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Abstract

We show that any factor structure for stock returns can be naturally translated into
a factor structure for return volatility. We use this structure to propose a methodology
for estimating forward-looking variances and covariances of both factors and individual
assets from option prices at a high frequency. We implement the model empirically
and show that our forward-looking volatility estimates provide useful predictions of
rare disasters for both factors and individual stocks.
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1 Introduction

Linear factor structures are serving as a central paradigm for modeling variations in stock
returns. The idea is that all stock returns are driven by a small number of systematic
factors along with an idiosyncratic component (e.g., Ross (1976)). Empirically, linear
factor models have been a dominant workhorse in explaining stock returns.! In this paper
we show that any given such factor model for stock returns translates naturally into a
factor model for return volatility. This new factor model allows us to estimate the implied
variances and covariances of factors from option-implied variances of individual assets. This
gives rise to forward-looking moments for factors and individual assets even if they do not
possess traded options. For example, we obtain forward-looking implied volatility estimates
for the size, value, and momentum factors. Empirically, we show that such estimates are
informative on the future returns of the factors, in particular when it comes to predicting
strong negative outcomes and rare disasters.

We start with an arbitrary factor structure in which asset returns are a linear combi-
nation of the factors and an idiosyncratic return. Then, calculating the second moment
of this relation directly leads to a new factor structure in which each asset’s variance is
represented as a linear combination of factor variances and covariances and in which the
new factor loadings are simply products of the original factor loadings. Thus, if the original
factor model has K factors, the new factor model for volatility consists of w factors.
This approach also allows for a simple decomposition of the forward-looking variances to
systematic and idiosyncratic components.

To estimate and exploit this factor structure we develop a modification of the Fama-
MacBeth (1973) estimation procedure consisting of three stages. The first stage is identical
to the standard Fama-MacBeth approach, in which we regress returns of test assets on the
factors over time to estimate factor loadings. In the second stage we cross-sectionally regress
option-implied variances of test assets on products of the factor loadings estimated in the
first stage. This results in estimates of an implied variance-covariance matrix of the factors.
In the third stage we use the factor loadings and the factors’ implied variance-covariance

matrix estimated in the previous stages along with the underlying factor structure to

'See, for example, Chen, Roll, and Ross (1986), Fama and French (1993), Carhart (1997), Hou, Xue,
and Zhang (2015), and Fama and French (2016).



calculate the implied forward-looking covariances between any pair of individual assets.

Empirically, we apply our estimation method to all S&P 500 stocks over a sample
period spanning January 1996 to December 2014, as this is the period during which option
data is available to us. We consider two standard underlying factor models: the CAPM
one-factor model and the Fama-French-Carhart (FFC) four-factor model. Time-series tests
show that our option-implied volatility factor models explain a large portion of the variation
in implied variances of both individual stocks and sectors, with average R-squared being
about 55% for the CAPM model and 70% for the FFC four-factor model. Additional tests
provide further support for the explanatory power of our model.

We next turn to demonstrating the usefulness of our framework by presenting three
applications. For convenience, in all three applications we rely on the FFC four-factor
model as a model for stock returns. The first application illustrates the value of using
forward-looking implied variances and covariances obtained from our model for optimal
diversification. Specifically, we use our estimated moments to draw a forward-looking
efficient frontier for nine sectors and compare it to an efficient frontier based on historical
moments. For illustrative purposes, we focus on September 2008—the month during which
Lehman Brothers collapsed—as this is a natural candidate for a period in which historical
moments may diverge from forward-looking ones. Our results show that at that time
investors expected significantly higher correlations across sectors going forward than in the
recent past. This, in turn, translates to inferior diversification opportunities going forward.

In the second application, we examine whether our estimated implied systematic and
idiosyncratic variances contain information on future systematic and idiosyncratic jumps in
stock prices. Intuitively, higher implied variances are expected to predict a higher likelihood
of jumps. We define a systematic jump as a jump in the stock price concurrent with a jump
in at least one of the factors, and an idiosyncratic jump as a jump in the stock price without
a concurrent jump in any of the factors. We find that higher implied systematic variance
predicts a higher likelihood of both systematic and idiosyncratic jumps in the cross section,
whereas higher implied idiosyncratic variance predicts higher likelihood of idiosyncratic
jumps only. Our results hold for downward jumps and upward jumps separately as well as
when we consider them together.

In the third application, we consider the implied-volatility slope based on our model.



The slope has been studied extensively in the literature (e.g., Xing, Zhang, and Zhao
(2010) and Yan (2011)) and is often considered a measure of forward-looking downside risk
or negative sentiment. Our methodology offers a way to estimate the slope for factors and
assets that do not possess traded options (such as the momentum factor). We estimate the
implied-volatility slope for the FFC four factors by applying our modified Fama-MacBeth
estimation approach to option-implied volatilities at different moneyness levels. This is
particularly useful for the size, value, and momentum factors given that there do not exist
options actively traded on these factor portfolios. We test whether our estimated slopes
predict future downward jumps (disasters) and find confirming results for the market and
momentum factors, and to some extent also for the value factor.

Our paper is related to several strands of literature. First, it is related to the large
body of research on the factor structure of asset returns originated by Ross (1976) and
Merton (1973b). Empirically, researchers have proposed a variety of factor models to ex-
plain variations in stock return (e.g., Chen, Roll, and Ross (1986), Fama and French (1993),
Carhart (1997), Hou, Xue, and Zhang (2015), and Fama and French (2016)). Our paper
helps make a connection between the factor structure of stocks returns and a corresponding
factor structure for volatility. Since option prices reflect investors’ expectations on future
asset prices, the implied volatility factor structure allows us to gauge forward-looking in-
formation on individual stock as well as the underlying factors.

The paper also contributes to the recent growing literature on factor structures for
option prices. Bakshi, Kapadia and Madan (2003) derive a skew law based on option
prices and decompose individual return skewness into a systematic component and an
idiosyncratic component. Duan and Wei (2009) show that systematic risk affects the
implied volatility level and slope of individual stock options. Serban, Lehoczky, and Seppi
(2008) and Christoffersen, Fournier, and Jacobs (2017) develop option valuation models
that capture the relative pricing of individual asset returns and systematic factors, and
empirically estimate their models using a single market factor. These papers mainly focus
on a one-factor framework. Instead, our approach starts from a given factor model for
stock returns (with any number of factors) and translates it to a factor model for volatility.
Thus, we accommodate popular equity factor models proposed in the literature and show

how they are related to factors predicting option prices.



The paper also adds to the literature on estimating jump risk using option prices.
Cox and Ross (1976) and Merton (1976a,b) extend the Black and Scholes (1973) model by
incorporating jumps in option valuation. A number of papers then show that incorporating
jumps helps explain the observed option prices (e.g., Ball and Torous (1985), Naik and
Lee (1990), Amin and Ng (1993), Bakshi, Cao, and Chen (1997), Bates (2000), Duffie,
Pan, and Singleton (2000), Anderson, Benzoni, and Lund (2002), Pan (2002), and Eraker,
Johannes, and Polson (2003)). Xing, Zhang, and Zhao (2010) and Yan (2011) show that
option-implied jump risk predicts stock returns. Our factor structure allows us to examine
systematic and idiosyncratic jump risk of individual stocks and to estimate the jump risk
for factors and individual assets that do not possess traded options.

The rest of the paper proceeds as follows. Section 2 develops a factor structure for im-
plied return volatility and proposes the modified Fama-MacBeth approach for estimation.
In Section 3 we conduct the estimation exercise using S&P 500 constituent stocks base
on the CAPM one-factor model and the FFC four-factor model. Section 4 examines the
time-series performance of our implied-volatility factor structure. Section 5 presents the
applications, where we apply our framework to study optimal diversification and to predict
jumps for both factors and individual stocks. Section 6 concludes. A technical proof is

delegated to the Appendix.

2 The Factor Structure: Theoretical Framework and Esti-
mation Methodology

In this section we derive the factor structure for option-implied volatility and explain how

it can be estimated using a modification of the Fama-MacBeth (1973) approach.

2.1 Theoretical Framework

Consider an economy with N assets n = 1,2,..., N. Assume that the returns of all assets

follow a linear K-factor structure?

r=o+3f +e¢, (1)

?Hereafter we use boldface to designate vectors and matrices.



where r = (r1,...,7n) is a column vector of asset returns, a = (ay, ..., ay)’ is a vector of
intercepts, f = (f1,..., fxr)' is column vector of factors, B8 = (/Bnk) is an N x K matrix
of factor loadings, and € = (e1,...,ex)  is a column vector of idiosyncratic returns. We
assume that E (¢) = 0, E (fe’) = 0, and that E (e€’) is a diagonal matrix.

Taking the variance on both sides of (1) yields

=626 + 3, (2)

where 7, %7, and X¢ are the variance-covariance matrices of the asset returns, factors,
and idiosyncratic returns, respectively. Therefore, if the equity returns follow the linear
factor structure (1), then the variances and covariances of equity returns also follow a factor
structure in which the variances and covariances of the return factors serve as new factors
and the variance of the idiosyncratic returns serve as an intercept.’

To illustrate this new factor structure consider the diagonal of 3", which consists of the
variances of the N assets, 37 . Then, (2) implies that for each n = 1,..., N, the variance

of asset n is given by the new factor structure

K K
S = DD BBy + Sin (3)

k=1 I=1
Namely, if we start with a given factor structure for returns consisting of K factors, then
we obtain a new factor structure for variances of returns consisting of K (K + 1)/2 factors,

K(K—1 .
% are factor covariances. Moreover, the factor

of which K are factor variances and
loadings in the new model are products of the original factor loadings, and the new intercept
is the variance of the idiosyncratic return.

