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ABSTRACT 
Andersen, Fusari and Todorov (2017) claim that in Weekly options there is variation in the negative 
tail risk that is not spanned by the option market. Using Stochastic Arbitrage (SA), we show that tail 
risk is adequately represented by the prices of out-of-the money options, but the at-the-money 
Weeklies are way above the prices justified by the dynamics of the S&P 500 index. We confirm the 
overpricing with out-of-sample tests that show high risk-adjusted profits from trading these options 
within the frictionless SA bounds. We attribute the AFT results to the assumptions and distortions 
imposed on their option data.   

 

Anderson, Fusari and Todorov (AFT, 2017) use short term S&P 500 index options in order to study 
volatility and jump risks in option valuation. As they make it very clear (p. 1348), their theoretical 
framework is asset pricing theory in frictionless markets, according to which the option values are 
expectations of the payoffs with the transformed risk neutral jump diffusion dynamics. Such a 
transformation implies that the return distributions are multiplied by a pricing kernel, for which 
various forms are available. Nonetheless, AFT do not introduce an explicit pricing kernel, and in 
their empirical study they use only option market data and rely very little on the dynamics of the 
index return distribution. In their empirical analysis, option data are transformed to conform to the 
frictionless markets assumption, discarding the in-the-money (ITM) options and replacing them via 
put-call parity with the corresponding out-of-the money (OTM) options (p. 1345, footnote 8). They 
apparently use the midpoint of the observed bid-ask spread of the options (Appendix D, p. 1374) as 
representing the frictionless price, consistent with most empirical option market studies.  

With these option data, AFT extract the parameters of the risk neutral frictionless process, which 
they fit to the entire option cross section. Their analysis is extremely flexible, insofar as it uses a 
semi-nonparametric approach that only imposes weak restriction on the jump distribution. It allows 
time-varying risk neutral jump amplitude distributions with daily calibration. In spite of this 
flexibility, however, they have trouble in identifying models that can adequately fit both right and 
left tails of this risk neutral distribution; see pp. 1354, 1356, 1358, 1364, etc. They conclude (p. 
1370) that “there is a sharp separation between the dynamics of the actual jump risk and its pricing,” 
and mention the need to identify the economic forces that can rationalize their results.  
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In this paper, we show that the problems encountered by AFT stem from applying an option 
valuation model developed for frictionless markets to a market that is emphatically not frictionless, 
neither in trading index tracking funds or index futures nor, a fortiori, in trading options. We use an 
extended SPXW option dataset and demonstrate that even in the very liquid moneyness regions, put-
call parity does not hold even approximately.1 We also note that there are systematic differences in 
frictionless option valuation and observed option market data by degree of moneyness of the options. 
We use the stochastic arbitrage (SA) approach to map the regions in the option market where the 
frictionless option values consistent with the observed index dynamics should lie. We demonstrate 
that for large segments of the support of the index return distribution there is a complete disconnect 
between these mapped regions and the corresponding observed bid-ask spreads in our sample. This 
is probably the most important reason that led to the AFT conclusion about the shape of option skew 
across short-maturity options, for which they blame the scarcity of deep OTM call options. Last, we 
test rigorously whether this observed inconsistency of the option market data with the theoretically 
correct frictionless option bounds implied by the underlying return can lead to profitable option 
trading. Our tests demonstrate that the observed option data can produce large risk adjusted profits 
provided trading is frictionless, namely consistent with the SA bounds. 

We evaluate the AFT results by using the stochastic arbitrage (SA) paradigm, formerly known as 
stochastic dominance. In that paradigm, we compare two generic identical risk averse investors. One 
of them holds the index and the riskless asset, the index trader (IT). The other one, the option trader 
(OT), adds a zero net cost option position to the IT holdings. OT should not dominate IT to the 
second degree. This absence of dominance creates a region within which the risk neutral option 
prices should lie. These bounds are the tightest intervals for the frictionless option prices to avoid 
risk-adjusted positive expected returns from the zero net cost portfolios. This paradigm was 
originally developed for frictionless markets in discrete time by Perrakis and Ryan (1984), Ritchken 
(1985), Levy (1985), Perrakis (1986), and Ritchken and Kuo (1988). It has been extended 
theoretically more recently and shown to converge in continuous time either to a single value in the 
cases of diffusion or stochastic volatility or to two distinct boundary distributions when the 
diffusions are mixed with independent jumps in Perrakis (2019, Ch. 2), Ghanbari, Oancea and 
Perrakis (2021), and Perrakis and Oancea (2022). The SA approach uses only the index return 
dynamics, without involving the option market. SA restricts the relevant universe of traders to those 
who are risk averse and hold the index and the riskless asset. This assumption implies that the index 
is identified with the market portfolio. Such index holders form a large and drastically increasing 
share of investors in the economy, as documented by Bogle (2005) and Charles (2017).  

A frictionless equilibrium in the option market should not allow IT investors to realize positive risk 
adjusted extra profits by adding a zero net cost short or long option position to their holdings while 
trading in the frictionless market. A corollary of this condition is that frictionless option values can 
be extracted from the observed option market data bid-ask spread midpoint if and only if that 
midpoint is situated within the SA bounds for the entire support of the return distribution. This 

 
1 In our sample of end-of-week SPXW, the put volume is about 1.8 times that of the call volume, and this ratio is 
reasonably persistent from 9 days-to-maturity until 1 day-to-maturity. See also Constantinides and Lian (2021) on the 
partial segmentation of the markets for puta and calls. 
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happens seldom in our data. If frictionless option values cannot be extracted from a portion of the 
support of the return distribution, then there are frictionless trading strategies that generate risk 
adjusted profits for the IT investor. Any risk averse investor holding the index and the riskless asset 
will increase her expected utility by adopting such a strategy. In our data, this is confirmed rigorously 
by genuine out-of-sample and model-free tests. These tests compare the realized aggregate payoffs 
of the adopted strategies plus the returns of the IT portfolio, the OT time series of portfolio returns, 
to the returns of the IT portfolio. They allow inferences about the populations from which the two 
timeseries were drawn, thus confirming or rejecting the mispricing of the bounds violating 
option(s).2  

The SA approach confirms the AFT-conjectured independence of the pricing of diffusive volatility 
and jump risk, represented by at-the-money (ATM) and OTM options respectively, by turning the 
AFT results upside down! We present empirical evidence that the bid-ask midpoint observed in the 
option market is an adequate representation of the risk neutral distribution supported by the index 
return dynamics only at the left tail of the distribution. By contrast, the option market overprices the 
highly liquid region around ATM for both calls and puts, with the admissible option prices lying 
way below the observed bid quotes for a large majority of the traded options. We verify that these 
ATM options are overpriced, by the out-of-sample SA tests in frictionless trading, with the profits 
disappearing if trading is done at the prevailing bid and ask prices or at their midpoint. In other 
words, the AFT results fail not because of “shifts in the pricing of negative tail risk” but because the 
underlying index dynamics are fatally inconsistent with observed option market prices for a key 
portion of the support of the risk neutral distribution. In fact, our results show that more than 50% 
of the observed bid-ask quotes for Weeklies are mispriced in frictionless markets with respect to the 
underlying index dynamics, while the profits disappear when trading in the presence of frictions. 
Further, the consistency of market data with the SA bounds is strongly dependent on the moneyness 
of the options, indicating clientele effects that attract separate types of investors for ATM and OTM 
options. This seems also to be implied by the comments of AFT (p. 1336), that ATM and OTM 
options are focused separately, respectively on the spot volatility and the jump component dynamics.  

