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Today's Derivatives Spotlight delves into systematic options research. It is the 
first in a series of collaborative reports between our derivatives and 
quantitative research teams that aim to systematically identify and capture 
value across global volatility markets. 
 
This edition zooms into the volatility risk premia (VRP), one of the key sources 
of return in options markets. VRP strategies are popular across the investor 
community, but suffer from structural shortcomings. This report looks to 
improve on those. 
 
Going beyond traditional methods, we introduce a P-distribution that best 
represents our projected future returns and associated probabilities, based on 
their drivers. Other topics are also highlighted as we construct our P-
distribution, namely a new multivariate volatility risk factor model, our Global 
Sentiment Indicator, and the treatment of event-based versus non-event based 
returns. 
 
We formulate a strategy which should improve the way in which the VRP is 
harnessed. It utilizes alternative delta hedging methods and timing. 
 
Risk Statement: while this report does not explicitly recommend specific 
options, we note that there are risks to trading derivatives. The loss from long 
options positions is limited to the net premium paid, but the loss from short 
option positions can be unlimited. 

Figure 1: Volatility Risk Premium: Thinking Outside The Box 

 
Source: Getty Images. 
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1. Introduction 

Options trading is popular among discretionary and systematic investors, as it 

serves multiple purposes in institutional investment portfolios. Today's 

Derivatives Spotlight is the first in a series of collaborative reports between our 

derivatives and quantitative research teams that aim to systematically identify 

and capture value across global volatility markets.  

While we assume some technical knowledge, the report is aimed at both 

novice and experienced investors alike. For ease of navigation we outline each 

of the sections below: 

 Section 2 looks at the primary drivers of options returns – our starting 
point. We look at both delta hedged and "naked" option return streams, 
and find that the former is largely driven by volatility while the latter is 
associated with underlying asset returns. The patterns exhibited in the first 
principal components point to the existence of a volatility risk premium 
(VRP) - the focus of this report. 

 Section 3 expands on the VRP and highlights standard measures to tame 
strategy drawdowns. We highlight the benefits and shortcomings of cross-
market replication (3.1), market timing (3.2) and buying tail options (3.3), 
and allude to new approaches - namely the P-distribution and alternative 
delta hedging. 

 Section 4 introduces our approach to modeling the P-distribution, the first 
new route to improve how we capture value from options markets. It 
represents our best estimate of future returns and return probabilities 
based on their drivers. Section 4.2 describes how we estimate the mean, 
and Section 4.3 provides in-depth coverage of our variance estimates. 
These are based on a multivariate risk factor model (4.3.1 and Appendix I), 
a regime-dependent multivariate GARCH model (4.3.2 and Appendix II) and 
event-specific volatility (4.3.3). The higher moments of our P-distribution 
are described in Section 4.4, while Section 4.5 provides a thorough 
assessment of how our forecasts compare to a number of benchmarks.  

 Section 5 describes alternative delta hedging – the second avenue we take 
as we seek to improve VRP strategy returns. We introduce 5 methods from 
industry and academia: grid-search (5.1), moving averages (5.2), break 
outs (5.3), expected returns (5.4) and a modified version of Whalley & 
Wilmott (5.5). All are tested under both simulated data (5.6) and real 
market data (5.7). 

 Section 6 focuses on building our new VRP strategy. We first fine tune the 
signal (6.1), then add alternative delta hedging to the mix (6.2). Section 6.3 
deals with timing via our Global Sentiment Indicator, long-term volatility 
reversals, and near-term volatility changes. Section 6.4 compares methods, 
while Section 6.5 concludes with an application to the S&P 500, Eurostoxx 
50 and Nikkei 225. 

 Section 7 concludes the report, while Appendix I covers our multi-variate 
risk factor model and Appendix II provides a review of our Global 
Sentiment Indicator. Our Bibliography is presented at the end. 

We believe the VRP is a generic premia, whose dynamics and investment 

implications extend beyond multiple markets and asset classes. As such, our 

analysis covers all 4 asset classes: equity indices, commodities, currencies and 

global Treasuries. We look at options in the S&P 500, Eurostoxx 50, Nikkei 

225, Bovespa, EUR/USD, USD/JPY AUD/USD, USD/BRL, Gold, WTI, Corn, 
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Copper, 10Y US Treasuries, 10Y Bunds and 10Y JGBs. While their liquidity 

characteristics are distinctly different, each should represent a regional hub 

inside the asset class and allows us to understand the volatility premia more 

holistically. 

Most of our market data is sourced internally. We proxy variance swaps using 

strike-weighted baskets of European vanilla options. In some sections we use 

a purer basket comprised of puts and calls whose strikes expand up to 2.5 

standard deviations away from spot. In other sections we use a more realistic 

basket based on delta strikes (10-delta, 25-delta and ATM). All options are 

rebalanced at expiry. All results prior to Section 6 omit costs; we only apply 

them at the end as the VRP strategy gets finalized. 

As is often the case in quantitative research, some results are not as 

encouraging as we initially hoped. Other results turned out to be better than 

expected. In all, we believe that the final recommendations - based on 

alternative delta hedging and timing - should improve the way investors 

harness this rich source of risk-adjusted returns. 
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2. The Primary Factors 

Understanding what drives returns is key to investing successfully in any 

market. To the quant investor, the learning process often involves running 

principal component analysis (PCA) on the returns of all available market 

instruments and interpreting what the output – the core factors – means.  

As we delved into the world of options data, our approach was no different: 

collect instrument returns and run the PCA. For any given market, we took a 

set of relevant calls and puts – 10- and 25-delta, and ATMF – across relevant 

maturities – 1, 3, 6 and 12 months – and calculated 2 historical long-only return 

streams1: delta hedged and un-hedged. Therefore, each of the 15 options 

markets outlined earlier had 48 return series: 24 for delta-hedged options, and 

24 for “naked” option returns. We used up to 12 years of returns data, where 

available. 

The PCA output2 set the base for our approach to factor investing in options 

markets. The key findings from the aggregate of all PCAs were that: 

 Spot moves are the chief return driver of “naked” option contracts, 
explaining circa 63% of total variations in each market, on average. This is 
no surprise; the delta exposure, and hence the delta return, dwarfs all 
other “Greeks” in the tenors evaluated. 

 Changes in volatility were the main source of delta-hedged option returns, 
causing 54% of the variations on average. This is the main source of risk 
for the volatility trader. 

 Changes in volatility – implied (delta) vols, in particular – are also the 
second driver of naked option returns, accounting for 17% of the 
variations in the sample data. Lower delta options are more sensitive to 
this factor. 

 The shape of the volatility smile and the steepness of the term structure 
explain an extra 20% of the variations in delta-hedged option returns. In 
other words, the volatility trader cannot ignore skew and slope dynamics 
either. 

 The returns from delta-hedged options are more diverse – the first 2 
principal components explain 65% of the variations on average, versus 
80% in the case of naked option returns. 

 

                                                           

1
 We used Black & Scholes pricing as these are vanilla European options. We built each surface using SSVI 

interpolation and extrapolation. SSVI stands for Surface Stochastic Volatility Inspired. We used the 

approach introduced in Gatheral and Jacquier [2013]. 
2
 We used up to 11 years of daily returns, fixed investment notionals in each option (so that return 

volatilities were more similar) and estimated the principal components using a correlation matrix instead of 

the covariance matrix.  

Figure 2: Correlations between PCs 

and asset returns, implied and 

realized volatility 

 
PC1 "naked" 

returns 

PC1 delta 
hedged 
returns 

PC2 "naked" 
returns 

 A. 
Ret. 

RV IV 
A. 

Ret. 
RV IV 

A. 
Ret. 

RV IV 

E/$ 0.9 -0.3 -0.3 -0.1 0.7 0.8 -0.2 0.4 0.7 

$/Y 0.9 -0.1 -0.2 -0.1 0.8 0.8 0.2 0.4 0.6 

A/$ 0.9 -0.5 -0.5 -0.4 0.8 0.8 -0.2 0.6 0.6 

$/BR 0.9 0.6 0.6 0.4 0.9 0.8 0.1 0.5 0.6 

S&P 
500 

0.9 -0.5 -0.7 -0.6 0.8 0.8 0.0 0.3 0.2 

SXE 0.8 -0.4 -0.6 -0.4 0.7 0.6 -0.2 0.3 0.4 

Nik 0.9 -0.4 -0.5 -0.5 0.8 0.8 -0.1 0.2 0.4 

Bov 0.9 -0.4 -0.6 -0.5 0.7 0.7 -0.3 0.3 0.6 

Gold 0.9 -0.2 0.4 0.0 0.8 0.8 0.0 0.4 0.6 

WTI 0.9 -0.3 -0.4 -0.4 0.8 0.8 -0.3 0.4 0.6 

Corn 0.9 -0.1 0.3 -0.2 0.6 0.6 0.0 0.2 0.3 

Cop 1.0 -0.6 -0.6 -0.6 0.8 0.8 -0.6 0.6 0.6 

UST 0.9 0.0 0.2 0.1 0.4 0.7 -0.3 -0.1 0.3 

Bun 0.8 0.1 0.2 -0.1 0.6 0.6 -0.2 0.5 0.4 

JGB 0.7 0.0 -0.1 -0.2 0.6 0.4 -0.6 0.2 0.6 

 

E/$: EUR/USD, $/Y: USD/JPY, A/$: AUD/USD, $/BR: USD/BRL, 
SXE: Eurostoxx 50, Nik: Nikkei 225, Bov: Bovespa, Cop: Copper, 
Bun: 10Y Bunds. A.Ret.: annualized returns, RV: realized volatility 
(1Y lookback, 3-month half-life), IV: implied volatility. Source: 
Deutsche Bank 
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Figure 3 – an aggregate of the results for all 15 markets – display our 

conclusions visually. The chart at the top shows how dominant the first 

principal components are in each type of return streams, while the bottom 

chart shows how they load at each point of the volatility smile, after 

aggregating by expiries. The quasi-homogenous loadings per strike in the 

delta-hedged streams, and the strong but inverse looking loadings in the 

“naked” streams support the argument that the primary factor of returns 

heavily affects all options in the surface. As we correlated the historical PC1 

values with more tangible variables, we found an 88% average correlation3 

with underlying asset returns (PC1 of “naked” options) and a 72% average 

correlation with realized volatility (PC1 of delta-hedged option returns). 

Confirming the points above, spot and volatility are the main drivers of 

“naked” and delta-hedged option returns.4  

Next, we analyse the historical developments of these first principal 

components over time in search for potential biases. Bias is what we ultimately 

look for when scrolling through markets with our “quant lenses”, as it lies at 

the core of most systematic strategies. The stronger the pattern, and the more 

that it can be validated, the more likely that we should succeed in capturing it.5  

Take the PC1 of “naked” option returns, for instance. The high correlation to 

underlying spot markets suggests that the alpha capture will come from 

forecasting future spot values, just as we do in our delta-one portfolios. The 

profit of a “naked” option trade depends on where the asset will be relative to 

its break-even at expiry, and the latter reflects a market-implied probability that 

the option will expire in-the-money. As such, we should try to estimate our 

own probabilities that the option will expire ITM, and emit signals based on 

where the probability spread is most significant. We call this the probability risk 

premium (PRP), and it will be the subject of future research. 

Today’s report focuses on the PC1 of delta-hedged returns, whose historical 

values are aggregated by asset class in Figure 4. It has a distinct characteristic: 

regardless of the underlying asset, or asset class, this principal component 

trends down over time. This obvious bias suggests that buying delta-hedged 

options is a losing proposition over time. And since theory argues that excess 

returns should be zero if the “true” volatility is embedded into the option 

price6, we conclude that the bias originates from implied volatility being 

generally above what is realized. This bias suggests that selling delta-hedged 

options is a profitable trade over time, and we call it the volatility risk premium 

(VRP). That said, the “hick-ups” in the series also show that buying options can 

be attractive once in a while, which means our capturing process should be 

dynamic; we should not just blindly sell options.  

 

                                                           

3
 Monthly non-overlapping returns, 11 years of data. 

4
 We did not extend the study to cover, for instance, the drivers of spot returns and of spot volatility. We 

recommend Natividade et al [2013] (Section 7) and Natividade et al [2014] (Section 2) for the former; for 

the latter, we recommend Mccormick and Natividade [2008], Natividade [2008] and Saravelos and Grover 

[2017] in FX and Corradi et al [2006] and Engle and Rangel [2005] in equities. 
5
 Two examples from delta-one markets illustrate our argument: the PC1 of commodity futures returns, 

and the PC3 of a given yield curve. The former exhibits positive and stable autocorrelation over time, which 

validates trend following strategies in commodity markets. The latter represents curvature and often 

exhibits strong mean-reverting properties, which validates systematic butterfly strategies in liquid IRS 

markets. 
6
 Assuming other theoretical conditions hold. 

Figure 3: Explanatory power and 

factor loading by principal 

component of option returns 
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Up to 12 years of data on option returns. See section above for 
which assets and strikes are included. Source: Deutsche Bank 

Figure 4: Cumulative standardised 

PC1 values per asset class 

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

FX Equities Comm. Treasuries

 
The standardization went as follows: we took daily returns of each 
option for a given market and divided by its 1-year volatility. We 
then estimated the PC1 loadings using a correlation matrix with 5 
years of daily data, and calculated the most recent PC1 value from 
the loadings. We repeated the exercise daily. We then averaged 
the PC1 values for each asset class and plotted the cumulative 
values. Source: Deutsche Bank 
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3. Exploring the Volatility 
Risk Premium (VRP) 

The VRP is normally defined as compensation for systematic risk, price 

pressures from investor supply and demand, and biased forecasts of future 

empirical volatility.7 We measure it as the distance between current implied and 

future empirical volatilities. Therefore, it is no surprise that this metric is not 

only positive8 in every asset class, but more expressive in markets with heavier 

natural demand for crash insurance – such as equity indices. 

Figure 5 shows the historical VRP distribution for the aforementioned pool of 

15 assets, bucketed by asset class, using the 3-month horizon as reference and 

expressing the VRP as a ratio to implied volatility for better comparison across 

markets. While built differently, it correlates strongly to the inverse of the PC1 

of delta-hedged returns as described in Section 2. And as we group all asset 

classes together, we find that the VRP has been stable and positive in 61% of 

the instances. It has also been more strongly pronounced in equities, which 

reinforces the demand argument outlined above. 

VRP strategies primarily aim to capture that difference between implied and 

realized volatilities. Volatility and variance swaps are the standard instrument 

of choice for the VRP harvester, though a similar P&L profile can also be 

achieved through selling baskets of vanilla options with frequent delta hedging 

and capital allocation that is inversely related to the strike level.9 We opt for 

such baskets as they give us more delta hedging freedom, which will come 

handy later. In this section, we use baskets comprised of 1-month options with 

12 strikes that are equally distanced and range from -2.5 to +2.5 standard 

deviations away from spot.10 All options were delta hedged daily and rolled at 

maturity, and we omitted costs prior to the final section of this report.  

Figure 6 shows the cumulative returns of our baskets above, standardized such 

that they are equally volatile and therefore easier to visualize. As expected, 

they are also similar to the inverse of the PC1s from Figure 4, even though we 

used a different weighting scheme to group the individual options. 

                                                           

7
 See Ilmanen [2011] for a general review. Other authors who defended similar arguments include Carr and 

Wu [2009], Benzoni et al [2010] and Broadie and Johannes [2009]. 
8
 That said, the VRP is far less pronounced in single stock equities than in equity indices and other asset 

classes. As argued by Cosemans [2011] and Valenzuela [2014], such difference is attributed to positive 

correlation risk premium - how index implied correlations over-estimate future realised correlations. Our 

research also validates their argument – see Prasad et al. [2016]. 
9
 This is, in fact, the way a market maker replicates a variance swap, as it generates a stable gamma 

profile across different spot levels. For a recent reference, see Derman and Miller [2016].  
10

 We use the standard deviation of monthly returns as a measure. Some of these strikes may not be 

tradable, but suit this exercise as we are looking for a good variance swap replication that is also 

computationally efficient.  

Figure 5: Historical VRP distributions 

by asset class 
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(3M Implied - 3M Future Realised) / 3M Implied vol

 
Up to 12 years of data. We use 15 markets (see Section 1). 
Source: Deutsche Bank 
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Figure 6: Cumulative, volatility-adjusted pre-cost 1-month VRP basket returns 

per asset 
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Labels: E/$: EUR/USD, $/Y: USD/JPY, A/$: AUD/USD, $/BRL: USD/BRL, S&P: S&P 500, SX50: Eurstoxx 50, Nikkei: Nikkei 225, Bov: 
IBOVESPA, UST: 10Y US Treasuries, Bund: 10Y Bunds, JGB: 10Y JGBs. Source: Deutsche Bank 

In general terms, the investor who sells an option is selling some form of 

insurance. By selling the whole smile, we are selling market insurance much 

more broadly; significant moves in any direction are likely to hurt us. Most 

assets involved fall faster than they rise, and therefore “significant moves” 

typically coincide with bearish markets. In 201211 we launched the DB Global 

Sentiment Indicator (GSI), a variable that captures market risk appetite and 

whose details are described in Appendix II. Figure 7 shows how it relates to 

our VRP baskets: irrespective of the asset class, falling VRP returns are 

associated with rising GSI levels, indicating higher risk aversion.  

 

                                                           

11
 See Natividade and Chen [2012b]. 



20 April 2017 

Derivatives Spotlight 

 

Page 8 Deutsche Bank AG/London 

 

 

 

In essence, the VRP strategy is pro-cyclical; it underperforms when markets are 

risk averse – most commonly when macroeconomic volatility is high and 

output is contracting. Needless to say, this is a shortcoming. It means that VRP 

strategies correlate positively with the static – equity, credit – premia that 

dominate institutional portfolios and, as such, that they also underperform 

when core portfolios are suffering. Adding insult to injury, VRP drawdowns are 

notable for their magnitude; the 4 months following the Lehman Brothers 

announcement in Sep-08 wiped out the previous 6 years of returns in a typical 

tradable S&P 500 VRP strategy12, and 8 years of returns in short USD and EUR 

tradable swaption strategies.13 

There are 3 popular methods that seek to improve the profile of VRP returns: 

cross-market replication, factor timing and buying tail options. 

3.1 Cross-market Replication 

Cross-market replication is popular in the quantitative investment community, 

especially when dealing with generic delta-one factors such as Momentum 

and Carry. Since the number of independent trades influences the Sharpe ratio 

of any strategy, the quant investor will seek to maximize breadth by replicating 

the same signal across a large number of markets.14  

While attractive, the idea has a shortcoming when applied on the VRP. As is 

often the case with other base factor strategies applied to a limited asset pool, 

the VRP signal has limited breadth because it captures a “global” driver that 

explains the majority of moves in all instruments available.15 Investor aversion 

– the abstract risk whose premium is captured by short volatility strategies – is 

common across asset classes, leading to a strong link between option returns 

even in markets where spot returns are not highly correlated. Figure 8 shows 

exactly that: the VRP return correlations in the bottom triangle are, on average, 

stronger than the spot return correlations in the upper triangle.  

Cross-market replication improves the return profile – the expected shortfall 

shrinks by almost one third in our backtest16 – but it is not enough on its own, 

as we seek a better overall improvement. 

