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Institutional Investors and Information Acquisition:

Implications for Asset Prices and Informational Efficiency

Abstract

We jointly model the information choice and portfolio allocation problem of in-

stitutional investors who are concerned about their performance relative to a

benchmark. Benchmarking increases an investor’s effective risk-aversion, which

reduces his willingness to speculate and, consequently, his desire to acquire infor-

mation. In equilibrium, an increase in the fraction of benchmarked institutional

investors leads to a decline in price informativeness, which can cause a decline

in the prices of all risky assets and the market portfolio. The decline in price

informativeness also leads to a substantial increase in return volatilities and

allows non-benchmarked investors to substantially outperformed benchmarked

investors.



Over the last decades, the importance of institutional investors in financial markets

has grown steadily. For example, the fraction of U.S. equity owned by institutional in-

vestors has risen from about 7% in 1950 to 67% in 2010 (French (2008), U.S. Securities and

Exchange Commission (2013), Stambaugh (2014)), and institutional investors nowadays ac-

count for a majority of the transactions and trading volume (Griffin, Harris, and Topaloglu

(2003)). Moreover, recently there has been a substantial shift toward benchmarked institu-

tional investors, that is, institutional investors whose performance is evaluated relative to

an “index,” or benchmark portfolio.

While there is now a growing body of literature studying the asset pricing implications

of benchmarking, or, formally, linear performance fees, this literature has concentrated on

the case of symmetrically informed investors.1 In contrast, the focus of this paper is on

the interaction between benchmarking and endogenous information choice. Our objective is

to demonstrate how the growth of assets under management by benchmarked institutions

affects informational efficiency and asset prices in equilibrium. This will also allow us to

emphasize how non-benchmarked investors’ portfolio and information choice as well as their

performance is influenced by the size of benchmarked institutions.

For this purpose, we develop an equilibrium model with two classes of heterogeneous

institutional investors, endogenous information allocation, CRRA-preferences and multiple

risky assets to learn about. The model has two key features. First, a fraction of the institu-

tional investors—the benchmarked investors—care not only about their own performance,

but also about their performance relative to an index, or, formally, their marginal utility is

increasing and their utility is decreasing in the benchmark. This might be due to explicit

reasons, for example, performance fees or a fund’s “style,” or implicit incentives, for in-

stance, through the performance-flow relation. Second, we allow for the joint determination

of the institutional investors’ portfolio allocation and information choice. That is, the two

groups of institutions (benchmarked and non-benchmarked) optimally decide how much in-

formation to acquire. They can also extract information from the equilibrium stock prices

that imperfectly reveal the other investors’ information. Otherwise, the framework is kept

1See, for example, Brennan (1993), Cuoco and Kaniel (2011), Basak and Pavlova (2013), Buffa, Vayanos,
and Woolley (2014), Basak and Pavlova (2016), and Buffa and Hodor (2017).
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as simple as possible to illustrate the implications of benchmarking, but also to provide the

economic mechanisms that generate them in the clearest possible way.

In the first step, we highlight a novel economic channel through which relative perfor-

mance concerns affect an investor’s investment and information choice. That is, bench-

marking leads to an increase in an investor’s effective risk-aversion, particular so, as his

“surplus performance” relative to the index declines.

We then show, using a closed-form, but approximate, solution that the optimal portfolio

shares of a benchmarked institutional investor can be decomposed into three components.

The first component is the standard mean-variance portfolio of a non-benchmarked investor.

The second component is a hedging portfolio that implies a positive hedging demand for

“index stocks” that are included in the benchmark portfolio. The size of this hedging

portfolio is increasing in the degree of benchmarking, but is information-insensitive. The

third component captures the change in the investor’s risk attitude resulting from relative

performance concerns and, in general, reduces his demand for risky assets, increasingly so

as benchmarking strengthens.

As a direct consequence of the hedging demand for index stocks, a benchmarked insti-

tutional investor, on average, over-weights index stocks in his portfolio and under-weights

non-index stocks. For typical calibrations, this hedging demand more than offsets the reduc-

tion in demand resulting from the lower, effective risk tolerance. Accordingly, benchmarking

leads, on average, to an excess demand for index stocks. Most important for our analysis,

however, is that in the presence of benchmarking, the investor makes only smaller bets

based on private information, or, formally, the sensitivity of his optimal portfolio composi-

tion to private information declines. For example, he less aggressively acquires shares of a

stock following good news, and vice versa for bad news. This is due to the higher effective

risk-aversion and the fact that the hedging demand is information-insensitive.

These changes in a benchmarked investor’s portfolio decisions have a direct impact

on his information choice. Intuitively, because his trading is less sensitive to private in-

formation, the marginal benefit from receiving precise private information declines; that is,
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benchmarked investors value private information less. Hence, as his degree of benchmarking

increases, an institutional investor acquires less precise private information.

We next investigate how the growth of assets under management by benchmarked in-

stitutions influences informational efficiency and asset prices in equilibrium. For this, we

fix the degree of relative performance concerns for the benchmarked investors and, instead,

vary their size relative to the overall economy.

We document that, as the fraction of benchmarked institutional investors increases, price

informativeness drops—for the index and the non-index stocks. Intuitively, an increase in

the share of benchmarked investors implies a shift toward a group of investors who trade

less aggressively and also acquire less information. Consequently, aggregate information

acquisition declines and less information can be revealed through prices.

Less informative prices make investments into the stocks riskier, because there is more

uncertainty about their fundamentals, so that risk-averse investors command a lower price.

Hence, as benchmarked investors gain importance, the price of the non-index stocks declines.

Due to the positive hedging demand for index stocks, their prices will always be higher than

those of comparable non-index stocks, but might still decline in the size of the benchmarked

institutions. This is the case if the negative price effect resulting from less informative prices

dominates the excess demand from hedging.

The decline in price informativeness also naturally translates into a higher return volatil-

ity for all stocks in the economy. For the non-index stocks, the higher return volatility is

more than offset by an increase in expected return, so that the Sharpe ratio increases as the

fraction of benchmarked investors grows. Intuitively, due to the higher effective risk-aversion

of benchmarked investors and, thus, the reduction in their demand, non-benchmarked in-

vestors must be induced to tilt their portfolio toward non-index stocks, which is achieved

through a higher Sharpe ratio. The positive hedging demand for the index stocks implies

that less such “equilibrium incentives” are needed, so that their Sharpe ratios are lower

than those of comparable non-index stocks.

Finally, the “information gap” between the two groups of market participants widens

as the fraction of benchmarked investors increases. That is, because less information is
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revealed through the public stock prices, the fact that non-benchmarked institutional in-

vestors invest more into information acquisition, that is, have superior private information,

gains importance. This leads to a substantial out-performance of better informed, non-

benchmarked institutional investors, increasingly so, as the assets under management of

benchmarked institutions grow.

Our results have important implications for the functioning of financial markets, par-

ticularly for their ability to aggregate and disseminate information and, accordingly, firms’

abilities to make informed corporate decisions in the presence of benchmarked institutions.2

The findings should also be of importance for regulators in the debate about whether the

“indexing industry” should be more regulated.

Our paper combines insights from two streams of the literature. First, there is a grow-

ing body of literature on the stock market implications of institutional investors.3 Brennan

(1993) shows that in a static, CARA-utility setup with performance concerns relative to a

benchmark, a two-factor model arises, with one of the factors being the benchmark. Cuoco

and Kaniel (2011), from which we borrow the compensation scheme of institutional in-

vestors, numerically solve a model of portfolio delegation with asset managers that have

CRRA-preferences and receive a linear performance fee.4 They demonstrate that symmet-

ric fees have an unambiguously positive impact on the price of index stocks and a negative

impact on their Sharpe ratios. Using a tractable specification, Basak and Pavlova (2013)

provide analytical solutions for a dynamic, CRRA-utility setup with multiple risky assets

and institutional investors who care about a benchmark. In their setting, institutional in-

vestors tilt their portfolio toward index stocks, hence, creating upward price pressure for

these assets and an amplification of index stocks’ return volatilities. Buffa, Vayanos, and

Woolley (2014) study the joint determination of fund managers’ contracts and equilibrium

prices in a dynamic setup with multiple risky assets and CARA-preferences. Agency fric-

2The economic importance of price informativeness is highlighted in the literature on “feedback effects,”
which shows that information about fundamentals contained in asset prices affects corporate decisions. See,
for example, the survey by Bond, Edmans, and Goldstein (2012) or Chen, Goldstein, and Jiang (2007),
Bakke and Whited (2010), Edmans, Goldstein, and Jiang (2012), and Foucault and Frésard (2012).

3Basak and Pavlova (2016) discuss the impact of institutional investors on the commodity market.
4Cuoco and Kaniel (2011) also study asymmetric performance fees—a contract that might arise exoge-

nously (e.g., for hedge funds) or implicitly at the fund manager’s level (see the empirical evidence in Ibert,
Kaniel, van Nieuwerburgh, and Vestman (2017) for Swedish mutual fund managers).
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tions lead to contracts that depend on managers’ performance relative to a benchmark and

bias the aggregate market upwards. Buffa and Hodor (2017) study the impact of hetero-

geneous benchmarks and document additional price pressure, which also amplifies return

volatility.