To our knowledge, this is the first empirical application of SA to frictionless markets, although it 
has been applied to markets with frictions. A major advantage of SA is the fact that it allows 
comparisons of the mapped option prices consistent with the index dynamics with the observed bid-
ask spread at the level of each individual option, rather than an entire cross section as in conventional 
empirical option research. Our SPXW results are consistent with previous theoretical and empirical 
research that recognize market frictions, such as Constantinides and Perrakis (2002, 2007), 
Constantinides et al (2011), Post and Longarela (2021), and Arvanitis, Post and Topaloglou (2023). 
Constantinides, Czerwonko and Perrakis (CCP, 2020) show that the one week maturity option 
portfolios selected by their algorithms generated major risk adjusted expected excess returns in-
sample, that were confirmed on the realized ex post series of returns.3 If the options are mispriced 

 
2 See Constantinides et al (2011). The tests’ hypotheses verify whether risk averse investors unanimously prefer the OT 
over the IT times series. Intuitively, the test examines the non-dominance of OT returns time series over that of IT 
returns. 
3 These excess returns in the market with frictions are not inconsistent with our own conclusions in Section 3, that the 
mispricing of the options in the frictionless markets disappears when trading at the appropriate bid and ask prices. Both 
CCP and PL used complex algorithms in order to identify mispriced option portfolios, not individual options.  
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in the market with frictions in a single period buy-and-hold model, then they are a fortiori mispriced 
in a continuous time frictionless model as in AFT, with the excess returns augmented by the bid-ask 
spread of the chosen portfolios. On the theoretical side, there are very few available studies that 
model transaction costs in the option market or consider the relation between the frictionless option 
values and the bid-ask spread in the market. A pioneering such study was Jouini and Kallal (1995), 
who showed (p. 188) that for the “correct” pricing of options in both the frictionless market and in 
the presence of frictions, the frictionless price should lie within the bid-ask spread. Similarly, 
Constantinides, Jackwerth, and Perrakis (2009) and Post and Longarela (PL, 2021) showed 
theoretically that their mispriced option portfolios were due to the fact that there was no monotone 
pricing kernel passing through the bid-ask spread in the option market.  

Our results also provide some answers to the big question that AFT raise, about the identification of 
the economic forces that can rationalize their less than fully satisfactory results in fitting the risk 
neutral dynamics across moneyness domain. We fully agree with AFT that it is economic forces, 
not estimation technology, that are responsible for the impasse. Economic forces, however, manifest 
themselves through markets, where the equilibrium is established through supply and demand curves 
and possibly market power. The only market here is the option market, which is intermediated and 
universally assumed to be perfectly competitive. This assumption has never been tested empirically 
but it should be treated with suspicion, certainly for short maturity options and possibly for all index 
options. It is known that there is exactly one designated liquidity provider for the entire SPXW class, 
termed the Designated Primary Market Maker (DPM); see 
https://www.cboe.com/us/options/trading/liquidity_providers/. Since the trader population is 
diverse, there are issues of information asymmetry, which is a powerful barrier to entry. A 
systematic investigation of these issues requires specific datasets which are not available to the 
authors. However, we discuss our proposed line of inquiry briefly in the last section of this paper, 
and more extensively in our online appendix, and leave the empirical work for future studies.  

The next section presents the SA derivation of the option trading bounds applicable to this paper, as 
well as the out-of-sample tests that verify whether the bounds are identifiers of mispriced options. 
Section II estimates the bounds for an extended data set of SPXW options and demonstrates via out-
of-sample tests that the mispriced zero-net-cost option portfolios provide risk-adjusted excess 
returns to their holders in the frictionless market, but not in the presence of frictions. Section III 
concludes.        

I. The Stochastic Arbitrage Option Bounds and their Violations 

The SA bounds are derived by considering the risk averse IT investor holding the option and the 
riskless asset, who adds to her holdings a zero net cost portfolio containing a long or short option 
position and becomes the option trader or OT. The option prices should be such that OT returns 
would not dominate IT returns in the second degree at any time interval to option expiration, a 
condition that translates into upper and lower bound for the option. The bounds are consistent with 
a monotone decreasing pricing kernel. Any option price outside the bounds implies a stochastic 
arbitrage opportunity. The bounds are derived recursively, starting from the time T t−∆  before the 
option expiration at T, and applied to any time interval ( , )t t t+ ∆  within the life of the option. The 

https://www.cboe.com/us/options/trading/liquidity_providers/
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limiting form follows immediately for 0t∆ → . A key issue is the specification of the index return 
dynamics, to which we now turn.   

Since we do need tradable entities, the dynamics of the index can be extracted from a tracking fund, 
as we assume in this section, or from a futures contract that matures with or after the option, as we 
illustrate in our online appendix when we introduce transaction costs. We follow AFT (eq. (1), p. 
1348), who assume that the index returns are stochastic volatility mixed with jumps (SVJ), but also 
state that for such short maturities as in SPXW the volatility can be taken as constant. Hence, we 
use physical parameter estimates under jump diffusion and assume a total volatility that is time-
varying between cross sections but constant for each cross section. That volatility is estimated from 
adjusting the observed VIX index for bias and maturity, as in Constantinides, Czerwonko and 
Perrakis (2020). As that paper showed, the volatility estimates from the adjusted VIX were excellent 
forecasts of the ex post observed realized volatility.4 We verify them in our robustness checks. 

