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Abstract

This paper studies the large dimensional Markowitz optimization problem. Given
any risk constraint level, we introduce a new approach for estimating the optimal
portfolio. The approach relies on a novel unconstrained regression representation of the
mean-variance optimization problem, combined with high-dimensional sparse regression
methods. Our estimated portfolio, under a mild sparsity assumption, asymptotically
achieves mean-variance efficiency and meanwhile effectively controls the risk. To the
best of our knowledge, this is the first approach that can achieve these two goals simulta-
neously for large portfolios. The superior properties of our approach are demonstrated

via comprehensive simulation and empirical studies.
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1 INTRODUCTION

1.1 Markowitz Optimization Enigma

The groundbreaking mean-variance portfolio theory proposed by Markowitz (1952) contin-
ues to play significant roles in research and practice. The mean-variance efficient portfolio has
a simple explicit expression® that only depends on two population characteristics, the mean
and covariance matrix of asset returns. Under the ideal situation when the underlying mean
and covariance matrix are known, mean-variance investors can easily compute the optimal
portfolio weights based on their preferred level of risk or targeted rate of return. In the real
world, however, the true parameters are unknown. Sample mean and sample covariance
matrix are used as proxies, and the resulting “plug-in” portfolio had been widely adopted.
Such an approach is justified by the classical statistics theory because the plug-in portfolio is
an MLE of the optimal portfolio. However, as documented in Michaud (1989) and others, the
out-of-sample performance of the plug-in portfolio is poor. Moreover, the situation worsens
as the number of assets increases. (For additional details, see Best and Grauer (1991), Green
and Hollifield (1992), Chopra and Ziemba (1993), Britten-Jones (1999), Kan and Zhou (2007),
and Basak et al. (2009) among others.) Termed the “Markowitz Optimization Enigma” by
Michaud (1989), the issues of constructing the mean-variance efficient portfolio based on

sample estimates limit the use of Markowitz’s mean-variance framework.

1.2 Challenges for Large Portfolios

Modern portfolios often include a large number of assets. This makes the optimization
problem high-dimensional in nature and induces serious challenges. Take the plug-in portfolio
for example, as we will see in Figure 1, the risk of the plug-in portfolio can be substantially
higher than the pre-specified risk level even when the portfolio weights are computed based
on simulated i.i.d. returns. On the other hand, such a high risk is not well compensated
by a high return, resulting in a significantly suboptimal Sharpe ratio. The key message is,
even in the ideal situation when all assumptions of Markowitz optimization are
satisfied (i.e., normally distributed returns, no time-varying parameters and regime switching,

etc.), there are intrinsic challenges towards the estimation of the mean-variance

1See details in Section 2.1.



efficient portfolio.
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Figure 1. Comparisons of risks and Sharpe ratios of the plug-in portfolio versus the risk constraint and the
theoretical mazimum Sharpe ratio, respectively. The portfolios are constructed based on data generated from
i.i.d. multivariate normal distribution with parameters calibrated from real data (see Section 3.2 for details).
The left panel plots the portfolio risks, and the right panel plots the Sharpe ratios. The asset pool includes 100

stocks and 8 factors, and the number of observations is 240. The comparison is replicated 100 times.

Figure 1 shows the comparisons between the plug-in portfolio (black dashed lines) and
the theoretical optimal portfolio (black solid lines). The asset pool consists of 100 stocks
and 3 factors. The underlying mean and covariance matrix are calibrated from real data
(see Section 3.2 for details). We generate 20 years of monthly returns from i.i.d. multivariate
normal distribution, based on which we construct the plug-in portfolio and compare its
risk and Sharpe ratio with the risk constraint and the theoretical maximum Sharpe ratio.
Such simulated returns satisfy all the assumptions of Markowitz’s mean-variance framework.
However, as we observe from Figure 1, in all 100 replications, the plug-in portfolio carries
a risk that is almost twice the specified level. Meanwhile, as shown in the right panel of
Figure 1, the Sharpe ratio of the plug-in portfolio is only around 50% of the theoretical
maximum Sharpe ratio.

The phenomenon above has been noted in Kan and Zhou (2007), and later investigated
in Bai et al. (2009) and El Karoui (2010). These papers document that the deviation of

the plug-in portfolio from the optimal portfolio is systematic, and the bias is due to the



dimension (number of assets) being not small compared with the sample size. More precisely,
one has that, under normality assumption on the returns and if the ratio between the number
of assets, IV, and the sample size, T', satisfies that

N
= 1
T—>p€(0, ),

then the Sharpe ratio of the plug-in portfolio, S R(plug-in), is asymptotically related to the
theoretical maximum Sharpe ratio, SR*, as follows

SR(plug-in) p 1—p

—— . S [——————— <1 —-p<], 1.1

SR> 1+ p/(SR*)? P (1.1)

where “57 stands for convergence in probability. The proof of (1.1) is given in Appendix A.
For global minimum variance portfolio (GMV), Basak et al. (2009) derive a result in a similar
spirit, which says that the plug-in GMV carries, on average, a risk that is a bigger-than-1

multiple of the true minimum risk, and the multiplier explicitly depends on the number of

assets and sample size.

1.3 Existing Alternative Methods

The plug-in portfolio is obtained by replacing the population mean and covariance matrix
in the formula for the optimal portfolio with their sample estimates. Alternatively, people
seek to improve portfolio performance by plugging in better estimates of the underlying
mean and covariance matrix. For estimation of covariance matrix, a widely used alternative
estimator is the linear shrinkage estimator proposed in Ledoit and Wolf (2003, 2004), which
estimates the covariance matrix by a suitable linear combination of the sample covariance
matrix and a target matrix (e.g., identity or single-index matrix). More recently, Ledoit
and Wolf (2017) propose a nonlinear shrinkage estimator of the covariance matrix and its
factor-model-adjusted version that are suitable for portfolio optimization. For estimation of
mean, among other works, Black and Litterman (1991) propose a quasi-Bayesian approach by
combining investors’ views with returns implied by CAPM. This quasi-Bayesian approach is
extended to a fully Bayesian approach by Lai et al. (2011), who consider the mean-variance
problem from a different angle and aim to maximize a certain utility function. Garlappi et al.
(2007) propose to adjust estimates of expected returns by a multi-prior approach, also with
an aim of maximizing a utility function. The aforementioned paper Bai et al. (2009), which

analyze the systematic bias in the plug-in portfolio, propose a “bootstrap-corrected” method
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to estimate the optimal portfolio. However, as pointed out in a more recent working paper
(Bai et al. (2013)), the bootstrap-corrected method fails to satisfy the risk constraint.

Another direction to improve portfolio performance is to modify the original framework
by imposing various constraints on portfolio weights. Most research in this direction focuses
on the GMV portfolio. Imposing constraints on weights has been empirically shown to be
helpful; see, for example, Jagannathan and Ma (2003), DeMiguel et al. (2009), Brodie et al.
(2009) and Fastrich et al. (2012). Fan et al. (2012b) give theoretical justifications to the
empirical results in Jagannathan and Ma (2003), and also investigate the GMV portfolio
with gross-exposure constraints where some short positions are allowed. Fan et al. (2012a)
consider GMV portfolio with high-frequency data under gross-exposure constraints.

In addition to the approaches mentioned above, combinations of different portfolios have
been studied; see, for example, Kan and Zhou (2007) and Tu and Zhou (2011).

The aforementioned methods lead to improved portfolio performance. However, they are
still suboptimal. Take the latest development, the nonlinear shrinkage method in Ledoit and
Wolf (2017) as an example, we see in Figure 2 that although its risk is substantially lower
than that of the plug-in portfolio, the portfolio still violates the risk constraint, and is also

significantly suboptimal in terms of Sharpe ratio.
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Figure 2. Comparisons of the plug-in and nonlinear shrinkage portfolios. The portfolios are constructed
based on the same data used for Figure 1. The left and right panels plot the portfolio risks and Sharpe ratios,
respectively. There are 100 stocks and 3 factors in the asset pool, and the sample size is 240. The comparison

is replicated 100 times.



Comprehensive comparisons including various other strategies are made in Sections 3 and 4,

based on both simulated and empirical data. The comparisons reveal similar conclusions.

1.4 Our Contributions

In this paper, a new methodology for estimating the mean-variance efficient portfolio
is proposed, which we call the MAXimum-Sharpe-ratio Estimated & sparse Regression
(MAXSER) method. MAXSER is a general approach that can be applied to various situations
when the number of assets is not small compared with sample size. We show that, under mild
assumptions, the MAXSER portfolio can asymptotically (1) achieve mean-variance efficiency
and (2) satisfy the risk constraint. To the best of our knowledge, this is the first method that
can achieve these two objectives simultaneously for large portfolio optimization.

Our first main contribution is establishing an equivalent unconstrained regression repre-
sentation of the Markowitz optimization problem. This special regression representation is
a novel finding made in this paper. There is existing literature that links regression to the
mean-variance optimization problem. Two most closely related approaches are Britten-Jones
(1999), who uses 1 as the response; and Brodie et al. (2009), who use the maximum expected
return as the response. The issues with the two approaches are that, the regression in
Britten-Jones (1999) calls for a challenging scaling to obtain the Markowitz portfolio; and
Brodie et al. (2009) deal with a constrained regression, which is complicated and involves
error and biases caused by replacing the constraint with the analogous sample version; see
Remarks 1 and 2 for more detailed discussions. Our regression representation, in contrast, is
on the one hand, equivalent to the original optimization problem, and on the other hand,
unconstrained, so that it can be conveniently combined with high-dimensional regression
techniques. See more details in Sections 2.1 and 2.2.

Our method further involves the following important aspects:

(i) Consistent estimation of the response in our regression representation, which directly
links to consistent estimation of the maximum Sharpe ratio achieved by the tangency

portfolio.

(ii) Proper sparse regression and rigorous analysis under our regression framework which

possesses unique features.

(iii) The estimation in (i) and the sparse regression in (ii) constitute the core of MAXSER.



To implement MAXSER, we consider two scenarios, one without factor investing, the

other with factor investing.

e Scenario I: When the asset pool consists only of individual assets. In this case,
sparse regression with the consistently estimated response is directly applied to

asset returns to estimate the optimal portfolio. See Section 2.3.

e Scenario II: When factors are also included in the asset pool. In this second case,
we establish a framework that decomposes the optimal portfolio on all assets into
the optimal portfolio on factors and that on idiosyncratic components, based on

which we develop our estimator of the optimal full portfolio. See Section 2.4.

Under both scenarios, we theoretically prove the convergences of the expected return
and risk of our estimated portfolio towards the theoretical maximum expected return
and risk constraint, respectively. These properties guarantee that our portfolio can
asymptotically achieve mean-variance efficiency as both the number of assets and sample

size get large.

(iv) In practice, when solving for the sparse regression solution, the choice of the ¢;-norm
constraint parameter is critical. We propose a new cross-validation procedure for
choosing the tuning parameter. The method can help effectively control the risk, and
constitutes another contribution of ours to the literature. The procedure can also
be easily adapted to other portfolio optimization methods with norm constraint or

short-sale constraint. See Section 2.5 for details.

The superior properties of our MAXSER portfolio are supported by simulation and
empirical studies. We compare our strategy with various other methods including the plug-in
portfolio, the equally weighted portfolio, the linear /nonlinear shrinkage portfolio of Ledoit and
Wolf (2004) and Ledoit and Wolf (2017), and several other variations of mean-variance/GMV
portfolios with constraints on portfolio weights. The complete simulation results are given
in Section 3. Figure 3 shows the comparisons among the plug-in, nonlinear shrinkage and
MAXSER portfolios. The added blue dashed lines are for our portfolio. We see that our
portfolio effectively controls the risk. More importantly, the comparisons of Sharpe ratios
show that our MAXSER portfolio nearly achieves the mean-variance efficiency and

significantly outperforms others.
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Figure 3. Comparisons of our MAXSER portfolio with the plug-in and nonlinear shrinkage portfolios, based
on the same simulated data as for Figures 1 and 2. The added blue dashed lines represent the MAXSER

portfolio. The comparison is replicated 100 times.

Comprehensive empirical studies are presented in Section 4. We have the following

observations:

e MAXSER effectively controls the risk and yields high Sharpe ratios.

e Comparisons based on 50-year returns of DJIA 30 index constituents show that Sce-

nario II with factor investing leads to substantially better performance in terms of

Sharpe ratio than Scenario I without factor investing.

e Comparison of the Sharpe ratios of MAXSER (on both factors and stocks) and the

Markowitz portfolio on factors shows that additionally investing in individual assets

using our MAXSER strategy yields significant gain.

e Our cross-validation procedure for choosing the tuning parameter proves to be effective

in controlling risk, not only for our own MAXSER, but also for other constrained

portfolios. More importantly, the decisive advantage of MAXSER over various con-

strained portfolios confirms that the advantage of MAXSER is fundamentally due to

its methodology rather than solely imposing constraints.



e We conduct statistical tests on Sharpe ratios. The test results based on 100 random
stock pools drawn from S&P 500 index constituents, both without and with transaction
costs taken into account, show that MAXSER has dominating advantage in terms of

mean-variance efficiency.

2 The MAXSER Methodology

2.1 An Unconstrained Regression Representation

Suppose that we have a pool of N risky assets. Denote their (random excess) returns by
r = (ry,r9,...,7yn)", where for any vector v, v’ stands for the transpose of v. Let p and X be
the mean vector and covariance matrix of r, respectively, and let w be a vector of portfolio
weights on the assets. For a given level of risk constraint o, the Markowitz optimization
problem is

argmax E(w'r) = w'p  subject to  Var(w'r) = w'Sw < o°. (2.1)
w

If we denote by 0 = /S~ the square of the maximum Sharpe ratio of the optimal portfolio,
then the optimization problem (2.1) can be represented in its dual form with a return
constraint r* = o/6:

argminw’'Xw subject to w'p > r*. (2.2)

w

The optimal portfolio, w*, admits the following explicit expression:

o
w = —Y"u. 2.3
N (2.3)

Because of the difficulties in estimating the mean and covariance matrix in high-dimensional
situations, instead of working with the formula (2.3) and plugging in estimators of g and X,
we propose a novel equivalent and unconstrained regression representation of Markowitz

optimization.

