0.07% 5.53% 0.26
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Table 5: Posterior model probabilities obtained with individual stocks, 3 subsamples

We apply the Bayesian variable selection method to all stocks in each subsample and report the
models with the highest posterior probability. The set of candidate factors includes all available
factors in each subsample.

Panel A. January 1980 - December 1991, # stocks = 807, # factors =75

Model # Factors Posterior probability

mkt, chmom 2 0.24
mkt, mom1m 2 0.16
mkt, mom1m, ms 3 0.16
mkt 1 0.08
mkt, chmom, ms 3 0.08
mkt, chmom, mom1m 3 0.08
mkt, chmom, mom1m, ms 4 0.08
mkt, ep 2 0.04
mkt, ep, ms 3 0.04
mkt, chmom, tb 3 0.04

Panel B. January 1992 - December 2003, # stocks = 893, # factors = 81

Model # Factors Posterior probability

mkt 1 0.64
mkt,aeavol 2 0.32
mkt,aeavol,pctacc 3 0.04

Panel C. January 2004 - December 2016, # stocks = 967, # factors = 83

Model # Factors Posterior probability

mkt,chnanalyst,herf,mom1m 4 0.96
intercept,mkt,chnanalyst,herf,mom1m 5 0.04
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Table 6: Posterior model probabilities obtained with non-microcap stocks

We apply the Bayesian variable selection method to all non-microcap stocks in each subsample
and report the models with the highest posterior probability. The set of candidate factors includes
all significant factors in Green et al. (2017) as well as the market excess return.

Panel A. January 1980 - June 1987, # stocks = 1,014, # factors = 44

Model # Factors Posterior probability

mkt,chmom 2 1

Panel B. July 1987 - December 1994, # stocks = 1,114, # factors = 44

Model # Factors Posterior probability

mkt,chmom,ear,mom1m 4 0.8
mkt,chmom,ear 3 0.2

Panel C. January 1995 - June 2002, # stocks = 1,112, # factors = 48

Model # Factors Posterior probability

mkt 1 0.44
mkt,pctacc 2 0.16
mkt,mom1m 2 0.12
mkt,mom1m,pctacc 3 0.08
mkt,aeavol 2 0.08

Panel D. July 2002 - December 2009, # stocks = 1,296, # factors = 48

Model # Factors Posterior probability

mkt,sue 2 0.44
mkt,bm 2 0.16
mkt,bm,sue 3 0.16
mkt 1 0.08
mkt,pchsale pchrect 2 0.08

Panel E. January 2010 - December 2016, # stocks = 1,225, # factors = 49

Model # Factors Posterior probability

mkt,mom1m,mve ia 3 0.36
mkt,mve ia 2 0.28
mkt,mom1m,mve ia,sue 4 0.24
mkt,mve ia,sue 3 0.08
mkt,mom1m,sue 3 0.04
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Table 7: Posterior model probabilities obtained with microcap stocks

We apply the Bayesian variable selection method to all microcap stocks in each subsample and
report the models with the highest posterior probability. The set of candidate factors includes all
significant factors in Green et al. (2017) as well as the market excess return.

Panel A. January 1980 - June 1987, # stocks = 868, # factors = 44

Model # Factors Posterior probability

mkt 1 0.44
mkt, aeavol 2 0.40
mkt, chmom 2 0.12
mkt, aeavol, chmom 3 0.04

Panel B. July 1987 - December 1994, # stocks = 1,138, # factors = 44

Model # Factors Posterior probability

mkt, ear 2 1.00

Panel C. January 1995 - June 2002, # stocks = 1,289, # factors = 48

Model # Factors Posterior probability

aeavol 1 0.48
aeavol, chnanalyst 2 0.40
mkt, aeavol 2 0.04
mkt, aeavol, chnanalyst 3 0.04

Panel D. July 2002 - December 2009, # stocks = 1,119, # factors = 48

Model # Factors Posterior probability

mkt, pchsale pchrect 2 0.44
mkt 1 0.40
mkt, sue 2 0.12
mkt, pchsale pchrect, sue 3 0.04