                                                           

12
 We use a standard, tradable index for this comparison: the DB Equity US Volatility Carry Index 

(DBGLSVEU Index on Bloomberg). This strategy sells 2M and 3M straddles on the S&P 500, delta-hedged 

daily. Costs are included. 
13

 We use a standard, tradable index for this comparison: DB ImpAct (DBIP3BE Index and DBIP3BU Index 

on Bloomberg). This strategy sells 3M10Y USD and EUR swaption straddles every week, delta-hedged at a 

given frequency. Costs are included. 
14

 This follows from the Law of Fundamental Active Management, 

where breadthICSharpe  . IC, the information coefficient, represents signal forecast 

accuracy and breadth stands for the number of independent investment decisions. See Grinold & Kahn 

[1999].  
15

 See Baz et al [2015], and Natividade et al [2016a]. These references also show that in order to preserve 

signal entropy, base factor strategies are best implemented in time series form - in other words, without 

committing to an equal number of long and short trades. 
16

 We use the same VRP replicating basket described earlier in the section and data since 2002. Shortfalls 

are defined as the average of monthly returns equal to or lower than the 5th percentile of monthly returns in 

the sample. The average shortfall is estimated by averaging the shortfalls of all 15 VRP strategies, 

weighted by volatility, whereas the shortfall of the average is estimated by grouping all VRP strategies 

(weighted by volatility) and then calculating the monthly shortfall. 

Figure 7: 2M cross-asset VRP returns 

versus DB’s Global Sentiment 

Indicator 

R² = 0.1423
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The 2-month VRP returns comprise all 15 markets, aggregated by 
asset class. The reader may be intrigued as to why we chose the 
2-month time window. Shorter windows produced a sparser 
relationship (partly related to Footnote 15), while longer windows 
had too few datapoints. Source: Deutsche Bank 
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Figure 8: Correlations between underlying markets – VRP returns (bottom triangle) and spot returns (top triangle) 

E/$ Y/$ A/$ BRL/$ S&P SX50 Nikkei Bov Gold WTI Corn Copper UST Bund JGB

E/$ 1.00 0.23 0.72 0.50 0.39 0.29 0.24 0.48 0.43 0.51 0.37 0.51 -0.14 -0.32 0.03

Y/$ 0.55 1.00 0.17 -0.09 -0.24 -0.19 -0.51 -0.10 0.37 -0.04 -0.02 -0.20 0.47 0.32 0.41

A/$ 0.73 0.63 1.00 0.76 0.60 0.49 0.39 0.72 0.46 0.60 0.55 0.66 -0.02 -0.31 -0.12

BRL/$ 0.65 0.55 0.85 1.00 0.47 0.42 0.35 0.62 0.41 0.60 0.46 0.64 -0.20 -0.37 -0.16

S&P 0.65 0.52 0.82 0.79 1.00 0.91 0.78 0.71 -0.08 0.36 0.33 0.58 -0.20 -0.40 -0.27

SX50 0.53 0.46 0.67 0.71 0.71 1.00 0.74 0.70 -0.04 0.21 0.25 0.48 -0.09 -0.35 -0.24

Nikkei 0.61 0.67 0.68 0.66 0.72 0.52 1.00 0.51 -0.24 0.22 0.12 0.47 -0.25 -0.30 -0.40

Bov 0.52 0.60 0.66 0.65 0.67 0.51 0.52 1.00 0.26 0.51 0.34 0.55 -0.13 -0.42 -0.29

Gold 0.45 0.45 0.45 0.46 0.53 0.37 0.40 0.62 1.00 0.30 0.29 0.26 0.09 -0.09 0.09

WTI 0.58 0.51 0.52 0.54 0.62 0.39 0.61 0.57 0.42 1.00 0.24 0.65 -0.28 -0.50 -0.21

Corn 0.41 0.32 0.41 0.34 0.40 0.30 0.50 0.39 0.31 0.41 1.00 0.42 0.03 -0.18 -0.03

Copper 0.42 0.31 0.61 0.60 0.71 0.51 0.49 0.46 0.48 0.47 0.26 1.00 -0.23 -0.43 -0.12

UST 0.31 0.18 0.17 0.18 0.17 0.36 0.21 0.12 0.08 0.18 0.12 0.04 1.00 0.64 0.41

Bund 0.37 0.23 0.17 0.15 0.17 0.33 0.13 0.08 0.20 0.16 0.16 0.02 0.60 1.00 0.56

JGB -0.03 0.04 -0.20 -0.25 -0.24 -0.06 -0.04 -0.28 0.10 -0.14 -0.06 -0.13 0.10 0.25 1.00  
Correlation of 2-month non-overlapping returns, Note that we use FX/USD and not USD/FX to make VRP and spot market correlations more comparable. 11-year history. Source: Deutsche Bank 

 

3.2 Market Timing 

Timing the VRP strategy is also popular and, if the backtests serve as an 

indication, it can be successful as well. The premise is that if there is a strong 

relationship between strategy returns and global risk appetite, and if we can 

time the latter, we should be able to reduce the drawdowns in the former.  

To test it, we created a linearly continuous leverage mechanism to the VRP 

strategies above using the same GSI as before. The higher the GSI, the less we 

sold of our options baskets and vice-versa; in other words, we de-levered 

during periods of risk aversion and levered up when markets were calm. The 

leverage ratio is defined as 22,  thtt GSIL  , and is therefore 

constrained such that ]2,0[L . The leverage changes every 2 weeks, and it 

has an average of 1.17    

                                                           

17
 Unlike in prior applications, we apply the GSI leverage on a bi-weekly basis instead of daily. We 

evaluated the sensitivity to changes in leveraging frequency and found that "high" frequencies (daily) and 

very low frequencies (bi-monthly) yield worse results. Daily rebalancing incurs more signal noise and factor 

reversal risk: when the GSI is at extreme levels, next-day strategy returns are at greater risk of going 

against the timing indicator than next-week or next-month returns. We also knew that once we attach 

transaction costs to this exercise, daily rebalancing becomes unfeasible. On the other hand, very low 

frequencies, such as bi-monthly, are not adaptive enough. Of the frequencies tested, the highest risk-

adjusted returns came when using monthly rebalancing. We chose bi-weekly for illustration purposes 

alone. These results do not include costs - we leave that to later in this report. 
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History suggests this is an attractive idea. Figure 9 plots the effect from 

leveraging our strategy according to the GSI. The X-axis represents the original 

backtested monthly shortfall18 in the VRP strategy for each of our 15 markets, 

labeled by asset class, while the Y-axis shows the new shortfall after applying 

the technique above. The sample covers 11 years of data. While we only 

capture a handful of crisis periods, the results are encouraging in that most of 

the effect comes from taming our drawdowns. They also concur with our 

positive experience timing risk-sensitive, pro-cyclical signals in the past – 

notably the FX Carry trade, as shown in Appendix II. 

3.3 Buying Tail Options 

Practitioners have also been fond of buying “tail options” to improve VRP 

strategy drawdowns. The method is straight forward: sell volatility at the 

nearby strikes as per original strategy but buy volatility at distant strikes so as 

to flip the gamma exposure in the event that spot moves significantly.19 Ideally, 

if the spot market has fallen aggressively, and volatility has therefore risen, our 

net gamma exposure should have gone from short to long. In principle, 

therefore, this should improve VRP return drawdowns.  

In order to test the idea, we modified our option baskets slightly. Instead of 

only using 1-month options as earlier in this section, we used 4 expiries: 1, 3, 6 

and 12 months. We also changed our strikes; instead of 12 fixed-percent-

distance strikes equally spaced in steps of ½ of a standard deviation, we used 

6 fixed-delta strikes with distance defined in delta steps: 10-delta, 25-delta and 

ATMF puts and calls. These revised maturities allow us to capture different 

theta decay profiles, while using delta strikes allows us to better compare 

cross-maturity strikes.  

The goal of this backtest was to evaluate the sensitivity of VRP strategy returns 

to using one set of specific strikes as hedge. In other words, we went short 

one unit of every option described above except for those with a pre-specified 

delta. In the latter case, we would go long one unit (of each) instead. The 

benchmark in this case is to go short all options, with no protection. As before, 

we delta hedged daily and did not include costs. 

                                                           

18
 We define shortfall as the average monthly return using months that qualified as 5th percentile of worst 

months in the sample for each strategy. In other words, the average return in the 7 worst months in the 

sample. 
19

 A variation of this idea is to only sell delta-hedged straddles. In this case, aggressive spot moves will 

also have a smaller adverse impact on the VRP strategy because much of the straddle gamma will have 

been eroded. 

Figure 9: Backtested monthly 

shortfalls – cross-market VRP 

strategy 

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

-2 -1.5 -1 -0.5 0

FX Equities

C'dys Bd Fut

Timing = 
No Timing

Shortfall without timing

Shortfall with timing  
We define shortfall as the average monthly return using months 
that qualified as 5th percentile of worst months in the sample for 
each strategy. Source: Deutsche Bank 
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The results here are also encouraging. Our Sharpe ratios rose and, more 

importantly, our drawdowns improved once we balanced our short exposures 

with a few long positions.  

But the improvement also depended on which strikes we chose to go long; in 

most instances, it is only the low delta puts – the tail – that helped. Figure 10 

shows the ratio of average monthly shortfall to monthly returns in each of our 

15 markets, expressed as a difference to the ratio achieved using the 

benchmark strategy. The more negative the number, the better – it means that 

a typical drawdown erased less return months.  

Take the Nikkei as an example. In the benchmark strategy, the average 

monthly shortfall erased 25 months’ worth of average monthly returns. If we 

modified the strategy so as to be long 10-delta puts in the 4 maturities while 

still short all the other options in the surface20, the ratio would have fallen from 

25 to 18, an improvement of 7 months (hence -7 in the table). Parallel 

examples can also be made with low delta puts in most other markets, 

particularly where asset returns exhibit strong negative skew.21 While one may 

argue that the return profile should improve further once we optimize our 

choices for theta decay efficiency22, these preliminary results are already 

encouraging.  

3.4 A New Way of Thinking 

These methods are encouraging, but narrow in scope. They focus mostly on 

controlling strategy drawdowns, and do so by either timing risk aversion, or by 

hedging or diversifying against it. In all 3 cases, we use prior knowledge and 

experience to define what risk aversion means and how it manifests itself 

across markets. We assume, for instance, that risk barometer (the GSI) is 

accurate, and that only the left tail of asset returns should be of concern to the 

VRP investor. Further, true instances of risk aversion are scarce - only a 

handful in our backtest window - which makes our results even more 

dependent on these priors. 

In the remaining sections, we seek to introduce methods that are distinctly 

different from the ones described above. First, we will not assume that 

volatility risk premia will always be positive; we will compare the forecasts 

from our real world distribution – introduced in the next section – with market-

implied volatility so as to define the sign and quantity of our VRP positions. 

Second, we will use our knowledge of the underlying asset returns – direction 

and trendiness – to delta hedge better. We start with the former in Section 4, 

as we look at the whole P-distribution instead of asset variance alone. We then 

move onto delta hedging in Section 5. 

                                                           

20
 For clarity: we went long 10-delta 1M, 3M, 6M and 1Y put options, allocating 1 JPY unit to each. At the 

same time, we went short 10-delta calls, and 25-delta and ATMF calls and puts in the same maturities, 

allocating 1 JPY unit to each as well. The capital allocation is therefore 4/24 into long positions, and 20/24 

into short positions.  
21

 The versions that are long 10-delta puts outperformed except in a few instances - most notably in 

Treasury futures, a typical safe haven asset, where the version long 10-delta calls outperformed. This 

reinforces the idea of being long the area of the smile most likely to outperform in the case of risk 

aversion. That said, a few cases are less intuitive – notably with straddles in JPY/USD and Bovespa calls. 
22

 We did not test theta decay optimisation thoroughly, but we tried a rough version that bought only 1Y 

10-delta puts (4/24 units) and sold all other options (20/24 units). This version also outperformed the 

unconstrained VRP strategy, but underperformed the version that also sold 10-delta puts of other expiries. 

Figure 10: Shortfall / average returns 

(VRP with tail options) minus  

shortfall / average returns (VRP 

benchmark) 

10p 25p St'dle 25c 10c

E/$ 0.44 0.0 0.3 0.0 0.0

Y/$* 0.7 1.3 -1.5 -0.4 0.5

A/$ -4.9 -6.8 1.1 53.6 5.9

BRL/$* -2.7 -2.7 3.5 18.7 3.0

S&P -2.4 -0.1 0.1 3.1 1.2

SX50 -2.4 -3.2 -0.7 9.6 3.2

Nikkei -7.0 -6.2 -4.0 34.1 8.8

Bov 0.1 9.6 1.3 -2.0 -0.9

Gold -1.7 0.2 2.8 1.2 -0.3

WTI -0.4 2.3 0.0 0.1 -0.3

Corn -9.0 -0.3 -4.9 7.1 23.1

Copper -2.5 -1.2 -0.6 3.9 1.7

UST 1.7 3.8 3.6 8.1 -4.5

Bund -0.8 -0.6 3.4 2.1 -0.1

JGB -0.7 -0.9 8.9 2.0 -0.6  
* Flipped USD per unit of currency for better comparison with 
other markets. Source: Deutsche Bank 
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4. The P-Distribution 

As is the case in all derivatives markets, profiting from options trading requires 

taking a view (of the future) that differs from what is implied by the market 

price. But options markets carry a unique advantage – their prices contain a far 

more granular view of the future than futures and forward markets do. By 

mapping the volatility smile into a risk neutral distribution, one can estimate 

the market-implied probability that spot will be at any level by horizon date, in 

addition to estimating how volatile or leptokurtic the market “expects” the 

returns to be. 23  

This abundance of market-implied views is valuable to the quantitative investor 

because it increases the number of uncorrelated trades available using the 

same type of instrument. The investor is no longer constrained to a bullish or 

bearish position versus the futures price; she can instead trade various options 

strikes to express higher order views. She can even express a view that is – in 

principle – indifferent to spot levels, as does the VRP harvester. 

The most holistic way to identify option trading opportunities is, in our view, by 

estimating a distribution of future asset returns and comparing it with the 

market-implied distribution. In other words, comparing our P-distribution with 

the market’s Q-distribution. This sets the base for how we will assess value 

across strikes, expiries and markets. While today’s report will only focus on the 

VRP – differences in the second moment of the two distributions – we will 

introduce the whole approach as it serves as base for future reports. This 

section, therefore, introduces our P-distribution. 

4.1 P-distribution Basics 

The P-distribution is our subjective assessment of what future asset returns will 

look like. Estimating it is a challenge. We have to account for realistic financial 

market assumptions while also staying computationally efficient. With that in 

mind, there are 4 aspects to our approach: 

 We use our delta-one portfolios to estimate expected returns - the first 
moment of our P-distribution. Each portfolio contains some additional 
predictive power about future returns across horizons. The portfolios were 
built as part of our Quantcraft series: Trend, Carry, Value, Sentiment and 
Macro Factor investing. 

 We combine a multivariate risk factor model, in addition to a univariate 
model, to estimate asset variance. This approach utilises both cross-
market and idiosyncratic information to forecast the second moment of 
our P-distribution, and is in line with how quant investment portfolios are 
built. 

                                                           

23
 As with other derivatives, market-implied views are derived through arbitrage-free relationships that 

most often reflect the cost of hedging the position and supply-demand dynamics, as opposed to traders’ 

subjective views of the future. This difference is often the source of opportunity. 

 

Specifically to options markets, Carr and Madan [2001] argue that the optimal trade for an investor requires 

3 ingredients: (1) her beliefs regarding future outcomes (the P-distribution), (2) her risk preferences (level of 

risk aversion), and (3) market prices.  

https://gm.db.com/global_markets/publications/fx_special/quant_craft17sep13.pdf
https://gm.db.com/global_markets/publications/fx_special/quantcraft_141212.pdf
https://gm.db.com/global_markets/publications/fx_special/quantcraft_141212.pdf
https://gm.db.com/global_markets/publications/fx_special/quantcraft_101115.pdf
https://gm.db.com/global_markets/publications/fx_special/quantcraft_101115.pdf
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 We account for volatility jumps by segregating between event and non-
event volatility. The former relates to known economic releases and policy 
decisions in each country. 

 We also account for the influence of global sentiment regimes when 
calibrating our parameters. 

 Finally, we apply an analytical, moment-based approach to estimate the 
higher moments and ultimately complete our P-distribution. This approach 
has the advantage of being computationally efficient. 

Our returns process is defined as follows: 

ittiitit FBr ,,,    

  ititt rE ,,1   

 
11|,1  

tt

T

ittiitt BBrVar  

where: 

 
it , is determined exogenously by our delta-one signals. It is non-

stochastic but varies over time. It is described in more detail in Section 4.2. 

 Bi is a vector of factor loadings: Bi = (β1, i, β 2, i,... β K, i)
T , for i = 1:N assets 

and k = 1:K factors. tF  is a vector of de-trended24 observed risk factor 
returns. Both are described in more detail in Section 4.3 and Appendix I.    

 
ittit zh

i ,,,    is a disturbance process such that  
itit h  ,, ,0~  . 

 
t  is a time-varying factor covariance matrix, our systematic risk. It is 

described in more detail in Section 4.3. 

 
t  is a time-varying diagonal 25  covariance matrix of error terms. It 

represents asset-specific risk.    

 

4.2 P-Distribution: the Mean 

As the P-distribution should represent our "best guess" of future values of 

spot, it must incorporate all our knowledge about what drives spot returns. So 

far, our work indicates five categories of drivers – trendiness, valuations, carry, 

market sentiment and macroeconomic developments. The respective signals 

are grouped through the portfolios highlighted in Section 4.1. 

For any horizon, our forecasted expected return,  , is computed as follows: 

1. The sign of our forecast reflects the average of the standardised weights26 

from each portfolio. 

2. The magnitude of our forecast reflects both the magnitude of recent asset 

returns and a propagation function. We use a variance ratio as the latter.27 

Mathematically, 

                                                           

24
 A necessary requirement for   ititt rE ,,1   .   

25
 We assume the disturbance terms are uncorrelated. 

26
 We divide the current weight by its recently volatility. The absolute weights are bounded at 2. 

27
 We use an anchored long-term window to estimate the variance ratio term structure. 
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where  f is an exponential moving average of absolute asset returns. 

imt
w

,,

~
is the standardized time-t weight of asset i associated with portfolio Ym. 

In other words, our forecast reflects how bullish or bearish our delta-one 

portfolios are now versus the past, and whether spot is likely to trend or mean-

revert over a given horizon. 

4.3 P-Distribution: the Variance 

The variance is the second step in estimating our P-distribution. It is the main 

quantity of interest for the VRP harvester and hence a key focus of this paper. 

Our approach must reflect real-world characteristics, while remaining 

computationally efficient.  

To model t  we apply a multivariate factor constant conditional correlation 

GARCH model – CCC MGARCH.28 The building blocks are as follows: 

 Common factor vs idiosyncratic risk: we discriminate between systematic 
and asset-specific risk. 

 A multi-regime approach: we use the aforementioned DB Global Sentiment 
Indicator - GSI29 to exogenously incorporate different risk regimes into our 
volatility model. 

 Event-based jump risk: we also incorporate the impact of scheduled macro-
economic events into our variance forecasts. 

4.3.1 Factor model 

Factor models are commonplace in the quantitative investment community. 

They carry two30 main advantages: 

 Computational efficiency. In essence, factor models reduce dimensionality. 
Instead of modeling the variations and co-variations of N assets 
individually, we model those of K factors instead. By default, K < N. Factor 
co-variances eventually map back into asset co-variances through the 
latter’s sensitivity to each factor. 

