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Abstract

Robust difference-in-differences analysis when there is a term structure

It is common practice in finance to use difference-in-differences analysis to examine fixed-

income pricing data. In this paper, simulations show that difference-in-differences method-

ology applied to fixed-income pricing variables that exhibit a term structure, such as yields

or credit spreads, produces false, systematically biased and mismeasured treatment effects.

This is the case even under random assignment of the treatment. Both bias and mismea-

surement are sample-induced and result from differential effects in different parts of the

term structure in combination with the relative distributions of control and treated bond

samples across maturity. Neither bond-fixed effects nor explicit yield-curve control in the

specification resolve the issues. Acknowledging that a sensible estimation approach must

control for term structure effects, we provide new methodology to overcome both bias and

mismeasurement by combining difference-in-differences analysis with yield-curve modeling.

JEL classification: C20, G12, E43, E47

Keywords: Fixed-income pricing, yield curve, term structure of interest rates, yields, credit

spreads, difference-in-differences analysis, treatment effect, bias and mismeasurement



1. Introduction

In finance, difference-in-differences (DiD) methodology is widely used to analyze fixed-

income pricing data. Typically a security’s price is expressed in terms of its yield (or credit

spread) and DiD analysis is applied by running a classical DiD regression of the form

yieldit = αi + δt + βPost 1Post,t + βDiD 1Treated,i × 1Post,t + εit, (1)

where yieldit is security i’s yield-to-maturity on day t and the right side of the equation

represents the typical DiD structure with αi and δt corresponding to security- and time-fixed

effects, respectively, 1Treated,i and 1Post,t treatment and post-event date indicator variables,

βDiD the treatment effect, and εit the error term. DiD methodology is designed to deal with

endogeneity to measure the causal impact of a treatment on an outcome variable, yield in

this case, by comparing treated to non-treated control units over the treatment date with

the units being fixed-income securities in this case. Simultaneously, fixed-income securities

data are characterized by two ever-present features. First, pricing variables such as yields or

credit spreads exhibit a yield curve as these securities are priced against the term structure

of interest rates, typically of the issuer, using its individual maturities. Thereby, the shapes

of the issuer-specific term structures vary widely over time (even on a day-to-day basis).

Second, it is hardly ever possible to match two securities of the same issuer on maturity

because in practice individual issuers have only a few securities outstanding and these

usually have wide ranges of maturities.

This paper uses simulations to show that the classical DiD specification in (1) applied

to fixed-income pricing variables that exhibit a term structure such as yield or credit spread

produces false, systematically biased and mismeasured treatment effects. This is the case

even under random assignment of the treatment. Researchers may erroneously conclude

that there is a statistically significant treatment effect if, in fact, a true underlying treatment

effect is inexistent; or, conversely, they find no treatment effect if in reality there is one. It

is even possible to measure a significant negative effect while the true underlying treatment

impact is positive, or vice versa. The reason for bias and mismeasurement is the inability

of Specification (1) to properly control for term structure effects, which we will elaborate

on shortly. This is particularly unfavorable since DiD methodology is designed precisely
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for the purpose of dealing with endogeneity to elicit and quantify causal effects.

The paper demonstrates bias and mismeasurement in the most trivial setting with

bond-level data, yield as dependent variable, and residual maturity (or bond fixed effects)

as independent variable.1 However, bias and mismeasurement survive (1) if the unit of

analysis is an aggregation of the bond-level, such as the firm, the country, or the bank-

firm relationship, (2) with other dependent pricing variables such as expected returns, loan

rates or spreads, yield spreads, or logarithms of these variables, and (3) for any variable

transformation of residual maturity or linear combination of transformations on the right

side of the regression equation. As for the dependent pricing variable in Specification (1),

using any variable that exhibits a time-varying term structure can lead to estimation bias

and mismeasurement.2 Table 1 provides a list of top finance publications that use DiD

methodology in ways potentially affected, which therefore may benefit from an application

of the methodology proposed in this paper.

Insert Table 1 here.

To show the bias we run Specification (1) for two types of true yield-curve effects, namely

general and treatment effects. Specifically, first, we model general yield-curve effects, which

are not related to the treatment. From pre to post treatment, they move yields of treated

and control bonds irrespective of treatment and vary along maturity. The analysis shows

that, even in absence of a true underlying treatment effect, the classical DiD specification in

(1) produces false treatment effects. Second, we model treatment effects which move yields

of treated bonds only but differentially so across maturity. In this case the classical DiD

specification produces a potentially mismeasured, sample-specific average treatment effect,

which may cause researchers to draw incorrect conclusions. Third, combining general and

treatment effects shows that the classical DiD specification is genuinely not able to identify

the true treatment effects and separate them from treatment-unrelated general effects.

The limitation of the classical DiD specification, which leads to the false and mismea-

1This setting is used, for example, in Todorov (2020), Macaire and Naef (2021), or Bremus, Schütze,
and Zaklan (2021). The authors intend to measure the impact of quantitative easing or green labeling on
bond yields. Both of these are very hot and important topics at the moment.

2Loan or yield spreads are typically calculated with maturity-matched interpolated LIBOR or treasury
rates. Bao and Hou (2017), for example, show that an issuer’s relatively longer-dated bonds have larger
yield spreads and more co-movement with the issuer’s equity and, hence, provide evidence for a term
structure in yield spreads rather than yields. See also John, Lynch, and Puri (2003), Chava, Livdan, and
Purnanandam (2009), Ayotte and Gaon (2011).
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sured treatment effects, is its inability to capture treatment-unrelated general yield-curve

effects as well as the treatment effects themselves if either of these effects vary along ma-

turity. Both false and mismeasured treatment effects are the result of an endogeneity

problem, misspecification, or omitted-variables problem. We show that the magnitude of

both bias and mismeasurement is sample-induced and dependent on the combination of

differential effects, both general and treatment effects, in different parts of the term struc-

ture and, simultaneously, the relative distributions of residual maturity in the treated and

control bond samples.3 Both bias and mismeasurement can be economically large, can go

in either direction, and the larger they are in absolute terms the more likely they also are

statistically significant.

To deal with differential treatment effects the literature typically either estimates het-

erogeneous treatment effects over the distribution of the dependent variable or uses fixed

effects on the different discrete right-side units present in the data.4 The former is not appli-

cable with yield as dependent variable because yield curves can be flat or up- or downward

sloping and the yield-curve shapes vary significantly over time. Applying the latter in a

fixed-income setting, researchers sometimes measure DiD effects separately for individual

maturity buckets (see, e.g., Bao, O’Hara, and Zhou, 2018; Todorov, 2020). We show that

running the classical DiD specification individually by maturity bucket does not resolve the

bias but merely shifts the issue to the maturity-bucket level and, simultaneously, leads to

small samples in some of the regressions. This illustrates the main problem, namely that

residual maturity in a fixed-income setting is a continuous habitat variable and, as such,

demands a different approach.

Instead of Specification (1) researchers sometimes use DiD specifications that explicitly

model the term structure. In that case the DiD specification exhibits one or several terms

to parametrically control for the yield curve in the data. We proceed by running such a

specification and show that explicit term structure control does neither resolve the bias

nor the mismeasurement. In fact, due to the simplicity of our setting with only two time

periods and no measurement error (the bonds always lie exactly on the yield curves), the

DiD specification with explicit term structure control produces the exact same false and

3We use the terms “yield curve” and “term structure” interchangeably.
4To name a few, for the former see Heckman, Smith, and Clements (1997), Bitler, Gelbach, and Hoynes

(2006), Callaway and Li (2019), the latter de Chaisemartin and D’Haultfœuille (2020), and both in one
Callaway, Li, and Oka (2018).
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mismeasured treatment effects as the classical DiD specification in (1). The problem with

these specifications is that they impose, either explicitly through the parametric term struc-

ture or implicitly through the bond fixed effects, parallel yield-curve level-shifts between

the involved groups (control and treated bonds before and after treatment) while the true

effects are not limited to parallel level-shifts. In fact, the false and mismeasured treatment

effects shown in this paper survive any DiD regression model that assumes parallel yield-

curve level-shifts from pre to post treatment. A sensible approach must acknowledge that

the underlying yield curve movements, both treatment-unrelated general as well as actual

treatment effects, may vary over the maturity spectrum.

A simple solution to the problem would be to perfectly match each treated bond with a

control bond. However, for fixed-income securities perfect matching on maturity is rarely

feasible in practice. The main solution provided in this paper, which we call a “fully flexible

yield-curve DiD specification,” combines the DiD method with flexible yield-curve modeling

and allows to separate general yield curve effects from actual treatment effects over the term

structure. To provide intuition, the specification estimates the yield curve separately for

treated and controls both pre- and post-treatment and measures the treatment effects as

the incremental difference between the yield curves of treated and control bonds over the

treatment. With zero-coupon yields as dependent variable the treatment effects can be

estimated by running one single regression using standard software. The DiD estimator,

in this case, does not only control for residual maturity but is a function of it. We show

that the fully flexible yield-curve DiD specification resolves both bias and mismeasurement

and provides precisely estimated treatment effects. Furthermore, since the specification

uses the full panel structure of the data, it permits to cluster standard errors at the bond

level as recommended by Bertrand, Duflo, and Mullainathan (2004). Our second solution,

which we call “semi-matching,” splits the first approach into its pieces and applies them

step-by-step to the data. Semi-matching is more involved but at the same time also more

broadly applicable, as it is not limited to matching on maturity only, but also on other

potentially relevant features such as coupons, callability, etc.

Technically, the paper relates to the literature on latent confounding factor structures

in fixed-effects settings. Bai (2009) develops a panel data estimator with interactive fixed

effects. Correlation between an unobserved ignored factor structure and observed charac-

teristics for the units leads to biases in the slope coefficients. DiD analysis is a special case
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of this. Xu (2017) shows that the treatment effect is biased if one ignores that the fac-

tors, the loadings, or both are correlated with the treatment. Our contribution is twofold.

First we provide evidence that in a standard practical application in finance, i.e. using

DiD methodology to analyze fixed-income pricing data, factor structures naturally con-

found the estimation of the treatment effects. To model effects we employ Diebold and Li

(2006)’s factorization of the seminal yield-curve specification of Nelson and Siegel (1987).

The term structure is given by three factors, level, slope, and curvature and the factor

loadings, which are functions of a fourth parameter λ and bond maturity. Both loadings

and factors are unobserved. To simulate treatment-unrelated general and treatment effects

we manipulate the factors, and since we model differential effects at short and long ends via

the factors they naturally are correlated with residual maturity. In this setting, in which

the factor structure is correlated with residual maturity in a natural manner, we show that

the classical DiD specification produces false treatment effects.5

Second, the proposed new approaches both overcome the bias and mismeasurement

because they directly deal accurately with the confounding factor structure. They do so,

however, in different ways. Semi-matching, our second approach, removes the confounding

factor structure before using DiD analysis to examine the remaining variation. This is the

same approach as emphasized in the synthetic control literature (see Abadie and Gardeaz-

abal, 2003; Abadie, Diamond, and Hainmueller, 2010; Xu, 2017; Abadie, 2021), which is

also concerned with correctly measuring treatment effects in presence of a factor struc-

ture, but applied to fixed-income data. The synthetic control method, however, typically

needs a lot of pre-treatment periods to accurately estimate the factor structure. In our

case, making use of a rich yield-curve fitting literature in finance (Nelson and Siegel, 1987;

Svensson, 1994; Diebold and Li, 2006; Liu and Wu, 2021; to name a few), we can identify

the factor structure with only one pre-treatment period. The fully flexible yield-curve DiD

method, our first approach, illustrates an alternative to deal with the confounding factor

structure. Instead of removing it, the approach models it as part of the DiD estimator.

This enables one to not only control for the unobserved factor structure but, simultane-

ously, to also correctly estimate maturity-dependent treatment effects. As will be shown,

the latter is relevant because, even after removing the confounding factor structure, the

5The DiD model allows for the presence of unobserved factors but their effects must be constant in time
as otherwise taking the difference does not eliminate them (see Abadie, Diamond, and Hainmueller, 2010).
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classical DiD specification still produces potentially misleading effects that may lead to

incorrect conclusions.

The rest of the paper is structured as follows. Section 2 presents the term structure

model and the data simulation. Section 3 shows how Specification (1) measures false treat-

ment effects when there is no treatment effect. Section 4 illustrates how the specification

mismeasures treatment effects. Section 5 provides results when false and mismeasured

treatment effects are combined. Section 6 shows that any DiD specification that restricts

yield-curve movements to parallel level-shifts is going to produce the same bias and mis-

measurement. Section 7 provides methodology to overcome the omitted-variables problem

and resolve the bias. Section 8 concludes.

2. Term structure modeling and data simulation

In the process of generating the data our focus lies on the two features that, combined,

cause bias and mismeasurement. They are described and discussed in this section. As

touched on in the Introduction, the first feature are differential general trends or treatment

effects in different parts of the term structure. The second feature are differential relative

distributions of residual maturity of control and treated sample bonds.

2.1 Modeling term structure effects

To model general and treatment effects in the term structure we employ Diebold and

Li (2006)’s factorization of Nelson and Siegel (1987)’s term structure parameterization.6

The spot rate, or yield, of a zero-coupon bond with maturity x at time t is

yieldt(x; λt) = γ0,t + γ1,t

(
1 − e−λtx

λtx

)
+ γ2,t

(
1 − e−λtx

λtx
− e−λtx

)
, (2)

where γ0,t is a long-term or level factor, γ1,t a short-term or slope factor, γ2,t a medium-

term or curvature factor, and λt the decay parameter. For simplicity we follow Diebold and

Li (2006) and fix λt = λ = 0.7308.7 To model effects in the term structure, we manipulate

6As explained by Diebold and Li (2006) their specification suffers less from multicollinearity between
the parameters as compared to the original Nelson and Siegel (1987) specification.