Proposition 1. The unconstrained regression

146 146
argmin E(r, — w'r)?, where r,:= Lr* =0 il

w 0 Vo’

is equivalent to the Markowitz optimizations (2.1) and (2.2).

(2.4)




Remark 1. Brodie et al. (2009) use a constrained regression representation of Markowitz
optimization (2.2):

argmin E(r* —w'r)?  subject to w'p = r*.
Such a constrained regression is theoretically difficult to analyze and numerically complicated
to solve. To implement the regression, Brodie et al. (2009) replace the constraint w'p = r*
with its sample counterpart w'T = r*. Notice however that in the high-dimensional case, T is

not a consistent estimator of p (in the sense that |[¥ — pl||la - 0).

Remark 2. Britten-Jones (1999) connects the estimation of the tangency portfolio with OLS
regression with response 1. The regression yields a multiple of the sample (plug-in) tangency
portfolio. Scaling the weights such that the weights add up to 1 recovers the plug-in tangency
portfolio. Britten-Jones (1999) did not consider the Markowitz optimization problem (2.1)
or (2.2). To find the Markowitz portfolio for a given risk constraint o, notice that, first of all,
the plug-in tangency portfolio will be suboptimal in high dimensions (see equation (1.1) for

the precise statement), and secondly, even if one knew the tangency portfolio, because it has a

risk of \/WE"1u/(VE-1u)?, a further scaling is needed and is challenging.

We emphasize that our regression representation (2.4) is intrinsically different from
existing regression representations in the literature for mean-variance portfolio estimation.
Our representation is unconstrained and equivalent to the Markowitz problem. The elimination
of constraint is particularly helpful for large portfolio selection, for which important techniques

like sparse regression becomes directly applicable.

2.2 High-dimensional Issues & Sparse Regression

Proposition 1 translates the original Markowitz optimization problems (2.1) and (2.2)
into an equivalent unconstrained regression problem. The next step is to make use of such
a regression and estimate the optimal portfolio by replacing arg min E(r. — w'r)? with its

w

sample version
T

.1
Arg min - Z (re —w'Ry)*, (2.5)

w t=1
where Ry = (Ry, ..., Rynv), t =1,...,T, are T i.i.d. copies of the return vector r. When
the number of assets N is not small compared with T, (2.5) is a high-dimensional regression

problem. It is now well known that in general it is impossible to consistently estimate the

10



coefficients in a high-dimensional regression, and some sort of sparsity is necessary to turn
the impossible into the possible. The most widely used sparsity assumption is boundedness

on the /1-norm of the regression coefficients. In our case, this corresponds to assuming that
N

||lw*|]; is bounded, where ||[v||; = > |v;| for any v = (v1,...,vy)". We adopt the sparse
i=1

regression technique LASSO (Tibshirani (1996)), which leads to the following estimation of

the optimal portfolio w*:

T

w(r,) == argur}nin % ; (re —w'Ry)”  subject to ||Jw|]; < A, (2.6)
where A is an ¢;-norm constraint tuning parameter. Note that the solution (2.6) is infeasible
because the response r. is unknown. Below we will develop a feasible solution with a consistent
estimator of r.. For clarity, let us suppose for the moment that r. is known.

The solution (2.6) involves a tuning parameter A. It can be easily seen that if A is chosen
to be larger than the ¢;-norm of the OLS solution (2.5), then one always gets the OLS
solution. On the other hand, as A varies from 0 to the ¢;-norm of the OLS solution, one
gets a so-called solution path, each solution corresponding to an estimated portfolio. An
algorithm called LARS (Efron et al. (2004)) has been developed to efficiently solve for the
whole solution path.

Figure 4 shows the risks and Sharpe ratios of all estimated portfolios on the solution
path based on simulated i.i.d. returns following multivariate normal distribution. The mean
and covariance matrix are the parameters calibrated from idiosyncratic returns? from fitting
Fama-French three factor model of 100 randomly chosen constituents of S&P 500 index; see

Section 3.2 for details.

2In order to be consistent with our simulation and empirical studies, here we use simulated idiosyncratic

returns to demonstrate the LASSO solution paths. See more details in Sections 2.4.3 and 2.5.3.
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LASSO Solution Path: Portfolio Risk LASSO Solution Path: Portfolio Sharpe Ratio
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Figure 4. Simulation comparisons of the risks and Sharpe ratios of all estimated portfolios on two LASSO
solution paths, one with response r. (setting o = 1) and the other with response 1. The z-axis stands for the
ratio between the {1-norms of a LASSO solution and the OLS solution. The risk and Sharpe ratio are true

values based on the underlying mean and covariance matriz.

In Figure 4, we show two LASSO solution paths, one with response . (setting o = 1) and
the other with response 1. The x-axis stands for the ratio of the #;-norm of a solution, w, on

the solution path relative to that of the OLS solution:

[|lwl[x
(= ——. (2.7)

||wol8||1
For the whole range of ( from 0 to 1, the left panel shows the risks of all estimated portfolios
on the solution paths based on the two response values, and the right panel shows the

corresponding Sharpe ratios. We observe that

e For each solution path, the risk is increasing with respect to the ¢;-norm ratio (. Take
the solution path with the correct response r. for example. When ( is small, the risk is
lower than the risk constraint level, and as ( increases, the risk increases and eventually
exceed the constraint level. Such a feature shows the importance of the choice of the

¢1-norm ratio (, or equivalently, that of the tuning parameter A in practice.

e To identify the pursued portfolio from each solution path, we look for the portfolio with

12



a risk closest to the risk constraint®. This leads to portfolios w(r.) and w(1). The left
panel shows that they correspond to very different ¢;-norm ratios. The ¢;-norm ratio

of w(r.) is lower than that of w(1), indicating that w(r.) is sparser than w(1).

e Turning to the Sharpe ratio comparison, we see that the Sharpe ratio paths with
different responses coincide with each other. However, because the portfolios w(r,)
and w(1) correspond to different values of ratio ¢, their Sharpe ratios differ significantly.
The portfolio with the correct response r. almost achieves the highest Sharpe ratio on

the path, while the other portfolio with response 1 yields a much lower Sharpe ratio.

In summary, this illustration provides insight into the importance of (1) our corrected
response 7., and (2) the choice of tuning parameter. We will discuss the tuning parameter

selection in Section 2.5.1 in more detail.

2.3 Scenario I: When Asset Pool Includes Individual Assets Only

Let us first consider the situation where the asset pool only includes individual assets

(e.g., stocks).

2.3.1 Estimating the Maximum Sharpe Ratio and the Regression Response

In our regression representation, the response 7. is unknown* and needs to be estimated.
The estimation of the response 7. is closely related to the estimation of the maximum Sharpe
ratio, which has been considered in Kan and Zhou (2007). It is shown that the square of the
plug-in Sharpe ratio follows a non-centralized F-distribution; see equation (49) therein. The
result implies that the plug-in Sharpe ratio is heavily biased when the number of assets, IV,
is not negligible compared with the sample size T. Suppose that Ry = (R, .., Rin)/,
t=1,...,T, are T ii.d. copies of the (excess) return. Let R = (R;,..., Rr) be the T x N

observation matrix, and g and X be the corresponding sample mean and sample covariance

3 Alternatively, one may consider using Sharpe ratio to identify the “optimal” ¢;-norm ratio ¢. Notice
however that the estimation of Sharpe ratio is less accurate than that of risk. What’s more, if the response is
not 7., then even if one could identify the portfolio with the highest Sharpe ratio on the solution path, to
obtain the Markowitz portfolio with risk o, an additional scaling is needed, which is even more challenging

than what is discussed in Remark 2.
4In the dual form of Markowitz problem where return constraint 7 is given, the response is still unknown

because it also depends on 6, the square of the maximum Sharpe ratio.
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matrix, respectively. The following unbiased estimator is proposed in Kan and Zhou (2007):

~ (T—-N-28,—N
0 .= ( T2)98 , (2.8)

where 55 = i_lﬁ is the sample estimate of § = /X", Under the situation where
N/T — p € (0,1), we establish the following

Proposition 2. Suppose that the mazimum Sharpe ratio is bounded. Under normality

assumption on returns and assuming that N/T — p € (0,1), we have
6—6] 5 o. (2.9)

Consequently,
146

(2.10)

satisfies that
7 —ro 5 0. (2.11)

We emphasize that our estimation of # = u/'X 'y is not via consistently estimating p
and X, which would be impossible without imposing strong structural assumptions on them.
The challenge is due to error accumulation. Take the estimation of p for example. Each entry
of p can be estimated with an error of order 1/ VT, however, because the dimension of
is IV, the total estimation error under ¢;-norm is of order \/W , which is O(1) under our
assumption that N/T — p € (0,1). In contrast, we estimate 6 directly. Our 0 is consistent,

and actually, as can be seen from the proof, the error |6 — 6] is of order 1/y/T.

2.3.2 A LASSO-type Estimator

On the basis of our unconstrained regression representation (2.4), we aim to estimate the
optimal portfolio w* for a given risk constraint ¢ in the high-dimensional setting where N
and T are both large and the optimal portfolio has a bounded ¢;-norm. With the consistent
estimation of r. in Proposition 2, following (2.6) we now construct our feasible LASSO-type
estimator w* = ({U\f, ...,z;];\,)/ as follows:

. B I
w* = arg min T Z (fe —w'Ry)” subject to  ||w||; < A (2.12)

w t=1

Before we give the theoretical properties of w*, we list the assumptions that will be needed.

Assumption:
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A1l The (excess) return r ~ N(u, 3);

A2 There exists M < oo such that max (M’E_lu, max ]uj\) < M,

1<j<N

A3 There exists L < oo such that max loji| < L, where o), == %(j, k);
>)>
A4 ||w*||; < X for some constant A;

A5 The number of assets N and the sample size T satisfy that pr := N/T — p € (0,1).

Remark 3. About Assumption A1, in this paper we focus on the most fundamental form of
the mean-variance problem, so we assume normal distribution of returns. Numerically, we
find that our proposed method works well even when heavy-tailedness is present. Extensions

incorporating heteroscedasticity and heavy-tailedness will be studied in subsequent papers.

Remark 4. Assumption A2 is equivalent to the common belief that the maximum Sharpe
ratio and asset expected returns are bounded. We emphasize that we do not require the
eigenvalues of 3 to be bounded, and consequently factor structure in returns is allowed. Nor

do we require the eigenvalues of 3 to be bounded from below.

Remark 5. Assumption A4, the boundedness of ||w*||1, is our sparsity requirement on the
optimal portfolio. Note that Assumption A4 does not require most weights to be zero. For
example, it does not rule out value-weighted portfolios. In addition, we will see in Section 2.4
that when factor investing is allowed, the sparsity requirement will be significantly relaxed and

imposed only upon the optimal portfolio on idiosyncratic components.

Remark 6. Assumption A5 says that we are in a high-dimensional setting where the number
of assets N and the sample size T proportionally grow up to infinity. We require the sample
size T to be larger than the dimension N only because we need to take inverse of the sample

covariance matriz in estimating the mazimum Sharpe ratio; see Proposition 2.

2.3.3 Main Result I: MAXSER without Factor Investing

We now state our first main result, which establishes the asymptotic optimality of our

MAXSER portfolio when the asset pool consists only of individual assets.

Theorem 1. Under Assumptions Al ~ A5, the MAXSER portfolio w* defined in (2.12)
with 7. given by (2.10) satisfies that, as N — oo,

\ww* — 1| 5o, (2.13)
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and

5o (2.14)

— —
’\/w* Yw*—o

Theorem 1 guarantees that our MAXSER portfolio w* asymptotically (i) achieves the

maximum expected return and (ii) satisfies the risk constraint. An immediate implication is

that w* approaches the mean-variance efficiency.

2.4 Scenario II: When Factor Investing Is Allowed

2.4.1 The Optimal Portfolio: A Factor-Idiosyncratic Component Separation

In addition to individual assets, oftentimes factors are also included in the investment asset
pool. Motivated by such consideration, we now illustrate the implementation of MAXSER

when factor investing is allowed. Consider the following model:
K K
Ti:ai+25ijfj+ei ::Z@-jfj—i—ui, ’izl,...,N, (215)
j=1 j=1

where f;’s are factor returns, 3;;’s represent individual stock sensitivities to the factors,
and e;’s are the remaining errors in the model that are independent of the factor returns (f;).
Unlike the approximate factor model where the “idiosyncratic returns” (u; = a; + €;) are
assumed to have no factor structure, here in (2.15) we allow (u;) to still admit factor structures,
and in the below, we shall still refer to (u;) as the idiosyncratic returns. As to the factors, they
can be any well-recognized factors like Fama-French three factors or other factors identified
in the large literature of asset pricing (see, e.g., Jegadeesh and Titman (2001) and Korajczyk
and Sadka (2008)). They can also be statistical factors (identified based on a separate set of
historical returns of a larger pool of assets).

Model (2.15) can be written in a compact form as
r=p06f+u, (2.16)

where 8 = (Bij)nxi, f = (f1,--., fx), and w = (uq,...,uy). Let ps be the mean of the
factor returns, and a = (o, ..., ay)’, the mean of idiosyncratic return u. Let Xy and X,
be the covariance matrix of factor and idiosyncratic returns, respectively. Then the return

vector r has the following mean p and covariance matrix 3

p=p0pr+ a, =080 +3%,. (2.17)
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Denote the mean and covariance matrix of the returns on the full pool of factors and assets

by pan and X, respectively:

Ky Yy BYy
a - ) E(Z - . 218
Hail ( u ) 1 ( Efﬁ > ) ( )

We make the following assumptions:
Assumption:
B1 The number of factors included, K, is bounded;

B2 There exists M < oo such that max (a’E;la, max. ]aj|> < M,
)

B3 There exists L < oo such that max. loi;| < L, where 0,5 1= 3,(1, 7).
_Z_

Remark 7. Similarly to Assumption A2, for 3,, we do not require its eigenvalues to be
bounded, in other words, we do not require (f1,..., fx)' to be the full set of factors, and
(u1,...,uy)" can still have factor structure. Our recommendation is to only include a small

number of strong factors. This also justifies why we still include o in the model.

