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It is long recognized that the variance of the aggregate market return is stochastic, and that

investors are ready to pay a premium to hedge against changes in variance—the variance risk

premium.1 Market index variance is is affected by individual variances and correlations between

individual stocks, and the correlations are also time-varying. Moreover, by pricing index options

using relatively higher expected variance than for individual options, investors are willing to

pay a correlation risk premium to hedge against changes in correlation. 2 Empirically, both—

aggregate index variance and average correlation—are co-moving negatively with the market

return, that is, they tend to increase during bear markets, and, hence, should contribute to

the equity risk premium.3 While the relation between the variance risk premium and the

equity risk premium has been studied extensively (see, among others, Bollerslev, Tauchen, and

Zhou (2009), Carr and Wu (2016), and Bandi and Renò (2016)), the theoretical and empirical

evidence for the correlation risk premium is scarce, with the theoretical model by Buraschi,

Trojani, and Vedolin (2014) as a notable exception.

The focus of this paper is on correlation risk. In particular, we address the following ques-

tions: Are correlation and variance risks jointly priced in a theoretical model? Does the corre-

lation risk premium provide non-redundant information, relative to the variance risk premium,

in determining the market risk premium? Can the variance and correlation risk premiums

predict the market excess return, especially out-of-sample? What is the economics behind the

correlation risk premium?

We make four major contributions. First, using as motivation a general equilibrium model

with stochastic variance and correlation, we decompose the equity risk premium into three com-

ponents: (i) the market variance risk premium; (ii) the stock market correlation risk premium;

and (iii) the standard risk premium due to consumption volatility. This representation gives us

a theoretically founded prediction equation for the market excess return.

1See Carr and Wu (2009) and Bollerslev, Tauchen, and Zhou (2009) for evidence on the variance risk pre-
mium and Todorov (2009), Bollerslev and Todorov (2011) and Todorov and Tauchen (2011) for evidence on its
composition.

2See Driessen, Maenhout, and Vilkov (2009), Buraschi, Kosowski, and Trojani (2014), Mueller, Stathopoulos,
and Vedolin (2017), and Krishnan, Petkova, and Ritchken (2009).

3Christie (1982), Roll (1988), Bekaert and Wu (2000) and Longin and Solnik (2001) document a negative
correlation between the market return and index variance (equal to −0.77 in our sample). For our sample
period, we document a correlation of −0.61 between the market return and expected correlation.
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Second, we propose a novel methodology for estimating the prediction equation parameters,

where instead of running a standard regression of excess returns for a given horizon on past

variance and correlation risk premiums, we estimate the variance and correlation betas directly

from the market dynamics equation by regressing high-frequency returns on high-frequency

shocks to variance and correlations. Moreover, we show how one can estimate these betas (under

the physical measure) combining realized returns and increments of risk-neutral quantities, that

is, implied variance and implied correlation. Compared to the standard predictive regression,

the new methodology provides far more stable beta estimates in the presence of outliers, and it

uses the most up-to-date information for estimation instead of having a lag equal to the return

horizon. The proposed methodology is general in a sense that it can easily be adapted for the

use with other predictors.

Third, we show, empirically, that the variance and correlation risk premium predict the

market excess return out-of-sample, with out-of-sample R2s of up to 10% at a quarterly, and

up to 8% at an annual horizon. Most of this out-of-sample predictability can be attributed to

our novel beta estimation methodology. While the predictability by the variance risk premium

peaks at the quarterly horizon and declines after that, the predictive power of the correlation

risk premium is strongest for longer horizons—up to one year. Thus, in line with our theoretical

predictions, we provide strong empirical evidence for the existence of two components in the

equity premium that can be estimated in an ex ante fashion using options data and contain

non-redundant information. We demonstrate that these predictability results imply highly

significant economic benefits for a representative investor.

Fourth, we empirically study the economic channels through which a correlation risk pre-

mium might arise. In particular, if the correlation risk commands a risk premium, it should

be linked to the future investment opportunities in a sense of Merton (1973)’s Intertemporal

CAPM (ICAPM); moreover, if the variance and correlation risk premiums are not redundant,

the aggregate variance and correlation risks should be related to the future risks in a different

way. We show that this risk-based foundation of the correlation and variance risk pricing is
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supported by the data. That is, expected correlation has a strong predictive power for future

diversification benefits for horizons of up to one year, measured by the average future correlation

or by the non-diversifiable portfolio risk. Similar to the market return predictability results,

variance has a shorter predictability horizon for future risks. Note that we concentrate on re-

turn predictability by observable variables, and stay agnostic about the underlying economic

forces creating stochastic consumption variance and dividend correlation in the first place; as

a prominent example of a model that generates stochastic correlation from the structure of

the economy we can refer to Buraschi, Trojani, and Vedolin (2014), who link correlation risk

premium to disagreement.

Our paper is related to several strands of the literature. First, the work on models with

priced market variance and correlation risks, analyzing variance and correlation risk premiums

and its sources. Bollerslev, Tauchen, and Zhou (2009) introduce a model with priced variance

risk using insights from the long-run risk literature. Buraschi, Trojani, and Vedolin (2014)

propose a general equilibrium model with difference in beliefs, where higher uncertainty about

future dividends leads agents to expect that stocks behave more like the market in the future.

These beliefs increase the expected correlation under the pricing probability measure, and,

hence, generates a correlation risk premium. Driessen, Maenhout, and Vilkov (2009) suggest a

risk-based explanation of the correlation risk premium with the average correlation serving as

a state variable that has predictive power for future market risks and, thus, is priced. However,

they do not pin down the character of risks predicted by the correlation. Later, Buraschi,

Kosowski, and Trojani (2014) empirically relate correlation risk to a “no-place-to-hide” state

variable. Mueller, Stathopoulos, and Vedolin (2017) investigate the correlation risk premium

using foreign exchange markets.

We contribute to this literature by developing a general equilibrium model, in which the

stochastic variance of aggregate consumption is driven by the stochastic variance of each divi-

dend tree and the stochastic correlation among them. Effectively, we are extending the model

of Bollerslev, Tauchen, and Zhou (2009) to multiple dividend trees with stochastic correlation.
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Such a setup leads to a version of two-component variance of the aggregate consumption process,

similar to the model with short- and long-run volatility components in Zhou and Zhu (2015),

where each component bears a risk premium, and the model provides a significant improvement

in fitting the empirical data over models with a single variance component. We also solve the

model in closed-form for correlation driven by a square-root process, and overall our model

is similar in style to the model with two-component variance. Our major difference is that

we are able to give an easy interpretation to the long-run component, linking it theoretically

and empirically to a well-observed average correlation between stocks. In addition we show

that variance and correlation risk premiums are not redundant, even though empirically the

correlation risk premium is a part of the market variance risk premium. As state variables ex-

pected variance and correlation predict future risks differently, i.e., different types of risks, and

at different horizons. We also contribute to this literature by studying the sources of the cor-

relation risk premium, concentrating on risk-based and disagreement-based explanations. Our

results suggest that the correlation risk premium should not serve as a proxy for uncertainty or

disagreement because it is negatively related to uncertainty (measured by the economic policy

uncertainty index) and disagreement (measured by the aggregate difference in beliefs proxy),

contrary to the theoretical predictions. In contrast, we show that the risk-based explanation can

rationalize the observed patters of return predictability, because expected correlation predicts

future diversification risks.

Second, though we concentrate on option-implied predictors, we contribute to the literature

on the predictability (especially, the out-of-sample one) of the aggregate market return. In an

empirical application Bollerslev, Tauchen, and Zhou (2009) show for the U.S., and Bollerslev,

Marrone, Xu, and Zhou (2014) repeat the analysis in international settings, that the variance

risk premium is a strong and robust predictor of aggregate market returns for up to one quarter

ahead. The evidence on market return predictability using the correlation risk premium is

scarce. That is, while several existing studies document return predictability by correlations

itself for a horizon of up to one year (for example, Driessen, Maenhout, and Vilkov (2005, 2012)
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and Faria, Kosowski, and Wang (2016) using implied correlations and Pollet and Wilson (2010)

using the realized correlations), only Cosemans (2011) finds some in-sample return predictability

by the correlation risk premium.

In addition to developing an equilibrium model that establishes a link between the market

expected return and correlation risk premium, we confirm this relation empirically by testing

the market return predictability—in-sample and out-of-sample for horizons of up to one year.

Particularly, while borrowing the performance criteria to evaluate the out-of-sample return

forecasts from influential studies like Goyal and Welch (2008), Campbell and Thompson (2008),

and others, we develop a fundamentally new methodology for estimating the betas with respect

to the option-based predictors in the forecasting equation. This new methodology is based on

estimating “contemporaneous betas” from the joint dynamics of market returns and option-

implied variables, and it substantially improves the out-of-sample predictability of both option-

implied variables, compared to the traditionally used regressions of long-term returns on past

predictors.

Last but not least, we contribute to a growing literature on using option-implied information

in forecasting and asset pricing—an overwhelming overview of the recent research can be found

in Christoffersen, Jacobs, and Chang (2013). The papers in this are can be roughly split into

cross-sectional studies, where panel stock data are used, and into time-series studies, where

aggregate quantities are predicted. We list just a few related papers: Bali and Zhou (2016) use

the variance risk premium in the cross-sectional context to show how exposure to uncertainty is

compensated in individual stocks. Bali and Hovakimian (2009), Xing, Zhang, and Zhao (2010),

Cremers and Weinbaum (2010), Rehman and Vilkov (2010), Stilger, Kostakis, and Poon (2017)

use different proxies of variance risk premium and forward-looking skewness to link them to the

cross-section of future stock returns, and DeMiguel, Plyakha, Uppal, and Vilkov (2013) apply

their results in portfolio selection exercise. Chang, Christoffersen, Jacobs, and Vainberg (2012)

and Buss and Vilkov (2012) use option-implied correlations to measure market risk in the cross-
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section of stock returns. Kostakis, Panigirtzoglou, and Skiadopoulos (2011) use option-implied

distributions to improve market-timing of the index investment.

We contribute to this literature by providing theoretical foundation and new empirical sup-

port for predictability of market returns using variance and correlation risk premiums; moreover,

we develop a principally new methodology for estimating exposure to option-implied variables,

and it can easily be extended to other time-series and cross-sectional studies. Judging by our

experience, it can significantly boost the predictive qualities of option-based variables, and

extending our results to the cross-section of stock returns is within our immediate agenda.

The remainder of the paper is organized as follows: Section I contains the derivations

of the pricing equation linking the equity risk premium to the variance and correlation risk

premiums, as well as a discussion of our novel estimation approach for contemporaneous variance

and correlation betas. Section II.A discusses data preparation procedures. In Section III, we

study market return predictability—in-sample and out-of-sample. Section IV analyzes the

potential economic channels behind the correlation risk premium. Section V contains a number

of robustness tests, and Section VI concludes. Appendix contains theoretical derivations, and

Internet Appendix contains tables for robustness tests.

I. Equity Risk Premium Decomposition

In this section we introduce a model of a general-equilibrium economy that produces priced

variance and correlation risks, and allows for a decomposition of the aggregate market index

process into variance and correlation shocks. We use this decomposition later as motivation for

developing a new estimation methodology for predicting market excess returns. Subsection I.A

presents the setup and selective results from the model solution, subsection I.B links the equity

risk premium to the risk premiums on market variance and average stock correlation, and

subsection I.C presents our new estimation strategy for betas with respect to variance and

correlation risks.
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A. Economic Framework

Aggregate consumption is produced by a large number of individual Lucas (1978) trees

(denoted by i = 1, . . . , I) with fixed proportions wi. In particular, we assume that its dynamics

are described by the following Ito process with stochastic variance:{
dCt
Ct

= µcdt+ δc
√
VtdBc,t

dVt = κ1(V̄ − Vt)dt+ σ1

√
VtdBV,t + σρdρt[= κ2(ρ̄− ρt)dt+ σ2ν(ρt)dBρ,t].

(1)

The stochastic variance on the aggregate level arises from two distinct features of the underlying

dividend trees. First, dividend trees are driven by a systematic source of risk Bc,t and an

idiosyncratic one Bi,t with stochastic variance Vi,t, following a square-root process:{
dDi
Di

= µD,idt+ σD,i
√
Vi,tdBi,t + σDC,i

√
VtdBc,t

dVi,t = κ1,i(V̄i − Vi,t)dt+ ςi
√
Vi,tdBVi,t,

(2)

with a constant “volatility of volatility” ςi. Second, the pairwise correlations between dividends

are stochastic and driven by a single state variable (following the approach in Driessen, Maen-

hout, and Vilkov (2009)). That is, the instantaneous correlation between trees i and j, i 6= j is

modeled as

dDi,t × dDj,t√
(dDi,t)2 × (dDj,t)2

= ρij,tdt = ρtdt. (3)

In particular, Driessen, Maenhout, and Vilkov (2005) show that a similar fixed-weight aggrega-

tion of individual stocks with stochastic variance and stochastic correlation leads to an index

with stochastic variance, which is driven by the weighted average shock to individual variances

and by correlation state variable.

The correlation state variable ρt follows a mean-reverting process with long-run mean ρ,

speed of mean-reversion κ2 and diffusion scaling parameter σρ:

dρt = κ2 (ρ− ρt) dt+ σ2ν(ρt)dBρ,t, (4)
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and it shows up with some scaling parameter in the aggregate variance dynamics (1) above. To

obtain a closed-form solution we assume a square-root process for correlation with ν(ρt) =
√
ρt.

4

With such a correlation process we are very close mathematically to the two-component variance

model of Zhou and Zhu (2015), though instead of studying an effect of a latent variance process,

we concentrate on the observable correlation.

We assume that there exists a representative investor with continuous-time, recursive prefer-

ences defined by Duffie and Epstein (1992b), with the relative risk aversion γ > 0, intertemporal

elasticity of substitution ψ > 0, and rate of time preference β; the objective of the investor is to

choose consumption process to maximize utility lifetime utility.5 Solving for the equilibrium,

we arrive at an expression for the pricing kernel with the risk premiums λ1, λ2, and λ3 for

all priced sources of risk in our economy—consumption, aggregate consumption variance, and

correlation between dividends, respectively:

dπt
πt

= −rfdt− λ1dBc,t − λ2dBV,t − λ3dBρ,t, (5)

where 
λ1 = γδc

√
Vt

λ2 = −1−γψ
1−γ A1σ1

√
Vt

λ3 = −1−γψ
1−γ (A1σρ +A2σ2)

√
ρt,

(6)

with Aj , j = 1, 2 being the coefficients by the state variables Vt and ρt in the optimal value

function.

Having verified that in the specified economy both variance and correlation are priced, we

derive now the equations that will motivate our empirical analysis later on. First, solving for

the aggregate market process (i.e., wealth process), we obtain:

dWt

Wt
= ζWdt+ δc

√
VtdBc,t −A1adVt −A2adρt, (7)

4Thus, the correlation could end up being above 1, and in calibrations one needs to choose parameters such
that the correlation stays effectively bounded.

5The details of the solution are collected in Appendix.
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where Aia = 1−ψ
1−γAi, i = 1, 2 and the term ζW denotes a “partial” drift.6 The aggregate market

index is driven by (standard) consumption uncertainty, as well as by consumption variance and

dividend correlation shocks.

Second, we are especially interested in the processes for market (index) variance and correla-

tion between stocks, because unlike the latent consumption variance and dividend correlations,

they are observable and can be estimated from either the historical data (i.e., under the true

probability measure) or the option prices (i.e., under the risk-neutral measure).

The aggregate market variance is driven solely by the consumption variance and dividend

correlation:

dVW,t = (δ2
c +A2

1aσ
2
1)dVt + (A1aσ̄ρ +A2aσ2)2dρt. (8)

Pricing individual dividend claims (i.e., stocks Si with dividends Di, i = 1 . . . N), and comput-

ing the correlation process between them,7 we obtain

dρS,t = ζρSdt+
VS − CovS

V 2
S

[
(σ2
DC +A2

1mσ
2
1)dVt + (A1mσ̄ρ +A2mσ2)2dρt

]
− 1

V 2
S

σ2
D,idVi,t, (9)

where ζρS is the partial drift, Ajm, j = 1, 2 are the coefficients in the equilibrium price-dividend

ratio, VS is the individual dividend claim variance, and CovS is the covariance between stocks—

the expressions for the second moments are provided in the Appendix. Note that the aver-

age correlation between stocks is driven by the same sources of risk as the market variance—

consumption variance and dividend correlation,—and by an idiosyncratic variance part. Only

the first two—systematic sources of risk—are priced in the model.

B. The Equity Risk Premium and its Link to Correlation Risk

The equity risk premium for the aggregate market is determined by the covariance between

the pricing kernel (5) and the market index (wealth) process. In particular, using the formu-

6We call it “partial,” because both the dVt and dρt contain deterministic terms. One can easily write the
wealth process in terms of original sources of risk dBV,t and dBρ,t, but the given representation is more convenient
for our interpretation.