Panel E. January 2010 - December 2016, # stocks = 1,058, # factors = 49

Model # Factors Posterior probability

mkt 1 1.00

46



Ta
bl

e
8:

Su
m

m
ar

y
of

be
st

m
od

el
s

id
en

tifi
ed

us
in

g
di

ff
er

en
ts

et
s

of
po

rt
fo

lio
s,

19
80

-2
01

6

W
e

ap
pl

y
th

e
B

ay
es

ia
n

va
ri

ab
le

se
le

ct
io

n
m

et
ho

do
lo

gy
to

se
ts

of
po

rt
fo

lio
s

fo
rm

ed
ac

co
rd

in
g

to
va

ri
ou

s
cr

ite
ri

a,
us

in
g

fa
ct

or
s

fo
r

w
hi

ch
da

ta
is

av
ai

la
bl

e
fo

rt
he

pe
ri

od
19

80
to

20
16

.T
he

ta
bl

e
re

po
rt

s
th

e
be

st
m

od
el

,i
.e

.t
he

m
od

el
w

ith
hi

gh
es

tp
os

te
ri

or
pr

ob
ab

ili
ty

,t
he

nu
m

be
r

of
fa

ct
or

s
in

th
e

m
od

el
,a

nd
th

e
po

st
er

io
rp

ro
ba

bi
lit

y.

Po
rt

fo
lio

fo
rm

at
io

n
#

Po
rt

fo
lio

s
B

es
tm

od
el

#
Fa

ct
or

s
Pr

ob
ab

ili
ty

U
ni

va
ri

at
e

So
rt

s

Si
ze

10
m

kt
,i

ll,
m

ve
ia

,s
td

do
lv

ol
4

0.
21

B
oo

k-
to

-m
ar

ke
t

10
m

kt
,b

m
,i

di
ov

ol
,l

ev
4

0.
31

O
pe

ra
tin

g
pr

ofi
ta

bi
lit

y
10

m
kt

,r
oa

vo
l,

ro
ic

3
0.

57
In

ve
st

m
en

t
10

m
kt

,a
gr

,r
oa

vo
l,

sg
r

4
0.

47
E

ar
ni

ng
s-

to
-p

ri
ce

10
m

kt
,a

ge
,e

p,
le

v
4

0.
32

C
as

hfl
ow

-t
o-

pr
ic

e
10

m
kt

,a
ge

,e
p,

le
v

4
0.

33
D

iv
id

en
d

Y
ie

ld
10

m
kt

,a
ge

,b
et

a,
ca

sh
pr

,s
al

ec
as

h
5

0.
13

M
om

en
tu

m
10

m
kt

,a
ge

,m
om

12
m

,r
oa

vo
l

4
0.

20
Sh

or
t-

te
rm

re
ve

rs
al

10
m

kt
,m

om
1m

,s
td

tu
rn

3
0.

54
L

on
g-

te
rm

re
ve

rs
al

10
m

kt
,l

ev
,m

om
36

m
,s

td
tu

rn
4

0.
10

B
et

a
10

m
kt

,a
ge

,b
et

a,
id

io
vo

l
4

0.
29

V
ar

ia
nc

e
10

m
kt

,r
et

vo
l,

sa
le

ca
sh

,s
td

cf
4

0.
18

R
es

id
ua

lv
ar

ia
nc

e
10

m
kt

,i
di

ov
ol

,r
et

vo
l,

st
dc

f
4

0.
30

B
iv

ar
ia

te
So

rt
s

Si
ze

an
d

bo
ok

-t
o-

m
ar

ke
t

25
m

kt
,i

ll,
le

v,
m

ve
ia

,r
oa

vo
l,

st
d

do
lv

ol
6

0.
20

Si
ze

an
d

op
er

at
in

g
pr

ofi
ta

bi
lit

y
25

m
kt

,a
ge

,i
di

ov
ol

,i
ll,

m
ve

ia
,r

oa
vo

l,
st

d
do

lv
ol

,s
td

tu
rn

,z
er

ot
ra

de
9

0.
20

Si
ze

an
d

in
ve

st
in

g
25

m
kt

,b
et

a,
ill

,m
ve

ia
,s

gr
,s

td
cf

6
0.