With the K factors, our plan is to invest in not only the N assets but also the K factors.
Such a plan is straightforward to implement when the factors are taken to be tradable risk
factors like the Fama-French factors and many others (see, e.g., the supplementary file of
Feng et al. (2017)), and is also feasible when the factors are statistical factors as mentioned
above.

We aim to find an optimal allocation (w{, . ,w}?;wl, .. wy) = (wy, w), where wy
and w represent the weight vectors on the K factors and N individual assets, respectively.
The following result shows that finding such an optimal allocation can be decomposed into

three steps:
(i) Find the optimal portfolio on the factors with 1 unit of risk (denoted by w}),

(ii) Find the optimal portfolio on the idiosyncratic components with 1 unit of risk (denoted

by w), and
(iii) Suitably combine these two portfolios.

Specifically, we have the following
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Proposition 3. For any given risk constraint level o, the optimal portfolio wgy = (wy, w)

ef * HU !, ok eu *
g A [ — W, — —pPpw,, —wu 5
( eall f eall IB “ eall )

where 05 = u}E;luf, 0, =Y e, and O, = mezgﬁuau are the squared maximum Sharpe

18 given by

ratios of portfolios on the factors, the idiosyncratic components, and the full set of factors and

individual assets, respectively. Moreover, w} and w;, admit the following explicit expressions:

1 1
—> My, wi=—% . 2.19

Remark 8. In the case when o; =0 for alli=1,...,N, we have 6, = 0 and the optimal

wf:

allocation is given by (aw}, O). In other words, the optimal portfolio will be fully invested in
factors. However, this is unlikely in practice especially when one wants to only include a small
number of strong factors. If, on the other hand, one intends to incorporate a large number
of factors, then estimating the optimal portfolio on the factors will be of high-dimensional

nature, in which case our strateqy in Section 2.3 can be applied.

According to Proposition 3, in order to estimate the optimal portfolio (wy, w), we need to
estimate 6y, 6, w}; and w;,. We will deal with them one by one, starting with the estimation

of the maximum Sharpe ratios.

2.4.2 Estimating the Maximum Sharpe Ratios

Suppose that Ry = (R, ..., Ry) and Fy = (Fy, ..., Fix)', t = 1,...,T, are T ii.d.
copies of the excess return r and the factor excess return f, respectively. Let R = (Ry, ..., Rr)’
and F' = (Fy,..., Fr). We estimate the coefficient 3 in (2.16) by regressing R on F'. Denote
by B the estimated beta matrix. Correspondingly, let U= (l/f\l, cee [/I\T)’ =R-— FB be the
estimator of U = R — F3. Denote by i and by ¢ the sample mean and sample covariance
matrix of the factor return F', respectively.

There are three Sharpe ratios that need to be estimated under the current setting: \/9_ ,
V0, and v/, which are the maximum Sharpe ratios on factors, idiosyncratic components
and all assets, respectively. Because the number of factors included is bounded, \/H_f can be

consistently estimated by its plug-in estimator:
‘\/5 - \/Gf‘ 50 as T— oo, where gf = ﬁ}i;lﬁf (2.20)
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The remaining two Sharpe ratios, /6, and 1/, both involve a large number of assets, and
we need to adjust for the bias in the plug-in estimator. In parallel with Proposition 2, we

have the following

Proposition 4. Define the following estimator of 0, :

~  (T-N-K-20u—N-K
Ourt == T )

(2.21)

where gs,a” = ﬁ;lligﬁﬁa” is the sample estimate of Oq. Suppose that Oy is bounded. Under

normality assumption on returns and assuming that N/T — p € (0,1), we have

Vi~ Vi

There is one last Sharpe ratio to be estimated, 1/, the maximum Sharpe ratio on the

£o.

idiosyncratic components. This quantity is a bit trickier to deal with because the idiosyncratic
return U is not observable. A natural idea is to work with lA], the estimated idiosyncratic
return. However, it can be shown that an estimator similar to (2.21) applied to U will be
biased.

The solution to the aforementioned difficulty lies in the relationship among 0¢, 0, and 0.

Based on model (2.16), one can show that
Ot = 0 + 0. (2.22)

By (2.20) and Proposition 4, both 6; and 6, can be consistently estimated, so we get the

following

Proposition 5. Define
é\u = /Q\a” — é\f.

Under the assumptions of Proposition 4, we have

V.- Vo] B0
Therefore for r. := (14 0,)/v/0.,
£ Lt (2.23)
0.

satisfies that



2.4.3 Estimating the Optimal Portfolio on Idiosyncratic Components

The optimal portfolio on the idiosyncratic components, w;, solves the following Markowitz
optimization problem:
argmaxa’w subject to w3, w < 1. (2.24)
w

The optimal portfolio yields an expected return of

ro = Vb, (2.25)

which equals the maximum Sharpe ratio of portfolios on (u;). Following our regression

representation (2.4) in Section 2.1, we estimate w; based on the following:

146, 1+ 6,
argmin E (r, — w/w)’, where 7, := T 2T (2.26)

w eu “ \/E

One major difference here is that the idiosyncratic returns are not observable, and we will

have to rely on the estimated idiosyncratic return U. More explicitly, based on both estimated
idiosyncratic return U and estimated 7, in (2.23), we define our estimator of w; analogous

to (2.12) as the following

T

w¥ = argmin — Te — W subjec (6] w > 2
u g T E t ] 1

t=1

where )\ is the /1-norm tuning parameter. To give the theoretical properties of {v\z, the
following assumptions will be needed.
Assumption:

Cl f ~ N(pys, 5y), u~ N(e, 5y);

C2 ||w||l1 < A for some constant A;

C3 The number of assets N and the sample size T satisfy that pr := N/T — p € (0,1).
Remark 9. Assumption C2 is our sparsity requirement in this setting when factor investing
1s allowed. We emphasize that the sparsity assumption is put on the optimal portfolio on the

tdiosyncratic components. This amounts to say, the mean-variance efficiency is achieved

by an addition of a sparse portfolio of stocks to the optimal portfolio on factors.

We are now ready to give the asymptotic properties of the portfolio 'E):"; Note that

because U contains estimation errors, Theorem 1 does not readily apply to this case.
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Proposition 6. Under Assumptions Bl ~ B3 and C1 ~ C3, we have as N — oo,

l/w: — o/w?| 50, (2.28)

'\/@’zu@ - 1‘ Lo. (2.29)

Proposition 6 states that the portfolio t/uj*t asymptotically attains the maximum expected

and

return and carries a risk that is close to the given risk constraint, in this case, 1.

2.4.4 Main Result II: MAXSER with Factor Investing

By far we have achieved consistency in estimating wy,, 0, and ;. There is one more item
to be estimated, w3, the optimal portfolio on factors (with risk equal to 1). This is easy
because the number of factors included is bounded, and the simple “plug-in” estimator works.
Specifically, ’l/u\;Z = ﬁi;lﬁ s will be a consistent estimator of w}. Combining these results
with Proposition 3, we obtain the following main result for our estimator of the optimal full

portfolio wy;.

Theorem 2. Define our estimator of the optimal full portfolio wyy, as

Wy = (’lUf, w) =0 A—f’w;kc - A—,Bl’wz, A—’wz . (230)
\/ B V Ouns Oant

Under Assumptions Bl ~ B3 and C1 ~ C3, as N — oo, we have
Wt fart — 7| 20, and Wi San®on — 0| 5 0. (2.31)

Theorem 2 guarantees that our MAXSER portfolio with factor investing can again
asymptotically yield the maximum expected return and meanwhile satisfy the risk constraint,

and consequently, achieve mean-variance efficiency.

2.5 Practical Implementation of MAXSER

2.5.1 Choosing A in (2.12) or (2.27)

To implement MAXSER, it is important to choose A in (2.12) or (2.27). Because one of
our goals is to meet the risk constraint, also in light of Figure 4, we choose A such that the

estimated portfolio possesses a risk that is close to the given risk constraint.
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In practice, we do not know the underlying covariance matrix 3 or 3,;. To circumvent
this difficulty, we use a cross-validation method. Specifically, for a 10-fold cross-validation
procedure, we randomly split the sample into 10 groups to form 10 validation sets. For each
validation set, the training set is taken to be the rest of the observations. Next, for each
such training set i, let the ¢;-norm ratio ¢ (defined in (2.7)) vary from 0 to 1 to obtain the
whole solution path (&J\Z)ogggl ((@)Ogcgl under Scenario II), and find the value ((¢) such
that the estimated portfolio minimizes the difference between the risk computed using the
validation set and the given risk constraint. Let \(i) = ||@||1 The ultimate A is then
taken to be the average of (A(i), i =1,...,10).

To our knowledge, the above cross-validation procedure for determining the constraint
parameter is new and constitutes another contribution of ours to the literature. By taking
the parameter selection criterion to be the risk, our method of choosing the tuning parameter
effectively helps control out-of-sample risk. The method can be easily adapted to other
portfolio optimization methods with norm constraint or short-sale constraint. In our numerical
studies below, we apply such a method to other constrained portfolios to help them control

the risk and compare their performance with ours.

2.5.2 Adjustment of 5, 5u and @Lu

Kan and Zhou (2007) notice that 0 in (2.8), the unbiased estimator of the square of
maximum Sharpe ratio, often takes negative values, and they propose the adjusted estimator
that improves over the unbiased one:

~  (I'-N-20,—N 2(0,)N/2(1 + 6,)~(T-2)/2

ead' = + ’
J T TBy, 145.,(N/2,(T = N)/2)

(2.32)

where, recall that, é\s is the plug-in estimators of 6, and

Bu(a,b) = / (1= ).
0

Under the second setting that allows for factor investing, we adopt the following adjustment

of é\all:

) (I-=N-K-20u—N-K 20 1) V(14 0, )" T2/

Ol adi = + ,
’ T TBy s (N T K)/2,(T = N = K)/2)
(2.33)

where, recall that, awll is the plug-in estimator of #,;;. The adjusted gu is O?u,adj = gallyadj — §f.

22



2.5.3 Implementation Steps
Scenario I: When the asset pool consists only of individual assets

In this case, our method consists of the following steps:
Step 1 Estimate the square of the maximum Sharpe ratio by gadj in (2.32), and compute

the response 7, in (2.10);

Step 2 Choose A by cross-validation according to the procedure described in Section 2.5.1.

Denote the chosen value by /):;

Step 3 Set A in (2.12) to be X and solve for w*, the MAXimum-Sharpe-ratio Estimated
sparse Regression (MAXSER) portfolio.

Scenario II: When factors are included in the asset pool

Incorporating factor investing, MAXSER is implemented as follows:

Step 1 Perform OLS regressions of asset returns R on factor returns F' to obtain [/3\ and U ;

~

Step 2 Compute the estimates of the square of the maximum Sharpe ratios §f, Oait adj

and gu,adj, and compute the response 7. in (2.23);

Step 3 Choose \ by cross-validation according to the procedure described in Section 2.5.1.

Denote the chosen value by /)\\;
Step 4 Set A in (2.27) to be X and solve for wr;

Step 5 Compute z/u\;i and plug in the estimates from the previous steps into (2.30) to
obtain the MAXSER portfolio wy;.

3 SIMULATION STUDIES

In this section, we examine and compare the performance of MAXSER with various
competing strategies. As the empirical studies on DJIA 30 index constituents in Sections 4.2.3
and 4.2.4 show, it is beneficial to invest in both stocks and (Fama-French three) factors.
For this reason, in the following simulation studies, the simulated asset pool includes both
stocks and factors. Parameters for generating returns are calibrated from S&P 500 index

constituents and Fama-French three factors; see Section 3.2 for details.
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3.1 Methods to be Compared with

In addition to the plug-in and nonlinear shrinkage portfolios that we discussed in the
Introduction, we include various other strategies in our comparisons. The complete list is

given in Table 1.

Table 1

List of competing portfolios and their abbreviations. “MV” stands for mean-variance portfolio, and “GMV”

stands for global minimum variance portfolio.

Portfolio Abbreviation
Plug-in MV on factors Factor
Three-fund portfolio by Kan and Zhou (2007) KZ
MV/GMV with different covariance matrix estimates

MV with sample cov MV-P
MYV with linear shrinkage cov MV-LS
MYV with nonlinear shrinkage cov MV-NLS
MYV with nonlinear shrinkage cov adjusted for factor models MV-NLSF
GMYV with linear shrinkage cov GMV-LS
GMYV with nonlinear shrinkage cov GMV-NLS
MYV with no-short-sale constraint

MYV with sample cov & no-short-sale constraint MV-P-NSS
MYV with linear shrinkage cov & no-short-sale constraint MV-LS-NSS

MV with nonlinear shrinkage cov & no-short-sale constraint ~ MV-NLS-NSS

MYV with short-sale constraint & cross-validation

MV with sample cov & short-sale-CV MV-P-SSCV
MYV with linear shrinkage cov & short-sale-CV MV-LS-SSCV
MYV with nonlinear shrinkage cov & short-sale-CV MV-NLS-SSCV

Among the portfolios under comparison, a special one is the portfolio Factor, which is the
Markowitz portfolio on factors. Specifically, recall that g and ) ¢ are the sample mean and

sample covariance matrix of the factor returns, respectively. The Factor portfolio is defined
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as follows
Bpae = — 5 iy (= 0w} ) (3.1)
B2y
This portfolio is special in the sense that it only involves a small number of assets (three in
our case). Consequently, the plug-in formula (3.1) indeed gives a nearly optimal portfolio.
Including such a portfolio in the comparison would reveal whether there is benefit to invest
in additional individual assets.