Similarly, if we consider the off-diagonal terms in (2) we obtain that for any two assets

T

m.ns follows the new factor structure

m and n, the covariance between the returns, X

K K
Srn =33 BurBuiSLs, (4)

k=11=1

with the same K (K + 1)/2 factors as above but different loadings and no intercept.

3Note that the assumptions above imply that 3¢ is diagonal, and so only the variances play a role in
the intercept.



The relationship in (2) should hold for both historical and future return variances and
covariances, as long as returns (both past and future) are governed by the factor structure
(1). A conventional way to estimate future volatilities is by assuming some option-pricing
model (such as Black-Scholes) and then applying this model to derive implied volatilities.
Suppose we had options that would allow us to estimate implied variances and covariances
for the N assets, the K factors, and for the idiosyncratic returns, then (2) would imply
that

V' =p8V/g + Ve, (5)

where V7, VI and V¢ are the option-implied variance-covariance matrices for the asset
returns, factors, and idiosyncratic returns, respectively.

Equation (5) is the fundamental factor relation we explore in this paper. The challenge
in estimating and applying (5) is that in reality most of its ingredients are not easy to calcu-
late from available option prices. For example, while implied volatilities can be estimated
from options on individual stocks, there is no easy way to estimate implied covariances
between assets. Furthermore, most conventional factors (such as the Fama-French-Carhart
factors) and idiosyncratic returns do not have associated options, and even if we had such
options, it is not clear how one would calculate the implied covariances. We next present

a methodology for estimating these latent implied variances and covariances.

2.2 Estimation Methodology: A Modified Fama-MacBeth Approach

The standard Fama-MacBeth (1973) approach starts from a given factor model and follows
two stages to estimate the risk premia associated with the factors. In the first stage, returns
of each test asset (or portfolio) are regressed on the factors over time to estimate factor
loadings (betas). In the second stage, test-asset (or portfolio) returns are regressed on the
factor loadings to estimate risk premia. We argue that a modification of the Fama-MacBeth
approach consisting of three stages can be used to estimate all of the ingredients in the
new factor structure presented in (5).

The data required is a time series of the factor returns as well as a (possibly unbalanced)
panel of the returns of N test assets where N >> K(K + 1)/2. We require that each of

the test assets has traded options so that we have data on its implied volatility — the



diagonal elements of the matrix V”. Practically, in our empirical implementation we use
the constituents of the S&P 500 index as test assets.

The first stage is identical to the original Fama-MacBeth approach, assuming that factor
loadings are fixed over some period of time ¢ = 1,...,7. We use a time-series regression in
which we regress the returns of the test assets on the factors over the period t =1, ..., 7 to
obtain estimates of the factor loadings N x K matrix 3,.

In the second stage we estimate cross-sectional regressions of the implied variances of

the test assets as of time 7, V.7

o, on products of the estimated factor loadings from the

first stage. Specifically, the second stage model estimates the cross-sectional model

K K
_ foz A
VT:‘,TL,T - )‘T + Z Z Vk7l77'ﬁn,k‘,7'ﬁn,l,T + nn,n,‘rv (6)
k=11=1
subject to the constraint that the matrix vi= <ka ! T)kl is positive semidefinite.
M) k=1, K

We assume that the regressors are of full rank for regularity.

Thus, for each time 7 we obtain an estimate ka Lr of Vk{ = the implied covariance be-
tween factor k£ and factor [ at time 7. The intercept in this regression A, is an estimate of
the cross-sectional average of implied idiosyncratic variances as of time 7. The underlying
assumption in (6) is that the factor loadings are uncorrelated with the error term 7, ,, .,
which reflects unobserved determinants of idiosyncratic variance. The reason for introduc-
ing the constraint is that a variance-covariance matrix must be positive semidefinite.* We
prove in the Appendix that this constrained regression has a unique solution.

In the third stage we use the estimated factor loadings ,BT and implied factor variance-
covariance matrix \75 to estimate the off-diagonal elements of V. by applying the relation

in (5), i.e.,

K K
V’rZ,nﬂ' = Z Z V]gjflﬁﬁm,kﬁﬁn,l,’r fOI' m # n. (7)
k=11=1

The three stages are then repeated for different times 7, using a standard “rolling
window” approach, yielding a time series of implied variance-covariance matrix for the
factors VZ and the individual assets V: as well as a time series of the average cross-

sectional idiosyncratic variances A;.

Practically, we impose the positive semidefiniteness constraint by requiring all eigenvalues of VY to be
nonnegative.



A key by-product of this approach is that it also allows us to decompose the implied
variance of each asset into a systematic component and an idiosyncratic component. Based

on (6), the estimated implied systematic variance of asset n at time 7 is

K K
V”inv’f = Z Z Vk{l,Tﬁn,k,Tﬁn,l,T’ (8)

k=1 1=1
and the estimate of the implied idiosyncratic variance of asset n at time 7 is given by the
total implied variance less the estimate of the systematic part, i.e.,

K

K
Vrin,ﬂ- = VJ,n,T - Z Z Vk]jlyﬁn,kn'ﬁn,lﬂ” (9)

k=11=1

To summarize, we have shown that any given factor structure on returns translates nat-
urally to a factor structure on variances and covariances of individual assets’ returns. Our
modified Fama-MacBeth method exploits cross-sectional variations in the factor loadings
and in the implied volatility of the test assets to recover the implied variance-covariance
matrix of the factors themselves along with the implied variance-covariance matrix of the
individual assets. Moreover, this method allows us to decompose the implied volatility of
each asset into systematic and idiosyncratic components. With these estimates at hand,
we can go back to (5) and apply the new factor structure to any asset, including assets

with no traded options.

3 Model Estimation

In this section we implement the framework discussed above. We begin with conventional
factor models for the equity market and use our modified Fama-MacBeth approach to

estimate the parameters of a factor model for implied volatility.

3.1 Data and Descriptive Statistics

Our option data is drawn from OptionMetrics for the period January 1996 to December
2014. As test assets we use all S&P 500 constituent stocks within the sample period with
options traded on them. This leaves us with a total of 975 stocks. We obtain the implied
volatility from the volatility surface file in OptionMetrics, which contains the Black-Merton-
Scholes (BMS) implied volatility (Black and Scholes (1973), Merton (1973a)) for European



options and the Cox-Ross-Rubinstein (CRR) implied volatility (Cox, Ross and Rubinstein
(1979)) for American options. We take the average implied volatility of the at-the-money
call and put options (delta equal to 0.5) that mature in 30 days (similar to Yan (2011),
An et al. (2014), and Christoffersen, Fournier, and Jacobs (2017)). We use the square of
this average implied volatility as the option-implied variance of equity returns. We obtain
Fama-French factor data from Kenneth French’s website. To estimate the return factor
betas we use daily stock returns from CRSP.

We begin by exploring the implied volatility of our test assets — the S&P 500 constituents
between 1996 and 2014. Figure 1 plots the cross-sectional average of option-implied vari-
ances of S&P 500 stocks over time as well as the option implied variance of the S&P500
(obtained from the SPX ETF). The average of option-implied variances of individual stocks
fluctuates considerably during the 19-year sample period, ranging from below 0.1 to over 1.
It has experienced two periods of substantial increases, 1998-2002 and 2008-2009, respec-
tively. The former is relatively mild, corresponding to the Asian crisis and the subsequent
internet bubble, whereas the latter is more dramatic, corresponding to the most recent
financial crisis. The fact that the option-implied variances of individual stocks and the
S&P 500 index follow similar trends suggests the market volatility as a primary factor for
individual stock option-implied volatility.

Table 1 presents summary statistics of option-implied variances of the test assets by
year. The number of stocks included in our analyses in each year varies from 610 to
745. Within each year, we compute the average of daily option-implied variances for
each stock. The table then reports the cross-sectional mean, median, standard deviation,
minimum and maximum of the average option-implied variances of all stocks for that
year. Consistent with Figure 1, the cross-sectional mean and median of the option-implied
variance are substantially higher during the 1998-2002 and 2008-2009 periods. The mean
option-implied variance is consistently higher than the median, suggesting that the option-
implied variance is right-skewed cross-sectionally. In addition, the cross-sectional standard
deviation of the option-implied volatility follows the same time trend as the mean and
median, i.e., it increases substantially during 1998-2002 and 2008-2009 and stays low in
the rest of the sample. This suggests that when the market goes through crises, not only do

investors consider all stocks to be more risky, they also perceive a higher level of variation
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in terms of how risky each individual stock is.

3.2 Modified Fama-MacBeth Estimation

Our approach enables one to transform a given factor model for the stock returns into
a factor model for implied variances and covariances of returns. We apply this approach
to two standard factor models for stock returns. First is the traditional CAPM one-
factor model, where the unique factor is the market excess return (mktrf), and second
is the Fama-French-Carhart four-factor model (Fama and French (1993), Carhart (1997),
hereafter FFC), in which the factors are mktrf, as well as size (smb), value (hml), and
momentum (umd).” The CAPM one-factor model transforms into a one-factor model for
implied variances-covariances, whereas the FFC model transform into ten-factor models

for implied variances-covariances.

3.2.1 First Stage Estimation

For the first stage we estimate the factor loadings using a rolling-window approach. Specif-
ically, at the end of each month we estimate the factor loadings by regressing the returns
of the test assets on daily factors over the preceding one-year window (250 trading days).
The factor loadings estimated from these regressions are then used for all second stage
cross-sectional regressions in the following month.