7To obtain an ”average” correlation between stocks, we just compute correlation between two claims on
dividends with the same ”average” parameter values. When dividend parameters are the same across all stocks,
average correlation is equal to a pairwise correlation.
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lation of the market process (7), we can express the market risk premium as a sum of three

components (compare to two in Bollerslev, Tauchen, and Zhou (2009)):

EP
[
dW

W

]
− rf,tdt = λ1δc

√
Vtdt−A1a(E

P [dVt]− EQ [dVt])−A2a(E
P [dρt]− EQ [dρt]), (10)

The first component motivates the classic risk-return tradeoff relationship, whereas the second

and the third components represent true compensation for aggregate consumption variance and

dividend correlation risks. To be consistent with the recent literature and for ease of exposition,

we define the variance (e.g., Carr and Wu (2009), Bollerslev, Tauchen, and Zhou (2009)) and

correlation (e.g., Driessen, Maenhout, and Vilkov (2009)) risk premiums with the opposite sign,

that is, as the expected process under Q measure minus the respective expectation under P.

Hence, the instantaneous market risk premium is given by

EP
[
dW

W

]
− rf,tdt = λ1δc

√
Vtdt+A1aV RPC,tdt+A2aCRPC,tdt. (11)

Thus, knowing the variance and correlation risk premiums on the right, we would be able

to predict the market excess return, however, aggregate consumption variance and dividend

correlation risk premiums are not readily available from the data. To replace them with ob-

servable quantities, note that the risk premiums on market variance (8) and the average stock

correlation (9) can be written as:[
V RP
CRP

]
=

[
(δ2
c +A2

1aσ
2
1) (A1aσ̄ρ +A2aσ2)2

VS−CovS
V 2
S

(σ2
DC +A2

1mσ
2
1) VS−CovS

V 2
S

(A1mσ̄ρ +A2mσ2)2

]
×
[
V RPC
CRPC

]
(12)

Idiosyncratic variance Vi is not priced, and hence does not enter the expression for CRP above.

Now, because both market variance risk premium V RP and average stock correlation risk pre-

mium CRP are determined exclusively by the risk premiums for the aggregate consumption

variance V RPC and dividend correlation CRPC , we can express two latter—latent—risk pre-

miums in terms of the two observable premiums for the market variance and stock (average)

correlation risks by solving the system (12) for latent variables. After substituting the solutions

for V RPC , CRPC in (11) we can also write the equity risk premium as ”instantaneous pricing
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equation”:

EP
[
dW

W

]
− rf,tdt = λ1δc

√
Vtdt+A1zV RPtdt+A2zCRPtdt, (13)

where A1z and A2z are the functions of a stock variance, covariance between average stocks,

and other matrix elements in (12).8

Similar to Bollerslev, Tauchen, and Zhou (2009), who show that the variance and equity

risk premiums share a common component due to stochastic vol-of-vol and thus provide the-

oretical foundation for using the variance risk premium to predict future market returns, we

use both variance and correlation risk premiums for predicting excess market returns. To that

end, we do not attempt to calibrate the model completely to identify the betas in the pric-

ing equation (13), but instead develop a novel methodology to estimate the exposures from

high-frequency observations of related variables.9

C. Estimation Framework

Substituting in (13) for the price of consumption risk λ1 from the pricing kernel (5) and

integrating over a desired period, yields the expected market excess return in the form of the

following “finite horizon pricing equation”:

Et[rt+1]− rf,t = γδ2
cVt,t+1 +A1zV RPt,t+1 +A2zCRPt,t+1. (14)

The expected variance risk premium, V RPt,t+1, and the expected correlation risk premium,

CRPt,t+1, can be estimated empirically. But, before one can use the pricing equation (14) to

form a forecast for the market return, one first needs to estimate the coefficients (i.e., betas)

for variance and correlation risks.

Traditionally, one would simply run a time-series regression as in equation (14), that is,

regress realized market excess returns on lagged regressors using historical data. The estimated

8See Section VII.F in Appendix for details.
9We also calibrate the model to match a number macro and market indicators, and for some sensible parameter

values we produce the equity premium of 4.5% to 5.5%, with the contribution of market VRP between 25% and
40% and the contribution of the CRP between 58% and 71%. Note that the model with the square-root process
for the correlation is misspecified, and it should be interpreted as a qualitative exercise to obtain a decomposition
of the equity risk premium.
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betas could then, together with the variance and correlation risk premiums, be used to predict

the future market excess return. This approach has been employed in a number of studies, but

it relies heavily on past information and might therefore not lead to a strong out-of-sample

performance. For example, Goyal and Welch (2008) demonstrate that many variables, which

predict market excess returns in-sample, have a poor out-of-sample performance.

We propose an alternative approach that makes use of the fact that underlying the pricing

equation (14) is the equation of aggregate wealth dynamics (7), in which we can carry out a

procedure for substituting the market variance and stock pairwise correlation shocks dVW and

dρS for the consumption variance and dividend correlation shocks dV and dρ, similar to the

substitution of risk premiums in equation (13):

dWt

Wt
= ζ ′Wdt+ δc

√
VtdBc,t −A1zdVW,t −A2zdρS,t −A3zdVi,t, (15)

where A3z = A2z

V 2
S
σ2
D,i, and the last term just compensates the additional idiosyncratic volatility

term dVi,t introduced by dρS,t (as follows from (9)). Also note that the last term is not priced

and hence does not affect the market risk premium.

Comparing the pricing equation (13) and dynamics equation (15), it turns out that the betas

in pricing equation (14) essentially represent the integrated estimates of the diffusion coefficients

in the dynamics dW/W , and, thus, can be obtained directly by regressing the return innovation,

dW/W − E[dW/W ], on shocks to the index variance, dVW , shocks to the pairwise correlation,

dρS , and shocks to the consumption component, dBc.
10

Under the actual measure, shocks to a predictor z are given by the difference between the

realization and its conditional expectation: zt+1 − Et[z]. Along these lines, Pyun (2016) uses

high-frequency data to estimate contemporaneous variance betas, that is, he computes the

exposure to innovations in daily realized variance. Unfortunately, using the same procedure to

10Note that in empirical implementation we will concentrate on out-of-sample return predictability, and con-
cerned with potential overfitting we will include in the predictive regression at most two variables linked to
variance and correlation risks. The consumption shock dBc is not correlated with the other regressors, and its
omission does not bias the estimated coefficients; however, omitting the ”typical” idiosyncratic variance shock
dVi may lead to an omitted-variable bias depending on its correlation with the variance and correlation shocks.
We do not expect it to be high, and neglect the effect of potential bias on the remaining betas.
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obtain daily innovations in correlation is considerably more complicated, because one has to

deal with a large number of stocks, so that data availability and micro-structural issues pose

a problem. However, note that a change of measure—from the actual measure P to the risk-

neutral measure Q—only changes the drift of a process, but not the diffusion components (see,

for example, (Karatzas and Shreve, 1991, page 190)):

dWQ
t

Wt
= ζ ′′Wdt+ δc

√
VtdB

Q
c,t −A1zdV

Q
W,t −A2zdρ

Q
S,t −A3zdV

Q
i,t, (16)

where the actual-measure drift ζ ′W is adjusted by risk premiums to become ζ ′′W . Thus, one can

also estimate the slope coefficients—contemporaneous betas—using shocks to variables under

either actual or the risk-neutral probability measure. Moreover, we are free to choose a non-

matching probability measure for the dependent variable, because changing the measure affects

only its drift (=mean), and hence only the intercept in the estimated regression.

Specifically for the independent variables under the risk-neutral measure, one can obtain,

on each day, implied variances and correlations, which are the risk-neutral expected integrated

variance and correlation until option maturity T :

IV (t, T ) = EQ
t

[∫ T

t
VW (s)ds

]
, IC(t, T ) = EQ

t

[∫ T

t
ρS(s)ds

]
. (17)

Note that one can always decompose the implied variance, IV (t, T ), as follows

IV (t, T ) = EQ
t

[
EQ
t+1

[∫ t+1

t
VW (s)ds+

∫ T

t+1
VW (s)ds

]]

= EQ
t

[∫ t+1

t
VW (s)ds

]
+ EQ

t [IV (t+ 1, T )] ,

(18)

so that its daily increments are given by

∆IV (t+ 1, T ) = IV (t+ 1, T )− IV (t, T )

= IV (t+ 1, T )− EQ
t [IV (t+ 1, T )]− EQ

t

[∫ t+1

t
VW (s)ds

]
.

(19)
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Similar computations for the implied correlation, IC(t, T ), imply that

∆IC(t+ 1, T ) = IC(t+ 1, T )− IC(t, T )

= IC(t+ 1, T )− EQ
t [IC(t+ 1, T )]− EQ

t

[∫ t+1

t
ρS(s)ds

]
.

(20)

If the last term in equations (19) and (20)—expected integrated variance and correlation over a

single day—is small, implied variance and correlation can be well approximated by a martingale.

Accordingly, one can use the daily increments in implied variance and implied correlation as

proxies for daily (or other short interval) shocks to variance and correlation.

Empirical evidence lends support to this approximation. For example, Filipović, Gourier,

and Mancini (2016) find that a “martingale model provides relatively accurate forecasts for the

one-day horizon” variance. Moreover, integrated expected variance and integrated expected

correlation are highly persistent, with first-order autocorrelations in our data between 0.97 and

0.994 for variance and between 0.97 and 0.993 for correlations at various maturities. Moreover,

average daily increments are statistically not different from zero.

Consequently, to obtain the contemporaneous betas for pricing equation (14), one can simply

estimate the following discrete version of equation (16), based on the same-period (t to t + 1)

returns and the shocks to the risk-neutral quantities:

rt+1 − rf,t = α+ βt,∆IV ∆IV (t+ 1, T ) + βt,∆IC∆IC(t+ 1, T ) + Ξt+1, (21)

where the error term Ξt+1 captures the consumption and typical dividend idiosyncratic variance

shocks.

Note that the betas, βt,∆IV and βt,∆IC , estimated from the equation (21), need to be

“normalized” before they can be used to form the return forecast (14). Specifically, one needs

to adjust the betas for the difference in magnitudes of the regressors used for beta estimation and

of the predictors in the pricing equation. A beta with respect to one of the implied variables can

be decomposed into the correlation between the market excess return and the specific variable

as well as the ratio of their volatilities. Consequently, one can simply adjust the variance beta
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by the ratio of the volatility of the right-hand side variable used in estimation (increments

in implied variance) and the volatility of the predictor in the forecast equation (variance risk

premium)11

βt,V RP = Cor (rt+τ , V RP (t, t+ τ))× Vol (rt+τ )

Vol (V RP (t, t+ τ))

= Cor (rt+τ ,∆IV (t, t+ τ))× Vol (rt+τ )

Vol (∆IV (t, t+ τ))
× Vol (∆IV (t, t+ τ))

Vol (V RP (t, t+ τ))

= βt,∆IV ×
Vol (∆IV (t, t+ τ))

Vol (V RP (t, t+ τ))
. (22)

The transformation above uses the fact that correlation between the return process and shocks

to the variance equals to the correlation between the return process and the variance risk pre-

mium, i.e., Cor (rt+τ , V RP (t, t+ τ)) = Cor (rt+τ ,∆IV (t, t+ τ)), and hence does not require

extra adjustments. It can be observed from comparing the dynamics of the aggregate mar-

ket return in equation (7) and the instantaneous market risk premium in equation (11): the

difference in coefficients stemming from a given source of risk is just the scaling parameter λ,

i.e., the unit risk premium, which is taken care of by the volatility adjustments above. Similar

computations for the correlation risk premium yield

βt,CRP = βt,∆IC ×
Vol (∆IC(t, t+ τ))

Vol (CRP (t, t+ τ))
. (23)

II. Data and Preparation of Variables

To compute variance and correlation risk premiums, we rely on data for realized and implied

variances for the market index and all its components, and on average realized and implied

correlations among the index components. In Subsection II.A, we briefly introduce data sources

and move to the estimation of variances and correlations in Subsection II.B. In Subsection II.C

we also discuss the price of variance and correlation risk for various market index proxies as

well as their constituents for various option maturities.

11Also, because the variance and correlation risk premium are defined as the risk-neutral quantity minus
physical ones, and the expected excess return is the difference between the physical and risk-neutral measures,
we need multiply the betas by −1.
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A. Data Sources and Preparation

Our analysis focuses on three major U.S. indices, and their constituents, namely, the

S&P500, the S&P100, and the DJ Industrial Average (DJ30) for a sample period from January

1996 to April 2016. For each index, we obtain its composition from Compustat and data on the

constituents’ daily returns and market capitalizations from CRSP.12 We proxy for the index

weights on each day using the constituents’ relative market capitalization (for S&P500 and

S&P100) or price (for DJ30) from the previous day.

For the option-based variables, we rely on the Surface File from OptionMetrics, selecting for

each index and its constituents options with 30, 91, 182, 273, and 365 days to maturity and an

(absolute) delta smaller or equal to 0.5.13 While options data for the S&P500 and the S&P100

is available from January 1996, the data for the DJ30 starts only in October 1997. Typically,

option data is available for about 98% of the stocks in the index. For example, for the S&P500,

the median number of stocks for which option data is available is 491.

We also take into account a number of traditional predictors of the market return borrowed

from Goyal and Welch (2008).14 All these variables are used at monthly frequency.

B. Variances and Correlations

Option-implied variances (IV) are computed using simple variance swaps, as in Martin (2013,

2017), which capture the total quadratic variation due to diffusion and jump components—for

each option maturity. For robustness, we also compute implied variances using log contracts,

that is, model-free implied variance, as in Dumas (1995), Britten-Jones and Neuberger (2000),

Bakshi, Kapadia, and Madan (2003), and others.15 Realized variances (RV) are estimated as

12We merge the two datasets through the CCM Linking Table using GVKEY and IID to link to PERMNO,
following the second best method from Dobelman, Kang, and Park (2014).

13Matching the historical data with options works through the historical CUSIP link provided by Option-
Metrics. Particularly, while S&P500, S&P100, and DJ30 indices are directly used as underlying for options,
PERMNO is used as the identifier for single stocks in our merged database.

14We are grateful to Amit Goyal for making the data available on his web-site www.hec.unil.ch/agoyal/.
15In earlier versions of the paper, Martin (2013) discussed the issue of estimating implied correlations, and

suggested that implied correlations / correlation swaps should be estimated using simple variance swaps as
opposed to model-free variances.
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the sum of squared daily returns. The ex ante variance risk premium, V RP (t, t+∆), for options

with maturity ∆ can then be computed as the implied variance at the end of day t minus the

realized variance from t−∆ to t.

Consistent with our assumption that all pairwise correlations are driven by a single state

variable, we constructed correlations as equicorrelations, that is, all pairwise correlations are set

equal. This method yields a positive-definite covariance matrix, as long as the equicorrelation is

non-negative,16 which is always the case in our samples and, in general, holds for large baskets

of stocks.

We identify the equicorrelations using the restriction that the variance of an index I has to

be equal to the variance of the portfolio of its constituents

σ2
I (t) =

N∑
i=1

N∑
j=1

wi(t)wj(t)σi(t)σj(t)ρij(t),

which holds under both—objective and risk-neutral—measures. Particularly, given the vari-

ances of the index σ2
I (t) as well as its components σ2

i (t), i = 1 . . . N , and the index weights

wi(t), the equicorrelation ρij(t) = ρ (t) is calculated as

ρ (t) =

σ2
I (t)−

N∑
i=1

wi(t)
2σ2
i (t)

N∑
i=1

∑
j 6=iwi(t)wj(t)σi (t)σj (t)

. (24)

When using risk-neutral (implied) variances in equation (24), we arrive at the implied

correlation (IC), whereas when using expected actual variances, we obtain the realized corre-

lation (RC). The ex ante correlation risk premium, CRP (t, t + ∆), is then constructed as the

difference between the implied correlation for options with maturity ∆ observed at the end of

day t and the corresponding realized correlation from t−∆ to t.

16See Proposition 1 in Appendix B of Driessen, Maenhout, and Vilkov (2012).
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C. The Price of Variance and Correlation Risk

Tables I and II provide summary statistics for the variance risk premium of the three indices

as well as their constituents for various option maturities. For an easier comparison across

maturities, all quantities are annualized. Focusing on the S&P500 and the average variance

risk premium reported in Table I, we can see that the variance risk premium for individual

stocks is typically not significantly different from zero. With the exception of a maturity of

30 days, all point estimate are actually negative, that is, the realized variance is, on average,

higher than the implied variance for individual stocks. In contrast, the variance risk premium

for the S&P500 itself is always positive, and statistically significant.

Note, however, that, as shown in Table II, variance risk premiums for individual stocks in

the S&P500 demonstrate a lot of heterogeneity. That is, while for a majority of the stocks

we fail to reject the null hypothesis of an insignificant variance risk premium, there is still a

sizeable fraction of stocks for which we can either reject the null of a positive or a negative

variance risk premium.