7The authors explain that λt determines the point where the loading on the curvature factor, γ2,t,
obtains its maximum and pick this, based on practice, to be at a maturity of 30 months. If maturity is
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the level, slope, and curvature parameters while holding the decay parameter fix.

Exhibit 1 gives an overview of the effects modeled in this paper. First, we model general

yield-curve effects, which are unrelated to the treatment. One can think of general effects

as trends in the term structure that are structural and the result of economic forces other

than the treatment.8 For a selected group of countries, Table 2 illustrates that in practice

the shape of the term structure of interest rates varies widely over time. Using yield curve

data from Bloomberg from January 2000 to December 2022, the table shows distributions

of daily and monthly changes in the term spread in Panels A and B, respectively, computed

as the end-of-day or end-of-month ten-year minus two-year zero-coupon spot yield. Across

the twelve selected countries, daily term spreads vary from between −16 and +20 basis

points (bps) in Japan to between −171 to +271 bps in Ireland.9 In Spain, which is one of

the two median countries in the list, daily (monthly) changes in term spreads vary between

−58 and +60 (−114 and +172) bps.

Insert Table 2 here.

With the magnitudes motivated by these yield-curve movements observed in practice,

we model two types of differential general yield-curve effects across maturity. Either the

general effect pushes down the yield curve only at the short-end with −50 (+1) bps at the

one-year (fifteen-year) maturity or only at the long-end with +4 (−50) bps, respectively.

Previewing results, the analysis in Section 3 will show that the classical DiD specification

produces potentially large, statistically significant treatment effects even if a true underlying

treatment effect is entirely absent from the data.

Exhibit 1: Overview effects and sections discussing them
Treatment effect

No Yes
General effect No − Section 4

Yes Section 3 Section 5

Second, following the same logic, we model differential term-structure treatment effects

across maturity in two ways. Either the treatment affects treated bonds only at the short-

end with −6 (0) bps at the one-year (ten-year) maturity or the treatment leads to a term-

measured in months λt = λ = 0.0609, which translates to λ = 0.7308 if maturity is measured in years.
8For example, Foley-Fisher, Ramcharan, and Yu (2016) show how the Fed’s maturity extension program

depresses yields of long-term but not short-term bonds.
9In Greece changes in daily term spreads vary even between −906 and 1,822 bps. However, Greece was

hit exceptionally hard during the European sovereign debt crisis.
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structure twist, which pushes up (down) the yields of treated bonds at the one-year (ten-

year) maturity by +6 (−6) bps. By choosing small treatment effects, we acknowledge the

fact that in reality treatment effects are typically small and, in particular, smaller than the

structural general yield-curve effects. In these cases, as shown in Section 4, the classical

DiD specification produces a sample-specific average treatment effect, which may lead a

researcher to draw incorrect conclusions.

Third, Section 5 combines the treatment-unrelated general with the actual treatment

effects. Differential yield-curve movements across maturity both in the form of general and

treatment effects are the first critical feature that drives the estimation bias.

2.2 Simulation of residual maturity

In practice control and treated bonds are often distributed differentially over maturity. This

property arises naturally in fixed-income data as individual issuers inherently issue only a

limited number of securities but with wide maturity ranges. For the twelve countries used

previously, Table 3 provides the number of securities and the percentage of debt per matu-

rity bucket as of the country’s total debt in January 2023 (Panel A) and 2011 (Panel B).

First, across panels, the number of securities is small and lies between 16 in Ireland and

559 in Japan. In 2023, seven of the twelve countries have less than 100 securities outstand-

ing. Second, issuers have relatively more debt outstanding at short maturities but the

exact maturity structure is issuer- and time-specific. For example, while the US’ maturity

structure is tilted towards the short-end, the UK’s is tilted rather towards the (5-10]-year

bucket. Or, the Netherlands has short maturities in 2011 but rather uniformly distributed

maturities in 2023. Non-governmental issuers typically issue even fewer securities but with

more dispersed maturities. The small number of securities issued per issuer and the wide

maturity ranges inherently lead to unequal maturity distributions in the samples of treated

and control bonds. This is the second feature that causes to the estimation bias.

Insert Table 3 here.

Based on these properties of fixed-income data in practice, we make use of simulation

technique to generate bond maturity, which will be the only source of randomness. A

bond’s residual maturity, x, is drawn from a triangular probability density function, P (x),

that ranges from zero to twenty years, x ∈ [0, 20], and has mode m. The mode determines
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the location of the triangular probability density function’s peak.10 Hence,

P (x) =






0, if x < 0 or x > 20,

x
10m

, if 0 ≤ x ≤ m,

20−x
10(20−m)

, if m < x ≤ 20.

(3)

To analyze the impact of differential residual maturity distributions in the treated and

control groups we build families of samples and sample couplets. Family Fj consists of five

samples, namely one control sample and four treated samples, with fifty bonds each. Resid-

ual maturity of the fifty control bonds is drawn randomly from P (x) with m = 0.25 years

and denoted by Sj,C,0.25. Residual maturities of the four treated bond samples are drawn,

respectively, from P (x) with m = {0.25, 1, 3, 10} years and denoted by {Sj,T,m}m=0.25,1,3,10.

Together this gives the total of five samples per family {Fj} = {Sj,C,0.25, {Sj,T,m}m=0.25,1,3,10}

with P (x) provided in Figure 1. For family Fj we pair each sample of treated with

the sample of control bonds, which gives the family of sample couplets, F SC
j . Hence,

{F SC
j } = {{Sj,C,0.25, Sj,T,m}m=0.25,1,3,10} = {{F SC

j,m}m=0.25,1,3,10}. Each family consists of four

sample couplets. F SC
j,m=0.25 = {Sj,C,0.25, Sj,T,0.25} is the first sample couplet with residual ma-

turity drawn from P (x) with m = 0.25 years for both the fifty control and the fifty treated

bonds. The other three sample couplets, {F SC
j,m}m=1,3,10 = {{Sj,C,0.25, Sj,T,m}m=1,3,10}, are

comprised of the control bond sample with m = 0.25 years and the three treated bond

samples with m = {1, 3, 10} years. The analysis is carried out on 1,000 randomly drawn

families of samples and deduced sample couplets.

Insert Figure 1 here.

An important artifact of the simulation is the large variation in the relative distributions

of residual maturity of treated and control bonds across sample couplets. In Table 4 we

slice the data by family, treatment group, and triangular distribution mode and compute

the average of residual maturity across the fifty bonds in each sample. For each sample

couplet {F SC
j,m}m=0.25,1,3,10, we calculate the ratio of average residual maturity as average of

treated divided by average of control bonds. Panels A and B show populations means as

well as distributions, respectively, of the sample averages and the average-maturity ratio

across the 1,000 families by treatment group and mode m.

10The triangular distribution is a continuous distribution function. We use the terms “triangular distri-
bution” and “triangular probability density function” interchangeably.
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Insert Table 4 here.

With mode m = 0.25, the population mean in Panel A is 6.75 years and, by definition,

the ratio in Panel B is one. With increasing mode the population mean increases and its

ratio rises above one. Across the 1,000 families, means and medians of the samples in

Panel A and the sample couplets in Panel B are very similar to the population means.

Crucially, however, minimums and maximums of average residual maturity in Panel A

and the average-maturity ratio in Panel B exhibit large dispersion. For example, if mode

m = 0.25 for both control and treated bonds, the average sample maturity in Panel A

ranges, respectively, from 4.33 to 8.81 and from 4.32 to 9.17 years. As a result, the average-

maturity ratio in Panel B ranges from 0.59 to 1.52 and can, therefore, be very different from

the population mean even when residual maturity of treated and control bonds is drawn

from the same underlying distribution. Thus, as artifact resulting from fixed-income data

properties observed in practice, namely small security samples per issuer but wide issuer-

and time-specific maturity ranges (Table 3), the simulation naturally leads to unequal

maturity distributions in the treated and control bond samples. This artifact is illustrated

by the large variation in the average-maturity ratio across the 1,000 families within and

across modes m. This is the second critical feature that drives the estimation bias.11

The following sections make use of the simulated maturity data and the modeled term

structures to analyze the classical DiD specification’s performance in fixed-income settings.

3. General effects: Measuring false treatment effects

In this section we run the classical DiD specification in (1) on the simulated maturity data

when the term structure exhibits differential general, or structural, effects across maturity.

These effects are not related to the treatment whatsoever and, therefore, treatment effects

are entirely absent from the data. From pre to post treatment, the general effect pushes

down the yield curve either only at the short-end or only at the long-end. To model the

scenarios, we use Diebold and Li (2006)’s yield curve specification given in (2) and two

11Given the maturity structures observed in practice, the triangular distribution function seems a rea-
sonable benchmark to draw residual maturity from. However, notice that, if anything, this is probably a
rather conservative benchmark as the dispersion in the average-maturity ratio would increase if we were
to draw residual maturity, for example, from a uniform distribution.
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periods, with different yield curves for pre- and post-treatment.12 Figure 2 illustrates the

two scenarios graphically together with the underlying yield curve parameter values used

to build the curves and the resulting yield levels and differences.13

Insert Figure 2 here.

With the chosen parameter values the general short-end effect corresponds to a yield

reduction of −50 bps at a residual maturity of one year and an effect close to zero (+1 bps)

at fifteen years. The long-end effect amounts to a yield decline of −50 bps at fifteen years

and an effect close to zero (+4 bps) at one year.

3.1 Main result: The treatment effect bias

We estimate treatment effects by running the classical DiD specification in (1) using or-

dinary least squares methodology (OLS). Since Bertrand, Duflo, and Mullainathan (2004)

show that the persistence of the treatment indicator in DiD settings induces serial correla-

tion in the error term and that clustering at the level of the treated unit helps to diminish

this issue, standard errors are clustered at the individual bond-level.

Figure 3 provides a first set of estimation results. Each graph plots the 1,000 estimated

DiD effects against the corresponding t-statistics. The first (second) row of graphs covers

the general yield-curve short-end (long-end) effect and graphs on the left (right) the case

when m = 0.25 (m = 10) years.

Insert Figure 3 here.

The figure illustrates that the classical DiD specification always generates false treat-

ment effects if there are differential trends, or general effects, in the term structure at short-

compared to long-end. Figures 3a and 3c show that even if residual maturity of the control

and treated bonds is drawn from the same underlying maturity distribution with m = 0.25

years the treatment effects are biased. The effects can go in either direction and the larger

in absolute value, the more likely they are statistically different from zero. Across the 1,000

12We think about it as follows: Prior to treatment, control and treated bonds share the same term
structure, denoted as the pre-treatment curve. Since there is no treatment effect, control and treated
bonds also share the same term structure after the treatment but due to other, undetermined economic
forces the post-treatment curve has shifted to a different location compared to the pre-treatment curve.

13We chose parameter values so that the curves are upward sloping but the argument is independent of
the shape of the yield curve. The same bias can be shown for downward sloping or flat yield curves.
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families and in case of a general yield-curve short-end (long-end) effect, the bias ranges from

−11.59 to 10.85 (−11.34 to 12.01) bps and 91 (88) of them are statistically significant at the

10%-level. When residual maturity is drawn from a triangular distribution function with

m = 10 years instead and in case of a general yield-curve short-end (long-end) effect, the

distribution of estimated treatment effects is shifted upward (downward) with all the 1,000

estimated treatment effects becoming positive (negative) and ranging from 2.30 to 22.99

(−24.06 to −2.59) bps, and 992 (991) of the 1,000 coefficients are statistically significant

at the 10%-level, as illustrated in Figure 3b (3d).

3.2 The main driver of the bias

A key driver of the estimation bias is the average-maturity ratio of treated sample bonds

relative to controls. For illustration purposes, in Table 5 we sort the 1,000 families of sample

couplets on this ratio, index the sample couplets in ascending order, and show the estimated

treatment effects for a selection of eleven sample couplets.14 For each m ∈ {0.25, 1, 3, 10},

the first and the last sample couplets in the distribution, F SC
1,m and F SC

1000,m, are the sample

couplets with the minimum and maximum average-maturity ratio, respectively. In between,

with order indices j = 10, 50, 100, 250, 501, 751, 901, 951, 991, F SC
j,m represents the sample

couplet with average-maturity ratio approximately at percentile j/10.

Insert Table 5 here.

Panel A shows the average-maturity ratio for the eleven selected families of sample

couplets by mode m. From the upper left corner (order index 1 and m = 0.25) to the lower

right corner (order index 1,000 and m = 10) this ratio tends to go up.15 Panels B and C

show the DiD coefficients and, underneath in parentheses, the associated p-values for each

of the eleven selected sample couplets by mode m for a general term-structure short-end

(long-end) effect, respectively. In case of a general yield-curve short-end (long-end) effect,

the estimated DiD effects tend to increase (decrease) with the average-maturity ratio both

within and across modes. This shows that the bias results from the relative distributions of

residual maturity in the samples of treated and control bonds. For the same sample couplet

the false treatment effect is biased away from the true zero-effect in opposite direction for

14Therefore, for each m ∈ {0.25, 1, 3, 10}, we have 1,000 ordered families of samples couplets with different
orders for each m.