For a tracking fund, let tI denote the value of the index at t, µ the instantaneous mean assumed 
greater than the riskless return r , q the (assumed constant) ex-dividend rate, λ the jump intensity, 
κ the expected log jump amplitude minus 1, and tσ the diffusion volatility, which is assumed to stay 
constant in each cross section. Let [ , ]t T denote the interval to option expiration T and K  the option 
strike price. The index dynamics then become 

( ) ( 1)t
t

t

dI q dt dW j dN
I

µ λκ σ= − − + + − .      (1.1) 

Hereafter we ignore the dividends, that do not enter into the risk neutral Q—dynamics, The 

discretized version of (1.1) is, setting the ex-dividend return t t t
t t

t

I Iz
I

+∆
+∆

−
=  

[ ]               with probability (1 )
with probability ( )[ ] ( 1)

t
t t

t

t t t
z

tt t j

µ λκ σ ε λ
λµ λκ σ ε

+∆

 − ∆ + ∆ − ∆=  ∆− ∆ + ∆ + −
,    (1.1)’ 

where (0,1)Nε  . We assume that the jump amplitude j  is a truncated lognormal such that 

minj j j> ≡ , which is common to all cross sections, consistent with the assumptions of the jump 

diffusion SA bounds. In such a case exp{ ln( ) } 1E j j jκ  = ≥ −  . With this specification the total 

variance of the ex-dividend index return till option expiration is given by the following expression, 
which is observable at every cross section and equal to the bias-adjusted VIX 

( ) ( ){ }2
2ln ln( ) var ln( ) ( )T
t

t

IVar j j E j j j j j j T t
I

σ λ
      ≥ = + ≥ + ≥ −        

.  (1.2) 

 
4 An alternative approach would have been the full estimation of the P-distribution under SVJ, for which the risk 
neutralization under SD has been recently developed by Perrakis and Oancea (2022). As AFT imply (pp. 1349-1351), 
the weeklies may differ from longer maturity options, which makes our VIX approach more suitable. 
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The constant instantaneous mean µ can easily be varied or set proportional to variance or to 
volatility, with very little effect on the results. The derivation of the SA bounds stems from the Euler 
discretization of the diffusion component, in which the dynamics are as in (1.1)’ but with the random 
term 2( ),  [ , ],  [ ] 0,  [ ] 1,  0F E Eε ε ε ε ε ε ε ε ε∈ = = < < < ∞ ; as 0t∆ → the discretized index 
dynamics (1.1)’ tend to (1.1). This discretization is applied to the general expression for the 
frictionless SA bounds, which holds for any distribution of the random return t tz +∆ , with 

1{ }t tMin z z+∆ ≡ , 1 ( )r te R r t o t∆ = = + ∆ + ∆  and ˆ[ ]t t t tE z z+∆ ≡ ,; note that 1z corresponds to minj j= as

0t∆ → . This results in the following risk neutral dynamics ( )t t tU z +∆ for the upper bound5 

1

1

1

1

(1 ) with probability 
ˆ

( )
ˆ11   with probability 

ˆt t

t t
t

t t t
t

z z
t

R zz
z z

U z
z R

z z+∆

+∆

+∆

=

− + 
 − =
 + −
 − 

.     (1.3) 

At the limit this expression yields, for t tz +∆ given by (1.1)’ 

( )( ) ( )1 ,  ,  ,
1

with probability
,   1 ( 1)

with probability
Ut

Ut

Ut

U Q U Q Ut
Ut t t t t t Ut Ut

t

U U U Ut
t t

Ut Ut

dI rr k dt dW j dN
I j

j
j E j j

j

λ
λ λ

λ
λ λ

µλ λ σ λ λ λ λ

λλκ κ
λ λ λ λ

+

+

−
= − + + + − = + = −

−

  = − = = + −   + +

 .   (1.4) 

An SA lower bound also exists for this jump diffusion process, which is not shown since it is rarely 
violated in our empirical applications.  

Equation (1.4) is sufficient for the estimation of the upper bounds of the options in a given cross 
section, which are expectations of the corresponding payoffs. These bounds can be applied 
individually to every option. If there is an option whose observed bid quote lies above the upper 
bound then this option is obviously mispriced in the frictionless world. The rest of this section is 
devoted to the design of strategies to exploit this overpricing for both calls and puts, which stem 
from the proof of the derivation of the risk neutral dynamics (1.3) in Perrakis (2019, pp. 23-27). 

 Suppose we observe at time t a call option in a cross section of a given maturity, whose bid price 
lies above the SD upper bound, or ( , , ) ( , , )bt t tC I K T C I K T> . The strategy consists in shorting one 

call per unit index at the bid price and allocating t btCβ  and (1 )t btCβ−  in the riskless bond and the 
index, respectively. This position is closed at time t t+ ∆  at a price equal to the call upper bound 

( , )t tC I T+∆ , which is derived from the discretized Q -dynamics in (1.3) for all risk averse traders. 

 
5 See Perrakis, (2019, pp. 23-27), and Ghanbari, Oancea and Perrakis (2021, pp. 252-254). The latter study also shows 
that the width of the jump diffusion bounds increases with the degree of moneyness, a factor that will play a role in the 
following section’s empirical results.  
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The allocation tβ  is chosen so that at the lowest value of the return min, 1t tz z+∆ = that corresponds to 
the left tail of the jump amplitude the portfolio payoff will be zero at t t+ ∆ , implying that 

*1 1

1

( (1 ), , ) (1 ) ( , , )
( , , ) (1 ) ( , , )

t bt t
t t

bt t bt t

C I z K T z C I K T
RC I K T z C I K T

β β+ − +
= ≡

− +
.     (1.5) 

If the portfolio is rebalanced at every point ( , 1]t Tτ ∈ −  , with τβ  similarly chosen so that at the 

lowest value of the return 1z  the portfolio payoff at the upper bound ( , )C I Tτ τ+∆ would be equal to 0, 
then at option maturity T the cumulated allocation would be equal to 

* *(1 )(1 )
T T

bt
t t

C R z
ζ ζ

ζ
ζ ζ ζ ζ

ζ ζ

β β
= =

∆
+∆

= =

 
+ − + 

 
∏ ∏ , from which we need to subtract the proceeds of the closed 

short call ( , , ) ( )T TC I K T I K += − . In the empirical tests of the following section, the above strategy 
is applied to a portfolio of options violating the SA bounds at time t, and the position is closed at the 
beginning of the next day, for each option in the portfolio. It is closed at the upper bound 

1( , , )tC I K T+  for frictionless trading and at the observed ask price , 1 1( , , )a t tC I K T+ +  if frictions are 
partially recognized. 