The results shown in Table III demonstrate that the correlation risk premium for the S&P500

is positive for all maturities, that is, the implied correlation is always higher than the realized

one. Particularly, the correlation risk premium is significant at all conventional levels and is

monotonically increasing in option maturity. Focusing on the two components of the correlation

risk premium, it is apparent that the increase in the correlation risk premium with option

maturity is exclusively due to the increase of the implied correlation with maturity.

In summary, similar to Driessen, Maenhout, and Vilkov (2005), we find that index variance

is priced predominantly due to a priced correlation component, though the dynamics of the

individual variance risk premiums should not be neglected. Hence, both—correlation and index

variance risk premiums—potentially contain non-redundant information.

The results for the other two indices—the S&P100 and the DJ30—confirm these findings.

This is not very surprising because all considered variables (implied and realized correlations,
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as well as implied and realized variances) tend to be strongly correlated across indices, with

the average correlation being about 0.97. Qualitatively, the magnitude and the statistical

significance of the variance risk premium as well the correlation risk premium decrease with the

number of index constituents, that is, are highest for the DJ30. In what follows, we concentrate

on the S&P500, and provide results for the S&P100 and the DJ30 for completeness.

III. Return Predictability

We now proceed with testing market return predictability empirically—in-sample in Sub-

section III.A, and then out-of-sample in Subsection III.B, using the novel estimation strategy

of variance and correlation betas developed in Section I.C and comparing its performance to

the traditional prediction methods.

A. In-sample Tests

In a first step, we analyze the predictability of the market excess return in-sample, when

using the variance and correlation risk premiums as regressors. Specifically, we run the following

simple predictive regression

rs→s+τr = a+ b V RP (s, s+ τr) + cCRP (s, s+ τr) + ε,

where rs→s+τr denotes the compounded market excess return from date s to s + τr. We use

returns from the end of each month in our sample period and Newey-West standard errors to

correct for auto-correlation introduced by overlapping data.

The results are reported in Table IV—for regressions with a single explanatory variable as

well as for the joint regression. When using the variance risk premium as the sole explanatory

variable, it is highly statistically significant for horizons of up to one quarter, with a maximum

(adjusted) R2 of 6.90%. However, for longer horizons, the variance risk premium has no ex-

planatory power and the coefficient even turns negative, that is, a high variance risk premium

at time t would predict a low future market excess return—contrary to theory. These results
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are consistent with the findings in Bollerslev, Tauchen, and Zhou (2009) and Bollerslev, Mar-

rone, Xu, and Zhou (2014), who demonstrate that the variance risk premium is able to predict

market excess returns for a horizon of up to 3 months.

The correlation risk premium, when used alone, is statistically significant for horizons of up

to 273 days. Its explanatory power is quite high even for long horizons of up to one year, and

peaks at a horizon of 273 days, with an R2 of 9.87%. These findings are comparable to Cosemans

(2011) who uses the correlation risk premium in in-sample market return predictability tests.

Interestingly, a vast majority of existing studies (for example, Driessen, Maenhout, and Vilkov

(2005, 2012) and Faria, Kosowski, and Wang (2016)) documents return predictability for longer

horizons of up to one year by implied correlation, and not by the correlation risk premium.

In joint regressions, the variance risk premium dominates at a short horizon of one month.

For longer horizons the coefficient becomes negative again. In contrast, the correlation risk

premium is still highly significant for longer horizons, indicating that there exist two components

that provide non-redundant information. While the results for the variance risk premium are

essentially same for all indices, the significance of the correlation risk premium is a bit stronger

for the S&P100, but a bit weaker for the DJ30. The predictors survive a number of standard

controls (for example, from Goyal and Welch (2008)), which we will discuss in more detail in

Section V.

B. Out-of-sample Tests

While many variables have been shown to predict market returns in-sample, there is hardly

any evidence for out-of-sample predictability, as shown convincingly by Goyal and Welch (2008).

Accordingly, we now concentrate on the out-of-sample performance of the variance and corre-

lation risk premium. We are particularly interested whether the two risk premium components

provide different information and work at different horizons.

For our out-of-sample analysis, we deliberately deviate from the traditional approach of

running, at each date, a time-series regression of past market excess returns on lagged regressors,
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whose coefficients are then used to form the out-of-sample forecast. Instead, we rely on the

estimation strategy described in Section I.C.

That is, in the first step, we estimate, at the end of each month, the contemporaneous betas

of the market excess return with respect to innovations in implied variance and correlation

from equation (21). Specifically, we regress daily market excess returns on daily increments

of implied variance and/or daily increments of implied correlation for options with a given

maturity—using data from the past year. This results in initial variance and correlation betas

βt,∆IV and βt,∆IC . We then compute normalized betas βt,V RP and βt,CRP for the variance

and correlation risk premium, as in equations (22) and (23) using the appropriate scaling factor

estimated from the same backward window. In the second step, we then form the out-of-sample

prediction for the market excess return, r̂t→t+τr , for horizon τr by combining the normalized

betas with the time-t variance and correlation risk premiums

r̂t→t+τr = βt,V RP V RP (t, t+ τr) + βt,CRP CRP (t, t+ τr) (25)

where βt,V RP and βt,CRP denote the normalized exposures of the market excess return with

respect to innovations in implied variance and correlation, and V RP (t, t+τr) and CRP (t, t+τr)

denote the current (date t) variance and correlation risk premium, respectively. Consistent with

the theoretical prediction (14), we use implied variance and correlation as well the variance and

correlation risk premium from options with a maturity matching the forecast horizon.

We consider four different forecast models, denoting the predicted returns by r̂j,t,τr , j ∈

{1, ..., 4}. The first model simply uses the historical mean of the market excess return and serves

as the natural benchmark. The second and third model use our out-of-sample methodology,

but rely only on the variance risk premium (j = 2) or only on the correlation risk premium

(j = 3) in forecasting the market excess return. Finally, the last model (j = 4) combines the

variance and correlation risk premium to forecast market excess returns. For each model j, each

point in time t, and each horizon τr, we define the forecast error as the difference between the

predicted and the realized market excess return ej,t,τr ≡ r̂j,t,τr − rt,t+τr . For ease of exposition,
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let r̂j,τr denote the vector of predicted returns for horizon τr, and ej,τr denote the vector of

rolling out-of-sample forecast errors—for model j.

Traditionally, one evaluates the time-series of out-of-sample forecast errors by a loss function

that is either an economically meaningful criterion, such as utility or profits (for example, Leitch

and Tanner (1991), West, Edison, and Cho (1993), Della Corte, Sarno, and Tsiakas (2009)), or

using some statistical criterion (for instance, Diebold and Mariano (1995), McCracken (2007)).

These approaches have recently been unified and extended by Giacomini and White (2006),

who developed out-of-sample tests to compare the predictive ability of competing forecasts,

given a general loss function under conditions of possibly mis-specified models.

In the following, we rely on three criteria. First, the out-of-sample R2
j,τr

relative to the

forecasts from the (benchmark) historical average return model (j = 1)

R2
j,τr = 1− MSEj,τr

MSE1,τr

, with MSEj,τr =
1

N

(
e>j,τr × ej,τr

)
,

where N denotes the number of prediction errors. Second, the average square-error loss δj,τr ,

again defined relative to the prediction from the benchmark model

δj,τr = MSEj,τr −MSE1,τr ,

which is one of the loss functions underlying the Diebold-Mariano tests. Third, to measure

the true economic benefit of a better return forecast, we compute the gain in the certainty

equivalent return of a mean-variance investor (similar to Campbell and Thompson (2008)).

Specifically, at the end of each month t, we derive, for each model and forecast horizon, the

optimal portfolio consisting of the market portfolio and a risk-free investment for a myopic

mean-variance investor with horizon τr and a risk aversion of 1.17 Using the resulting time-

series of realized portfolio returns rMV
j,τ , we compute the mean-variance certainty equivalent,

17The optimal weight in the market is given by wt,τ,j =
r̂j,t,τr
σ2 , where σ2 denotes the one-year historical

variance (same for all models). Following Campbell and Thompson (2008), we restrict the optimal weights to be
in [0, 1.5] range.
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CEj,τr , as well as the gain in the certainty equivalent return relative to the benchmark model

∆CEj , τr = CEj,τr − CE1,τr , where CEj,τr = E[rMV
j,τr ]− γ

2
σ2(rMV

j,τr ).

For robustness, we also compute a certainty equivalent improvement relative to model using

CRP as a predictor, i.e., CEj,τr − CE3,τr .

Note that a particular model, j > 1, out-performs the benchmark model that uses simply

the average historical return if R2
j,τr

is significantly different from zero, if δj,τr is significantly

negative and if ∆CEj,τr is significantly positive. Due to the short sample period of less than 20

years, the asymptotic standard errors may not be very accurate, so that we resort to bootstrap-

ping. Specifically, we use the moving-block bootstrap procedure by Künsch (1989),18 randomly

resampling with replacement from the time-series of a model’s forecasts,19 to construct a boot-

strapped distribution for the performance measures.

The results based on the “contemporaneous betas approach” are collected in Table V.

Panel A, showing the out-of-sample R2 and the square-error loss, demonstrates that using

the variance risk premium alone generates significant return predictability that peaks at the

quarterly horizon, but then declines monotonically. Similarly, Panel B shows that the variance

risk premium significantly improves the certainty equivalent relative to the benchmark model,

with a maximum gain of 3.5% at the quarterly horizon, but declining for longer horizons.

The correlation risk premium produces significantly better return predictability than the

benchmark model for all horizons. For example, the out-of-sample R2 reaches its maximum of

7.9% at the 9 months horizon and decreases only slightly to 7.0% for a one year forecast horizon.

The Diebold-Mariano test statistic yields similar results and the correlation risk premium shows

improvements in the certainty equivalent return of 3.9% for the monthly horizon that stays

above 2% for up to 9 months, and is slightly less than one percent for one year. Starting from

18MBB is shown (e.g., in Lahiri (1999)) to be comparable in performance to other widely used methods like
stationary bootstrap by Politis and Romano (1994) or circular block bootstrap from their 1992 paper, while
constant block size leads to smaller mean-squared errors than with random block size as in stationary bootstrap.

19We draw 10,000 random samples of size equal to 200 blocks, with blocks of twelve observations (i.e., one-
year blocks) to preserve the autocorrelation in the data, which is at maximum equal to eleven lags for annual
prediction horizon due to overlapping observations each month.
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a horizon of 6 months, the R2 is always higher than for the variance risk premium. Moreover,

comparing the certainty equivalent gain for the two models directly (CE2,τr −CE3,τr), confirms

that the correlation risk premium performs better than variance risk premium for long horizons

with gains of 0.5 − 1%. Finally, using the variance and correlation risk premium jointly only

improves predictability for short horizons of to 3 months.

In summary, comparable to the in-sample analysis, the variance and correlation risk pre-

mium provide non-redundant information, with the the predictive power of the correlation risk

premium being economically and statistically significant for a longer period compared to the

variance risk premium.

To highlight the importance of our contemporaneous betas approach, that is, the timely

update of the regression coefficients, we now also run the traditional predictive procedure.

That is, we regress, at the end of each month t, historical market excess returns on lagged

regressors:

rs→s+τr = βV RP V RP (s, s+ τr) + βCRP CRP (s, s+ τr), s+ τr ≤ t, (26)

and use the resulting betas together with the time-t observable variables V RP (t, t + τr) and

CRP (t, t + τr) to form an market excess return forecast r̂t→t+τr for the forecast horizon. We

use a 3-year rolling window of past data at each time t to estimate the regression and apply

the same evaluation criteria as we did before. The results are shown in Table VI.

Panel A shows that the out-of-sample R2 and Diebold-Mariano loss function are substan-

tially weaker than for the contemporaneous betas. For example, for the variance risk premium

the R2 is never significantly positive. The correlation risk premium implies some modest cer-

tainty equivalent gains. However, in general, the results are always considerably weaker than

in Table V.

Recall that with the traditional approach, when estimating the betas in (26) at time t, the

latest observation of the predictive variables comes from t−τr, whereas in the contemporaneous

betas approach one can use information up to time t. For example, for predicting annual
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returns using the traditional approach, one cannot use any (option-implied) information from

the past year. To illustrate this difference between the contemporaneous beta approach and

the traditional approach, Figure 1 contrasts the variance risk premium and correlation risk

premium betas for the two approaches. The differences in betas can be quite large, particularly

so for longer horizons. While the variance and correlation betas are quite volatile in general,

the contemporaneous betas are considerably more stable than the standard ones, which adds to

the stability of the return forecast. For example, visually, traditional betas seem to overreact to

large “outliers” in returns and / or predictive variables. In contrast, using high-frequency (daily)

returns and variance / correlation increments in the contemporaneous approach mitigates the

effect of outliers on the estimated quadratic co-variation and the resulting betas.

In summary, three important messages emerge: (i) the variance and correlation risk pre-

miums perform statistically significantly better than the simple average historical return, and

the improvements in predictability have clear economic benefits; (ii) the performance of the

variance risk premium peaks at the quarterly horizon, and then declines, while the correlation

risk premium yields significant predictability for horizons of up to a year; and (iii) using the

contemporaneous betas approach is important, especially for longer-term predictions.

IV. Source of Correlation Risk

While for our analysis of the market return predictability, the source of the positive price

for correlation risk is secondary, understanding the economic mechanism that creates it, is of

importance itself. In this section, we study potential explanations for priced correlation risk.

A. The Correlation Risk Premium and Uncertainty

Buraschi, Trojani, and Vedolin (2014) offer, in a general equilibrium setting, an explanation

for the existence of a correlation risk premium that relies on economic uncertainty, measured as

the aggregate difference in beliefs regarding future earnings. Intuitively, both—the correlation

risk premium and uncertainty—are associated with a positive compensation for risk, and, hence,
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the correlation risk premium might potentially proxy for uncertainty. Buraschi, Trojani, and

Vedolin (2014) also provide solid empirical support, showing that the ex-post correlation risk

premium is positively related to differences in beliefs.

To proxy for economic uncertainty we rely on the measure of economic policy uncertainty

(EPU) by Baker, Bloom, and Davis (2016),20 and also construct the disagreement proxy

DIB, as in Buraschi, Trojani, and Vedolin (2014). Specifically, following Diether, Malloy,

and Scherbina (2002) we define a firm-specific disagreement proxy as the standard deviation

of a firm’s earnings-per-share forecasts for the next fiscal year (scaled by the absolute value

of the forecasts), and compute it using the Unadjusted Summary History file for U.S. firms

from I/B/E/S. The market-wide disagreement DIB is simplified defined as an equal-weighted

average of the firm-specific disagreement proxies.21

For the sample period used in Buraschi, Trojani, and Vedolin (2014), that is, January

1996 to July 2007, we also find a positive correlation between aggregate DIB and the ex-post

correlation risk premium, ranging from 0.11 for the 30-day correlation risk premium to 0.06 for

the 365-day correlation risk premium. However, for our whole sample period until April 2016,

the correlation with the 30-day correlation risk premium becomes literally zero (0.008), turning

negative for longer maturities, and reaching -0.19 for the 365-day correlation risk premium.

While the theory about the link between the uncertainty (disagreement) and the correlation

risk premium is very logical and appealing, the data in the last several years does not fully

support it. One of the potential reasons for it is the change in the information processing

technologies and market microstructure, happening in the last decade. We leave it as an open

topic for future research to understand the exact reasons for such changes in empirical evidence

and potentially to refine the existing model.

20We appreciate having an opportunity to download updated series of the Economic Policy Uncertainty Index
from the web-site of the authors www.policyuncertainty.com/.

21Buraschi, Trojani, and Vedolin (2014) report a correlation of almost one with the corresponding variable
based on market capitalization weights.
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B. The Correlation Risk Premium and Future Market Risk

Another potential explanation for the existence of a correlation risk premium is the role of

correlation as a state variable in the ICAPM, predicting future investment opportunities.

Future investment opportunities can be related to the future portfolio variance of a simple

equal-weighted portfolio of N stocks

σ2
p =

(
1

N

)(
1

N

N∑
i=1

σ2
i

)
+

(
N2 −N
N2

) 1

N2 −N

N∑
i=1

N∑
j 6=i

σij

 ,

which, as N becomes large, is driven by the average covariance only. Accordingly, future

investment opportunities are characterized by the future average correlation among stocks and

future average variance, which define the lowest attainable bound of systematic risk in a well-

diversified portfolio. Intuitively, an increase in correlations reduces diversification benefits,

and, thus, increases the total portfolio risk.22 Moreover, if one thinks in terms of a simple one-

factor market model for returns, the covariances, given by σij = βM,iβM,jσ
2
M , are decreasing in

the cross-sectional dispersion of betas.23 Thus, the portfolio’s expected non-diversifiable risk

relative to the market risk is decreasing in the dispersion of betas.

Table VII provides the regression results for predicting future risk measures (realized cor-

relation, realized market variance, and dispersion of market betas) by expected correlation as

well as expected variance. This allow us to disentangle the roles of variance and correlation as

state variables defining future investment opportunities, and, thus, to understand why variance

and correlation risk premiums predict returns over different horizons.