15Panel A of Table 5 is essentially just a more granular depiction of Panel B in Table 4.
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general short- and long-end effects. For example, the estimated treatment effects of the

sample couplet with order index 1 and mode m = 0.25 years are −11.59 and +12.01 bps,

respectively.

Furthermore, the table highlights that larger, more extremely biased coefficients are

more likely to be statistically different from zero. Coefficients that are statistically signif-

icant at the 10% level are marked in bold and the letters a, b, and c indicate significance

at the 1%, 5%, and 10% levels, respectively. The larger is the average-maturity ratio both

within and across modes the more likely the false treatment effect is statistically significant.

The analysis so far illustrates that the classical DiD specification applied to bond data

with bond yield as dependent variable produces biased regression slope coefficients. Even in

absence of a true treatment effect the specification generates potentially economically large

and statistically significant but false treatment effects. The bias can go in either direction,

which is driven by the combination of differential general effects in the term structure at

short- and long-end and unequal distributions of residual maturity in the samples of control

and treated bonds. Furthermore, the larger is the bias in absolute terms, the more likely

it also is statistically different from zero.

3.3 Estimation separately by individual maturity buckets

To deal with differential treatment effects the literature typically uses fixed effects on the

discrete units present in the data. Applied to fixed-income securities with yield on the left

side of the regression equation, researchers sometimes measure the DiD effects separately

by individual maturity buckets (for example Bao, O’Hara, and Zhou, 2018; Todorov, 2020).

Table 6 shows the results if we run the classical DiD specification in (1) on four buckets

with residual maturities in the ranges [0, 2], (2, 5], (5, 10], and (10, 20] years. Panel A (B)

covers the case when residual maturity of the treated bonds is drawn from a triangular

distribution function with mode m = 0.25 (m = 10) years. Each panel shows the distri-

butions of estimated treatment effects by the different yield-curve effects and the maturity

buckets as well as separately for when the coefficients are statistically significant or not at

the two-sided 10%-significance level.

Insert Table 6 here.

The results show that running the classical DiD specification separately for individual
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maturity buckets diminishes the bias but is by no means immune against it. In our case,

the bias is the strongest in the (2, 5]-year maturity bucket. For example, if there is a

general yield-curve short-end effect and the mode m = 0.25 years in Panel A, across the

1,000 estimated treatment effects 53 + 47 = 100 range from −7.49 to −3.31 and from

+3.55 to +8.47 bps and are statistically different from zero at the 10%-significance level.

The remaining 900 coefficients are biased and range from −4.69 to +4.73 bps but are not

statistically significant. If m = 10 years in Panel B, in 2 cases it is not possible to estimate

effects because there are no observations in the treated group. Out of the remaining 998

coefficients 25+211 = 236 are statistically significant and they range more extremely from

−10.51 to −3.32 and from +3.26 to +11.89 bps. In case of a general yield-curve long-end

effect the results are similar but, if anything, even slightly more extreme. Importantly, a

bias-immune specification would measure effects of zero in all of these cases.

The analysis illustrates that maturity-bucket controls do not resolve the bias but merely

shift the issue to the maturity-bucket level. Moreover, taking this approach to the extreme

and making the maturity buckets shorter and shorter, in the extreme case we are left

with many infinitesimal short maturity buckets and, therefore, no or only very few bonds

remaining in each bucket. Hence, because residual maturity is a continuous habitat variable

we need a different approach.

Next, we turn to the case when there is no treatment-unrelated general effect but only

a yield-curve treatment effect.

4. Mismeasured treatment effects

This section models treatment effects and examines whether the classical DiD specification

in (1) is able to identify them. It focuses exclusively on the case when only the yield curve

of treated bonds – through the treatment effect – experiences a shift. Hence, there are no

treatment-unrelated general effects.16 The treatment either affects the yield curve only at

the short-end or its impact leads to a yield-curve twist. In terms of preview, the analysis

will show that the estimated DiD effects represent sample-specific average treatment effects,

which can cause researchers to draw incorrect conclusions.

16We think of it as follows: Control and treated bonds share the same term structure prior to treatment.
Since there is no treatment-unrelated general effect, control bonds stay on the pre-treatment curve when
the treatment takes place. Only the yield curve of treated bonds moves to a different location.
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To model the underlying term structures we continue to employ Diebold and Li (2006)’s

yield-curve specification in (2). Figure 4 provides the underlying parameter values and

shows the resulting yield curves graphically together with the numbers for yield levels and

differences. The short-end treatment effect corresponds to a yield reduction for treated

bonds of −6 bps at a maturity of one year and no effect (0 bps) at ten years relative to

the pre-curve. The treatment yield-curve twist leads to a yield-curve increase for treated

bonds of +6 bps at a maturity of one year and a reduction of −6 bps at ten years. In either

case control bonds stay on the pre-treatment curve.

Insert Figure 4 here.

Figure 5 provides the estimated treatment effects using the classical DiD specification in

(1) run with OLS. Standard errors are clustered at the bond-level. Figures 5a and 5b show

the results, respectively, for a treatment short-end effect and a treatment yield-curve twist.

From left to right, the graphs show 1) the true underlying treatment effects as a function

of maturity, 2) the distributions of estimated treatment effects when residual maturity of

the treated bonds is drawn from triangular distributions with modes at 0.25 and 10 years,

and 3) the DiD effects against the corresponding t-statistics for these two modes.

Insert Figure 5 here.

The classical DiD specification estimates a sample-specific average treatment effect.

In case of a yield-curve treatment short-end effect (Figure 5a) and residual maturity of

the treated and control bonds drawn from a triangular distribution with mode m = 0.25

years, this average effect ranges from −2.94 to −0.48 bps. The researcher will draw the

correct conclusion in terms of the sign of the coefficient but the magnitude of the effect

is not identified. If, however, the residual-maturity distribution of treated bonds is tilted

sufficiently to the long-end (m = 10 years), the estimated effects range from −0.72 to

+0.06 bps. Across the 1,000 estimates the researcher concludes in 699 cases that there is

no treatment effect because the DiD estimate is not statistically significant at the 10%-level

even if, in fact, the true underlying treatment effect at the one-year maturity is a negative

−6 bps.17

In case of a treatment yield-curve twist (Figure 5b) and residual maturity of treated

17In 294 cases the researcher finds a statistically significant negative effect and in 7 cases even a small
positive effect because the true treatment effect is slightly positive at the very long-end of the yield curve.

15



and control bonds drawn from the same triangular distribution with mode m = 0.25 years,

across the 1,000 estimates the researcher concludes in 121 cases that there is no treatment

effect because the DiD estimate is not statistically significant at the 10%-level and in 879

cases that the treatment effect is statistically significantly negative even if, in fact, the true

underlying treatment effect at the one-year maturity is a positive +6 bps. If the residual

maturity distribution of the treated bonds is shifted towards the long-end (m = 10 years),

this becomes more extreme and the researcher concludes in all the 1,000 cases that the

treatment effect is negative despite the positive true treatment effect of +6 bps at the

one-year maturity.

The analysis shows that the classical DiD specification may lead a researcher to draw

incorrect conclusions. This is the case even in absence of treatment-unrelated general yield-

curve effects if the treatment effects themselves vary over the term structure. The reason

is that the classical DiD specification produces a sample-specific average treatment effect

that can be tilted in either direction depending on the relative distributions of residual

maturity of the control and treated bond samples. The classical DiD specification is not

designed to identify the true underlying treatment effects because the specification is not

able to capture differential treatment effects across the maturity spectrum.

5. Combine false and mismeasured treatment effects

This section combines treatment-unrelated general and treatment effects. We continue to

employ Diebold and Li (2006)’s specification given in (2) to build the underlying term

structures. By choosing the yield-curve parameter values we generate a general short-end

(long-end) effect, which reduces yields at a residual maturity of one year (fifteen years)

by −50 bps and is close to zero at a maturity of fifteen years (one year). On top of the

general effects, we add a treatment yield-curve short-end effect (twist), which pushes yields

of treated bonds down (up) by 6 bps at a maturity of one year and has a zero effect (pushes

yields down by 6 bps) at a maturity of ten years relative to the general effects. Hence,

for the total of four combinations of general and treatment effects, the true effects in this

section equal the sum of the individual true effects in Sections 3 and 4. The yield curve

parameter values and resulting yield levels and differences are provided in Table 7.

Insert Table 7 here.
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When both treatment-unrelated general and actual treatment effects are present in the

data at the same time, it turns out that the estimated treatment effect for each sample

couplet and combination of true effects is identical to adding up the corresponding bias

from Section 3 and the mismeasured effect from Section 4.18 For illustration purposes, we

use OLS to estimate the classical DiD specification in (1) with standard errors clustered

at the bond-level using the data with both effects present simultaneously and compare

the estimated treatment effect to the sum of the individual components, namely the bias

from Section 3 and the mismeasured effect from Section 4, using the same sample couplet

and yield data with the corresponding true effects. We run a total of 16,000 different

regressions, namely for the four combinations of general and treatment effects, the four

modes m ∈ {0.25, 1, 3, 10}, and the 1,000 families. The difference between the coefficient

estimated in the data with both effects present simultaneously and the sum of the individual

coefficients estimated separately in the data when only one of the effects is present across

the 16,000 regressions ranges from −0.003 to 0.003 bps and is, therefore, virtually zero.

Inherently in Specification (1) the treatment effect is assumed to be the same for all

treated bonds and the treatment-unrelated structural effect the same for all sample bonds.

The specification, therefore, does neither allow for treatment-unrelated structural habitats

nor for treatment habitats in the yield curve. If the treatment-unrelated general effects

or the treatment effects themselves are different in different parts of the yield curve, the

classical DiD specification in (1) produces biased and mismeasured effects. Both bias and

mismeasurement depend on the true underlying habitat effects and the relative distributions

of residual maturity in the samples of treated and control bonds.

6. Model with explicit term structure control

Instead of using the classical DiD specification in (1) researchers sometimes use DiD spec-

ifications that explicitly control for the term structure or maturity and higher orders of it

when dealing with bond yield data (e.g. Qiu and Yu, 2009; Ayotte and Gaon, 2011; Fuhrer,

Müller, and Steiner, 2017; Gao, Lee, and Murphy, 2020). This section studies whether ex-

plicit parametric control for the term structure enables a DiD specification to identify the

18This results from the simplicity of having just two time periods and no bond-individual noise (the
bonds always lie on the term structure).
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true underlying effects or, at least, diminish the estimation bias. Specifically, we run

yieldit = B′ Lit + α 1Treated,i + δ 1Post,t + βDiD 1Treated,i × 1Post,t + εit, (4)

where 1Treated,i and 1Post,t are defined as above, α and δ are the corresponding parame-

ters and βDiD is the DiD estimator. The term B′Lit parametrically controls for the term

structure of interest rates. We continue to employ Diebold and Li (2006)’s term structure

specification in (2) where Lit is a three-dimensional vector with elements 1, l1(xit; λ), and

l2(xit; λ), with the latter two terms defined as

l1,t(x; λ) =

(
1 − e−λx

λx

)
and l2,t(x; λ) =

(
1 − e−λx

λx
− e−λx

)
, (5)

B the corresponding vector of coefficients with individual elements βk, k = 0, . . . , 2, and

the decay parameter λ assumed to be independent of time t.

In terms of estimation, since we know the underlying parameter value of lambda, which

is λ = 0.7308, we could simply plug it into the expressions in (5) and use OLS to run

Specification (4). Instead, we use nonlinear least squares methodology (NLS) to estimate λ

in-sample together with the other parameters. As start value we use λSeed = 1.19 Standard

errors are clustered at the bond level.

It turns out that the specification with explicit term structure control in (4) produces

the exact same bias and mismeasurement as the classical DiD specification in (1). For

illustration purposes, we compute the difference between the coefficients estimated with

Specifications (1) and (4) for all possible combinations of modeled yield-curve effects (eight

in total) and all sample couplets (4,000 in total, namely four modes and 1,000 families),

which gives a total of 32,000 different regressions run with each specification. Across the

32,000 differences in DiD coefficients between Specifications (1) and (4) even minimum

and maximum amount to 0.0000 and 0.0001 bps, respectively. This shows that the two

specifications produce the exact same biased and mismeasured treatment effects.20

The specification with explicit term structure control in (4) controls for the yield curve

19Alternatively, Nyborg and Woschitz (2021) use NLS to first estimate the yield curves separately for

treated and control bonds pre- and post-treatment and, then, average across those within-group λ̂s, plug
the average into (5) and use OLS to estimate Specification (4).

20We have also calculated the differences in p-values across the 32,000 different cases. The difference in
p-values ranges from −0.0056 to 0.0000 showing that Specification (4) is slightly more conservative than
Specification (1) but the difference is tiny.
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parametrically. However, B′Lit just removes the average term structure in the pooled

sample data of the different groups (treated, controls, pre-, post-treatment). The speci-

fication therefore explicitly restricts yield-curve movements between the different groups

to parallel yield-curve level-shifts. While this feature is explicit with B′Lit, the classical

DiD specification imposes the same parallel level-shift restrictions more implicitly through

the bond fixed effects as they capture, among other things, bond maturity. If, however,

treatment-unrelated general effects or the treatment effects themselves come as movements

other than parallel level-shifts, both of these specifications produce false and mismeasured

treatment effects. In fact, any specification that restricts yield-curve movements to parallel

level-shifts will produce the same false and mismeasured treatment effects. The results

illustrate that specifications with explicit term structure control can suffer from the same

inability to capture treatment-unrelated general habitat as well as treatment habitat effects

as the classical DiD specification because these specifications are not designed to deal with

differential effects in different parts of the yield curve.