 Estimation robustness. In a world with increasingly integrated markets, a 
factor model captures the common drivers – the factors – of cross asset 

                                                           

28
 The fact that financial returns are not well described by iid normal distributions has been long 

documented in the literature, starting as early as 1960s – see, for example Mandelbrot [1963]. Volatility 

clustering – i.e. positively autocorrelated variances – is well established. The seminal papers of Engle 

[1982] and Bollerslev [1986] enable the modeling of such volatility clustering. Jumps in the price and or/ 

the volatility of assets (around events) is another well documented phenomenon. Furthermore, multi-

regime GARCH models have been advocated in the relatively recent academic literature – see, for 

example, Haas et al.[2004a, 2004b], Marcucci [2005], Alexander and Lazar [2006, 2009]. All these features 

have been incorporated in the volatility model we propose and describe below. CCC-MGARCH stands for 

Constant Conditional Correlation Multivariate Generalised Autoregressive Conditional Heteroskedasticity. 

 

Factor models for modeling the volatility of assets, particularly of large portfolios, have been long 

advocated in the academic and practitioner finance literature. Here we are combining the approaches 

proposed in the seminal papers of Engle et al. [1990] on factor- ARCH, and Bollerslev [1990] on the 

constant conditional correlation GARCH model, later developed to allow for dynamic correlation by a series 

of authors, including, for example Engle [2002] or Tse and Tsui [2002]. 
29

  See Natividade and Chen [2012b] for the methodology behind the construction of our Global Sentiment 

Indicator (GSI). According to this regime indicator, we distinguish between three risk/market sentiment 

states, namely: risk-seeking, intermediate and risk aversion. 
30

 Another, albeit secondary advantage is that a factor model can also incorporate spill-overs between 

volatilities of different assets. 
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variations better. As has been argued in the literature 31 , the inter-
dependence between the various volatilities may be due to an underlying, 
or a set of underlying common factors. Sections 2 and 3.1 also illustrate 
this argument; not only the common variations in delta-hedged returns 
were highly linked to volatility, but those volatilities were highly correlated 
across different markets as well. 

We model systematic risk through K = 11 global risk factors, summarized in 

Figure 11. We divide them into 2 categories: macro and investable. The former 

covers asset sensitivity to broad macroeconomic dynamics – namely growth 

and inflation. The latter represents directly investable portfolios, either static 

(long-only) or dynamic (long-short). Our model is based on the Arbitrage 

Pricing Theory (APT), an extension of the CAPM where multiple factors are 

used. Asset exposure to each factor is estimated using a stepwise robust 

regression, a method that tackles collinearity and outlier effects. Our model 

covers 80 assets across multiple asset classes and is updated daily. It is 

covered in detail in Appendix I. 

Having outlined the factors, we now relate them to our final asset variance 

forecast. Recall from Section 4.1 above that the time t variance of asset i is 

given by: 

 


riskticidiosyncra

tt

risksystematic

T

ittiitt BBrVar
11|,1  


 

 

In the context of our factor CCC-MGARCH, we can write t  as the following 

matrix product: 

tttt DD   

where  kt
Kk

t hdiagD ,
1 

 is a diagonal matrix of time-varying factor standard  

deviations and t  is a KxK factor correlation matrix.  
it

Ni
t hdiag ,

1 

 is a 

diagonal matrix encapsulating asset specific risk. 

: The estimation of our CCC-MGARCH includes the following steps: 

 Step1: estimate the factor variance terms (i.e. the elements of tD ) via a 
GARCH-type model of choice – in our case, a multi-state model where the 
states are exogenously given by our GSI. This is described in Section 4.3.2. 

 Step 2: Repeat Step 1 for the residual variances (i.e. the elements of t ). 

  Step 3: Estimate the correlation matrix t 32 ; in the context of a CCC 
model,  t , i.e. correlations are assumed constant through time. 

4.3.2 The exogenously-determined multi-state GARCH model 

As the seasoned investor is aware, asset volatility follows multiple regimes 

over time. Capturing regime-shifts quickly enough is key. In our view, the GSI 

suits that task better than other standard choices such as historical returns 

alone. 

                                                           

31
 See for example Bauwens et al. [2005] – Chapter 5 in particular and references therein – , Corradi et al. 

[2006] or Engle and Rangel [2005]. 

32
 With the sole condition that this is a positive definite matrix, such that the positive definiteness of t  

is ensured (i.e. variances are guaranteed to be positive such that volatilities are defined) 

Figure 11: Factors used for 

Multivariate Variance forecasting  

Factor type Summary 

Macro 

US inflation 

(proxied by TIPS 

vs USTs) 

Global growth 

(proxied by 

equities) 

Investable:  

static 

Equities: EM 

FX: USD/G10, 

USD/EM 

Commodities: 

energy, metals, 

agriculture 

Rates: global 10Y 

Treasuries 

Investable: 

dynamic 

Cross-asset 

Momentum 

Cross-asset Carry 

We use the terms “Macro” and “Investable” as per literature. 
Source: Deutsche Bank. 
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The variance of the k-th de-meaned factor Fk,, conditional on information 

available at t-1, is given by: 

  ktkktskktkkktktt hFFhF
t ,1

2

,1,

2

,1,,1 1
var  


  

The variance terms kth ,  (k = 1,2…., 12) will represent the diagonal elements of 

t . We also use the same specification for the idiosyncratic variances, 

namely: 

 
iti tiitsiitiititt hh   ,1

2

,1,

2

,1,,1 1
var  


 

where st is an observable random variable. At any time t, we assume that st is 

equal to either 1, 2, or 3, denoting low, medium or high risk regimes, 33 

respectively, depending on the GSI value at t.34  

For parameter estimation via maximum likelihood, as well as forecasting 

higher moments and approximate distributions (see Section 4.4), the following, 

equivalent expression for ht,k  will be used:35 

   
ktkktktktktkktkkkt hIFIFFh ,1

2

,1

2

,12

1

,1

2

,1,1

2

,1,     

where 
 i
ktI ,  is an indicator function, taking the value of 1 if st = i and zero 

otherwise, with }2,1{i . 

4.3.3 Event versus non-event volatility 

It is well established that asset returns can be “jumpy”, and we must account 

for this feature if we want to make our variance forecasts more realistic. While 

the standard approach involves a compound Poisson process, we opted for an 

alternative method that targets macroeconomic events – the periods when 

those jumps are more likely to occur. This bespoke approach is more 

straightforward and computationally efficient in helping us estimate the P-

distribution as a whole. 36 Our approach follows Natividade et al. [2011], which 

is in turn inspired by Bauwens et al. [2005]. We apply it to both factor and 

idiosyncratic variances. 

 

 

                                                           

33
 In Natividade and Chen [2012b], a Gaussian mixture of historical GSI values pointed to 3 as the optimal 

number of regimes to describe the series. 

34
 Identification requires one of the 

1, tsk parameters, with st-1= {1, 2, 3}, to be equal to zero (or 

equivalently that α is equal to zero). In the equivalent specification used below, we implicitly assume 

03, k . The same treatment applies to 
1, tsi . 

35
 A similar expression will be used for the estimation of idiosyncratic risk. 

36
 See Cont and Tankov [2004] for a comprehensive review of the parametric treatment of jumps in 

financial returns in continuous time. Using discrete time modeling, Guegan et al. [2013] propose a GARCH-

type model augmented with compound Poisson jumps in the returns. Their proposed approach is thus 

related to the (continuos-time) jump diffusion model introduced in the seminal work of Merton [1976], and 

also to the Bernoulli diffusion model (BDM) – see Honore [1998] and Ball and Torous [1983]. The jump-

diffusion modeling approach would have the advantage of modeling both (scheduled) events as well as 

non-(scheduled) event-driven jumps. It would however have the disadvantage is that the estimation of 

such models is not particularly straightforward, especially in our multivariate setting and given our aim of 

forecasting cumulative variances and higher moments over various horizons.  
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Figure 12: Macroeconomic events covered 

US Eurozone Japan  Australia 

FOMC GE IFO Balance of Payments: 
Current Account 

Employment Change 

Fed Minutes PMI Composite Japan Buying Foreign 
Bonds 

GDP 

NFP HICP Japan Buying Foregin 
Stocks 

CPI 

GDP Unemployment Foreign Buying Japan 
Bonds 

Retail Sales 

ISM Manufacturing PMI Manufacturing Foreign Buying Japan 
Bonds 

Labour Price 

ISM  Services ECB Policy rate decision CPI Policy Rate Decision 

CPI France PMI 
Manufacturing 

GDP Brazil 

Ret. Sales France PMI Services Tankan Survey Policy Rate Decision 

Cons. Conf. Germany PMI 
Manufacturing 

BOJ Policy rate decision CPI 

Home Sales Germany PMI Services   

House Starts Italy PMI Manufacturing   

Jobless Claims Italy PMI Services   
Source: Deutsche Bank; Certain holidays (e.g. London. US) were also treated as events where applicable (i.e. market not closed). Country-
specific holidays were also excluded for each asset. 

Our approach to forecasting the total variance of asset returns combines the 

modeling of time-varying volatility from Section 4.3.2 with non-parametric, 

event-driven jumps. The process involves the following steps:  

 Step 1: we “clean” the returns data by removing the impact of event-
driven jumps. We estimate the impact of a scheduled event by dividing 
asset variance on the day of the event by asset variance during non-event 
days. Figure 12 summarizes the events we cover. These ratios will turn into 
multipliers in the future once we have forecasted “clean” variance.37 Figure 
13 illustrates how significant our calendar events are for a selection of 
assets; the fact that the non-holiday events generally have ratios in excess of 
1 validates our approach.38 

 Step 2: we estimate the parameters of the GARCH process for (clean) 
variance using the event-adjusted returns series obtained in Step 1.39 

 Step 3: we compute forward h-step ahead “clean” daily variance forecasts 
based on the parameters estimated in Step 2. 

 Step 4: we re-insert the impact of scheduled events by using the ratios 
from Step 1 as multipliers to the (forward-starting) daily variances from 
Step 3. Finally, we integrate the forecasts so as to arrive at the final 
forecast of cumulative, annualized volatility for a given horizon. 

 

 

                                                           

37
 Factor models use US events in the modeling of systematic (factor) variance, whereas events pertaining 

to the other countries are used in the modeling of idiosyncratic risk. 
38

 We note that the most significant impact across all assets is that of NFP announcements. Using high 

frequency data for EUR/USD, Chen, Natividade and Wang [2011] also found this to be one of the events 

with the greatest impact, second only to FOMC announcement. We note however that the event impact 

estimation framework here differs in two important ways from that in Chen, Natividade and Wang [2011]: 

1) the above variance impact is computed for factor variances rather than asset variances directly, with the 

events impact for the latter subsequently computed based on the former as explained in the notes to 

Figure 13; 2) daily (rather than high frequency data) is used. 
39

 Event-adjusted returns are equal to the observed returns divided by the square root of the variance 

multiplier from Step 1 on event days, and left unchanged otherwise.  
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Figure 13: Event influence on return variance 
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Source: Deutsche Bank; We show the US events influence on systematic asset variance. The event impact at asset class level is computed based on the events’ impact on factor variance and our factor model as 
follows: for each asset and each event, we compute  the sum of (squared factor beta * factor variance multiplier)/ sum of squared betas. For each event, we plot the average variance multiplier within each asset class. 

 

4.4 P-Distribution: the Higher Moments 

As the reader may suspect, one is unlikely to find a closed-form distribution 

that accurately reflects all the characteristics of asset returns. But we can get 

somewhere close using a moment-based approximation. For this, we need two 

ingredients: 

 A moment-based approximation method. 

 Tractable, computationally efficient higher moment forecasts. 

Regarding the first ingredient, there is no unique recipe, but the Johnson S.U. 

distribution40 is a convenient option. Not only it is leptokurtic, as are financial 

returns, but its four parameters 41  can be fit via efficient, quasi-analytical 

algorithms such as in Tuenter [2001]. 

A random variable X is said to follow a Johnson SU distribution if: 










 
 

JSU

JSU
JSUJSU

x
Z




 1sinh ,  

where Z is a standard normal variable, and sinh−1 is the inverse hyperbolic sine  

function:    1lnsinh 21  xxx . The 4 parameters γJSU, δJSU , ξJSU and 

λJSU may be estimated using the moment-matching algorithm described in 

                                                           

40
 See the seminal paper by Johnson [1949] where these distributions were introduced. 

41
 While the four parameters do not have an intuitive interpretation, they map explicitly into the first four 

moments of any target distribution. Here we are mapping the first four moments of h-period aggregated 

GARCH returns. 

 

Although flexible, the main disadvantage of this approach is that a Johnson SU distribution is not 

guaranteed to exist for any set of mean, variance, skewness and (positive) excess kurtosis. That said, other 

distributions from the same family can be fit in this case. 
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Tuenter [2001]. Using the above relation between Z and X, the cdf of X can be 

written as follows: 

   

















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


 
 

JSU

JSU

JSUJSUJSU

x
xFxF




 1sinh  

 

Differentiating the above, we get the pdf of a Johnson SU:  
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where fJSU(x) is the Johnson SU fit to f, the pdf of h -period aggregated returns 

R t+h,i. 

One important advantage of our proposed modeling framework (i.e. the factor 

CCC-MGARCH above) is that the higher moments of R t+h,i.- the second 

ingredient in the approximation framework above – can be obtained in quasi-

analytical form for any horizon h.42 The proposed moment-based distribution 

approximation method together with the computationally efficient method of 

forecasting higher moments 43  for any horizon complete our P-distribution 

modeling framework. 

4.5 Assessing Accuracy – Mean and Variance Forecasts 

Having described the mechanics of our P-distribution, we now evaluate its 

(historical) accuracy in predicting the future relative to standard benchmarks. 

We focus on 2 forecasts - the mean and volatility - as these will be most useful 

for extracting the variance risk premium. The former should help us delta 

hedge better, while the latter will help decide the direction and size of our VRP 

positions. 

4.5.1 Forecasting Accuracy: the Mean 

We start by evaluating the directional accuracy of our forecasts of expected 

asset returns. We focused on direction as opposed to intensity as the latter is 

less relevant for delta hedging. At every evaluation date, we took the sign of 

the mean of our forecasted return distribution and evaluated whether future 

cumulative returns were of the same sign (our hit ratio). We evaluated forecast 

accuracy according to 3 horizons: 1 week, 2 weeks and 1 month. These near-

term horizons were chosen so as not to deviate too much from traders’ typical 

risk management constraints. 

                                                           

42
 For certain (univariate) GARCH models, (quasi)-analytical formulae for the higher moments (of the 

returns and variance processes) are already derived in the literature – see, for example, Alexander et al. 

(2011). As Simonato (2013) explains, this reduces significantly the computational time. Here, we propose 

applying his approach to our factor CCC-MGARCH modeling setting. 
43

 As specified earlier, quasi-analytical formulae for the higher moments can be derived in our framework. 

These formulae will be used in our future research involving the P-distribution, but as they are outside the 

scope of the present paper are skipped here.  
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We used the same set of 15 representative assets as before, representing 

equity indices, currencies, commodities and Treasuries. Our forecasts were 

compared against 3 of our favourite44 trend-following benchmarks: 

 Our naive trend signal, as introduced in Natividade et al [2013] but further 
modified in Natividade and Anand [2016] to account for asymmetric noise 
control. 

 The Mann-Kendall signal, based on the correlation of sequential returns 
from different lookback windows. This method, whose details are further 
explained in Natividade [2012b], has been particularly useful for intraday 
predictions – see, for instance, Natividade [2013c]. 

 The Oomen-Sheppard trend signal, based on the relationship between 
beginning vs end values and peak vs trough values.45 

The benchmarks used multiple lookback windows to learn from, and the 

backtest encompassed 11 years. We addressed the likelihood that spot would 

mean revert over a certain interval through a non-parametric impulse-response 

function, which weighted the signal from each lookback window accordingly. 

Figure 14 plots, according to each horizon and forecast method, our aggregate 

hit ratio – the percentage of instances when the direction of a signal is the 

same as the direction of future asset returns. Two observations stand out: 

 All methods seemed to have outperformed a random walk when predicting 
the direction of future asset returns, regardless of the horizon, over the 
sample window. That said, the directional accuracy was not far distant 
from 50%, reiterating the challenges in time series forecasting. 

 Our P-distribution forecasts increasingly outperformed the benchmarks as 
our horizons lengthened. This is unsurprising; most of our signals are of 
low frequency. While our Sentiment and (some of) our Value signals decay 
fast,46 the Trend, Carry and Macro Factor signals target longer horizons. 
This observation also concurs with our experience trying to explain asset 
returns at specific frequencies.47 

These results suggest our forecasts should outperform the futures price and, to 

the extent that we can keep our delta positions un-hedged for longer, that they 

should outperform other standard methods. This will become more evident in 

Section 5.7, when we look at the performance of different delta hedging 

methods across asset classes. 

4.5.2 Forecasting Accuracy: the Volatility 

We now turn our attention to the accuracy of our empirical volatility forecasts.  

                                                           

44
 Each looks at trendiness from a different perspective, and the first 2 have been successfully used in our 

paper trading before. For a larger set of potential benchmarks, see Natividade [2012b]. 
45

 See Oomen and Sheppard [2014]. We added this method for completeness given that it accounts for 

trend magnitude in a way that the other benchmarks do not. That said, its estimates suffer from 

discretization bias as we use very few observations to estimate the signal at any point in time. 
46

 It is worth mentioning that weighting our signals unevenly – giving more weight to faster signals – did 

not improve the forecast accuracy. We would have expected better results on 1-week forecasts had our 

signals utilised intraday data as well. 
47

 In Natividade et al [2014] we ran panel regressions that tried to explain short, medium and long-term 

contemporary returns in each asset class using a series of market, macro-economic, technical and 

fundamental variables. We found that the explanatory power rose as we lowered the frequency of one-

period returns (from weekly to monthly, then to quarterly, semi-annually and annually). 

Figure 14: Accuracy (%) of forecasts 

of the direction of future returns by 

horizon 
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We used all 15 markets and 11 years of data. We used hit ratios 
for accuracy – that is, the % of forecasts of the direction of future 
returns over a given horizon that turned out to be correct. Source: 
Deutsche Bank 
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As with the mean, we evaluate our forecasts under multiple horizons: 1 day, 1 

week, 2 weeks, 1 month and 3 months.48 All 15 markets were included.  

We penalized forecasts according to the bias statistic introduced in Connor 

[2000] – also utilized in Alvarez et al. [2012] and Ward et al. [2016]. This metric 

measures the standard deviation of returns standardized by the volatility 

forecasted for the return period.49 If our forecast is accurate, this standard 

deviation should equal 1. If we have over-/under-forecasted vol, the computed 

measure will be less/greater than 1. 

We evaluated accuracy in 2 datasets: the long-term data and a subset that 

isolated crisis periods, as highlighted in Figure 15. In order to capture our 

forecast accuracy going into these turbulent periods, we started our forecasts 

one month prior to the dates shown. 

Our tests focus on 4 aspects: 

1. Parameterization: do parametric models outperform their simpler, non-

parametric peers? We tested the GARCH family versus EWMA, 

classical realized volatility, high frequency volatility and implied vols. 

2. Factor modeling: does our factor model outperform its univariate 

counterparts in predicting asset volatility? We tested both univariate 

and multivariate versions of our GARCH and EWMA models. 

3. Regime modeling: does calibrating our parametric models to 

exogenous regimes help? We tested our parametric models with and 

without regime calibration. 

4. Event modeling: does separating event-related variance from non-

event variance help? We tested both cases. 

Figure 16 illustrates all the models used.  

We first tested the impact of parameterization. As per Figure 16, we compared 

both CCC-MGARCH and univariate GARCH – which calibrate for persistence, 

reaction and level – versus various EWMA estimates, in addition to past 

realized volatility using both close-to-close and higher frequency data50 and, 

ultimately, implied volatility as well. None of these models incorporated 

regimes or events; these were addressed later. 

Figures 17 and 18 show 5 conclusions: 

 The GARCH models appear most accurate overall, outperforming their 
non-parametric peers. 