Expected correlation, and especially implied correlation, predict future realized correlation

very well, delivering a high R2 for all horizons. The strongest predictability arises for shorter-

term realized correlation (with an R2 of 35% for the monthly horizon), though the R2 for the

22In a more practical sense, the average correlation between stocks also strongly affects the number of stocks
needed to form a well-diversified portfolio.

23Assuming that market betas are distributed around mean one with the same variance, that is, βM,k =
1 + εM ∼ Dist(1, σ2

ε ), it holds that E[βM,iβM,j ] = E[(1 + εM,i)(1 + εM,j)] = 1 + cov(εM,i, εM,j) = 1 − σ2
ε , where

the covariance between the deviation of betas from the mean is negative, because their mean does not change,
and an increasing beta is necessarily compensated by a decreasing one.
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annual horizon is still above 15%. Similarly, expected correlation predicts the future dispersion

of market betas, with higher expected correlation predicting lower dispersion and, hence, more

portfolio risk. At the monthly horizon, theR2 is a modest (10.70%), but increases to around 30%

for six months and longer horizons. Both expected correlations—implied and past realized—do

a very poor job in predicting future market variance.

In contrast, expected variance, specifically so implied variance, predict future market vari-

ance, with an impressive explanatory power at short horizons. The R2 is almost 50% for

one-month predictions, but drops quickly and is only about 12% for one-year future variance.

Expected variances can also predict future realized correlations, with a more modest R2 of 15.9%

for one month, and less than 5% for one year. Contrary to expectation, expected variances pre-

dict the dispersion of future market betas with a positive sign. Accordingly, a higher expected

variance predicts better future diversification, that is, lower portfolio risk for well-diversified

portfolios at longer horizons.

In summary, similar to our empirical results on market return predictability, variance and

correlation seem to provide non-redundant information for future investment opportunities.

Particularly, their predictive power varies with the horizon. While variance predicts shorter-

term risk in the form of future realized market variance, correlation plays an important role

in determining longer-term risks in the form of diversification benefits. This allows the link to

Buraschi, Kosowski, and Trojani (2014), with correlation as a “no-place-to-hide” state variable,

which predicts risks and returns at longer horizons compared to variance.

V. Robustness Tests

We carry out a number of additional tests to check the robustness of our results. The

additional tables are provided in the Internet Appendix.

Instead of relying on variance and correlation risk premiums from options with maturities

matching the forecasting horizon, the literature has often used options with a maturity of one
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month for all return forecast horizons (see, among others, Bollerslev, Tauchen, and Zhou (2009)

and Bollerslev, Marrone, Xu, and Zhou (2014)). Accordingly, in the following, we reproduce

the in-sample and out-of-sample predictability results, always using the implied variance from

options with one month to maturity to estimate the beta, βt,∆IV , and the variance risk premium

with the same maturity for the return forecast (25).

Interestingly, the in-sample predictive power for these short-maturity options is typically

slightly better (Table AI101), and the coefficients on the variance risk premium do not turn

negative with the 30-day options. However, qualitatively, the pattern is the same, that is,

the R2 peaks at a quarterly frequency and then declines. A similar picture emerges for the

out-of-sample return predictability (Table AI102). In summary, it seems that options with a

30-day maturity deliver slightly better results than options with a maturity matching the return

horizon.

We also test how the option-based variables compare in predicting the future market ex-

cess return with a number of fundamental variables, that have been used in the literature.

While there is a myriad of possible explanatory variables used in different studies (see, among

others, Goyal and Welch (2008) and Ferreira and Santa-Clara (2011)), we limit our choice to

five variables that encompass non-redundant economic information and have been show to be

highly significant in-sample, constructed as in Goyal and Welch (2008). Specifically, we use

the Earnings Price Ratio (EP12), defined as the difference between the log of earnings and

the log of prices; the Term Spread (TMS), that is, the difference between the long term yield

on government bonds and the Treasury-bill; the Default Yield Spread (DFY ), computed as

the difference between BAA and AAA-rated corporate bond yields; the Book-to-Market Ratio

(BM), that is, the ratio of book value to market value for the Dow Jones Industrial Aver-

age; and the Net Equity Expansion (NTIS), defined the ratio of the 12-month moving sum

of net issues by NYSE listed stocks divided by the total end-of-year market capitalization of

NYSE stocks. While a number of fundamental variables successfully improve explaining future

market returns, they typically do not change the sign or significance of the correlation risk

29



premium (Table AI103). In some cases adding the term or default spread actually improves the

significance of the correlation risk premium, for example, for 9- and 12-month predictions.

VI. Conclusion

Implied correlation uses forward-looking information from option markets, and is typically

interpreted as an indicator of diversification risk in the future. In this paper, we show that

the correlation risk premium, inferred from major U.S. stock indices, is able to predict market

excess returns in-sample and out-of-sample at horizons of up to one year. In contrast, the

predictability of the variance risk premium peaks already at the quarterly frequency.

We first derive, in a reduced-form model, a beta representation of the equity risk premium

that links it to the variance and correlation risk premiums. Next, we develop a new methodology

for estimating contemporaneous betas with respect to variance and correlation risk, using daily

increments of option-implied variance and correlation. Our methodology substantially improves

the out-of-sample predictability of market returns, and leads to out-of-sample R2s of 7.9% even

at the 9 month horizon, and 7% at the annual horizon. These predictability results imply

considerable statistical and economic gains in portfolio optimization (such as the gain of 2%

p.a. in the certainty equivalent return of a myopic mean-variance investor).

Analyzing the link between correlation and uncertainty as well as future risks, we document

that the average correlation can be interpreted as a “no-place-to-hide” state variable, that

predicts future diversification risks for horizons of up to one year. Particularly, expected corre-

lation predicts future realized correlations and non-diversifiable market risk in equity portfolios

in the form of dispersion of market betas. Expected variance performs better only in predicting

shorter-term risks. This allows an interpretation of market variance and average correlation

as state variables in the form of the ICAPM (or proxies of state variables) that predict future

investment opportunities, and hence bear risk premiums as compensation. Intuitively, while

correlations predict risks for a longer term compared to variances, they are able to predict

returns for longer horizons as well.
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Table I Individual and Index Variances, and Variance Risk Premiums

The table reports the time-series averages of realized (RV ) and model-free implied variances (IV ), expressed in
volatility terms, and the difference between them (V RP = IV −RV ), expressed as a difference in variances, for
three samples of stocks—components of S&P500, S&P100, and DJ30 indices, for the sample period from 1996
to 04/2016, and from 10/1997 to 04/2016, respectively, and for three different maturities—30, 91, 182, 273, and
365 (calendar) days. For individual stocks the variances are equal-weighted cross-sectional averages across all
constituent stocks. Implied variance (IV ) is computed as simple variance swap (Martin (2013)) on each day
using out-of-the money options with the respective maturity, and realized variance RV is calculated on each day
from daily returns over a respective window, corresponding to the maturity of IV . All numbers are expressed
in annual terms. The p-value is for the null hypothesis that implied and realized variances are on average equal;
the p-values are computed from standard errors with Newey and West (1987) adjustments for autocorrelation.

Individual Stocks Indices

Days
√
IV

√
RV V RP p− val

√
IV

√
RV V RP p− val

SP500 Sample
30 0.398 0.397 0.001 0.807 0.210 0.185 0.005 0.007
91 0.381 0.395 -0.011 0.125 0.210 0.184 0.006 0.049
182 0.371 0.393 -0.017 0.115 0.211 0.184 0.007 0.087
273 0.368 0.392 -0.019 0.154 0.213 0.184 0.007 0.090
365 0.365 0.392 -0.020 0.171 0.215 0.185 0.008 0.078

SP100 Sample
30 0.361 0.368 -0.005 0.309 0.210 0.186 0.005 0.007
91 0.348 0.366 -0.012 0.095 0.211 0.185 0.006 0.034
182 0.342 0.363 -0.015 0.115 0.212 0.185 0.007 0.055
273 0.340 0.361 -0.015 0.175 0.214 0.185 0.008 0.067
365 0.339 0.361 -0.016 0.217 0.217 0.186 0.009 0.053

DJ30 Sample
30 0.320 0.325 -0.003 0.314 0.206 0.175 0.006 0.000
91 0.308 0.323 -0.009 0.121 0.206 0.175 0.007 0.007
182 0.302 0.320 -0.011 0.231 0.208 0.175 0.008 0.023
273 0.303 0.317 -0.009 0.349 0.210 0.175 0.009 0.032
365 0.304 0.316 -0.007 0.476 0.212 0.175 0.010 0.032
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Table II Individual Variance Risk Premiums

The table reports the results of individual tests of variance risk premiums, for three samples of stocks–components
of S&P500, S&P100, and DJ30 indices, for the sample period from 01/1996 to 04/2016 for S&P500 and S&P100,
and from 10/1997 to 04/2016 for DJ30, and five three different maturities – 30, 91, 182, 273 and 365 (calendar)
days. The table shows the number of stocks, for which the respective hypothesis is either rejected (IV −RV ≥ 0
and IV − RV ≤ 0), or failed to be rejected (IV = RV ). Implied variance (IV) is computed on each day using
out-of-the money options with the respective maturity, and realized variance (RV) is calculated on each day from
daily returns over a respective window, corresponding to the maturity of IV. The test statistics for each stock
are based on Newey-West (1987) autocorrelation consistent standard errors with lags equal to the number of
overlapping observations (20, 62, 125, 188 or 251, respectively).

Days IV −RV ≥ 0 IV = RV IV −RV ≤ 0

SP500 Sample
30 54 669 344
91 70 824 171
182 83 839 143
273 86 810 168
365 95 765 197

SP100 Sample
30 12 150 51
91 9 173 25
182 16 176 25
273 13 166 30
365 12 159 40

DJ30 Sample
30 3 38 7
91 4 42 4
182 2 41 4
273 1 39 10
365 0 37 10
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Table III Index Implied and Realized Correlations: Summary

The table reports summary statistics (time-series mean, p-value for the mean, median, and the standard de-
viation) for the implied correlation (IC), realized correlation (RC), and for the correlation risk premium
(CRP = IC−RC), for three samples of stocks—components of S&P500, S&P100 and DJ30 indices, for the sam-
ple period from 1996 to 04/2016, and from 10/1997 to 04/2016, respectively, and for five different maturities—30,
91, 182, 273, and 365 (calendar) days. IC(t) (RC(t)) are calculated from daily observations of implied (real-
ized) variances for the index and for all index components. Implied variances are computed as simple variance
swaps (Martin (2013)). The p-values for significance of the means are computed with Newey and West (1987)
adjustments for autocorrelation.

IC RC IC-RC
30 91 182 273 365 30 91 182 273 365 30 91 182 273 365

SP500
Mean 0.387 0.423 0.446 0.454 0.459 0.327 0.326 0.327 0.328 0.327 0.060 0.097 0.123 0.130 0.133
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.375 0.423 0.454 0.462 0.464 0.298 0.308 0.310 0.307 0.308 0.060 0.094 0.126 0.140 0.142
StDev 0.126 0.113 0.106 0.104 0.099 0.145 0.125 0.119 0.116 0.115 0.103 0.084 0.081 0.080 0.076

SP100
Mean 0.423 0.463 0.485 0.494 0.498 0.356 0.357 0.359 0.359 0.358 0.067 0.106 0.126 0.135 0.140
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.412 0.466 0.496 0.506 0.509 0.331 0.344 0.339 0.342 0.341 0.066 0.103 0.125 0.144 0.144
StDev 0.130 0.114 0.106 0.103 0.101 0.152 0.129 0.122 0.119 0.116 0.114 0.090 0.090 0.094 0.093

DJ30
Mean 0.464 0.497 0.523 0.529 0.528 0.371 0.373 0.376 0.378 0.377 0.082 0.112 0.138 0.140 0.137
p-val 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Median 0.456 0.503 0.535 0.541 0.539 0.352 0.363 0.368 0.359 0.359 0.078 0.102 0.134 0.144 0.141
StDev 0.148 0.129 0.118 0.113 0.105 0.169 0.148 0.143 0.142 0.141 0.130 0.102 0.095 0.094 0.090
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Table IV In-sample Market Return Predictability: Correlation and Variance Risk Premiums

The table shows the coefficients (and corresponding p-values) and the R2 of the market predictive regressions,
for the sample period from 01/1996 to 04/2016 for S&P500 and S&P100, and from 10/1997 to 04/2016 for DJ30-
based variables. We regress overlapping excess market returns compounded over a specified horizon (30, 91, 182,
273, and 365 calendar days) on a constant and a given set of explanatory variables, which are the correlation risk
premium (CRP ) for 30, 91, 182, 273, and 365 calendar days, and the variance risk premium (V RP ), which equals
to the difference between implied variance and lagged realized variance computed over the matching period of 30,
91, 182, 273, and 365 calendar days. Implied variances are computed as simple variance swaps (Martin (2013)).
The p-values (under the coefficients) for the null hypothesis that the coefficients are equal zero are computed
using Newey and West (1987) standard errors. The adjusted R2 are given as percentages.

Return, 30 days Return, 91 days Return, 181 days Return, 273 days Return, 365 days

SP500 Sample
CRP 0.076 - 0.027 0.254 - 0.195 0.381 - 0.729 0.588 - 1.108 0.559 - 1.071

0.027 - 0.362 0.002 - 0.027 0.051 - 0.002 0.067 - 0.002 0.150 - 0.031
VRP - 0.322 0.289 - 0.562 0.270 - -0.304 -1.606 - -0.599 -2.554 - -0.740 -2.501

- 0.004 0.007 - 0.002 0.175 - 0.553 0.000 - 0.380 0.000 - 0.253 0.028
R2 2.48 6.90 6.81 7.26 5.08 7.73 6.90 0.15 16.20 9.87 0.81 23.90 5.43 0.85 14.77

SP100 Sample
CRP 0.051 - 0.011 0.234 - 0.161 0.363 - 0.647 0.561 - 1.029 0.527 - 0.994

0.076 - 0.678 0.004 - 0.062 0.047 - 0.003 0.042 - 0.001 0.082 - 0.017
VRP - 0.333 0.319 - 0.652 0.400 - -0.270 -1.567 - -0.437 -2.642 - -0.467 -2.645

- 0.004 0.006 - 0.001 0.042 - 0.683 0.006 - 0.592 0.001 - 0.518 0.031
R2 1.27 6.68 6.35 6.74 6.07 8.10 7.24 -0.03 15.10 12.18 0.21 26.16 7.60 0.08 17.28

DJ30 Sample
CRP 0.040 - 0.010 0.205 - 0.133 0.273 - 0.545 0.330 - 0.741 0.150 - 0.581

0.117 - 0.675 0.007 - 0.120 0.123 - 0.018 0.243 - 0.017 0.642 - 0.198
VRP - 0.292 0.277 - 0.679 0.420 - -0.436 -1.718 - -0.942 -2.690 - -1.323 -2.628

- 0.005 0.005 - 0.000 0.044 - 0.475 0.008 - 0.236 0.004 - 0.079 0.072
R2 0.90 4.53 4.16 6.27 6.06 7.51 4.47 0.40 12.33 3.93 1.86 15.64 0.11 2.81 7.85
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Table V Out of Sample Predictability - Contemporaneous Beta Approach

The table reports the Out-of-Sample R2
j,τr and the Diebold-Mariano test statistic δj,τr in Panel A, and the

improvement of the certainty equivalent of a mean-variance investor optimizing her portfolio using forecasts by
a specific model instead of either using the past mean market return (Model 0), or CRP as a predictor, in
Panel B. The variance and correlation risk premiums are computed as the difference between implied and lagged
realized variances (V RP = IV − RV ), and as the difference between implied and lagged realized correlations
(CRP = IC − RC), for three samples of stocks—components of S&P500, S&P100, and DJ30 indices, for the
sample period from 1996 to 04/2016 for S&P500, S&P100, and from 10/1997 to 04/2016 for DJ30, and for
five different maturities—30, 91, 182, 273, and 365 (calendar) days. Implied variance (IV ) is computed as the
simple variance swap (Martin (2013)) on each day using out-of-the money options with the respective maturity,
and realized variance is calculated on each day from daily returns over the corresponding historical window.
The betas are computed on each day using daily increments over a 12-month rolling window. The p-values are
obtained from a bootstrapped distribution using moving-block bootstrap by Künsch (1989) with 10,000 samples
and block length of 12 months.