The next section provides methodology acknowledging that both general and treatment

effects can vary along maturity and, therefore, eliminates both bias and mismeasurement.

7. Resolution of the bias and mismeasurement

As touched on in the Introduction, a simple solution to the problem is perfect matching.

However, in practice perfect maturity matching is rarely feasible. This section acknowledges

this feature of fixed-income securities data and provides an alternative solution to resolving

the bias and mismeasurement of treatment effects. The main approach is to combine

DiD methodology with flexible yield-curve modeling. In particular, two approaches are

discussed, namely 1) the fully flexible yield-curve DiD specification and 2) semi-matching.

Both approaches acknowledge that the underlying movements in yield curves, the general

as well as the treatment effects, may vary across maturity and both approaches are able to

separate treatment-unrelated general yield-curve effects from true treatment effects.

7.1 The fully flexible yield-curve DiD specification

The fully flexible yield-curve DiD specification was first used by Nyborg and Woschitz (2021).

It does not impose any particular relation between pre- and post-curves of treated and con-
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trol bonds. On the contrary, the specification uses the estimated yield curves of the different

groups and measures the DiD in yield curves. It treats maturity as a continuous habitat

variable. Specifically, we estimate the specification

yieldit = B′

1 Lit + B′

2 Lit 1Treated,i + B′

3 Lit 1Post,t + B′

4 Lit 1Treated,i × 1Post,t + εit, (6)

where notation is as above except that each of the four indicators (constant, 1Treated,i,

1Post,t, and 1Treated,i × 1Post,t) has its own Diebold-Li curve, B′

jLit, j = 1, . . . , 4, with three

individual coefficients each, βk,j, k = 0, . . . , 2. For simplicity, the fourth parameter, λ, is

assumed to be time-invariant and the same for treated and control bonds.21

The first curve, when j = 1, represents the spot curve of control bonds pre treatment

and is given by

sdl(x; λ̂) = β̂0,1 + β̂1,1 l1(x; λ̂) + β̂2,1 l2(x; λ̂), (7)

where {β̂k,1}
2
k=0 are the estimated regression coefficients, x is residual maturity, and l1 and

l2 are as in (5) with λ replaced by λ̂. The other three curves, when j = 2, . . . , 4, are what

we call the delta curves, namely

∆dl
j (x; λ̂) = β̂0,j + β̂1,j l1(x; λ̂) + β̂2,j l2(x; λ̂), (8)

where {β̂k,j}
2
k=0 are the estimated regression coefficients. The delta curves with j = 2, . . . , 4

capture, respectively, the incremental differences for i) treated bonds, ii) the post-treatment

period, and iii) treated bonds over the post-treatment period. Adding them to the spot

curve for control bonds pre treatment, sdl(x; λ̂), returns the spot curve, respectively, for

i) treated bonds pre treatment, sdl(x; λ̂) + ∆dl
2 (x; λ̂), ii) control bonds post treatment,

sdl(x; λ̂) + ∆dl
3 (x; λ̂), and iii) treated bonds post treatment, sdl(x; λ̂) +

∑4
j=2 ∆dl

j (x; λ̂).

∆dl
4 (x), the delta curve when j = 4, measures the DiD in yield curves of treated relative

to control bonds from pre- to post-treatment. ∆dl
4 (x) is a function of residual maturity x

and, therefore, captures the treatment effect at different maturities. Treatment-unrelated

general effects from pre- to post-treatment will be captured by the delta curve on the

indicator variable for the post-treatment period (j = 3). Hence, the specification is able to

separate treatment-unrelated general yield-curve effects from actual treatment effects and

21This assumption can easily be relaxed.
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allows for differential general and treatment effects in different parts of the yield curve.

To analyze its performance, we estimate Specification (6) with NLS and cluster standard

errors at the bond level. We therefore continue to estimate lambda in-sample and use the

start value λSeed = 1. For each regression, the estimation gives twelve coefficients and one

estimate for lambda. Because it is difficult to grasp the economics from these coefficients,

however, they are used to predict the treatment effects at selected maturities and the

corresponding standard errors are calculated with the delta method.22 As an illustration,

separately for each of the eight combinations of modeled yield-curve movements23, Table 8

shows the distributions of the estimated treatment effects at the selected maturities across

the 1,000 families of sample couplets when m = 0.25 years. The first column in each block

provides the true underlying treatment effect at the selected maturities.

Insert Table 8 here.

The measured quantity is intuitive. For example, the second row of blocks shows results

for all combinations of effects that include a yield-curve treatment short-end effect. In that

case the true underlying treatment effect corresponds to −6.23, −2.97, −1.39, −0.26, 0.00,

0.08, and 0.09 bps at the maturities, respectively, of 1, 2, 3, 5, 7, 10, and 15 years. The

table shows that the procedure generates highly accurate coefficients. Across the eight

combinations of modeled yield-curve effects and the 1,000 sample couplets and, hence, a

total of 8,000 different regressions, even minimums and maximums of the estimated DiD

coefficients exhibit a measurement error compared to the true treatment effects of maxi-

mally ±0.01 bps. This is a large improvement compared to Figure 3 where Specification (1)

generated a bias ranging from −11.59 to 12.01 bps.

To test for the performance more generally, Table 9 calculates the difference between

estimated and true treatment effects at the selected maturities and shows minimum and

maximum across the 8,000 regression results not only for m = 0.25 but also for m =

{1, 3, 10} years (which is a total of 32,000 regressions).

Insert Table 9 here.

Panel A, if m = 0.25 years, shows the result from above: Across the 8,000 regressions,

22The Internet Appendix illustrates the procedure in detail step-by-step.
23Across the combinations of general yield-curve effects (no effect, short-end effect, long-end effect) and

yield-curve treatment effects (no effect, short-end effect, yield-curve twist) we leave out the no effect/no
effect combination, which gives a total of eight combinations.
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the difference between estimated and true effects ranges between ±0.01 bps. If, however,

m increases to 1, 3, and 10 years, the tails of the distributions exhibit relatively more

measurement error at the short-end of the yield curve. The largest error is measured when

m = 10 years at the one-year maturity. Across the 8,000 regressions, the difference ranges

between −0.21 and +0.18 bps. Notice, however, this is still a large improvement compared

to the estimated bias of between −24.06 and 22.99 bps produced with Specification (1)

in Figure 3. Furthermore, Panel B shows that the increasing measurement error with

increasing m results from a lack of data. In Panel B, as a crude test, we repeat the analysis

in Panel A but restrict the underlying sample data to “good sample couplets,” namely to

those which contain at least one treated and one control bond in the [0,1]-year maturity

bucket. Using the remaining 21,872 “good sample couplets” (from the total of 32,000) only,

the measurement error at the short-end disappears. The difference between estimated and

true treatment effects lies between ±0.01 bps across the whole maturity spectrum including

the short-end when m = 10 years. This shows that the estimation error at the short-end

in Panel A results from a lack of data at the short-end in some samples.

In short, the fully flexible yield-curve DiD specification in (6) eliminates the estimation

bias, is able to separate actual treatment effects from treatment-unrelated general yield-

curve effects, and the measured quantity reflects that treatment effects depend on maturity.

7.2 Semi-matching

Perfect matching would solve the problem but in practice is rarely feasible. Researchers

thus sometimes apply imperfect matching procedures (see, e.g., Ang, Bhansali, and Xing,

2010; Eser and Schwaab, 2016; Choi, Hoseinzade, Shin, and Tehranian, 2020).24 This

section seeks to perfect the imperfect-matching approach by combining DiD analysis with

yield-curve modeling, and uses what we call “semi-matching.” As perfect matching is not

feasible, each treated bond is matched with a synthetic control bond whose yield is inferred

from a contemporaneous yield curve of control bonds. We apply semi-matching as follows:

1. Separately for pre- and post-treatment periods, use Diebold and Li (2006)’s specifi-

cation in (2) to estimate the yield curve of control bonds;25

24Eser and Schwaab (2016) use a matching approach indirectly by restricting their DiD analysis to
five-year benchmark bonds.

25As before, we use NLS to estimate lambda in-sample and use a start value λSeed = 1.
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2. Apply semi-matching: Separately for each period, subtract the spot yield of a maturity-

matched synthetic control bond from the yield of each treated sample bond;26

3. For each maturity-matched pair of treated and synthetic control bond, calculate the

difference in the pair’s yield-difference from pre- to post treatment, which represents

the DiD in yields for each bond pair i, yieldDiD

it .

Semi-matching is illustrated in Figure 6 using one random sample couplet with m = 0.25

years. The figure plots the difference between the estimated Diebold-Li control-bond curves

from pre- to post-treatment for a general yield-curve short-end (long-end) effect on the left

(right). The (red) diamonds and (green) crosses show the difference of the treated bonds’

yields from pre- to post-treatment in the cases, respectively, of a yield-curve treatment

short-end effect and a treatment yield-curve twist.

Insert Figure 6 here.

In the following the analysis shows in three steps that 1) semi-matching applied on the

entire sample couplet will eliminate the bias related to general yield-curve effects but not

the mismeasurement of treatment effects and may, therefore, still lead researchers to draw

incorrect conclusions; 2) the analysis by maturity buckets resolves the bias and reduces

the likelihood of mismeasurement but does not eliminate the latter; 3) the analysis bond-

by-bond resolves both bias and mismeasurement of treatment effects. As will be shown,

estimating a yield curve through the individual bond-level DiDs after having applied semi-

matching will result in the DiD delta curve, ∆dl
4 (x), estimated with Specification (6).

Potentially misleading average treatment effects

Semi-matching eliminates the part of the bias that derives from general, treatment-unrelated

yield-curve effects. For illustration purposes, we proceed as follows: First, we run a regres-

sion of the bond-level DiDs in yields on a constant C ,

yieldDiD

it = βDiD ×C + εit, (9)

26The term “semi-matching” reflects that exact matching is not possible. Only semi-matching on a
synthetic control bond whose yield is inferred from the surrounding bonds via yield-curve modeling is
feasible.
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to estimate the average treatment effect, βDiD, for each sample couplet. We run Specifica-

tion (9) on the simulated data from Section 5, which exhibits both true underlying general

and treatment effects simultaneously. This is a total of 16,000 different regressions (two

general effects, two treatment effects, four modes m ∈ {0.25, 1, 3, 10}, and 1,000 families of

sample couplets). Importantly, general effects are present in that data.

Second, for each sample couplet, we compute the difference between the semi-matched

DiD coefficient (using Specification (9)), when true underlying general effects are present in

the data, and the DiD coefficient from the classical DiD specification in (1), but the latter

run on the data that exhibits no general (but only treatment) effects (as in Section 4).

Hence, the latter coefficients from the classical DiD specification exhibit mismeasurement

only but are not biased because there are no true general yield-curve effects in the data.

Across the 16,000 different combinations, namely the two general effects, the two treat-

ment effects, the four modes, and the 1,000 families of sample couplets, the differences in

coefficients ranges from −0.003 to 0.004 bps.27 This illustrates that semi-matching applied

on the entire sample couplet produces the same mismeasurement as in Section 4, however,

in the data where treatment-unrelated general effects are present. Hence, semi-matching

eliminates the bias that stems from treatment-unrelated structural effects but may still

lead to incorrect conclusions because of potentially mismeasured treatment effects.

Semi-matching separately by individual maturity buckets

This subsection shows that semi-matching applied by maturity buckets eliminates the bias

related to general yield-curve effects and reduces the likelihood to draw incorrect conclusions

based on mismeasured treatment effects but does not entirely eliminate the latter. For

illustration, we run Specification (9), as in the previous subsection, on the data that exhibit

both true general and treatment effects simultaneously but separately for subsets of bonds

with residual maturity in the buckets [0, 2], (2, 5], (5, 10], and (10, 20] years.

Table 10 shows the results. Separately by maturity bucket and for the treatment yield-

curve short-end effect and the twist in Panels A and B, respectively, each panel shows

the number of estimated treatment effects, minimum and maximum number of involved

bonds, the true treatment effects at maturity-range start and end, as well as minimum and

27Notice that this extreme similarity is not generic. It is the result of the simplicity of the setting with
only two time periods and no noise of yields around the term structures.
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maximum of the distributions of the estimated treatment effects for both types of general

effects. Per panel and maturity bucket this involves all four modes and the 1,000 families

of sample couplets and, therefore, represents at total of 4,000 different regressions.

Insert Table 10 here.

Across panels, the number of estimated coefficients is below 4,000 for the [0, 2]- and

the (2, 5]-year buckets showing that, for some sample couplets and maturity buckets, there

are no treated bonds. The remaining 3,614 and 3,998 coefficients for these two buckets

are estimated with a minimum of one and a maximum of twenty and twenty-four treated

bonds, respectively. Hence, the more maturity buckets, the shorter its maturity ranges,

and the smaller the number of bonds per range.

Comparing true and estimated treatment effects shows that, for each maturity bucket,

the estimated coefficients cover, with one exception, the range of true treatment effects.28

Semi-matching applied by maturity bucket produces, per maturity bucket, a sample-specific

average treatment effect, which is less likely to misguide researchers as, on the maturity

bucket level, the sign of the coefficient is more likely to be correct. Notice, however, to

draw incorrect conclusions regarding the sign of the coefficient is still possible, namely in

our case with maturity bucket (5, 10] in Panel A and (2, 5] in Panel B.