As to the other portfolios, the MV /GMYV portfolios are constructed by replacing covari-
ance matrix with the sample/linear shrinkage (Ledoit and Wolf (2004))/nonlinear shrink-
age/nonlinear shrinkage adjusted for factor model (Ledoit and Wolf (2017)) estimators in the
formulas of MV /GMV portfolio weights, respectively. Details about the portfolio “KZ”° can
be found in Kan and Zhou (2007).

In addition, we construct portfolios with either no-short-sale or short-sale constraint on
portfolio weights. The “MV-P-NSS”, “MV-LS-NSS” and “MV-NLS-NSS” portfolios are
with no-short-sale constraint, and are using the sample/linear shrinkage /nonlinear shrinkage
covariance matrix, respectively. More generally, the MV portfolios with short-sale constraint®,
“MV-P-SSCV” | “MV-LS-SSCV” and “MV-NLS-SSCV”, are having short position threshold
determined by the cross-validation procedure that we proposed in Section 2.5.1. In such a
way, these portfolios enjoy the same benefit in terms of risk control as our MAXSER portfolio.
We include these portfolios to demonstrate the effectiveness of our cross-validation procedure

in controlling risk, and more importantly, to show that the advantage of MAXSER is not

Following Kan and Zhou (2007), the risk aversion is set to be 3. Note that such a risk aversion is not
designed to meet a given risk constraint, hence in the following we will not comment on the risk of portfolio
KZ.

6Specifically, suppose that fiy; is the sample mean of returns on stocks and factors, and ia” is an estimate
of the covariance matrix, which can be the sample/linear shrinkage /nonlinear shrinkage covariance matrix.
The MV portfolio with short-sale constraint is solved by

argmaxw'fiay  subject to W' uw < 02 and w; > —Agg for all i =1,..., N. (3.2)

w

Here Ags > 0 is the short position threshold determined via a 10-fold cross-validation as follows: Split the
sample into 10 groups of validation sets. For each validation set, its corresponding training set consists of the
rest of the observations. Next, for each training set, solve the optimization (3.2) for a sequence of Ags to get
a solution path, and find the value of Agg such that the difference between the risk on validation set and
the given constraint is minimized. Set )T;w to be the average value over the 10 groups. Finally, plug ):;g

into (3.2) and use the full dataset to solve for the ultimate portfolio.
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only due to the ¢;-norm constraint”, but rather, more fundamentally, due to its methodology.

3.2 Parameter Setting

We simulate monthly returns from model (2.15) with parameters calibrated from real

data. Specifically,

e For the parameters of factor returns, the mean g and covariance matrix 37 are taken
to be the sample mean and sample covariance matrix of the Fama-French three factor

(FF3) monthly returns from 2007 to 2016.

e Asto B and «, out of the stocks that stayed in S&P 500 index during the period of 2007
— 2016, we randomly pick 100 of them. We then regress their monthly excess returns
over FF3 returns, and set the resulting slopes to be the ;’s; the a;’s are obtained by

hard thresholding the estimated intercepts with a threshold of two standard errors.

e Finally, the covariance matrix of idiosyncratic returns, 3J,, is obtained by applying
the soft-thresholding method proposed in Rothman (2012)® to the sample covariance

matrix of the residuals in the regression above.

Notice that the idiosyncratic returns generated from the parameters chosen as above may

still possess factor structure.

3.3 Simulation Comparisons

3.3.1 When Returns Are Normally Distributed

We first show results for data generated under multivariate normal distribution. Returns
of 100 stocks and 3 factors are generated using the parameters described in Section 3.2. The

level of risk constraint is fixed to be ¢ = 0.04.

7A more straightforward comparison with other ¢;-norm constrained portfolios is made in Section 4.2,
where we examine empirical performance based on DJIA 30 index constituents. There, it is seen clearly that
adding ¢1-norm constraint to existing methods has similar effect to adding either no-short-sale or short-sale
constraints. On the other hand, these ¢;-norm constrained portfolios incur prohibitively high computational
costs, which is why we only include them in the empirical study based on DJTA index constituents with

about 30 stocks.
8The soft-thresholding method can be implemented in R by the package “PDSCE”. In our setting the

penalty parameter “lam” is set to be 0.5.
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We run 1,000 replications to evaluate the portfolio performance in terms of both risk and
(annualized) Sharpe ratio. The comparison results for sample sizes T' = 120 and 240 are

summarized in Table 2.

Table 2

Simulation comparison of risks and Sharpe ratios of the portfolios under comparison based on 1,000 replications
where returns of sample size T = 120 or 240 are generated from multivariate normal distribution. The risk
constraint is set to be 0.04. The theoretical maximum Sharpe ratio is 1.882. Average value and standard

deviation (in brackets) of each performance measure are reported.

Normal Distribution o =0.04 T =120
Portfolio Risk Sharpe Ratio
Factor 0.041 (0.003) 0.401 (0.169)
KZ 0.052 (0.040) 0.329 (0.184)
MAXSER 0.042 (0.005) 1.194 (0.260)
MV/GMV with different covariance matrix estimates

MV-P 0.296 (0.072) 0.367 (0.168)
MV-LS 0.082 (0.006) 0.697 (0.160)
MV-NLS 0.054 (0.017) 0.945 (0.183)
MV-NLSF 0.044 (0.002) 0.837 (0.139)
GMV-LS 0.013 (0.001) 0.438 (0.132)
GMV-NLS 0.015 (0.003) 0.553 (0.148)
MYV with no-short-sale constraint

MV-P-NSS 0.044 (0.003) 0.399 (0.040)
MV-LS-NSS 0.044 (0.003) 0.409 (0.036)
MV-NLS-NSS 0.043 (0.003) 0.416 (0.035)
MV with short-sale constraint & cross-validation

MV-P-SSCV 0.044 (0.003) 0.399 (0.040)
MV-LS-SSCV 0.044 (0.003) 0.409 (0.036)
MV-NLS-SSCV 0.044 (0.004) 0.501 (0.169)
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Normal Distribution o=0.04 T = 240

Portfolio Risk Sharpe Ratio
Factor 0.041 (0.002) 0.467 (0.108)
KZ 0.091 (0.031) 0.909 (0.130)
MAXSER 0.041 (0.003) 1.506 (0.140)

MV/GMV with different covariance matrix estimates

MV-P
MV-LS
MV-NLS
MV-NLSF
GMV-LS
GMV-NLS

0.070
0.061
0.049
0.042
0.009
0.009

0.005
0.004
0.004
0.001
0.000

(
(
(
(
(
(0.001

)
)
)
)
)
)

0.911
0.943
1.199
1.068
0.450
0.539

0.123
0.117
0.117
0.104
0.102

(
(
(
(
(
(0.167

)
)
)
)
)
)

MYV with no-short-sale constraint

MV-P-NSS
MV-LS-NSS
MV-NLS-NSS

0.042 (0.002)
0.042 (0.002)
0.041 (0.002)

0.415 (0.032)
0.420 (0.031)
0.427 (0.030)

MYV with short-sale constraint & cross-validation

MV-P-SSCV
MV-LS-SSCV
MV-NLS-SSCV

0.042 (0.002)
0.042 (0.002)
0.042 (0.003)

0.415 (0.032)
0.420 (0.031)
0.468 (0.137)

From Table 2, we observe that

e In terms of risk control,

— The risk of our MAXSER portfolio is close to the given constraint.

— The Factor portfolio also has a risk close to the constraint. The reason is that
as we pointed out earlier, for such a low-dimensional portfolio, simple plug-in

estimator would be consistent.

— MV portfolios with covariance matrix estimated by sample, linear shrinkage and
nonlinear shrinkage estimators severely violate the risk constraint. When 7" = 120,

their risks exceed the constraint by about 640%, 105% and 35%, respectively.
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— In sharp contrast, when either no-short-sale or short-sale constraint is imposed, the
corresponding MV strategies lead to portfolios with risk close to the risk constraint
level. This shows that our cross-validation procedure of choosing the short-sale
threshold works for these strategies just as well as for our own MAXSER portfolio

in terms of risk control.
e In terms of Sharpe ratio,

— As the sample size T increases from 120 to 240, all portfolios improve.

— MAXSER achieves the highest Sharpe ratio among all portfolios under comparison.
In the T' = 240 case, on average, MAXSER attains about 80% of the theoretical
maximum Sharpe ratio, whereas the Sharpe ratio of the MV-NLS portfolio, the
second highest among all portfolios, is about 64%.

— In the T" = 240 case, the 95% confidence interval of the mean Sharpe ratio
of MAXSER is [1.497,1.515]. For comparison, the 95% confidence interval for
the difference between the mean Sharpe ratios of MAXSER and MV-NLS is
[0.301, 0.317]. Such a range confirms that the improvement in Sharpe ratio achieved

by MAXSER is not only statistically significant but also rather substantial.

— Compared with MV-P-SSCV, MV-LS-SSCV and MV-NLS-SSCV portfolios, the
Sharpe ratio of MAXSER is significantly higher, indicating that the outstanding
performance of MAXSER is fundamentally due to our methodology, which is much

more than solely imposing constraint.

e In summary, our MAXSER portfolio effectively controls risk, and is significantly more

mean-variance efficient than the other portfolios.

3.3.2 When Returns Are Heavy-Tailed

Given the empirical evidence that financial returns tend to be heavy-tailed, in the following
we conduct a simulation study for data with heavy-tails. More specifically, we shall let the
factor and idiosyncratic returns be all Student-t distributed with 6 degrees of freedom. The

mean and covariance matrix are taken to be the same as in Section 3.2.
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Table 3

Simulation comparison of risks and Sharpe ratios of the portfolios under comparison based on 1,000 replications
where returns of sample size T = 120 or 240 are generated from t-distribution with 6 degrees of freedom. The
underlying mean and covariance matrix are the same as those set in Section 3.3.1. The risk constraint is

set to be 0.04. The theoretical mazimum Sharpe ratio is 1.882. Average value and standard deviation (in

brackets) of each performance measure are reported.

t(6) Distribution o=0.04 T =120

Portfolio Risk Sharpe Ratio
Factor 0.034 (0.003) 0.350 (0.202)
KZ 0.039 (0.031) 0.288 (0.191)
MAXSER 0.034 (0.004) 1.037 (0.274)

MV/GMV with different covariance matrix estimates

MV-P
MV-LS
MV-NLS
MV-NLSF
GMV-LS
GMV-NLS

0.246 (0.060)
0.062 (0.005)
0.042 (0.009)
0.036 (0.002)
0.013 (0.001)

(0.003)

0.014 (0.003

0.321
0.635
0.845
0.716
0.459
0.572

0.174)
0.169)
0.179)
0.150)
0.130)

)

(
(
(
(
(
(0.125

MYV with no-short-sale constraint

MV-P-NSS
MV-LS-NSS
MV-NLS-NSS

0.036 (0.003)
0.036 (0.003)
0.035 (0.003)

0.394 (0.039)
0.406 (0.035)
0.411 (0.036)

MYV with short-sale constraint & cross-validation

MV-P-SSCV
MV-LS-SSCV
MV-NLS-SSCV

0.036 (0.003)
0.036 (0.003)
0.037 (0.004)

0.394 (0.039)
0.406 (0.035)
0.531 (0.196)
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t(6) Distribution o=0.04 T =240

Portfolio Risk Sharpe Ratio
Factor 0.033 (0.002) 0.427 (0.141)
KZ 0.059 (0.023) 0.802 (0.154)
MAXSER 0.033 (0.003) 1.377 (0.185)
MV/GMV with different covariance matrix estimates

MV-P 0.058 (0.004) 0.807 (0.140)
MV-LS 0.048 (0.003) 0.847 (0.133)
MV-NLS 0.040 (0.004) 1.071 (0.138)
MV-NLSF 0.034 (0.001) 0.931 (0.117)
GMV-LS 0.010 (0.000) 0.469 (0.107)
GMV-NLS 0.010 (0.001) 0.538 (0.182)
MV with no-short-sale constraint

MV-P-NSS 0.034 (0.002) 0.406 (0.035)
MV-LS-NSS 0.034 (0.002) 0.412 (0.033)
MV-NLS-NSS 0.034 (0.002) 0.418 (0.032)
MV with short-sale constraint & cross-validation

MV-P-SSCV 0.034 (0.002) 0.406 (0.035)
MV-LS-SSCV 0.034 (0.002) 0.414 (0.046)
MV-NLS-SSCV 0.035 (0.003) 0.529 (0.221)

Table 3 shows that MAXSER continues to clearly outperform other portfolios. Another
observation is that, if we compare Table 3 with Table 2 for the normal case, we see that

heavy-tailedness does to some extent hurt all the strategies in terms of Sharpe ratio.

4 EMPIRICAL STUDIES

We investigate the performance of our strategy through two types of empirical studies:

e Practical evaluation:

The asset pool containing the constituents of the DJIA 30 index is considered. Under

a rolling-window scheme to be specified below, at each rebalancing time point, only
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the constituents at that time are included. Portfolio performances are compared on
the basis of both raw returns and returns net of transaction costs; see Section 4.2 for

details.

o (eneral statistical evaluation:

We compare the performance of the strategies under consideration using 100 random
datasets, in which the stocks are randomly picked historical constituents of the S&P

500 index. See Section 4.3 for details.