For an overpriced put option, we write a put at its bid price btP , short t t btI Pβ − of index with 1tβ < , 

and invest t tIβ  in the riskless asset. The portfolio payoff at t t+ ∆ is 

[ ](1 ) ( (1 ), )t t t t bt t t t t tI R I P z P I z Tβ β +∆ +∆− − + − + , whose lowest value is when the put is at its upper 

bound at t t+ ∆ , or ( (1 ), ) ( (1 ), )t t t t t tP I z T P I z T+∆ +∆+ = + . This payoff is clearly increasing in the put 

bid price btP  for every tβ . At the lowest value of the index return support 1t tz z+∆ =  the payoff should 
be nonnegative, implying that the optimal allocation at time t would be  

*1 1

1

( (1 ), , ) (1 )
[ (1 )]

t bt
t t

t

P I z K T P z
I R z

β β+ − +
≥ ≡

− +
,     (1.6) 

Setting tβ  at this value, at t t+ ∆  the expected portfolio payoff is 
* *[( )(1 ) ( (1 ))]t t t t t bt t t t t tI R E I P z P I zβ β +∆ +∆− − + − + . This expectation should be 0 at 

( (1 ), )bt t t tP P I z T+∆= + , which is verified using (1.3). Hence, it is positive for btP P> , implying a 

positive put portfolio payoff when the put position is closed at ( , , )t tP I K T+∆ . As with the overpriced 
calls, the excess returns at T would be  

1 1
*((1 ) ( (1 )) ( )

T T
T t

bt t t T
t

P z I R z K I
ζ ζ

ζ ζ ζ ζ
ζ ζ τ

β
= − = −

− +
+∆ +∆

= =

+ + − + − −∏ ∏   As with the calls, in our empirical 

applications in the following section we close the position at the end of the first day at the value

1( , , )tP I K T+ for frictionless trading and , 1 1( , , )a t tP I K T+ +  in the presence of frictions. Hence, each 
overpriced call and put option will contribute the following quantity 
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1* * 1)

, 1 1

1 1
* ( 1)

( , , ) for frictionless
(1 ) (1 )

( , , ) with bid-ask spread

( , , ) for f
((1 ) ( (1 ))

T
tT t T t

bt t t
t a t t

T T
t tT t T t

bt t t
t

C I K T
C R z R

C I K T

P I K T
P z I R z R

ζ

ζ ζ
ζ

ζ ζ

ζ ζ ζ ζ
ζ ζ τ

β β

β

=
+− − +

+∆
= + +

= − = −
+∆− − +

+∆ +∆
= =

  
+ − + −        

+ + − + −

∏

∏ ∏
, 1 1

rictionless
( , , ) with bid-ask spreada t tP I K T+ +

 
  
 

(1.7) 

For the empirical work verifying the SA model option portfolios are set at time t using options 
violating the SA bounds and then liquidated with option positions closed at t+1 at the option upper 
bound, 1( , , )tC I K T+  or 1( , , )tP I K T+  , for frictionless trading. In the presence of frictions the option 
positions are closed at the prevailing ask prices, 1( , , )a tC I K T+ and 1( , , )a tP I K T+ .6 This work leaves 
open the determination of the unique equilibrium price for the frictionless options, for which the SA 
methodology only provides trading bounds. As we see in the following section, these bounds are 
quite wide at the tails of the distribution. A full determination of the equilibrium price requires 
further assumptions and a much longer treatment that transcends the purpose of this paper. We 
discuss these issues briefly in the following sections.  

II. Data and Empirical Results    

 Weekly S&P 500 index options (SPXW) are similar to standard monthly options except they have 
a shorter life span, are PM-settled on their expiration date, and are expiring every day of the week. 
They are typically listed several weeks in advance. Since launch, Weekly options have grown to 
become one of CBOE' s most-actively traded products. A total of 345 million S&P 500 index option 
contracts were traded in 2021, with an average daily volume (ADV) of 1.4 million contracts. Among 
them, there were approximately 247 million SPXW contracts in 2021, with an ADV of more than 
981,000 contracts, accounting for nearly 72 percent of total SPX trading volume.7 In this study we 
only focus on the End-of-Week SPXW options, maturing every Friday. Although the sample data 
in the AFT study contains all short term options in their estimations, including both SPX and SPXW, 
we do not include the SPX in our sample, since they have different market structure, settlement 
mechanism and DPM.   

For the empirical estimation of the S&P 500 index returns’ P-dynamics we use ex-dividend daily 
returns over the period January 3, 1963, to December 31, 2010. The underlying return sample is 
chosen so that it has no overlap with the option sample.8 During this period the average annualized 
return is 6.25%, the standard deviation of returns is 16.27%, and their skewness and kurtosis are -
1.07 and 32.18 respectively. In robustness checks we also use daily returns from January 2, 1980, 
to December 31, 2010.  For the intraday index price, we use the price provided by the CBOE 

 
6 Note, however, that frictions were not taken into account in establishing the option portfolios, implying that the 
resulting profits under frictions, if any, are upper bounds in exploiting the observed frictionless SA bounds’ violations. 
7 https://ir.cboe.com/news-and-events/2022/04-13-2022/cboe-add-tuesday-and-thursday-expirations-spx-weeklys-
options 
8 Although SPXW started trading in 2005, they were AM-settled until December 2010 and PM-settled thereafter. To 
prevent any bias due to the settlement mechanism, our option sample starts in in January 2011.  
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reporting system.9 For the dividend yield we use daily cash payouts obtained from Standard and 
Poor. For the interest rate, we use the 3-month constant maturity T-bill rate obtained from the Federal 
Reserve Economic Data.  

We use the adjusted VIX index as a proxy for total variance of the index returns. The adjustment is 
equal to the mean difference between the VIX and the realized volatility from 1986 to the 
observation date. The amount by which VIX exceeds the realized volatility is relatively stable in our 
sample, with an average annual premium of 5.27%, with the maximum value of 5.61% in September 
2007 and minimum value of 4.96% in April 2020. Both the VIX and the realized volatility of daily 
returns are measured in one-week intervals without overlap, with the latter quantity defined as the 
square root of 252 times the mean squared daily return. In our robustness checks, we also consider 
alternative specifications of the VIX bias with very little impact on our results. 

We estimate the jump diffusion parameters for the S&P 500 index using the generalized method of 
moments (GMM) framework. The moments of the jump-diffusion dynamics with a constant 
intensity and truncated log-normal amplitude are shown in Ghanbari, Oancea and Perrakis (2021, 
Appendix B). The mean return and diffusion standard deviation are 7.07% and 14.97% respectively. 
The jump intensity is 0.26 per year and the mean and standard deviation of the truncated jump size 
are -3.22% and 10.07% per year. The lognormal jump amplitude is truncated at a maximum 20% 
negative jump size. The statistical properties of our parameter estimates are in Table OA1 of the 
online appendix.  From equation (1.2) we extract a diffusion volatility for each option cross section 
given the parameter estimates of the jump distribution and the adjusted VIX observations. The 
average diffusion volatility across all cross sections is 13.49% with the minimum (maximum) 
volatility of 2.55% (74.44%). From these P-parameters we estimate the upper and lower bounds on 
the option prices in each cross section. 