Table 2 reports summary statistics for the time-averages of the factor loadings estimated
in the first stage for the test assets as well as all the relevant cross products. The table
reports the cross-sectional mean, median, standard deviation, minimum and maximum of
these time averages for each of the factor models. In all cases we see that the average
market beta is close to 1, while other betas can be either positive or negative as expected.
Note that when calculating the factor loading associated with cross-products, we multiply

each product by 2 to comply with the symmetry in (5).

?We also checked the robustness of our results using the four-factor model recently introduced by Hou,
Xue and Zhang (2015), and found similar results to those obtained using the FFC model. These results are
available upon request.
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3.2.2 Second Stage Estimation

For the second stage we estimate daily constrained cross-sectional regressions as in (6). Our
dependent variable is the daily implied variance of the test assets, and the independent
variables are products of the factor-loadings estimated in the first stage. Each such daily
regression results in estimates of the requisite implied variances and covariances of the
factors, which are the new daily factors for implied volatility.

Table 3 reports averages of the implied factor variances and covariances as estimated
in the second-stage regressions for each of the factor models. To account for potential
autocorrelation, we use Newey-West standard errors with 12 lags.® Column (1) corresponds
to the CAPM one-factor model. The estimated implied variance of the market excess return
is strictly positive for all dates. The time average of this estimated variance is 0.0778 over
our sample period, which is significantly positive at the 1% level. The intercept, which
represents the cross-sectional mean of the implied idiosyncratic variance, has an average of
0.0740 over time, also significantly positive at the 1% level.

Column (2) presents results for our ten-factor model based on the FFC four-factor
model. Out of the 4802 days in our sample period, our estimated implied variance-
covariance matrix of the factors is positive definite for 4733 days and positive semidefinite
with a zero determinant for 69 dates.” The time averages of the estimated implied variances
of the market, size, value and momentum factors are 0.0440, 0.0478, 0.0218 and 0.0713,
respectively, all significantly positive at the 1% level. The implied covariances between
two different factors, however, take different signs. For example, the estimated implied
covariance between the market and size factors is 0.0152 on average, which is positive and
strongly significant. By contrast, the implied covariance between the market and value fac-
tors has a negative average value of -0.0100, also strongly significant. The cross-sectional

mean of the implied idiosyncratic variance is significantly positive and has an average value

SFollowing Stock and Watson (2011) page 599, we choose the number of lags for the Newey-West test
based on the rule of thumb:
L =0.75T"3,

where L is the number of lags used and T is the number of observations in the time series. We have 4802
days in our sample, which leads to the use of 12 lags.

TA positive semidefinite variance-covariance matrix of the factors with a zero determinant means that
the factors are linearly dependent, i.e., we can express one factor as the linear combination of the others.
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of 0.0218.

3.2.3 Third Stage Estimation

In the first stage we have estimated at each time point 7, KN factor loadings, whereas in
the second stage we have estimated K (K + 1) /2 factor variances and covariances, for a
total K (2N + K + 1) /2 estimated parameters. In the third stage we use these estimates
along with the factor structure to calculate the N (N — 1) /2 implied covariances between
the returns of all possible pairs of individual stocks based on (7). To illustrate, we have
calculated these implied covariances (and correlations) for the 30 Dow Jones Industrial
Average (DJIA) stocks (using index composition as of April 2016) based on the FFC
model. We find an average (median) implied correlation of 0.39 (0.35) and a standard

deviation of 0.33.> About 92% of the implied correlations are positive.

3.2.4 Variance Decomposition

Estimates of the factor loadings and the factor variance-covariance matrix allow us to
decompose the implied total variance of each stock into the systematic and idiosyncratic
components based on (8) and (9). Over our sample period and for all test assets, the
average ratio of the implied systematic (idiosyncratic) variance to implied total variance
is 60% (40%) under the CAPM model and 86% (14%) under the FFC model (last row of
Table 3). The increased proportion of implied systematic variance under FFC compared
to CAPM suggests that the additional factors indeed account for a substantial amount of
the implied total variances of the test assets.

The cross-sectional average of the implied idiosyncratic variance is estimated as the
intercept in the second-stage regressions. Figure 2 plots this average implied idiosyncratic
variance obtained from the FFC four-factor model along with the average implied total
variance over time. The figure shows that the average implied idiosyncratic variance is
substantially lower than the average implied total variance and yet they follow similar
time-series patterns. Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2016) document

similar patterns for realized volatilities.

8Our estimation approach does not guarantee that implied correlations lie between —1 and 1, but in
practice over 90% of our correlation estimates indeed fall in this range. For the summary statistics we
winsorize the estimates at —1 and 1.
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3.2.5 Comparison to Realized Moments

Before proceeding to testing and using our estimates we explore whether the implied mo-
ments (variances and covariances) estimated using our modified Fama-MacBeth approach
correlate with the corresponding historical moments. Note that our implied moments are
forward looking, and thereby we should not expect them to be perfectly correlated with
historical moments. Nevertheless, it is useful to compare the two to evaluate whether they
share similar time-series characteristics.

We first plot the estimated implied factor variances and covariances against their re-
alized counterparts over time at a monthly frequency.” Figure 3 considers the CAPM
one-factor model. The top graph compares the implied market variance against the real-
ized market variance. The two curves match closely, with our estimated implied variance
being slightly higher than the realized variance during most of the sample period. In par-
ticular, the estimated implied variance captures both the mild spikes during 1998-2002
and the sharp increase during the 2008-2009 financial crisis. This suggests that our esti-
mated implied variance shares some time-series properties with historical return volatility.
In the bottom graph, we also compare our daily estimates of the implied variance for the
market factor against the option-implied variance of the S&P 500 index (taken from the
SPX ETF). Both the trend and magnitude of the two curves match closely.

Figure 4 presents similar plots based on the FFC four-factor model. The implied vari-
ances for all four factors are positive at all times as a result of the positive semidefiniteness
constraint. Additionally, the implied market variance is quite similar to the realized vari-
ance. The implied variances of the other three factors also seem to capture the general
trends in the corresponding realized variance despite larger discrepancies. The figure fur-
ther shows that the six pairwise estimated implied covariances fluctuate between positive
and negative numbers. These fluctuations are quite similar to the underlying realized co-
variances, with the market-value pair and the market-momentum pair having the closest
match.

In Figure 5 we plot the estimated implied covariance between two individual stocks,

9Specifically, at the end of each month, we estimate realized factor variances and covariances based on
daily factor returns within the month. For consistency, we construct implied variances and covariances at
monthly frequency by averaging daily estimates from the second-stage modified Fama-MacBeth regressions
within the month.
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Microsoft and P&G, over time. We have chosen these two arbitrarily, and other pairs
behave quite similarly. It can be seen that again the estimated implied covariance closely
matches both the level and the trend of the realized covariance between the two stocks.
We have also calculated the correlations between the estimated moments and the re-
alized ones. In almost all cases these correlations are highly positive and statistically

significant (not reported for brevity).

4 Time Series Tests of the Model

So far we have estimated the parameters of our newly suggested factor model. In this
section we use the estimated model to test its performance in explaining the time-series
variations of implied-volatility of different assets. We use two sets of assets for this purpose.
First are the nine SPDR sector ETF's, all of which have traded options. Second are the 30
DJIA constituent stocks as of April 2016.

4.1 Basic Tests

As a preliminary step we use standard tests to examine the performance of the CAPM
and FFC factor models in explaining the returns (rather than implied variance) of the test
assets. We regress (but do not tabulate) daily returns of each sector ETF on the return
factors over time. This regression yields an average adjusted R-squared of 60% under the
CAPM model and 66% under the FFC model. For the DJIA stocks, the average adjusted
R-squared is 36% under CAPM and 39% under FFC. Thus, these factor models appear to
do a descent job in explaining the time-series variation of our test-assets returns, although
the explanatory power of the multi-factor model is not dramatically higher than that of
the one-factor model.

We now turn to examining the time-series explanatory power of our implied-variance
factor structure. Table 4 shows the adjusted R-squared from regressing the implied variance
of each sector ETF on the estimated implied variances and covariances based on the CAPM
one-factor model (Column (1)) and the FFC four-factor model (Column (2)). Under the
CAPM model, the average adjusted R-squared is 56%. The highest and lowest R-squared
values are 76% and 39% for the financial (XLF) and utility (XLU) sectors, respectively.
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The FFC four-factor model induces a ten-factor model for implied variance consisting of
four implied factor variances and six pairwise implied covariances. The average adjusted
R-squared under the FFC model is 69%. The highest value is 89% for financials (XLF),
indicating that our estimated implied variances and covariances of the FFC four factors
together explain about 89% of the total time-series variation in the option-implied variance
of the financial sector ETF. The lowest R-squared under the FFC model is 43% for utilities
(XLU). Columns (1)—(2) of Table 5 report a similar analysis for DJIA stocks. Here the
average adjusted R-squared is 56% under CAPM, and it rises to 72% under FFC.

Overall, these results suggest that our proposed volatility-implied factor model ex-
plains on average 56%-69% of the time-series variation of ETF implied variance, where
the multi-factor model of FFC does a significantly better job than the one-factor model.
For individual stocks the explanatory power of our model is similar ranging from 56% to
72%. Here again, the explanatory power of the multi-factor model is about 16% higher
compared to the one-factor CAPM model.