In contrast to our paper, this literature focuses on the case of symmetrically informed

investors. Hence, the main difference of our article from this literature is that we explicitly

account for the joint information and portfolio choice of institutional investors. Interestingly,

while these papers find an unambiguously positive impact of institutional investors on the

prices of index assets and the aggregate market, taking into account endogenous information

acquisition can lead to opposite predictions.

Second, our paper is closely related to the literature on private information and op-

timal information choice, starting from the early papers by Grossman (1976), Grossman

and Stiglitz (1980), Hellwig (1980), and Verrecchia (1982). Part of this literature focuses

on information acquisition in the asset management industry. For example, Admati and

Pfleiderer (1997) study benchmarking in the compensation of privately informed portfolio

managers and demonstrate that benchmark-adjusted compensation schemes are generally

inconsistent with optimal risk-sharing and optimal portfolios for fund investors. Garćıa and

Vanden (2009) show that competition between fund managers makes price more informa-

tive. In contrast, Qiu (2012) finds ambiguous results for price informativeness if managers’

performance is evaluated against their peers. Malamud and Petrov (2014) demonstrate that

convex compensation contracts lead to equilibrium mispricing but reduce price volatility.

Sotes-Paladino and Zapatero (2016) find that, in partial equilibrium, a linear benchmark-

adjusted compensation component can benefit investors. Kacperczyk, van Nieuwerburgh,

and Veldkamp (2016) show, theoretically and empirically, that fund managers optimally

choose to process information about aggregate shocks in recessions and idiosyncratic shocks

in booms. Farboodi and Veldkamp (2016) demonstrate that, when information is scarce,

fundamental information acquisition is most important, whereas order-flow analysis dom-

inates when investors are well informed. Bond and Garćıa (2016) study the consequences
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of investing in risky assets only via the market portfolio and find negative externalities for

uninformed investors.

In contrast to these studies, we explicitly model institutional investors’ performance

concerns relative to a benchmark, which allows us to make novel predictions about the

relationship between the size of benchmarked institutions and information efficiency, as

well as asset prices in equilibrium.

Due to our use of CRRA-preferences, which makes the equilibrium price function nonlin-

ear, we rely on a novel, exact numerical algorithm to solve for the equilibrium. Consequently,

our paper is also related to Bernardo and Judd (2000), who, however, consider only two

investors rather than the continuum of investors in our framework and do not allow for

heterogeneous signal precision. Our work is also related to recent studies that have relaxed

the joint CARA-normal assumption5 as well as the literature on relative wealth concerns

and private information (see, among others, Garćıa and Strobl (2011)).

The remainder of the paper is organized as follows. Section 1 introduces an economic

setting with benchmarked institutional investors and joint portfolio and information choice.

Section 2 studies a benchmarked investor’s optimal portfolio and information choice problem

within a single-stock, partial equilibrium version of our baseline framework. Sections 3 and

4 discuss the equilibrium implications for the single-stock and multi-stock economy, respec-

tively. Finally, Section 5 summarizes our key predictions. Proofs, as well as a description

of the numerical algorithm, are delegated to the Appendix.

1 Economy with Institutional Investors and Information Choice

In this section, we introduce our economic framework that features both—benchmarked

institutional investors and a joint portfolio allocation and information choice problem. It is

a static model that we break up into three (sub-)periods: the information acquisition stage

5Barlevy and Veronesi (2000) and Albagli, Hellwig, and Tsyvinski (2014) study risk–neutral investors,
Peress (2003) studies general preferences using a (small–risk) log-linearization, van Nieuwerburgh and Veld-
kamp (2010) study a general form of utility function, and Breon-Drish (2015) as well as Chabakauri, Yuan,
and Zachariadis (2016) focus on distributions that are members of the “exponential family.”
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(t = 1), the trading stage (t = 2), and, finally, the consumption period (t = 3). We next

provide the details of the economic setting.

1.1 Economic Setting

Investment Opportunities

There exist three financial securities that are traded competitively in the market: a risk-

less asset (the “bond”) and two risky assets (the “stocks”). The bond pays an exogenous

interest rate rf and is available in perfectly elastic supply. It also serves as the numéraire,

with its price being normalized to one. Each stock i is modeled as a claim to a random

payoff Di, i ∈ {1, 2}, which is only observable in period 3. We assume that the payoffs Di

are independent and follow binomial distributions with high realization Di,H ≡ µD + σD

and low realization Di,L ≡ µD−σD, which are both equally likely: πi,k = 1/2, k ∈ {H,L}.6

The supply of each stock is assumed to be random and unobservable to prevent its price

from fully revealing the information acquired by the investors and, thus, to preserve the

incentives to acquire private information in the first place. Particularly, we assume that the

aggregate supply of stock i is given by z̄ + zi and that zi follows an independent, normal

distribution N (µz, σz). For example, one could think of −zi as the demand arising from

non–institutional investors, like retail traders.

Information Structure

Investors are initially, in period 1, endowed with unbiased, but uninformative, beliefs about

each stock’s payoff Di. In period 1, investors can spend time and resources to acquire

private information about the stocks. For example, they may study financial statements,

gather information about consumers’ taste, hire outside financial advisers, or subscribe to

proprietary databases. Particularly, each investor j can choose the precision of his private,

unbiased binomial signal Sj,i ∈ {SL, SH} about stock i’s payoff Di. Higher precision will

6We focus on the case of two stocks with symmetric distributions of fundamentals and noise, so that all
differences between the two stocks arise from benchmarking. However, one can easily extend the setting to
a case in which the fundamentals (or the noise) of the two stocks have different means or variances.
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reduce the conditional variance of the payoff, but will increase the information acquisition

costs. Signals are assumed to be independent.

Mathematically, let xj,i denote the precision of investor j’s signal about stock i and ρj,i

describe the probability of a high (low) realization of the stock’s payoff conditional on a

high (low) realization of the signal:

ρj,i ≡ Pj [Di,H |Sj,i = SH ] = Pj [Di,L |Sj,i = SL].

The precision xj,i then translates into probability ρj,i as follows:

ρj,i(xj,i) =
1

2
+

1

2

√
xj,i

xj,i + 4
.

A signal with precision xj,i costs C(xj,i) dollars, where C is increasing and strictly convex

in the precision level. These assumptions guarantee the existence of an interior solution and

capture the idea that each new piece of information is more costly than the previous one.

Particularly, we assume that the cost function C is given by

C(xj,i) = κxcj,i, (1)

where κ defines the overall level of the information acquisition costs and c > 1 describes

the degree of convexity.

Note that in case an investor chooses a precision of zero (xj,i = 0), that is, he decides not

to acquire any information about stock i, he receives an uninformative signal, ρj,i(0) = 1/2,

at zero cost C(0) = 0. At the other extreme, perfect foresight, ρj,i = 1, could only be

achieved with infinite precision (xj,i →∞), and, thus, infinite wealth (C(∞)→∞).

In period 2, investors receive their private signals (with the chosen precision), which

they combine, using Bayes’ law, with information from equilibrium prices to update their

prior beliefs and form optimal portfolio decisions.
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We denote investor j’s expectation conditional on prior beliefs alone as Ej [ · ] and use

Ej [ · | Fj ] to denote the investor’s expectation conditional on his information set Fj in period

2. Particularly, the information set contains an investor’s private signals with precision xj,i

and the publicly observable stock prices, Fj = {Sj,i, Pi; i ∈ {1, 2}}. Note that because

all probability distributions and other parameters of the economy are common knowledge,

investors are only asymmetrically informed about the stocks’ payoffs, Di.

Investors

There exists a continuum of atomless investors with mass one that we separate into two

heterogeneous groups of market participants, n ∈ {B,N}: (1) a fraction Λ of institutional

investors, B, is benchmarked (“indexed”) and (2) a fraction 1−Λ of institutional investors,

N , is not benchmarked. Each investor is endowed with the same initial wealthW1,j , which we

normalize to 1. Accordingly, Λ represents the fraction of wealth managed by benchmarked

institutional investors—or, equivalently, how large benchmarked investors are, relative to

the overall economy. Varying Λ will be our most important comparative statics analysis,

because it allows us to illustrate how the growth in assets under management by indexed

institutional investors influences informational efficiency and asset prices.

Motivated by the structure of asset management fees in practice and recent theoretical

contributions,7 we explicitly model the compensation, Cj , of institutional investors (fund

managers) as

Cj(Wj,3, RI) = βjWj,3 + γjW1,j

(
(1 +Rj,F )− (1 +RI)

)
, (2)

which is a function of, Wj,3, the terminal wealth and, RI , the return on the “index” against

which the performance of the institutional investor is measured (the benchmark portfolio).