Our option sample contains end-of-the week Weeklies with one week-to-maturity, expiring on 
Friday from March 17, 2011, until March 17, 2022, for a total of 477 expiring Fridays and 3127 
observation days. We follow each SPXW option in its daily trading over 7 different maturities, 9, 8, 
7 and 4 to 1 days to maturity, from Wednesday till the next Thursday. Unlike AFT that use end-of-
day data from OptionMetrics, we collect option data from time-stamped intraday option quotes from 
CBOE. Our sample only contains options with nonzero trading volume and minimum bid price of 
10 cents. Standard arbitrage violations filters across moneyness were also applied. The trading 
volume is obtained from the CBOE Market Data Express Open/Close database. This dataset shows 
daily buy volume, sell volume, and open interest, separately for different types of market 
participants. We confirm that the net daily buy volume across all market participants is zero. The 
full data summary is shown in Tables OA2-OA3 of our online appendix, together with the average 
estimated SA bounds, the overlap of quotes and bounds and the location of the bid-ask midpoint 
within the bounds, separately for calls and puts. The online appendix also shows option summary 
statistics across different trading days. Overall, the sample has 140,305 (194,470) contracts of calls 
(puts) with average implied volatility (IV) of 22.7% (23.4%). 

 
9 In studies that used earlier data the intraday index price was found from the cost-of-carry relationship between the cash 
index and its futures price, due to poor reporting of the cash index. As of 2007 the quality of this reporting has 
significantly improved and there is no reason to use futures. 
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Several general conclusions can be drawn from this comprehensive data set, which to our knowledge 
is presented here for the first time. First, the market data for call and put options do not support put-
call parity even approximately. For all seven days to maturity the total volume is more than 80% 
higher for puts than for calls across the entire sample. For the three observation days with 9, 7 and 
4 days to maturity that are the focus of our empirical analysis the put volume is more than 77%, 
120% and 108% respectively higher. Second, the market makers (MM) hold a large and relatively 
stable share of about 50% in the intermediated market for both calls and puts.10 Such a level of 
volume certainly does not support the free entry of dealers into that market, assumed in the 
equilibrium model of Garleanu, Petersen and Poteshman (GPP, 2009, p. 4264).11 Last, the DPM’s 
order imbalance, which plays an important role in establishing equilibrium in the intermediated 
market in GPP and also in Fournier and Jacobs (2020), is not reliable as a key variable for the very 
simple reason that it is highly unstable during the life of the option. Although its averages start at 
the low levels of 5.35% for calls and 1.37% for puts 9 days before maturity, they rise dramatically 
to 18.72% for calls and 22.56% for puts at 7-day maturities, only to fall at 0.2% and 2.4% three days 
later.     

The most striking result in Table 2, however, is the inconsistency of the intermediated market with 
the fundamental conditions that must exist to extract the frictionless option market prices. Panels B 
and D of Table 2 show the results of the comparisons of the SA option bounds with the observed 
bid-ask prices of the options. In all seven days-to-maturity (DTM) categories and for both puts and 
calls a very large majority of the cross sections are fundamentally inconsistent with the SA bounds, 
insofar as the observed bid-ask spreads lie entirely above the option bounds for more than 37% of 
the calls and 35% of the puts across all ranges of moneyness. Similarly, the bid-ask midpoint, the 
universally accepted proxy for the “correct” estimate of the equilibrium option price, lies within the 
SA bounds for only 24% of the observed calls and 39% of the puts. In what follows we focus on the 
end-of-the week SPXW options with 9-, 7- and 4 DTM, in order to explore in depth the economic 
reasons for these inconsistencies.  

Tables 1-3 below show the detailed results for these three maturities, disaggregated by degree of 
moneyness categories for both put and call options. We set a minimum volume filter of 1000 
contracts in these tables, which encompasses more than 95% of the total volume in all three DTM 

groups. In terms of degrees of moneyness t
t

Km
I

≡ the liquid zone shown in the three tables is 

[0.86,1.02]tm =  for puts and [0.98, 1.06]tm = >  for calls for the two longer maturities, and 
[0.90,1.02]tm =  for puts and [0.98,1.06]tm =  for calls for the 4-day maturity. The tables also show 

the relative positions of the SA bounds and the option market bid-ask spread, as well as the DPM’s 
fully hedged (matched) positions and exposures in terms of net buys across each moneyness 
category. The full data is shown in Tables OA4-OA5 of the online appendix. 

 
[Table 1 about here] 

 
10 Although in later years there was one designated MM, the DPM, it may not have been so in earlier years. 
11 Note, however, that this may have been true in the 1996-2001 period of that study’s data.   
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[Table 2 about here] 
[Table 3 about here] 

 
The results are stunning. The inconsistency of the bid-ask spread with the SA bounds is very 
definitely related to the moneyness, with the observed option prices in the ATM zone of 0.98-1.02 
virtually entirely disconnected from the corresponding SA bounds, for both calls and puts and for 
all three DTM groups. A small minority of the bid-ask spread midpoints lie within the SA bounds, 
and for a large majority of the cross sections most option spreads have no overlap with the SA 
bounds. Exactly the opposite happens in the deep OTM put option zone of [0.86,0.93]tm =  for the 
9- and 7-day DTM groups, and [0.90,0.96]tm =  for the 4-day DTM groups, where the bid-ask 
spread midpoint lies within the SA bounds for a majority of the options and across a majority of the 
cross sections. For the intermediate put option OTM zones [0.93,0.98]tm =  and [0.96,0.98]tm =  
the consistency of bid-ask spread and bounds is in-between those of the deep OTM and ATM zones. 
Last for OTM and deep OTM calls there is overlap of spread and bounds for most cross sections, 
but the spread midpoint is not in it. 

These results explain fully the inability of AFT to extract satisfactory risk neutral dynamics from 
the observed option market data, even after the daily structural calibration of a semi-nonparametric 
model combined with heavy data manipulation to transform it into a frictionless format. For a large 
segment of the support of the index return distribution there is simply no option market data even 
minimally consistent with the return dynamics that can be extracted from the S&P data. This fact, 
combined with the Jouini and Kallal (1995), Constantinides, Jackwerth and Perrakis (2009), Beare 
(2011, 2023) and Post and Longarela (2021) theory, implies that the frictionless option market data 
is mispriced.12  

In the remaining part of this section, we focus our investigation on the two important results implied 
by our empirical work. The first one is the verification of the mispricing of the options with the most 
reliable tool for such an assessment, which is the ability of investors to profit from it. The relevant 
tests were described in equations (1.5)-(1.7) and are carried out below, for both frictionless trading 
and in the presence of an option bid-ask spread; see footnote 6. 

The second result derived from the data in Tables 1-3 concerns the inconsistency of the observed 
option market prices with the frictionless equilibrium implied by the P-distribution, which need to 
be reconciled. As discussed in the introduction, on theoretical grounds this reconciliation can only 
come from those prices that are broadly consistent with the SA bounds. Ironically, in view of the 
difficulties experienced by AFT in fitting the tails of the Q-distribution to option market data, the 
only such “correctly” priced options are the deep OTM puts! By contrast, the market for call options 
cannot be reconciled with the SA bounds implied by the P-dynamics, since a large part of it lies 
almost entirely above them everywhere.  