4.2 Additional Tests

We next modify the model in various directions to assess its sensitivity to various assump-
tions we have made. First, we ask whether the implied covariances of different return
factors contribute to the explanatory power of our factor structure, or whether they have
just a trivial contribution and thus can be dropped to obtain a more parsimonious model.
Namely, we explore whether the K (K + 1) /2 factor model can be reduced into a model
with just K factors without significantly reducing the time-series explanatory power.

To address this question, for the FFC model we eliminate the implied covariance terms
in (6) and regress the option-implied variance of each sector ETF on the four implied
variances only. The results are reported in Column (3) of Table 4. For most sectors, the
adjusted R-squared obtained without the covariance terms is only slightly lower than that
obtained with the covariance terms. However, for financials (XLF) and technology (XLK),
the adjusted R-squared is substantially reduced after dropping the covariances. We also
repeat the test for the DJIA stocks and see that the average adjusted R-squared drops
from 72% to 60% when the covariance terms are excluded (see Column (3) of Table 5).

These results suggest that the implied covariance terms indeed play an important role in
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explaining the time-series variations of the implied variance of the sector ETFs as well as
individual stocks and hence should not be dropped.

The fundamental reason leading us to estimate the implied moments for the return
factors using our modified Fama-MacBeth approach is that most return factors (such as
SMB and HML) do not have options traded on them. This, however, is not the case for
the market factor, for which a proxy for the implied variance can be directly obtained
from S&P 500 options. To check the robustness of our results, we consider an alternative
approach in which we replace our estimated market variance (obtained in Stage 2) with
the implied variance from S&P 500 options. We repeat all our tests in Columns (1)—(3)
of Tables 4 and 5, replacing our estimated implied market variance by the option-implied
variance of the S&P 500 index obtained from OptionMetrics. The results are reported in
Columns (4)-(6) of Table 4 for the sector ETFs and Columns (4)-(6) of Table 5 for the
DJIA stocks.

When using the S&P 500 implied variance, the average adjusted R-squared for the
sector ETFs is 71% under the CAPM model. Including the additional factors estimated
using our approach increases the adjusted R-squared to 78% under the FFC model. For
the DJIA stocks, the average adjusted R-squared values are 61% and 80% under CAPM
and FFC, respectively. This suggests that the additional implied variances and covariances
estimated using our modified Fama-MacBeth approach do indeed improve the time-series
performance of the option factor model even when market variance itself is not based on
our estimation approach.

As a final test we compare the implied systematic variances of sector ETFs estimated
from our proposed factor model with the option-implied total variances obtained directly
from OptionMetrics. The idea is that each sector ETF consists of a large number of stocks
and thus can be viewed as a well-diversified portfolio with little idiosyncratic risk. Thus,
if one assumes that the implied idiosyncratic variance of each sector ETF is low, then the
implied systematic variance of the sector ETF should be close to the implied total variance.

Figure 6 plots the implied systematic variance of each sector ETF based on the FFC
model against the corresponding implied total variance obtained directly from the ETF
options over time. For all nine sectors, the two curves match in terms of both trend and

magnitude, with systematic variance lying slightly below total variance most of the time.
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This serves as additional supporting evidence for the performance of our option-implied

volatility factor structure.

5 Applications

We next provide three applications for the model. We first show how the model can be
used to construct a forward-looking Markowitz-style mean-variance efficient frontier. We
use this to illustrate that the forward-looking correlation structure may contain useful
information that is not reflected in correlation estimated based on historical data. Next,
we apply the model to predict systematic and idiosyncratic jumps for individual stocks.
Finally, we show how the model can be used to derive an implied volatility slope (smile)
for the different factors (even those that do not have options written on them), and that

this slope is often indicative of future downward jumps.

5.1 Optimal Diversification with Forward-Looking Moments

Consider a Markowitz mean-variance framework in which an investor’s utility increases
with the expected return and decreases with the variance of his portfolio and all investors
agree on the first two moments of the asset returns. Then, the efficient frontier consists
of all portfolios that minimize variance given any level of expected return, u. Formally,
a point on the efficient frontier is an N x 1 column vector of portfolio weights w that
minimize portfolio variance w'X"w subject to w'E (r) = p,and w'e = 1, where X" is an
N x N variance-covariance matrix of returns, E (r) is an N x 1 column vector of expected
returns, and e is an N x 1 vector of ones.

A standard approach to solving for the efficient frontier is to use a historical variance-
covariance matrix of asset returns. Instead, our modified Fama-MacBeth approach yields
a forward-looking implied variance-covariance matrix of all assets, V", and we can use it
to build a forward-looking efficient frontier. Such an efficient frontier can be calculated
at high frequency (e.g., daily or even intra daily) from option prices. This is in contrast
to efficient frontiers based on historical variance-covariance matrices, which do not change
much over short periods of time.

To illustrate, we use the modified Fama-MacBeth approach applied to the FFC model
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to construct an implied variance-covariance matrix associated with the nine SPDR sector
ETFs as of September 2nd, 2008. This is the first trading day of the month during which
Lehman Brothers collapsed, and it seems like a good choice for an illustration of the
differences between forward-looking and historical information. For comparison purposes,
we also compute the historical variance-covariance matrix based on daily equity returns of
the most recent 20 trading days.

Table 6 reports the forward-looking and historical variance-covariance matrices in Pan-
els A and B, respectively. The average value of forward-looking variances for the nine sec-
tor ETFs (diagonal elements of the variance-covariance matrix) is 0.0797, which is slightly
lower than the average historical variance 0.0815. However, the forward-looking covari-
ances (off-diagonal elements) are in general higher than the historical covariances, with
averages of 0.0390 vs. 0.0259. This reflects that different sectors are expected to comove to
a larger extent going forward than realized in the recent past. Such asset comovements are
rather typical during crisis periods. Panels C and D report the forward-looking and histor-
ical correlation matrices of the various sectors. The results show that the forward-looking
cross-sector correlation is on average 0.5736, which is 34.74% higher than the average
historical correlation 0.4275.1°

To construct the efficient frontier of sector ETFs we use the Arbitrage Pricing Theory
(APT) to obtain the vector of expected returns using the FFC factor model:

E(r)=rse+AE(f),

where 7 is the risk-free rate, and E (f) is the expectation of the FFC four factors. Empir-
ically, for E (f) we use the annualized average returns of the FFC factor portfolios over the
period July 1926 (the earliest time the FFC factor returns are available) through August
2008. For the risk-free rate we use the 30-day T-bill rate as of September 2nd, 2008.
Figure 7 depicts the two efficient frontiers derived based on our forward-looking and the

historical variance-covariance matrices, respectively. We keep the sector expected returns

10The forward-looking variances are directly obtained from option-implied volatilities of the sector ETFs,
whereas the forward-looking covariances between sectors are computed in the third stage of our modified
Fama-MacBeth approach. There is intrinsically no guarantee that the resulting forward-looking correlation
coefficients lie between -1 and 1. In fact, there are two pairs of sectors with the estimated forward-looking
correlation slightly greater than 1. This is technically not feasible and could be due to noises in the option
prices or estimation errors. We leave the numbers as they are in our illustration.

19



the same for both efficient frontiers, and hence any discrepancy between the two curves
come from forward-looking versus historical information in the variance-covariance matrix.
As discussed above, the forward-looking information reflects higher correlations between
sectors, which in turn curtails investors’ ability to diversify investment risk. Accordingly,

the forward-looking efficient frontier lies strictly within the bounds of the historical one.

5.2 Predicting Systematic and Idiosyncratic Jumps

Our modified Fama-MacBeth approach allows us to decompose the implied total variance
of an asset into a systematic component (8) and an idiosyncratic component (9), which in-
tuitively should contain forward-looking information on future systematic and idiosyncratic
volatilities, respectively.

The literature has considered two main sources of volatility. First is “diffusion” volatil-
ity, which is typically associated with a continuous process such as a Brownian motion.
Second is “jump” volatility, which is associated with discrete changes in price. There is
a vast literature dedicated to forecasting continuous volatility (see for example Poon and
Granger (2003)), but there is very little in the literature about forecasting jumps. Below we
test the usefulness of our implied systematic and idiosyncratic variances for the prediction
of future systematic and idiosyncratic jumps of stocks.

We consider both upward and downward jumps. For the four FFC factors as well as the
individual stocks, we define a downward (upward) jump as a monthly return below the 5th
percentile (above the 95th percentile) of the corresponding historical return distribution
over our sample period. Based on this definition, the downward jump cutoffs for the
market, size, value and moment factors are -7.26%, -4.17%, -4.27% and -7.58%, and the
upward jump cutoffs for the four factors are 7.13%, 4.92%, 4.79% and 6.79%, respectively.
The downward and upward jump cutoffs for all S&P 500 stocks in our sample pooled
together over our sample period are -15.99% and 18.46%, respectively. We further define
a systematic jump of a stock as a jump in the stock price concurrent with a jump in at
least one of the four factors, and we define an idiosyncratic jump as a jump in the stock
price without a concurrent jump in any of the four factors. We represent the systematic
(idiosyncratic) jumps by a dummy variable J;; . (J;, ;) which equals one if a systematic

(idiosyncratic) jump occurs in stock n at time 7, and zero otherwise.
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To gauge the predictive power of the forward-looking systematic and idiosyncratic vari-
ances on future systematic jumps we estimate the following cross-sectional regressions at

each month 7
s _ §S s s s s € € s
n,7+1 — “0,7 + 55,7’ (Vn,n,‘r - En,n,f) + 65,7’ (Vn,n,f - En,n,T) + controls + ¢n,7+17

where V? and V¢

T - are the implied systematic and idiosyncratic variances of asset n

in month 7, and X7 |, ~ and X7, _ are the realized systematic and idiosyncratic variances
computed from daily equity returns based on the FFC model.!! We subtract the realized
variances from the implied ones because they are highly correlated. We thus use the
variance spreads in order to focus on the predictive power of the implied variances beyond
the historical realized quantities (similar to Bali and Hovakimian (2009)). We then conduct
a t-test on the estimated d3 . and 47 . over time to see if they are significantly different
from zero. We repeat our test for downward jumps, upward jumps as well as downward
and upward jumps mixed together. The results are shown in Table 7.