 Within both GARCH and EWMA families, the univariate and factor versions 
perform similarly. 

 The forecast accuracy of all methods worsens as the horizon lengthens. 

                                                           

48
 While we used multiple forecast windows, we note that the most relevant forecasts are those up to 1 

month. VRP strategies use short-dated options. 
49

 As the focus here is on the cross-sectional comparison between models, we used daily observed, 

overlapping returns in order to improve the sample size at longer horizons, especially for our second data 

sample. Furthermore, for robustness, we have also run our overall accuracy results on model rankings 

using non-overlapping weekly returns and our conclusions remained unchanged. 
50

 We included “high frequency volatility” estimates as they are popular among market makers and have 

been advocated in academia – most notably, Ait-Sahalia and Mancini [2008].  

Figure 15: Market turbulence periods 

Period Event 

Sep-/08 - Mar-/09 Lehman + GFC 

May-/10 - Sep-/10 EU Sov. Crisis 

May-/11 - Jun-/11 EU Sov. Crisis 

May-/13 - Jun-/13 Taper Tantrum 

Sep-/14 - Mar-/15 Greek Debt Crisis 

May-/15 - Aug-/15 China Slowdown 

Feb-/16 - Mar-/16 Oil Price Shock 

Jun-/16 - Jul-/16 Brexit 

 

Source: Deutsche Bank 

Figure 16: Volatility forecasting 

models 

Model Description Used in test 

RV Realized 
volatility (daily 
data - lookback 
= forecast 
window) 

1 

RV (HF) Realized 
volatility (30-
min data - 
lookback = 3 
days) 

1 

Univ EWMAs 7 EWMA 
models  (7 
half-lives) 

1 

Factor EWMAs 7 Multivariate 
factor EWMA 
models (7 half-
lives) 

1 

Univ GARCH  GARCH(1,1) 
model  

1, 2  

Factor CCC-
MGARCH 

3 Multivariate 
factor 
GARCH(1,1) 
models * 

1, 2, 3, 4 

IV Implied 
Volatility 

1 

 

Source: Deutsche Bank; * The 3 versions of this modeling 
framework are: 1) no regimes, no events; 2) no regimes, with 
events; 3) with regimes, with events. The EWMA half-lives are: 5, 
10, 11.2 (corresponds to the Risk Metrics ‘daily’ lambda of 0.94), 
21, 90 and 252 business days. 
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 None of the methods accurately predict market shocks; they all under-
forecast volatility going into the periods outlined in Figure15. This is a key 
finding, with implications for signal generation in Section 6.51  

 That said, implied volatility outperforms the other methods, when 
forecasting 3 months ahead, during those periods. This is likely due to the 
options market over-forecasting volatility, in general, relative to the other 
methods. 52  Note also that such conclusion is less clear over shorter 
horizons; implied volatility does not outperform in 1-month horizons, and 
we did not include it for shorter horizons. 

 

Figure 17: Long-term forecast performance across models (all horizons and underlyings) 
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Source: Deutsche Bank; Overall data set – Oct 2005 to Aug-2016 – used for computations. Y-axis: we show the ‘absolute bias’ (i.e. absolute value of the difference between the bias statistic and 1, which corresponds 
to a perfectly accurate forecast). X: axis: we show the standard deviation of a 252- bd rolling window computation of the bias statistic. 

 

                                                           

51
 The reader may rightly question what threshold distance from 1 would define statistically significant 

under-forecasting. We did not delve into that topic, and therefore our statement is generic. 
52

 In our view, implied volatilities outperform going into turbulent periods not because the options market 

is more accurate at predicting shocks, but rather because the time-homogeneous, over-forecasting bias 

works in its favour in this case. 
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Figure 18: Forecast accuracy during crisis periods according to forecast horizon (days) 
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The X-axis shows the vol forecast horizons (in business days). Y-axis: top chart: the same absolute bias measure as defined in Figure 17 is now shown averaged across all assets, for each horizon bucket; bottom chart: 
the value of our bias test statistic (averaged across assets for each horizon bucket) is shown. All computations use the turbulent market periods shown in Figure 15. Source: Deutsche Bank 

We opt for the CCC-MGARCH framework – which is both parametric and 

multivariate. First, we favour its parametric nature as it allows us to 

approximate the P-distribution more accurately; as mentioned earlier, we need 

an accurate P-distribution estimate to fully harvest the multiple premias 

available in options markets. Not only that, but a well-calibrated P-distribution 

also allows us to simulate asset returns in far more realistic fashion, whose 

applications go well beyond the trading of options. 

Second, we favour modeling risk through factors because while it looks more 

complex, portfolio risk estimation is rather simpler. It is no less accurate than 

univariate modeling and has the added benefits of computational efficiency 

and transparent risk attribution. 

We next turn our attention to the modeling of events and regimes, zooming 

into CCC-MGARCH. Figures 19 and 20 illustrate the following findings: 

 Distinguishing between event and non-event returns when predicting 
future volatility only leads to a trivial improvement, whether in the long run 
or in turbulent periods. A more granular assessment would also show 
notable accuracy gains in FX and commodities, as in line with Chen, 
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Natividade and Wang [2011], but these are offset by losses in Equities and 
Treasuries. 

 Regime modeling proved somewhat more fruitful: the CCC-MGARCH 
model with regimes outperforms its uni-regime counterpart during 
turbulent markets, for horizons of less than 3 months. A more granular 
assessment would also show that this is especially true in equity markets. 

 

Figure 19: Event modeling – impact on forecast accuracy according to forecast horizon (days) 
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Source: Deutsche Bank; Neither model includes regimes. 

 

Figure 20: Regime Modeling – impact on forecast accuracy according to forecast horizon (days) 

0

0.02

0.04

0.06

0.08

0.1

0.12

1 5 10 21 65 all horizons

F
o

re
c
a
s
t 
m

e
a
n

 a
b

s
o

lu
te

 b
ia

s

Long-term (2005-2016)

Factor CCC-MGARCH (with regimes) Factor CCC-GARCH 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 5 10 21 65 all horizons

F
o

re
c
a
s
t 
m

e
a
n

 a
b

s
o

lu
te

 b
ia

s

During crisis periods

Factor CCC-MGARCH (with regimes) Factor CCC-GARCH 
 

Source: Deutsche Bank; Note that both models include events. 

In light of the results above, we stick to the originally proposed model: CCC-

MGARCH, with events and regimes, which will be evaluated for signal 

generation in Section 6. We now move on to alternative delta hedging, the 

next step in our quest to improve VRP strategy returns.  
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5. Alternative Delta 
Hedging 

Alternative delta hedging is, arguably, as ancient as option markets. Market 

makers will happily deviate from their hedging template if they have an edge in 

doing so, and if their risk constraints allow. A tailored delta hedging scheme, in 

essence, improves the positive aspects and reduces the negative aspects of 

the “textbook” delta hedging approach. For the options seller, for instance, 

delta hedging is usually a loss-making spot-trading strategy: "buy high and sell 

low". Foresight of future spot conditions could reduce the loss by, for instance, 

under-hedging53 if the asset is expected to reverse course. For the volatility 

buyer, the converse is true. It is true that alternative schemes will increase 

delta risk, but this side effect should be compensated by the value-add of the 

new scheme.  

The schemes we introduce here utilize our subjective assessment of what the 

future will look like – specifically, on future spot dynamics. 54 They either focus 

on the direction of future asset returns, or on how the asset is trending. If 

correct, using this extra information should give us extra gains. 

The trend-based schemes ultimately dictate how much volatility will be 

captured through delta hedging. They assume that markets are not fractal; 

over the same sample history, high frequency and low frequency returns can 

be very different.  

“True” volatility is a latent variable, and therefore what we observe depends on 

the estimation frequency and method. For instance, if spot appears to move 

sideways when evaluated in 1-week intervals, but goes through 2-day trends, 

the annualized 2-day volatility will be higher than the equivalent 1-week 

volatility. Therefore, if our strategy is to be short options, we should prefer 

delta hedging weekly rather than daily as in doing so we will capture less 

volatility and hence incur a lower delta hedging loss.  

The trend-based schemes we introduce will, in essence, seek to capture more 

or less volatility than what is otherwise observed by using close-to-close data 

points. They do so either by grid-searching optimal delta estimation 

frequencies or by using moving averages to get different delta quantities.  

The direction-based schemes, on the other hand, use a distinctly different 

approach. Rather than trying to capture more or less volatility, they use  

                                                           

53
 That is, either hedging less often or hedging a level that still leaves her under-hedged. 

54
 The reader may question why we did not focus explicitly on volatility – including estimating the delta 

according to the volatility forecasts introduced in Section 4 and delta hedging daily to it. We see the 2 

topics – alternative delta hedging and hedging to realized volatility – as different in nature. The latter is 

about achieving delta hedging “purity”, while the former is about adding “impurity” to achieve extra gains. 

We refer the curious reader to Ahmad and Wilmott [2005] and in Derman and Miller [2016], who 

thoroughly address the topic of delta hedging to “true” volatility. They show that delta hedging to the 

“true” volatility may provide a terminal P&L that is already known at the start of the trade (the difference 

between the premium priced using the volatility estimate and the premium currently quoted in the market). 

The issues, as they partly highlight, are that (1) “true” volatility is often unknown, (2) we cannot delta 

hedge continuously, and hence suffer from discretization error, and (3) the P&L variance can be quite 

significant over the life of the trade. 
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directional forecasts to decide whether to hedge or to run with the current 

delta exposure. They allow for more delta risk if – and only if – that risk is likely 

to pay off. The delta exposures in this category are managed either through 

dynamic bands, break-evens and stop-losses, or by using the forecasts from 

our P-distribution. 

Sections 5.1 – 5.5 introduce each scheme, while Sections 5.6 – 5.7 show our 

backtest results using both simulated and real data. For completeness, we 

cover both long and short option strategies.  

5.1 Grid Search 

The grid search is the "brute force" of our alternative delta hedging schemes. 

Every day, it takes our options basket and calculates what the risk-adjusted 

returns would have been, up to the day before, from delta hedging that basket 

at the frequency stipulated by each grid-point. 

This method effectively “observes” the underlying market at different 

frequencies and infers which one would have been best for delta hedging up 

to time 1t  . It then decides how to delta hedge at time t .55 Hedging to 

frequencies where spot is more volatile should produce better results when we 

are long options, as we are capturing more volatility. The converse is true 

when we are short. Gridpoints represent different frequencies, and are divided 

into 3 domains: delta, time and spot. We describe them as follows:   

 Delta frequencies: hedge if the delta of an option has moved by more than 
a fixed quantity since the last hedge. Delta anchors are popular among 
market makers, especially when dealing with intraday hedging, as they are 
akin to trading under a volume clock56; this frequency domain avoids 
trading during illiquid periods as both spot and delta stay constant, thereby 
reducing market impact. The downside, however, is that option deltas can 
be highly volatile going into expiry – an important issue in practical VRP 
implementation, as it affects costs and signal-to-noise. The grid points we 
used are 5-, 10-, 15-, 20- and 25-delta steps. 

 Calendar frequencies: delta hedge now if the last hedge occurred after a 
certain number of days. The results from this domain are easier to interpret, 
as trendiness and volatility are normally observed as a function of time. 
Calendar frequencies do not discriminate across liquidity pockets, but 
these are much less observable in daily data, and daily is the highest 
trading frequency we assume in this report. The grid points used were 1, 3, 
7, 11 and 20 business days. 

 Spot frequencies: delta hedge the option only if the underlying asset has 
moved by more than a fixed quantity since the last hedge. This domain 
captures the best of the previous two: it captures liquidity pockets and 
does not suffer from unstable deltas near maturity. That said, it also does 
not address the path dependency of an option’s gamma; this is less of a 
concern for VRP baskets but more of an issue for individual options. We 
tested 0.1, 0.3, 0.5, 0.7 and 1 standard deviations (of monthly spot moves) 
as grid points. 

                                                           

55
 We used a P&L lookback window of 250 time units – 1 year – in order for the results to be more 

adaptive to changing market conditions. We used Sharpe ratios as the defining metric. As is standard with 

grid search methods, we also applied nearest neighbour smoothing both historically and cross-sectionally 

(within a domain) across grid points. 
56

 See Natividade [2013b]. 

Figure 21: Grid-search preferred 
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Figure 21 shows the time-varying optimal delta hedging frequency when short 

a basket of options57 in four markets, assuming no risk tolerance constraints, 

overlaid against the futures contract. Darker colours indicate that the grid 

search favours higher hedging frequencies, while lighter colours show that the 

method preferred lower frequencies (in delta, calendar and spot domains) at 

that time.  

The results are intuitive, and similar regardless of the asset class. Lower 

frequency delta hedging has been more optimal because implied volatilities 

normally overshoot the empirical; the VRP harvester would have been better 

off just collecting the option premium and rarely trading the (money losing) 

delta hedging leg. When volatility rises and the asset is trending, however, 

higher frequency delta hedging performs better as gains from the delta hedge 

leg offset some of the loss from the short options position. 

5.2 Moving Averages 

The moving average (MA) scheme is similar to the previous in that it also 

solves for an optimal parameter level, but different in that the parameter in 

question is the asset price that goes into calculating delta. We hedge the delta 

daily, but estimate it using a historical moving average price instead of what is 

currently observed in the market as reference. In essence, this method 

assumes that it has a better understanding of future conditions than what's 

"priced in”, and that delta hedging to it will lead to better returns. 

The scheme makes certain assumptions about trendiness, volatility 58  and 

optimal spot references based on the historical performance (up to 1 day prior) 

of multiple moving average reversal trading strategies59. It also picks the best 

or worst MA as spot reference depending on whether we are short or long 

gamma: 

 If most MA strategy returns are positive, we assume the asset is mean-
reverting. If we are short gamma, the delta hedge computation uses the 
MA level of the best MA strategy as spot input. On the other hand, if we 
are long the option we delta hedge to the current asset price.60  

 If most MA (reversal) strategy returns are negative, we assume the asset is 
trending. If we are short the option, we calculate our delta hedge amount  

                                                           

57
 We use the baskets introduced in Section 3: 1-month rolling expiry, 12 strikes set 0.5 standard 

deviations apart from one another. 
58

 Changes in the delta, which maps into the P&L of the delta hedge strategy, will be less significant when 

we use a moving average as input compared to the current spot price. 
59

 The MA lookback windows range from 1 day to 1 month; we chose not to use longer windows so as 

control how much our delta estimate can deviate from the benchmark. The MA strategies are signal-

weighted; in other words, the more that spot rises above the moving average, the stronger our short 

position. Signal weighting is important as delta hedging strategies are gamma-weighted, and gamma 

intensity relates to the size of recent moves. We use an anchored window to calculate strategy 

performance, and apply nearest neighbour smoothing as is standard in grid search optimisation. We chose 

an anchored window so as to capture structural patterns. 
60

 If the asset is mean reverting, we expect the moving average to outperform current spot at predicting 

the asset price in the near future. If we are short a call, and spot has been rising, we will buy less spot in 

the delta hedge than the original because we will use a lower level of spot as input. This decision to under-

hedge will be correct if spot is indeed mean reverting and therefore subsequently drops, as we will lose 

less from the previous trade. If we are long a call, we will delta hedge to the current asset price. If we 

instead delta hedge to a moving average, we would end up selling less than the benchmark trade and not 

capitalise as much when the asset price eventually drops, which is sub-optimal. We choose the best 

performing MA as we assume it is the one that spot is more likely to revert to. 

Figure 22: Chosen moving average 
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 using the current asset price as input. If we are long the option, we delta 
hedge to the current MA level of the worst performing MA strategy.61 

Figure 22 plots the moving average windows chosen to estimate the level of 

spot (or futures) used in our delta hedge calculator, assuming that we are short 

options. If the chosen MA window was zero, it meant the asset was trending in 

the short-run. In that case, we assumed that current spot would outperform a 

historical average when predicting future spot, and thus chose not to under-

hedge our deltas. The opposite applied if the asset was mean-reverting, and 

the length of the optimal moving average dictated how under-hedged we 

were. 

A key highlight from Figure 22 is the stability of our results for the S&P 500, an 

asset known for its short-term mean-reverting properties. In this case, delta 

hedging to a 5-10 day moving average is generally preferred.  

Currencies, on the other hand, tend to mean-revert under shorter windows, 

which is also reflected in our choice for the 2-day lookback. As currency 

markets often trend under shorter horizons than equities62, it is unsurprising 

that the algorithm opts for smaller MA lookback windows – we should under-

hedge by less. 

5.3 Break Outs 

The break-out scheme is comprised of 2 variables: the options break-even and 

a rolling stop-loss on spot. Well-suited for a market maker, it sits in between 

the two smart delta hedging categories described above.  

This scheme resembles trend following algorithms in that it uses a break-out 

filter and a stop mechanism, be it stop-loss or stop-gain, just as classical trend 

following systems do.63 The break-out bands, in this case, are equal to spot 

plus and minus the price of an ATMF option whose expiry equals that of the 

option we are delta-hedging. We interpret these bands as the option market's 

best estimate of the current break-out ranges in spot. 

It is also similar to the direction schemes we describe later because once the 

asset breaks outside the aforementioned range, we assume that it will continue 

moving in that direction, and therefore increase or decrease the delta hedging 

frequency depending on our option position.  

The scheme works as follows: 

1. At inception of the option trade, or when the rolling stop has been 

triggered, we calculate the spot range: spot +/- the premium of an ATMF 

option that expires the same day as the option we are trading. 

                                                           

61
 If the asset is trending, we expect the moving average to underperform the current spot level at 

predicting the asset price in the near future. In reverse image to the Footnote above, if we are short a call 

and delta hedge to the moving average we will end up buying less spot than the original and therefore not 

capitalise enough as the asset continues to rise. In this case, therefore, we use the current asset price as 

input to calculate the delta hedge. On the other hand, if we are long a call, we would prefer being under-

hedged as spot keeps rising, and delta hedging to the moving average gives us that. In other words, we 

sell less spot than the benchmark delta hedge strategy suggests. We choose the worst-performing 

moving average as it is the one that spot is the least likely to revert to. 
62

 These results are consistent with our work on impulse response functions shown in Natividade et al 

[2014b]. 
63

  See, for instance, Clenow [2013]. 

Figure 23: Delta hedge procedure 

under the break-out method 

 
(1) Establish the break-out thresholds as asset price +/- premium; 
delta hedge daily. (2) Spot has broken to the topside: stop delta-
hedging, initiate rolling stop. (3) The stop-profit got triggered: 
establish the new break-out thresholds and delta hedge daily 
again. (A) Establish the break-out thresholds as asset price +/- 
premium; do not delta hedge. (B) The asset price has broken to 
the downside: start delta hedging daily, initiate rolling stop. (C) The 
rolling stop has been triggered: establish the new thresholds and 
stop delta hedging.Source: Deutsche Bank 
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2. While the spot level is inside the range, if we are long the option, we delta 

hedge daily so that the gain from our long gamma exposure provides 

relief against the loss from our short theta exposure. In other words, we 

“gamma scalp”. If we are short the option, however, we do not delta 

hedge and collect the returns associated with time decay instead. 

3. If spot breaks to the topside of the range, we initiate a rolling stop trigger 

set at 0.3 standard deviations below spot and roll it daily.64 The delta 

hedge varies according to the option position: 

o If we are long a call or a put: stop delta hedging65 and “let the delta 

run”. 

o If we are short a call or a put: cover the delta exposure immediately 

and start delta hedging daily. 

4. If spot breaks to the downside of the range instead, we also start a rolling 

stop level. The delta hedge varies: 

o If we are long a call or a put: stop delta hedging and “let the delta 

run”. 

o If we are short a call or a put: cover the delta exposure immediately 

and start delta hedging daily. 