20
B

oo
k-

to
-m

ar
ke

ta
nd

op
er

at
in

g
pr

ofi
ta

bi
lit

y
25

m
kt

,b
as

pr
ea

d,
be

ta
,b

m
,c

as
h,

le
v,

re
tv

ol
,r

oa
vo

l,
sa

le
ca

sh
,s

td
cf

10
0.

20
B

oo
k-

to
-m

ar
ke

ta
nd

in
ve

st
m

en
t

25
m

kt
,b

m
,l

ev
3

0.
20

O
pe

ra
tin

g
pr

ofi
ta

bi
lit

y
an

d
in

ve
st

m
en

t
25

m
kt

,r
oi

c,
st

d
tu

rn
,t

ur
n

4
0.

20

In
du

st
ry

Po
rt

fo
lio

s

In
du

st
ri

es
49

m
kt

,b
et

a,
ill

,l
ev

,o
rg

ca
p

5
0.

40

47



Table 9: Robustness test - posterior model probabilities obtained with microcap stocks, c = 5

We apply the Bayesian variable selection method to all microcap stocks in each subsample and
report the models with the highest posterior probability. The set of candidate factors includes all
significant factors in Green et al. (2017) as well as the market excess return. We report results
for c = 5, where c is a scaling parameter related to the prior variance of the regression coefficient
vector β.

Panel A. January 1980 - June 1987, # stocks = 868, # factors = 44

Model # Factors Posterior probability

mkt 1 0.64
mkt, aeavol 2 0.20
mkt, chmom 2 0.16

Panel B. July 1987 - December 1994, # stocks = 1,138, # factors = 44

Model # Factors Posterior probability

mkt, ear 2 1.00

Panel C. January 1995 - June 2002, # stocks = 1,289, # factors = 48

Model # Factors Posterior probability

aeavol 1 0.48
aeavol, chnanalyst 2 0.40
mkt, aeavol 2 0.04
mkt, aeavol, chnanalyst 3 0.04

Panel D. July 2002 - December 2009, # stocks = 1,119, # factors = 48

Model # Factors Posterior probability

mkt, pchsale pchrect 2 0.44
mkt 1 0.40
mkt, sue 2 0.12
mkt, pchsale pchrect, sue 3 0.04

Panel E. January 2010 - December 2016, # stocks = 1,058, # factors = 49

Model # Factors Posterior probability

mkt 1 1.00
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Appendix A. Bayesian Estimation of the SUR Model

This section details the estimation of SUR model using the Gibbs sampler.
The SUR model with common regressors can be written as

ri = Xβi + ei, i = 1, . . . ,N (A.1)

where, for each equation i = 1, . . . ,N, ri is the T ×1 vector of observed responses,
X is the matrix of regressors with dimension T ×K, βi = (βi,1, . . . , βi,K)′ is a K × 1
vector of unknown regression coefficients and ei is a T × 1 vector of disturbances.
The system can be stacked in a single equation r̃ = X̃β̃ + ẽ in the following way
(see e.g. Greene (2003)):

r1

r2
...

rN

 =


X 0 · · · 0
0 X · · · 0
...

...
. . .

...
0 0 · · · X



β1

β2
...
βN

 +


e1

e2
...

eN

 (A.2)

Letting ẽ = (e′1 e′2 . . . e′N)′, the basic assumption of the SUR model is
E(ẽẽ′) = Ω = Σ ⊗ IT. We assume ẽ ∼ N(0,Σ ⊗ IT) and the following prior
distributions for β̃ and Σ:

β̃ ∼ N(b0,B0) (A.3)
Σ ∼ IW(ν0,Φ0).