4.1 Portfolios Under Comparison in Empirical Study

In addition to the strategies that we compared in simulation studies, we include five more
portfolios in our empirical study: the index, the equally weighted portfolio (“1/N” rule),
and three /1-norm constrained mean-variance portfolios. Specifically, based on covariance
matrices estimated by the sample covariance matrix, the linear shrinkage estimator (Ledoit
and Wolf (2004)) and the nonlinear shrinkage estimator (Ledoit and Wolf (2017)), we construct
the portfolios “MV-P-L1CV”, “MV-LS-L1CV” and “MV-NLS-L1CV” by imposing ¢;-norm
constraint? for which the constraint is determined by the cross-validation method that we
proposed in Section 2.5.1. We include these f;-norm constrained portfolios to examine
the effect of imposing ¢;-norm constraint, and, more importantly, to demonstrate that the
advantage of MAXSER is fundamentally due to its methodology rather than solely due to

the ¢;-norm constraint.

4.2 Practical Evaluation

4.2.1 Data & Investment Rolling—Window Scheme

We first evaluate our proposed portfolio, MAXSER, based on the stock universe of DJIA 30
index constituents. We obtain the lists of DJIA 30 index constituents from COMPUSTAT and
CRSP. In addition to the asset pool that consists only of stocks, we also consider the larger

pool in which Fama-French three factors (FF3) are included. Correspondingly, we perform

9Due to the prohibitively high time cost of solving the original mean-variance optimization with ¢;-norm
constraint, the three £1-norm constrained methods are only applied to the DJIA data with around 30 stocks.
In contrast, the computational cost of MAXSER is very low thanks to the fast algorithm LARS (Efron et al.
(2004)).
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two studies: Study I for the stock only case, and Study II for the case that includes both
stocks and Fama-French three factors. The evaluation is conducted based on a rolling-window
scheme. More specifically, at the beginning of each month, one asset pool is formed by
including the current constituents of DJIA 30 index (and the Fama-French three factors for
Study II). Different portfolios are constructed using the monthly excess returns'® during the
past T" months, where T is the sample size to be specified. If a stock has missing data in the
T-month training period, it is excluded from the asset pool. As a result, the number of stocks
would vary over time and can be slightly smaller than the total number of constituents. The
risk constraint is fixed to be the standard deviation of DJIA 30 index returns during the first
training period. The portfolios are held for one month, and the corresponding returns are
recorded. We then evaluate the performance of the portfolios under comparison based on

their out-of-sample monthly returns.

4.2.2 Performance Evaluation

We evaluate the performance of MAXSER and other competing portfolios in terms of risk
and annualized Sharpe ratio. We also investigate the effect of transaction costs and report
the comparisons based on returns net of transaction costs.

For the DJIA data set with around 30 stocks in each asset pool, we use a sample size of
T = 60, in other words, each training set contains the monthly returns in the past five years.
The testing period is February 1967 — December 2016, which results in, for each strategy, 599
out-of-sample monthly returns.

In addition to comparing out-of-sample risks and Sharpe ratios, to verify the statistical
significance of the advantage of our portfolio MAXSER, we conduct hypothesis tests about
the Sharpe ratio. More specifically, we test

Hy: SRyaxser < SRy vs H,: SRyaxser > SRo, (4.1)

where SRyraxser denotes the Sharpe ratio of MAXSER portfolio, and SRy denotes the
Sharpe ratio of the portfolio under comparison. The test is conducted using Memmel (2003)’s

corrected version of Jobson and Korkie (1981)’s test.

0For computing excess returns, we obtain the risk-free rate r; from Fama/French Data Library.
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4.2.3 Study I: DJIA Constituents Only

We first consider the asset pool that consists only of DJIA constituents. The comparisons
among our MAXSER and the competing portfolios based on returns either without or with

transaction costs are summarized below.
Without transaction costs

The summary without considering transaction costs is reported in Table 4, which shows

the risk, Sharpe ratio, and the p-value for testing (4.1) for each portfolio.
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Table 4

Summary of risk, Sharpe ratio and p-value of Sharpe ratio test (4.1) of the portfolios under comparison based
on DJIA 30 index constituents. The testing period is February 1967 — December 2016. The risk constraint
o = 0.037 is the standard deviation of the monthly excess returns on DJIA 30 index during February 1962 —
January 1967.

DJIA 30 Constituents 0=0.037 T =60

Portfolio Risk Sharpe Ratio p-value
Index 0.044 0.102 0.000
Equally weighted 0.046 0.026 0.000
K7 0.063 0.069 0.000
MAXSER 0.042 0.250 -
MV/GMV with different covariance matrix estimates

MV-P 0.078 0.020 0.000
MV-LS 0.057 0.049 0.000
MV-NLS 0.054 0.061 0.000
MV-NLSF 0.054 0.088 0.000
GMV-LS 0.039 0.063 0.000
GMV-NLS 0.038 0.097 0.003
MYV with no-short-sale constraint

MV-P-NSS 0.040 0.127 0.004
MV-LS-NSS 0.040 0.135 0.006
MV-NLS-NSS 0.040 0.136 0.007
MV with short-sale constraint & cross-validation

MV-P-SSCV 0.042 0.017 0.000
MV-LS-SSCV 0.049 0.107 0.000
MV-NLS-SSCV 0.047 0.183 0.027
MV with ¢;-norm constraint & cross-validation

MV-P-L1CV 0.041 0.103 0.000
MV-LS-L1CV 0.042 0.153 0.005
MV-NLS-L1CV 0.043 0.137 0.003

We observe from Table 4 that
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e In terms of risk control,

— The index, MAXSER, GMV, short-sale and ¢;-norm constrained portfolios carry

similar risks, all of which are slightly higher than the given constraint.

— The MV portfolios with different covariance matrix estimates, MV-P, MV-LS,
MV-NLS and MV-NLSF, carry higher risks. Most notably, the plug-in portfolio
MV-P violates the risk constraint by about 110%.

e In terms of Sharpe ratio,

— MAXSER dominates the other competing portfolios with a Sharpe ratio about
37% higher than that of MV-NLS-SSCV portfolio, the second best portfolio in

terms of Sharpe ratio.

— The three portfolios, MV-P-L1CV, MV-LS-L1CV and MV-NLS-L1CV, are also
constructed with ¢/1-norm constraint determined by our cross-validation proce-
dure, however, they yield significantly lower Sharpe ratios than MAXSER. Such a
comparison clearly shows that the outstanding performance of MAXSER is funda-

mentally due to its methodology rather than solely imposing ¢;-norm constraint.

— The p-values of Sharpe ratio tests show that the advantage of MAXSER is

statistically significant.

In summary, our MAXSER effectively controls the risk and significantly outperforms the

competing portfolios in terms of Sharpe ratio.
With transaction costs

Next, we take transaction costs into account and compute the returns net of transaction
costs. Here we adopt a widely-used way of computing transaction costs (see, for example,
Engle et al. (2012)), which is closely related to the portfolio turnover. The turnover at any

rebalancing time ¢ is defined as

Turnover(t) := Z lw;(t+ 1) —w,(t+)], (4.2)

i=1

where w;(t + 1) is the weight on asset j at the beginning of period ¢ + 1, and w,(t+) is the

weight of the same asset at the end of period ¢. The transaction cost of the portfolio at time ¢
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is proportional to Turnover(t) and a cost level ¢y, which measures transaction cost per dollar
traded. It can be derived that the portfolio return net of transaction cost in period ¢, 7, (%),

has the following relation with the portfolio return without transaction cost r(¢):
Tnet(t) = (1 — coTurnover(t)) (1 + r(¢t)) — 1. (4.3)

In Engle et al. (2012), it is found that the average cost level for NYSE stocks is around 0.088%.
In the following analysis we adopt ¢y = 0.1%. For the index, we set its transaction cost to
be zero. Table 5 shows the risks and Sharpe ratios of different portfolios after deducting

transaction costs.
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Table 5

Summary of risk, Sharpe ratio and p-value of Sharpe ratio test (4.1) based on returns net of transaction costs

of different portfolios based on DJIA 30 constituents. The testing period is February 1967 — December 2016.

DJIA 30 Constituents co = 0.1% 0=0.037

Portfolio Risk Sharpe Ratio p-value
Index 0.044 0.102 0.000
Equally weighted 0.046 0.020 0.001
KZ 0.063 0.011 0.000
MAXSER 0.042 0.209 -
MV/GMV with different covariance matrix estimates

MV-P 0.078 —0.043 0.000
MV-LS 0.057 0.001 0.000
MV-NLS 0.054 0.017 0.000
MV-NLSF 0.054 0.044 0.000
GMV-LS 0.039 0.038 0.001
GMV-NLS 0.038 0.074 0.008
MYV with no-short-sale constraint

MV-P-NSS 0.040 0.108 0.015
MV-LS-NSS 0.040 0.118 0.024
MV-NLS-NSS 0.040 0.119 0.026
MYV with short-sale constraint & cross-validation

MV-P-SSCV 0.042 —0.048 0.000
MV-LS-SSCV 0.049 0.023 0.000
MV-NLS-SSCV 0.047 0.091 0.000
MV with ¢;-norm constraint & cross-validation

MV-P-L1CV 0.041 0.029 0.000
MV-LS-L1CV 0.042 0.073 0.000
MV-NLS-L1CV 0.043 0.047 0.000

Table 5 shows that when transaction cost is considered, MAXSER again performs signifi-
cantly better than the competing portfolios.
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4.2.4 Study II: DJIA Constituents & Fama-French Three Factors

In this section, we include the Fama-French three factors in the asset pool, and compare
MAXSER with the competing portfolios which are also applied to both stocks and the three

factors. Again we summarize the performances without and with transaction costs.
Without transaction costs

The summary without considering transaction costs is reported in Table 6, which shows

the risk, Sharpe ratio, and the p-value for testing (4.1) for each portfolio.
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Table 6

Summary of risk, Sharpe ratio and p-value of Sharpe ratio test (4.1) of the portfolios under comparison
based on DJIA 30 index constituents and Fama-French three factors. The testing period is February 1967 —
December 2016. The risk constraint o = 0.037 is the standard deviation of the monthly excess returns on

DJIA 30 index during February 1962 — January 1967.

DJIA 30 Constituents & FF3 0=0.037 T =60

Portfolio Risk Sharpe Ratio p-value
Index 0.044 0.102 0.000
Equally weighted 0.043 0.064 0.000
Factor 0.040 0.425 0.000
K7 0.124 0.535 0.000
MAXSER 0.045 0.706 -
MV/GMV with different covariance matrix estimates

MV-P 0.089 0.595 0.008
MV-LS 0.053 0.303 0.000
MV-NLS 0.053 0.457 0.000
MV-NLSF 0.051 0.524 0.000
GMV-LS 0.017 0.397 0.000
GMV-NLS 0.017 0.337 0.000
MYV with no-short-sale constraint

MV-P-NSS 0.040 0.463 0.000
MV-LS-NSS 0.035 0.431 0.000
MV-NLS-NSS 0.035 0.399 0.000
MV with short-sale constraint & cross-validation

MV-P-SSCV 0.042 0.543 0.000
MV-LS-SSCV 0.047 0.371 0.000
MV-NLS-SSCV 0.041 0.294 0.000
MV with ¢;-norm constraint & cross-validation

MV-P-L1CV 0.038 0.357 0.000
MV-LS-L1CV 0.045 0.440 0.000
MV-NLS-L1CV 0.046 0.386 0.000
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From Table 6, we observe the following:
e In terms of risk control,

— The risk of MAXSER is close to those of the index, the equally weighted, the

Factor, the short-sale constrained and ¢;-norm constrained portfolios.

— The risk of the plug-in (“MV-P”) portfolio is more than twice of the risk constraint

level and hardly bearable for investors.
e In terms of Sharpe ratio,

— Our MAXSER portfolio yields the highest Sharpe ratio.

— Compared with portfolios with similar risks, the Sharpe ratio of MAXSER is
about 30% higher than that of MV-P-SSCV portfolio, which performs better than

other portfolios under comparison with similar risks.

— The #1-norm constrained portfolios, MV-P-L1CV, MV-LS-L1CV and MV-NLS-
L1CV, yield much lower Sharpe ratios than MAXSER. This again confirms that
the advantage of MAXSER is fundamental rather than solely due to imposing the

constraint.

— The small p-values of Sharpe ratio tests of MAXSER against all the other portfolios

under comparison confirm the statistical significance of the advantage of MAXSER.

— A new observation from this study is that, the comparison between the Sharpe
ratios of MAXSER and Factor portfolios indicates that investing in individual
stocks in addition to factors using our strategy MAXSER, can yield substantial

gain.

In summary, MAXSER effectively controls out-of-sample risk and dominates the competing

portfolios in terms of mean-variance efficiency.
With transaction costs

Next, we again take transaction costs into account and compute the returns of each
portfolio net of transaction costs as described in (4.3). Table 7 shows the risks and Sharpe

ratios after deducting transaction costs.
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Table 7

Summary of risk, Sharpe ratio and p-value of Sharpe ratio test (4.1) based on returns net of transaction costs
of different portfolios based on DJIA 30 constituents and Fama-French three factors. The testing period is
February 1967 — December 2016.

DJIA 30 Constituents & FF3 co = 0.1% 0=0.037

Portfolio Risk Sharpe Ratio p-value
Index 0.044 0.102 0.000
Equally weighted 0.043 0.059 0.000
Factor 0.040 0.403 0.000
KZ 0.123 0.440 0.000
MAXSER 0.045 0.634 =
MV/GMV with different covariance matrix estimates

MV-P 0.089 0.516 0.004
MV-LS 0.053 0.251 0.000
MV-NLS 0.053 0.379 0.000
MV-NLSF 0.051 0.466 0.000
GMV-LS 0.017 0.368 0.000
GMV-NLS 0.017 0.266 0.000
MYV with no-short-sale constraint

MV-P-NSS 0.040 0.437 0.000
MV-LS-NSS 0.035 0.409 0.000
MV-NLS-NSS 0.035 0.373 0.000
MV with short-sale constraint & cross-validation

MV-P-SSCV 0.042 0.449 0.000
MV-LS-SSCV 0.047 0.282 0.000
MV-NLS-SSCV 0.041 0.150 0.000
MV with ¢;-norm constraint & cross-validation

MV-P-L1CV 0.038 0.269 0.000
MV-LS-L1CV 0.045 0.339 0.000
MV-NLS-L1CV 0.045 0.273 0.000

Table 7 again shows the clear advantage of our MAXSER portfolio. MAXSER still yields
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a Sharpe ratio that is significantly higher than the other strategies.