5. If spot retraces and hits the rolling stop, we cover the delta exposure 

immediately and re-start the process above. 

Figure 23 illustrates the process when applied to long call and short put 

positions, under opposite market scenarios. 

5.4 Expected Returns 

The Expected Returns (ER) scheme explicitly incorporates our return direction 

forecasts into the delta hedging decision, more so than any other scheme that 

we are introducing. The idea is simple: if the delta hedge trade we need to do 

today is in line with our spot view, we delta hedge; otherwise, we do not. In 

other words, we will stay under-hedged or over-hedged if that suits our spot 

views.  

The better our forecasts can predict the direction of future spot returns, the 

more that this delta hedging approach should outperform the others. That said, 

it also causes our VRP strategy to deviate from the benchmark, which – in 

extreme form – may lead to a significant breakdown in correlations with pure 

VRP returns.66 

Our return forecasts come from the P-distribution introduced in Section 4. As 

described earlier, the forecasts combine all the individual signals from our 

delta-one portfolios – Trend Following, Carry, Value, Sentiment and 

Macroeconomic Factor investing. We are primarily interested in the direction of 

                                                           

64
 The length used to calculate the standard deviation is equal to the number of days between the last 

delta hedge date and today. The stop adjusts itself at every spot move but cannot become less stringent 

than it was before. The 0.3 s.d. level was not optimised to this exercise; it was similar to a choice we used 

before. See Natividade [2013c] for more details. 
65

 In cases where we are long the option and stop delta hedging, we do not remove the previous hedge. 

We simply stay under-hedged from this point onwards. 
66

 In this case, we could end up capturing probability risk premium instead of the volatility risk premium. 

Figure 24: Signals from the Expected 

Returns scheme: long vs short the 

underlying asset 
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these returns, as opposed to the magnitude, as the former suits delta hedging 

best. 

Figure 24 plots flagship assets in FX, equities, commodities and Treasuries 

against a background whose colours reflect the output from our spot models – 

bullish (orange) or bearish (blue). One can see that the directional views from 

our ER method do not flip often, a potential downside given that delta hedging 

normally classifies as short-term trading. 

5.5 Whalley & Wilmott 

Finally, we introduce a variation of the Whalley & Wilmott (WW) scheme. This 

method has its origins in academia67, having been first introduced in Whalley & 

Wilmott [1997]. It is a transaction cost model that defines a no-transaction 

region for delta hedging. The costlier it is to trade the underlying, the wider the 

band and therefore the lower the trading frequency. In our context, we modify 

the model such that the delta bands reflect our views on the underlying asset 

instead of trading costs. The bands are defined as follows: 

   3
1

2exp

2

3







 




StTr
Bands BSM  

 

where   is a function of the transaction cost68, r  is the risk-free interest rate, 

Tt,  are time references, S  is spot, BSM  is the Black-Scholes-Merton delta 

and   is the BSM gamma.  

The variable of most interest to us is  , a risk aversion parameter69 that 

defines the convexity of the bands. Instead of setting it as a function of our 

cost-related utility preferences, as done originally, we define it according to the 

spot views coming from our P-distribution. In essence, this method is a 

constrained version of the ER method – we allow for some freedom in our delta 

hedge decisions but ultimately also apply exposure thresholds. For instance, if 

today’s delta hedging trade is in line with our view on future asset returns, we 

apply very tight delta hedging bands. Otherwise, we set them wide. 

                                                           

67
 To our knowledge, smart delta hedging is not a popular theme in academic circles. Delta hedging 

discretization attracted a good deal of attention in previous decades, but the techniques introduced sought 

to reduce trading costs as opposed to capture directional views or the non-fractality of asset returns.  

 

The topic was initially addressed in Leland [1985], where the author revised the option’s implied volatility 

to account for the costs of delta trading. Hodges and Neuberger (HN) [1989] followed through with an 

optimal but computationally expensive band-like approach. Whalley and Wilmott [1997] refined the method 

with an analytical formula, and Zakamouline [2006a, 2006b, 2007] further expanded on it using a double 

asymptotic method that more closely resembled the optimal HN approach. We prototyped the 2 latter 

methods; while the Zakamouline scheme seemed most appropriate for the cost problem, it added little 

extra to WW while also costing more computational time. Sinclair [2008] provides a thorough review of the 

topic.  

 

The main references we found on smart delta hedging are Chen [2010] and Chen et al [2011], where the 

author identified a jump-based delta hedging rule applicable to options on S&P 500 futures. Chen argues 

that as the S&P 500 is likely to revert after large jumps, one should suspend rebalancing the hedge 

portfolio after large jumps and only rebalance the next day. Finally, Sepp [2013] implemented a grid search 

method similar to what we introduced in Section 5.1, but with the goal of reducing delta hedging costs as 

opposed to alpha generation.  

68
 SNtc ||    

69
 Refer to Whalley and Wilmott [1997], Sinclair [2008], Chen [2010] and Chen et al [2011]for details. 

Figure 25: Delta hedging bands – 
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Figure 25 illustrates the method in more detail, where the delta bands are 

plotted against the original Black & Scholes delta. 

 

5.6 Backtest Results – Simulated Data 

Having introduced our alternative delta hedging schemes, we now evaluate 

individual performances on both simulated and real market data. We are 

ultimately interested in the latter, but the former will be the backbone of our 

understanding of how different methods perform under various conditions. 

We focused on 2 types of simulated data – trending and mean-reverting. We 

simulated slightly over 4,000 datapoints in each 70 , using AR(1) return 

generation processes as in Kaminski and Lo [2007]:  

  ttt rr   1  

where tr  are daily asset returns, ),0(~ 2

 t  is a noise parameter and 

)1,1(  reflects the mean reversion rate. Our trending price series are set 

such that annualized asset returns and volatility both average 10%, and 

5.0  to indicate strong trendiness. Our mean-reverting series also have 

10% annualized volatility, but average returns are 0% and 5.0  to 

indicate strong reversal.71 Figure 26 shows 10 runs of our simulated trend and 

mean-reverting series.   

As for backtesting our options strategies: 

[1] We used the same basket of options introduced at the start of Section 3: 

twelve 1-month options, whose strikes are set 0.5 standard deviations 

apart from one another. We assumed a flat volatility surface such that all 

options were priced at 10% implied volatility. Other operational details 

were standard for simulation: zero interest rates, zero transaction costs, 

individual delta hedging for each contract, and roll at expiry. 

                                                           

70
 If each time unit represents a day, this would be equivalent to 16 years of data. 

71
 To make it easier for the reader: 

21    A , where 1.0A . Further, 

252
A  , where 1.0A  in the trending series and 0A  in the mean reverting 

series.   
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mean reverting price series – 5 paths 

each 

0

1000

2000

3000

4000

5000

6000

Dec-89 Dec-93 Dec-97 Dec-01 Dec-05 Dec-09 Dec-13

Simulated trending series

0

20

40

60

80

100

120

140

160

180

Dec-89 Dec-93 Dec-97 Dec-01 Dec-05 Dec-09 Dec-13

Simulated mean reverting series

 
Source: Deutsche Bank 



20 April 2017 

Derivatives Spotlight 

 

Page 32 Deutsche Bank AG/London 

 

 

 

[2] We evaluated 4 strategies: [a] long the options basket in a trending 

market, [b] short the basket in a trending market, [c] long the basket in a 

mean-reverting market, and [d] short the basket in a mean-reverting 

market. Figure 27 provides a sketch of that. 

[3] We also imposed delta risk thresholds so as to respect the typical 

constraints of a market making desk. As such, the strategy automatically 

delta hedges the moment that our exposure exceeds the threshold, 

whether or not it is in line with the candidate method. The thresholds 

used were 5-, 10-, 20- and 100-delta, where the latter represents the 

unconstrained version. This resulted in 80 backtests: 4 strategies, 4 

tolerance thresholds and 5 candidate hedging methods. 

[4] All results were ultimately compared to the benchmark: the same options 

strategy but delta hedged daily instead. 

We assessed 2 P&L characteristics in each backtest. Our utility metric was the 

marginal Sharpe ratio gain versus the benchmark; other metrics, such as 

drawdown-related performance, did not suit this controlled environment. Our 

chosen risk metric was the correlation between strategy and benchmark; we 

wanted to penalize strategies that captured less of the VRP phenomena but not 

penalize strategies that are simply more volatile. The benchmark strategy is to 

delta hedge daily. 

Figure 28 illustrates the backtest results on simulated data. Each sub-figure 

aggregates the same data but via different buckets: returns by strategy and 

market environment ([2]), by delta tolerance threshold ([3]), and by delta hedge 

scheme. The Y- and X-axis display the utility and risk metrics defined above, 

except for we display “risk” as 1 minus correlation for better visualization.  

Delta hedging strategies closer to the top left should be preferred. Our key 

findings are that: 

 Alternative delta hedging outperformed the benchmark in 55% of the 
instances and in 3 out of the 4 strategy environments described in [2]. The 
benchmark strategy – delta hedging daily – ranks last among schemes in 
risk-adjusted returns. 

 In the large majority of instances, our backtest returns were heavily 
correlated to the benchmark.72 In other words, all methods and most 
tolerance thresholds still allowed us to capture VRP returns just as we did 
when delta hedging daily. A tolerance threshold of 20-delta mildly 
outperformed others from a utility-versus-risk perspective. But as expected, 
the tracking error rose as we loosened our delta tolerance thresholds. 

 Our alternative delta hedging schemes performed best when the asset was 
mean reverting and we were short options ([d]), followed by when the 
asset was trending and we were long the basket ([a]). In both instances, 
the methods under-hedged, thereby “letting the delta run”. 

 The only bad environment for our methods was [c] – long the basket when 
the asset is mean-reverting. This is no surprise; it is optimal in this 
environment to delta hedge as often as possible, which means delta 
hedging daily. The benchmark, which does only that, is therefore the best 
“gamma scalping” method. 

                                                           

72
 The correlation of daily log changes, using 4,049 units, was above +0.4 in most instances. 

Figure 27: Backtest scenarios – 

simulated data 
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 No scheme subsumed the others, as seen by the lack of clustering in 
Figure 28. Grid Search (5.1) ranked the highest, which means that the 
optimal hedging frequencies of the past also outperformed in the future. 
Again, no surprise – we used a controlled backtest environment with 
stationary returns, subdued noise and no regime shifts. 

 

Figure 28: Backtested results by hedging scheme (left), delta tolerance (middle) and market environment (right) 
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5.7 Backtest Results – Real Data 

Now that we have an idea of how the results should look like, it is time to 

evaluate how they actually look. Using up to 15 years of data, we applied all 

delta hedging schemes to each of the 15 markets – in other words, the cross-

asset pool described earlier. The backtest setup was similar to the previous in 

that we used the same (1-month) options basket, the same rolling frequency, 

the same evaluation criteria and the same benchmark – the returns from delta 

hedging the basket daily.73 As before, the delta hedge applied separately to 2 

combinations: long the options basket systematically, and short the options 

basket systematically. As before, we did not add costs – this will be left to 

Section 6. 

Our results are presented in Figures 29 and 30. Figure 29 shows the central 

finding from our (near) 600 backtest iterations: on average, the Expected 

Returns (5.4) and Whalley & Wilmott (5.5) schemes outperformed the others and 

the benchmark, whether we were long or short options. In addition: 

 All schemes outperformed the benchmark when short gamma. We find 
that intuitive as it resembles the results from scenario [d] in Figure 27: 
short options in markets whose returns are mean-reverting – in this case, 
over the short run. Here, the delta hedge strategy buys more in rising 
markets and sells more in falling markets. The less we trade it, the more 
under-hedged we are, and the less we lose relative to the benchmark. On 
average, all schemes under-hedge the delta relative to the benchmark. 

 Most schemes underperformed the benchmark when long gamma. This 
result is similar to that of simulated scenario [c] – long options in (short-

                                                           

73
 As before, we only look at the delta hedge leg of the returns, thus ignoring the option mark-to-market 

leg. The latter is the same for all strategies. 
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term) mean-reverting markets. None of the schemes captures this reversal 
pattern as aggressively as the benchmark, which increases the size of its 
short (long) position every day that the asset rises (falls). 

 The amount of outperformance and underperformance grew as the 
tolerance threshold for delta exposure grew. This is in line with the 
arguments above, and with our findings using simulated data. 

 Contrary to the others, the Expected Returns (5.4) and Whalley & Wilmott 
(5.5) schemes excelled when long and short options. Further, the 
outperformance grew as the tolerance thresholds grew. In our view, this is 
because the schemes are based on the directional forecasts of our P-
distributions, and therefore account for a much broader range of asset 
returns than short-term price action alone. The results indicate that these 
schemes can add value even when daily hedging already looks ideal. 
Finally, the fact that these schemes further outperformed under looser 
delta thresholds is in line with Figure 14, which shows that our return 
forecasts improve over longer horizons. 

 Unlike with simulated data, the grid search (5.1) scheme underperformed 
in the new backtest. It shows that naïve calibration is often not enough 
when dealing with real data; persistent patterns in asset returns can be 
clouded by regime shifts and intermittent drivers. 

 

Figure 29: Aggregate backtest results (short – left chart, long – right chart) according to delta hedging scheme, 

expressed relative to the benchmark 
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Figure 30 shows additional results. As before, the Y-axis displays the 

incremental Sharpe ratio from using the aforementioned schemes versus the 

benchmark strategy. The X-axis shows how the returns deviate from the pure 

VRP benchmark, as we subtract the correlation between scheme and 

benchmark returns from one. The first column of charts shows each backtest 

labeled according to delta thresholds, while the second divides our results 

according to hedging scheme and the third partitions them according to 

underlying markets. The rows represent individual asset classes. 

The following observations stand out: 

 The more we loosened our delta tolerance thresholds, the more that the 
tracking error grew irrespective of the hedging scheme. This is the most 
discernible pattern, as shown by the charts on the left and in line with the 
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backtests on simulated data. However, we are still capturing the VRP – all 
correlations to the benchmark74 remained above +0.5. 

 Schemes from Sections 5.4 and 5.5 are located, on average, above others 
and less often below the X-axis. The charts in the middle column show 
that. 

 The charts on the right show no obvious pattern. This is good; we do not 
want our results to be biased by a small number of assets. It also shows 
that we are capturing a feature of the VRP premia as a whole, and not 
tailored to a specific market. 

 

Figure 30: Aggregate backtest results according to delta hedging scheme, expressed relative to the benchmark. Y-axis: 

marginal gain/loss in Sharpe ration vs benchmark. X-axis: 1 – correlation to the benchmark. 
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Correlation of daily returns, 8-15 years of data depending on the market. Source: Deutsche Bank 

                                                           

74
 Daily returns, 8 to 15 years of data depending on the underlying market. 
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6. Building the Strategy 

So far we have shown that there is value in forecasting asset volatility and in 

delta hedging differently. We now evaluate whether these can be used to build 

a better volatility risk premium signal and, ultimately, a better VRP strategy. 

Our tests covered the same 15 markets as before, and 1-month options. But as 

this section deals with implementation, we modified the variance swap-

replicating options basket to be comprised of 10- and 25-delta puts and calls, 

and ATMF puts and calls, all rolled at maturity. The weight of each option was 

inversely related to strike levels, as per standard variance swap replication. We 

also added transaction costs; we used our internal database to estimate 

volatility bid-ask spreads for the key strikes, and applied linear interpolation to 

cover other points in the bid-ask surface. As was the case before, our 

benchmark is a strategy that sells the same basket of options every month, 

delta hedged daily. 

This section covers signal estimation and timing, in addition to implementation 

aspects of our alternative delta hedging (ADH) strategy and how it interacts 

with timing. We finalise by presenting our results on selling option baskets on 

3 equity indices: the S&P 500, Eurostoxx 50 and the Nikkei 225. 

6.1 Fine tuning the VRP signal 

We first focus on the volatility forecasts from Section 4. As CCC-MGARCH 

outperforms in forecasting future volatility, it may also produce better volatility 

trading decisions than the benchmark – which always sells a constant amount. 

Here we assumed daily delta hedging but changed the size of our short (and 

long) options positions to account for the forecasts. The weighting schemes 

we tested are a function of the spread between current implied75 volatility and 

our forecasts of future realized volatility.76 They focused on direction (long or 

short, short-only) and magnitude (binary weights, weight by signal intensity). 

The weights were built as follows: 

1. We took the absolute spread 

I

CIs


 4
  and calculated the current  

percentile relative to the past 1 year77 – our signal p .  

2. We turned the signal into positions according to direction and magnitude:  

 Long-short, binary-weighted:  ssignWlsb  . 

 Long-short, magnitude-weighted: 2 lsblsm WpW .78 

                                                           

75
 We used variance swap strikes where available, typically sourced from the CBOE. Where unavailable, 

we used a weighted average of 1-month implied volatilities across the smile so as to proxy the variance 

swap strike.  
76

 It is worth noting that we also backtested variations where the original signal was based either on our 

volatility forecast alone, or implied volatilities alone. While these schemes were more exposed to factor 

momentum, the results were not significantly different in how they compared versus the benchmark. 
77

 We use a 1-year lookback window to make the signal more adaptive. 

Figure 31: Signal-weighting schemes 
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 Short-only, binary-weighted: 

  1,0,0  sbsb WotherwiseWthenssignif .  

 Short-only,magnitude-weighted: sbsm WpW  2     

Figure 31 plots our weighting schemes over time in 3 markets – EUR/USD, S&P 

500 and WTI – overlaid against asset returns. All 3 assets have typically fallen 

faster than they rose in the past, which results in most long volatility positions 

coinciding with bearish spot markets.  

That is not to say, however, that the long options positions paid off. This is best 

seen in Figure 32, which ranks the backtest results from different weighting 

schemes according to their Sharpe ratio and shortfall-over-returns. The 

benchmark strategy (short-only, delta-hedged daily) ranks first. The sbW  (short-

only, binary weighted) scheme, which uses the least amount of information 

from our signal p , ranks second.     

In other words, neither the long volatility positions nor the long volatility 

predictions translated into overall outperformance. As alluded to in Section 

4.5.2, our forecast method – and all other benchmarks, including implied 

volatility – are not entirely accurate at predicting market shocks. Whether 

magnitude-weighted or binary-weighted, the long positions added more noise 

than value. 

The short-only weighting schemes outperformed the long-short, but still trailed 

the benchmark. This is because if the volatility forecasts went above the 

market implied, the exposure went to zero. These flat positions often translated 

into missed opportunities to sell volatility and capture the VRP. 

Finally, the new weighting schemes led to a reduction in return correlations to 

the benchmark strategy.79 By using our forecasts to reduce losses or turn them 

into gains, we ended up less exposed to the risk premium we aimed to capture 

in the first place. VRP strategies are not alpha strategies; in our view, they 

should not be designed to produce positive returns in every market 

environment. 

These results highlight a challenge often faced by quantitative researchers: 

better statistical results may not lead to better strategy returns. CCC-MGARCH 

may outperform its peers at forecasting volatility, but it still suffers from the 

same general shortcomings that make it underperform, on average, the naïve 

benchmark strategy.  

We will use this forecast method elsewhere – it is a key input to our P-

distribution, and as such will be used for deriving probability risk premium 

signals and any other use of our P-distribution technology. For volatility risk 

premium, we opt instead for the original signal and therefore will hold a 

constant short position on the options basket.  

                                                                                                                                      

78
 We multiply the signal scores by 2 so that the absolute average historical weight is 1; this allows for 

better comparison against the benchmark. 
79

 The 11-year correlations of daily returns versus the benchmark VRP strategy were 0.43 for the long-

short weighting schemes and 0.78 for the short-only weighting schemes. 