Panel A: OOS R2 and δ

R2
j,τr

δj,τr
Days VRP CRP VRP+CRP VRP CRP VRP+CRP

SP500 Sample
30 0.094 0.025 0.096 -0.000 -0.000 -0.000

0.000 0.000 0.000 0.000 0.000 0.000
91 0.103 0.081 0.104 -0.001 -0.001 -0.001

0.000 0.000 0.000 0.000 0.000 0.000
182 0.062 0.067 0.063 -0.001 -0.001 -0.001

0.000 0.000 0.001 0.000 0.000 0.001
273 0.039 0.079 0.032 -0.001 -0.002 -0.001

0.064 0.000 0.144 0.065 0.000 0.145
365 0.037 0.070 0.024 -0.001 -0.003 -0.001

0.091 0.001 0.210 0.091 0.001 0.213

SP100 Sample
30 0.091 0.012 0.087 -0.000 -0.000 -0.000

0.000 0.015 0.000 0.000 0.015 0.000
91 0.111 0.072 0.107 -0.001 -0.000 -0.001

0.000 0.000 0.000 0.000 0.000 0.000
182 0.029 0.055 0.020 -0.000 -0.001 -0.000

0.086 0.000 0.215 0.088 0.000 0.218
273 0.019 0.066 0.000 -0.001 -0.002 -0.000

0.239 0.000 0.498 0.241 0.000 0.498
365 0.031 0.070 0.016 -0.001 -0.003 -0.001

0.134 0.001 0.298 0.136 0.001 0.301

DJ30 Sample
30 0.065 -0.004 0.066 -0.000 0.000 -0.000

0.000 0.283 0.000 0.000 0.283 0.000
91 0.103 0.064 0.094 -0.001 -0.000 -0.001

0.000 0.000 0.000 0.000 0.000 0.000
182 0.041 0.049 0.025 -0.001 -0.001 -0.000

0.006 0.001 0.079 0.007 0.001 0.079
273 -0.001 0.028 -0.017 0.000 -0.001 0.000

0.462 0.092 0.193 0.460 0.094 0.193
365 -0.005 0.008 -0.023 0.000 -0.000 0.001

0.396 0.387 0.100 0.394 0.390 0.098
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...Table V continued

Panel B: Certainty Equivalent Improvement

CEj,τr − CE0,τr CEj,τr − CECRP,τr
Days VRP CRP VRP+CRP VRP CRP VRP+CRP

SP500 Sample
30 0.023 0.039 0.023 -0.016 - -0.016

0.003 0.000 0.003 0.000 - 0.002
91 0.035 0.022 0.032 0.013 - 0.010

0.000 0.001 0.000 0.001 - 0.038
182 0.030 0.021 0.030 0.009 - 0.009

0.000 0.000 0.000 0.038 - 0.061
273 0.016 0.020 0.012 -0.004 - -0.008

0.008 0.000 0.061 0.237 - 0.105
365 -0.001 0.007 -0.007 -0.008 - -0.015

0.456 0.086 0.159 0.040 - 0.002

SP100 Sample
30 0.021 0.024 0.017 -0.004 - -0.007

0.008 0.000 0.022 0.264 - 0.158
91 0.034 0.027 0.031 0.008 - 0.005

0.000 0.000 0.000 0.018 - 0.196
182 0.024 0.021 0.017 0.004 - -0.004

0.000 0.000 0.015 0.218 - 0.242
273 0.010 0.017 -0.001 -0.007 - -0.018

0.071 0.002 0.455 0.085 - 0.001
365 0.002 0.011 -0.008 -0.009 - -0.019

0.404 0.039 0.137 0.014 - 0.000

DJ30 Sample
30 0.005 -0.015 0.014 0.020 - 0.029

0.315 0.087 0.094 0.000 - 0.000
91 0.023 0.013 0.021 0.010 - 0.008

0.000 0.034 0.003 0.002 - 0.036
182 0.028 0.017 0.025 0.011 - 0.008

0.000 0.013 0.001 0.020 - 0.102
273 0.008 0.013 0.003 -0.005 - -0.011

0.169 0.015 0.369 0.202 - 0.071
365 -0.016 -0.008 -0.019 -0.008 - -0.012

0.027 0.144 0.010 0.090 - 0.055
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Table VI Out of Sample Predictability - Traditional Beta Approach

The table reports the Out-of-Sample R2
j,τr and the Diebold-Mariano test statistic δj,τr in Panel A, and the

improvement of the certainty equivalent of a mean-variance investor optimizing her portfolio using forecasts by a
specific model instead of either using past mean market return (Model 0), or CRP as a predictor, in Panel B. The
VRP and CRP betas are computed by the traditional predictive approach using a 36-month historical rolling
window for estimation. The variance and correlation risk premiums are computed as the difference between
implied and lagged realized variances (V RP = IV − RV ), and as a difference between implied and lagged
realized correlations (CRP = IC − RC), for three samples of stocks—components of S&P500, S&P100, and
DJ30 indices, for the sample period from 1996 to 04/2016 for S&P500, S&P100, and from 10/1997 to 04/2016
for DJ30, and for five different maturities—30, 91, 182, 273, and 365 (calendar) days. Implied variance (IV )
is computed as the simple variance swap (Martin (2013)) on each day using out-of-the money options with the
respective maturity, and realized variance is calculated on each day from daily returns over the corresponding
historical window. Betas are computed using monthly-sampled variables over a 60-month rolling window. The
p-values are obtained from a bootstrapped distribution using moving-block bootstrap by Künsch (1989) with
10,000 samples with the block size of 60 months.

Panel A: OOS R2 and δ

R2
j,τr

δj,τr
Days VRP CRP VRP+CRP VRP CRP VRP+CRP

SP500 Sample
30 -0.438 -0.014 -0.679 0.001 0.000 0.001

0.000 0.000 0.000 0.000 0.000 0.000
91 -0.938 -0.022 -0.841 0.008 0.000 0.007

0.000 0.000 0.000 0.000 0.000 0.000
182 -1.667 -0.177 -0.674 0.037 0.004 0.015

0.000 0.000 0.000 0.000 0.000 0.000
273 -0.453 -0.325 -1.223 0.017 0.012 0.045

0.000 0.000 0.000 0.000 0.000 0.000
365 -1.628 -0.226 -3.687 0.085 0.012 0.192

0.000 0.000 0.000 0.000 0.000 0.000

SP100 Sample
30 -0.333 -0.023 -0.555 0.001 0.000 0.001

0.000 0.000 0.000 0.000 0.000 0.000
91 -1.232 -0.022 -1.088 0.010 0.000 0.009

0.000 0.000 0.000 0.000 0.000 0.000
182 -6.846 -0.208 -2.973 0.160 0.005 0.069

0.000 0.000 0.000 0.000 0.000 0.000
273 -1.067 -0.496 -0.116 0.041 0.019 0.004

0.000 0.000 0.000 0.000 0.000 0.000
365 -1.607 -0.320 -2.311 0.084 0.017 0.121

0.000 0.000 0.000 0.000 0.000 0.000

DJ30 Sample
30 -0.775 -0.012 -1.104 0.002 0.000 0.003

0.000 0.000 0.000 0.000 0.000 0.000
91 -1.317 0.009 -0.747 0.012 -0.000 0.007

0.000 0.086 0.000 0.000 0.087 0.000
182 -0.809 -0.136 -0.441 0.020 0.003 0.011

0.000 0.000 0.000 0.000 0.000 0.000
273 -0.376 -0.358 -0.627 0.015 0.014 0.025

0.000 0.000 0.000 0.000 0.000 0.000
365 -1.172 -0.295 -1.960 0.067 0.017 0.112

0.000 0.000 0.000 0.000 0.000 0.000
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...Table VI continued

Panel B: Certainty Equivalent Improvement

CEj,τr − CE0,τr CEj,τr − CECRP,τr
Days VRP CRP VRP+CRP VRP CRP VRP+CRP

SP500 Sample
30 0.021 0.009 0.027 0.012 - 0.018

0.000 0.000 0.000 0.003 - 0.000
91 0.030 0.043 0.034 -0.012 - -0.008

0.000 0.000 0.000 0.000 - 0.000
182 -0.017 0.016 0.035 -0.033 - 0.019

0.000 0.000 0.000 0.000 - 0.000
273 0.057 0.017 0.111 0.041 - 0.095

0.000 0.000 0.000 0.000 - 0.000
365 0.057 0.013 0.050 0.044 - 0.037

0.000 0.000 0.000 0.000 - 0.000

SP100 Sample
30 0.013 0.006 0.017 0.006 - 0.011

0.001 0.000 0.000 0.096 - 0.001
91 0.037 0.041 0.035 -0.004 - -0.006

0.000 0.000 0.000 0.000 - 0.000
182 -0.023 0.040 0.022 -0.063 - -0.019

0.000 0.000 0.000 0.000 - 0.000
273 0.021 0.022 0.105 -0.001 - 0.083

0.000 0.000 0.000 0.383 - 0.000
365 0.030 0.007 0.100 0.022 - 0.093

0.000 0.000 0.000 0.000 - 0.000

DJ30 Sample
30 0.017 0.008 0.006 0.009 - -0.002

0.000 0.000 0.072 0.019 - 0.343
91 0.036 0.051 0.049 -0.015 - -0.002

0.000 0.000 0.000 0.000 - 0.000
182 -0.017 0.020 0.031 -0.037 - 0.011

0.000 0.000 0.000 0.000 - 0.000
273 0.036 0.013 0.091 0.023 - 0.078

0.000 0.000 0.000 0.000 - 0.000
365 0.030 0.012 0.038 0.018 - 0.026

0.000 0.000 0.000 0.000 - 0.000
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Table VII Risk Predictability

The table shows the coefficients (with corresponding p-values) and the R2 of the risk predictive regressions, for
the sample period from 01/1996 to 04/2016 for S&P500 and S&P100, and from 10/1997 to 04/2016 for DJ30-
based variables. We regress risk measures for a specified future horizon of 30, 91, 181, 273, and 365 calendar days
on a constant and one of the explanatory variables, which are the lagged realized and current implied variances
(RV and IV ), and lagged realized and current implied correlations (RC and IC) for 30, 91, 181, 273, and 365
calendar days. The risk measures are the cross-sectional variance of market betas σ2(βM ) for all stocks in an
index in Panel A, realized equicorrelation (RC) in Panel B, and realized market variance (RV ) for a given index
in Panel C. Implied variances are computed as simple variance swaps Martin (2013). The p-values (under the
coefficients) for the null hypothesis that the coefficients are equal zero are computed using Newey and West
(1987) standard errors.

Panel A: Dispersion of Market Betas – σ2(βM)

σ2(βM ), 30 σ2(βM ), 91 σ2(βM ), 181 σ2(βM ), 273 σ2(βM ), 365

β p− val R2 β p− val R2 β p− val R2 β p− val R2 β p− val R2

SP500 Sample
RV -0.117 0.573 0.05 0.761 0.011 6.80 1.390 0.000 14.64 1.214 0.004 12.90 1.004 0.026 9.97
IV -0.148 0.651 0.02 1.328 0.005 7.62 1.818 0.000 11.26 2.105 0.000 15.63 2.334 0.000 20.93
RC -0.531 0.000 6.59 -0.226 0.097 3.04 -0.255 0.188 4.61 -0.251 0.276 5.06 -0.231 0.351 4.91
IC -0.783 0.000 10.70 -0.487 0.002 11.59 -0.677 0.001 28.54 -0.684 0.004 32.30 -0.643 0.020 28.58

SP100 Sample
RV 0.224 0.425 0.23 0.987 0.006 11.08 1.473 0.000 26.81 1.417 0.000 24.53 1.210 0.005 17.08
IV 0.672 0.120 0.97 1.765 0.001 14.27 2.161 0.000 23.71 2.460 0.000 29.36 2.421 0.000 30.74
RC -0.315 0.000 2.77 -0.097 0.421 0.61 -0.017 0.929 0.00 -0.020 0.928 0.02 -0.055 0.811 0.33
IC -0.422 0.000 3.64 -0.296 0.046 4.55 -0.399 0.062 10.84 -0.454 0.061 16.30 -0.414 0.130 15.02

DJ30 Sample
RV 0.294 0.258 0.46 1.219 0.000 22.26 1.779 0.000 35.26 1.520 0.000 30.70 1.305 0.001 24.57
IV 0.696 0.064 1.30 1.781 0.000 21.71 2.263 0.000 32.67 2.406 0.000 41.02 2.501 0.000 46.27
RC -0.089 0.368 0.35 0.044 0.706 0.24 0.029 0.827 0.14 0.020 0.898 0.07 0.022 0.899 0.10
IC -0.153 0.175 0.78 -0.073 0.551 0.54 -0.205 0.165 6.14 -0.213 0.188 7.50 -0.179 0.331 4.98

Panel B: Realized Correlation – RC

RC, 30 RC, 91 RC, 181 RC, 273 RC, 365

β p− val R2 β p− val R2 β p− val R2 β p− val R2 β p− val R2

SP500 Sample
RV 0.768 0.000 12.09 0.650 0.000 8.43 0.529 0.014 2.80 0.485 0.023 2.50 0.637 0.002 4.70
IV 1.359 0.000 15.93 1.200 0.000 10.58 0.854 0.052 3.30 0.646 0.256 1.78 0.558 0.398 1.38
RC 0.510 0.000 26.03 0.544 0.000 29.97 0.493 0.000 23.12 0.529 0.000 27.58 0.514 0.000 28.60
IC 0.688 0.000 35.44 0.548 0.000 25.05 0.451 0.000 16.88 0.422 0.001 15.01 0.440 0.003 15.67

SP100 Sample
RV 0.757 0.000 9.97 0.610 0.000 6.40 0.268 0.169 1.02 0.216 0.318 0.57 0.392 0.134 1.72
IV 1.278 0.000 12.80 1.065 0.000 7.87 0.526 0.150 1.62 0.216 0.676 0.21 0.112 0.853 0.04
RC 0.470 0.000 22.10 0.523 0.000 27.74 0.425 0.000 18.55 0.447 0.000 21.10 0.440 0.001 21.62
IC 0.647 0.000 30.64 0.512 0.000 20.69 0.386 0.001 11.90 0.297 0.026 7.20 0.267 0.075 6.04

DJ30 Sample
RV 0.861 0.000 8.89 0.703 0.000 5.38 0.471 0.155 1.14 0.389 0.204 0.77 0.601 0.120 1.93
IV 1.245 0.000 9.13 0.879 0.016 3.83 0.156 0.833 0.05 -0.281 0.763 0.20 -0.475 0.660 0.60
RC 0.522 0.000 27.28 0.609 0.000 37.30 0.560 0.000 28.65 0.593 0.000 31.97 0.577 0.000 31.91
IC 0.671 0.000 33.79 0.558 0.000 23.85 0.454 0.000 14.11 0.380 0.015 9.41 0.354 0.069 7.27
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...Table VII continued

Panel C: Realized Variance – RV

RV, 30 RV, 91 RV, 181 RV, 273 RV, 365

β p− val R2 β p− val R2 β p− val R2 β p− val R2 β p− val R2

SP500 Sample
RV 0.694 0.000 48.09 0.464 0.000 21.61 0.401 0.002 10.03 0.256 0.058 5.00 0.167 0.107 2.62
IV 1.074 0.000 48.54 0.847 0.000 26.44 0.754 0.000 15.91 0.645 0.000 12.83 0.569 0.000 11.87
RC 0.150 0.002 10.97 0.099 0.038 4.93 0.059 0.221 2.01 0.059 0.264 2.48 0.050 0.333 2.22
IC 0.143 0.001 7.43 0.044 0.201 0.80 -0.029 0.319 0.41 -0.040 0.162 0.97 -0.025 0.348 0.39

SP100 Sample
RV 0.681 0.000 46.29 0.458 0.000 20.97 0.311 0.005 9.72 0.219 0.081 4.84 0.162 0.156 2.65
IV 1.023 0.000 47.09 0.796 0.000 25.60 0.639 0.000 16.89 0.539 0.000 11.68 0.484 0.000 10.70
RC 0.122 0.003 8.60 0.081 0.060 3.85 0.056 0.220 2.24 0.054 0.296 2.47 0.044 0.413 1.96
IC 0.126 0.001 6.67 0.033 0.342 0.47 -0.021 0.518 0.23 -0.061 0.073 2.46 -0.048 0.120 1.74

DJ30 Sample
RV 0.660 0.000 43.56 0.436 0.000 19.07 0.385 0.002 9.23 0.237 0.073 4.21 0.136 0.212 1.68
IV 0.960 0.000 45.34 0.723 0.000 23.92 0.626 0.000 14.01 0.513 0.000 10.59 0.442 0.000 9.18
RC 0.102 0.005 8.61 0.069 0.061 4.32 0.038 0.337 1.52 0.034 0.408 1.45 0.023 0.556 0.82
IC 0.100 0.001 6.29 0.036 0.193 0.86 -0.033 0.203 0.88 -0.048 0.094 2.14 -0.042 0.144 1.72
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Figure 1. Beta Comparison: Contemporaneous vs. Traditional Approach

The figure shows the time series of the variance (VRP) and correlation betas (CRP), estimated
using our novel, contemporaneous approach (Contemp Beta) as well as the traditional, predictive
approach (Standard Beta). The contemporaneous approach uses a 12-months historical window of
daily returns, and the standard approach uses a historical rolling window of 60 months. We depict
betas for 30, 91, 182, and 365-day variance and correlation risks.
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VII. Appendix

A. Setup

The consumption dynamics is given by
dCt
Ct

= µcdt+ δc
√
VtdBc,t

dVt = κ1(V̄ − Vt)dt+ σ1

√
VtdBV,t + σρdρt

dρt = κ2(ρ̄− ρt)dt+ σ2
√
ρtdBρ,t,

(A1)

where µc, κ1, κ2, σ1, σρ, σ2, V̄ , ρ̄ ∈ R and Bc, BV and Bρ are standard Brownian motions. Plug-

ging in the expression for dρ into the second equation above, we obtain the variance process:

dVt = [κ1(V̄ − Vt) + κ̄2(ρ̄− ρt)]dt+ σ1

√
VtdBV,t + σ̄ρ

√
ρtdBρ,t, (A2)

where κ̄2 = σρκ2, and σ̄ρ = σρσ2.