We start by using the implied total variance spread as the explanatory variable without
decomposing it into the systematic and idiosyncratic parts. As shown in Panel A, the
implied total variance spread does not predict future systematic jumps in the cross section
regardless of whether we use downward, upward or mixed jumps. Controlling for the
CAPM beta, firm size, book-to-market ratio, and lagged stock return does not change the
results.

We then decompose the implied total variance spread into the systematic and idiosyn-
cratic parts and include both components in our cross-sectional regressions. Panel B shows
that the implied systematic variance spread positively predicts systematic jumps in the
cross section, whereas the implied idiosyncratic variance spread does not have a significant
effect. These results remain qualitatively the same for different types of jumps and are not
affected by including controls in the regression.

Next we repeat our test to predict idiosyncratic jumps in the cross section. For each

month 7 we estimate the following cross-sectional regressions

€ __ s€ € s s € € € €
‘]n,7'+1 — Y0,1 + 55,7' (Vn,n,T - ETZ,TL,T) + 55,7 (Vn,n,T - En,nﬂ') + controls + ¢n,7+1'

"' The implied systematic and idiosyncratic variances V,fn’f and V,; ,, » can be estimated on a daily basis.
Here we use the values as of the last day of each month 7. Using average values within each month does
not change our results.
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Table 8 shows the results. The implied total variance spread positively predicts all
types of idiosyncratic jumps in the following month. When decomposing the total variance
spread into a systematic part and an idiosyncratic part, we see that both components have
a strongly positive effect, and the effect from the systematic variance spread indeed has a
larger economic magnitude.

Overall, our results show that the implied systematic variance is positively informative
on future systematic as well as idiosyncratic jumps. In contrast, the implied idiosyncratic

variance is only positively informative on the realization of future idiosyncratic jumps.

5.3 Factor Implied Volatility Slope and Jump Risk

While the Black-Scholes option pricing model assumes that the return volatility of the
underlying asset is fixed across all strike prices, empirical evidence has shown that the
implied volatility exhibits a negative slope (smirk) with out-of-the-money (OTM) put im-
plied volatility being consistently higher than at-the-money (ATM) call implied volatility
for both index options and individual stock options (e.g., Bate (1991, 2003), Pan (2002),
Bollen and Whaley (2004), and Géarleanu, Pedersen and Poteshman (2009)). A commonly
accepted explanation for the negative implied volatility slope is the downside jump risk
(e.g., Bate (1991), Pan (2002), Xing, Zhang, and Zhao (2010), and Yan (2011)). The
idea is that the OTM put options are useful investments tools for investors to express
their concern on potential downward jumps (disasters) of the underlying assets. When
the downward jump risk is high, the prices of OTM put options become more expensive,
pushing up OTM put implied volatilities.

In this section, we apply our modified Fama-MacBeth approach to estimate the implied
volatility slopes of the factor portfolios base on the FFC model and examine how these
estimated implied volatility slopes can inform us on the occurrence of disasters of the
corresponding factors. This is apparently interesting for the size, value and momentum
factors for which no traded options are available. This is also interesting for the market
factor, even through the S&P 500 index is actively traded in the option market as a proxy
for the market portfolio. An important difference between equity prices and option prices
is in terms of how individual prices aggregate into the market price. For equity prices,

this aggregation is mechanical, and so individual stock prices do not provide additional
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information on the market beyond what is reflected in the price of the market index. This
is, however, not the case for option prices. There is no mechanical aggregation of individual
stock option prices into the market option price. As a result, there might exist additional
information on the market contained in individual option prices not reflected in the option
prices of the market index. Our estimation allows us to explore this additional information.

Following Xing, Zhang, and Zhao (2010), we define the implied volatility slope as the
difference between implied volatilities of ATM call and OTM put options with one month
to maturity, i.e.,

SlOpC _ VATMC . VOTMP.

The implied volatilities of OTM put options reflect concerns related to downward jumps,
whereas ATM call options are used as a benchmark since they are the most liquid. Below

we estimate the implied volatility slope for each of the FFC four factors.

5.3.1 Implied Volatility Slope of the Market Factor

We start with the market factor. The ATM call implied volatility of the market portfolio
can be estimated by our modified Fama MacBeth approach using ATM call implied volatil-
ities of all test assets. To estimate the OTM put implied volatility of the market, we repeat
the modified Fama-MacBeth approach with OTM put implied volatilities of all test assets.
In particular, we choose a delta value of -0.2 for OTM put options, corresponding to a
strike price that is roughly 5% lower than the stock price assuming zero risk-free rate and
implied volatility of 0.22 (a typical value for the implied volatility). The idea is that if the
values of all assets in the market lose about 5% within one month, then the market overall
should also lose 5%, representing a downward jump of the market factor. As a result,
estimating the market OTM implied volatility using individual stock implied volatilities at
a delta of -0.2 is appropriate.

Figure 8 shows daily estimates of the market implied volatility slope exhibiting wide
fluctuations over time. Table 9 reports summary statistics for the estimated market
implied-volatility slope. The mean (median) is -0.0109 (-0.0102), consistent with the neg-
ative slope documented in the literature, known as the volatility smile. The standard

deviation of the estimated slope is 0.0239.
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Given the discussion in the previous section we next test whether our estimated market
implied-volatility slope can predict future downward jumps of the market factor portfolio.
As in Section 5.2, we define a downward jump dummy as being equal to one if the monthly
return of the market factor portfolio is lower than -7.26% (the 5th percentile of the historical
return distribution over our sample period) and zero otherwise. We regress this dummy on
the market implied volatility slope estimated from the previous month. Since this slope can
be estimated on a daily basis, for robustness we use two ways to measure the monthly slope.
First is to use the estimated slope as of the last trading day of each month, and second is to
use the average estimated slope within the month. As reported in Table 9, the regression
coefficient is negative and statistically significant based on both month-end and month-
average slopes. Thus a more negative market implied-volatility slope is associated with
a higher likelihood of a market downward jump. In particular, a one standard deviation
increase in the month-end slope is associated with roughly 4.5% drop in the probability of
a future downward jump in the market.

For comparison, we also compute the implied volatility slope of the S&P 500 index,
which is directly available from S&P 500 index options. As reported in Table 9, the mean,
median, and standard deviation of the slope are -0.0473, -0.0436, and 0.0197, respectively.
Unlike the previous results, when we regress the market downward jump dummy on the
lagged S&P 500 implied volatility slope we do not find a significant coefficient. This
suggests that our estimated market implied volatility slope performs better than the S&P
500 implied volatility slope in predicting future market disasters. Apparently, individual
stock option prices can be aggregated to generate market-wide information, which is not

reflected in S&P 500 index options.

5.3.2 Implied Volatility Slope of the Size, Value and Momentum Factors

In the case of the market factor, one can find close proxies such as the S&P500 for which
options are actively traded, and so one readily calculate the implied volatility. By contrast,
for the size, value and momentum factors, such options are not in existence. Our approach
facilitates the calculation of the implied volatility slope in these cases as well as for other
factor models. Indeed, the ATM call implied volatility can be estimated in the same way

as for the market factor by applying the modified Fama-MacBeth procedure to ATM call
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implied volatilities of the test assets. The estimation of the OTM put implied volatility is
trickier, and we discuss it below. We use the size factor (SMB) to illustrate the main idea,
but the estimation for the value and momentum factors is parallel.

The size factor is a long-short portfolio with long positions in small firms and short
positions in big firms. To estimate the OTM implied volatility of the size factor portfolio,
we cannot use implied volatilities of all test assets at the same delta of -0.2 as we did
with the market factor since small and big firms typically have inverse correlation patterns
with the SMB factor. This is in contrast to the market factor where nearly all firms have
positive betas. To deal with this issue we apply the modified Fama-MacBeth approach
to OTM put implied volatilities of all small firms at a delta of -0.2 (corresponding to a
monthly return of around -5%) and OTM call implied volatilities of all big firms at a delta
of 0.2 (corresponding to a monthly return of around 5%). The idea is that if all small firms
lose 5% and all big firms earn 5% at the same time, then overall the SMB portfolio would
experience a downward jump. To apply this procedure we need to differentiate between
“small” and “big” firms. We do this based on the stock return correlation with the SMB
factor. Namely, we define a firm as “small” if its SMB beta is positive and define it as
“big” otherwise.

Figure 8 plots daily estimates of the implied volatility slope for the size, value and
momentum factors, and Table 9 reports corresponding summary statistics. Also reported
in the table are results from regressing downward jump dummies of the three factors on their
corresponding estimated implied volatility slopes over time. The regression coefficient for
the momentum factor is significantly negative based on both month-end and month-average
slopes, indicating that our estimated implied volatility slope predicts future downward
jumps of the momentum factor. A one standard deviation increase in the month-end
slope is associated with roughly 7.7% drop in the probability of a future disaster in the
momentum factor. In addition, the regression coefficient is also significantly negative for
the value factor based on the month-average slope. A one standard deviation increase in
the slope is associated with roughly 4.4% drop in the probability of a future disaster in the
value factor. The results for the size factor are also negative as expected, but they are not

statistically significant.