Figure 32: Performance rankings 

versus the benchmark 

Sharpe ratio 

 Bench
mark 

LS M. 
(Wlsi) 

S M 
(Wsi) 

LS B. 
(Wlsb) 

S B 
(Wsb) 

S&P 3 5 4 1 2 

SX5E 2 4 1 5 3 

Nikkei 1 4 3 5 2 

Bov 2 5 4 3 1 

E/$ 1 5 3 4 2 

$/Y 1 5 3 4 2 

A/$ 4 3 5 1 2 

$/BRL 1 4 2 5 3 

Gold 1 5 4 3 2 

WTI 1 5 3 4 2 

Corn 4 2 1 5 3 

Copper 5 1 2 4 3 

UST 1 5 2 4 3 

Bund 3 2 1 5 4 

JGB 1 5 4 3 2 

Rank 
of Avg 

1 5 3 4 2 

Shortfall over annualised returns 

S&P  3 5 4 2 1 

SX5E 1 4 2 5 3 

Nikkei 1 4 3 5 2 

Bov 2 5 4 3 1 

E/$ 1 5 3 4 2 

$/Y 1 5 3 4 2 

A/$ 4 3 5 1 2 

$/BRL 2 4 1 5 3 

Gold 1 5 4 3 2 

WTI 1 5 3 4 2 

Corn 5 2 1 4 3 

Copper 5 1 2 4 3 

UST 1 2 5 3 4 

Bund 3 2 1 5 4 

JGB 1 4 5 3 2 

Rank 
of Avg 

1 5 3 4 2 

 

Sharpe ratios are ranked in descending order, while Shortfall-over-
returns are ranked in ascending order.LS M: long-short, 
magnitude weighted. S M: short-only, magnitude-weighted. LS B: 
long-short, binary weighted. S B: short-only, binary weighted. 
Backtests since 2005, where available. Source: Deutsche Bank 
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6.2 Adding alternative delta hedging 

Our alternative delta hedging methods are next. The results from Sections 5.7 

are encouraging, but must be understood in more detail. Given its 

outperformance, we opt for hedging scheme from Section 5.4 (Expected 

Returns) but also cap our absolute delta exposures to a maximum of 20 delta 

so as to reduce deviations from the benchmark. Whenever the threshold is hit, 

we automatically hedge the delta back to zero. 

The top chart in Figure 33 shows that a VRP strategy that delta hedges 

according to the scheme above outperforms the benchmark in almost every 

market. This had been alluded to in Section 5.7, and is attributed to the 

predictive power of our P-distribution. 

But the more interesting finding lies in the bottom chart: on average the 

drawdowns under the new scheme are not worse, but they are not noticeably 

better either. Just as with our volatility forecasts, our spot market forecasts do 

not predict upcoming shocks. Alternative delta hedging acts as an extra 

“income” generator; it improves returns but should not be viewed as a 

drawdown control mechanism for VRP strategies.80 

We next evaluate whether these extra returns pollute our capturing of the 

volatility risk premia. We need to ensure that the marginal gains are not due to 

structural exposures to static or dynamic factors that a pure VRP strategy does 

not have. The long run correlations of daily returns between delta hedging 

P&Ls81 are at 0.9482, which suggests we are still capturing the VRP. That said, 

we need to understand what drives the difference. 

In order to search for hidden exposures in each of our 15 asset-specific VRP 

strategies, we performed an analysis of the attribution of returns. First, we 

orthogonalised the new delta hedging P&L against the benchmark. We then 

regressed the residuals against each of 3 explanatory variables: (1) the asset 

returns, (2) returns from the positions on the asset in our delta-one portfolios 

from Section 4.1, and (3) the returns from a (time series) momentum strategy 

on the asset. In our view, these are most likely to incorporate any potential 

time-homogenous exposures. 

Figure 34 shows the time-varying aggregate explanatory power that these 3 

variables have on the delta hedge P&L residuals over time, while Figure 35 

shows the time-varying betas. The regressions use daily returns, and a 1-year 

lookback window so as to be adaptive. 

We highlight a few observations: 

                                                           

80
 The ratio of annualised returns to top drawdowns improved in 13 out of the 15 markets under 

alternative delta hedging versus the benchmark. However, that is mostly due to an improvement in returns 

and not a reduction in the drawdowns. 
81

 We isolated the delta hedging P&L as opposed to the full strategy P&L in our calculations so as not to 

bias our correlations upwards. The options mark-to-market is the same for both alternative and benchmark 

strategies, it is only the delta hedging leg that changes. 
82

 We use 15 years of data in FX and most equity markets, and 10-12 years in commodities and 

Treasuries. 

Figure 33: VRP strategy performance 

– benchmark versus alternative delta 

hedging 
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 The regressors explain, on average, 30% of the variations in the residuals 
over time. The residuals are not just noise. 

 That said, there is no specific, time-homogenous factor exposure at the 
aggregate level or specific to a given asset. All exposures are cyclical. 

 Some asset class-specific patterns have also emerged. In Treasuries, the 
alternative delta hedge strategy had a long bias, which reflects the multi-
decade rally in the asset class. Equities and FX historically loaded 
positively to asset momentum, except during highly turbulent periods and 
in the past year – both being instances when markets were notably mean-
reverting. 

The cyclicality and adaptivity of these results further support the use of 

alternative delta hedging as a replacement to daily delta hedging. As such, we 

favour using it when harnessing the volatility risk premium. 

 

Figure 35: Time-varying beta exposures – P&L residual regressed against asset returns, delta one portfolios and asset 

momentum 
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6.3 Strategy timing 

Timing is the final aspect we will consider in this report. 83  Section 3.2 

suggested that exogenous variables may be useful for conditioning exposure 

during turbulent markets – periods when neither our volatility forecasts nor 

alternative delta hedging helped. We now delve deeper into this idea. 

6.3.1 Timing using the Global Sentiment Indicator 

Timing a strategy implies increasing or decreasing the capital allocated to it 

according to an algorithm. It can be based on endogenous characteristics of 

the strategy – such as factor momentum or reversal – or defined by variables 

that are exogenous. We considered timing through 3 indicators: our volatility 

forecasts, implied volatility and the Global Sentiment Indicator. The first 2 were 

transformed into 1-year percentile ranks for better comparison versus the third. 

In each of the cases, we defined the capital allocation ratio as 

02.02,  thtt IL , where tI  is the level of one of the 3 indicators above 

and ]2,0[L . The higher the indicator, the more risk averse markets were 

likely to be, and therefore the lower the capital allocation. 

                                                           

83
 Cross-market diversification and modifying the VRP options basket will be addressed in future reports. 

Figure 34: Time-varying R-squared – 

P&L residual regressed against the 3 

explanatory variables 
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1Y rolling window, daily data. Source: Deutsche Bank 
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Figures 36 and 37 illustrate the results of timing the original benchmark VRP 

strategy in each market according to the indicators above. While they 

correlated heavily to one another, the GSI ranked top in most instances.84 

Using the GSI timer, the drawdowns were cut by approximately 20% from the 

original and the ratio of annualised returns to average drawdowns almost 

doubled.85    

But while these results are encouraging, they are not granular enough. In order 

to assess how consistent is the improvement across drawdown types, we 

looked at the ratio of returns between the GSI-timed VRP strategy and the 

original benchmark in all drawdowns in the latter across all 15 markets. Such 

analysis is important so as to reduce the sample bias highlighted in Section 

3.4. 

Figure 38 plots the distribution of ratios across 2,185 drawdowns in the 

aggregated benchmark VRP strategies, bucketed according to the magnitude 

of loss. Numbers below 1 imply the GSI timer helped, whereas those above 1 

imply the opposite. The findings are sobering: on average, timing only tames 

medium to large drawdowns – those above the 30th percentile of the aggregate 

drawdown distribution. In other words, our proxy for global sentiment is 

unlikely to capture smaller, idiosyncratic-driven shocks in each particular 

market, but it should help against stronger, macro-driven drawdowns in the 

VRP strategy. That said, the wide variations inside each bucket also suggest 

that the GSI provides no guarantee of improvement.  

Figure 38: Distribution of drawdown ratios (timed vs un-timed strategy) 

according to drawdown size 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

<10th 10-30th 30-60th 60-90th >90th

25-75% 33-67% 50%
GSI-timed returns divided by benchmark returns 
during benchmark drawdowns

Drawdown size according to percentile buckets
 

Source: Deutsche Bank 

                                                           

84
 Our volatility forecasts also outperformed the implied volatility in most instances, further confirming the 

results from Section 4.5.2. 
85

 Average of the top 5 drawdowns in each VRP strategy. 

Figure 36: Sharpe ratio rankings – 

VRP strategies timed according to 3 

indicators 

 Implied 
volatility 

Volatility 
forecast 

GSI 

S&P 500 3 2 1 

SX5E0 3 2 1 

Nikkei 3 2 1 

Bovespa 3 2 1 

E/$ 3 2 1 

$/Y 2 1 3 

A/$ 2 3 1 

$/BRL 3 2 1 

Gold 3 2 1 

WTI 2 3 1 

Corn 1 3 2 

Copper 3 2 1 

UST 3 2 1 

Bund 1 3 2 

JGB 3 2 1 

Rank of 
Average 

3 2 1 

 

Source: Deutsche Bank 

Figure 37: Drawdown profile with 

and without timing – VRP returns 
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6.3.2. Timing using long-term volatility reversal 

Another, equally pertinent question has to do with the direction of our timing 

variable. We assume above that rising volatility, and rising risk aversion, should 

be negative for future VRP returns. However, both implied and empirical 

volatilities are notably mean-reverting over the long run,86 which suggests that, 

at extremes, our actions should be opposite to what is implied by our timing 

algorithm. In other words, it implies we should lever up the VRP strategy at 

times of extreme risk aversion and de-lever when volatilities are at an extreme 

low. 

We partly addressed this hypothesis by looking at future VRP returns according 

to current implied volatility levels. In order to compare the results across 15 

markets, and hence across 15 VRP strategies, we divided future returns by 

volatility and measured current 1-month implied volatility according to its 

percentile rank from a 5-year history.87 We then aggregated all cross-market 

standardized returns and volatilities into one set. 

Figure 39 plots the distribution of future returns according to horizon (1 week, 

1 month and 3 months) bucketed according to percentiles of current implied 

volatility. The results only partly agree with the long run reversal hypothesis 

described above. Average returns are V-shaped; they do not rise monotonically 

as implied volatility moves into higher buckets. Further, the pattern becomes 

more evident as we lengthen the horizon of future VRP returns. 

That subsequent volatility-adjusted VRP returns are high at the top volatility 

quartile is easier to understand, as the strategy is selling volatility when it is at 

historical highs. But the high (future) returns when (current) volatilities are at 

the bottom quartile are less intuitive. In our view, this is likely due to anecdotal 

evidence that volatility stays at low levels for longer than it does at high levels. 

Figure 39: Future VRP return distribution according to buckets of current implied volatility 
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86
 See for, instance, Francq and Zakoian [2010] for a recent reference. 

87
  In other words, we take today's implied volatility and calculate where it resides relative to the past 5 

years. We do not use future data to estimate the current percentile rank. 
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6.3.3 Timing using volatility changes 

Another important implication from our analysis of long run reversal dynamics 

has to do with whether this should be incorporated into how we devise the 

VRP strategy. We have, without testing, opted against that. Increasing capital 

exposure when volatilities are historically low goes against intuition, and doing 

the same when they are historically high seems imprudent from a risk 

perspective. We rather try to reduce strategy drawdowns than try to speed up 

its recovery, as the latter leaves us exposed to potential structural breaks. 

Further, this V-shaped pattern is not as easily visible when using shorter-dated 

lookback windows to estimate the volatility percentiles, or when using buckets 

of our GSI values. 

We also looked for patterns in how VRP returns relate to changes in implied 

volatility and the GSI. As before, we standardized and aggregated the changes 

in future VRP returns across markets, and compared these to current 

standardized and aggregated changes in the level of implied volatility and the 

GSI.  

Figure 40: Future VRP return distribution according to buckets of recent change in implied volatility and GSI 
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Source: Deutsche Bank 

Figure 40 illustrates our results, as it plots the distribution of standardized 

future returns bucketed by 1-month changes in volatility and 1-month changes 

in the GSI. All charts suggest that future strategy returns tend to fall in the 

upper quartile – when either the current implied volatility or the GSI rose the 

most versus the recent past. The results are intuitive; significant jumps in 

volatility and the GSI imply risk aversion, which is detrimental to future VRP  
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returns.88 These findings indicate the need for further research, as they alone 

are not enough to justify changing the format of our timing algorithm. 

6.4 Timing or Alternative Delta Hedging? 

So far we have shown two VRP-enhancing approaches: alternative delta 

hedging (ADH), introduced in Sections 5.4 and 6.2, and timing, introduced in 

Section 6.3. The former acts as an "income" provider, whereas the latter 

reduces drawdowns. A final question is whether we should combine both. 

Figure 41 compares the returns of the ADH strategy on its own versus the ADH 

strategy combined with timing. The drawdowns improved in most cases - as 

expected - but the resulting Sharpe ratios and modified Calmar ratios89 are 

better in only half of the markets. Timing mechanisms often curtail income, as 

they can lead to under-leveraging during recovery periods, and timing the VRP 

seems no different. 

Figure 42 delves deeper into this topic. We zoom into the exact difference 

between the ADH strategy and the benchmark - the P&L difference between 

both delta hedging legs - and evaluate whether there is value in timing that 

spread.90 As the Sharpe ratios show, there is no strong evidence that timing the 

spread adds value, just as we find no evidence that our aggregate delta one 

portfolios from Section 4.1 can be timed. The results look particularly worse in 

Equities, as the orange boxes in Figure 42 show. 

In summary, these results show there exists a trade-off between income 

boosting and drawdown control when trying new VRP enhancement methods. 

While we favour alternative delta hedging in all instances, we believe the 

decision to further apply strategy timing should be dependent on the investor’s 

risk constraints. 

6.5 An Equity VRP Strategy 

We finalise this section by showing our results in 3 equity indices: S&P 500, 

Eurostoxx 50 and Nikkei 225. In all 3 cases, we systematically sell USD 100 

worth of a basket of 1-month options, rolled every month. The basket is 

comprised of 10-delta, 25-delta and ATMF calls and puts, where the capital 

allocated is inversely related to the strike level - as per variance swap formula. 

As elsewhere in Section 6, costs are included. 

                                                           

88
 The reader will likely see another, smaller pattern in the form of an inverted u-shape in the chart 

pertaining to future 3-month returns against 1-month changes in implied volatility. It suggests that 

significant drops in volatility are also detrimental to future VRP returns. It suggests, in fact, that the most 

favourable environment is one where implied volatilities are not moving (the 50-67th percentile bucket). 
89

 Annualised strategy returns divided by the average of its 5 worst drawdowns. 
90

 We effectively divided the strategy P&L into 3 legs: the options P&L, the benchmark delta hedge P&L 

and the additional delta hedge P&L from the ADH approach. We focus only on the third leg because we 

have already shown earlier that the GSI performs well in timing the other 2. 

Figure 41: Performance comparison 

– ADH alone versus ADH + timing 
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Figure 43 and Figure 44 show our backtested results. The benchmark strategy 

applies daily delta hedging, and is plotted in gray. The strategy that applies the 

GSI indicator to adjust position sizes in the benchmark strategy, as described in 

Section 6.3, is plotted in blue. The strategy that delta hedges according to our 

expected spot returns, as described in Section 5.4, is shown in blue. Finally, the 

strategy that uses both alternative delta hedging and timing is plotted in 

orange. 

Alternative delta hedging boosts the returns in all 3 cases; it bumps the slope 

of our 3 time series. The GSI timer reduces the average of the 5 worst 

drawdowns in 2 out of 3 strategies. When combined, the results are also mixed 

– on average, we see lower risk-adjusted returns but lower drawdowns. 

 

Figure 43: Backtested cumulative returns – VRP strategy applied to equity index options 
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Figure 44: Backtest performance characteristics 

 Benchmark Alternative Delta Hedging GSI timer ADH + GSI timer 

 S&P 500 SX5E Nikkei S&P 500 SX5E Nikkei S&P 500 SX5E Nikkei S&P 500 SX5E Nikkei 

Ann. Ret 0.8 1.1 1.0 1.7 1.8 1.9 1.05 1.38 1.11 1.6 1.6 1.3 

Ann. Vol 2.7 3.4 3.7 3.0 3.7 4.2 2.51 3.31 3.34 2.9 3.7 3.8 

Sharpe Ratio 0.30 0.33 0.28 0.59 0.49 0.45 0.42 0.42 0.33 0.57 0.44 0.33 

Sortino Ratio 0.34 0.42 0.32 0.68 0.64 0.53 0.50 0.54 0.39 0.67 0.55 0.37 

Avg Top 5 DDs -4.0 -4.2 -4.1 -3.4 -3.9 -4.5 -3.20 -4.65 -3.34 -3.0 -4.1 -3.7 

Length Top 5 DDs 
(yrs) 

1.6 1.7 1.2 0.9 1.1 0.8 1.7 1.9 1.1 1.3 1.5 1.1 

Mod. Calmar 0.2 0.3 0.2 0.5 0.5 0.4 0.3 0.3 0.3 0.5 0.4 0.3 
Source: Deutsche Bank 

 

 

 

 

Figure 42: ADH delta hedge spread 

with and without timing 
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7. Conclusion 

This report introduces a framework for extracting value in volatility surfaces 

across asset classes. It is based on comparing the market-implied distribution 

of future returns - the Q-distribution - with our subjective expectations of the 

same - in other words, our P-distribution. In building the latter, we use a 

parametric approach to combine the information from our delta-one systematic 

strategies with a regime-switching, event-calibrated multivariate risk factor 

model. 

Today's Derivatives Spotlight focuses on the volatility parameter of the 

distributions above. More specifically, on the volatility risk premium, a primary 

source of value in options trading. We describe the merits and shortcomings of 

popular VRP enhancement methods, and introduce a different approach based 

on volatility forecasting and alternative delta hedging. 

We compare our methods to multiple benchmarks focusing on both statistical 

accuracy and strategy returns. As is often the case with rigorous testing, the 

results were not always as encouraging as we had hoped. That said, we 

believe that the final recommendations - based on alternative delta hedging 

and timing - should improve the way investors harness this rich source of risk-

adjusted returns. 

Our conclusions are as follows: 

 Having some predictive power of future asset returns – such as when 
using our real world P-distribution – can be valuable in improving VRP 
strategy returns. 

 In our context, the first moment of this distribution has been key in 
improving the way we delta hedge. That improvement came from higher 
risk-adjusted returns, although not from lower drawdowns. 

 For the latter, timing has shown some encouraging results. We proposed a 
method based on our Global Sentiment Indicator – which adapts fast to 
changing market conditions. 

 Future research will focus on other uses of the P-distribution and how we 
can use it to identify and extract more sources of value in the volatility 
surface. 
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Appendix I: Our Multi-
Factor Risk Model 

This section introduces our multi-factor risk model for cross-asset returns. 

While its output can be used for multiple purposes in the future, here we use it 

as input to the asset volatility forecasts introduced in Section 4. Our model is 

based on the Arbitrage Pricing Theory (APT) – an extension of the Capital Asset 

Pricing Model (CAPM) which evaluates the sensitivity of asset returns to a set 

of risk factors. 91  

The risk factors we use encompass macro drivers (inflation and growth), 

market drivers (sector and asset class returns) and dynamic drivers 

(Momentum and Carry). We calibrate the model to 80 assets across currencies, 

equity indices, commodities and international Treasuries.92 Asset sensitivity to 

our global drivers is estimated through stepwise robust regressions.  