The likelihood for the full system of equations is given by

L(β̃,Σ|X, r) = (2π)−
NT
2 |Ω|−

T
2 exp

(
−

1
2

(r̃ − X̃β̃)′Ω−1(r̃ − X̃β̃)
)
. (A.4)

Let Ω−1 = P′P and define X̃∗ = PX, r̃∗ = Pr̃. Then X̃′Ω−1X̃ = X̃∗′X̃∗ and
X̃Ω−1r̃ = X̃∗′r̃ and we can write

L(β̃,Σ|X, r) ∝ exp
(
−

1
2

(r̃∗ − X̃∗β̃)′(r̃∗ − X̃∗β̃)
)
. (A.5)

Appendix A.1. Distribution of β̃|Ω, r̃
We will use the notation f (·) to denote a generic probability density function,

and f (·|·) to denote a conditional density. The prior for β̃ is given by

f (β̃|Ω) ∝ exp
(
−

1
2

(β̃ − b0)′B−1
0 (β̃ − b0)

)
, (A.6)
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where b0,B0 are known. Therefore the posterior conditional distribution of β̃|Ω, r̃
is

f (β̃|Ω, r) ∝ f (β̃|Ω)L(β̃,Σ|X, r̃)

∝ exp
(
−

1
2

(β̃ − b0)′B−1
0 (β̃ − b0)

)
exp

(
−

1
2

(r̃∗ − X̃∗β̃)′(r̃∗ − X̃∗β̃)
)
.

Expanding the products and collecting terms on β, we have

f (β̃|Ω, r) ∝ exp
(
−

1
2

[
β̃′(B−1

0 + X̃∗′X̃∗)β̃ − 2β̃′(B−1
0 b0 + X̃∗′r̃∗)

])
.

Letting B1 = (B−1
0 + X̃∗′X̃∗)−1 we obtain

f (β̃|Ω, r) ∝ exp
(
−

1
2

[
β̃′B−1

1 β̃ − 2β̃′(B−1
0 b0 + X̃∗′r̃∗)

])
.

Finally, completing the quadratic form and letting

b1 = (B−1
0 + X̃′Ω−1X̃)−1(B0b0 + X̃′Ω−1r̃),

we obtain

f (β̃|Ω, r) ∝ exp
(
−

1
2

[(
β̃ − b1

)′
B−1

1

(
β̃ − b1

)])
,

therefore recognizing that β̃|Ω, r ∼ N(b1,B1).

Appendix A.2. Sequential generation of βi|β̃−i,Σ, r̃
Recall that X̃ has dimension NT ×NK and Ω has dimension NT ×NT . There-

fore, for large panels (when N is large), the expressions above will require multi-
plication and inversion of large matrices. An alternative and quicker approach for
large panels consists of sampling each βi conditionally on the remaining β j, j , i
and Σ. Let β̃−i denote the full vector β̃with the entries corresponding to i removed.
Assume that

βi|β̃−i,Σ ∼ N(b0,i,B0,i), i = 1, . . . ,N.

For simplicity, let’s assume that i = 1, that is, we are interested in generating
β1|β̃−1,Σ. Partition the SUR system as follows:

r̃ =

[
r1

r−1

]
, β̃ =

[
β̃1

β̃−1

]
, X̃ =

[
X 0
0 X̃−1

]
,

51



where X̃−1 collects the structure of X̃ for the remaining N − 1 equations. Then we
can write

r̃ − Xβ̃ =

[
r1

r−1

]
−

[
X 0
0 X̃−1

] [
β̃1

β̃−1

]
=

[
r̃1 − Xβ̃1

r̃−1 − X̃−1β̃−1

]
(A.7)

Recall that Ω−1 = Σ−1 ⊗ IT and let {Σ−1}i j = σi j denote element (i, j) of Σ−1.
The corresponding partition of Ω−1 is

Ω−1 =


σ11I σ12I · · · σ1NI
σ21I σ22I · · · σ2NI
...

...
...

...
σN1I σN2 · · · σNNI

 =

σ
11I A

A′ Ω−1
−1

 . (A.8)

In the partition of Ω−1 above, we note that σ11I has dimension T × T , A has
dimension T × (N − 1)T , and Ω−1

−1 has dimension (N − 1)T × (N − 1)T . Using A.7
and A.8 we can now write the weighted sum of residuals as follows.