4.2.5 Discussions on Study I & 11

In the previous two Sections 4.2.3 and 4.2.4, we considered two scenarios, one investing
only in stocks (the constituents of DJIA 30 index, to be precise), the other investing in both
stocks and the Fama-French three factors. Comparing the two scenarios shows clearly that
for all strategies, it is beneficial to invest in both stocks and factors such as the Fama-French
three factors. It is for this reason that in the simulation studies (Section 3) we focused on
the setting with factor investing. In the second type of empirical evaluation below, we will
also focus on the scenario with investments in both stocks and Fama-French three factors.

Another important observation is that, if we compare MAXSER with Factor portfolio
in either Table 6 or 7, we see that MAXSER substantially enhances the performance. In
other words, the value added by applying MAXSER to invest in both stocks and factors is
far beyond marginal. The conclusion is also supported by the general statistical evaluation

results in Section 4.3.

4.3 General Statistical Evaluation

The comparisons in Section 4.2 are from a practical viewpoint, where for each period
the stock pool is updated to include all index constituents. In this section, we evaluate the
portfolio performances from a more statistical point of view, based on 100 random stock pools
formed by historical constituents of S&P 500 index. Specifically, each stock pool consists
of 100 stocks randomly chosen from the stock universe, which contains 369 S&P 500 index
historical constituents that have complete price data during January 1992 — December 2016,
the whole study period. Each time when we randomly select 100 stocks, they are taken to
form the stock pool throughout the study period. In such a way, we eliminate the effect of

inclusion/exclusion of stocks. We make overall evaluations based on 100 randomizations.

4.3.1 Comparison Summary

The following results are based on the same rolling-window scheme as described in
Section 4.2.1. The sample size is T' = 120, and we again include the Fama-French three
factors in our asset pools. The means and standard deviations of portfolio risks and Sharpe

ratios based on the 100 randomizations are reported in Table 8.
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Table 8

Summary of risks and Sharpe ratios of the portfolios under comparison for 100 random asset pools, each
containing 100 stocks randomly selected from SEP 500 index historical constituents and Fama-French three
factors. The testing period is January 2002 — December 2016. The risk constraint is taken to be the standard
deviation of the index excess returns during January 1992 — December 2001. Average value and standard

deviation (in brackets) of each performance measure are reported.

S&P 500 Constituents & FF3 o =0.041 T =120
Portfolio Risk Sharpe Ratio
Index 0.042 0.223

Factor 0.041 0.320
Equally weighted 0.050 (0.002) 0.261 (0.041)
KZ 0.072 (0.019) 0.311 (0.234)
MAXSER 0.044 (0.003) 0.527 (0.184)
MV/GMV with different covariance matrix estimates

MV-P 0.334 (0.031) 0.325 (0.230)
MV-LS 0.065 (0.004) 0.194 (0.180)
MV-NLS 0.061 (0.004) 0.188 (0.179)
MV-NLSF 0.057 (0.003) 0.353 (0.161)
GMV-LS 0.025 (0.001) 0.420 (0.127)
GMV-NLS 0.025 (0.001) 0.414 (0.123)
MYV with no-short-sale constraint

MV-P-NSS 0.047 (0.002) 0.345 (0.120)
MV-LS-NSS 0.043 (0.002) 0.288 (0.138)
MV-NLS-NSS 0.042 (0.002) 0.285 (0.146)
MYV with short-sale constraint & cross-validation

MV-P-SSCV 0.047 (0.002) 0.345 (0.120)
MV-LS-SSCV 0.043 (0.002) 0.286 (0.139)
MV-NLS-SSCV 0.043 (0.002) 0.286 (0.153)

Table 8 shows that

e MAXSER portfolio carries a risk close to the risk constraint.

e MAXSER achieves the highest average Sharpe ratio, which is 27% higher than the
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average Sharpe ratio of GMV-LS portfolio, the second best among the portfolios under

comparison.

Next, we take transaction costs into account. The returns net of transaction costs are
computed by formula (4.3). The transaction cost level is again taken to be 0.1%. The

comparisons are summarized in Table 9.
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Table 9

Comparison of risks and Sharpe ratios based on portfolio returns net of transaction costs, for 100 random
asset pools formed by 100 SEP 500 constituents and Fama-French three factors. Average value and standard
deviation (in brackets) of each performance measure are reported. The testing period is January 2002 —

December 2016.

S&P 500 Constituents & FF3 co = 0.1% o =0.0247
Portfolio Risk Sharpe Ratio
Index 0.042 0.223

Factor 0.041 0.303
Equally weighted 0.050 (0.002) 0.256 (0.041)
KZ 0.072 (0.018) 0.140 (0.234)
MAXSER 0.044 (0.003) 0.463 (0.183)
MV/GMV with different covariance matrix estimates

MV-p 0.328 (0.029) 0.101 (0.231)
MV-LS 0.065 (0.004) 0.139 (0.182)
MV-NLS 0.061 (0.004) 0.123 (0.181)
MV-NLSF 0.057 (0.003) 0.300 (0.159)
GMV-LS 0.025 (0.001) 0.388 (0.126)
GMV-NLS 0.025 (0.001) 0.365 (0.122)

MYV with no-short-sale constraint

MV-P-NSS 0.047 (0.002) 0.326 (0.121)
MV-LS-NSS 0.043 (0.002) 0.272 (0.139)
MV-NLS-NSS 0.042 (0.002) 0.269 (0.147)

MYV with short-sale constraint & cross-validation

MV-P-SSCV 0.047 (0.002) 0.326 (0.121)
MV-LS-SSCV 0.043 (0.002) 0.269 (0.140)
MV-NLS-SSCV 0.043 (0.002) 0.265 (0.154)

Table 9 reveals that MAXSER portfolio maintains its advantage over other portfolios. Its
Sharpe ratio is more than 20% higher than that of GMV-LS, the second best portfolio in
terms of Sharpe ratio among the portfolios under comparison.

In summary, both without and with transaction costs, our MAXSER portfolio outperforms.
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Moreover, as we will see in the next section, the advantage of MAXSER over other portfolios

in terms of Sharpe ratio is dominating.

4.3.2 Statistical Tests About Sharpe Ratio

In this section, we conduct the Sharpe ratio test (4.1) based on both raw returns and
returns net of transaction costs for the 100 random asset pools. The histograms of the

p-values based on the 100 random asset pools are given in Figures 5 ~ 6.
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Figure 5. Histograms of p-values for the Sharpe ratio test (4.1) of MAXSER against the portfolios under
comparison, based on 100 random asset pools. In this figure transaction costs are not taken into account. The
consistent feature of concentration of p-values around zero shows that MAXSER has dominating advantage

over the competing portfolios in terms of Sharpe ratio.
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Figure 6. Histograms of p-values for the Sharpe ratio test (4.1) of MAXSER against the portfolios under
comparison, based on 100 random asset pools. In this figure transaction costs are deducted from portfolio
returns. Similarly to Figure 5, MAXSER is seen to have dominating advantage over the competing portfolios

in terms of Sharpe ratio.

Notice that if the null hypothesis Hy in (4.1) holds, then the p-values would be roughly
uniformly distributed. This is obviously not the case here. We observe from Figures 5 and 6
that, for all competing portfolios and both without and with transaction costs taken into

account, there is a consistent feature of p-values concentrating around zero. Such a feature
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shows that MAXSER has dominating advantage over the competing portfolios in terms of

Sharpe ratio.

5 CONCLUSION

In this paper, we propose a novel approach to estimate the mean-variance efficient portfolio
when the number of assets in the investment pool is not small compared with sample size.
We consider two scenarios, one without factor investing, the other with factor investing.
We prove that, under both scenarios, our strategy, MAXSER, asymptotically achieves the
mean-variance efficiency and meanwhile effectively controls the risk. To the best of our
knowledge, this is the first method that can simultaneously achieve these two goals for large
portfolios.

The sound theoretical properties of MAXSER are supported by comprehensive numerical
studies. In both simulation and empirical analyses, MAXSER can not only effectively control

the risk, but more importantly, yield high Sharpe ratios.
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Appendix A Proof of Convergence (1.1)

Proof. Let p and 3 be the sample mean and sample covariance matrix of i.i.d. returns
following multivariate normal distribution N(u, ). For given risk constraint o, the plug-in

portfolio is
o

VEER

It follows that the ratio between the Sharpe ratio of w, and SR* = /p/3~1p equals

W, = S (A.1)

ISH—1
SR(plug-in) _ % (A.2)
SR+ [wsoissoig '
wE—lp
By Theorem 4.6 in El Karoui (2010), for the numerator in (A.2) we have
-l 1
r= B - . (A.3)

_>
pE . 1-p
Furthermore, by Theorems 3.1 and 3.3 in El Karoui (2013), for the denominator in (A.2) we

have R R
TSy | o
= 1 1). A4
wWEp A—pp " wmp) " () (A-4)
Combining (A.3) and (A.4) we obtain (1.1). O

Appendix B Proof of Proposition 1
Proof. Observe that
E(r.—w'r)? = w'Sw + (w'p)? — 2raw'p. (A.5)
It follows that the minimizer of F(r, — w'r)? satisfies the first order condition below:
Sw+ (w'p)p —rep = 0. (A.6)
Left multiplying both sides by p/X~! yields
wp+ (wp) WE - /I = 0.

Recall that 0 = p’X"'u. We therefore have

w'p = re=r1" (A.7)



Combining (A.6) and (A.7), we obtain

w=—X""p=w"

7

Appendix C Proof of Proposition 2

Proof. Kan and Zhou (2007) noticed that the sample estimate @\s is in fact Hotelling’s 7?2 ,

which follows non-centralized F-distribution:

é;v<TfN>FNTNgm. (A.8)

It immediately follows that 0 is an unbiased estimator of . Moreover, the variance of 55 is

_\ 2T 1 2(T — 2)(N +2T6
Var (4,) = +2(T — 2)(IV + 276)

(T—N—-22T—N—4) (A.9)

~

Under the assumption that N/T — p € (0,1) and that 6 is bounded, Var(f) converges to 0

at rate 1/T. The conclusion follows. O

Appendix D Proof of Theorem 1

In order to prove Theorem 1, we first give the following Proposition 7 about an infeasible

estimator of w* defined as

w = argmin ||r, — Rw||5 subject to ||lw]|]; <\, (A.10)
where re = (re, ... 7)) with r. = (14+6)/6 - r*.
Proposition 7. Under Assumptions A1 ~ Ab, as N — oo,

Elp'w* — p'w| — 0, (A.11)

and

EV@'Sw — Vw'Sw*| — 0. (A.12)

We first prove Proposition 7 in Section D.1. The proof of Theorem 1 is given in Section D.2.
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D.1 Proof of Proposition 7

1. A Preliminary Theorem

We first establish a theorem that lays down the basis for Proposition 7. The following
notation will be used.

Notation. The notation 2 means equal in distribution. The notation Yy = op(f(T))
means that Yr/f(7T) 50, and Y = O,(f(T)) means that the sequence (|Yr/f(T)|) is tight,
i.e., for any € > 0, there exists a finite M > 0 such that P(|Yr/f(T)| > M) < e for all T'.

Theorem 3. Define the X-norm estimation error of w as E||lw* — w||%, where || - ||s is the
norm induced by X: ||¢||% = 'S for any x € RN. Further let R* = Rw* and R = R,
where w s the infeasible estimator defined in (A.10). Under Assumptions A1 and A3, we have

JT 9 T

. 1 [21og(2N [2]og(2N?

where Gy = 220v2L+0% VB, Gy = A (7 (2V2L +2M + /1) +-8AL) , and Gy = 10 (V2L+
2MV/L).

1 ~ L 2log(2N
E (THR* — Rug) <% (2\/2L+ 2M + _> 21og(2V) (A.13)

and

Remark 10. Theorem 3 is seemingly similar to but actually fundamentally different from
Theorem 1 in Chatterjee (2013). The difference is due to that in our setting, the “noise”

€ =r. — Rw is not independent of the “covariate” R.
Before we prove Theorem 3, we give a few lemmas that will be used.

Lemma 1 (Lemma 3 in Chatterjee (2013)). Suppose that ¢; ~ N(0,0?) fori=1,...,m,
which need not be independent. Then

E (max |Cl|) < max o - v/ 2log(2m).

1<i<m

Lemma 2. Suppose that & ~ x*(T) for i = 1,...,m, which need not be independent. If

Vlog(2m) /2T < 1/4, then

E (maX & — T|) < 24/2T log(2m).

1<i<m
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Proof. Using the moment generating function of x*(7T'), we have for n < %,

E (") = o~ log(1-2m)—nT

Elementary calculus shows that

1
log(1 + ) >z — 2%, for all |z| < 3 (A.15)
Therefore for || <
E (en(Ei*T)) < 62T772.
It follows that for any 1 € (0, 1],
1 max =T
E (max & — T|) - F (1og 2, T |)
1<i<m n
1 m
< =log E (e"&=T) L g=n(&=T)
e (e |
< 1 log i 22T
= 2
log(2
= 8 m) + 2T'n.
Choosing n = y/log(2m) /2T yields the desired conclusion. O

Lemma 3. Suppose that X; ~ N(0,1) for j=1,...,p, and Y}, ~ N(0,1) fork=1,...,q. The
two sequences (X );’: and (Yy){_, are independent, but X;’s do not need to be independent,
neither do Y} ’s. Let (Xt)t )
Further assume that log(2pq)/T < 1/2. Then

> XY

T
E | max
J.k
t=1

Proof. For two independent standard normal random variables Z; and Z,, one has E(e¥%1%2) =

and (Y{)]_, be i.i.d copies of (X;)5—y and (Yi)j—,, respectively.