Section I.I provides a background to risk factor models. Section I.II provides the 

algorithmic framework for setting up the factors and volatility forecasts. Finally, 

Section I.III focuses on model estimation – in other words, how our betas are 

derived. 

I.I Background and Choice of Framework 

Multi-factor models of asset returns, a.k.a. multi-factor risk models, are 

commonplace in quantitative investing. They serve 3 primary purposes: 

dimensionality reduction, better attribution of returns and better estimation of 

how factors and assets interact. The first is key to large institutional portfolios; 

instead of evaluating the covariances between thousands of securities, one can 

model less than 100 factors instead – a much more palatable exercise. Risk 

attribution is equally important; factor models decompose portfolio risk into a 

smaller, manageable list of sources, making it easier to manage and protect 

positions. Finally, risk models account for the interaction between factors and 

assets, thus addressing spill-overs and other effects that are missed out by 

univariate models. Combined together, these 3 features provide risk models 

with an edge when predicting future asset volatility – our ultimate goal.93 

Risk models are normally divided into 3 types: macroeconomic, fundamental 

and statistical:94  

 Macro factor models use observable economic anchors – tradable and 
non-tradable – as risk drivers. The data pre-specifies the return of each 

                                                           

91
 See Roll and Ross [1976] and Burmeister et al [1994]. 

92
 21 equity index futures: ASX, Bolsa, Bovespa, CAC, DAX, Eurostoxx, HSI, IBX, ISE, JSE, Kospi, Nasdaq, 

Nikkei, OMX, RDX, SMI, S&P 500, TSE, TWE, FTSE and WIG. 30 USD/FX: USD/G10 + USD vs BRL, CLP, 

COP, CZK, HUF, IDR, ILS, INR, KRW, MXN, MYR, PEN, PHP, PLN, RON, RUB, SGD, THB, TRY, TWD, ZAR. 

20 commodity futures: brent, cocoa, coffee, corn, cotton, gasoil, heating oil, natural gas, soybeans, sugar, 

wheat, WTI, silver, aluminium, gold, copper, led, nickel, platinum, zinc. 9 bond futures: 10Y government 

bonds in Australia, Canada, Switzerland, Germany, UK, Japan, Mexico, New Zealand, US. 
93

 See Ward [2010], Ward et al [2016] and Grinold & Kahn [1999] for an in-depth overview of risk factor 

models and risk modelling. 
94

 See Zivot [2011] and Connor [1996] for more details on these 3 types. 
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factor, and its loading to an asset is estimated through time series 
regression techniques. Macroeconomic factor models are the simplest and 
most intuitive of the 3, though suffer from 2 potential drawbacks: mis-
specification (when we use the wrong variable to represent the factor) and 
factor omission (when we ignore a key driver). 

 Fundamental factor models are distinct in that we assume that the factor 
loadings are pre-specified, and factor returns are estimated through cross-
sectional regressions. They are the standard followed by risk factor 
providers, and use asset-specific characteristics such as industry sector, 
corporate accounting metrics and other style classification measures. 
While popular in the equity investment community, this type of factor 
model is less applicable to markets with few observable asset-specific 
characteristics. It also suffers from the same drawbacks as macro factor 
models, though have the advantage of being memory-less – it allows for 
point-in-time risk estimation. 

 Statistical factors take a completely different approach; neither the factor 
returns nor their loadings are observable. Both are estimated instead 
through statistical techniques – most commonly, factor or principal 
component analysis. Mis-specification and factor omission are not a 
concern in this approach, but statistical factors suffer from a lack of direct 
economic interpretation. 

Choosing from the 3 alternatives is not straight-forward; the researcher must 

take a view on whether she needs the factors to be interpretable, whether 

there are enough asset-specific characteristics that serve as drivers, whether 

there are enough assets for cross-sectional regressions to be run efficiently, 

and – ultimately – what she needs the model for.  

In our case, we use it to forecast the volatility of asset returns. With that in 

mind, the macro factor model approach suits us best. Our pool of assets is too 

small for cross-sectional regressions to be reliable, and our assets lack enough 

fundamental characteristics. At the same time, we want to be able to interpret 

what each risk factor represents for future purposes.95 

Figure 45 illustrates part of our argument – that the fundamental factor model 

approach does not fit our goals as well. It plots the correlation between factor 

returns observed by market data – the “true” returns – and factor returns 

estimated by the cross-sectional regressions defined using the fundamental 

factor approach.96 The correlations are generally strong but not always; in the 

case of rates markets, our estimated returns correlate little to the true factor 

returns due to a lack of breadth of constituents.  

 

I.II Selecting our Risk Factors 

As the reader may suspect, selecting the qualifying factors was the biggest 

challenge we faced when creating our risk model. We first had to define how 

much of the variance in our basket of assets needed to be explained by 

                                                           

95
 Examples of future use include portfolio risk hedging and risk factor investing. 

96
 We classified our pool of 80 assets into 6 sub-asset class buckets: DM and EM equities, DM and EM 

FX, commodities and international Treasury markets. We assigned a value of 1 or 0 to an asset depending 

on whether it belonged to that bucket, in the same manner as stocks are classified into industry or sector 

buckets. We also added a global market bucket which applied to all assets. We then applied constrained 

OLS regressions to estimate factor returns.  

Figure 45: Correlation between 

observed and estimated factor 

returns 

 
Source: Deutsche Bank 



20 April 2017 

Derivatives Spotlight 

 

Page 48 Deutsche Bank AG/London 

 

 

 

common factors, and then we had to choose which factors best fit the task. 

Both steps are challenging. The target explanatory power is a random variable 

in itself, as the interaction between factor and idiosyncratic risk changes over 

time. Choosing the actual factors is not straight forward either. We must 

acknowledge our hidden bias – we know which factors explained the past – 

and seek to minimize its adverse effect on future forecasts. 

I.II.I Defining the explanatory power target 

The first task is to define how much of the variance in our asset pool should be 

covered by the multi-factor model. In other words, we must define a threshold 

between factor risk and idiosyncratic risk. To do so, we resorted to Principal 

Component Analysis (PCA). This method can differentiate between factor and 

idiosyncratic variance as it outlines the marginal explanatory power of each 

factor and how it loads into each asset. 

There are 2 aspects to this task: defining the maximum number of statistical 

factors, which is defined once using a long historical window, and choosing 

the optimal number of factors applicable to a given rebalancing date. We 

applied the Cattell’s Scree test to define the former, choosing a maximum 

number of 8 (out of 80) statistical factors. 97 As for the latter, we applied the 

information criteria proposed by Bai and Ng [2002]. 

Next, we want to evaluate how much of the variance in each asset can be 

explained by the statistical factors chosen above. We run standard time series 

regressions of asset returns on principal component returns and aggregate the 

R-squared output from the 80 individual regressions.98 This number, which 

changes at every rebalancing date, becomes our target explanatory power. It is 

the amount of variance we will try to explain using the macro factors built 

below. 

I.II.II Choosing our factors 

The premise of a macroeconomic risk factor model is, unsurprisingly, that 

asset returns are chiefly driven by macroeconomic developments. As such, it is 

a sensible model choice for our markets given that they reflect the typical 

investment scope of a macro investor. 

This choice, however, creates 2 challenges: how to capture the desired factors, 

and whether we are capturing enough of them. 

We started with Chen et al [1986]; as per authors, we assumed that our asset 

returns should be explained by surprises in GDP, inflation and interest rates. 

We tried capturing the first 2 through the nowcasting indices introduced in 

Natividade et al [2015], and the latter through 10Y US Treasury returns.  

Figure 46 compares the average explanatory power achieved through these 

variables versus the target defined in Section I.II.I, making it clear that we have 

not captured enough. It points us back to the 2 challenges highlighted above; 

                                                           

97
 The Cattell’s Scree test plots the components as the X-axis and the corresponding eigenvalues as the Y-

axis. The contribution of each eigenvalue in explaining the total variance is presented in descending order 

and linked with a line. Once the drop ceases and the additional eigenvalues explain little extra, we define 

the cut-off. It suffers from the drawback that there is no deterministic solution as to the optimal number of 

factors; the choice is subjective to the researcher. See Cattell [1978]. 
98

 The OLS regressions were run on 2 years of daily data, rolled daily. 

Figure 46: Explanatory power using 

nowcasting-based macro factors and 

interest rates versus the target 
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nowcasting indices may be of higher frequency but perhaps still too slow, and 

we may be missing other relevant drivers. 

Next we tackled the factor representation issue. Market returns are often cited 

as representative of macroeconomic developments99, and as such we replaced 

our growth indices with asset class returns100 in G10 equities, G10 USD/FX, 

commodities and global Treasuries. These should capture both the macro 

picture and asset class specific innovations, and correspond to the “market” 

variable alluded to in the CAPM. We also replaced our inflation series with a 

market-derived metric: long nominal 10Y USTs while short 10Y TIPS, as per 

Podkaminer [2013]. Figure 47 shows the effect of the new set on explanatory 

power; we are capturing more, but still not enough. 

Our next step was to either add market-representative categories or to sub-

categorise our factors in search for additional entropy. This is akin to industry 

and sector classification in fundamental equity risk models. In the case of 

equities and FX, we added emerging market return factors by orthogonalising 

EM asset returns against G10 asset returns. In commodities, we split the 

market factor into 3: energy, metals 101  and agricultural asset returns. 

Separating between developed and emerging markets is not uncommon – the 

latter often captures stronger country risk premium – see, for instance, 

Podkaminer [2013] and Greenberg et al [2016]. Figure 48 shows the pickup in 

explanatory power. 

Finally, for completeness, we added two dynamic factors: time series 

Momentum and Carry. While these base factors are typically classified as 

return drivers instead of risk drivers, there will be periods when they drive 

portfolio losses in ways not captured by the market factors outlined earlier. The 

attractive long-term returns in Carry and time series Momentum investing exist 

so as to compensate for these specific short-term losses.102 The procedure is 

consistent with Ang [2014].  

Figure 50 outlines our final list of risk factors.103 We acknowledge a bias; we 

assume these factors, which “worked” in the past, will also “work” in the 

future, but our consistency with the literature is reassuring. Figure 49 shows 

the explanatory power of our final multi-factor risk model; it looks very similar 

to the original, PCA-driven target set in Section I.II.I. in other words, we can 

now explain the desired amount of variance in our pool of 80 markets using 

“tangible” – and even hedge-able – drivers. 

 

                                                           

99
 See Ang [2014] for a detailed discussion. 

100
 We proxied asset class returns through (first) principal component baskets. The PCs are estimated 

using a 1-year lookback window of daily returns, rebalanced monthly. The factors are extracted from a 

correlation matrix – i.e. we assume unit variances. 
101

 We chose not to separate between base and precious metals because of the limited breadth in the 

latter. Had we sub-categorised, the regressions run on their 1st principal components would have over-

estimated the explanatory power of the model.  
102

 The “momentum crash” effect is a good example. 
103

 The reader may also be interested in knowing that the only additional factor considered was “crash 

risk”, introduced in David and Bhansali [2014] and proxied as the returns of a short 10-delta 1-month put on 

the S&P 500. We ultimately opted against it because it failed to explain much extra variance. 

Figure 47: Explanatory power using 

market-based macro factors versus 

the target 
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Figure 48: Explanatory power using 

sub-categorised, market-based 

factors versus the target 
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Figure 50: Our factors - description and how to attain exposure 

Risk factors How to get exposure 

Inflation Return of long nominal US Treasuries, short TIPS (Treasury Inflation-
Protected   securities) portfolio 

Equity – Developed 
Market 

Broad-developed market equity index return. This is gained through the 
returns of 1st principal component of our developed market indices. 

Equity – Emerging 
Market 

Return of long EM equity index (1st principal component of emerging 
market indices), short DM equity index portfolio. 

Dollar – G10 countries Long 1st principal component of USD/G10 currencies. 

Dollar – Emerging 
Markets 

Return of long 1st principal component of USD/EM currencies, short 1st 
principal component of USD/G10 currencies portfolio 

Commodities – 
Energy sector 

Long 1st principal component of our energy basket. 

Commodities – Metals 
sector 

Long 1st principal component of our global metals (industrial and precious) 
basket. 

Commodities – 
Agriculture sector 

Long 1st principal component of our agriculture basket. 

Rates – Global 
Treasuries 

Long 1st principal component of our sovereign 10Y bond futures market. 

Cross-asset Trend Return of our cross-asset trend strategy (Marta). 

Cross-asset Carry Return of our cross-asset carry strategy (Carrie) 
Source: Deutsche Bank 

 

I.III Model Estimation 

Having defined our ingredients in Section I.II, we now move into the final step: 

how to estimate the model. Our final goal is to estimate the sensitivity of each 

asset to our list of risk factors, as these factor loadings will serve as input to 

how we forecast asset volatility in Section 4. 

As is commonplace in quantitative research, we first need to address two 

natural issues with market data: the interdependence between our factors, and 

data outliers. More specifically: 

 We addressed multicollinearity risk in 3 ways. First, we orthogonalised 
some of the variables; that is, we regressed EM equity and FX returns on 
G10 equity and FX returns, and used the respective residuals as our 
emerging market factors. Second, we ran the Belsley Collinearity 
Diagnosis 104  on a rolling basis to evaluate the degree of collinearity 
between our explanatory variables. The results were largely satisfactory.105 
Finally, as a means of protecting ourselves against the threat of collinearity 
in the future, we applied stepwise regressions when estimating asset 
sensitivity to each factor. Through this procedure, only relevant factors 
were used at each estimation date; insignificant factors were dropped.106 

 We sought to neutralise outlier influence in 2 ways.107 First, we removed 
the edges of our factors returns (1st and 99th percentiles). Second, our 

                                                           

104
 See Belsley and Kuh [1980] for details. 

105
 We used 17 years of data in total. The tests were run using 2 years of daily factor returns, rolled daily. 

The test statistic did not breach the critical threshold value of 10 at any point of our sample history. 
106

 We also attempted more complex techniques, namely: partial least squares regressions, principal 

component regressions, ridge regressions and LASSO. None showed enough improvement in our results 

so as to justify the extra number of parameters required for calibration.   
107

 Outliers often lead to a violation of the assumption that our regression residuals are Gaussian, 

prompting issues such as heteroskedastic and skewed residuals.  

Figure 49:  Explanatory power of our 

final risk factor model versus the 

target 
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stepwise regressions were conducted in robust form – in other words, 
through robust stepwise regressions.108   

At every rebalancing date, the steps of our algorithm are as follows: 

1. We first take the last 2 years of daily observed returns in both asset and 

factor data. We de-trend and remove the outliers109 in both cases. 

2. We regress asset returns against each factor using a robust regression 

approach: 

i. We first define w  as a Nx1 unit vector, where N is the number of data 

points, and    TuwW  where u  is a Nx1 unit vector,   is the 

NxN identity matrix and   is the dot product. W  is therefore a 

diagonal matrix whose diagonal elements equal the elements of w .   

ii. We estimate the sensitivity of asset returns to each factor using a 

weighted least squares regression, i.e.   WYXWXX TT 1
 , 

where Y is a Nx1 vector of asset returns, X is a Nx13 matrix of factor 

returns (plus the intercept), and   is a 13x1 vector of coefficients.  

iii. We redefine      sssssw  111|| . Further: 

ht

r
s




1
 , where r  is a Nx1 vector of residuals from the  

regression in ii, 
c

MAD  , 685.4t  and 6745.0c  are  

constants 110 , MAD stands for mean absolute deviation and 

  TT XXXXdiagh
1

  representing a vector of leverage values 

from the current regression fit.111    

iv. Repeat steps i – iii until w  is stabilized. It represents our robust 

weights.  

3. We run stepwise weighted regressions of asset returns on each of the risk 

factors using the robust weights estimated in Step 2:  

i. We run univariate (weighted) regressions on each risk factor and 

choose the factor whose P-value is the smallest, assuming it is also 

below a qualifying threshold. 

ii. We re-run our regressions on every remaining factor, having already 

included the term that qualified above, and keep the next relevant 

factor – assuming the P-value qualifies.112 

                                                           

108
 The method is called iteratively weighted least squares. It involves iteratively re-weighting each data 

observation and re-running our regressions through weighted least squares until our betas converge to a 

target tolerance level. We use a bi-square weighting function to re-weight our data observations. See 

DuMouchel and O’Brien [1989] for details. 
109

 We remove observations below the 1st percentile and above the 99th percentile of daily returns over the 

past 2 years. 
110

 Setting t = 4.685 gives us coefficients that are 95% as statistically significant as the OLS estimates. 

Setting c = 0.6745 makes the estimate unbiased in a normal distribution. 
111

 See, for instance, https://en.wikipedia.org/wiki/Leverage_(statistics)  
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iii. We repeat the step above until there are no qualifiers left. For every 

asset, we record the qualifying factor coefficients and set the others to 

zero. 

The coefficients defined in Step 3 are used as input to our asset volatility 

forecasts, as defined earlier in Section 4.3. This completes the estimation of 

our cross-asset, macro factor risk model. 

 

 

                                                                                                                                      

112
 If the p-value of our regression F-statistic with the new explanatory variable is higher than that of 

without it, we do not include the new variable. For reference, see: 

https://uk.mathworks.com/help/stats/stepwiselm.html?searchHighlight=stepwiselm&s_tid=doc_srchtitle  
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Appendix II: Our Global 
Sentiment Indicator 

Modeling investor risk appetite has always been a popular topic in both 

academic and industry research. In March 2012, we – Chen and Natividade 

[2012] – introduced Deutsche Bank’s Global Sentiment Indicator (GSI), a 

variable that points to the current state of market sentiment. It is available on 

Bloomberg as DBQSGSI Index. Figure 51 shows its historical performance prior 

to and after publication. 

Figure 51: Global Sentiment Indicator time series 
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The GSI aggregates 11 barometers of risk across asset classes. These were 

collected through a survey of our colleagues in macroeconomic research and 

focused on variables that were highly adaptive and historically persistent – in 

other words, they did not predict turbulent periods but adapted quickly to 

them. They are: 

 Equity implied volatility: the VIX, a weighted average of implied vols which 
helps gauge the market expectation of how volatile the S&P 500 will be 
over the next 1 month. 

 Financial sector risk (equity perspective): the ratio of the MSCI Financials 
Local Index over the MSCI World Index. 

 Financial sector risk (rates perspective): the difference between 30Y and 2Y 
asset swap spreads, as the former represents possible stress in the 
pension fund and insurance sector while the former represents banking 
sector stress. This measure of liquidity risk has been more efficient at 
market crises prior to the most recent. 

 Interest rate implied volatility: the average of USD, EUR and JPY 3M5Y 
swaption volatility. 

 Short-term interest rate liquidity risk: TED spread, the difference between 
interest rates on interbank loans and US T-bills. 

 Investment grade credit spreads: the spread between Moody's BAA 
corporate bond index and 10Y US Treasuries. 

 Non-financial CDS spreads: the iBoxx US Non-Financials Index. 

Figure 52: GSI – Kernel density and 

Gaussian mixture decomposition 
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 FX implied volatility: the CVIX, a turnover-weighted average of 3M implied 
volatility which helps gauge the market expectation of how volatile 
currency markets will be over the next 1 month. 

 FX volatility slope: the average term spread between 1Y and 1M volatility 
in EUR/USD, USD/JPY and EUR/JPY. 

 FX volatility skew: the average level of 1M 25-delta risk reversals between 
USD/JPY, EUR/USD and EUR/JPY. 

 EM sovereign risk: JP Morgan's EMBI+ index. 