We define the investor’s portfolio return as Rj,F ≡ Wj,3

W1,j
− 1 = Wj,3 − 1. We assume that

7Basak and Pavlova (2013) demonstrate benchmarking formally using an agency-based argument. More-
over, in Buffa, Vayanos, and Woolley (2014), investors endogenously make fund managers’ fees sensitive to
the performance relative to a benchmark—due to agency frictions. Similarly, Sotes-Paladino and Zapatero
(2016) show that a linear benchmark-adjusted component in managers’ contracts can benefit investors.
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βj ≥ 0 as well as γj ≥ 0 and βj + γj > 0, so that buying the benchmark is always a feasible

strategy that yields a strictly positive compensation.8

Thus, investors’ compensation can have two components; first, a management fee,

βWj,3, that is proportional to the terminal value of the fund portfolio; second, a perfor-

mance fee, γj
(
(1+Rj,F )− (1+RI)

)
, that is proportional to the portfolio return in excess of

the return of the index, with γj denoting the degree of benchmarking.9 These types of fees

are known as fulcrum performance fees. The 1970 Amendment of the Investment Advisers

Act of 1940 restricts mutual fund fees to be of the fulcrum type.

For ease of exposition, we set βB = βN = β, so that the only source of heterogeneity

across the two groups of investors is the degree of benchmarking, γn. Particularly, while for

benchmarked investors the degree of benchmarking is assumed to be above zero, γB > 0,

we shut down benchmarking for the group of non-benchmarked investors, γN = 0.

The objective of each investor j is to maximize his expected utility over time-3 com-

pensation, Cj , with the preferences being represented by power utility with risk-aversion

α:

Uj(Wj,3, RI) =
Cj(Wj,3, RI)

1−α

1− α
. (3)

In Appendix A we prove the following Lemma:

Lemma 1. The local curvature of the institutional investors’ utility function, that is, the

effective (local) risk-aversion, α̂j, is given by

α̂j ≡ −
Wj,3 ∂

2Uj/∂W
2
j,3

∂Uj/∂Wj,3
= α

(
1− γj

βj + γj

(
1 +Rj,F
1 +RI

)−1)−1
. (4)

If the return on the benchmark, RI , exceeds −1, and γj > 0, it holds that

α̂j > α;
∂α̂j
∂γj

> 0;
∂α̂j

∂
(
(1 +Rj,F )/(1 +RI)

) < 0.

8This is true as long as the index return exceeds −100%, i.e., the final payoff exceeds zero.
9An institutional investor’s desire to perform well relative to a benchmark may also be driven by social

status, associated with a fund’s performance relative to the index, instead of monetary incentives.
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Lemma 1 shows that the effective risk-aversion of a benchmarked investor (γj > 0) ex-

ceeds the risk-aversion of a non-benchmarked investor (which is equal to α) and is increasing

in the degree of benchmarking γj . Moreover, a low “surplus performance” (1+Rj,F )/(1+RI)

implies a high local risk-aversion.10 This behavior of the local risk-aversion in the presence

of relative performance concerns shares many similarities with the local risk-aversion for

external habit (see Campbell and Cochrane (1999)), which is increasing as an investor’s

surplus consumption declines.

REMARK 1. Our specification of the benchmarked investors’ compensation scheme exhibits

three important characteristics that let them behave differently from non-benchmarked in-

vestors. First, benchmarked investors care about their performance relative to a benchmark.

Second, benchmarked investors have an incentive to post a high return when their bench-

mark is high or, formally, their marginal utility of wealth is increasing in the index return

RI . Third, the benchmarked investors’ utility function is decreasing in the index return RI .

REMARK 2. Our definition of the investors’ compensation scheme (2) closely resembles

the fee structure in Cuoco and Kaniel (2011), with the exception that we do not incorporate

a constant “load fee,” which is independent of assets under management and performance.

This load fee is, however, set to zero for most of the analysis in Cuoco and Kaniel (2011)

anyway. Moreover, the investors’ utility function shares many similarities with the specifi-

cation in Basak and Pavlova (2013),11 with the notable exception that, in contrast to their

tractable specification, our utility is decreasing in the benchmark. This is crucial, because in

contrast to asset pricing models with symmetric information in which only marginal utility

matters, the investors’ utility functions play a key role in models of information acquisition.

Timing

There exist three (sub-)periods. In period 1, the information acquisition stage, each investor

chooses the precision xj,i of his private signals about the stocks’ payoffs, subject to an

10One can derive a similar formula for the case of CARA-utility, which is, however, a bit more simplistic
because, due to the absence of wealth effects, the local risk-aversion will only depend on the degree of
benchmarking and not on the surplus performance.

11With βj + γj = 1, it is suggested as an alternative specification (see Remark 1 in Basak and Pavlova
(2013)).
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Figure 1: Timing. The figure illustrates the timing of the events.

increasing cost C(xj,i) for more precise information. In period 2, the trading stage, each

investor observes his private signals. At the same time, financial markets open and investors

observe the equilibrium stock prices, which act as public signals. Each investor combines

the public and private signals to form his posterior beliefs and, accordingly, determines how

much to invest into the stocks. In period 3, the consumption period, investors receive asset

payoffs and realize utility. Figure 1 illustrates the sequence of the events.

Posterior Beliefs

Investors in the economy can submit demand schedules, that is, condition their demand on

the prices of the stocks. Hence, they can learn from equilibrium prices, which imperfectly

reveal information about the other investors’ private signals. Particularly, any investor in

the economy who receives an informative signal about one of the stocks will use his private

information to optimize his portfolio and buy more or less of the specific stock, depending

on the signal realization. Because the supply of the stock is limited, the investor’s demand

will move the price, and, hence, his private information will get incorporated into the stock

price. Consequently, any rational investor will use the stock prices together with his private

signals to form his posterior beliefs about the stocks’ payoffs.

Note that because the stocks’ payoffs, the signals, and the noise are independent, we

can compute the investors’ posterior beliefs for the two stocks independently as well. Be-

cause each investor is small, the distribution the private signals and, accordingly, aggregate
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demand depends exclusively on the underlying payoff Di (see Hellwig (1980)), so that the

price is a function of a stock’s payoff and its supply—both unobservable—only: Pi(Di, zi).
12

Consequently, for a given price Pi, each investor can back out the two combinations of payoff

and noise, denoted by {(Di,L, zi,L), (Di,H , zi,H)}, which are consistent with this price.13 For

example, a high stock price could be due to a high underlying payoff or a low supply. Using

the distribution of the noise, an investor can then compute the posterior probability of the

payoff Di.

Formally, investor j’s posterior probability of a payoff realization Di,k, k ∈ {L,H}, is

given by

π̂k,j,i = P(Di,k |Pi, Sj.i) =
fz(zi,k)P(Di,k |Sj,i)∑
d fz(zd)P(Di,d |Sj,i)

, (5)

where fz(·) denotes the density function of the normally distribution noise zi, and P(Di,n |Sj.i)

can be computed directly as

P(Di,d |Sj,i) =
P(Di,d, Sj,i)∑
m P(Di,m, Sj,i)

,

using the correlation ρj,i between investor j’s private signal and the payoff Di:

P(Di,m, Sj,i) =


ρj,i/2 if m = j,

(1− ρj,i)/2 if m 6= j;

with m, j ∈ {L,H}.

1.2 Numerical Illustration

Our numerical illustrations are based on the following set of parameters: The mean and

volatility of the stocks’ payoffs, µD and σD, are set to 1.05 and 0.25, respectively. The risk-

12Note that if the supply were not random, the stock price would be a function of the payoff only.
Accordingly, there would only be a single payoff realization consistent with a given price, so that prices
would be fully revealing. In this case, there would be no trading in equilibrium (Milgrom and Stokey (1982))
and no incentives to acquire private information in the first place, so that no competitive equilibrium would
exist (Grossman and Stiglitz (1980)).

13The supply zi,k, k ∈ {L,H}, is simply given by the aggregate demand in the economy at price Pi—
conditional on Dk,i. See also the descriptions and derivations in Breugem (2016) for learning from price in
a dynamic setting.
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Variable Description Value

µD Mean of stock payoff D 1.05
σD Volatility of stock payoff D 0.25
rf Risk-free rate 0
α Relative risk-aversion 3
β Compensation scheme: proportional component 0.02

W1,j Initial wealth 1
c Exponent of information cost function 2
κ Level of information cost function 0.01
z̄ Mean of noisy supply 0.80
σz Volatility of noisy supply zi 0.20

Table 1: Model Parameters. This table reports the parameter values used for our numerical illustrations.

free rate, rf , is set to zero. Investors have relative risk-aversion, α, of 3 and the proportional

component of the compensation scheme, β is set to 2%. Investors are endowed with an initial

wealth, W1,j , of 1. We assume a quadratic information acquisition cost function (c = 2)

with κ = 0.01. Finally, we assume that the mean and volatility of the normal distribution

governing the noisy supply, zi, i ∈ {1, 2}, are given by z̄ = 0.8 and σz = 0.20, which

guarantees some realistic Sharpe ratios. Table 1 provides a summary of the parameters.