Overall, this illustrates the trade-off between the accuracy of measured treatment effects

and the power of the test. With an increasing number of maturity buckets and, thus,

buckets of relatively shorter length, the precision of the estimated effects increases but is

based on less bonds per bucket. Semi-matching applied by individual maturity buckets

eliminates the bias due to treatment-unrelated general yield-curve effects and reduces the

likelihood to draw incorrect conclusions but the latter is not entirely ruled out.

Semi-matching bond-by-bond

The extreme case is what is emphasized in the synthetic control literature, namely to

analyze each sample couplet and the effects bond-by-bond (see, e.g., Abadie, 2021). A

glance at Figure 6 is sufficient to detect the small treatment effects relative to the large

treatment-unrelated general yield-curve effects and to see that both types of effects vary

28The one exception relates to the (2, 5]-year bucket in Panel A, where the maximum of −0.29 bps in
case of a general short-end effect is outside the range of true effects of [−2.97,−0.26] bps.
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along maturity. Applying semi-matching via yield-curve modeling eliminates treatment-

unrelated general yield-curve effects and is, as no averaging takes place, simultaneously

immune against incorrect conclusions based on mismeasured treatment effects. However,

as discussed in detail in the synthetic control literature (see, e.g., Xu, 2017), the estimation

of adequate standard errors to draw inference is more laborious.29

One way to express the results of bond-by-bond semi-matching is to estimate and de-

scribe a curve through the bond-level DiDs in yields. As an illustration, separately for each

of the four combinations of general and treatment effects and the same sample couplet as

in Figure 6, we use NLS and λSeed = 1 to fit a Diebold-Li curve through the bond-level

DiDs in yields in Figure 6. Exhibit 2 shows the true as well as the estimated treatment

effects predicted at selected residual maturities of 1, 2, 3, 5, 7, 10, and 15 years.

In short, Exhibit 2 shows the exact same treatment effects as produced with the fully

flexible yield-curve DiD specification given in (6) and the results provided in Table 8. In

other words, estimating a curve through the bond-level DiDs in yields after having applied

semi-matching results in the delta curve, ∆dl
4 (x; λ̂), provided in (8), which builds the bridge

between bond-level semi-matching and the fully flexible yield-curve DiD specification from

Subsection 7.1.

Exhibit 2: Estimated treatment effects (in bps) with semi-matching
Residual True treat- General and treatment effects
maturity ment effects short-end long-end
(in years) short-end twist short-end twist short-end twist

1 -6.23 5.87 -6.23 5.88 -6.23 5.87
2 -2.97 3.75 -2.97 3.75 -2.97 3.74
3 -1.39 1.58 -1.39 1.58 -1.39 1.58
5 -0.26 -1.87 -0.26 -1.87 -0.26 -1.87
7 0.00 -4.11 0.00 -4.11 0.00 -4.11

10 0.08 -6.09 0.08 -6.09 0.08 -6.09
15 0.09 -7.72 0.09 -7.71 0.09 -7.71

Overall, the advantage of the fully flexible yield-curve DiD specification over semi-

matching is its simple and fast implementation. In our case, with plain zero-coupon bond

yields, it accurately estimates the DiD in yield curves with one single regression. Fur-

thermore, it is possible to cluster standard errors at the individual bond-level (Bertrand,

Duflo, and Mullainathan, 2004). However, it is less flexible with respect to including other

29Standard errors are typically based on bootstrapping methods.
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bond features such as coupons or callability features. Semi-matching allows to match also

on other relevant bond characteristics. However, semi-matching is laborious not only but

especially also when it comes to the estimation of standard errors (see, e.g., Xu, 2017).

8. Concluding remarks

Difference-in-differences (DiD) methodology is frequently used in finance to assess the

causal impact of a treatment on yields of fixed-income securities. Simultaneously, fixed-

income securities are priced against a term structure of interest rates and perfect matching

is rarely feasible in practice.

Using simulations, this paper shows that the classical DiD specification with yield as

dependent variable produces false, systematically biased as well as mismeasured treatment

effects. This holds even under random assignment of the treatment. To illustrate the

bias we simulate residual maturity of treated and control bond samples and two types of

yield-curve effects which both vary along maturity. First, general yield-curve effects are

not related to the treatment whatsoever and affect treated and control bonds the exact

same way. The analysis shows, however, that differential general effects across maturity

lead to false, systematically biased coefficients even in absence of true underlying treatment

effects. Second, yield-curve treatment effects influence only the treated bonds. However,

differential yield-curve treatment effects across maturity lead to mismeasured treatment

effects that may mislead to draw incorrect conclusions even without treatment-unrelated

general effects present in the data. Both bias and mismeasurement can be economically

large, can go in either direction, and statistical significance increases with the coefficients’

absolute size. As shown, neither explicit term structure control in the specification nor

regressions for individual maturity buckets resolve bias and mismeasurement.

The limitation of these specifications is the inability to capture general and treatment

effects if these effects vary over maturity. The magnitudes of bias and mismeasurement

are sample-induced and depend on 1) differential general and treatment effects in different

parts of the term structure and 2) the relative distributions of treated and control bonds

across maturity. The root of bias and mismeasurement lies in the specifications’ implicit

restrictions of movements in the underlying yield curves to parallel level-shifts between

the involved groups (treated, controls, both pre- and post-treatment). In fact, bias and
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mismeasurement survive any DiD specification that implicitly assumes parallel yield-curve

level shifts.

The paper provides new methodology to overcome both bias and mismeasurement by

combining DiD analysis with yield-curve modeling. First, the fully flexible yield-curve DiD

specification takes parametric yield curves explicitly into the DiD estimator. Instead of

measuring the DiD in yields, this specification measures the DiD in yield curves between

the involved groups and thereby tackles both bias and mismeasurement. Second, semi-

matching tells apart the different pieces of the fully flexible yield-curve DiD specification

and provides an approach that step-by-step teases out the true underlying treatment effects.

Bias and mismeasurement are shown in the trivial setting with bond yield on the left

side of the regression equation and bond-fixed effects on its right side. The importance of

this paper is owed, however, to the survival of both bias and mismeasurement when the

unit of analysis is an aggregation of the bond level, with other dependent variables, and

for other right-side controls of maturity. Overall, this shows that DiD methodology must

be applied with great caution in fixed-income settings, especially with respect to residual

maturity.
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Table 1: Recent top finance publications potentially affected.

This tables shows a collection of recent top finance publications potentially affected by the bias discussed in the present paper. The

list was created by a manual search of The Journal of Finance (JF), The Journal of Financial Economics (JFE), and The Review of
Financial Studies (RFS) over the period July 1 to September 10, 2021, using relevant combinations of key words. “Treas.” is short for
Treasury and “mat.” is short maturity.

Publ. Jour- Analysis Dependent Independent variable(s)

Authors year nal level variable to capture maturity(1)

Chava, Livdan, Purnanandam 2009 RFS Loan, or firm Log changes in loan spread over LIBOR −

Qiu, Yu 2009 JFE Firm Credit spread over mat.-matched Treas. Duration and convexity(2)

Titman, Tsyplakov 2010 RFS Mortgage Credit spread over mat.-matched Treas. Mortgage resid. time-to-mat.
Ayotte, Gaon 2011 RFS ABS issuance ABS spread over mat.-matched swap rates Average life and its quadratic term
Hasan, Hoi, Wu, Zhang 2014 JFE Loan facility Log loan spread over LIBOR Log resid. time-to-mat.
Rodano, Serrano-Velarde, Tarantino 2016 JFE Bank-firm Loan interest rate Bank-firm fixed effects, loan mat.(3)

Adelino, Ferreira 2016 RFS Loan facility Loan spread over LIBOR −

Cornaggia, Cornaggia, Israelsen 2018 RFS Bond Yield, credit spread over dur.-matched Treas.(4) Duration

Dannhauser 2017 JFE Bond Yield spread over mat.-matched swap rates(5) Bond fixed effects
Bao, O’Hara, Zhou 2018 JFE Bond Yield spread over mat.-matched Treas. Log resid. time-to-mat.
Todorov 2020 JFE Bond Yield Bond fixed effects

Gao, Lee, Murphy 2020 JFE Bond Yield spread over coupon-equiv. Treas. yield(6) Resid. time-to-mat. and its inverse

Painter 2020 JFE Bond Annualized issuance cost(7), yield Log resid. time-to-mat.(8)

Benetton, Fantino 2021 JFE Bank-firm Loan rate Bank-firm fixed effects
Ding, Xiong, and Zhang 2021 JFE Issuance Issuance spread over Chinese Treas. Resid. time-to-mat.
(1) Dashes mean that there are no independent variables to capture maturity
(2) Bond-level characteristics are converted into firm-level measures (value-weighted). Authors also run bond level regressions:

Independent variables are not aggregated
(3) Loan maturity is measured with indicator variables for < 1 year, 1-5 years, and > 5 years
(4) Either using each bond’s time-to-maturity or with the callable bonds’ call dates in lieu of their maturity dates
(5) Monthly volume-weighted yield of a bond over the maturity-matched swap rate
(6) See Footnote 7 in Gao, Lee, and Murphy (2020) for details
(7) For details see Painter (2020), page 470
(8) Sample split at maturity of 25 years throughout the paper

32



Table 2: Time-variation in the term spread in practice.

This table shows the distribution of changes in the term spread for a selected group of countries

over the period from January 3, 2000 to December 14, 2022. The term spread is measured in basis
points (bps) and calculated as ten-year minus two-year zero-coupon spot yield. Panel A shows
daily changes in the term spread (using end-of-day pricing data) and Panel B monthly changes

(using end-of-month data). Data source: Bloomberg.

Country Mean SD Min P1 P5 Med P95 P99 Max N

Panel A: Distribution of daily changes in the term spread (10y-2y) [in bps]
Japan 0 2 -16 -5 -3 0 3 5 20 5,985

Netherlands 0 3 -19 -8 -4 0 4 8 19 5,986
Germany 0 3 -20 -8 -4 0 5 8 25 5,987
France 0 3 -20 -8 -4 0 5 8 18 5,217

United States 0 4 -28 -10 -6 0 6 11 25 5,987
United Kingdom 0 3 -37 -9 -5 0 5 9 25 5,985

Spain 0 4 -58 -11 -6 0 6 11 60 5,959
Italy 0 5 -137 -13 -5 0 6 13 81 5,987

China 0 9 -139 -25 -8 0 8 24 176 4,766
Portugal 0 10 -145 -26 -8 0 8 29 140 5,985

Ireland 0 9 -171 -19 -6 0 6 18 271 5,982
Greece 0 46 -906 -100 -22 0 17 93 1,822 5,976

Panel B: Distribution of monthly changes in the term spread (10y-2y) [in bps]
Japan 0 8 -23 -18 -11 -1 12 23 39 219
Netherlands -1 17 -51 -37 -22 -1 27 48 87 219

Germany -1 15 -41 -37 -22 -3 26 48 82 219
France -1 16 -37 -35 -24 -2 26 76 79 193

United States 0 18 -44 -40 -29 -2 34 49 59 219
United Kingdom 0 17 -46 -38 -26 0 24 47 98 219

Spain 0 25 -114 -47 -33 -3 33 91 172 216
Italy 0 25 -104 -52 -30 -3 29 95 184 219

China 0 21 -74 -69 -32 -1 36 62 106 179
Portugal 0 55 -412 -211 -43 -1 71 170 351 219

Ireland -2 35 -177 -147 -42 -2 45 122 166 219
Greece 4 191 -802 -483 -219 0 126 761 1,745 219
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Table 3: The maturity structure of outstanding debt in practice.

This table provides the number of outstanding securities as well as outstanding debt by maturity

buckets for the same selection of countries as in Table 2 at the beginning of 2023 (Panel A) and
at the beginning of 2011 (Panel B). For each country, outstanding debt by maturity bucket is

provided as percentage of the total outstanding debt by that country. Data source: Bloomberg.

Country # of sec. [0-2] (2-5] (5-10] (10-15] (15-20] (20-30] >30y
Panel A: At the beginning of 2023

Netherlands 31 23 21 26 9 11 9 1
Portugal 32 17 28 35 14 2 5 0

Ireland 59 10 20 38 11 3 13 4
Spain 82 23 25 30 8 5 7 2

Greece 82 21 18 27 18 6 9 1
Germany 84 30 24 26 6 4 10 0

France 97 21 25 31 6 7 7 4
United Kingdom 122 14 17 19 10 10 17 13
Italy 205 28 25 25 9 5 7 1

United States 444 42 24 17 0 6 10 0
China 493 33 29 23 1 2 9 4

Japan 559 31 20 21 8 8 9 2
Panel B: At the beginning of 2011

Netherlands 41 35 25 22 6 4 4 3
Portugal 45 26 27 30 11 0 5 0

Ireland 16 12 20 59 9 0 0 0
Spain 63 33 24 23 7 4 8 2

Greece 105 22 28 28 10 5 7 1
Germany 274 33 26 26 3 4 8 1
France 92 30 24 25 8 4 6 3

United Kingdom 100 14 19 21 9 8 16 13
Italy 178 30 23 22 9 5 9 1

United States 305 41 26 23 3 3 5 0
China 285 32 24 21 12 5 5 1

Japan 466 36 25 22 6 7 3 0

34



Table 4: Overview on simulation of residual maturity.