) < 2y/T'log(2pg).

T
(1—4?)~2 for |1h| < 1. Since X}Y)’s are independent for each pair (j, k), letting n;, = > X7V},
=1

we have
B(e¥mir) = (H WW) HE( BXHL) = o s,
By inequality (A.15), for || < 2 ¥2, one has log(1 — ¢?) > —¢*(1 + ¢*) > —2¢?, hence
E(ell”]j,k) < €T1/)2'

o4



Thus for any ¢ €

o
e[S
—_

1 max Ylnj
E <n}%x\nj,k]> EE (lo ‘)

1 P4

< —log (ZZE(@“’Z’”N +e w”ﬂ’“))
2 j=1 k=1
1 S >

< —log ( 2¢eTY >
¢ =1 k=1
_ loe(2p0) | 1

(G
Choosing 1) = /log(2pq)/T yields the desired inequality. O

Lemma 4. Suppose that X; = (X1,...,Xen), t=1,...,T, are i.i.d random vectors from

multivariate normal distribution N(p,X) with p = (p1,...,un)" and L = (0jk)1<jk<N-

For j,k = 1,...,N, define Yj;, := E(X1,;X1x) — %ZXth’k. If 1r<nagj(v|uj] < M, and
=1 <j<

S

max |oj;| < L, then
1<j<N

E( max_|Y; |) <2L QI%QNH (2L+2M\/ﬁ) log(21V%) (A.16)

1<5,k<N T

Proof. Denote the standard deviation of X; ; by o; (= /0;;). Note that

T T T T
> XXk = (Xuj = )Xok — ) + > (Xej — i)+ > (Xek — pu) g + Ty,
t=1 = t=1 t=1
and
1 T 1 T 1 T
Yik =0 — 7 > (Xiy = 1) (Xew — i) — T > (Xej— 1) — T > (Xik — 1)y
t=1 t=1 t=1
T T T
Let Aj = > (Xey — 1) (Xew — p), Bjp = Z(Xt,j = pi)es Chin = > (Ko — i) 15,

=1 t=1
and p;, = corr(Xy j, Xi ). Let (th)t L (Mtj) _, consist of i.i.d standard normal random

variables. Then

T
D
Ach = 0,0k Z NtJ' <pjk:Nt,j + 1-— pjszt,k>

:O-sz —|—TO'J]€—|—O']O']“/ pijthMtk,
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so that

T
1
ok = Aik 2 - ( Tjk Z —UJUM/ L—p% ) Nt,th,k> '
t=1

By Lemmas 2 and 3, we have

) < 24/2Tlog(2N),

< 2
<1<r§1%§N ZNt]Mtk> < 24/Tlog(2N?).

Moreover, since Bjj ~ N(0,Tpjo;5) and Cjy, ~ N(0, T304 ), by Lemma 1,
2
max (E (Knjq%i(N |B]k|) <1<m%§N |C’]k|>) < M+/2LT log(2N?).
Combining (A.17)—(A.20), we get the desired bound.

We are now ready to prove Theorem 3.

Proof of Theorem 3. We start with inequality (A.13). Given R, define

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

It is easy to see that Sy is a compact convex subset of R”. Note that R = Rw is the

projection of r. onto Sy, and R* = Rw™ is also in Sy, therefore (R* — ﬁ) is at an obtuse

angle to (r. — R), that is,
(R - R)l (re— R) <0.

o6



Consequently, recalling the definition of r. in (2.10), we have

IR~ RI < (R*~ R) (R* —ro)

0
N T N o~ T
- Z (wa B wJ) ZRta Zw,’;(Rtk — p) — ) Z (w] - wj) ZRt]
Jj=1 t=1 k=1 j=1 t=1
N T N
=D (W) =) DD wi (R — ) (Ryy ) — k)
j=1 t=1 k=1 (A.22)
N T N
+ Z (w] - @j) Z Zwk<Rtk — k)
j=1 t=1 k=1
N T N N T
T Z (wJ - @J) Zzwza’fﬂ 0 Z (wg - w]) ZRtJ
7j=1 t=1 k=1 7=1 t=1
N N
:Z(w] —wJ)DﬂJrZ(w] — w;) Djy+ D3 := D,
Jj=1 j=1
where
T N
Djx =Y ) wi ((Ru — i) (Rej — 113) — 0%5)
t=1 k=1
T N
Dijs = Z Z wi(Rek — ) 145, (A.23)
t=1 k=1
N T N -
Dgzz w — W; ZZU}ZJM—EZ w — W;j ZRU
j=1 t=1 k=1 j=1

For D;, we shall prove that

E ( max yDﬂ|> < oV2LT (1 + \/W@N)) . (A.24)

1<y

To see this, denote

P
N > WiOkj
* k=1
= on (St ) = E

J

where 0; = sd(Ry;) for j =1,..., N. Suppose that (Zt)tT:1 , (Wt,j)thl, j=1,...,N, consist of
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1.1.d standard normal random variables. Then

T
Djy 2 > oo, [Zt(ijt +4/1—=pf W) — PJ}

T T
= 00;p; Z(Zf — 1) +o0j4/1— p? ZZtWt,j
t=1 t=1

= Vi1 + Vjo.

(A.25)

For V; 1, by Assumption A3, we have

)

<oVL,\|E i(zg—n) (4.26)

T
. . 2 j—
L <1gljf?]<v |VJ1|> L (1%%}5\7 0;Pj Z(Zt 1)

t=1

t=1
=oV2LT.

Moreover, by Lemma 3,

E(max |V2]) §U\/ZE<max

1<j<N 1<j<N

Z ZWi; ) < 20+/LT log(2N). (A.27)

Combining inequalities (A.25), (A.26) and (A.27) we get (A.24).
As to Dj,, because (wy) is the optimal portfolio, we have D;5 ~ N(0,Tu50°). By

Lemma 1 and Assumption A2, we then get

(max \D]2|) < oM~/2T log(2N). (A.28)

1<j<N

For D3, we shall prove that

E|Ds| < A‘i/\gz 2T log(2N) + ;—;\/T. (A.29)

To see this, using the fact that (wj) is the optimal portfolio again, we can rewrite D3 as

t=1 j=1

= Dga + ng.

Noting that w* = ¢/v0 - £~ 'y and 7* = /6, we have
N T
ZwafZ Rij = WE'5( Z 72 FRij =
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where 3(, 7) is the j-th column of 3. Because E |w;| < A, we have

A
E|Ds| < 22F (max 2T log(2N), (A.30)

Ve

AoV L
.)S gl

where in the last 1nequahty we again used Lemma 1. Regarding Dsg,, let Z; N (0,1) for

t=1,...,T, then Z Rijw; 2ot 0Z,, thus again noting that r* = 01/, we have
j=1

T
Dy, 2 To? — % Z(r* +oZ;) = 07 Z

It follows that

E|Dyl| < %\/T (A.31)

Putting (A.30) and (A.31) together we get (A.29).
Combining (A.22), (A.24), (A.28) and (A.29), we obtain

B (IR~ RI3)
<O\E <1glax 1D; 1|> + 2\E (gggv |Dj,2|) + E|Ds| (A.32)

2
<ooVAIT + 20 (vaL + - VE ) ar log(2N) + Z-VT.
2v0 Vo

The desired bound (A.13) follows.

Il

~ N
Let Q = > wjrj, and Q* = > wjr;, where (r1,...,7n) denotes a future return. Since w is
j=1 Jj=1
estimated from observed data, it is independent of (r1,...,7ry)". We have

E(@ -7 F)

= Z (W} — w;)(wy — wg) E(rrg)

7,k=1

= > (w) — @) (wf — @) (B [(r; — ) (rs — )] + i) (A.33)

j, k=

k:
=
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Also note that

1 ~
riltide R||; = Z Z (wj — wy)(wy, — wg) Rej Ry

tljkl

T N
Define Y; , = E(r;1%) — % > RijRy,. By Assumption A4 and that ) |wy| < A, we have
=1

k=1
- 1 - N
B((Q =Q7 | F) = ZIR = RIE = Y (w] — ) (wi — @)Y,
jk=1 (A.34)
<4X? max |Vl

1<5,k<N

Therefore by inequality (A.33),

Bllw -~ @l < (0"~ Q)

]' * (12 2
< 7E(IR — Rll) + 4" E( max [Yii]),
which, combined with (A.13) and Lemma 4, yields the desired inequality (A.14). O
2. Proof of Proposition 7
Proof. Note that
|p'w* — p'w| = u’Z_%-El (w" —w ‘ \/u’E 1 —w)' 3 (w* —w).

The convergence (A.11) then follows from Assumptions A2, A5 and the bound (A.14) in
Theorem 3.

Next we prove (A.12). By the triangular inequality for the norm || - ||x, we have
llw*]lg = [[w]lg] < [lw" - w||s.

The convergence (A.12) then again follows from Assumption A5 and the bound A.14.

D.2 Proof of Theorem 1

Proof. Consider again the convex set (A.21). Using 7. as response implies that R* .= Rw*

is the projection of 7, = (7, ...,7.)" € RT onto the set Sn. By the same reasoning as the
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proof for (A.22), we have

|IR* — R*|]2 < (R* — R*)/(R* — T + 10 — 7)

=D+ (re—7) > _(w) —w)) (ZRt]) ,

J=1

where D is defined in the same way as D in (A.22) by replacing w; with w/\j . It follows that

Z By).

For the first term on the RHS of inequality (A.35), by the same reasoning as for (A.32) and

1 ~
=D + 2\|r. — 7.| max
1<j<N

1 *
Sl|lR = Rel3 < (A.35)

’ﬂ

Assumption A4, we have

E (%|ﬁ|) < O(y/1og(N)/T). (A.36)

For the second term, we rewrite % Z Rij = p;+ \ﬁZ where Z;,j = 1,..., N, are (correlated)

standard normal random Varlables Then we have

T

7 max ]Z‘
< g |+ o= (A37
max |Z]
<M+VL e
By Lemma 1 we have
E (1@% |Z; |) 21og(2N). s

Combining (A.35)~(A.38) and noting that log N/T — 0, we get that

1 —~ .
THR* — R*|[5 < 0,(1) + 2AM |r. — 7. (A.39)

—_~ N —_~
Now similar to what we did above (A.33), define Q* = > wjr;, and recall that Q* =
j=1

N
> wjirj, where (r1,...,7y)" denotes a future return. By the same arguments as in (A.33)
j=1

and (A.34) and using (A.37), we have

—~ o~ 1
' — ¥} < B ((Q = Q) | F) < ZlIR = RFB+40 max Vel (A40)

1<5,k<N
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For the second term, by Lemma 4 we have

4N max |Y;.| = O,(\/1og(N)/T). (A.41)

1<j,k<N
Combining (A.39), (A.40), (A.41) and noting that log N/T' — 0, we get

|w* — w*||% < 0,(1) + 2AM |r, — 7. (A.42)

Therefore, under the assumptions of Theorem 1, using |r. — 7| 20 and Assumption A2, we

obtain that

Ww* — p'w*| = ‘M'z_% R (“’ - ‘7)‘ <VWEplwt - wdg 50,

and

< ||w* — w*||x 5 0.

— —
‘ w* Lw* — Vw' Iw*

Appendix E Proof of Proposition 3

Proof. By (2.16), given asset returns R and factor returns f := (f1,..., fx)’, the return of
the portfolio (wy, w) is

Rui = f'wy + Rw = f'(w; + f'w) + v'w.

Note that the returns on factors and idiosyncratic components are uncorrelated, so the above
expression decomposes the full portfolio return into two uncorrelated parts: the return on

factors and that on idiosyncratic components. The mean and variance of R,; are
ran = Wr(wy + B'w) + o'w,
and
o = (w; + Bw)E(w; + fw) + w'E,w.

In order to find the optimal weights, let x be the proportion of risk (in terms of variance)
allocated to the idiosyncratic components. The maximum expected return on the idiosyncratic
components at such a risk level, &’w, must be o/x /0, according to the definition of 6,. On

the other hand, the risk allocated to factors equals (1 — z)o?, so the corresponding maximum
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expected return, p's(wy + B'w), must be o+/1 — x - /0. Therefore, the optimal proportion
of risk on idiosyncratic components, x, must be

arg max(oy/ (1 — )0y + o\/10,),

xT

which can be easily shown to be z = 6, /0,;. It then follows that

. [0, T 'a [0, .
= g4/ — - = g4/ — ,
eall \/E eall “

and )
Qf E; 253 Qf
wy + Bw =0y —— =04/ —w},
d Our /0y Our
which are equivalent to the expression of w,; in Proposition 3. O

Appendix F Proofs of Propositions 4 and 5

Proposition 4 can be proved exactly in the same way as Proposition 2.

Proof of Proposition 5. The convergence |§u — 0. L0isa straightforward consequence of
the relationship (2.22), Proposition 4 and (2.20). The convergence |r. — 7| L0 follows

directly.
O

Appendix G Proof of Proposition 6

Similarly to the proof of Theorem 1, we first give the asymptotic properties of an infeasible
estimator in the following proposition.
Proposition 8. Define the infeasible estimator of w; as
w, = argmin ||re — Uw||?> subject to ||w]|; < A, (A.43)

where T = (1, ...,r.) € RT. Under Assumptions Bi~B3 and C1~C3, as N — oo,

lw’ — /w,| 0, (A.44)

\/ Wy S, — 1‘ Lo. (A.45)

We prove Proposition 8 in Section G.1. Proposition 6 is proved in Section G.2.

and
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G.1 Proof of Proposition 8

1. A Preliminary Theorem

Theorem 4. Under Assumptions B3, C1 and C2, for the infeasible estimator w, defined

in (A.43), we have, as N — oo,

.~ log N
ku—wuuéu:op( ! ) (4.46)

The following Lemma 5 about a will be used.