2 Portfolio and Information Choice of Benchmarked Investors

We start our analysis within the framework of a single-stock economy. The main reason

for this is expositional simplicity. Particularly, it turns out that many of the key insights

of the paper can already be explained within this framework. Accordingly, we will refer to

the single stock, which also serves as the benchmark, as the “stock market” and for ease of

notation drop the subscript i. In Section 4 we expand the framework to demonstrate how

our results generalize in a multi-stock economy.

Moreover, to provide the intuition for the main economic mechanisms that drive our

equilibrium results in the clearest possible way, we first analyze an economy of the “partial
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equilibrium” type, that is, with an exogenous price. Within this setting, we build our basic

intuition for a benchmarked investor’s portfolio allocation and information choice.

Specifically, an investor’s optimization problem follows the timing illustrated in Figure

1 and must be solved in two stages—working backward from the trading period (t = 2), in

which an investor chooses his optimal portfolio, to the information acquisition stage (t = 1),

in which he determines the optimal signal precision.

2.1 Portfolio Choice

Given an investor’s posterior beliefs, described by his information set Fj , he chooses the

fraction of wealth to be in the form of stocks, φj , to maximize his expected utility, taking

the price P as given:

V (Sj , xj ,Wj,2;P ) = max
φj

Ej
[
Uj(Wj,3, RI) | Fj

]
, (6)

where V (Sj , xj ,Wj,2;P ) denotes the value function. Denoting the stock market’s excess

return by Re ≡ D−P
P − rf , the optimization is subject to the following budget equation:

Wj,3 = Wj,2

(
1 + rf + φj R

e
)
. (7)

Substituting wealth Wj,3 into the optimization problem (6), the first-order condition

with respect to φj yields the optimal portfolio:

Ej
[
U ′j
(
Wj,2 (1 + rf + φj R

e), RI
)
Wj,2R

e
∣∣Fj] = 0, (8)

where U ′j(·) denotes the derivative of the investor’s utility function with respect to wealth.

Denoting the first two components as the stochastic discount factor, equation (8) gives the

usual asset pricing interpretation that the “price” of the excess return Re has to be zero.

Because of the complexities introduced by CRRA-utility, we solve the model numerically.

However, to provide some clear intuition for one of our key findings, we derive in Appendix

A the following closed-form, approximate solution for the fraction of wealth invested into
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the stock market:

φj ≈
1

α

Ej [R
e
∣∣Fj]

V arj [Re
∣∣Fj] +

γj
βj + γj

− γjξj
α(1 + γjξj)

Ej [R
e
∣∣Fj]

V arj [Re
∣∣Fj] , (9)

where ξj = E

[
1+Rj,F

1+RI

∣∣Fj] denotes the expected surplus performance.

That is, a benchmarked investor’s (γj > 0) portfolio has three components. The first

component is the standard mean-variance efficient portfolio, which is independent of the

degree of benchmarking. It is the same portfolio that a non-benchmarked investor holds.

The second component is a hedging portfolio, which arises because a benchmarked investor

has an incentive to do well when the index does well, which can be achieved by buying assets

that co-vary positively with the benchmark. In the single-asset economy, the stock market,

which also serves as the benchmark, naturally co-varies positively with the benchmark.

This results in an additional demand,
γj

βj+γj
> 0, which is increasing in the degree of

benchmarking. This component is information-insensitive, that is, not affected the investor’s

posterior beliefs. Intuitively, it is, by definition, designed to closely track or, formally, co-

vary with, the benchmark, and not designed for speculation.

The third component captures the change in the investor’s risk attitude resulting from

relative performance concerns. Particularly, as shown in Lemma 1, the investor’s effective

risk-aversion is increasing in the degree of benchmarking. As long as the expected excess

return on the market is positive, an increase in risk-aversion implies a reduction in the

fraction invested into the stock market, that is, the third component is negative and de-

creasing (becoming more negative) in the degree of benchmarking. As we will shortly see,

this component is the key driver of many results in the paper.

One can rewrite the fraction of wealth invested into the stock market in (9) as

φj ≈
(

1

α
− γjξj
α(1 + γjξ)

)
Ej [R

e
∣∣Fj]

V arj [Re
∣∣Fj] +

γj
βj + γj

, (10)
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which shows explicitly that the portfolio is composed of the standard mean-variance efficient

portfolio of an investor with risk-aversion α̂, as in (4), and a hedging portfolio.

We can now study the impact of benchmarking on the institutional investor’s portfolio

for the illustrative setting described in Section 1.2.14 We start with the case of an uninformed

investor (xj = 0), which illustrates the impact of benchmarking in the absence of private

information. Panel A of Figure 2 shows that the fraction of wealth invested into the stock

market is increasing in the degree of benchmarking, leading to an excess demand for the

stock market. This implies that the positive hedging demand dominates the drop in demand,

resulting from the increase in effective risk-aversion.

This result is fully consistent with the asset pricing literature that studies institutional

investors with symmetric information. For example, Brennan (1993), Cuoco and Kaniel

(2011), Basak and Pavlova (2013), and Buffa, Vayanos, and Woolley (2014) find that insti-

tutions optimally tilt their portfolios toward stocks that are included in their benchmark

index. Moreover, because this is the typical pattern in equilibrium, we will exclusively focus

on this case going forward.15

Panel A of Figure 2 also depicts the expected portfolio share of the stock market for

an informed investor (xj > 0). As expected, the informed investor invests, on average,

more into the stock market—irrespective of the degree of benchmarking. Intuitively, keep-

ing γj fixed, the conditional variance V arj [R
e
∣∣Fj] is lower for a better informed investor.

This increases the risk-adjusted return, and, in turn, increases the standard mean-variance

component of the portfolio relative to an uninformed investor. Because the hedging port-

folio is information-insensitive, this leads to an increase in the expected portfolio share

of the market. The additional demand needs to be financed. Accordingly, as Panel B of

Figure 2 illustrates, the portfolio share of the bond, 1 − φj , is declining in the degree of

benchmarking—for the uninformed and the informed investor, with the difference being

more pronounced for the informed investor because of the stronger demand for the stock

market.

14To closely connect the results to the equilibrium results that follow, we use the equilibrium price for the
portfolio allocation problem.

15It is, however, theoretically possible that the risk reduction effect dominates, and the demand of the
benchmarked investors is lower than the demand of the non-benchmarked investors.
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A: Expected Stock Demand
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B: Expected Bond Demand
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C: Conditional Stock Demand

0.00 0.01 0.02 0.03 0.04

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Degree of benchmarking (γ)

Po
rt

fo
lio

sh
ar

e
of

st
oc

k
(ϕ

1)

Expected

D: Conditional Bond Demand
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Figure 2: Asset Demand. The figure depicts the optimal period-2 portfolio choice of a single institutional
investor, who takes the stock price P and the precision of his signal xj as given, as a function of the degree
of benchmarking γ. Panels A and B show the expected portfolio share of the stock and the bond of an
“uninformed” investor with a signal precision of zero (xj = 0) and an informed investor who receives an
private signal with xj > 0. Panels C and D show the portfolio share of the stock and the bond for the same
informed investor—conditional on the realization of his signal Sj ∈ {SH , SL}. The results are based on the
parameter values presented in Table 1.

In contrast to the uninformed investor, the informed investor’s posterior beliefs and, in

turn, his investment decisions, depend on the signal realization Sj ∈ {SL, SH}. Panel C of

Figure 2 shows that, as expected, an informed, non-benchmarked investor (γj = 0) over-
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weights the stock market in his portfolio following a positive signal, SH , and under-weights

the stock market following a negative signal, SL. Intuitively, Bayesian learning leads to

a high conditional expected return Ej [R
e
∣∣Fj] following a positive signal, which increases

the standard mean-variance demand in equation (10), and vice versa for a negative signal.

Consequently, a non-benchmarked institutional investor under-weights the bond following

a positive signal and over-weights it following a negative signal (see Panel D).

We now focus on the interaction between benchmarking and speculation based on private

information. As Panel C of Figure 2 illustrates, for a signal with given precision, the spread

between a benchmarked investor’s conditional stock demand following a positive and a

negative signal narrows. That is, in the presence of benchmarking, the investor speculates

less, with the effect strengthening with the degree of benchmarking γj . For example, an

institutional investor who is concerned about his performance relative to a benchmark

has a lower demand for the stock following a positive signal than an investor who is not

benchmarked. In Panel D one can observe offsetting effects in the bond holdings of the

benchmarked investor.