For the mispricing verification, we focus on the close to ATM zone [0.98,1.02]tm = in Tables 1-3, 
where the SA bounds do not intersect with the bid-ask spread interval for both calls and puts for a 

 
12 This is also consistent with the SPXW option findings in the presence of frictions of Constantinides, Czerwonko and 
Perrakis (2020).  
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large majority of the observed data. Hence, with the given return distribution parameters a 
sustainable frictionless equilibrium is not consistent with the observed option market data in the 
ATM zone. This implies that there exist stochastic arbitrage strategies generating risk adjusted 
positive profits for any risk averse investor. In the remainder of this section, we illustrate these 
strategies for individual investors. 

In our mispricing tests, for each call option cross section with m observed overpriced options such 
that ( , , ) ( , , ),   1,...,i

bt t i i t iC I K T C I K T i m> =  we short the overpriced options and form a portfolio of 

the weighted sums of the differences 
1

( )
m

i
i bt iw C C−∑ , with each short option position allocated as in 

(1.7)..The portfolio weights are proportional to the violations of the bid prices from the calls’ upper 
bounds. We then consider SA strategies for profiting from mispriced options in the frictionless world 
that are available to any risk averse investor holding at least one index unit in her IT portfolio. Such 
strategies are available to all risk averse investors, but their application must be tailored to each 
individual investor. It will depend on the location of the equilibrium prices of the overpriced ATM 
options with respect to the particular investor’s IT holdings. Such an equilibrium must also 
encompass the options that are consistent with the SA bounds, in our case the deep OTM put options. 
For these options the equilibrium is not uniquely defined from the overlap of the bid-ask spread with 
the interval between the SA bounds, both of which are quite wide.  

As in conventional no arbitrage equilibrium (NAE) studies, we model this equilibrium based on the 
assumption of a representative constant relative risk aversion (CRRA) investor, defined uniquely 
from the RRA parameter. For our mispricing tests we fix the RRA parameter, define the equilibrium 
consistent with it and with the SA bounds, and verify the mispricing of the ATM zone given the 
equilibrium. With a CRRA utility and with the RRA denoted by ϕ  the risk allocation of the jump 
diffusion dynamics takes the following form13 

1
2 ( 1) (,   ( ),  [ ] [ 1]

( ) ( )
Q Q Q Q

t t t t
t t

j j jr E j E E
E j E j

ϕ ϕ
ϕ

ϕ ϕµ ϕσ λκ λ κ λ λ κ
− −

−
− −

−
− = + − = = = − .  (2.1) 

This allocation stems from the IT investor, who maximizes successively in the discretized dynamics 
with 1t∆ = the allocation without any consumption till a horizon 'T T> , for a return 

'
'

'
1

(1 ) (1 )
T

T t
T t t

t

R z R
τ

τ
τ

α α
=

−

= +

= + + −∏ :, yielding, for ' 'T t TW W R=  and the maximization of '[ ( )]t TE U W the 

condition 

'

'1

[ '( ) (1 )]

[ ']

T

t T
T tt

t

E U W z
R

E U

τ

τ
τ

=

−= +

+
=

∏
, for any concave utility function '( )TU W . Setting for 

simplicity T’=T and denoting by *Rτ the optimal ex-dividend index returns at τ , the first order 

 
13 See Ghanbari, Oancea and Perrakis (2021, p. 259), itself derived from several earlier NAE-based studies. The proof 
is also shown in our online appendix 
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conditions become 

*
1

1

*

1

[( ) (1 )]

[( ) ]

T

t t
r tt

T

t
t

E R z
e

E R

τ
ϕ

τ
τ

τ
ϕ

τ
τ

=
−

+
∆= +

=
−

= +

+
=

∏

∏
. This yields a kernel 

*

1

*

1

( )

[( ) ]

T

t
T

t
t

R

E R

τ
ϕ

τ
τ

τ
ϕ

τ
τ

=
−

= +
=

−

= +

∏

∏
, which is 

dependent on the RRA parameter ϕ  and must be consistent with the SA bounds. This kernel is 
independent of wealth, but its application to the derivation of the SA bounds is not, since it must 

correspond to at least one index unit per valued option, in which case if takes the form 
[ ]
T

t T

I
E I

ϕ

ϕ

−

− .   

From (2.1) it is clear that there is a one-to-one correspondence between the RRA coefficient ϕ  and 
the risk neutralization of the jump component. On the other hand, setting in the upper bound (1.4) 
of the risk neutral dynamics ( , ) ( , )U U Q Qλ κ λ κ= , it is easy to see that Q Qrµ λκ λ κ− = − , implying 
that the entire risk premium compensates for the jump risk at the SA upper bound. This automatically 
defines an SA-implied upper bound on ϕ in order to have the NAE option price and IT portfolio 
consistent with the SA option bound, provided the OT investor trades in one option per unit index 
in her portfolio. Consistent with (1.3)-(1.4), this upper bound is given by  

max
,

( 1)( ),  [ ]   
( )

Q Q
t T t t

t

j jMax E j E
E j

ϕ
ϕ

ϕϕ ϕ λ λ κ
−

−
−

 −
= = =  

 
.     (2.2) 

For ax
.(0, )m

t Tϕ ϕ∈ , if there is an equilibrium corresponding to a “representative” CRRA investor with 
risk aversion within the bounds the relation (2.1) holds. The portfolio allocation of such an investor 
coincides with the NAE allocation of the premium to diffusion and jump risk.  

From (2.1) and (2.2), a unique SA-implied RRA coefficient max
,t Tϕ can be obtained for every cross 

section given the underlying return distribution parameters and riskless rate. The riskless rate, 
however, has fluctuated significantly over the period of our data, from almost 0 in 2011 to about 
2.5% in early 2019 and again back to 0 in 2020. Consequently, the upper bound max

,t Tϕ on RRA has 
fluctuated within relatively wide ranges, which are very similar in the three reference DTM groups 
of 9, 7 and 4 days. In decreasing order of DTM, we have 

max max
, ,{ } [6.20,6.99,6.79],  { } [14.1,13.98,13.90]t T t TMin Maxϕ ϕ= = .14 Within these ranges each cross 

section j  has its own max
, : ,  1,...,j t T j nϕ = , where n is the number of the cross sections in our sample. 

Since the SA between the IT and OT trader portfolios that will exploit the mispriced options must 
have the same RRA coefficient ϕ for all cross sections, the OT zero net cost option portfolio must 
take this variation in max

,jt Tϕ into account.  