25



6 Conclusion

To be completed.

Appendix

Let B be the matrix consisting of the regressors in (6). That is, B is the matrix of all
products of factor loading estimators and a constant. In this matrix, each row represents
an asset, and columns represent different combinations of the factor loadings as well as a

constant. Thisisan N x <w + 1) matrix with a generic form (we drop time subscripts

for brevity):

5%,1 51 1512 e BagbBig 511{ 1

B2 52 1522 o BogBag e 521{ 1
B_| | o o . :

/Bn,l ﬁn,lﬁn,Z o Bn,kﬁn,l U Bn,K 1

.9 L . ~2

Bn1 BniBnz 0 BypBni 0 Byk 1

Let V be a symmetric K x K matrix and let A be a constant. Then, we can identify
with (V, ) a column vector py ) of dimension (K(K+1) + 1) x 1 by simply stacking the
rows of the upper right triangle of V and then adding A as follows

/
Pva= (Vvl,lv ‘/'172’ ceey Vk,la ey VK,K’ )‘) .
K(K+1)+1

Let V denote the set of K x K positive semi-definite matrices. Given (V,\) € R

K(K+1)+1

define the least-squares loss function L : R — R as

L(V,)) = ||Diag (V") — Bpy, ||,

where Diag (V") is the N x 1 vector consisting of the diagonal elements of V" representing
implied variances of the test assets, and ||-|| denotes the Euclidean norm in RY.
Then, the constrained least squares optimization problem corresponding to the regres-

sion model in (6) is

L 1
v L V- (10)
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Theorem 1 Suppose that B'B is of full rank. Then, there exists a unique solution to
Problem (10).

We first prove the following two lemmas.

( )
Lemma 1 V X R is a conver and closed (in the Euclidean topology) subset of RK L

K(K+1)
Proof of Lemma 1: It is sufficient to show that V is convex and closed in R T

To see the convexity of V, consider V1, V2 € V and a nonzero K x 1 vector x. Let

a €[0,1] and let V* = aV! + (1 — a) V2. Then,
X' V*x = ax'Vx + (1 - a) x'V?x > 0,

where the inequality follows from positive semidefiniteness of V! and V2.

To see the closedness of V, let {VZ} be a sequence of matrices in V converging to a
matrix V* in the Euclidean topology. Then, for each ¢ and for any nonzero K x 1 vector
x we have x'Vix > 0. Since Euclidean convergence implies convergence of each element of

the matrices we have x’V*x > 0, as needed.

Lemma 2 Let B be an N X (W + 1) matriz such that B'B is of full rank. Then,

K(K+1)

there exists an € > 0 such that |Bq|| > ¢ for allq € R 2 1 with ||q|| = 1.

Proof of Lemma 2: Suppose this is not the case, then there exists a sequence {q’} €
K(K+1) |y ; ) i . K(K+1) 4

2 such that Hq H =1 for all 7 and HBq || — 0. Since the set of allq € R™ 2
such that ||q|| = 1 is compact in the Euclidean norm, there is a convergent subsequence

{q'} converging to g* such that |[q*|| = 1. However,
IBq*|| = lim ||Bq|| = lim ||[Bq'[| =0,

where the first equality follows by the continuity of the Euclidean norm and matrix mul-
tiplication, and the second and third since HBqu is converging to zero. But, [|[Bq*|| =0
if and only if each of the elements of Bq* is zero. It follows that (B'B)q* is a vector of

. K(K+1) . . .
zeros in R~ 2 1. But, since ||q*|| = 1, we have that g* is not a vector of zeros. This

contradicts the assumption that B'B is of full rank.
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. . . K(K+1)

Proof of Theorem 1: L is strictly convex in R™ 2
L o KU
of minimization is a convex set in R™ 2

+1

, and by Lemma 1 the domain

. Hence, if a solution to (10) exists, it must
be unique. Therefore, we are left to prove that a solution exists.
Let

L=_inf L(V,\).
VeV, eR

Then, there is a sequence {L’} converging to L, and a sequence of {Vi,)\i} , where V? € V,
such that L' = L (Vi7 )\i) . Let {pvi, )\i} denote the corresponding sequence of vectors in
K(K+1)

R~z  t1. To prove existence of a solution of (10), it is sufficient to show that {pvi, )\i}

has a bounded subsequence in the Euclidean topology. Indeed, if {pvij7 )\ij} is such a
subsequence, then it has a convergent subsequence to a limit, which we denote by p*. Let
(V*,X*) be the corresponding matrix and constant. Since V is closed (by Lemma 1), we
have that V* € V, and by the continuity of L, L = L (V*,\*). Therefore, (V*, \*) is a
solution to (10).

Thus, it remains to show that {pvi )\i} has at least one bounded subsequence. Suppose

to the contrary that all subsequences {pvij )\ij} are unbounded, i.e., Hpvij \ij || — oo

L (Vis, \) HDmg (V") = Bpyi, i,

P

Consider the ratio

[Py

Diag (V")  BPyi; i

v v
Note that

Pyij 2\
. = 1.

Py

By Lemma 2, there is an ¢ > 0 such that for all ;,

> €.
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It follows that

Diag (V") BPyi; \i; Bpyi; yis Diag (V")
Hpvij A Hpvij A% Hpvij A% Hpvij A
Diag (V"
. g(V")
[P
. Diag(V"™) . . .
When j — oo, 7= converges to 0 since ||py,i; yi;|| — +00. Thus, there exists a jo
‘pvij7kij
sufficiently large such that for all j > jg,
Diag (V" €
g (VI - =
[P
We conclude that for j > jo,
L (VZ7 ’ )‘ij) 3
S >
2
[Py o

— 400, this implies that L (Vij, )\ij) — 400. However, this contradicts

Since "pVij7kij

that L (Vij, )\ij) — L < +oco. Thus, {pvi, /\i} has at least one bounded subsequence. This

completes the proof.
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Figure 1: Option-Implied Variances of Stocks and S&P 500 Index
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Figure 3: Second-Stage Estimation Based on CAPM Model
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Figure 4: Second-Stage Estimation Based on FFC Model
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Figure 4: Second-Stage Estimation Based on FFC Model (Continued)
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Figure 6: Implied Systematic vs. Total Variances of SPDR Sector ETFs Based on
FFC Model
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Figure 8: Implied Volatility Slope of FFC Factor Portfolios
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Table 1: Summary Statistics of Option-Implied Variances

This table reports summary statistics of option-implied return variances of all S&P 500 constituent stocks. Each
year, we compute the average of daily option-implied variances for each stock. The table then reports the cross-
sectional mean, median, standard deviation, minimum and maximum of this average option-implied variance by the

year.

Year  Number of Stocks Mean Median S.D. Min Max
1996 685 0.1320  0.0871 0.1181  0.0237  0.7841
1997 722 0.1503  0.0989  0.1858 0.0236  3.0220
1998 745 0.2034  0.1445 0.2817 0.0285  6.1896
1999 737 0.2343  0.1777  0.1836  0.0361 1.9525
2000 708 0.3386 0.2441 0.2568  0.0202 1.5579
2001 675 0.2951 0.1922 0.2721  0.0418 1.7791
2002 694 0.2778 0.1791 0.2663  0.0380  1.6042
2003 692 0.1559  0.1085 0.1432  0.0245  1.4683
2004 698 0.1064  0.0740  0.1056 0.0144 1.1918
2005 695 0.0932 0.0674  0.0926  0.0120 1.1272
2006 695 0.0925 0.0709  0.0724 0.0111 0.6782
2007 685 0.1059  0.0885 0.0698  0.0019  0.6004
2008 658 0.3619  0.2930  0.2761 0.0318 2.4714
2009 644 0.3364  0.2465 0.2997  0.0008 2.2244
2010 640 0.1347  0.1062 0.1229 0.0072  1.5028
2011 629 0.1472 0.1206  0.1336  0.0049  1.4820
2012 623 0.1148  0.0805 0.1530 0.0044  2.6541
2013 618 0.0809  0.0579  0.0834 0.0118 1.2612
2014 610 0.0755 0.0535 0.0831  0.0040 1.3157
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Table 2: Summary Statistics of First-Stage Factor Loadings

This table reports summary statistics of factor loadings estimated in the first stage of the modified Fama-
MacBeth procedure as well as all the relevant cross products under the CAPM one-factor model (Panel A) and the
FFC four-factor model (Panel B). For each stock, we compute the average of each factor loading over time. The

table reports the cross-sectional mean, median, standard deviation, minimum and maximum of these averages.