Intuitively, this decline in the speculative activities of a benchmarked investor in reaction

to private information is driven by the increase in the benchmarked investor’s effective

risk-aversion. A higher effective risk-aversion implies that the investor will take smaller

bets. The effect is also apparent from the expression for the portfolio share of the stock

in equation (9). Particularly, one can easily show that the third (negative) component,

capturing the change in risk aversion, is decreasing (becoming more negative) in the degree

of benchmarking, which reduces the sensitivity of the stock market’s portfolio share with

respect to the conditional expected excess return (see also (10)). The asymmetry in the

“slopes” of the benchmarked investor’s conditional stock market demand is driven by the

underlying positive hedging demand, which is information-insensitive and, thus, always

creates a positive demand.
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2.2 Information Choice

Having determined the impact of benchmarking on an institutional investor’s portfolio

choice in period 2, that is, after observing the private signal, we can now study his opti-

mization problem in period 1—the information acquisition stage. At this point, the investor

needs to choose the precision, xj , of the private signal that he will receive in period 2, an-

ticipating his optimal portfolio choice in period 2 in reaction to a signal realization with

chosen precision.

Formally, the investor chooses the precision xj in order to maximize his unconditionally

expected utility, based on prior information only, of the period-2 value function, taking W1,j

as given:

max
xj≥0

Ej
[
V
(
Sj , xj ,Wj,2;P

)]
, (11)

subject to the budget equation

Wj,2 = W1,j − C(xj).

Substitution wealth Wj,2 into the optimization problem (11), the first-order condition

with respect to xj yields the optimal signal precision

Ej

[
∂V (Sj , xj ,Wj,2;P )

∂xj
− ∂V (Sj , xj ,Wj,2;P )

∂Wj,2

∂C(xj)

∂xj

]
= 0. (12)

In expectation, an investor equates the marginal benefit of information, arising from more

precise posterior beliefs and, accordingly, a better portfolio choice, to the marginal cost of

information, arising from the information cost function C(xj).

As shown in Panel A of Figure 3, the precision that an institutional investor chooses for

his private signal is declining monotonically in the degree of benchmarking. That is, he is

less willing to invest into the acquisition of private information in period 1 and, consequently,

the signal that he will receive in period 2 will be less precise.
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A: Signal Precision
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B: Variance explained by Signal
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Figure 3: Information Demand. The figure shows the information choice of a single institutional investor
in period 1 as a function of the degree of benchmarking γ. Panels A and B depict the signal precision, xj ,
chosen by the institutional investor and the fraction of the variance of the payoff that is explained by a signal
with chosen precision, R2, respectively. The results are based on the parameter values presented in Table 1.

To understand this effect, recall from the preceding section that an investor’s speculative

activities decline with the degree of benchmarking, due to the rise in his effective risk-

aversion. He is less willing to take large bets, and, thus, his portfolio choice becomes less

sensitive to the realization of his signal. That means a signal with the same precision

xj is incorporated to a smaller degree into the portfolio of a benchmarked investor than

into the portfolio of an investor who is not benchmarked. Consequently, keeping signal

precision unchanged, a signal is less valuable for a benchmarked investor because it has a

smaller positive impact on his portfolio choice and, in turn, his compensation, as well as

period-2 utility. This has a direct impact on the optimal choice of the signal precision in

period 1. It renders a benchmarked investor’s period-1 expected utility less sensitive to

the precision of the signal, so that the investor is less willing to costly acquire information;

that is, he optimally chooses a lower precision. These effects strengthen with the degree of

benchmarking, which explains the decline of signal precision.

To provide some intuition on the magnitude of the signal precision xj , Panel B of Figure 3

also shows the R2, that is, the fraction of the variance of the payoff D that is explained
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by the investor’s signal—as a function of the degree of benchmarking. The R2 is one-to-

one related to the signal precision through the investor’s posterior and can be expressed

as R2 = 1 − 4E[π̂1,j π̂2,j ], where π̂·,j denotes the posterior probability, as specified in (5).

Accordingly, as the R2 is monotone in π̂, it is also declining in the degree of benchmarking.

3 Information Acquisition and Asset Prices in Equilibrium

We now focus on how benchmarking affects informational efficiency and asset prices in

equilibrium—still within the framework of a one-stock economy. Instead of a single institu-

tional investor, we consider a continuum of atomless investors and impose market clearing.

Thus, each investor can extract information about the other investors’ private information

from the price, which will, in turn, affect his portfolio and information choice.

Specifically, we fix the degree of benchmarking for the group of benchmarked investors

B at γB = 1.0% (γN = 0). Instead, our main comparative statics parameter will be

the fraction of benchmarked investors, Λ. This will allow us to illustrate how the rise

of “indexed” investors (or, more precisely, the growth in their assets under management)

influences asset prices and informational efficiency.

3.1 Equilibrium

A rational expectations equilibrium is defined as a set of asset demands
{
φj,i
}

and infor-

mation choices {xj,i} for all investors j and price functions {Pi} such that three conditions

are satisfied

1. {xi,j(W1,j)} and
{
φj,i(Sj,i, xj,i,Wj,2;Pi)

}
solve investor j’s maximization problems,

given in (6) and (11), taking prices Pi as given.

2. Each investor has rational expectations, Ej [ · | Fj ], formed according to (5)—conditioning

on the public stock prices Pi and his private signals Sj,i with precision xj,i.

3. Pi clears the market, that is, aggregate demand equals aggregate supply:
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∫ 1

0
φj(Sj , xi,j ,Wj,2;Pi)

Wj,2

Pi
dj = z̄ + zi. (13)

In equilibrium, the stock prices play a dual role: They clear the security market for each

stock and aggregate as well as disseminate investors’ private information. Because of our

deviation from the standard CARA-normal framework, the price functions are nonlinear,

so that we have to rely on a numerical algorithm to solve for the equilibrium. Appendix B

provides details on the algorithm.

3.2 Information Acquisition and Price Informativeness

In a first step, we study how changes in the fraction of benchmarked investors affect the

optimal information acquisition of the two groups of market participants, that is, the preci-

sion that investors choose for their private signal. As is shown in Panel A of Figure 4, both

groups of investors choose a higher precision for their private signals, xn, n ∈ {B,N}—here

again expressed in terms of R2—as the share of benchmarked investors increases.

To understand this effect, recall from the preceding section that benchmarking increases

investors’ effective risk-aversion and, thus, limits their speculative activities. Hence, bench-

marked investors, in general, value private information less and, thus, choose less precise

signals. For example, in Panel A of Figure 4, the variance explained by the benchmarked

investors’ signals SB (or, implicitly, the signal precision) is always lower than for the non-

benchmarked investors—regardless of the share of benchmarked investors. Now, imagine

an increase in the fraction of benchmarked investors without a change in the precision of

the investors’ private signals. This would imply a shift toward less informed benchmarked

investors and, in turn, a decline in aggregate information acquisition in the economy. Ac-

cordingly, the marginal benefit from an additional piece of information goes up, increasing

the incentives for all investors to acquire more information, that is, choose a more precise

signal. This is exactly the “on-equilibrium” behavior of the two groups of investors, as

shown in Panel A of Figure 4.
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A: Informativeness of Private Signals
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B: Price Informativeness
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Figure 4: Informativeness of Private Signals and the Price. This figure shows the fraction of the
variance of the payoff D that is explained by various information sets (R2) as a function of the share of
benchmarked investors Λ. Panel A shows the fraction of the variance that is explained by the individual
investors’ private signals Sn, and Panel B shows the fraction of the variance that is explained by the stock
price, P , as well as by the two groups of market participants’ information sets, Fn = {P, Sn}, n ∈ {B,N}.
The results are based on the parameter values presented in Table 1.

In equilibrium, financial markets aggregate private information through means of trading

and market clearing. Accordingly, the equilibrium price partially reveals private informa-

tion. Panel B of Figure 4 illustrates that price informativeness, measured as the fraction of

the variance of the payoff of the stock that can be explained by the price P alone, is declin-

ing in the share of benchmarked investors. This means that prices become less informative,

as a bigger share of wealth is managed by benchmarked investors.

Intuitively, this effect can be explained by the fact that an increase in the share of bench-

marked investors implies that better informed, non-benchmarked investors are replaced by

less informed benchmarked investors. Thus, on aggregate, less information is acquired and,

because benchmarked investors make smaller bets, incorporated into the price. Hence, less

information is revealed through the price. The increase in the signal precision of each group

of investors counteracts this effect but is not strong enough to overturn it, leading to the

observed decline in price informativeness.
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Panel B of Figure 4 also shows the fraction of the variance of the stock market’s payoff

that can be explained by the full information set of each investor, Fn = {P, Sn}, consisting

of the publicly observable price P and his private signal Sn, n ∈ {B,N}. As demon-

strated above, benchmarked investors always—independent of their size relative to the

overall economy—choose a lower signal precision than the other investors, so it is not sur-

prising that they are less well informed. That is, the variance of the stock market’s payoff

explained by benchmarked investors’ information set FB is lower than the variance explained

by the other investors’ information set FN .

Interestingly, the “information gap” between the two market participants’ information

sets widens as benchmarked investors constitute a larger fraction of the economy. The

information advantage of the non-benchmarked investors strengthens. This is a direct

consequence of the decline in price informativeness. That is, because less information is

revealed through the public signal—the stock price—the precision of the investors’ private

information gains importance. Hence, the fact that the benchmarked investors acquire less

information, that is, have less precise signals, plays a more important role.