Since the payoffs of the zero-net-cost portfolio strategies are risky, our intuition tells us that the 
portfolio payoffs will be lower when the RRA increases, and this turns out to be the case. Any CRRA 

 
14 The full distributions of the implied RRA coefficients for all DTM from 1 to 9 are shown in Figure I of our online 
appendix. 
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investor who is more risk averse, with ax
.

m
jt Tϕ ϕ> will invest in only a fraction of an option contract in 

that cross section. In our online appendix we show that this fraction is equal to the ratio
max

, 1jt T
j

ϕ
ζ

ϕ
≡ <

, hereafter termed the risk preference multiplier (RPM).15 

 In the first set of mispricing tests shown in Table 4 below we consider RRA values with an RPM 
greater than 1 for all cross sections. In such a case the portfolio of the weighted sums of the 

differences 
1

( )
m

i
i bt iw C C−∑ has positive weights summing to one and maximizing the total 

mispricing. A similar procedure is applied to the violating ATM put options in every cross section. 
At option maturity each one of these violating options will contribute to the mispricing an amount 
equal to (1.7). At the end of the first day, we may close the position either at the SA upper bound as 
in (2.2) or at the equilibrium value of the option corresponding to the chosen RRA. This is a proxy 
for the mispricing in the frictionless world. Closing the position at the available ask prices yields an 
upper bound for the mispricing in the economy with frictions.  
 

[Table 4 about here] 
 
Table 4 presents the formal testing of the SA relationship with the Davidson-Duclos (DD, 2013) 
tests, to verify whether the series of OT returns stochastically dominates the corresponding series of 
IT in the second degree for the 9-, 7-, and 4 DTM groups. These tests were first used in Finance by 
Constantinides et al (2011) and are particularly convincing because the null is non-dominance of 
OT over IT, or 

20 :H OT IT . In this table the DD tests in the upper and lower panels compare the 
two IT and OT series for all cross sections, respectively for calls and puts. The cross sections include 
those with overpricing of the corresponding options, as well as those in which there is no 
overpricing, which have identical IT and OT values in both series. In turn, each one of these panels 
contains Panels A to E, reflecting two different RRA values for the IT-OT comparisons. In Panels 
A to C the RRA is equal to 4 for all cross sections, significantly lower than max

,{ },  1,...,jt TMin j nϕ = . 
For this investor Panel A shows the test results for the frictionless market, when the positions are 
closed at the SA upper bound. Panel B is identical to A with respect to the option strategies, except 
for the fact that the closing of the positions takes place at the prevailing equilibrium price of each 
option as in (2.1). Last, Panel C shows the results of the strategies when the positions are closed at 
the ask prices of the options. In all cases the short option proceeds are invested as in (1.7). 

For each maturity and for both call and put panels and each closing strategy the table entries show 
the realized excess return of the OT minus IT series in annualized format, its volatility and the 
resulting information ratio. Consistent with the DD theory, the null hypothesis is tested under three 
different conditions with respect to handling the joint support of the paired sample. In all cases there 
is a 10% trimming of the left tail of the support, while the right tail has a 0, 5 and 10 percent 

 
15 When the jump risk is not priced as in Merton (1976) the entire premium compensates diffusive risk. This case is not 
relevant in our data. 
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trimming. The inference becomes progressively weaker as the right tail trimming increases. The p-
values show the difference of OT and IT means for each right tail trimming.  

The results of both call and put panels are clear and unequivocal for all three DTM groups and all 
three closing strategies, although there are some interesting and potentially informative differences 
between the groups. In all three groups and in the frictionless market the DD tests reject the non-
dominance null everywhere and for both types of closing the positions, with p-values equal to zero 
or very low everywhere. As expected, the profits from the short option strategies are higher in Panel 
B, when the positions are closed at the equilibrium price, but the ex-post test results are identical. 
These tests are resounding confirmations of the Jouini and Kallal (1995) theoretical result, that 
frictionless option prices that do not lie inside the bid-ask spread are mispriced. Panel C also shows 
why these mispriced options persist, which is very simply the fact that they are not mispriced in the 
market with frictions, even the minimal ones that we have included! The DD tests are consistent 
with the non-dominance null in the 9- and 4-day DTM groups, since the excess OT returns are 
negative. Unreported results show that the 8-day DTM group is very similar to the 9-day group, and 
the frictionless DD tests also reject the non-dominance null for all other DTM groups. 

The 7-day maturity is somewhat different in its Panel C results, insofar as the excess OT return is 
positive and significant at 5% and 10% right trimming, although not at the 0 trimming. It is also 
similar in its frictionless metrics to the 9-day maturity for both calls and puts, even though that 
maturity does not survive as profitable trading in the market with frictions. There are also major 
differences in the frictionless metrics between the 7- and 4-day maturities, with the latter having 
much lower excess OT return and information ratio. Since the SA bounds do not change very much 
because of the small difference in maturities, the change can only be attributed to heavy trading in 
the mispriced options that came closer to the SA bounds. This is something that should be examined 
in further research.         

The results of Table 4 also illustrate the ranges of the RRA parameter consistent with a frictionless 
equilibrium within the SA bounds for each DTM group. An obvious exercise for anyone who wishes 
to extract the best fitting frictionless equilibrium based on the “correctly” priced deep OTM puts 
would be the extraction of a common RRA parameter from the bid-ask spread midpoints within the 
SA bounds in all cross sections. This can then be extended to all degrees of moneyness beyond the 
OTM puts. This will be left for further research. 

In the last set of empirical results shown in Table 4 we demonstrate in Panels D and E the 
exploitation of the mispriced ATM options by more risk averse CRRA investors, whose equilibrium 
IT portfolios put them outside the SA bounds. These would need to modify the strategies, but they 
will still reap excess risk adjusted profits by exploiting option quotes violating the SA bounds. Since 
the SA-implied maximum RRA of (2.2) varies by cross section, we standardize the RRA by setting 
it to the maximum SA-implied RRA across all cross-sections, max * max

, ,{ } [{ }],  1,...,t T j jt TMax j nϕ ϕ= = , 

where n is the number of the cross sections in our sample. The investor with RRA equal to max *
,{ }t Tϕ

will trade optimally in order to exploit the mispricing in each cross section, by shorting one option 

at the cross section where max max *
, ,{ } { }t T t Tϕ ϕ= , but only shorting the RPM amount 

max
,

max *
,

1
{ }

t T
j

t T

ϕ
ζ

ϕ
= <  
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option in cross sections where max max *
, ,{ } { }t T t Tϕ ϕ< . We set the common RRA at the value of 14.16, the 

largest value observed in the three reference maturities.  

Panel D of Table 4 shows the results of the DD test for an IT with an RRA equal to max *
,{ } 14.16t Tϕ =

, with OT option portfolio positions equal to 
1

( ),  1,..., ,  1,...,
jm

i i
j i jbt j jw C C j n i mζ − = =∑ , with jm

denoting the number of overpriced options in cross section j, for DTM equal to 9, 7 and 4 days for 
frictionless trading. In the presence of frictions 1( , , )i i

j t jC I K T+ is replaced by 1( , , )i i
ja t jC I K T+ .Similar 

results without and with frictions also hold for overpriced puts. We first observe that in the 
frictionless option market the OT excess returns are uniformly lower, as expected, than in the 
corresponding Table 4 results, but the standard deviations are also lower, resulting in small changes 
in the information ratios. As for the DD tests, they are identical in both Panels A-C and Panels D 
and E, both in the frictionless world and in the presence of frictions.  