This table provides an overview of the simulated families of samples and sample couplets. One
family of samples comprises five simulated residual maturity samples, one for control bonds (with

m = 0.25) and four for treated bonds (with m = {0.25, 1, 3, 10}). m is the mode of the triangular
distribution from which residual maturity is drawn. Each sample is comprised of fifty bonds. In

total, we simulate 1,000 families of samples. Panel A shows the distributions of average-maturity
across the 1,000 families separately for each treatment group and mode. The four sample couplets

within each family are built by pairing each sample of treated bonds with m = {0.25, 1, 3, 10}with
the sample of control bonds with m = 0.25. Each sample couplet contains fifty control and fifty

treated bonds. Panel B provides the distributions of average-maturity ratios across the families of
sample couplets separately for each mode m. The ratio is calculated as average residual maturity
of the fifty treated bonds for each mode m ∈ {0.25, 1, 3, 10} divided by average residual maturity

of the fifty control bonds with m = 0.25.

Panel A: Average-maturity across families of samples by treatment group and mode

Pop- Sample distributions
ulation No. of

Samples Group m mean families Mean SD Med Min Max
SC,0.25 Control 0.25 6.75 1,000 6.76 0.67 6.77 4.33 8.81
ST,0.25 Treated 0.25 6.75 1,000 6.73 0.67 6.71 4.32 9.17

ST,1 1 7.00 1,000 7.03 0.61 7.03 5.36 9.01
ST,3 3 7.67 1,000 7.65 0.60 7.63 5.82 9.56

ST,10 10 10.00 1,000 9.98 0.59 10.02 8.04 11.98

Panel B: Average-maturity ratios across families of sample couplets by mode
Pop- Sample distributions

m treated ulation No. of
Sample couplets bonds mean families Mean SD Med Min Max

{SC,0.25, ST,0.25} 0.25 1.00 1,000 1.01 0.14 0.99 0.59 1.52
{SC,0.25, ST,1} 1 1.04 1,000 1.05 0.14 1.04 0.71 1.60

{SC,0.25, ST,3} 3 1.14 1,000 1.14 0.15 1.14 0.69 1.81
{SC,0.25, ST,10} 10 1.48 1,000 1.49 0.18 1.48 1.10 2.23
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Table 5: False treatment effects.

This table shows estimated treatment effects using the simulated data with differential general yield-curve effects across maturity as

indicated but without true treatment effects. The estimation uses OLS and the classical DiD specification yieldit = αi+δt +βPost 1Post,t+
βDiD 1Treated,i×1Post,t +εit, where yieldit is the yield-to-maturity of bond i on day t, the αi’s (δt’s) are bond (time) fixed effects, 1Treated,i

(1Post,t) is an indicator variable being one for bond i if bond i is treated (being one for event and post-event dates), βDiD is the treatment

effect, and εit the error term. The results are presented as follows: For each mode m ∈ {0.25, 1, 3, 10} of the treated bonds the 1,000
families of sample couplets are ordered according to the average-maturity ratio (treated divided by control bonds) in ascending order.

For each m, the selected sample couplets are the ones with order index as indicated in the table and with its average-maturity ratio
provided in Panel A. For the corresponding sample couplet in Panel A, Panels B and C show the estimated DiD effects and, underneath in

parentheses, p-values based on standard errors clustered at the bond-level, respectively, for a general term-structure short-end (long-end)
effect. a, b, and c denote significance (two-sided) at the levels of 1%, 5%, and 10%, respectively. Coefficients statistically significant at

the 10%-level or better are marked in bold.

m treated Order index of families of sample couplets
bonds 1 10 50 100 250 501 751 901 951 991 1000

Panel A: Ratio of average residual maturity of treated over control bonds
0.25 0.592 0.742 0.799 0.843 0.904 0.994 1.086 1.184 1.259 1.379 1.524

1 0.710 0.766 0.838 0.877 0.948 1.039 1.142 1.244 1.304 1.419 1.598
3 0.691 0.838 0.913 0.963 1.044 1.135 1.228 1.334 1.400 1.527 1.805

10 1.095 1.144 1.232 1.277 1.362 1.482 1.594 1.715 1.790 2.027 2.231
Panel B: General yield-curve short-end effect

0.25 -11.59a -7.22b -3.29 -4.57 -3.89 0.89 -0.58 4.10 4.16 9.32a 10.79a

(0.00) (0.04) (0.35) (0.22) (0.28) (0.81) (0.86) (0.24) (0.26) (0.01) (0.00)

1 -8.67a -7.79b -4.82 -1.19 0.54 1.32 2.19 6.82c 6.01c 7.84b 11.32a

(0.01) (0.02) (0.14) (0.73) (0.89) (0.70) (0.55) (0.07) (0.09) (0.03) (0.00)

3 -8.73a -2.01 -0.82 1.93 2.30 4.24 5.88c 7.98b 8.63b 11.35a 14.24a

(0.01) (0.55) (0.82) (0.58) (0.46) (0.21) (0.09) (0.01) (0.01) (0.00) (0.00)
10 6.30c 4.26 8.61b 9.42a 9.88a 10.80a 14.14a 15.35a 15.34a 19.47a 22.99a

(0.06) (0.14) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Panel C: General yield-curve long-end effect

0.25 12.01a 7.67b 3.86 4.72 4.17 -1.06 0.25 -4.15 -4.35 -9.94a -11.34a

(0.00) (0.04) (0.30) (0.23) (0.27) (0.78) (0.94) (0.26) (0.26) (0.01) (0.00)

1 9.31a 8.31b 5.32 1.56 -0.21 -1.51 -2.08 -7.00c -6.45c -8.28b -11.84a

(0.01) (0.02) (0.13) (0.68) (0.96) (0.68) (0.60) (0.08) (0.08) (0.03) (0.00)

3 9.72a 2.59 1.16 -1.69 -2.15 -4.40 -6.12 -8.47b -8.82b -11.50a -14.95a

(0.00) (0.47) (0.77) (0.65) (0.52) (0.22) (0.10) (0.02) (0.02) (0.00) (0.00)

10 -6.56c -4.54 -8.60b -9.92a -10.53a -11.79a -15.32a -16.56a -16.51a -20.63a -24.06a

(0.07) (0.14) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
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Table 6: False treatment effects measured individually by maturity buckets.

This table provides the distributions of estimated treatment effects using OLS on the same

data, the same modeled general yield-curve effects, and using the same classical DiD specification
as in Table 5 but separately by four individual buckets with residual maturity in the ranges [0, 2],
(2, 5], (5, 10], and (10, 20] years. Panel A (B) covers the case when residual maturity of the treated

bonds is drawn from a triangular distribution function with mode m = 0.25 (m = 10) years. Each
panel shows the estimated treatment effects by the general effects (short- or long-end) and the

maturity buckets as well as separately for the cases when t < −tcv, −tcv ≤ t ≤ tcv, and tcv < t,
where tcv is the critical value of a two-sided t-test at the significance level of 10% (which is 1.645

in case of a z-test) with standard errors clustered at the bond-level.

Maturity Number t < −tcv −tcv ≤ t ≤ tcv tcv < t

General bucket of meas. Min Max Min Max Min Max

effect (in years) effects, N N (in bps) N (in bps) N (in bps)
Panel A: m = 0.25 years

Short- [0 - 2] 1,000 60 -4.24 -1.49 883 -2.77 2.51 57 1.54 4.17
end (2 - 5] 1,000 53 -7.49 -3.31 900 -4.69 4.73 47 3.55 8.47

(5 - 10] 1,000 63 -6.14 -2.36 889 -3.43 3.46 48 2.39 5.54
(10 - 20] 1,000 46 -3.44 -1.15 900 -2.18 2.11 54 1.31 3.10

Long- [0 - 2] 1,000 61 -2.85 -0.75 868 -1.97 1.92 71 0.74 3.17
end (2 - 5] 1,000 47 -8.94 -3.74 900 -5.03 4.97 53 3.50 7.90

(5 - 10] 1,000 48 -6.24 -2.70 888 -3.87 3.66 64 2.65 6.90
(10 - 20] 1,000 54 -3.53 -1.49 900 -2.39 2.48 46 1.30 3.92

Panel B: m = 10 years

Short- [0 - 2] 640 94 -5.12 -1.14 308 -2.45 3.90 238 0.58 8.01
end (2 - 5] 998 25 -10.51 -3.32 762 -6.29 6.15 211 3.26 11.89

(5 - 10] 1,000 11 -4.14 -2.08 787 -2.61 3.11 202 2.03 6.70

(10 - 20] 1,000 49 -2.98 -1.18 888 -1.81 1.64 63 1.28 3.15
Long- [0 - 2] 640 204 -4.82 -0.43 288 -2.24 1.58 148 0.46 2.88

end (2 - 5] 998 210 -12.70 -3.35 762 -6.60 6.60 26 3.58 11.01
(5 - 10] 1,000 202 -7.56 -2.28 787 -3.50 2.94 11 2.35 4.67

(10 - 20] 1,000 62 -3.58 -1.46 889 -1.87 2.06 49 1.34 3.39
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Table 7: Modeling general term-structure effects combined with treatment effects.

To model the term structure we employ Diebold and Li (2006)’s yield curve specification. This table shows the parameter values to

create the true underlying term structures as well as the resulting yield levels and yield differences at selected maturities. Panels A and
C cover the cases of a term-structure treatment effect only at the short-end and a term-structure treatment twist in case of a general
short-end effect and Panels B and D, respectively, the same in case of a general long-end effect from pre- to post-treatment.

Panel A: General short-end effect, treatment short-end effect Panel B: General long-end effect, treatment short-end effect

i) Parameter values γ0 γ1 γ2 λ i) Parameter values γ0 γ1 γ2 λ

Pre-curve 4.000 -2.000 0.000 0.7308 Pre-curve 4.000 -2.000 0.000 0.7308
Post-curve controls 4.140 -2.650 -0.800 0.7308 Post-curve controls 3.350 -1.350 1.000 0.7308
Post-curve treated 4.141 -2.781 -0.670 0.7308 Post-curve treated 3.351 -1.481 1.130 0.7308

ii) Yields (in %) and differences (in pps) at selected maturities: ii) Yields (in %) and differences (in pps) at selected maturities:
1y 2y 3y 5y 7y 10y 15y 1y 2y 3y 5y 7y 10y 15y

Pre-curve 2.58 2.95 3.19 3.47 3.61 3.73 3.82 Pre-curve 2.58 2.95 3.19 3.47 3.61 3.73 3.82
Post-curve controls 2.08 2.51 2.83 3.24 3.47 3.67 3.83 Post-curve controls 2.62 2.93 3.10 3.23 3.28 3.30 3.32
Difference -0.50 -0.44 -0.36 -0.23 -0.14 -0.06 0.01 Difference 0.04 -0.01 -0.09 -0.24 -0.34 -0.43 -0.50
Post-curve treated 2.02 2.48 2.82 3.24 3.47 3.67 3.83 Post-curve treated 2.56 2.90 3.08 3.23 3.28 3.30 3.32
Difference -0.06 -0.03 -0.01 0.00 0.00 0.00 0.00 Difference -0.06 -0.03 -0.01 0.00 0.00 0.00 0.00

Panel C: General short-end effect, treatment yield-curve twist Panel D: General long-end effect, treatment yield-curve twist

i) Parameter values γ0 γ1 γ2 λ i) Parameter values γ0 γ1 γ2 λ

Pre-curve 4.000 -2.000 0.000 0.7308 Pre-curve 4.000 -2.000 0.000 0.7308
Post-curve controls 4.140 -2.650 -0.800 0.7308 Post-curve controls 3.350 -1.350 1.000 0.7308
Post-curve treated 4.030 -2.470 -0.620 0.7308 Post-curve treated 3.240 -1.170 1.180 0.7308

ii) Yields (in %) and differences (in pps) at selected maturities: ii) Yields (in %) and differences (in pps) at selected maturities:
1y 2y 3y 5y 7y 10y 15y 1y 2y 3y 5y 7y 10y 15y

Pre-curve 2.58 2.95 3.19 3.47 3.61 3.73 3.82 Pre-curve 2.58 2.95 3.19 3.47 3.61 3.73 3.82
Post-curve controls 2.08 2.51 2.83 3.24 3.47 3.67 3.83 Post-curve controls 2.62 2.93 3.10 3.23 3.28 3.30 3.32
Difference -0.50 -0.44 -0.36 -0.23 -0.14 -0.06 0.01 Difference 0.04 -0.01 -0.09 -0.24 -0.34 -0.43 -0.50
Post-curve treated 2.14 2.55 2.85 3.22 3.43 3.61 3.75 Post-curve treated 2.68 2.97 3.11 3.21 3.23 3.24 3.24
Difference 0.06 0.04 0.02 -0.02 -0.04 -0.06 -0.08 Difference 0.06 0.04 0.02 -0.02 -0.04 -0.06 -0.08
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Table 8: Treatment effects using the fully flexible yield-curve DiD specification.