The representative agent in the economy has Epstein-Zin recursive preferences. The in-

tertemporal value function is defined recursively (see Duffie and Epstein (1992b)) by

Jt = Et

[∫ T

t
f(Cs, Js)ds

]
(A3)

Thus the representative investor chooses consumption C in order to maximize the value function:

Jt = max
Cs

Et

[∫ T

t
f(Cs, Js)ds

]
, (A4)

where the normalized aggregator f(Ct, Jt) is given by

f(Ct, Jt) =
β

1− 1
ψ

(1− γ)Jt

[
(

Ct

((1− γ)Jt)
1

1−γ
)
1− 1

ψ − 1

]
(A5)

with relative risk aversion γ and elasticity of intertemporal substitution ψ. To simplify notation

restate f as follows:

f(Ct, Jt) =
β

1− 1
ψ

(1− γ)Jt[Gt − 1] = θJ [βGt − β], (A6)
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where

Gt :=

(
Ct

((1− γ)Jt)
1

1−γ

)1− 1
ψ

and θ :=
1− γ
1− 1

ψ

(A7)

The value function follows the Hamilton-Jacobi-Bellman equation

max
C
{f(C, J) +AJ} = 0, (A8)

where A denotes the infinitesimal generator.

B. Solving for Equilibrium

Conjecture. The conjectured solution for J has the following form

J(Wt, Vt, ρt) = exp(A0 +A1Vt +A2ρt)
W 1−γ
t

1− γ
(A9)

Approximation. To substitute consumption for wealth in the value function we use the

continuous-time log-linear approximation (Chacko and Viceira (2005)). With g1 denoting the

long-run mean of the consumption-wealth ratio (lower case variables denotes log variables)

g1 = exp(E[ct − wt]) we can write

Ct
Wt

= exp(log(
Ct
Wt

)) = exp(ct − wt) ≈ g1 − g1 log(g1) + g1 log(
Ct
Wt

) (A10)

Compute the partial derivatives of J and f :

JW : =
∂J(W,V, ρ)

∂W

=
∂

∂W

[
exp(A0 +A1Vt +A2ρt)

W 1−γ
t

1− γ

]

= exp(A0 +A1Vt +A2ρt)W
−γ
t

(A11)

47



and

fC : =
∂f(C, J)

∂C

=
∂

∂C

 β

1− 1
ψ

(1− γ)Jt

( Ct

((1− γ)Jt)
1

1−γ

)1− 1
ψ

− 1



=
∂

∂C

[
β

1− 1
ψ

(1− γ)Jt

((1− γ)Jt)
1

1−γ (1− 1
ψ

)
C

1− 1
ψ

t

]

= β
(1− γ)Jt

((1− γ)Jt)
ψ−1

(1−γ)ψ
C
− 1
ψ

t

(A12)

and hence

fC
((1− γ)Jt)

ψ−1
(1−γ)ψ

(1− γ)Jt
= βC

− 1
ψ

t

⇒ fC((1− γ)Jt)
ψγ−1
(1−γ)ψ = βC

− 1
ψ

t

⇒ f−ψC βψ((1− γ)Jt)
1−ψγ
(1−γ) = Ct

(A13)

Use the envelope condition fC = JW to rewrite the last:

J−ψW βψ((1− γ)Jt)
1−ψγ
(1−γ) = Ct (A14)

and plug in Jt and JW from equations (A9) and (A11), respectively, to obtain

Ct = (exp(A0 +A1Vt +A2ρt)
−ψW γψ

t )βψ exp(A0 +A1Vt +A2ρt)
1−ψγ
(1−γ)W 1−ψγ

t

= βψ exp(A0 +A1Vt +A2ρt)
1−ψ
(1−γ)Wt

(A15)

Thus, we obtain the wealth-consumption ratio:

Ct
Wt

= βψ exp(A0 +A1Vt +A2ρt)
1−ψ
1−γ

= βψ exp(A0a +A1aVt +A2aρt)

(A16)
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with Aia = Ai
1−ψ
1−γ .

To obtain the value function as function of consumption, we rewrite Wt as follows:

Wt = Ctβ
−ψ exp(A0 +A1Vt +A2ρt)

− 1−ψ
1−γ

⇒ W 1−γ
t = C1−γ

t β−ψ(1−γ) exp(A0 +A1Vt +A2ρt)
−(1−ψ)

(A17)

and substitute for W 1−γ in J(Wt, Vt, ρt) = exp(A0 +A1Vt +A2ρt)
W 1−γ
t

1−γ :

J(Ct, V, ρ) = exp(A0 +A1Vt +A2ρt)
C1−γ
t β−ψ(1−γ) exp(A0 +A1Vt +A2ρt)

−(1−ψ)

1− γ

= exp[ψ(A0 +A1Vt +A2ρt)]β
−ψ(1−γ)C

1−γ
t

1− γ

(A18)

Using the expression (A16) for Ct
Wt

and the conjecture (A9) for J we get

βG = β

(
Ct

((1− γ)Jt)
1

1−γ

)1− 1
ψ

= β

 Wtβ
ψ exp(A0 +A1Vt +A2ρt)

1−ψ
(1−γ)

((1− γ) exp(A0 +A1Vt +A2ρt)
W 1−γ
t

1−γ )
1

1−γ

1− 1
ψ

= βψ
(

exp[(A0 +A1Vt +A2ρt)
1− ψ
1− γ

]

)
=
Ct
Wt

,

(A19)

and the Ct
Wt

approximation as in (A10) then gives

βG =
Ct
Wt
≈ g1 − g1 log(g1) + g1 log(βG), (A20)

where from above we know that

log(βG) = log(βψ(exp[(A0 +A1Vt +A2ρt)
1− ψ
1− γ

])

= ψ log(β) + (A0 +A1Vt +A2ρt)
1− ψ
1− γ

.

(A21)

Thus, we arrive at the useable form of the aggregator function through approximation:

f = θJ [βG− β] ≈ θJ [g1 − g1 log(g1) + g1 log(βG)− β]

= θJ

[
g1 − β − g1 log(g1) + g1(ψ log(β) + (A0 +A1Vt +A2ρt)

1− ψ
1− γ

)

]

= θJ

[
ξ + g1(A0 +A1Vt +A2ρt)

1− ψ
1− γ

]
,

(A22)
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where ξ = g1 − β − g1 log(g1) + g1ψ log(β).

HJB Equation. Substituting consumption for wealth in the value function Jt and plugging

it in the Hamilton-Jacobi-Bellman equation (A8), results in a PDE that needs to be solved for

obtaining the value function parameters A0, A1, and A2:

f(C, J) +AJ(C, V, ρ) = 0, (A23)

where the state variables are given by:
dCt
Ct

= µcdt+ δc
√
VtdBc,t

dVt = [κ1(V̄ − Vt) + κ̄2(ρ̄− ρt)]dt+ σ1

√
VtdBV,t + σ̄ρ

√
ρtdBρ,t

dρt = κ2(ρ̄− ρt)dt+ σ2
√
ρtdBρ,t,

(A24)

and µc, κ1, κ2, σ1, σρ, σ2, V̄ , ρ̄ ∈ R and Bc, BV and Bρ are standard Brownian motions.

AJ(C, V, ρ) = CµcJC + [κ1(V̄ − Vt) + κ̄2(ρ̄− ρt)]JV + κ2(ρ̄− ρ)Jρ

+
1

2
[C2
t Vtδ

2
cJCC + [σ2

1Vt + σ̄2
ρρt]JV V + 2σ̄ρσ2ρtJV ρ + σ2

2ρtJρρ],

(A25)

where the respective derivatives of the value function are as follows:

JC =
∂

∂C

[
exp[ψ(A0 +A1Vt +A2ρt)]β

−ψ(1−γ)C
1−γ
t

1− γ

]
=
J(1− γ)

C

JV = A1ψJ

Jρ = A2ψJ,

(A26)

and

JCC = −J(1− γ)γ

C2

JV ρ = JρV =
∂

∂ρ
JV = A1ψ

∂

∂ρ
J = A2A1ψ

2J

JV V = A2
1ψ

2J

Jρρ = A2
2ψ

2J

(A27)
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Using the approximation of f(C, J) from (A22) and the expansion AJ above, we get

f(C, J) +AJ = θJ

[
ξ + g1(A0 +A1Vt +A2ρt)

1− ψ
1− γ

]

+ CµcJC + [κ1(V̄ − Vt) + κ̄2(ρ̄− ρt)]JV + κ2(ρ̄− ρ)Jρ

+
1

2
[C2
t Vtδ

2
cJCC + [σ2

1Vt + σ̄2
ρρt]JV V + 2σ̄ρσ2ρtJV ρ + σ2

2ρtJρρ].

(A28)

Using

θ
1− ψ
1− γ

=
1− γ
1− 1

ψ

1− ψ
1− γ

= −1− ψ
1−ψ
ψ

= −ψ (A29)

and plugging in the respective partial derivatives, we end up with the PDE to solve:

0 = J [θξ − g1ψA0 − g1ψA1Vt − g1ψA2ρt]

+ J [µc(1− γ) +A1ψκ1V̄ +A1ψκ̄2ρ̄+ κ2ρ̄A2ψ + Vt(−A1ψκ1)

+ ρt(−A1ψκ̄2 − κ2A2ψ)]

+
J

2
[Vt(−δ2

c (1− γ)γ + σ2
1A

2
1ψ

2) + ρt(σ̄
2
ρA

2
1ψ

2 + 2σ̄ρσ2A2A1ψ
2 + σ2

2A
2
2ψ

2)].

(A30)

or after collecting respective coefficients:

0 = J [θξ − g1ψA0 + µc(1− γ) +A1ψκ1V̄ +A1ψκ̄2ρ̄+ κ2ρ̄A2ψ

+ Vt(−A1ψκ1 − g1ψA1 +
1

2
(−δ2

c (1− γ)γ + σ2
1A

2
1ψ

2)

+ ρt(−A1ψκ̄2 − κ2A2ψ − g1ψA2 +
1

2
(σ̄2
ρA

2
1ψ

2 + 2σ̄ρσ2A2A1ψ
2 + σ2

2A
2
2ψ

2))].

(A31)

Setting the expressions next to Vt, ρt and the free terms to zero, we end up with the system:
0 = θξ − g1ψA0 + µc(1− γ) +A1ψκ1V̄ +A1ψκ̄2ρ̄+ κ2ρ̄A2ψ

0 = −A1ψκ1 − g1ψA1 + 1
2(−δ2

c (1− γ)γ + σ2
1A

2
1ψ

2)

0 = −A1ψκ̄2 − κ2A2ψ − g1ψA2 + 1
2(σ̄2

ρA
2
1ψ

2 + 2σ̄ρσ2A2A1ψ
2 + σ2

2A
2
2ψ

2).

(A32)

Solving for A1:

0 = σ2
1ψ

2A2
1 + 2(−g1ψ − ψκ1)A1 + (−δ2

c (1− γ)γ). (A33)
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The solution is given by

A1 =
−b1 ±

√
b21 − a1c1

a1
, (A34)

where

a1 = σ2
1ψ

2

b1 = −(g1 + κ1)ψ

c1 = −δ2
c (1− γ)γ.

(A35)

Solving for A2:

0 = A2
2σ

2
2ψ +A22[(−κ2 − g1) + σ̄ρσ2A1ψ] + (σ̄2

ρA
2
1ψ − 2A1κ̄2). (A36)

The solution is given by

A2 =
−b2 ±

√
b22 − a2c2

a2
, (A37)

where

a2 = σ2
2ψ

b2 = [−(κ2 + g1) + σ̄ρσ2A1ψ]

c2 = σ̄2
ρA

2
1ψ − 2A1κ̄2.

(A38)

A0 follows from the first equation of the system (A32).

C. The Pricing Kernel and the Riskfree Rate

The pricing kernel for the recursive utility (see Duffie and Epstein (1992a)) is defined as

πt = exp

[∫ t

0
fJ(Cs, Js)ds

]
fC(Ct, Jt). (A39)

Differentiating both sides of the above equation we obtain the stochastic differential equation:

dπt
πt

= fJ(C, J)dt+
dfC(C, J)

fC(C, J)
. (A40)
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Applying Ito Lemma to expand dfC(C, J), and setting the drift of the pricing kernel to minus

the short rate −rdt (which we can also compute, bit do not need to for now), we obtain the

expression of the pricing kernel with the risk premiums λ1, λ2, and λ3 for all priced sources of

risk in our economy—consumption, aggregate variance, and correlation risks, respectively.

Combining the definition of G from (A7), and the expression for fC from (A12) we get

fC = β
G

C
(1− γ)J (A41)

and then using formulation of J as a function of consumption given by (A18), the βG =

βψ exp(A0 +A1Vt +A2ρt)
1−ψ
(1−γ) from (A19) we end up with:

fC = βψγ exp[(A0 +A1Vt +A2ρt)
1− γψ
1− γ

]C−γt . (A42)

The first derivatives of fC then can be computed as

fCC = −γβψγ exp[(A0 +A1Vt +A2ρt)
1− γψ
1− γ

]C−γ−1
t = −γ fC

C

fCV = A1
1− γψ
1− γ

βψγ exp[(A0 +A1Vt +A2ρt)
1− γψ
1− γ

]C−γt = A1
1− γψ
1− γ

fC

fCρ = A2
1− γψ
1− γ

βψγ exp[(A0 +A1Vt +A2ρt)
1− γψ
1− γ

]C−γt = A2
1− γψ
1− γ

fC .

(A43)

Plugging in these partials in the (A40), collecting deterministic terms in the expanded SDE for

the pricing kernel into −rdt and grouping the random terms, we get the process for our pricing

kernel with the well-defined risk premiums:

dπt
πt

= −rdt− λ1dBc,t − λ2dBV,t − λ3dBρ,t, (A44)

where 
λ1 = γδc

√
Vt

λ2 = −1−γψ
1−γ A1σ1

√
Vt

λ3 = −1−γψ
1−γ (A1σρ +A2σ2)

√
ρt

(A45)

To determine the riskfree rate r, note that it is formed by all deterministic terms in (A40), i.e,

−rdt = fJdt+ E

[
dfC(C, J)

fC(C, J)

]
. (A46)
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The approximate expression for fJ is as follows:

fJ = (θ − 1)βG− βθ

≈ (θ − 1)[g1 − g1 log(g1) + g1 log(βG)]− βθ

= ξ1 − g1(A1Vt +A2ρt)
1− ψγ
1− γ

,

(A47)

where ξ1 = (θ − 1)ξ − β − g1A0
1−ψγ
1−γ .

To get the E
[
dfC(C,J)
fC(C,J)

]
, we also need the second-order partials for the dfC(C, J) expansion,

and they can be computed as

fCCC =
∂

∂C
fCC = −γ ∂

∂C

fC
C

= γ(γ + 1)
fC
C2

(A48)

fCV V =
∂

∂V
fCV = A2

1(
1− γψ
(1− γ)

)2fC (A49)

and

fCρρ =
∂

∂ρ
fCρ = A2

2(
1− γψ
(1− γ)

)2fC (A50)

fCV ρ =
∂

∂ρ
fCV = A1A2(

1− γψ
(1− γ)

)2fC (A51)

Plugging in all the necessary terms into (A46), and dividing by dt, we get

−rf = ξ1 − γµc +
1− γψ
1− γ

[A1κ1V̄ +A1κ̄2ρ̄+A2κ2ρ̄]

+
1− γψ
1− γ

[−κ1A1 − g1A1 +
1

2
γ(γ + 1)δ2

c +
1

2
A2

1

1− γψ
(1− γ)

σ2
1]Vt

+
1− γψ
1− γ

[−A2κ2 −A1κ̄2 − g1A2 +
1− γψ

2(1− γ)
(A2

2σ
2
2 + 2A1A2σ̄ρσ2 +A2

1σ̄ρ)]ρt

(A52)

so that we can write the riskfree rate as r = r0 + r1Vt + r2ρt with
r0 = −(ξ1 − γµc + 1−γψ

1−γ [A1κ1V̄ +A1κ̄2ρ̄+A2κ2ρ̄])

r1 = −1−γψ
1−γ [−κ1A1 − g1A1 + 1

2γ(γ + 1)δ2
c + 1

2A
2
1

1−γψ
(1−γ)σ

2
1]

r2 = −1−γψ
1−γ [−A2κ2 −A1κ̄2 − g1A2 + 1−γψ

2(1−γ)(A2
2σ

2
2 + 2A1A2σ̄ρσ2 +A2

1σ̄ρ)]

(A53)
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D. Aggregate Market (or Consumption) Claim

Use the wealth-consumption ratio from the equation (A16):

Ct
Wt

= βψ exp(A0a +A1aVt +A2aρt). (A54)

Rewrite it as

Wt = Ctβ
−ψ exp(−A0a −A1aVt −A2aρt). (A55)

and apply Ito Lemma to both sides:

dWt = dCtβ
−ψ exp(−A0a −A1aVt −A2aρt) + Ctdβ

−ψ exp(−A0a −A1aVt −A2aρt)

+ dCtdβ
−ψ exp(−A0a −A1aVt −A2aρt).

dWt = dCt
Wt

Ct
+ Ct

Wt

Ct
[−A1adVt −A2adρt +

1

2
A2

1a(dVt)
2 +

1

2
A2

2a(dρt)
2 +A1aA2adVtdρt]

+ dCt
Wt

Ct
[−A1adVt −A2adρt].