3.3 Asset Prices and Moments of Return

Next, we analyze the impact on the stock price and the corresponding moments of the

return in equilibrium.

Figure 5 depicts the expected equilibrium price of the market as a function of the share

of benchmarked investors. In the case without information acquisition, the price is increas-

ing in the fraction of benchmarked investors. Particularly, recall that relative performance

concerns lead to a positive hedging demand for the stock market from benchmarked in-

vestors. Intuitively, this excess demand generates “price pressure.” The stock is in fixed

supply, so its price must increase. This finding is similar to the results in standard asset

pricing models with institutional investors absent information acquisition, as in Cuoco and

Kaniel (2011), Basak and Pavlova (2013) and Buffa, Vayanos, and Woolley (2014).

Before turning to the implications of jointly modeling benchmarked investors and infor-

mation acquisition, note that in rational expectations models, private information and the
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Figure 5: Stock Price. The figure shows the equilibrium expected price as a function of the share of
benchmarked investors Λ. The price is depicted for the case without information acquisition (“No info”),
i.e., with uninformed investors, as well as for the case with information acquisition, i.e., endogenous signal
precision. It is shown for two levels of the information cost: κ = 0.01 and κ = 0.02. The results are based
on the parameter values presented in Table 1.

public information revealed through the price render investments into the stock market less

risky to investors, because more precise information about its payoff is available. Therefore,

risk-averse investors value the asset more. Accordingly, in the absence of benchmarked in-

vestors (Λ = 0), a higher price prevails in the economy with endogenous information choice,

compared to the economy with uninformed investors.

This mechanism also explains why the price of the stock market can decline in the

fraction of benchmarked investors, as shown in Figure 5 for information costs of κ = 0.01.

On the one hand, the excess demand created by the benchmarked investors’ hedging motive

pushes up the price—similar to the symmetric information case. On the other hand, the

substantial decline in price informativeness makes the payoff more uncertain, so that risk-

averse investors command a lower price. In this setting, the second effect dominates, so

that the equilibrium price declines. Interestingly, in the case of higher information costs

(κ = 0.02), the price is actually U-shaped in the size of the benchmarked institutions. That

is, for lower Λ, the negative price effect resulting from a decline in price informativeness

dominates, leading to a decline in price. In contrast, for larger fractions of benchmarked
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A: Return Volatility
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B: Expected Stock Return
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C: Sharpe Ratio
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Figure 6: Moments of Stock Return. The figure shows the moments of the market return as a function
of the share of benchmarked investors, Λ. Panels A to C show the expected conditional return volatility, the
conditional expected return, and the expected conditional Sharpe ratio, respectively. The return moments
are depicted for the case without information acquisition, i.e., with uninformed investors, as well as for the
case with information acquisition, i.e., endogenous signals precision. Particularly, the return moments are
shown for two levels of the information cost: κ = 0.01 and κ = 0.02. The results are based on the parameter
values presented in Table 1.

investors, the positive price effect induced by the hedging demand dominates so that the

price starts to increase.
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Not surprisingly, the stock market’s return volatility is increasing in the share of bench-

marked investors if one allows for endogenous information acquisition, as illustrated in

Panel A of Figure 6.16 Particularly, as was discussed in the preceding section, an increase

in the size of the benchmarked investors leads to a decline in price informativeness; that is,

less of the variance of the payoff can be explained by the equilibrium price. Accordingly, the

deviation between the time-2 price and the payoff revealed in period 3 increases, implying

a more volatile stock market return.

The fraction of benchmarked investors in the economy also affects the expected stock

market return (Panel B of Figure 6). Particularly, in the case without information acqui-

sition, the expected return is decreasing in the fraction of benchmarked investors, thereby

generating a decline in the Sharpe ratio (Panel C). In contrast, with endogenous informa-

tion choice, the expected return actually increases in the presence of benchmarked investors.

This is the case if the negative price effect created by the lower level of price informativeness

dominates. Moreover, for the cases with endogenous information acquisition, this increase

leads also to an increase in the Sharpe ratio.

3.4 Investors’ Portfolio Returns

The changes in the stock market’s expected return and the investors’ information choices

also have an impact on the expected portfolio returns of the two groups of investors. Partic-

ularly, as Figure 7 shows, the abnormal portfolio return of the non-benchmarked investors,

defined as an investor’s expected return minus the market return, is increasing stronger than

the abnormal return of benchmarked investors. That is, as a bigger share of wealth is man-

aged by benchmarked investors, non-benchmarked investors can generate higher expected

excess returns—especially so relative to their benchmarked peers.

Recall that the increase in the fraction of benchmarked investors leads to a decline in

price informativeness, which strengthens the benefits of private information. Accordingly,

the informational advantage of the non-benchmarked investors increases. This has two

16While the stock return volatility is slightly declining in our static economy with symmetric information,
Basak and Pavlova (2013) show that return volatility is increasing in the presence of benchmarked investors
if one considers a dynamic setting.
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Figure 7: Abnormal Portfolio Returns. The figure shows the investors’ expected abnormal portfolio
returns, in excess of the average return of market, as a function of the share of benchmarked investors Λ.
The results are based on the parameter values presented in Table 1.

effects: First, non-benchmarked investors hold, on average, more of the stock market, which

delivers a positive risk premium, because their superior information renders the investment

less risky. Second, non-benchmarked investors’ speculative activities are more profitable

because their signals contain more information about the payoff. Finally, the increase in

the expected return in the share of benchmarked investors amplifies the effect resulting from

the, on average, higher portfolio share of the market for non-benchmarked investors.

4 Equilibrium with Multiple Stocks

Our results so far have been presented within the framework of a single-stock economy. Our

objective in this section is to study how our results generalize in an economy with multiple

stocks. Particularly, we study an economy with two risky stocks, with the first one also

serving as the “index” (benchmark portfolio). We will refer to the first stock, i = 1, as the

“index stock” and the second stock, i = 2, as the “non-index stock.” Thus, the investor

now strives to do well when the index stock does well.

29



4.1 Portfolio and Information Choice

Similar to the analysis of the single-stock economy, we first study a benchmarked investor’s

portfolio and information choice in partial equilibrium, that is, with exogenous stock prices,

varying the degree of benchmarking in the investor’s compensation scheme.

Specifically, conditional on an investor’s posterior beliefs about the payoffs of the two

stocks, he will choose the fraction of wealth to be invested into the stocks, φj,i, i ∈ {1, 2},

to maximize his expected utility (6), subject to the following budget equation:

Wj,3 = Wj,2

(
1 + rf + φj,1R

e
1 + φj,2R

e
2

)
,

where Rei denotes the excess return on stock i.

The investor’s approximate portfolio shares are natural multi-stock generalizations of

the single-stock case (9):

φj,i ≈
(

1

α
− γjξj
α(1 + γjξj)

)
Ej [R

e
i

∣∣Fj]
V arj [Rei

∣∣Fj] +
γj

βj + γj

Corj [R
e
i , RI

∣∣Fj]√V arj [Rei ∣∣Fj]√
V arj [RI

∣∣Fj] . (14)

Again, benchmarked investors hold the mean-variance portfolio of an investor with effec-

tive risk-aversion α̂, plus a hedging portfolio. Note that the hedging portfolio is now more

refined. Particularly, the hedging demand for stock i depends on the conditional correlation

between a stock’s return and the index return (the “quality” of the hedging instrument) as

well as the ratio of the stock’s and the index’s conditional return volatilities (the “hedge

ratio”).

In our setting, in which the index is composed of one of the two stocks only, expression

(14) can be further simplified. For the index stock, the correlation between the stock’s

return and the index’s return as well as the ratio of their return volatilities is equal to

one, so that the optimal portfolio share for the index stock simplifies to the one stock

expression (10), with hedging demand
γj

βj+γj
. In contrast, for the non-index stock, the

hedging demand is practically zero, so that the optimal portfolio share is given solely by

30



A: Demand for Index Stock
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B: Demand for Non-Index Stock
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Figure 8: Stock Demand. The figure depicts the optimal period-2 portfolio choice of a single benchmarked
investor, who takes the stock prices Pi and the precision of his signals xj,i as given—as a function of the
degree of benchmarking γ. The figure shows the expected portfolio share of stock i, as well as the optimal
portfolio share conditional on the realization of the private signal Sj,i ∈ {SH , SL}. Panels A and B show
the optimal portfolio share for the index (i = 1) and non-index stock (i = 2), respectively. The results are
based on the parameter values presented in Table 1.

the standard mean-variance portfolio with effective risk-aversion α̂. Intuitively, because the

two stocks’ payoffs, signals, and noise are independent, their returns are also practically

uncorrelated in equilibrium, which renders the correlation between the non-index stock and

the index itself zero as well.

These effects are illustrated in Figure 8 for the case of an informed institutional investor,

for various degrees of benchmarking γ. Specifically, Panel A depicts a pattern for the index

stock that is very similar to the one in the single-stock economy. The positive hedging

demand more than offsets the drop in demand resulting from the increase in the investor’s

effective risk-aversion and leads, on average, to an increase in the share of the index stock in

the investor’s portfolio as the degree of benchmarking strengthens. At the same time, the

increasing effective risk-aversion substantially reduces the investor’s willingness to speculate

based on private information, so that his portfolio becomes less sensitive to the realization

of his private signal in the presence of benchmarking.