Panel A: CAPM Model
Mean Median S.D. Min Max
Brktry  1.0292 0.9926 0.3590 -0.0768  2.3396
Bgnk”f 1.3074 1.0977  0.9065 0.0155  5.8187

Panel B: FFC Model

Mean Median S.D. Min Max
/Bmktrf 1.0764 1.0748 0.2543  0.0265 2.0662
Bomb 0.1918 0.1670 0.3445  -0.8199 1.7685
Bhmi 0.1729 0.2529 0.6120 -3.6693 2.7848
Bumd -0.0836  -0.0688  0.2408 -1.4730 1.1197
iqk”f 1.3186 1.2513 0.5980  0.0770 4.2698
fmb 0.3189 0.1907 0.3713  0.0098 3.1955
,B%Lml 0.8052 0.4948 1.0645 0.0144 14.4982
2

wmd 0.3528 0.2049  0.3873  0.0078 3.5822
2Bktrf Bsmp 0.5580 0.3755  0.9056 -1.4827  5.2218
2B rmktr fBhmi 0.5546 0.5857 1.3755  -4.4739  10.2483
2BmktrfBuma  -0.2253  -0.1750  0.6025  -3.9971 3.0061

28 b Bhmi 0.2019  0.1168  0.6057 -2.8109  5.0804
28mpBuma  -0.0696  -0.0222  0.3001 -2.7415  0.9653
2B1miBumd  -0.0043  -0.0274  0.6592 -9.2461  6.4819
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Table 3: Second-Stage Modified Fama-MacBeth Estimation

This table reports time averages of the estimated implied variances and covariance of the factors from the
second-stage modified Fama-MacBeth procedure based on the CAPM one-factor model (Column (1)) and the FFC
four-factor model (Column (2)). The Newey-West standard errors with 12 lags are reported in the parentheses below
the corresponding estimates. Asterisks denote statistical significance at the 1% (¥***), 5% (**) and 10% (*) levels.
The table also shows the average ratio of implied systematic variance over implied total variance of the test assets

based on each model.

CAPM FFC
b
mGtrf,mktrf 0.0778 0.0440
(0.0030)%*%*  (0.0024)***
smb,smb 0.0478
(0.0021)***
vhfml hml 0.0218
(0.0010)%**
umd,umd 0.0713
(0.0037)%**
f
mGtrf,smb 0.0152
(0.0008)**
f
vmktrf,hml -0.0100
(0.0011)%*
f
mGtrf,umd -0.0052
(0.0019) %%
V.s'mb,hnLl -0.0041
(0.0008)**
Vsmb,umd -0.0038
(0.[)(]15)***
Vhfml umd -0.0033
(0.0010) %%
A 0.0740 0.0218
(0.0034)***  (0.0010)***
VeV 0.5995 0.8637
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Table 4: Time Series Adjusted R-Squared for SPDR Sector ETFs

This table reports the adjusted R-squared from regressing the option-implied variances of the nine SPDR sector
ETFs on the estimated implied variances and covariances of the factors over time based on the CAPM one-factor
model (Column (1)) and the FFC four-factor model (Column (2)). Columns (3) shows results from regressing
the option-implied variances of the sector ETFs on the implied variances of the FFC four factors only. Columns
(4)—(6) repeat all tests in Columns (1)—(3), replacing the estimated implied variance of the market factor by the

option-implied variance of the S&P 500 index.

Using Estimated Implied Mkt Var Using Implied Var of S&P 500
CAPM FFC CAPM FFC
1 ) €)) 4) () (6)

XLB 0.5531 0.6692 0.6605 0.7122 0.7392  0.7311
XLV 0.4142 0.5125 0.4902 0.6168 0.6269 0.6153
XLP 0.6245 0.7123 0.6834 0.7539 0.8454  0.7770
XLY 0.7216 0.8342 0.8032 0.9456 0.9515  0.9466
XLE 0.5422 0.7688 0.7415 0.8110 0.8297  0.8191
XLF 0.7559 0.8925 0.7560 0.7387 0.8616  0.7635
XLI 0.6180 0.7676 0.7194 0.8996 0.9089  0.9038
XLK 0.3881 0.6414 0.4682 0.4160 0.7231 0.5149
XLU 0.3865 0.4260 0.4029 0.5231 0.5565  0.5272
Average  0.5560 0.6916 0.6362 0.7130 0.7825  0.7332
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Table 5: Time Series Adjusted R-Squared for DJIA Stocks

This table reports the adjusted R-squared from regressing the option-implied variances of the 30 DJTA component

stocks as of April 2016 on the estimated implied variances and covariances of the factors over time based on the

CAPM one-factor model (Column (1)) and the FFC four-factor model (Column (2)).

from regressing the option-implied variances of the stocks on the implied variances of the FFC four factors only.

Columns (4)—(6) repeat all tests in Columns (1)—(3), replacing the estimated implied variance of the market factor

by the option-implied variance of the S&P 500 index.

Columns (3) shows results

Using Estimated Implied Mkt Var

Using Implied Var of S&P 500

CAPM FFC CAPM FFC
@) 2) €) (4) ©) (6)
AXP 0.7607 0.8888 0.8095 0.7881 0.8804  0.8253
AAPL 0.2398 0.6681 0.3305 0.1867 0.6824  0.3152
BA 0.6348 0.7670 0.7119 0.7954 0.8910  0.8362
CAT 0.6517 0.7625 0.7372 0.8093 0.8632  0.8494
CHV 0.5784 0.7526 0.7463 0.8325 0.8491 0.8358
CSCO 0.2552 0.6988 0.3919 0.2263 0.7390  0.4102
KO 0.4932 0.6614 0.4874 0.5369 0.8120  0.5813
DIS 0.6239 0.7464 0.6582 0.7722 0.8703  0.7920
DD 0.6908 0.7792 0.7474 0.8161 0.8894  0.8567
XOM 0.5707 0.6928 0.6724 0.8228 0.8532  0.8242
GE 0.6613 0.8074 0.6788 0.6577 0.8231 0.7291
GS 0.6899 0.8490 0.8377 0.7256 0.7765  0.7570
HD 0.6763 0.7564 0.6715 0.7246 0.8660  0.7581
INTC 0.4237 0.5962 0.5115 0.2708 0.6363  0.5225
IBM 0.4442 0.7011 0.4762 0.4548 0.8083  0.5425
JPM 0.7982 0.8220 0.7049 0.7272 0.8414  0.7614
JNJ 0.3735 0.5277 0.3443 0.4276 0.6872  0.4593
MCD 0.4725 0.5580 0.3935 0.4622 0.6766  0.4760
MRK 0.6520 0.7454 0.6944 0.7343 0.8179  0.7569
MSFT 0.4834 0.7201 0.5314 0.4853 0.8158  0.6004
JPM 0.6050 0.8130 0.6448 0.6176 0.7968  0.6946
NKE 0.4587 0.6633 0.4963 0.4084 0.7122  0.5080
PFE 0.4708 0.5533 0.4498 0.5391 0.7060  0.5671
PG 0.4566 0.6641 0.4891 0.4733 0.7723  0.5463
MMM 0.6152 0.7952 0.7401 0.7444 0.8927  0.8126
STA 0.6454 0.7549 0.7048 0.7206 0.7784  0.7376
UTX 0.6085 0.7318 0.6510 0.7388 0.8515  0.7626
VZ 0.5327 0.5837 0.4624 0.5767 0.7174  0.5857
\% 0.7261 0.7883 0.7535 0.7628 0.8148  0.7804
WMT 0.3919 0.6875 0.4173 0.3618 0.7679  0.4456
Average  0.5562 0.7179 0.5982 0.6067 0.7963  0.6643
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Table 6: Forward-Look vs. Historical Covariances of SPDR Sector ETFs

This table reports the forward-looking covariance (Panel A), historical covariance (Panel B), forward-looking
correlation (Panel C) and historical correlation (Panel D) matrices of the nine SPDR sector ETFs estimated as of

September 2, 2008.

Panel A: Forward-Looking Covariance

XLB XLV XLP XLY XLE XLF XLI XLK XLU
XLB 0.0796 0.0222 0.0164 0.0193  0.0855 0.0043  0.0337 0.0433  0.0318
XLV 0.0222 0.0314 0.0169 0.0335  0.0240 0.0546  0.0261  0.0275 0.0173
XLP 0.0164 0.0169 0.0275 0.0360  0.0239 0.0681  0.0269 0.0259  0.0206
XLY 0.0193 0.0335 0.0360 0.0853  0.0016 0.1497  0.0509 0.0496 0.0226
XLE 0.0855 0.0240 0.0239 0.0016 0.1328 -0.0010 0.0421 0.0477 0.0726
XLF  0.0043 0.0546 0.0681 0.1497 -0.0010 0.2064 0.0866 0.0740 0.0505
XLI 0.0337  0.0261 0.0269 0.0509  0.0421 0.0866  0.0643 0.0420 0.0296
XLK 0.0433 0.0275 0.0259 0.0496  0.0477 0.0740  0.0420 0.0518  0.0286
XLU 0.0318 0.0173 0.0206 0.0226  0.0726 0.0505  0.0296 0.0286  0.0386

Panel B: Historical Covariance

XLB XLV XLP XLY XLE XLF XLI XLK XLU
XLB  0.0366 0.0103 0.0039 0.0053 0.0483 0.0165 0.0135 0.0147  0.0120
XLV  0.0103 0.0327 0.0279 0.0510 -0.0066 0.0632 0.0401 0.0261  0.0093
XLP  0.0039 0.0279 0.0358 0.0530 -0.0257 0.0681 0.0411 0.0278  0.0043
XLY  0.0053 0.0510 0.0530 0.1219  -0.0454 0.1448 0.0758 0.0456  0.0154
XLE 0.0483 -0.0066 -0.0257 -0.0454 0.1389  -0.0457 -0.0119 -0.0060 0.0242
XLF  0.0165 0.0632 0.0681 0.1448  -0.0457 0.2501 0.1007 0.0566  0.0176
XLI 0.0135 0.0401 0.0411 0.0758 -0.0119 0.1007 0.0680 0.0363  0.0120
XLK 0.0147 0.0261 0.0278 0.0456  -0.0060 0.0566 0.0363 0.0338  0.0096
XLU 0.0120 0.0093 0.0043 0.0154 0.0242 0.0176 0.0120 0.0096 0.0160