This table shows treatment effects estimated with the fully flexible yield-curve DiD specification
yieldit = B′

1 Lit+B′

2 Lit 1Treated,i+B′

3 Lit 1Post,t+B′

4 Lit 1Treated,i×1Post,t + εit with notation as
in Table 5, Lit a three-dimensional vector of regressors with elements 1, l1(xit; λ), and l2(xit; λ),

the latter two terms defined as in (5), and Bj the corresponding three-dimensional vectors of
coefficients with individual elements βk,j, k = 0, . . . , 2. The latter measure level, slope, and

curvature of the baseline curve for control bonds pre treatment (j = 1) and the incremental
differences of (i) treated bonds pre treatment (j = 2), (ii) control bonds post treatment (j = 3),

and (iii) treated bonds post treatment (j = 4). B4 captures level, slope, and curvature of the
DiD delta curve, ∆dl

4 (x), which provides the treatment effects at maturity x. The specification is

estimated with NLS, λSeed = 1, and λ is assumed to be time-invariant and the same for treated
and control bonds. The results are shown for the eight combinations of modeled true yield-curve

movements as indicated in the table. Each block represents one of the combinations of true yield
curve effects and shows minimum and maximum of the distribution of estimated treatment effects
at selected maturities of x ∈ {1, 2, 3, 5, 7, 10, 15} years using the DiD delta curve, ∆dl

4 (x), across

the 1,000 families of sample couplets when m = 0.25 years. Standard errors are clustered at the
bond-level and calculated using the delta method.

Residual General effects
Treatment maturity True None Short-end Long-end
effect (TE) (in years) TE Min Max Min Max Min Max
None 1 0.00 -0.01 0.01 -0.01 0.01

2 0.00 0.00 0.00 0.00 0.01
3 0.00 -0.01 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00

R2
adj 1.0000 1.0000 1.0000 1.0000

λ̂ 0.7306 0.7310 0.7306 0.7310
Short- 1 -6.23 -6.24 -6.23 -6.24 -6.22 -6.24 -6.22
end 2 -2.97 -2.97 -2.96 -2.97 -2.96 -2.97 -2.96

3 -1.39 -1.40 -1.39 -1.40 -1.39 -1.40 -1.39
5 -0.26 -0.27 -0.26 -0.27 -0.26 -0.27 -0.26
7 0.00 0.00 0.01 0.00 0.00 0.00 0.01

10 0.08 0.07 0.08 0.07 0.08 0.07 0.08
15 0.09 0.09 0.09 0.09 0.10 0.09 0.09

R2
adj 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

λ̂ 0.7282 0.7337 0.7306 0.7310 0.7306 0.7310
Yield- 1 5.87 5.87 5.88 5.87 5.88 5.86 5.88
curve 2 3.75 3.74 3.75 3.74 3.75 3.74 3.75
twist 3 1.58 1.57 1.58 1.57 1.58 1.57 1.58

5 -1.87 -1.87 -1.87 -1.87 -1.87 -1.87 -1.87
7 -4.11 -4.12 -4.11 -4.12 -4.11 -4.12 -4.11

10 -6.09 -6.09 -6.09 -6.09 -6.09 -6.09 -6.09
15 -7.72 -7.72 -7.71 -7.72 -7.71 -7.72 -7.71

R2
adj 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

λ̂ 0.7295 0.7325 0.7305 0.7311 0.7306 0.7310
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Table 9: Treatment effects from fully flexible yield-curve DiD specification by mode.

This table shows minimum and maximum of the difference between estimated and true treat-

ment effects using the fully flexible yield-curve DiD specification, as in Table 8, across the eight
combinations of modeled yield-curve movements and the 1,000 families of sample couplets sepa-
rately for each mode m ∈ {0.25, 1, 3, 10} years. The table shows the estimated treatment effects

at selected residual maturities x ∈ {1, 2, 3, 5, 7, 10, 15} years. Standard errors are clustered at the
bond-level and calculated using the delta method.

Residual Mode m of triangular prob. density function of treated bonds
maturity m = 0.25 m = 1 m = 3 m = 10

(in years) Min Max Min Max Min Max Min Max
Panel A: All sample couplets
No. of SC 8,000 8,000 8,000 8,000

1 -0.01 0.01 -0.01 0.02 -0.05 0.03 -0.21 0.18
2 0.00 0.01 -0.01 0.01 -0.01 0.01 -0.08 0.06

3 -0.01 0.00 -0.01 0.00 -0.01 0.01 -0.03 0.02
5 0.00 0.00 -0.01 0.00 0.00 0.00 -0.01 0.01

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

15 -0.01 0.00 -0.01 0.01 -0.01 0.01 -0.01 0.01
Panel B: Good sample couplets*

No. of SC 7,816 7,272 4,840 1,944
1 -0.01 0.01 -0.01 0.01 -0.01 0.01 -0.01 0.01
2 0.00 0.01 -0.01 0.01 -0.01 0.01 -0.01 0.01

3 -0.01 0.00 -0.01 0.00 -0.01 0.00 -0.01 0.01
5 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

15 0.00 0.00 -0.01 0.01 -0.01 0.01 0.00 0.00

* At least one treated and one control bond in one-year maturity bucket.
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Table 10: Semi-matching separately for individual maturity buckets.

This table shows the results from applying semi-matching separately by maturity buckets

using the data that exhibit both general and treatment effects simultaneously (as in Section 5),
NLS with λSeed = 1 to estimate the Diebold-Li yield curve given in (2), and the specification
yieldDiD

it = βDiD × C + εit with yieldDiD

it the bond-level DiDs in yields, C a constant, and βDiD

the treatment effect. Panel A (B) covers the case of a yield-curve treatment short-end effect
(twist). Separately for each maturity bucket and general yield-curve short- and long-end effects,

each panel shows the number of estimated treatment effects, minimum and maximum number of
bonds involved in the estimations, the true treatment effects at maturity-range start and end, and

minimum and maximum of the estimated treatment effects across the four m ∈ {0.25, 1, 3, 10} and
the 1,000 families of sample couplets (which is a total of 4,000 regressions per maturity bucket).

Maturity Number of True effects* Distributions of β̂DiD (in bps)
range estim. treat. bonds (in bps) GE: Short-end GE: Long-end

(in years) coeff. Min Max start end Min Max Min Max
Panel A: Treatment yield-curve short-end effect

[0, 2] 3,614 1 20 -13.00 -2.97 -12.40 -2.97 -12.40 -2.97
(2, 5] 3,998 1 24 -2.97 -0.26 -2.60 -0.29 -2.60 -0.28

(5, 10] 4,000 6 31 -0.26 0.08 -0.10 0.05 -0.10 0.05

(10, 20] 4,000 4 36 0.08 0.09 0.08 0.09 0.08 0.09
Panel B: Treatment yield-curve twist

[0, 2] 3,614 1 20 7.00 3.75 3.75 7.00 3.75 7.00
(2, 5] 3,998 1 24 3.75 -1.87 -1.74 3.34 -1.73 3.34

(5, 10] 4,000 6 31 -1.87 -6.09 -5.30 -3.14 -5.30 -3.13
(10, 20] 4,000 4 36 -6.09 -8.54 -7.98 -6.61 -7.98 -6.61

* True treatment effects are given for start and end of maturity range in first column.
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Figure 1: Triangular probability density functions with different modes m.

This figure shows the triangular probability density functions used to simulate residual maturity
of the one control bond sample with mode m = 0.25 years and the four samples of treated bonds

with modes m = {0.25, 1, 3, 10} years while residual maturity x ranges from zero to twenty years
(x ∈ [0, 20]) for either sample.
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a) General yield-curve short-end effect:

i) Parameter values γ0 γ1 γ2 λ

Pre-curve 4.000 -2.000 0.000 0.7308
Post-curve 4.140 -2.650 -0.800 0.7308

ii) Yields (in %) and differences (in pps) at selected maturities:

1y 2y 3y 5y 7y 10y 15y
Pre-curve 2.58 2.95 3.19 3.47 3.61 3.73 3.82
Post-curve 2.08 2.51 2.83 3.24 3.47 3.67 3.83
Difference -0.50 -0.44 -0.36 -0.23 -0.14 -0.06 0.01

b) General yield-curve long-end effect:

i) Parameter values γ0 γ1 γ2 λ

Pre-curve 4.000 -2.000 0.000 0.7308
Post-curve 3.350 -1.350 1.000 0.7308

ii) Yields (in %) and differences (in pps) at selected maturities:

1y 2y 3y 5y 7y 10y 15y
Pre-curve 2.58 2.95 3.19 3.47 3.61 3.73 3.82
Post-curve 2.62 2.93 3.10 3.23 3.28 3.30 3.32
Difference 0.04 -0.01 -0.09 -0.24 -0.34 -0.43 -0.50

Figure 2: Modeling general effects in the term structure of interest rates.

To model the term structure we employ Diebold and Li (2006)’s yield curve specification. The minitable underneath each plot shows

the parameter values to create the true underlying term structures as well as the resulting yield levels and yield differences at selected
maturities. Figures 2a and 2b provide graphical illustrations of the resulting yield and differential curves when there is a general short-end

or a long-end effect, respectively, from pre- to post-treatment.
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a) General short-end effect: m = 0.25 years b) General short-end effect: m = 10 years

β̂DiD ∈ [−11.59, 10.85], |t| > 1.653: 91 β̂DiD ∈ [2.30, 22.99], |t| > 1.653: 992
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c) General long-end effect: m = 0.25 years d) General long-end effect: m = 10 years

β̂DiD ∈ [−11.34, 12.01], |t| > 1.653: 88 β̂DiD ∈ [−24.06,−2.59], |t| > 1.653: 991

Figure 3: False treatment effects graphically.

This figure shows estimated treatment effects based on the 1,000 families of sample couplets when the modeled term structure exhibits

differential general effects across maturity but a true treatment effect is entirely absent from the data. The specification is the same as
in Table 5 and estimated with OLS. The (black) crosses in each plot show the 1,000 estimated DiD coefficients against the corresponding

t-statistics. The vertical dashed (red) lines mark the values of ±1.653, which correspond to two-sided confidence bands using a significance
level of 10%. Subplots on the left (right) show the estimates when maturity of treated bonds is drawn from the triangular distribution

with m = 0.25 (m = 10) years. The first (second) row of plots covers the general short-end (long-end) effect. The t-statistics are based
on standard errors clustered on the bond level.
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a) Yield-curve treatment short-end effect:

i) Parameter values γ0 γ1 γ2 λ

Pre-curve treated 4.000 -2.000 0.000 0.7308
Post-curve treated 4.001 -2.131 0.130 0.7308

ii) Yields (in %) and differences (in pps) at selected maturities:

1y 2y 3y 5y 7y 10y 15y
Pre-curve treated 2.58 2.95 3.19 3.47 3.61 3.73 3.82
Post-curve treated 2.52 2.92 3.18 3.46 3.61 3.73 3.82
Difference treated -0.06 -0.03 -0.01 0.00 0.00 0.00 0.00

b) Yield-curve treatment twist:

i) Parameter values γ0 γ1 γ2 λ

Pre-curve treated 4.000 -2.000 0.000 0.7308
Post-curve treated 3.890 -1.820 0.180 0.7308

ii) Yields (in %) and differences (in pps) at selected maturities:

1y 2y 3y 5y 7y 10y 15y
Pre-curve treated 2.58 2.95 3.19 3.47 3.61 3.73 3.82
Post-curve treated 2.64 2.99 3.21 3.45 3.57 3.67 3.74
Difference treated 0.06 0.04 0.02 -0.02 -0.04 -0.06 -0.08

Figure 4: Modeling term-structure treatment effects.

To model the term structure we employ Diebold and Li (2006)’s specification. The minitable underneath each plot shows the parameter

values to create the true underlying term structures as well as the resulting yield levels and yield differences at selected maturities.
Figures 4a and 4b provide graphical illustrations of the resulting yield and differential curves when there is a yield-curve treatment

short-end effect and a yield-curve treatment twist, respectively, from pre- to post-treatment.
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a) Treatment short-end effect

m = 0.25 years: β̂DiD ∈ [−2.94,−0.48] bps, |t| >1.653: 1000 m = 10 years: β̂DiD ∈ [−0.72, +0.06] bps, |t| >1.653: 301
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b) Treatment yield-curve twist

m = 0.25 years: β̂DiD ∈ [−4.02, +0.52] bps, |t| >1.653: 879 m = 10 years: β̂DiD ∈ [−6.32,−3.75] bps, |t| >1.653: 1000

Figure 5: Mismeasured treatment effects graphically.

Figures 5a and 5b show true and measured treatment effects on the 1,000 families of sample couplets for treatment short-end effect

and yield-curve treatment twist, respectively, using OLS to estimate the same specification as in Table 5. From left to right, the graphs
plot the true treatment effect over maturity, the distributions (box plots) if maturity of the treated bonds is drawn from triangular

distributions with m = 0.25 years (purple diamonds) or m = 10 years (green squares), and the estimated treatment effects against the
t-statistics. The vertical dashed (red) lines in the plots to the far right mark the values of ±1.653 (two-sided confidence bands using

10%-significance level). The t-statistics are based on standard errors clustered at the bond-level.
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a) General short-end effect b) General long-end effect

Figure 6: Illustration of semi-matching.

This illustration is based on a random sample couplet when m = 0.25 years for both control and treated bonds. Figures 6a and 6b
provide graphical illustrations for semi-matching when there is a general yield-curve effect only at the short-end or only at the long-end,
respectively. In each plot, given the general yield-curve effects there is either an additional yield-curve treatment effect at the short-end

or a yield-curve treatment twist.

47



Internet Appendix

Robust difference-in-differences analysis

when there is a term structure
1

Kjell G. Nyborg Jiri Woschitz

University of Zurich, BI Norwegian Business School

Swiss Finance Institute,

and CEPR

March 2023

1Nyborg: Department of Banking and Finance, University of Zurich, Plattenstrasse 14, CH-8032 Zurich,
Switzerland. email: kjell.nyborg@bf.uzh.ch.
Woschitz: Department of Finance, BI Norwegian Business School, B4y, NO-0442 Oslo, Norway. email:
jiri.woschitz@bi.no.