(r̃ − X̃β̃)′Ω−1(r̃ − X̃β̃) =[
(r1 − Xβ1)′ (r̃−1 − X̃−1β̃−1)′

] σ
11I A

A′ Ω−1
−1


[

r1 − Xβ1

r̃−1 − X̃−1β̃−1

]

Expanding the right-hand side and collecting terms, we obtain

(r̃ − X̃β̃)′Ω−1(r̃ − X̃β̃) =

σ11(r1 − Xβ̃1)′(r1 − Xβ̃1) + 2(r1 − Xβ1)′A(r̃−1 − X̃−1β̃−1)

+ (r̃−1 − X̃−1β̃−1)′Ω−1
−1(r1 − Xβ1)

(A.9)

Now the posterior of β1|β̃−1,Σ, r̃ can be calculated as
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f (β1|β̃−1,Σ, r̃) ∝ exp
(
−

1
2

(β1 − b0,1)′B−1
0,1(β1 − b0,1)

)
× exp

(
−

1
2

(r̃ − X̃β̃)′Ω−1(r̃ − X̃β̃)
)

∝ exp
(
−

1
2

[
(β1 − b0,1)′B−1

0,1(β1 − b0,1)

+ σ11(r1 − Xβ̃1)′(r1 − Xβ̃1) + 2(r1 − Xβ1)′A(r̃−1 − X̃−1β̃−1)

+ (r̃−1 − X̃−1β̃−1)′Ω−1
−1(r1 − Xβ1)

])
,

where we have substituted (A.9). Expanding the expression above and removing
terms that are constant or do not depend on β1 yields:

f (β1|β̃−1,Σ, r̃) ∝ exp
(
−

1
2

[
β′1B−1

0,1β1 − 2β′1B−1
0,1b0,1 + σ11(β′1X′Xβ1

− 2r′1Xβ1) − 2β1X′A(r̃−1 − X̃−1β̃−1)
])

∝ exp
(
−

1
2

[
β′1(B−1

0,1 + σ11X′X)β1

− 2β′1
(
B−1

0,1b0,1 + σ11X′(r1 − (σ11)−1A(r̃−1 − X̃−1β̃−1))
)])

Now letting:

r∗1 = r1 − (σ11)−1A(r̃−1 − X̃−1β̃−1)
B1,1 = (B−1

0,1 + σ11X′X)−1

b1,1 = (B−1
0,1 + σ11X′X)−1(B−1

0,1b0,1 + σ11X′r∗1)

and completing the squares, we obtain

f (β1|β̃−1,Σ, r̃) ∝ exp
(
−

1
2

(
β′1 − b1,1

)′ B−1
1,1

(
β′1 − b1,1

))
,

therefore establishing β1|β̃−1,Σ, r̃ ∼ N(b1,1,B1,1). More generally, we could have
placed any of the equations in the first position in our partition, so it follows that
βi|β̃−i,Σ, r̃ ∼ N(b1,i,B1,i), with

r∗i = ri − (σii)−1A(r̃−i − X̃−iβ̃−i)
B1,i = (B−1

0,i + σiiX′X)−1

b1,i = (B−1
0,i + σiiX′X)−1(B−1

0,i b0,i + σiiX′r∗i ),
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where A now is defined appropriately to contain the terms for j , i.
Note that r∗i is the vector of responses for equation i, subtracted from a weighted

average of the residuals from the remaining N − 1 equations, where the weights
depend on the elements of Σ−1. Thus, the posterior variance of β1|β̃−1,Σ, r̃ de-
pends on the covariance of the residuals of the equations. If these are zero, that
is, if the system is compose of actually unrelated regressions, then r∗1 = r1 and
the posterior covariance matrix reduces to the one that would be obtained for the
single regression equation i, as one would expect.

Appendix A.3. Distribution of Σ|β̃, r̃
Since Ω = Σ ⊗ IT , it suffices to derive the conditional distribution of Σ|β̃, r̃.

The prior for Σ is an inverted Whishart distribution with parameters ν0 and Φ0:

f (Σ) ∝ |Σ|−
ν0+N+1

2 exp
(
−

1
2

Tr
(
Φ0Σ

−1
))
.