Panel C: Forward-Looking Correlation

XLB XLV XLP XLY XLE XLF XLI XLK XLU
XLB  1.0000 0.4433 0.3498 0.2340  0.8321 0.0338 0.4715 0.6751  0.5742
XLV 0.4433 1.0000 0.5764 0.6470  0.3723 0.6779  0.5802 0.6812  0.4961
XLP 0.3498 0.5764 1.0000 0.7441 0.3964 0.9045 0.6395 0.6877 0.6313
XLY 0.2340 0.6470 0.7441 1.0000  0.0155 1.1280 0.6872  0.7467  0.3944
XLE 0.8321 0.3723 0.3964 0.0155 1.0000 -0.0060  0.4550 0.5750 1.0131
XLF  0.0338 0.6779 0.9045 1.1280 -0.0060 1.0000 0.7514 0.7157  0.5657
XLI 0.4715 0.5802 0.6395 0.6872  0.4550 0.7514  1.0000 0.7273  0.5944
XLK 0.6751 0.6812 0.6877 0.7467  0.5750 0.7157  0.7273  1.0000 0.6394
XLU 0.5742 0.4961 0.6313 0.3944 1.0131 0.5657  0.5944  0.6394  1.0000

Panel D: Historical Correlation

XLB XLV XLP XLY XLE XLF XLI XLK XLU
XLB  1.0000 0.2988 0.1087 0.0788 0.6778 0.1725 0.2713 0.4169  0.4944
XLV 0.2988 1.0000 0.8152 0.8078  -0.0974 0.6987 0.8513 0.7870  0.4060
XLP  0.1087 0.8152 1.0000 0.8031  -0.3648 0.7200 0.8340 0.7993  0.1777
XLY 0.0788 0.8078 0.8031 1.0000 -0.3491 0.8292 0.8322 0.7112  0.3495
XLE 0.6778 -0.0974 -0.3648 -0.3491 1.0000 -0.2451 -0.1222 -0.0883 0.5139
XLF  0.1725 0.6987 0.7200 0.8292  -0.2451 1.0000 0.7721 0.6158  0.2774
XLI 0.2713 0.8513 0.8340 0.8322  -0.1222 0.7721 1.0000 0.7574  0.3649
XLK  0.4169 0.7870 0.7993 0.7112  -0.0883 0.6158 0.7574 1.0000 0.4142
XLU  0.4944 0.4060 0.1777 0.3495 0.5139 0.2774 0.3649 0.4142  1.0000
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Table 7: Predicting Systematic Jump

This table reports test results of predicting systematic jumps using the implied total variance spread (Panel
A) and using implied systematic and idiosyncratic variance spreads separately (Panel B). In both panels, we look
at downward jumps (Columns (1)-(2)), upward jumps (Columns (3)-(4)) as well as downward and upward jumps
mixed together (Columns (5)—(6)), where the jumps are defined based on monthly equity returns and denoted by
dummy variables that equal 1 when a jump occurs and 0 otherwise. We perform estimation monthly and report
time averages of our estimates in the table. Columns (1), (3) and (5) do not include control variables, and Columns
(2), (4) and (6) control for the CAPM beta, firm size, book-to-market ratio, and lagged return. The Newey-West
standard errors with 5 lags are reported in the parentheses below the corresponding estimates. Asterisks denote

statistical significance at the 1% (***), 5% (**) and 10% (*) levels.

Panel A: Using Total Variance Spread
Downward Jump Upward Jump

Mixed Jump

@) ) () 4) ©) (6)
Vaon— X5, -0.0076 -0.0016 0.0032 0.0035 -0.0074 0.0022
(0.0054) (0.0023) (0.0035) (0.0028) (0.0068) (0.0042)
B 0.0201 0.0208 0.0550
(0.0056)*** (0.0053)*** (0.0115)%**
Ln(Size) -0.0028 -0.0052 -0.0096
(0.0010)*** (0.0015)*** (0.0022)***
Ln(B/M) 0.0019 -0.0008 0.0006
(0.0012) (0.0010) (0.0012)
LagRet -0.0080 -0.0091 -0.0249
(0.0047)* (0.0055) (0.0102)**
Panel B: Using Systematic and Idiosyncratic Variance Spreads
Downward Jump Upward Jump Mixed Jump
(1) 2) ) 4) ©) (6)
Van —23n 0.0669 0.0305 0.1031 0.0739 0.2402 0.1491
(0.0231)%%** (0.0140)** (0.0227)***  (0.0192)*** (0.0439)***  (0.0278)***
Vin —Zon -0.0061 -0.0019 0.0002 0.0030 -0.0074 0.0022
(0.0042) (0.0024) (0.0021) (0.0025) (0.0050) (0.0038)
B8 0.0187 0.0124 0.0402
(0.0059)*** (0.0039)*** (0.0094)***
Ln(Size) -0.0023 -0.0041 -0.0075
(0.0009)** (0.0013)*** (0.0019)***
Ln(B/M) 0.0018 -0.0005 0.0008
(0.0011) (0.0010) (0.0012)
LagRet -0.0081 -0.0094 -0.0252
(0.0046)* (0.0053)* (0.0099)**
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Table 8: Predicting Idiosyncratic Jump

This table reports test results of predicting idiosyncratic jumps using the implied total variance spread (Panel
A) and using implied systematic and idiosyncratic variance spreads separately (Panel B). In both panels, we look
at downward jumps (Columns (1)-(2)), upward jumps (Columns (3)-(4)) as well as downward and upward jumps
mixed together (Columns (5)—(6)), where the jumps are defined based on monthly equity returns and denoted by
dummy variables that equal 1 when a jump occurs and 0 otherwise. We perform estimation monthly and report
time averages of our estimates in the table. Columns (1), (3) and (5) do not include control variables, and Columns
(2), (4) and (6) control for the CAPM beta, firm size, book-to-market ratio, and lagged return. The Newey-West
standard errors with 5 lags are reported in the parentheses below the corresponding estimates. Asterisks denote

statistical significance at the 1% (***), 5% (**) and 10% (*) levels.

Panel A: Using Total Variance

Downward Jump

Upward Jump

Mixed Jump

(1) 2 () 4) €) (6)
Vo — X0 0.0218 0.0223 0.0310 0.0372 0.0558 0.0592
(0.0097)**  (0.0079)*** (0.0097)***  (0.0098)*** (0.0159)***  (0.0145)***
B 0.0328 0.0296 0.0484
(0.0044)*** (0.0041)*** (0.0052)***
Ln(Size) -0.0055 -0.0095 -0.0133
(0.0006)*** (0.0010)*** (0.0011)***
Ln(B/M) -0.0011 -0.0007 -0.0013
(0.0010) (0.0007) (0.0013)
LagRet -0.0130 -0.0059 -0.0111
(0.0045)*** (0.0056) (0.0065)*
Panel B: Using Systematic and Idiosyncratic Variances
Downward Jump Upward Jump Mixed Jump
@) 2) ) 4) ©) (6)
Van —23n 0.3118 0.2222 0.3469 0.2393 0.5886 0.4168
(0.0367)***  (0.0363)*** (0.0335)***  (0.0323)*** (0.0546)***  (0.0519)***
Vin —Zon 0.0133 0.0198 0.0190 0.0325 0.0339 0.0511
(0.0075)* (0.0075)*** (0.0076)** (0.0092)*** (0.0122)***  (0.0137)***
154 0.0195 0.0147 0.0250
(0.0036)*** (0.0034)*** (0.0044)***
Ln(Size) -0.0035 -0.0073 -0.0097
(0.0006)*** (0.0007)*** (0.0009)***
Ln(B/M) -0.0009 -0.0010 -0.0014
(0.0009) (0.0007) (0.0012)
LagRet -0.0119 -0.0051 -0.0093
(0.0039)*** (0.0052) (0.0055)*
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Table 9: Predicting Factor Downward Jumps by Implied Volatility Slope

This table reports summary statistics of the estimated implied volatility slopes of the FFC four factors. For each
factor, we also report the coefficient from regressing a downward jump dummy on the estimated implied volatility
slope available at the beginning of the month. The downward-jump dummy is set to one in months during which
the factor return falls below the 5th percentile over the sample period and zero otherwise. For comparison purposes,
we also report statistics for the market factor by replacing our estimated implied variance for the market by the
option-implied variance of the S&P 500 index. Newey-West standard errors with 5 lags are displayed in parentheses
below the corresponding estimates. Asterisks denote statistical significance at the 1% (***), 5% (**) and 10% (*)

levels.

S&P 500 mktrf smb hml umd
Mean -0.0473 -0.0109 0.0011 0.0015 0.0028
Median -0.0436 -0.0102 -0.0022 0.0042 -0.0039
S.D. 0.0197 0.0239 0.0555 0.0273 0.0517
Min -0.1409 -0.1800 -0.5557 -0.1791 -0.4025
Max -0.0103 0.1252 0.3990 0.2025 0.3146
Predicting Downward Jump -1.0356 -1.9021 -0.1485 -0.5947 -1.4906
(Using month-end IV slope)  (0.8763)  (0.7451)**  (0.1436) (0.5564) (0.6705)**
Predicting Downward Jump -1.2052 -1.9804 -0.1496 -1.6001 -1.0406

(Using month-avg IV slope)  (1.0149) (1.2010)*  (0.2049)  (0.7706)**  (0.6201)*
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