We standardized the data by calculating the rolling 1-year percentile of each 

series, and distilled the output through its first principal component.113 The final 

variable is bounded between 0 and 100, where higher readings imply a higher 

risk environment. 

A Gaussian mixture decomposition of the GSI’s empirical distribution pointed 

to the existence of 3 distinct regimes of risk appetite – low, medium and high 

risk – as consistent with its tri-modal kernel density. Over the past 27 years the 

GSI has spent roughly 33% of the time in low risk, 40% in the intermediate 

regime and the remaining in high risk. Figure 52 plots this historical 

distribution. 

Figure 53 illustrates how efficient the GSI has been at capturing turbulent 

periods in both backtest and live history. In 13 out of the 17 stress periods (and 

4 out of 4 live stress periods) the indicator has been at its upper tercile, 

suggesting it adapted to high risk conditions when needed. It did not predict 

any particular stress period, as it is not designed to do so, but adapted quickly 

to each of the periods below. 

We have used the GSI for 2 purposes: timing risk-sensitive strategies and 

estimating regime-dependent covariance matrices: 

 Timing a strategy implies increasing or decreasing the capital allocated to it 
according to an algorithm that is often based on values of an exogenous 
variable. In this and prior reports, we have used GSI levels to increase or 
decrease exposure according to the ratio: 22,  thtt IL , where 

]2,0[L . Figure 54 shows the rolling drawdowns on a standard FX Carry 
strategy (DBHVBUSI Index) before and after we applied the algorithm 
above, over the long run and since we published the idea in Anand et al. 
[2014]. Risk indicators, when applied to risk-sensitive strategies, provide 
rare instances when timing is promising. On average, timing is a very hard 
task.114  

 

                                                           

113
 We set negative sample covariance values to zero, as per Luo et al [2009]. All data is pre-processed 

such that it has the same direction to risk appetite, therefore minimising the instances where we get 

negative covariances in the first place.  
114

 See Asness [2016] for a longer discussion of this topic. 

Figure 53: GSI levels across historical 

risk events 
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Source: Deutsche Bank 
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Figure 54: Rolling FX Carry (DB Balanced Harvest) drawdowns – with and 

without GSI timing, historical and since September 2014 
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Source: Deutsche Bank 

 Regime-based co-movement estimation is another area in which the GSI 
can be applied. Quantitative researchers often calculate co-variances using 
asset returns sequenced in time. Another approach, however, is to 
estimate co-movements conditioned on data of the same market regime 
over different – potentially non-sequential – periods in history. The premise 
is that asset dependencies may be better modeled as a function of risk 
states; they may, for instance, be more strongly correlated in risk aversion 
as one factor – “risk” – becomes the primary driver of asset returns. 
Conversely, they may be less correlated under lower risk conditions as 
multiple drivers affect price action. Figure 55 plots the volatility of the 
average pairwise correlation between 18 cross-asset underlyings, 
bucketed according to 3 GSI states and according to time.115 It shows that 
the regime-conditioned estimates are less volatile than the estimates 
calculated in time domain; which suggests the former could potentially 
lead to more stable and adaptive asset weights when building portfolios.116      

In summary, the GSI seeks to update the investor about current market 

conditions in as adaptive way as possible. It can be a powerful tool for 

modeling financial data – either for timing or estimating co-movements.  

                                                           

115
 We used 4 flagship assets in FX, commodities and global Treasuries, and 5 equity indices. In this 

exercise, we effectively applied a bucketing approach to estimate joint relationships. First, we estimated 

the 3 risk-state dependent correlation matrices by separating asset returns into 3 buckets based on the GSI 

level at the time. In this case, we used an anchored lookback window so as to maximise the number of 

data points. In the time domain, however, our correlation matrices were estimated using a lookback 

window equal to the average size of 3 risk-state buckets. As such, the number of data points in each 

bucket rises in time equally in both domains. Thereafter, we calculated the volatility of average pair-wise 

correlation over time as a measure of the stability. 
116

 Researchers then control for covariance estimation error using shrinkage or factorization. For shrinkage, 

see James and Stein [1961], Jorion [1986] and Frost and Savarino [1986]. For factorization, see Sharpe 

[1963], Chan et al [1999] and MacKinlay and Pastor [2000].  

Figure 55: Volatility of the average 

pairwise correlation using different 

(rolling) correlation matrices 
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Important Disclosures 
 

*Other information available upon request 
        

Prices are current as of the end of the previous trading session unless otherwise indicated and are sourced from local 
exchanges via Reuters, Bloomberg and other vendors . Other information is sourced from Deutsche Bank, subject 
companies, and other sources. For disclosures pertaining to recommendations or estimates made on securities other 
than the primary subject of this research, please see the most recently published company report or visit our global 
disclosure look-up page on our website at http://gm.db.com/ger/disclosure/DisclosureDirectory.eqsr. Aside from 
within this report, important conflict disclosures can also be found at https://gm.db.com/equities under the 
"Disclosures Lookup" and "Legal" tabs. Investors are strongly encouraged to review this information before investing. 
 

Analyst Certification 

The views expressed in this report accurately reflect the personal views of the undersigned lead analyst(s). In addition, 
the undersigned lead analyst(s) has not and will not receive any compensation for providing a specific recommendation 
or view in this report. Caio Natividade/Silvia Stanescu/Vivek Anand/Paul Ward/Simon Carter/Pam Finelli/Spyros 
Mesomeris 
    

Hypothetical Disclaimer 

Backtested, hypothetical or simulated performance results have inherent limitations. Unlike an actual performance 

record based on trading actual client portfolios, simulated results are achieved by means of the retroactive application of 

a backtested model itself designed with the benefit of hindsight. Taking into account historical events the backtesting of 

performance also differs from actual account performance because an actual investment strategy may be adjusted any 

time, for any reason, including a response to material, economic or market factors. The backtested performance 

includes hypothetical results that do not reflect the reinvestment of dividends and other earnings or the deduction of 

advisory fees, brokerage or other commissions, and any other expenses that a client would have paid or actually paid. 

No representation is made that any trading strategy or account will or is likely to achieve profits or losses similar to 

those shown. Alternative modeling techniques or assumptions might produce significantly different results and prove to 

be more appropriate. Past hypothetical backtest results are neither an indicator nor guarantee of future returns. Actual 

results will vary, perhaps materially, from the analysis. 
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Additional Information 

 

The information and opinions in this report were prepared by Deutsche Bank AG or one of its affiliates (collectively 

"Deutsche Bank"). Though the information herein is believed to be reliable and has been obtained from public sources 

believed to be reliable, Deutsche Bank makes no representation as to its accuracy or completeness. 

 

If you use the services of Deutsche Bank in connection with a purchase or sale of a security that is discussed in this 

report, or is included or discussed in another communication (oral or written) from a Deutsche Bank analyst, Deutsche 

Bank may act as principal for its own account or as agent for another person. 

 

Deutsche Bank may consider this report in deciding to trade as principal. It may also engage in transactions, for its own 

account or with customers, in a manner inconsistent with the views taken in this research report. Others within 

Deutsche Bank, including strategists, sales staff and other analysts, may take views that are inconsistent with those 

taken in this research report. Deutsche Bank issues a variety of research products, including fundamental analysis, 

equity-linked analysis, quantitative analysis and trade ideas. Recommendations contained in one type of communication 

may differ from recommendations contained in others, whether as a result of differing time horizons, methodologies or 

otherwise. Deutsche Bank and/or its affiliates may also be holding debt or equity securities of the issuers it writes on. 

Analysts are paid in part based on the profitability of Deutsche Bank AG and its affiliates, which includes investment 

banking, trading and principal trading revenues. 

 

Opinions, estimates and projections constitute the current judgment of the author as of the date of this report. They do 

not necessarily reflect the opinions of Deutsche Bank and are subject to change without notice. Deutsche Bank provides 

liquidity for buyers and sellers of securities issued by the companies it covers. Deutsche Bank research analysts 

sometimes have shorter-term trade ideas that are consistent or inconsistent with Deutsche Bank's existing longer term 

ratings. Trade ideas for equities can be found at the SOLAR link at http://gm.db.com. A SOLAR idea represents a high 

conviction belief by an analyst that a stock will outperform or underperform the market and/or sector delineated over a 

time frame of no less than two weeks. In addition to SOLAR ideas, the analysts named in this report may from time to 

time discuss with our clients, Deutsche Bank salespersons and Deutsche Bank traders, trading strategies or ideas that 

reference catalysts or events that may have a near-term or medium-term impact on the market price of the securities 

discussed in this report, which impact may be directionally counter to the analysts' current 12-month view of total return 

or investment return as described herein. Deutsche Bank has no obligation to update, modify or amend this report or to 

otherwise notify a recipient thereof if any opinion, forecast or estimate contained herein changes or subsequently 

becomes inaccurate. Coverage and the frequency of changes in market conditions and in both general and company 

specific economic prospects make it difficult to update research at defined intervals. Updates are at the sole discretion 

of the coverage analyst concerned or of the Research Department Management and as such the majority of reports are 

published at irregular intervals. This report is provided for informational purposes only and does not take into account 

the particular investment objectives, financial situations, or needs of individual clients. It is not an offer or a solicitation 

of an offer to buy or sell any financial instruments or to participate in any particular trading strategy. Target prices are 

inherently imprecise and a product of the analyst’s judgment. The financial instruments discussed in this report may not 

be suitable for all investors and investors must make their own informed investment decisions. Prices and availability of 

financial instruments are subject to change without notice and investment transactions can lead to losses as a result of 

price fluctuations and other factors. If a financial instrument is denominated in a currency other than an investor's 

currency, a change in exchange rates may adversely affect the investment. Past performance is not necessarily 

indicative of future results. Unless otherwise indicated, prices are current as of the end of the previous trading session, 

and are sourced from local exchanges via Reuters, Bloomberg and other vendors. Data is sourced from Deutsche Bank, 

subject companies, and in some cases, other parties. 

 

The Deutsche Bank Research Department is independent of other business areas divisions of the Bank. Details regarding 

our organizational arrangements and information barriers we have to prevent and avoid conflicts of interest with respect 

to our research is available on our website under Disclaimer found on the Legal tab.  

 

Macroeconomic fluctuations often account for most of the risks associated with exposures to instruments that promise 

to pay fixed or variable interest rates. For an investor who is long fixed rate instruments (thus receiving these cash 
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flows), increases in interest rates naturally lift the discount factors applied to the expected cash flows and thus cause a 

loss. The longer the maturity of a certain cash flow and the higher the move in the discount factor, the higher will be the 

loss. Upside surprises in inflation, fiscal funding needs, and FX depreciation rates are among the most common adverse 

macroeconomic shocks to receivers. But counterparty exposure, issuer creditworthiness, client segmentation, regulation 

(including changes in assets holding limits for different types of investors), changes in tax policies, currency 

convertibility (which may constrain currency conversion, repatriation of profits and/or the liquidation of positions), and 

settlement issues related to local clearing houses are also important risk factors to be considered. The sensitivity of fixed 

income instruments to macroeconomic shocks may be mitigated by indexing the contracted cash flows to inflation, to 

FX depreciation, or to specified interest rates – these are common in emerging markets. It is important to note that the 

index fixings may -- by construction -- lag or mis-measure the actual move in the underlying variables they are intended 

to track. The choice of the proper fixing (or metric) is particularly important in swaps markets, where floating coupon 

rates (i.e., coupons indexed to a typically short-dated interest rate reference index) are exchanged for fixed coupons. It is 

also important to acknowledge that funding in a currency that differs from the currency in which coupons are 

denominated carries FX risk. Naturally, options on swaps (swaptions) also bear the risks typical to options in addition to 

the risks related to rates movements.  

 

Derivative transactions involve numerous risks including, among others, market, counterparty default and illiquidity risk. 

The appropriateness or otherwise of these products for use by investors is dependent on the investors' own 

circumstances including their tax position, their regulatory environment and the nature of their other assets and 

liabilities, and as such, investors should take expert legal and financial advice before entering into any transaction similar 

to or inspired by the contents of this publication. The risk of loss in futures trading and options, foreign or domestic, can 

be substantial. As a result of the high degree of leverage obtainable in futures and options trading, losses may be 

incurred that are greater than the amount of funds initially deposited. Trading in options involves risk and is not suitable 

for all investors. Prior to buying or selling an option investors must review the "Characteristics and Risks of Standardized 

Options”, at http://www.optionsclearing.com/about/publications/character-risks.jsp. If you are unable to access the 

website please contact your Deutsche Bank representative for a copy of this important document. 

Participants in foreign exchange transactions may incur risks arising from several factors, including the following: ( i) 

exchange rates can be volatile and are subject to large fluctuations; ( ii) the value of currencies may be affected by 

numerous market factors, including world and national economic, political and regulatory events, events in equity and 

debt markets and changes in interest rates; and (iii) currencies may be subject to devaluation or government imposed 

exchange controls which could affect the value of the currency. Investors in securities such as ADRs, whose values are 

affected by the currency of an underlying security, effectively assume currency risk.  

Unless governing law provides otherwise, all transactions should be executed through the Deutsche Bank entity in the 

investor's home jurisdiction. Aside from within this report, important conflict disclosures can also be found at 

https://gm.db.com/equities under the "Disclosures Lookup" and "Legal" tabs. Investors are strongly encouraged to 

review this information before investing.  

 

United States: Approved and/or distributed by Deutsche Bank Securities Incorporated, a member of FINRA, NFA and 

SIPC. Analysts located outside of the United States are employed by non-US affiliates that are not subject to FINRA 

regulations.  

 

Germany: Approved and/or distributed by Deutsche Bank AG, a joint stock corporation with limited liability incorporated 

in the Federal Republic of Germany with its principal office in Frankfurt am Main. Deutsche Bank AG is authorized under 

German Banking Law and is subject to supervision by the European Central Bank and by BaFin, Germany’s Federal 

Financial Supervisory Authority. 

 

United Kingdom: Approved and/or distributed by Deutsche Bank AG acting through its London Branch at Winchester 

House, 1 Great Winchester Street, London EC2N 2DB. Deutsche Bank AG in the United Kingdom is authorised by the 

Prudential Regulation Authority and is subject to limited regulation by the Prudential Regulation Authority and Financial 

Conduct Authority. Details about the extent of our authorisation and regulation are available on request.  

 

Hong Kong: Distributed by Deutsche Bank AG, Hong Kong Branch.  

 

India: Prepared by Deutsche Equities India Pvt Ltd, which is registered by the Securities and Exchange Board of India 
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(SEBI) as a stock broker. Research Analyst SEBI Registration Number is INH000001741. DEIPL may have received 

administrative warnings from the SEBI for breaches of Indian regulations. 

 

Japan: Approved and/or distributed by Deutsche Securities Inc.(DSI). Registration number - Registered as a financial 

instruments dealer by the Head of the Kanto Local Finance Bureau (Kinsho) No. 117. Member of associations: JSDA, 

Type II Financial Instruments Firms Association and The Financial Futures Association of Japan. Commissions and risks 

involved in stock transactions - for stock transactions, we charge stock commissions and consumption tax by 

multiplying the transaction amount by the commission rate agreed with each customer. Stock transactions can lead to 

losses as a result of share price fluctuations and other factors. Transactions in foreign stocks can lead to additional 

losses stemming from foreign exchange fluctuations. We may also charge commissions and fees for certain categories 

of investment advice, products and services. Recommended investment strategies, products and services carry the risk 

of losses to principal and other losses as a result of changes in market and/or economic trends, and/or fluctuations in 

market value. Before deciding on the purchase of financial products and/or services, customers should carefully read the 

relevant disclosures, prospectuses and other documentation. "Moody's", "Standard & Poor's", and "Fitch" mentioned in 

this report are not registered credit rating agencies in Japan unless Japan or "Nippon" is specifically designated in the 

name of the entity. Reports on Japanese listed companies not written by analysts of DSI are written by Deutsche Bank 

Group's analysts with the coverage companies specified by DSI. Some of the foreign securities stated on this report are 

not disclosed according to the Financial Instruments and Exchange Law of Japan. Target prices set by Deutsche Bank's 

equity analysts are based on a 12-month forecast period. 

 

Korea: Distributed by Deutsche Securities Korea Co.  

 

South Africa: Deutsche Bank AG Johannesburg is incorporated in the Federal Republic of Germany (Branch Register 

Number in South Africa: 1998/003298/10).  

 

Singapore: by Deutsche Bank AG, Singapore Branch or Deutsche Securities Asia Limited, Singapore Branch (One Raffles 

Quay #18-00 South Tower Singapore 048583, +65 6423 8001), which may be contacted in respect of any matters 

arising from, or in connection with, this report. Where this report is issued or promulgated in Singapore to a person who 

is not an accredited investor, expert investor or institutional investor (as defined in the applicable Singapore laws and 

regulations), they accept legal responsibility to such person for its contents. 

 

Taiwan: Information on securities/investments that trade in Taiwan is for your reference only. Readers should 

independently evaluate investment risks and are solely responsible for their investment decisions. Deutsche Bank 

research may not be distributed to the Taiwan public media or quoted or used by the Taiwan public media without 

written consent. Information on securities/instruments that do not trade in Taiwan is for informational purposes only and 

is not to be construed as a recommendation to trade in such securities/instruments. Deutsche Securities Asia Limited, 

Taipei Branch may not execute transactions for clients in these securities/instruments.  

 

Qatar: Deutsche Bank AG in the Qatar Financial Centre (registered no. 00032) is regulated by the Qatar Financial Centre 

Regulatory Authority. Deutsche Bank AG - QFC Branch may only undertake the financial services activities that fall 

within the scope of its existing QFCRA license. Principal place of business in the QFC: Qatar Financial Centre, Tower, 

West Bay, Level 5, PO Box 14928, Doha, Qatar. This information has been distributed by Deutsche Bank AG. Related 

financial products or services are only available to Business Customers, as defined by the Qatar Financial Centre 

Regulatory Authority. 

 

Russia: This information, interpretation and opinions submitted herein are not in the context of, and do not constitute, 

any appraisal or evaluation activity requiring a license in the Russian Federation. 

 

Kingdom of Saudi Arabia: Deutsche Securities Saudi Arabia LLC Company, (registered no. 07073-37) is regulated by the 

Capital Market Authority. Deutsche Securities Saudi Arabia may only undertake the financial services activities that fall 

within the scope of its existing CMA license. Principal place of business in Saudi Arabia: King Fahad Road, Al Olaya 

District, P.O. Box 301809, Faisaliah Tower - 17th Floor, 11372 Riyadh, Saudi Arabia.  

 

United Arab Emirates: Deutsche Bank AG in the Dubai International Financial Centre (registered no. 00045) is regulated 

by the Dubai Financial Services Authority. Deutsche Bank AG - DIFC Branch may only undertake the financial services 
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activities that fall within the scope of its existing DFSA license. Principal place of business in the DIFC: Dubai 

International Financial Centre, The Gate Village, Building 5, PO Box 504902, Dubai, U.A.E. This information has been 

distributed by Deutsche Bank AG. Related financial products or services are only available to Professional Clients, as 

defined by the Dubai Financial Services Authority. 

 

Australia: Retail clients should obtain a copy of a Product Disclosure Statement (PDS) relating to any financial product 

referred to in this report and consider the PDS before making any decision about whether to acquire the product. Please 

refer to Australian specific research disclosures and related information at 

https://australia.db.com/australia/content/research-information.html  

 

Australia and New Zealand: This research is intended only for "wholesale clients" within the meaning of the Australian 

Corporations Act and New Zealand Financial Advisors Act respectively. 

 

Additional information relative to securities, other financial products or issuers discussed in this report is available upon 

request. This report may not be reproduced, distributed or published without Deutsche Bank's prior written consent.  
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