To derive the posterior of Σ|β̃, r̃, it is convenient to write the likelihood func-
tion in a different way, by arranging the system such that, instead of stacking all
T observations for each equation, we will stack the N equations for each observa-
tion. For an arbitrary observation t, let rt = (yt,1, yt,2, . . . , yt,N)′ denote the N × 1
vector of observed responses, xt = (xt,1, xt,2, . . . , xt,K)′ denote the K × 1 vector of
predictors, and et = (et,1, et,2, . . . , et,N)′ denote the vector of error terms. Then we
can write

r′t = x′t
[
β1 β2 · · · βN

]
+ e′t , t = 1, . . . ,T. (A.10)

The SUR correlation structure now can be represented conveniently as E(ete′t) =

Σ. The likelihood at each observation is Lt = (2π)−
N
2 |Σ|−

1
2 exp

(
−1

2e′tΣ−1et

)
and the

full likelihood can be written as

L =

T∏
t=1

Lt = (2π)−
NT
2 |Σ|−

T
2 exp

−1
2

T∑
t=1

e′tΣ
−1et


∝ |Σ|−

T
2 exp

(
−

1
2

Tr (Σ−1S)
)
, (A.11)

where S =
∑T

t=1 ete′t and we have used the fact that e′tΣ−1et is a scalar (thus equal
to its trace), and the properties of the trace operator.
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We can now write the conditional distribution Σ|β̃, r̃ as follows:

f (Σ|β̃, r̃) ∝ f (Σ)L(Σ|β̃, r̃)

∝ |Σ|−
ν0+N+1

2 exp
(
−

1
2

Tr
(
Φ0Σ

−1
))
× |Σ|−

T
2 exp

(
−

1
2

Tr (Σ−1S)
)

∝ |Σ|−
ν0+N+T+1

2 exp
(
−

1
2

Tr
(
Σ−1(Φ0 + S

))
,

which establishes Σ|β̃, r̃ ∼ IW(ν0 + T,Φ0 + S).

Appendix B. Bayesian Variable Selection in SUR

This section derives the conditional distributions required for our variable se-
lection methodology using the Gibbs sampler. Let Xγ represent the matrix X
where each column has been multiplied by the corresponding γ j. Then we can
write the model with variable selection as ri = Xγβi + ei, i = 1, . . . ,N. Stacking
the N equations, we can also represent the model as:

r1

r2
...

rN

 =


Xγ 0 · · · 0
0 Xγ · · · 0
...

...
. . .

...
0 0 · · · Xγ



β1

β2
...
βN

 +


e1

e2
...

eN


or

r̃ = X̃γβ̃ + ẽ. (B.1)

Note that, conditional on γ, the model reduces to a SUR with the correspond-
ing predictors for which γ j = 1. Therefore, we can use the results derived in the
previous section for β̃|Σ,γ, r̃ and Σ|β̃,γ, r̃, substituting X̃ by X̃γ.

Appendix B.1. Distribution of β̃|Σ,γ, r̃
Using the results from the previous section, treating Σ and γ as known, the

posterior distribution of β̃|Σ,γ, r̃ is N(b1,B1), where

b1 = (B−1
0 + X̃′γΩ

−1X̃γ)−1(B0b0 + X̃′γΩ
−1r̃),

B1 = (B−1
0 + X̃′γΩ

−1X̃γ)−1.

We can also use the sequential generation of βi, i = 1, . . . ,N as in Section
Appendix A.2. In this case, we rewrite the partition in equation A.7 in terms of
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X̃γ and define X̃γ,−i as the matrix that collects the structure of X̃γ for the remaining
N − 1 equations. Then, assuming γ known, we have βi|β̃−i,γ,Σ, r̃ ∼ N(b1,i,B1,i),
with

r∗i = ri − (σii)−1A(r̃−i − X̃γ,−iβ̃−i)
B1,i = (B−1

0,i + σiiX′γXγ)
−1

b1,i = (B−1
0,i + σiiX′γXγ)

−1(B−1
0,i b0,i + σiiX′r∗i ).

Appendix B.2. Distribution of Σ|β̃,γ, r̃
Using the results from the previous section, treating β̃ and γ as known, we

have Σ|β̃,γ, r̃ ∼ IW(ν0 + T,Φ0 + Sγ), where Sγ is calculated using the residuals
from equation B.1.