Appendix – 1



A.1. Appendix

A.1.1 Fully flexible yield-curve DiD: Example

To illustrate the functioning of the fully flexible yield-curve DiD specification, in this ap-

pendix we apply it to one sample couplet j of the simulated data for the eight combinations

of general effects (no effect, short-end effect, long-end effect) and treatment effects (no ef-

fect, short-end effect, twist) leaving out the no effect/no effect combination.

To generate the true underlying yield curves in the simulated data of the paper’s main

body, we have chosen values for the parameters γ0, γ1, γ2, and λ and have plugged them

into Diebold and Li (2006)’s spot curve in Specification (2). Table A.1, Panel A, collects

these parameter values of the spot curves from Figures 2 and 4 as well as Table 7 for the

eight combinations of yield-curve movements. However, while the spot curve parameters

of the control bonds prior to the treatment, {βk,1}
2
k=0, measure the same quantity as the

gammas, γ0, γ1, and γ2, in Specification (6), the {βk,j}
2
k=0 for j = 2, . . . , 4 (for treated

pre, control post, and treated post) represent differential, or delta, curves and are therefore

quantities that differ from the corresponding gammas in Specification (2). In Table A.1,

Panel A, since we want to compare estimated values to the true underlying parameter

values, the γ-representation from Specification (2) is transformed into the β-representation

in Specification (6).

Insert Table A.1 here.

In Panel A, except for λ, parameter values that are not zero are highlighted in bold.

Panel B shows the result of estimating Specification (6) using NLS for the eight combi-

nations of yield-curve effects using family couplet j of the simulated data. In Panel B,

coefficients that are statistically significantly different from zero at a significance level of at

least 1% are also marked in bold. Comparing Panel A, which provides the true underlying

values for the βs in Specification (6), with Panel B, providing the estimated coefficients for

sample couplet j, shows that the bold non-zero values in Panel A form the same pattern as

the bold significant coefficients in Panel B. Measured in percentage points, the parameter

values and coefficients in bold in the two panels are the same (up to at least the third

decimal digit after the comma). These results show the feasibility of identifying the true
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underlying parameter values using a simple but well specified regression model.

Interesting are a few exceptions, where the parameter estimates seem to be slightly

different from the true parameter values. These incidences appear, on the one hand, with

the curvature factor of the control bonds prior to treatment, β̂2,1, and, on the other hand,

with the decay parameter, λ̂, at the bottom of the panel. As explained by Diebold and Li

(2006), the decay parameter determines the point where the loading of the curvature factor

obtains its maximum. Hence, these two parameters have more multicollinearity with each

other than each of them has with the other parameters, level and slope. This relationship

can, for example, be seen by looking at the case of a short-end treatment effect. The

more downward and away-biased the estimated lambda, λ̂ = 0.7302, from the true value,

λ = 0.7308, the more upward and away-biased is the pre-treatment control-bond curvature

estimate, β̂2,1 = 0.001, is from the true parameter value, β2,1 = 0.000. This shows that the

estimation might be exposed to multicollinearity between the yield-curve parameters and

estimates might, therefore, be confounded to a certain extent. We will discuss this further

shortly below.

A different question, however, is whether this is the right quantity to consider. By

looking, for example, at the case of a general yield-curve short-end effect and a yield-curve

treatment twist in the sixth regression in Panels A and B of Table A.1, a researcher learns:

First, the differential curve of treated compared to control bonds prior to the treatment

is zero. Second, level, slope, and curvature factors of the control bonds change by 0.140,

−0.650, and −0.800, respectively, from pre to post treatment (which represents a short-end

effect). Third, compared to the post-curve of control bonds, the level factor of the curve

of treated bonds is −0.110 smaller and the slope and curvature factors each 0.180 larger

(the additional yield-curve treatment twist). Clearly it is very difficult to grasp what this

information economically means. Panels C and D in Table A.1 provide an alternative to

presenting the same results in a more readable and intuitive manner.

Table A.1, Panel C, shows the true underlying treatment effects of treated bonds from

pre to post treatment, controlling for movements in the yield curve of treated compared to

control bonds and movements in the yield curve from pre to post treatment. The DiD is

a function of maturity and, hence, varies across different maturities as long as the DiD is

not a pure level-shift. Panel C shows that the DiD at selected maturities, 1, 2, 3, 5, 7, 10,

and 15 years, are the same across the three cases of no general effect, a general short-end,
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and a general long-end effect. That is how the true underlying effects are modeled and is

therefore correct.

In Panel D we present the results if we estimate the DiD by using the estimation results

from Panel B and predicting the DiD at the same selected maturities. We use the delta

method to calculate standard errors, which are also clustered on the bond level. Marginal

effects that are statistically significantly different from zero (all at the significance level of

at least 1%) are marked in bold. To help visualize the similarities between Panels C and

D, the true underlying non-zero marginal effects in Panel C are as well highlighted in bold.

The results show that measuring the DiD in percentage points, the true and estimated

numbers are the same up to the third decimal digit after the comma. With respect to

multicollinearity between the regressors as touched upon above, this shows that presenting

the results this way is not impacted by multicollinearity anymore.

Furthermore, the measured quantity is intuitive to understand. For example, the sixth

regression in Table A.1, Panel D, the one for which we tried to describe the results already

above, shows that in case of a yield-curve short-end effect of the control bonds and an ad-

ditional yield-curve treatment twist of the treated bonds, the treatment effect corresponds

to +5.87, +3.75, +1.58, −1.87, −4.11, −6.09, and −7.71 bps at maturities of 1, 2, 3, 5, 7,

10, and 15 years, respectively.

While this appendix section illustrated how to estimate a meaningful quantity using a

random sample couplet j of simulated data, the paper applies the method to all simulated

sample couplets and shows its power to eliminate both the bias and mismeasurement of

treatment effects in fixed-income settings.
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Table A.1: Illustration of the fully flexible yield-curve DiD specification.

This table illustrates the fully flexible yield-curve DiD specification by applying it to one sample draw of simulated data. This is done

for the eight combinations of general (no, short-end, long-end effect) and treatment effects (no, short-end effect, twist), leaving out the no
effect/no effect combination. The specification is yieldit = B′

1 Lit+B′

2 Lit 1Treated,i+B′

3 Lit 1Post,t+B′

4 Lit 1Treated,i×1Post,t + εit, where

notation is as in Table 5 and, additionally, Bj are three-dimensional vectors of coefficients, with individual elements βk,j, k = 0, . . . , 2.
They measure the baseline curve for control bonds pre-treatment (j = 1), and the incremental differences of (i) treated bonds pre-

treatment (j = 2), (ii) control bonds post-treatment (j = 3) and, (iii) treated bonds post-treatment (j = 4). B4 is the DiD estimator
and depends on maturity x. Panel A collects the parameter values of γk, k = 0, ..., 2, and λ of the spot curves from Figures 2 and 4 and
Table 7 and transforms the γ-representation in those tables to the β-representation. In Panel A, except for λ, parameter values that

are not zero are highlighted in bold. Panel B shows the result of estimating the specification using NLS for the eight combinations of
yield-curve developments using the one sample draw of simulated data. The decay parameter λ is assumed to be time invariant and the

same for treated and control bonds. In Panel B, coefficients that are statistically significantly different from zero (all at the significance
level of at least 1%) are marked in bold. Panel C shows B4, the true underlying DiD of treated bonds post-treatment, for selected

maturities. In Panel C, parameter values that are not zero are highlighted in bold. Panel D shows B̂4, estimated using the estimation
results from Panel B and predicting the DiD at the same selected maturities as in Panel C. Standard errors are clustered at the bond

level and calculated using the delta method. Coefficients that are statistically significantly different from zero (all at the significance
level of at least 1%) are marked in bold. In Panels B and D, a, b, and c denote significance (two-sided) at the levels of 1%, 5%, and 10%,

respectively.

Panel A: True parameter values

General effect Short-end Long-end − Short-end Long-end
Treatment effect − − Short-end Twist Short-end Twist Short-end Twist
β0,1 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
β1,1 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000 -2.000
β2,1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
β0,2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
β1,2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
β2,2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
β0,3 0.140 -0.650 0.000 0.000 0.140 0.140 -0.650 -0.650
β1,3 -0.650 0.650 0.000 0.000 -0.650 -0.650 0.650 0.650
β2,3 -0.800 1.000 0.000 0.000 -0.800 -0.800 1.000 1.000
β0,4 0.000 0.000 0.001 -0.110 0.001 -0.110 0.001 -0.110
β1,4 0.000 0.000 -0.131 0.180 -0.131 0.180 -0.131 0.180
β2,4 0.000 0.000 0.130 0.180 0.130 0.180 0.130 0.180
λ 0.7308 0.7308 0.7308 0.7308 0.7308 0.7308 0.7308 0.7308
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Table A.1 – continued
Panel B: Estimated parameter values for family j of ordered sample couplets

General effect Short-end Long-end − Short-end Long-end

Treatment effect − − Short-end Twist Short-end Twist Short-end Twist

β̂0,1 4.000a 4.000a 4.000a 4.000a 4.000a 4.000a 4.000a 4.000a

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

β̂1,1 -2.000a -2.000a -2.000a -2.000a -2.000a -2.000a -2.000a -2.000a

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

β̂2,1 -0.000 -0.000 0.001 -0.000 -0.000b 0.000 -0.000c -0.000

(0.317) (0.148) (0.333) (0.889) (0.036) (0.908) (0.068) (0.384)

β̂0,2 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.170) (0.170) (0.170) (0.171) (0.170) (0.170) (0.170) (0.170)

β̂1,2 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

(0.466) (0.466) (0.463) (0.467) (0.466) (0.466) (0.466) (0.466)

β̂2,2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(0.117) (0.117) (0.116) (0.117) (0.117) (0.117) (0.117) (0.117)

β̂0,3 0.140a -0.650a 0.000 0.000 0.140a 0.140a -0.650a -0.650a

(0.000) (0.000) (0.980) (0.858) (0.000) (0.000) (0.000) (0.000)

β̂1,3 -0.650a 0.650a -0.000 0.000 -0.650a -0.650a 0.650a 0.650a

(0.000) (0.000) (0.845) (0.953) (0.000) (0.000) (0.000) (0.000)

β̂2,3 -0.800a 1.000a 0.000 -0.000 -0.800a -0.800a 1.000a 1.000a

(0.000) (0.000) (0.972) (0.877) (0.000) (0.000) (0.000) (0.000)

β̂0,4 0.000c 0.000 0.001a -0.110a 0.001a -0.110a 0.001a -0.110a

(0.094) (0.227) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

β̂1,4 0.000 -0.000 -0.131a 0.180a -0.131a 0.180a -0.131a 0.180a

(0.576) (0.941) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

β̂2,4 -0.000c -0.000 0.130a 0.180a 0.130a 0.180a 0.130a 0.180a

(0.050) (0.411) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

λ̂ 0.7308a 0.7308a 0.7302a 0.7308a 0.7309a 0.7307a 0.7309a 0.7308a

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Num. of obs. 200 200 200 200 200 200 200 200

Adjusted R2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

RMSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table A.1 – continued
Panel C: True difference-in-differences at selected maturities

General effect Short-end Long-end − Short-end Long-end

Treatment effect − − Short-end Twist Short-end Twist Short-end Twist

Maturity 1 0.0000 0.0000 -0.0623 0.0587 -0.0623 0.0587 -0.0623 0.0587

(in years) 2 0.0000 0.0000 -0.0297 0.0375 -0.0297 0.0375 -0.0297 0.0375

3 0.0000 0.0000 -0.0139 0.0158 -0.0139 0.0158 -0.0139 0.0158

5 0.0000 0.0000 -0.0026 -0.0187 -0.0026 -0.0187 -0.0026 -0.0187

7 0.0000 0.0000 0.0000 -0.0411 0.0000 -0.0411 0.0000 -0.0411

10 0.0000 0.0000 0.0008 -0.0609 0.0008 -0.0609 0.0008 -0.0609

15 0.0000 0.0000 0.0009 -0.0772 0.0009 -0.0772 0.0009 -0.0772

Panel D: Estimated difference-in-differences at selected maturities for family j of ordered sample couplets

Maturity 1 0.0000 0.0000 -0.0623a 0.0587a -0.0623a 0.0587a -0.0623a 0.0587a

(in years) (0.895) (0.706) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

2 -0.0000 -0.0000 -0.0297a 0.0375a -0.0297a 0.0375a -0.0297a 0.0374a

(0.231) (0.958) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

3 -0.0000 -0.0000 -0.0139a 0.0158a -0.0139a 0.0158a -0.0139a 0.0158a

(0.139) (0.974) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

5 -0.0000 0.0000 -0.0026a -0.0187a -0.0026a -0.0187a -0.0026a -0.0187a

(0.280) (0.607) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

7 -0.0000 0.0000 0.0000a -0.0411a 0.0000a -0.0411a 0.0000a -0.0411a

(1.000) (0.231) (0.002) (0.000) (0.000) (0.000) (0.001) (0.000)

10 0.0000 0.0000 0.0008a -0.0609a 0.0008a -0.0609a 0.0008a -0.0609a

(0.323) (0.157) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

15 0.0000 0.0000 0.0009a -0.0772a 0.0009a -0.0771a 0.0009a -0.0771a

(0.163) (0.174) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Num. of obs. 200 200 200 200 200 200 200 200

Adjusted R2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

RMSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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