(A56)

By assumption dCtdVt = 0 and dCtdρt = 0, and dividing both sides by Wt, and cancelling the

terms we get:

dWt

Wt
=
dCt
Ct
−A1adVt −A2adρt +

1

2
A2

1a(dVt)
2 +

1

2
A2

2a(dρt)
2 +A1aA2adVtdρt. (A57)

Collecting deterministic parts on the other side into a generic dt term (either all in ζ ′W ,

or partially in ζW ) and expanding the state variables, we get two useful expressions for the

aggregate market:

dWt

Wt
= ζWdt+ δc

√
VtdBc,t −A1adVt −A2adρt

= ζ ′Wdt+ δc
√
VtdBc,t −A1aσ1

√
VtdBV,t − [A1aσ̄ρ

√
ρt +A2aσ2

√
ρt]dBρ,t

(A58)

The instantaneous variance of the aggregate market dWt
Wt

can be calculated as follows

VW,t =

(
dWt

Wt

)2

/dt = (δ2
c +A2

1aσ
2
1)Vt + (A1aσ̄ρ +A2aσ2)2ρt (A59)
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And with Ito’s Lemma it follows that

dVW,t = (δ2
c +A2

1aσ
2
1)dVt + (A1aσ̄ρ +A2aσ2)2dρt (A60)

E. Individual Dividend Claims

The individual dividend process for asset i is given by

dDi,t

Di,t
= µDdt+ σD

√
Vi,tdBDi,t + σDC

√
VtdBc,t (A61)

thereby we assume that dBDi,t and dBc,t are not correlated.

First, derive the individual dividend-price ratio. Denote the dividend claim price by Si,t.

For simplicity we drop the index i, hence Di,t = Dt and Si,t = St.

Dt

St
= exp(A0m +A1mVt +A2mρt) (A62)

or equivalently

St = Dt exp(−A0m −A1mVt −A2mρt) (A63)

Applying the Ito Lemma in the same way as for the consumption claim:

dSt
St

=
d exp(−A0m −A1mVt −A2mρt)

exp(−A0m −A1mVt −A2mρt)
+
dDt

Dt

= −A1mdVt −A2mdρ+
1

2
[A2

1m(dVt)
2 +A2

2m(dρ)2] +A1mA2mdVtdρ+
dDt

Dt

(A64)

Plugging in the equations for dVt, dρt and with

(dVt)
2 = σ2

1Vtdt+ σ̄ρρtdt

(dρt)
2 = σ2

2ρtdt

dVtdρt = σ̄ρσ2ρtdt

(A65)
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where we assumed that dBV,t, dBρ,t are uncorrelated we get

dSt
St

=
dDt

Dt
− [A1m(κ1(V̄ − Vt) + κ̄2(ρ̄− ρt)) +A2mκ2(ρ̄− ρt)

− 1

2
(A2

1m[σ2
1Vt + σ̄ρρt] +A2

2mσ
2
2ρt)−A1mA2mσ̄ρσ2ρt]dt

− [A1mσ1

√
Vt]dBV,t − [A1mσ̄ρ

√
ρt +A2mσ2

√
ρt]dBρ,t.

(A66)

And hence

Et[
dSt
St

]/dt = µD −A1m(κ1(V̄ − Vt) + κ̄2(ρ̄− ρt))−A2mκ2(ρ̄− ρt)

+
1

2
(A2

1m[σ2
1Vt + σ̄ρρt] +A2

2mσ
2
2ρt) +A1mA2mσ̄ρσ2ρt

(A67)

Next compute the risk premium:

dπt
πt

dSt
St

= −λ1σDC
√
Vtdt+ λ2[A1mσ1

√
Vt]dt+ λ3[A1mσ̄ρ

√
ρt +A2mσ2

√
ρt]dt (A68)

so that

−Et[
dπt
πt

dSt
St

]/dt = λ1σDC
√
Vt − λ2[A1mσ1

√
Vt]− λ3[A1mσ̄ρ

√
ρt +A2mσ2

√
ρt] (A69)

Next approximate Dt
St

= exp(A0m + A1mVt + A2mρt) following the same procedure as for the

wealth-consumption ratio:

Dt

St
≈ g1m − g1m log(g1m) + g1m log(

Dt

St
)

= g0m + g1m(A0m +A1mVt +A2mρt),

(A70)

where g0m = g1m − g1m log(g1m)

In order to obtain expressions for Aim we use the following pricing relation:

Et[
dSt
St

] +
Dt

St
dt = rfdt− E[

dπ

π

dSt
St

]

⇒ 0 = rf − E[
dπ

π

dSt
St

]/dt− Et[
dSt
St

]/dt− Dt

St

(A71)
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Inserting the equations step by step

Et[
dSt
St

]/dt+
Dt

St
= µD −A1m(κ1(V̄ − Vt) + κ̄2(ρ̄− ρt))−A2mκ2(ρ̄− ρt)

+
1

2
(A2

1m[σ2
1Vt + σ̄ρρt] +A2

2mσ
2
2ρt) +A1mA2mσ̄ρσ2ρt

+ g0m + g1m(A0m +A1mVt +A2mρt)

= µD + g0m + g1mA0m −A1m(κ1V̄ + κ̄2ρ̄)−A2mκ2ρ̄

+ Vt(A1mκ1 +
1

2
A2

1mσ
2
1 + g1mA1m)

+ ρt[A1mκ̄2 +A2mκ2 +
1

2
(A2

1mσ̄ρ +A2
2mσ

2
2) +A1mA2mσ̄ρσ2 + g1mA2m]

(A72)

And

rf − Et[
dπt
πt

dSt
St

]/dt = r0 + r1Vt + r2ρt + λ1σDC
√
Vt − λ2[A1mσ1

√
Vt]

− λ3[A1mσ̄ρ
√
ρt +A2mσ2

√
ρt]

= r0 + Vt(r1 + γδcσDC +
1− γψ
1− γ

A1σ
2
1A1m)

ρt[r2 +
1− γψ
1− γ

(A1σρA1mσ̄ρ +A1σρA2mσ2 +A2σ2A1mσ̄ρ +A2σ
2
2A2m)]

(A73)

Next, sorting and grouping in terms of the 0 = rf −E[dππ
dSt
St

]/dt−Et[
dSt
St

]/dt− Dt
St

leads to the

following system
0 = r0 − µD − g0m − g1mA0m +A1m(κ1V̄ + κ̄2ρ̄) +A2mκ2ρ̄

0 = Vt[r1 + γδcσDC + 1−γψ
1−γ A1σ

2
1A1m −A1mκ1 − 1

2A
2
1mσ

2
1 − g1mA1m]

0 = ρt[r2 + 1−γψ
1−γ (A1σρA1mσ̄ρ +A1σρA2mσ2 +A2σ2A1mσ̄ρ +A2σ

2
2A2m)

−A1mκ̄2 −A2mκ2 − 1
2(A2

1mσ̄ρ +A2
2mσ

2
2)−A1mA2mσ̄ρσ2 − g1mA2m]

(A74)

Solving for A1m:

0 = 2r1 + 2γδcσDC + 2
1− γψ
1− γ

A1σ
2
1A1m − 2A1mκ1 −A2

1mσ
2
1 − 2g1mA1m

= A2
1mσ

2
1 + 2[−1− γψ

1− γ
A1σ

2
1 + κ1 + g1m]A1m − 2r1 − 2γδcσDC

(A75)

58



And therefore the solution is given by

A1m =
−b1m ±

√
b21m − a1mc1m

a1m
, (A76)

where

a1m = σ2
1

b1m = [−1− γψ
1− γ

A1σ
2
1 + κ1 + g1m]

c1m = −2r1 − 2γδcσDC

(A77)

Solving for A2m:

0 = r2 +
1− γψ
1− γ

(A1σρA1mσ̄ρ +A1σρA2mσ2 +A2σ2A1mσ̄ρ +A2σ
2
2A2m)

−A1mκ̄2 −A2mκ2 −
1

2
(A2

1mσ̄ρ +A2
2mσ

2
2)−A1mA2mσ̄ρσ2 − g1mA2m

= −A2
2mσ

2
2 +A2m2[−κ2 −A1mσ̄ρσ2 − g1m +

1− γψ
1− γ

(A1σρσ2 +A2σ
2
2)]

+ 2[r2 −A1mκ̄2 +
1− γψ
1− γ

(A1σρA1mσ̄ρ +A2σ2A1mσ̄ρ)]−A2
1mσ̄ρ

(A78)

and hence

A2m =
−b2m ±

√
b22m − a2mc2m

a2m
, (A79)

where

a2m = σ2
2

b2m = −[−κ2 −A1mσ̄ρσ2 − g1m +
1− γψ
1− γ

(A1σρσ2 +A2σ
2
2)]

c2m = −2[r2 −A1mκ̄2 +
1− γψ
1− γ

(A1σρA1mσ̄ρ +A2σ2A1mσ̄ρ)] +A2
1mσ̄ρ

(A80)

The last coefficient A0m follows from the first equation

A0m =
1

g1m
(r0 − µD − g0m +A1m(κ1V̄ + κ̄2ρ̄) +A2mκ2ρ̄). (A81)
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Assuming that all dividend trees are homogenous, i.e., they have the same parameters, the

average correlation among dividend claims is equal to the correlation between any two trees.

Using the process for two dividend claims, compute the instantaneous covariance between them:

CovS :=
dSi,t
Si,t

dSj,t
Sj,t

/dt = (σ2
DC +A2

1mσ
2
1)Vt + (A1mσ̄ρ +A2mσ2)2ρt, (A82)

and hence the process for the covariance between dividend claims can be written as:

dCovS = (σ2
DC +A2

1mσ
2
1)dVt + (A1mσ̄ρ +A2mσ2)2dρt, (A83)

Denote by VS,i the total variance of a stock:

VS,i = σ2
D,iVi,t + (σ2

DC,i +A2
1mσ

2
1)Vt + (A1mσ̄ρ +A2mσ2)2ρt. (A84)

Its process is given by joint process of dividend variance and correlations:

dVS,i = σ2
D,idVi,t + (σ2

DC,i +A2
1mσ

2
1)dVt + (A1mσ̄ρ +A2mσ2)2dρt. (A85)

To compute the instantaneous correlation we need to normalize the covariance by the prod-

uct of volatilities:

ρS :=
CovS
VS

=

=
(σ2
DC +A2

1mσ
2
1)Vt + (A1mσ̄ρ +A2mσ2)2ρt

σ2
DVi,t + (σ2

DC +A2
1mσ

2
1)Vt + (A1mσ̄ρ +A2mσ2)2ρt

,

(A86)

where we denote the idiosyncratic variance by Vi do differentiate it from the systematic volatil-

ity Vt, and again assume that the individual dividend trees are homogenous, i.e., have the

same parameters, and hence the stocks have the same instantaneous variance. The correlation

basically is given by the ratio of the systematic variance to total variance.
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The process for correlation can be derived by applying Ito’s Lemma:

dρS =
1

VS
dCovS + CovSd

1

VS
+ dCovSd

1

VS

=
1

VS
dCovS + CovS

(
− 1

V 2
S

dVS +
1

V 3
S

(dVS)2

)
− 1

V 2
S

dCovSdVS

= ζρSdt−
1

V 2
S

σ2
D,idVi,t

+

(
VS − CovS

V 2
S

)
(σ2
DC +A2

1mσ
2
1)dVt +

(
VS − CovS

V 2
S

)
(A1mσ̄ρ +A2mσ2)2dρt,

(A87)

where ζρS is the partial drift.

F. The Equity, Variance, and Correlation Risk Premiums

The risk premiums are computed from the covariance of the corresponding process with the

pricing kernel, and according to Girsanov theorem, they represent the change in drift due to

the change from actual to the risk-neutral measure.

We will collect below some equations from previous derivations, so that we have them

conveniently in one place. Our pricing kernel in equation (A44) contains premiums for the

aggregate consumption, aggregate variance, and correlation risks:

dπt
πt

= −rfdt− λ1dBc,t − λ2dBV,t − λ3dBρ,t,

where 
λ1 = γδc

√
Vt

λ2 = −1−γψ
1−γ A1σ1

√
Vt

λ3 = −1−γψ
1−γ (A1σρ +A2σ2)

√
ρt.

Variance and Correlation Risk Premiums

We will compute and use several types of variance and correlation risk premiums, where fol-

lowing recent practice in academic papers we define the variance and correlation risk premiums

as the difference between the risk-neutral and actual quantities:

61



1. Variance risk premium for the aggregate consumption variance and the correlation risk

premium for the correlation between dividend trees. We call them V RPC , and CRPC ,

respectively. These two quantities are latent, and cannot be directly observed/ extracted

from data.

V RPC = (EQ[dV ]− EP[dV ])/dt =
dπt
πt
dVt = −λ2σ1

√
Vt − λ3σ̄ρ

√
ρt (A88)

CRPC = (EQ[dρ]− EP[dρ])/dt =
dπt
πt
dρt = −λ3σ2

√
ρt. (A89)

2. Variance risk premium for the aggregate wealth (i.e., market) process variance, and cor-

relation risk premium for the correlation between dividend trees. We call them V RP and

CRP , respectively. These two variables can be estimated from data, and play a special

role in our empirical analysis.

The process for the aggregate market variance is given in equation (A60):

dVW,t = (δ2
c +A2

1aσ
2
1)dVt + (A1aσ̄ρ +A2aσ2)2dρt

and the variance risk premium is then directly related to the V RPC and CRPC :

V RP = (EQ[dVW ]− EP[dVW ])/dt = (δ2
c +A2

1aσ
2
1)V RPC + (A1aσ̄ρ +A2aσ2)2CRPC

(A90)

The process for the correlation between individual stocks (dividend claims) is given

in (A91):

dρS = ζρSdt−
1

V 2
S

σ2
D,idVi,t+

+
VS − CovS

V 2
S

(σ2
DC +A2

1mσ
2
1)dVt +

VS − CovS
V 2
S

(A1mσ̄ρ +A2mσ2)2dρt,

(A91)

where VS denotes the total variance of a dividend claim given in equation (A84):

VS,i = σ2
D,iVi,t + (σ2

DC,i +A2
1mσ

2
1)Vt + (A1mσ̄ρ +A2mσ2)2ρt.

The idiosyncratic variance Vi,t it not priced in our economy (zero price of risk in the

pricing kernel), and hence the correlation risk premium is then again directly related to
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the V RPC and CRPC :

CRP = (EQ[dρS ]− EP[dρS ])/dt =

=
VS − CovS

V 2
S

[
(σ2
DC +A2

1mσ
2
1)V RPC + (A1mσ̄ρ +A2mσ2)2CRPC

]
.

(A92)

Equity Risk Premium

The dynamics of aggregate market is given in (A58):

dWt

Wt
= ζWdt+ δc

√
VtdBc,t −A1adVt −A2adρt

= ζ ′Wdt+ δc
√
VtdBc,t −A1aσ1

√
VtdBV,t − [A1aσ̄ρ

√
ρt +A2aσ2

√
ρt]dBρ,t.

(A93)

Thus, we can formulate the risk premium for the aggregate market either using the prices for

underlying risks dBc,t, dBV,t, and dBρ,t, or using the risk premiums for the state variables ρ and

V directly:

EP
[
dW

W

]
/dt− rf,t = λ1δc

√
Vt +A1aV RPC +A2aCRPC .