Appendix B.3. Distribution of γ|Σ, β̃, r̃
The simplest approach to generate γ|Σ, β̃, r̃ is to use the Gibbs sampler to gen-

erate each value of γ component-wise, that is, we can generate each γ j, condition-
ally on the remaining γi, i , j, which we denote as γ− j, Σ, and β̃. For a given j,
denote by L j,1 = L(γ j = 1|γ− j,Σ, β̃, r̃) the likelihood function evaluated at γ j = 1,
considering γ− j,Σ and β̃ known, and likewise by L j,0 = L(γ j = 0|γ− j,Σ, β̃, r̃) the
likelihood evaluated at γ j = 0. Then, using the fact that the prior distribution of
the γ j is B(1, π j), j = 1, . . . ,N, we have

P(γ j = 1|γ− j,Σ, β̃, r̃) =
π jL j,1

π jL j,1 + (1 − π j)L j,0
. (B.2)

Let γ1
j and γ0

j represent the vector γ with the j − th position fixed at 1 or 0,
respectively. That is,

γ1
j = [γ1, · · · , γ j−1, 1, γ j+1 · · · γK]′,

γ0
j = [γ1, · · · , γ j−1, 0, γ j+1 · · · γK]′.

Further, let e1
t and e0

t represent the residuals, at observation t, if γ j = 1 and if
γ j = 0, respectively. Let S1

γ and S0
γ represent the corresponding residual matrices.

Then we can write, using A.11:

L j,1 = (2π)−
NT
2 |Σ|−

T
2 exp

(
−

1
2

Tr (Σ−1S1
γ)

)
L j,0 = (2π)−

NT
2 |Σ|−

T
2 exp

(
−

1
2

Tr (Σ−1S0
γ)

)
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Substituting the above into B.2, we get

P(γ j = 1|γ− j,Σ, β̃, r̃) =
π j exp

(
−1

2 Tr (Σ−1S1
γ)

)
π j exp

(
−1

2 Tr (Σ−1S1
γ)

)
+ (1 − π j) exp

(
−1

2 Tr (Σ−1S0
γ)

)
=

(
1 +

1 − π j

π j
exp

[
−

1
2

Tr
(
Σ−1(S1

γ − S0
γ)

)])−1

, (B.3)

where we have taken the inverse of the expression on the right-hand side twice.

Appendix C. Factor Construction

[Table 11 about here.]
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Table C.11: The Factor Zoo: candidate factors/firm characteristics

The table lists the a of 94 firm characteristics for which we obtain data following Green et al.
(2017).

Acronym Firm Characteristic/Factor Reference
mkt Market return ?
absacc Absolute accruals Bandyopadhyay et al. (2010)
acc Working capital accruals Sloan (1996)
aeavol Abnormal earnings announcement volume Lerman et al. (2008)
age # years since first Compustat coverage Jiang et al. (2005)
agr Asset growth Cooper et al. (2008)
baspread Bid-ask spread Amihud & Mendelson (1989)
beta Beta Fama & MacBeth (1973)
bm Book-to-market Rosenberg et al. (1985)
bm ia Industry-adjusted book to market Asness et al. (2000)
cash Cash holdings Palazzo (2012)
cashdebt Cash flow to debt Ou & Penman (1989)
cashpr Cash productivity Chandrashekar & Rao (2009)
cfp Cash-flow-to-price ratio Desai et al. (2004)
cfp ia Industry-adjusted cash-flow-to-price ratio Asness et al. (2000)
chatoia Industry-adjusted change in asset turnover Soliman (2008)
chcsho Change in shares outstanding Pontiff & Woodgate (2008)
chempia Industry-adjusted change in employees Asness et al. (2000)
chfeps Change in forecasted EPS Hawkins et al. (1984)
chinv Change in inventory Thomas & Zhang (2002)
chmom Change in 6-month momentum Gettleman & Marks (2006)
chnanalyst Change in number of analysts Scherbina (2008)
chpmia Industry-adjusted change in profit margin Soliman (2008)
chtx Change in tax expense Thomas & Zhang (2002)
cinvest Corporate investment Titman et al. (2004)
convind Convertible debt indicator Valta (2016)
currat Current ratio Ou & Penman (1989)
depr Depreciation / PP&E Holthausen & Larcker (1992)
disp Dispersion in forecasted EPS Diether et al. (2002)
divi Dividend initiation Michaely et al. (1995)
divo Dividend omission Michaely et al. (1995)
dy Dividend to price Litzenberger & Ramaswamy (1982)
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Table C.11: (continued)