Lemma 5. Suppose o = (au,...,an)" is the vector of alpha’s in model (2.15), and & =
(Q1,...,an)" is the OLS estimate of a. Then we have
~ log N
1217%)1(\7|ai — | =0, ( T ) . (A.47)

Proof. For any fixed 1 <17 < N,
~ ~\ —1
& — i = (1,0,...,0) (F’F> F'e;:=T-e;,

where F = (1,F),1=(1,...,1) € RT, and in the vector (1,0,...,0)" there are K zero’s. It

follows that, by the multivariate normality of (ey, ..., en)’, conditional on F ,
(al — Q... 7aN - OéN)/ ~ N (07 ||I‘H§ ’ 26) .
Therefore, by Lemma 1 and Assumption B3,

E ( max |a; — oyl ﬁ) =0 (,/||r|yg.1ogN>
1<j<N

To prove the lemma, it then suffices to show that ||T'||3 = O,(1/T'). Note that

~ o —1 o N =1
F'F F'F
T-|IT|]2 = (1,0,... 1,0,...,0) <
H ||2 (707 70)< T ) (707 70) = ( T )

By law of large numbers,

F'F 1 /
= Lt ( {Jlf ) = A.
By Bppyt 2 (K+1)x (K+1)
Note that
det(A) = det (pppy + Xy — pyps) = det (2f) > 0.
~ = —1
Hence (FT—F> H = O,(1) and the proof is completed. O
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We are now ready to prove Theorem 4.

Proof of Theorem 4. For clearer presentation, we introduce the following notations and collect

some of their relationships:

~ ~ ~\ —1
H—F (F’F) F

-~

e:=(ey,...,ey) =e— He,

(A.48)
U=1d +e, and
U=1a'+é=U+1(a—a) — He,
where & = (ay,...,ay)" contains the OLS estimates of intercepts in model (2.16).
We first prove the following result:
U, - U :op< IOgTN). (A.49)
In fact, given the residual matrix ﬁ, define
Sy = {f]w:|w1|+---+|wN| gA}. (A.50)
By the same argument in the proof of Theorem 3, we have
(R* - f%)/ (rc - ié) <0. (A.51)
Plugging in R = Uw, and R* = ﬁ'w;‘; yields
(O -0)w; - @) + Uw, - Uw,) (r.—Tw,) <0,
or equivalently,
(Uw’ — Uw,) (Uw;; _Uw, +r.— Uw’ + (U - ﬁ) 17)
< (w; —w,) (0 -U) (0w, —r.).
It follows that
Uw, ~ U} < (Uw, - U,) (Uw, —ro) + (w5, U (U -U) @, )
.52

+ (w —w,) (U - U)' (0w, —r.).

For the first term on the RHS of (A.52), by (A.22), (A.24), (A.28) and (A.29), we have

E|(Uw: — Uw,) (Uw! —r.)| < VT + A (2@ +2M + \/QZ> V2T log(2N), (A.53)

u
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Next we prove the following result for the second term on the RHS of (A.52):
(w' — w,) U’ (ﬁ - U) w, =0, (\/T log N) . (A.54)
Let V =U'(U — U)w,. By (A.48) we have

V=Ula-a)w, —al’Hew, — e Hew,

(A.55)
=Vi-V, - Vi
For Vi, we have
N
Vigl=T ;@ — )iy - (a5 + )| < TAlag + 5 - max |6 — e,

where &; = L1'e;. It follows that

max |V ;| <TXA max |a;| - max | — oy + TA max || - max | — oy (A.56)

1<j<N 1<j<N 1<I<N 1<5<N 1<I<N

Noting that &; ~ N (0, 1:02), by Lemmas 1 and 5 and Assumption B2, we obtain

' TV
max |Vi,;| =0, (x/Tlog N) . (A.57)

1<j<N
For V;, we have
| = 1. 1"Hew.| < . . A.
max [Va;] = max |ay|-[1'Hew,| < A max o] - max |gj], (A.58)
where ¢ = (q1,...,qn) := € H1. Because H is the projection matrix, we have g = €'l =
T (e1,...,en). Again by Lemma 1, we have

max _|gj| = Op(y/T'log N), (A.59)

1<j<N

which, combined with Assumption B2 leads to

max _|Va ;| = Op(y/Tlog N). (A.60)

1<j<N

For V3, write the eigendecomposition of H as H = Vg DV{;, where Vj is an orthogonal

. Igyy O ~ 9 e
matrix, and D = . Let €; = Vge; ~ N(0,07 - I). Then V3 = €' Dew, and
0 0
K+1
| < e . De| = A
12'%{\7|%’]| < )\érjl?%c]v ‘ejDel} Alg?gN Z €rjeril - (A.61)

t=1
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By Lemma 4 and Assumptions B3 and B1, we obtain

max Vs | = O, <\/2(K +1)10g(2N) + /(K + 1) log(2N2)> ~0, (x/log N) . (A62)

1<j<N

Combining (A.55), (A.57), (A.60) and (A.62), we get

<2X max |V;| =0, (\/TlogN) .
1<j<N

Next, for the third term on the RHS of (A.52), we shall prove
_ R
(w" — @) (U - U) (Uaz - 'rc) ~0, <\/T log N) . (A.63)

~ / ~
Let g = (U — U) (U&Tu — 'rc>. By (A.48) we have

(w; —w,) U (0 -U)w,

~ ~ A~ —~—

g=(a-a)1Uw,+7T(a-a)a—-a)w, - (@ —a)1Hew, - ¢ Hla'w,
—r.T(a—a)+reHl (A.64)
‘=9g11t92—93— 91— 951 ge-

For gy, similarly to (A.56), (A.57) and by Lemmas 1 and 5 and Assumption B2, we have

f— /\4_ - . / -
max |g1;| = max |&; — ayf - [1Uw,|

< TX max |a@; — a;] max |oy + ¢
1<j<N 1<I<N

(A.65)
< T\ max |oy| - max |@; —a;| +TA max |g| - max |a; —
1<I<N 1<j<N 1<I<N 1<j<N
=0, (\/TlogN> :
For g,, by Lemma 5, we have
P AA — . . ~ —_— IN
max [g2] =T max |a; — oyl - |(& — ),
< a; — a;)? A.66
<TX lrgnjegjcv(oz] a;) ( )
=0, (logN).
For g3, by (A.59) and Lemma 5, we have
o= . Ao ! NN
max |g5,;| = max |a; — ay] - [1' Hew,|
< O — ol - . A.67
< A max |a; — ayf - max g (A.67)
= O,(log N).

67



For g4, by (A.59), Assumption B2 and Lemma 5, we have

| = ' ~TT
max |ga;] = max |g] - |&'w,|

< , A A — (s
< A max g (gjaggvlag! + max [a %|)

— (A.68)
-0, <\/TlogN (1 + OgT ))
=0, (VT1ogN).
For g5, by Lemma 5 we have
ax, lgs. ;| = rcT - max la; —aj] =0, (x/Tlog N) . (A.69)
For g, by (A.59) we have
Jpax 96,5 = Te 1%85\[\(]” =0, (x/TlogN> . (A.70)

Combining (A.64) and (A.65)~(A.70) and noting that |[w}|[; < A and ||Jwy|]; < A, we obtain

< 2X max |g;| = O, <\/TlogN> .

1<j<N

\(wz ~w,) (0 -v) (0w, - r.)

Combining (A.52), (A.53), (A.54) and (A.63) yields the desired bound (A.49).

Stx4H x>

. N N

Q = > wyjuj, and Q* = > wy uy, where (uy, ..., uy)" denotes a future idiosyncratic return.
j=1 j=1

Since w,, is estimated from observed data, it is independent of (uy,...,uy)". It follows that

B(@ -7 F)

N
= > () — way) (W) — W) Eujuy)
k=1
N
(wy, = Wag) Wy, ), — War) (B [(uj — o) (up — ag)] + o) (A.71)
k=1

j7
N 2
= (w), — wy) By (w;, —w,) + (Z(wi,j - %)%)
j=1
> [Jw; — w[%.

Also note that

T N
1 * — 1 * — * —
t=1 j,k=1
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T
Define Y, = E(ujug) — 7 Z +;Ue. Because ||w?||1 < A and ||w,||1 < A, we obtain

N

* N 1 * Ty * N * —
B((Q = Q7 | F) = ZlIUw, = U,|; = 3 (w; = i) (wh — @) i
jk=1 (A.72)

<4)? max |Vl
1<j,k<N

7)
< l||U'w"‘—U'17||2—|—4)\2- max |V |
— T u ull2 1Sj:kSN VLA

Therefore by inequality (A.71),

[w), — w5 < E ((Q* Q)

which, combined with (A.49) and Lemma 4, yields the desired bound (A.46). O

2. Proof of Proposition 8

Proposition 8 can be proved in exactly the same way as Proposition 7 using Assump-
tions B2, C3 and the bound (A.46).

G.2 Proof of Proposition 6

Proof of Proposition 6. Consider again the convex set Sy in (A.50). Using 7. as response
implies that R = ﬁl/u:j is the projection of 7, onto the set Sn. By the same reasoning as

the derivation for (A.52), we have
|Uw;, — Uw;l3
—_ —_ / L) —_
< (Uw' — Uwh) (Uw’ — 7)) + (w;; - w;) U’ (U - U> w (A.73)

—~\/ A~ ! A~
+ (w;—w}) (O-U) (Ow; - 7).
For the first term on the RHS of (A.73), we have

1 —~
| Uw; vy Ow;, -7

’(Uw — Uw*)’(Uw* —Te+Te—Te)

N

e~ Te ; wi ~ Wi (ZU”>| (A.74)
TZU”

%IH 'ﬂl

< |GH—2)\|7’C Tel max,

Y

N |
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where G = (Uw: — Uw?) (Uw? — ), which admits a similar decomposition to (A.22). By

the same reasoning as for (A.32) and Assumption C2, we have

1 4 log N
=Gl =0, (’/T) : (A.75)

Furthermore, by Lemma 1 and Assumption B2, we get

T
1 Z log N
t=1

T
Combining (A.74)~(A.76) and noting that log N/T — 0, we get that

max
1<j<N

1 —
= |[Uw; - vwyy Ww; — 7| = 0, (I~ 7). (A7)

For the second term on the RHS of (A.73), by the same arguments as for (A.54), we have

l<w;_@)'U/ (ff—U)ﬂZj_op( 10gN> £o. (A.78)

T T

As to the third term on the RHS of (A.73), decompose g := (U — U (Uw: — 7,) similarly
to (A.64) with w, and 7. replaced by ’EJ?; and 7, respectively. The first four components can
be bounded in the same way as in (A.65), (A.66), (A.67) and (A.68). As to g5 = 7.1 (x — @)
and gg = 7.’ H1, by Lemma 5 and (A.59) and using the assumption that |r, — 7| R 0, we
obtain

max |75 ;| < T (|Fe — re| +70) - max |a; — a;| = O, (\/TlogN) ,

1<j<N 1<j<N

and

ma (G| < (7% = el +7) - max |g;| = O, (VTTog N )

1<j<N 1

It follows that
7 (v ) (o -v) (0w )

Combining (A.73), (A.77), (A.78) and (A.79), and using the assumption that |r. —7.| Lo,

we obtain

- log N
< 2) max [g;] = O, ( - ) - (AT9)

1 —~
Hl[Uw, —Uwj|; % 0. (A.80)
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* __ * * * /
Now define @Q* = > wy, ;uj, and recall that Q™ = > wy juj, where (ug, ..., uy)" denotes a
j=1 j=1

future idiosyncratic return. By the same arguments as in (A.71) and (A.72) and using (A.76),

we have
* 3 * s 1 * 3
lw, —will, < B((Q" = @Y | F) < ZlIUw] — Uwi| + 43 max [Vl (A81)

Combining (A.80), (A.81) and Lemma 3, we get

[[w;, — w5, = 0. (A.82)
Therefore,
l —_~
| w —aw*|—‘a2 2.2 (w — w?) \/a’Z la- (w) — wi)E, (wh —wi) 5 0,
and

\Wﬁm@—ﬁﬂmpﬂmmia

O
Appendix H Proof of Theorem 2
Proof. By the factor model (2.16), the return of portfolio w,; equals
/ ~
7 0, —
“ L wt U Bw* f—l—O‘\/ w;/r
Oaun all
/ ~
f t9u —/
~—w} — Bw*—l— ﬁw* f+oy =w u.
0. Oaun
We first prove that
H Bw: — gwil| Bo. (A.83)
2

Note that 3’ w;: — B'w; is a vector of dimension K. Because K is bounded, we only need to

prove that for each j =1,... K,

L o. (A.84)

N —_
Z <5ij - 6ij> ?;f:
i=1
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Recall that ||w?||; < A. Therefore

N

> (5 ) %

=1

< )\ - max
1<i<N

ﬁu ﬂij .

By using a similar proof to Lemma 5, one can show that

log N P
O, ( T ) — 0.
Consequently, (A.84) and (A.83) hold.

We now prove the convergences of both mean and variance of R. We have

max
1<i<N

ﬁz] Bij -

/
|6 / / 0
’;lwf ﬁfw*+ Bw* py+o Qllw*/a

By the consistencies of Gf, 9u, 9a”, wf, ,the convergences (2.28) and (A.83), and the relation-
ship (2.22), we obtain

E(R)5>0' ;—f\/@—FO’“;—u\/Q_u:O'\/@a”:T*.
all all

As to its variance, we have
Var (R

Hefw—\/f *+“ w X Uef'w—w *+”9 w
all

5 O —

+ o2 wEw*

all

Using again the consistencies of éf, éu, éa”, ’l:)\;i, the convergences (2.29) and (A.83), and the
relationship (2.22), we have

0 0.,
Var (R) Lol 14020 1 =02
Ol all
Il
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