31



In contrast, Panel B shows that for the non-index stock, the expected holdings and the

speculative demand decline in the degree of benchmarking. Because of the absence of a

hedging demand, the increase in effective risk-aversion directly implies a lower expected

portfolio share for the non-index stock. Moreover, the increase in effective risk-aversion

reduces the speculative demand for the non-index stock—with the same magnitude as for

the index stock. Thus, on aggregate, benchmarked investors tilt their portfolio toward index

stocks.

The investor’s information choice problem is the same as for the single-stock case in

(11), except that the investor now has to decide simultaneously on the signal precision for

the two stocks, xj,i, i ∈ {1, 2}.

Unreported results17 show that an increase in the degree of benchmarking leads to

a decline in signal precision for both stocks. Because the investor’s speculative demand

declines by the same magnitude for the two stocks—driven by the increase in his effective

risk-aversion—and the hedging demand is information-insensitive, the investor’s willingness

to take large bets in the two stocks declines in parallel. Consequently, the sensitivity of the

investor’s portfolio and, in turn, the sensitivity of his period-1 expected utility with respect

to private information about the two stocks declines by the same amount. Accordingly, the

investor acquires exactly the same amount of information for the two stocks, that is, he

chooses equal signal precisions in partial equilibrium.

4.2 Price Informativeness in Equilibrium

We now impose market clearing for the two stocks, as in (13), and, thus, turn to the

equilibrium results with multiple stocks. Our key comparative statics parameter will be the

fraction of benchmarked investors in the economy, Λ.

Similar to the case with a single risky asset, in equilibrium, financial markets aggregate

the individual investors’ private information through means of trading and market clear-

ing. Consequently, the prices of the two stocks imperfectly reveal the private information

acquired by the market participants.

17Available upon request from the authors.
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Figure 9: Informativeness of Stock Prices. This figure shows the fraction of the variance of the payoff
Di that is explained by the stock prices (R2), as a function of the share of institutional investors Λ. The
results are based on the parameter values presented in Table 1.

Panel A of Figure 9 depicts price informativeness, measured as the fraction of the vari-

ance of the payoff of stock i, which can be explained by its stock price, Pi, alone. Price

informativeness is declining for both stocks in the fraction of benchmarked institutional

investors. This effect can be explained by the same mechanism as in the single-stock econ-

omy. An increase in the share of benchmarked investors implies that better informed,

non-benchmarked investors are replaced by less informed benchmarked investors who trade

less aggressively, so that, on aggregate, less information is acquired and revealed through

the stock prices.

Note that the decline in price informativeness is more pronounced for the index stock,

which is due to the hedging demand of the benchmarked investors and CRRA-preferences.

Effectively, the hedging demand, which is information-insensitive, reduces the supply of the

index stock available for speculation. This, in turn, reduces the profitability of trading,

so that investors trade less aggressively and, hence, less information is revealed through

the price of the index stock relative to the non-index stock. Consequently, as the frac-

tion of benchmarked investors increases, and so does their impact, the difference in price

informativeness grows as well.
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4.3 Equilibrium Asset Prices and Returns

These changes in the price informativeness of the two stocks have a direct impact on their

equilibrium prices and returns, as is illustrated in Figure 10.

Panel A shows that the prices of both stocks decline in the fraction of benchmarked

investors in the economy, with the decline in the non-index stock’s price being more pro-

nounced. For the index stock, the effect is very much comparable to the price change in

the single-stock economy and can be explained by the same two offsetting forces. On the

one hand, the hedging demand of the benchmarked investors creates an excess demand for

the index stock. Because the stock is in fixed supply, for markets to clear, the price would

have to go up. On the other hand, the decrease in the index stock’s price informativeness

renders investments into the stock riskier, so that risk-averse investors command a lower

price. On aggregate, the second effect dominates, leading to the slight decline in the ex-

pected price of the index stock. For the non-index stock there is no hedging demand that

would (partially) offset the decline in price resulting from lower price informativeness, so

that the price declines more. As the impact of the benchmarked investors, and with it, the

aggregate hedging demand, increases, the difference between the expected prices of the two

stocks widens.

Panel B of Figure 10 shows that the expected conditional Sharpe ratio is higher for

the non-index stock, which can be explained through “equilibrium incentives.” Due to the

hedging demand of the benchmarked investors, in order to ensure market clearing, non-

benchmarked investors must be induced to tilt their portfolio toward the non-index stock,

which is achieved through a higher Sharpe ratio.

Panels C and D illustrate that, for both stocks, the expected conditional return and

the expected conditional volatility are increasing, as a bigger share of wealth is managed

by benchmarked investors. The increase in the expected return for the non-index stock is

stronger, due to the more pronounced decline in its expected price, and the gap in expected

returns widens with the share of benchmarked investors. The decline in both stock’s price

informativeness explains the increase in the stocks’ return volatilities, with a more pro-

nounced increase of the index stock’s return volatility due to the stronger decline in price
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A: Stock Price
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B: Sharpe Ratio
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C: Expected Stock Return
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D: Return Volatility
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Figure 10: Stock Price and Moments of Stock Returns. The figure shows the expected prices of the
two stocks and their return moments as a function of the share of benchmarked investors, Λ. Panels A to
D show the expected stock prices, the expected conditional Sharpe ratios, the conditional expected returns,
and the expected conditional return volatilities, respectively. The results are based on the parameter values
presented in Table 1.

informativeness. The correlation between the index and the non-index stock (unreported)

is basically not affected.

Note that these changes in the individual stocks’ prices and returns also have direct

implications for the stock market as a whole. Particularly, the decline in both stocks’
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equilibrium prices implies a decline in the value of the aggregate market as well. Similarly,

because the return correlation is virtually unchanged, the increase in both stocks’ return

volatilities implies a substantial increase in the volatility of the market return. Despite this

increase in the return volatility of the market, its Sharpe ratio is increasing in the fraction

of benchmarked investors. This can be attributed to the decline in aggregate, effective

risk-aversion, which means that, in order for markets to clear, investors must be induced to

hold more of the market.

5 Summary of Key Predictions and Empirical Implications

Relative performance concerns play a key role in the decisions of many institutional investors

who are in the business of acquiring information and using that information for portfolio

management. In this paper, we develop an economic framework that explicitly accounts for

benchmarking and the joint determination of investors’ portfolio and information choice in

equilibrium.

We highlight a novel economic channel through which benchmarking affects the portfolio

allocation and information choice of institutional investors: Relative performance concerns

lead to an increase in the effective risk-aversion of a benchmarked institutional investor,

particular so as his “surplus performance” relative to the index declines. Intuitively, this

increase in risk-aversion reduces the investor’s willingness to speculate and, consequently,

his desire to acquire information, with important implications for prices and returns.

Some of our predictions, particularly those comparing index and non-index stocks, are

similar to findings in the asset pricing literature and supported by the empirical literature

on “index effects.” For example, similar to Cuoco and Kaniel (2011) and Basak and Pavlova

(2013), we find that the bias of benchmarked investors’ portfolios in favor of index stocks

results in higher prices and return volatilities, but lower Sharpe ratios for index stocks.

But, analyzing portfolio and information choices jointly also delivers new insights that are

unique to our economic framework. For instance, our analysis suggests that benchmark-

ing reduces price informativeness. As a direct consequence, the prices of all risky assets
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and the market portfolio might decline. The decline in price informativeness also leads to

a substantial increase in return volatilities in the presence of benchmarked investors—in

contrast to the results in Cuoco and Kaniel (2011), in which information choice is absent

and, thus, price informativeness is unchanged. Finally, with less informative prices, private

information gains importance, leading to a substantial out-performance of better informed

non-benchmarked investors.

While there is a growing body of literature on the asset pricing implications of institu-

tional investors, our paper helps to better understand their joint information and portfolio

choice. However, many aspects of institutional investors’ impact on financial markets are

not well understood yet. For example, extensions of our framework could be used to under-

stand the optimal size of benchmarked investors in the economy (Pástor and Stambaugh

(2012)) or the “implicit costs” of passive investing (French (2008)).
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Appendix

A Proofs

Proof of Lemma 1

Rewrite the investors’ compensation Cj from equation (2) as

Cj(Wj,3, RI) = βjWj,3 + γj
(
Wj,3 − (1 +RI)

)
= (βj + γj)Wj,3 − γj (1 +RI),

plug it into utility function (3), and take the derivatives with respect to wealth Wj,3:

∂Uj(Cj)

∂Wj,3
= C−αj (βj + γj);

∂2Uj(Cj)

∂W 2
j,3

= (−α)C
−(α+1)
j (βj + γj)

2.