Note that because both market variance risk premium V RP and average stock correlation

risk premium CRP are determined exclusively by the risk premiums for the aggregate consump-

tion variance V RPC and dividend correlation CRPC , we can express two latter—latent—risk

premiums in terms of the two observable risk premiums to the market variance and pairwise

(average) correlation:

(
V RPC
CRPC

)
=

(
(δ2
c +A2

1aσ
2
1) (A1aσ̄ρ +A2aσ2)2

VS−CovS
V 2
S

(σ2
DC +A2

1mσ
2
1) VS−1

V 2
S

(A1mσ̄ρ +A2mσ2)2

)−1

×
(
V RP
CRP

)
(A94)

The solution looks like(
V RPC
CRPC

)
= Z ×

( VS−CovS
V 2
S

(A1mσ̄ρ +A2mσ2)2 −(A1aσ̄ρ +A2aσ2)2

−VS−CovS
V 2
S

(σ2
DC +A2

1mσ
2
1) (δ2

c +A2
1aσ

2
1)

)
×
(
V RP
CRP

)
(A95)
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where Z =
V 2
S

VS−CovS
1

(δ2c+A2
1aσ

2
1)(A1mσ̄ρ+A2mσ2)2−(A1aσ̄ρ+A2aσ2)2(σ2

DC+A2
1mσ

2
1)

, and after substituting

the solutions from (A95) for V RPC , CRPC we can also write the equity risk premium as:

EP
[
dW

W

]
/dt− rf,t = λ1δc

√
Vt +A1zV RP +A2zCRP,

where A1z and A2z are the functions of the total variance of a dividend claim, matrix elements

in (A95), and coefficients A1a, A2a:{
A1z = Z VS−CovS

V 2
S

(
A1a(A1mσ̄ρ +A2mσ2)2 −A2a(σ

2
DC +A2

1mσ
2
1)
)

A2z = Z
(
A2a(δ

2
c +A2

1aσ
2
1)−A1a(A1aσ̄ρ +A2aσ2)2

)
.

(A96)

As a result we have a nice decomposition of the market risk premium into the risk premium

for the consumption volatility (standard risk premium), market variance risk premium, and the

stock-based correlation risk premium.
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VIII. Internet Appendix: Tables for Robustness Tests

Table AI101 In-sample Market Return Predictability: Correlation and Variance Risk Premi-
ums

The table shows the coefficients (and corresponding p-values) and the R2 of the market predictive regressions,
for the sample period from 01/1996 to 04/2016 for S&P500 and S&P100, and from 10/1997 to 04/2016 for DJ30-
based variables. We regress overlapping excess market returns compounded over a specified horizon (30, 91, 182,
273, and 365 calendar days) on a constant and a given set of explanatory variables, which are the correlation
risk premium (CRP ) for 30, 91, 182, 273, and 365 calendar days, and the variance risk premium (V RP ), which
equals to the difference between the 30-day implied variance and lagged realized variance computed over the
historical period of 30 calendar days. Implied variances are computed as simple variance swaps (Martin (2013)).
The p-values (under the coefficients) for the null hypothesis that the coefficients are equal zero are computed
using Newey and West (1987) standard errors. The adjusted R2 are given as percentages.

Return, 30 days Return, 91 days Return, 181 days Return, 273 days Return, 365 days

SP500 Sample
CRP 0.076 - 0.027 0.254 - 0.165 0.381 - 0.343 0.588 - 0.575 0.559 - 0.559

0.027 - 0.362 0.002 - 0.031 0.051 - 0.095 0.067 - 0.095 0.150 - 0.166
VRP - 0.322 0.289 - 0.663 0.514 - 0.473 0.220 - 0.421 0.101 - 0.230 0.000

- 0.004 0.007 - 0.000 0.000 - 0.007 0.178 - 0.060 0.705 - 0.430 0.999
R2 2.48 6.90 6.81 7.26 9.60 11.99 6.90 2.24 7.02 9.87 0.74 9.55 5.43 -0.18 5.02

SP100 Sample
CRP 0.051 - 0.011 0.234 - 0.154 0.363 - 0.313 0.561 - 0.551 0.527 - 0.517

0.076 - 0.678 0.004 - 0.042 0.047 - 0.089 0.042 - 0.063 0.082 - 0.098
VRP - 0.333 0.319 - 0.701 0.563 - 0.718 0.528 - 0.500 0.103 - 0.403 0.124

- 0.004 0.006 - 0.000 0.000 - 0.000 0.002 - 0.052 0.725 - 0.219 0.696
R2 1.27 6.68 6.35 6.74 9.75 12.08 7.24 4.24 9.23 12.18 1.01 11.87 7.60 0.25 7.27

DJ30 Sample
CRP 0.040 - 0.010 0.205 - 0.128 0.273 - 0.227 0.330 - 0.306 0.150 - 0.132

0.117 - 0.675 0.007 - 0.068 0.123 - 0.230 0.243 - 0.313 0.642 - 0.689
VRP - 0.292 0.277 - 0.727 0.582 - 0.555 0.330 - 0.468 0.249 - 0.285 0.212

- 0.005 0.005 - 0.000 0.000 - 0.007 0.105 - 0.085 0.463 - 0.405 0.536
R2 0.90 4.53 4.16 6.27 9.42 11.25 4.47 2.39 4.91 3.93 0.73 3.80 0.11 -0.15 -0.19
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Table AI102 Out of Sample Predictability - Continuous Beta Approach

The table reports the Out-of-Sample R2
j,τr and the Diebold-Mariano test statistic δj,τr in Panel A, and the

improvement of the certainty equivalent of a mean-variance investor optimizing her portfolio using forecasts
by a specific model instead of either using past mean market return (Model 0), or CRP as a predictor, in
Panel B. The variance and correlation risk premiums are computed as the difference between implied and lagged
realized variances (V RP = IV − RV ), and as the difference between implied and lagged realized correlations
(CRP = IC − RC), for three samples of stocks—components of S&P500, S&P100, and DJ30 indices, for the
sample period from 1996 to 04/2016 for S&P500, S&P100, and from 10/1997 to 04/2016 for DJ30, and for five
different maturities—30, 91, 182, 273, and 365 (calendar) days. Implied variance (IV ) is computed as the simple
variance swap (Martin (2013)) on each day using out-of-the money options with 30 days maturity, and realized
variance (RV ) is calculated on each day from daily returns over a 30-day historical window. The betas are
computed from daily increments of the variables over a 12-month rolling window. The p-values are obtained
from a bootstrapped distribution using moving-block bootstrap by Künsch (1989) with 10,000 samples and block
size of 12 months.

Panel A: OOS R2 and δ

R2
j,τr

δj,τr
Days VRP CRP VRP+CRP VRP CRP VRP+CRP

SP500 Sample
30 0.094 0.025 0.096 -0.000 -0.000 -0.000

0.000 0.000 0.000 0.000 0.000 0.000
91 0.081 0.081 0.119 -0.001 -0.001 -0.001

0.000 0.000 0.000 0.000 0.000 0.000
182 -0.113 0.067 -0.031 0.002 -0.001 0.000

0.000 0.000 0.100 0.000 0.000 0.099
273 -0.373 0.079 -0.275 0.010 -0.002 0.007

0.000 0.000 0.000 0.000 0.000 0.000
365 -0.654 0.070 -0.493 0.024 -0.003 0.018

0.000 0.001 0.000 0.000 0.001 0.000

SP100 Sample
30 0.091 0.012 0.087 -0.000 -0.000 -0.000

0.000 0.015 0.000 0.000 0.015 0.000
91 0.086 0.072 0.118 -0.001 -0.000 -0.001

0.001 0.000 0.000 0.001 0.000 0.000
182 -0.086 0.055 -0.028 0.001 -0.001 0.000

0.000 0.000 0.084 0.000 0.000 0.084
273 -0.344 0.066 -0.290 0.009 -0.002 0.008

0.000 0.000 0.000 0.000 0.000 0.000
365 -0.576 0.070 -0.491 0.021 -0.003 0.018

0.000 0.001 0.000 0.000 0.001 0.000

DJ30 Sample
30 0.065 -0.004 0.066 -0.000 0.000 -0.000

0.000 0.283 0.000 0.000 0.283 0.000
91 0.052 0.064 0.075 -0.000 -0.000 -0.001

0.046 0.000 0.003 0.046 0.000 0.003
182 -0.159 0.049 -0.123 0.003 -0.001 0.002

0.000 0.001 0.000 0.000 0.001 0.000
273 -0.476 0.028 -0.436 0.012 -0.001 0.011

0.000 0.092 0.000 0.000 0.094 0.000
365 -0.745 0.008 -0.680 0.027 -0.000 0.025

0.000 0.387 0.000 0.000 0.390 0.000
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...Table AI102 continued

Panel B: Certainty Equivalent Improvement

CEj,τr − CE0,τr CEj,τr − CECRP,τr
Days VRP CRP VRP+CRP VRP CRP VRP+CRP

SP500 Sample
30 0.023 0.039 0.023 -0.016 - -0.016

0.003 0.000 0.003 0.000 - 0.002
91 0.025 0.022 0.022 0.003 - 0.000

0.000 0.001 0.000 0.344 - 0.489
182 0.011 0.021 0.008 -0.010 - -0.012

0.064 0.000 0.110 0.029 - 0.008
273 -0.002 0.020 -0.002 -0.022 - -0.022

0.403 0.000 0.417 0.001 - 0.001
365 0.002 0.007 0.002 -0.005 - -0.005

0.352 0.086 0.368 0.211 - 0.196

SP100 Sample
30 0.021 0.024 0.017 -0.004 - -0.007

0.008 0.000 0.022 0.264 - 0.158
91 0.019 0.027 0.021 -0.008 - -0.005

0.000 0.000 0.000 0.069 - 0.153
182 0.004 0.021 0.005 -0.017 - -0.016

0.275 0.000 0.228 0.005 - 0.007
273 -0.005 0.017 -0.004 -0.022 - -0.021

0.287 0.002 0.312 0.003 - 0.004
365 0.001 0.011 0.002 -0.010 - -0.009

0.410 0.039 0.354 0.103 - 0.121

DJ30 Sample
30 0.005 -0.015 0.014 0.020 - 0.029

0.315 0.087 0.094 0.000 - 0.000
91 0.012 0.013 0.010 -0.000 - -0.003

0.056 0.034 0.118 0.458 - 0.247
182 0.006 0.017 0.005 -0.011 - -0.013

0.286 0.013 0.324 0.063 - 0.041
273 -0.013 0.013 -0.013 -0.027 - -0.027

0.138 0.015 0.141 0.001 - 0.001
365 -0.015 -0.008 -0.015 -0.007 - -0.008

0.091 0.144 0.082 0.149 - 0.128
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Table AI103 In-sample Market Return Predictability with Controls: Correlation and Variance
Risk Premiums

The table shows the coefficients (and corresponding p-values) and the R2 of the market predictive regressions,
for the sample period from 01/1996 to 04/2016 for S&P500 and S&P100, and from 10/1997 to 04/2016 for DJ30-
based variables. We regress excess market return compounded over a specified horizon (30, 91, 182, 273, and 365
calendar days) and observed at the end of each month (i.e., overlapping by its horizon in months-1) on a constant
and a given set of explanatory variables, which are the ex ante correlation risk premium (CRP ) for 30, 91, 182,
273, and 365 calendar days, the variance risk premium (V RP ), which equals the difference between implied
variance and lagged realized variance computed using out-of-the money options with the respective maturity,
and a number of control variables as defined and used in the study by Goyal and Welch (2008). The p-values
(under the coefficients) for the null hypothesis that the coefficients are equal zero are computed using Newey and
West (1987) standard errors.

Days CRP VRP EP12 TMS DFY BM NTIS R2

SP500 Sample
30 0.027 0.289 - - - - - 6.81
- 0.362 0.007 - - - - - -

30 0.027 0.314 0.011 0.048 0.639 - - 6.27
- 0.361 0.009 0.246 0.826 0.604 - - -

30 0.030 0.267 -0.004 -0.217 - 0.109 0.223 7.39
- 0.310 0.009 0.739 0.374 - 0.105 0.265 -

91 0.195 0.270 - - - - - 7.73
- 0.027 0.175 - - - - - -

91 0.205 0.532 0.015 -0.061 3.755 - - 8.36
- 0.015 0.075 0.502 0.904 0.260 - - -

91 0.172 0.370 -0.058 -1.297 - 0.534 1.305 20.95
- 0.026 0.037 0.041 0.036 - 0.000 0.038 -

182 0.729 -1.606 - - - - - 16.20
- 0.002 0.000 - - - - - -

182 0.752 -2.070 0.056 0.455 -0.419 - - 17.59
- 0.000 0.014 0.170 0.599 0.933 - - -

182 0.498 -1.377 -0.055 -2.160 - 0.878 3.181 40.30
- 0.004 0.014 0.278 0.034 - 0.000 0.001 -

273 1.108 -2.554 - - - - - 23.90
- 0.002 0.000 - - - - - -

273 1.264 -3.117 0.128 0.900 7.771 - - 31.60
- 0.000 0.002 0.009 0.441 0.094 - - -

273 0.774 -2.829 -0.014 -1.943 - 1.081 4.226 52.63
- 0.000 0.001 0.853 0.116 - 0.000 0.000 -

365 1.071 -2.501 - - - - - 14.77
- 0.031 0.028 - - - - - -

365 1.520 -3.161 0.177 2.260 15.905 - - 30.91
- 0.001 0.011 0.024 0.160 0.004 - - -

365 0.682 -2.363 -0.042 -1.191 - 1.403 4.708 46.85
- 0.039 0.072 0.701 0.410 - 0.000 0.002 -
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...Table AI103 continued

Days CRP VRP EP12 TMS DFY BM NTIS R2

SP100 Sample
30 0.011 0.319 - - - - - 6.35
- 0.678 0.006 - - - - - -

30 0.012 0.340 0.011 0.040 0.545 - - 5.81
- 0.645 0.008 0.244 0.855 0.658 - - -

30 0.014 0.294 -0.003 -0.220 - 0.105 0.221 6.86
- 0.586 0.008 0.802 0.374 - 0.120 0.271 -

91 0.161 0.400 - - - - - 8.10
- 0.062 0.042 - - - - - -

91 0.185 0.702 0.021 -0.161 4.496 - - 9.42
- 0.025 0.016 0.352 0.755 0.150 - - -

91 0.157 0.471 -0.057 -1.350 - 0.546 1.228 21.38
- 0.045 0.007 0.042 0.031 - 0.000 0.051 -

182 0.647 -1.567 - - - - - 15.10
- 0.003 0.006 - - - - - -

182 0.731 -1.887 0.068 0.239 2.748 - - 17.37
- 0.000 0.034 0.113 0.777 0.597 - - -

182 0.481 -1.187 -0.074 -2.444 - 1.017 2.937 40.47
- 0.003 0.028 0.124 0.018 - 0.000 0.003 -

273 1.029 -2.642 - - - - - 26.16
- 0.001 0.001 - - - - - -

273 1.348 -3.481 0.171 0.665 12.360 - - 39.75
- 0.000 0.001 0.001 0.511 0.001 - - -

273 0.836 -2.949 -0.016 -1.983 - 1.178 3.648 55.34
- 0.000 0.000 0.799 0.093 - 0.000 0.000 -

365 0.994 -2.645 - - - - - 17.28
- 0.017 0.031 - - - - - -

365 1.612 -3.999 0.239 1.898 21.149 - - 40.53
- 0.000 0.002 0.003 0.189 0.000 - - -

365 0.813 -2.715 -0.036 -1.071 - 1.466 4.028 49.93
- 0.001 0.028 0.712 0.431 - 0.000 0.007 -
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...Table AI103 continued

Days CRP VRP EP12 TMS DFY BM NTIS R2

DJ30 Sample
30 0.010 0.277 - - - - - 4.16
- 0.675 0.005 - - - - - -

30 0.012 0.302 0.011 0.099 0.436 - - 3.52
- 0.624 0.013 0.280 0.648 0.738 - - -

30 0.012 0.258 -0.005 -0.216 - 0.122 0.231 5.16
- 0.616 0.009 0.716 0.379 - 0.087 0.292 -

91 0.133 0.420 - - - - - 7.51
- 0.120 0.044 - - - - - -

91 0.148 0.730 0.023 0.196 4.271 - - 9.21
- 0.080 0.026 0.318 0.694 0.181 - - -

91 0.120 0.558 -0.059 -1.128 - 0.579 1.126 22.55
- 0.088 0.009 0.027 0.067 - 0.000 0.091 -

182 0.545 -1.718 - - - - - 12.33
- 0.018 0.008 - - - - - -

182 0.633 -1.965 0.065 0.652 2.912 - - 14.85
- 0.003 0.057 0.119 0.450 0.538 - - -

182 0.394 -1.103 -0.087 -2.263 - 1.092 2.906 41.37
- 0.011 0.101 0.062 0.025 - 0.000 0.004 -

273 0.741 -2.690 - - - - - 15.64
- 0.017 0.004 - - - - - -

273 1.126 -3.206 0.153 1.490 13.874 - - 30.21
- 0.000 0.005 0.001 0.157 0.000 - - -

273 0.600 -2.133 -0.090 -2.027 - 1.486 3.676 53.60
- 0.001 0.020 0.188 0.097 - 0.000 0.002 -

365 0.581 -2.628 - - - - - 7.85
- 0.198 0.072 - - - - - -

365 1.577 -4.226 0.245 3.148 24.742 - - 35.47
- 0.000 0.003 0.001 0.037 0.000 - - -

365 0.594 -2.059 -0.103 -0.956 - 1.774 3.916 50.68
- 0.027 0.118 0.249 0.486 - 0.000 0.010 -
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