Acronym Firm Characteristic/Factor Reference

ear Earnings announcement return Brandt et al. (2008)
egr Growth in common shareholder equity Richardson et al. (2005)
ep Earnings to price Basu (1977)
fgr5yr Forecasted growth in 5-year EPS Bauman & Dowen (1988)
gma Gross profitability Novy-Marx (2013)
grcapx Growth in capital expenditures Anderson & Garcia-Feijóo (2006)
grltnoa Growth in long-term net operating assets Fairfield et al. (2003)
herf Industry sales concentration Hou & Robinson (2006)
hire Employee growth rate Belo et al. (2014)
idiovol Idiosyncratic return volatility Ali et al. (2003)
ill Illiquidity Amihud (2002)
indmom Industry momentum Moskowitz & Grinblatt (1999)
invest Capital expenditures and inventory Chen & Zhang (2010)
ipo New equity issue Loughran & Ritter (1995)
lev Leverage Bhandari (1988)
mom12m 12-month momentum Jegadeesh (1990)
mom1m 1-month momentum Jegadeesh & Titman (1993)
mom36m 36-month momentum Jegadeesh & Titman (1993)
ms Financial statement score Mohanram (2005b)
mve Size Banz (1981)
mve ia Industry-adjusted size Asness et al. (2000)
nanalyst Number of analysts covering stock Elgers et al. (2001)
nincr Number of earnings increases Barth et al. (1999)
operprof Operating profitability Fama & French (2015)
orgcap Organizational capital Eisfeldt & Papanikolaou (2013)
pchcapx ia Industry adjusted change in capex Abarbanell & Bushee (1998)
pchcurrat change in current ratio Ou & Penman (1989)
pchdepr change in depreciation Holthausen & Larcker (1992)
pchgm pchsale change in gross margin - change in sales Abarbanell & Bushee (1998)
pchsaleinv change sales-to-inventory Ou & Penman (1989)
pchsale pchinvt change in sales - change in inventory Abarbanell & Bushee (1998)
pchsale pchrect change in sales - change in A/R Abarbanell & Bushee (1998)
pchsale pchxsga change in sales - change in SG&A Abarbanell & Bushee (1998)
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Table C.11: (continued)

Acronym Firm Characteristic/Factor Reference

pctacc Percent accruals Hafzalla et al. (2011)
pricedelay Price delay Hou & Moskowitz (2005)
ps Financial statements score Piotroski (2000)
rd R&D increase Eberhart et al. (2004)
rd mve R&D to market capitalization Guo et al. (2006)
rd sale R&D to sales Guo et al. (2006)
realestate Real estate holdings Tuzel (2010)
retvol Return volatility Ang et al. (2006)
roaq Return on assets Balakrishnan et al. (2010)
roavol Earnings volatility Francis et al. (2004)
roeq Return on equity Hou et al. (2015a)
roic Return on invested capital Brown & Rowe (2007)
rsup Revenue surprise Kama (2009)
salecash Sales to cash Ou & Penman (1989)
saleinv Sales to inventory Ou & Penman (1989)
salerec Sales to receivables Ou & Penman (1989)
secured Secured debt Valta (2016)
securedind Secured debt indicator Valta (2016)
sfe Scaled earnings forecast Elgers et al. (2001)
sgr Sales growth Lakonishok et al. (1994)
sin Sin stocks Hong & Kacperczyk (2009)
sp Sales to price Barbee Jr et al. (1996)
stdcf Cash flow volatility Huang (2009)
std dolvol Volatility of liquidity (dollar trading volume) Chordia et al. (2001)
std turn Volatility of liquidity (share turnover) Chordia et al. (2001)
sue Unexpected quarterly earnings Rendleman et al. (1982)
tang Debt capacity/firm tangibility Almeida & Campello (2007)
tb Tax income to book income Lev & Nissim (2004)
turn Share turnover Datar et al. (1998)
zerotrade Zero trading days Liu (2006)
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