Thus, the local curvature of the utility function, α̂j , is given by

α̂j ≡ −
Wj,3 ∂

2Uj/∂W
2
j,3

∂Uj/∂Wj,3
=
−Wj,3(−α)C

−(α+1)
j (βj + γj)

2

C−αj (βj + γj)

= α

(
1

βj + γj

(βj + γj)Wj,3 − γj (1 +RI)

Wj,3

)−1

= α

(
1

βj + γj

(
(βj + γj)− γj

(1 +RI)

1 +Rj,F

))−1
= α

(
1− γj

βj + γj

(
1 +Rj,F
1 +RI

)−1)−1
.

Assume that γj > 0, βj > 0 and RI > −1. Then we get

α̂j = α

(
1− γj

βj + γj︸ ︷︷ ︸
>0

(
1 +Rj,F
1 +RI

)−1
︸ ︷︷ ︸

>0

)−1
> α.

Taking the derivative of α̂j with respect to γj and (1 +Rj,F )/(1 +RI) yields

∂α̂j
∂γj

= α

(
1− γj

βj + γj

(
1 +Rj,F
1 +RI

)−1)−2
(−1)

(
−
(

1 +Rj,F
1 +RI

)−1( 1

βj + γj
+

−γj
(βj + γj)2

))

= α

(
1− γj

βj + γj

(
1 +Rj,F
1 +RI

)−1)−2
︸ ︷︷ ︸

>0

(
1 +Rj,F
1 +RI

)−1
︸ ︷︷ ︸

>0

βj
(βj + γj)2︸ ︷︷ ︸

>0

> 0
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∂α̂j

∂
1+Rj,F

1+RI

= α

(
1− γj

βj + γj

(
1 +Rj,F
1 +RI

)−1)−2
(−1)

−γj
βj + γj

(−1)

(
1 +Rj,F
1 +RI

)−2

= −α︸︷︷︸
<0

(
1− γj

βj + γj

(
1 +Rj,F
1 +RI

)−1)−2
︸ ︷︷ ︸

>0

γj
βj + γj︸ ︷︷ ︸

>0

(
1 +Rj,F
1 +RI

)−2
︸ ︷︷ ︸

>0

< 0.

Derivation of Portfolio Share Approximation for the Single-Stock Economy

For ease of exposition, define the normalized compensation, Ĉj , as Ĉj =
Cj

βj+γj
. This

compensation can be easily rewritten as

Ĉj(Wj,3, RI) =
1

βj + γj

(
(βj + γj)Wj,3 − γj (1 +RI)

)
=
(
1 + rf + φj R

e
)
− γj
βj + γj

(1 +RI),

where we replaced Wj,3 with the wealth dynamics in (7), and, without loss of generality,

normalized Wj,2 to 1.

Now, consider the case in which the excess return on the stock market, Re, and the

return on the index, RI , are jointly normally distributed, with expectations µS and µI ,

variances σ2S and σ2I and covariance σS,I . Then the normalized compensation Ĉj is normally

distributed with the following mean and variance

E[Ĉj ] =
(
1 + rf + φj µS

)
− γj
βj + γj

(1 + µI),

V ar(Ĉj) = φ2j σ
2
S +

γ2j
(βj + γj)2

σ2I + 2φj
γj

βj + γj
σS,I .

In the region where the mean, E[Ĉj ] is close to one, the normally distributed variable

Ĉj can be closely approximated using a log-normally distributed variable with the same

mean and variance:18

Ĉj ≈ exp

(
−1 + E[Ĉj ]−

1

2
V ar(Ĉj) +

√
V ar(Ĉj) ν

)
(A1)

where ν denotes a standard normal distributed variable.

18See also van Nieuwerburgh and Veldkamp (2010).
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Optimizing utility (3) over Ĉj is equivalent to maximizing the utility over Cj because

the term 1
βj+γj

is simply a multiplicative constant. Accordingly, we can write the portfolio

optimization problem as:

max
φj

E

[
Ĉ1−α
j

1− α

]

which can, by computing the expectation for approximation (A1), be simplified to

max
φj

exp

((
1− α

)(
−1 + E[Ĉj ]−

1

2
V ar(Ĉj)

)
+

1

2

(
1− α

)2
V ar(Ĉj)

)
.

The first-order condition with respect to φj yields

µS − φj σ2S α+
γj

βj + γj
σS,Iα = 0,

such that

φj =
1

α

µS
σ2S

+
γj

βj + γj

σS,I
σ2S

=
1

α

µS
σ2S

+
γj

βj + γj
Cor(Re, RI)

σI
σS
. (A2)

Note, however, that due to the approximation, the increase in risk-aversion is “lost.”

Particularly, one can rewrite the approximation for Ĉj in (A1) as

exp

(
r + φjµS −

1

2
φ2jσ

2
S + φjσSν

)

× exp

(
− γj
βj + γj

(1 + µI)−
1

2

(
γ2j σ

2
I

(βj + γj)2
− 2φj

γj
βj + γj

σS,I

)
− γj
βj + γj

σI ν

)
,

where the first component is the log-normal approximation of wealth Wj,3. Hence, the

normalized compensation Ĉj can also be approximately written as

Ĉj ≈W3,j×exp

(
− γj
βj + γj

(1+µI)−
1

2

(
γ2j σ

2
I

(βj + γj)2
−2φj

γj
βj + γj

σS,I

)
− γj
βj + γj

σI ν

)
(A3)
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Figure 11: Conditional Stock Demand. The figure shows the optimal portfolio share of the stock market
for an informed institutional investors with benchmarking degree γ. The demand is shown conditional on
a high or low signal realization. Moreover, the figure shows the true as well as the approximated demand
(based on (9)). The results are based on the same parameters as in Section 2.1 and illustrated in Panel C
of Figure 2.

which makes it apparent that it is linear in wealth W3,j .

Accordingly, by taking the first and second derivative of the utility function (3) over

the approximated normalized compensation, as in (A3), with respect to wealth Wj,3, one

arrives at a local curvature of the approximated utility function equal to α. That is, the

approximation does not take into account the change in risk-aversion resulting from bench-

marking.

Intuitively, one can simply take this change in risk-aversion into account by replacing

α in the approximated portfolio share (A2) with α̂, as in (4). Recognizing that, in the

single-stock economy, the correlation between the market return and the index return as

well as the ratio of their return volatilities is one, yields equation (10), from which equation

(9) follows immediately.

Figure 11 illustrates the precision of the approximation for the portfolio choice problem

of the informed benchmarked investor discussed in Section 2.1. The approximated portfolio

shares (dashed lines) closely resemble the true portfolio shares (solid lines) for both signal

realizations.
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B Numerical Algorithm

Due to our deviation from the CARA-normal framework, the equilibrium price function

in our economy is nonlinear, and its specific functional form is unknown. Accordingly, we

have to rely on a numerical algorithm to solve for the equilibrium. In the following, we

provide some details of the algorithm that we have developed. For ease of exposition, we

concentrate on the single-stock economy.

Particularly, as described in Section 3.1, in equilibrium, each investor must have rational

expectations, as specified in (5), and each investor must choose a portfolio to maximize his

expected utility (6), subject to his period-2 budget equation, and the stock market needs to

clear for all realizations of the underlying (unobservable) payoff D and the (unobservable)

noisy supply z. In addition, in period 1, each investor must choose a signal precision to

maximizes his expected utility (6), subject to his period-1 budget equation.

We discretize the state space for the noisy supply z, using N grid points. The full

equation system then consists of the following set of equations: First, 2×2×2×N “posterior

equations” (5), describing the posterior beliefs for the two groups of investors, the two

(current) underlying payoff realizations, the two (future) possible realizations of the payoff,

and the N grid points of the supply; second, 2× 2×N portfolio first-order conditions (8),

again for the two groups of investors, the two underlying payoff realizations and the N grid

points of the supply; third, 2×N market clearing condition (13) for the two underlying payoff

realizations, and the N grid points of the supply; and fourth, two information acquisition

first-order conditions (12) for the two groups of investors. That is, in total, we arrive at

14N + 2 equations.

The unknowns of the equation system are given by the following variables: First, 2 ×

2× 2×N posterior beliefs π·,k for the two groups of investors, the two (current) underlying

payoff realizations, the two (future) possible realizations of the payoff, and the N grid

points of the supply; second, 2× 2×N portfolio shares of the stock φj for the two groups

of investors, 19 the two underlying payoff realizations, and the N grid points of the supply;

third, 2×N stock prices P for the two underlying payoff realizations and the N grid points

of the supply; and fourth, 2 signal precisions xj for the two groups of investors, which makes

in total 14N + 2 variables.

19The investment into the bond is simply given by wealth minus the investment into the stock and the
information cost.
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The equation system cannot be solved recursively because the period-1 choice of the

signal precision xj affects the period-2 posterior beliefs and, in turn, the portfolio choices

and market clearing. Accordingly, we solve this large fixed-point problem globally using

Mathematica.
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Garćıa, D., and G. Strobl, 2011, “Relative Wealth Concerns and Complementarities in

Information Acquisition,” The Review of Financial Studies, 24(1), 169.
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