Figure II of the online appendix shows the time series of the percentages of overpriced options, both 
calls and puts across each DTM group, for the entire cross section as well as the ATM zone. It shows 
that in the ATM zones for both calls and puts the overpricing covered between 60% and 100% of 
the options between 2011 and 2020. This percentage, however, decreased sharply to around 20% 
during the last two Covid years. We illustrate this observed mispricing in the frictionless world by 
showing in Figure 1 the cumulative OT portfolio returns from the mispriced portfolios separately 
for calls and puts over the period of our data.  

[Figure 1 about here] 
 

Figure III in the online appendix shows the contemporary cumulative IT returns. It is obvious that 
the enhancement from the overpriced option components is significant, which is also confirmed by 
statistical tests. A major advantage of the SA paradigm is that it allows the identification of such 
options. We explore this hypothesis by setting zero-net-cost OT portfolios of index and options 
using all but the previously identified overpriced options. The same Figure III shows the cumulative 
excess returns of these portfolios. It is obvious that these portfolios offer no advantage to investors 
and are if anything decreasing the cumulative returns of the IT investor.  We conclude that our SA 
bounds’ violations are excellent identifiers of overpriced options in the frictionless world, among 
which overpricing under frictions may also be sought.  

III. Conclusions 

The empirical evidence of the previous section showed clearly that attempting to extract the 
frictionless Q-dynamics from the observed bid-ask midpoint in the option market is a futile effort 
on both theoretical and empirical grounds. The observed option market data is fundamentally 
inconsistent with the frictionless option price format, insofar as it indicates a clear segmentation of 
the markets for call and put options and displays obvious moneyness effects. For the overwhelming 
majority of the cross sections not only the bid-ask midpoint but the entire width of the quotes for 
both calls and puts lay above their SA bounds in the highly liquid ATM region. This non-overlap 
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was shown to be economically significant in the frictionless world, but its profitable exploitation 
disappeared when trading at the appropriate bid and ask prices. This frictionless mispricing of the 
options is consistent with the documented mispricing in the few studies that recognized frictions and 
the even fewer theoretical studies that compared option pricing without and with frictions.   

Our empirical results also showed that the highly liquid deep OTM put options are the only ones 
that are broadly consistent with the index dynamics in a frictionless world. This important finding 
needs to be verified in longer maturities, in which the stochastic evolution of volatility during the 
life of the option must be taken into account. The inconsistency of the dynamics of the index with 
the risk neutral distribution extracted from option market data is also found in longer maturities that 
adopt the NAE approach and is not limited to AFT. It has given rise to a long debate about the shape 
of the pricing kernel and the alleged overpricing of OTM put options.16 From the fragments of 
empirical work that have included frictions, it is conjectured that in standard index options SPX, the 
disconnect between the option market and the index dynamics will significantly be lower than the 
SPXW, although the verification will be left for future research.  

As for the resolution of the twenty-year debate on the proper way to model the index option market, 
our results suggest that a starting point should be the recognition that there is an intermediate market 
where the bid and ask option prices are set. Our CBOE data file provides data on the option 
transactions of the market makers (MM), CBOE member firms and customers. In the case of SPXW, 
the first category consists of the designated monopolist liquidity provider or DPM, who obviously 
pays for this privilege.17 The second category are firms licensed to trade on the CBOE platform, 
which we interpret as entities licensed to compete with the DPM. As for the 3rd category, they are 
the end users who place orders through their brokers based on the posted quotes.  

To our knowledge, the only study that paid at least lip service to the intermediate option market was 
Garleanu, Pedersen and Poteshman (2009) which, however, assumed a free entry perfectly 
competitive frictionless market, in which there was no information asymmetry, no market power 
and no bid-ask spreads or any other types of frictions. In the online appendix we formulate models 
that relax several of these assumptions, first under competitive conditions and then taking into 
account the monopolistic liquidity provider, who sets the size and depth of the quotes and hedges 
her positions in the presence of transaction costs. These models can be taken only as templates for 
empirical work, which is a major undertaking and transcends the scope of this paper, but is 
nonetheless a highly worthwhile project. 
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Table 1: Summary Statistics Weeklys - 4 Days-to-Maturity (Monday)

<.90 .90-.93 .93-.96 .96-.98 .98-1.0 1.0-1.02 1.02-1.04 1.04-1.06 >1.06 All

Panel A: Summary Statistics Calls

# Contracts 1,081 863 2,474 3,437 4,309 3,761 2,198 1,017 919 20,059
% Contracts 5.4% 4.3% 12.3% 17.1% 21.5% 18.7% 11.0% 5.1% 4.6% 100%
Avg IV 71.8% 34.2% 25.0% 19.1% 15.6% 13.8% 16.1% 21.0% 36.0% 21.2%
Avg Mid-Quotes 622.7 255.6 157.2 89.4 40.0 10.5 3.6 2.5 2.4 90.5
Relative BA Spread 1.4% 2.0% 2.9% 3.7% 3.3% 5.8% 22.4% 39.9% 56.0% 10.0%
Option Bounds Spread 0.1% 0.5% 1.0% 1.9% 4.9% 18.2% 29.7% 30.8% 23.1% 10.8%
Avg NetBuy MM 0 2 -5 -18 4 23 8 -26 -22 0.2
% Volume MM 54% 56% 49% 47% 52% 51% 49% 47% 50% 51%
Total Volume 12 13 103 269 2,400 7,351 2,177 666 337 13,327
Total Open Interest 93 208 1,493 3,932 11,599 14,696 4,974 1,657 1,072 39,723

Panel B: Calls Mispricing vs. SA Bounds

Mid-Quotes Within Bounds 313 529 1,487 1,731 642 279 216 101 47 5,345
29% 61% 60% 50% 15% 7% 10% 10% 5% 27%

Overpriced Contracts 37 54 234 776 2,470 1,873 426 163 301 6,334
3% 6% 9% 23% 57% 50% 19% 16% 33% 32%

Cross-sections >1 Overpriced 11 14 53 153 335 307 88 22 14 345
4% 5% 13% 36% 78% 72% 33% 18% 22% 81%

Cross-sections >50% Overpriced 6 14 35 90 272 261 66 19 11 152
2% 5% 9% 21% 64% 61% 25% 15% 17% 36%

Cross-sections 100% Overpriced 3 14 21 72 158 230 61 16 11 4
1% 5% 5% 17% 37% 54% 23% 13% 17% 1%

Panel C: Summary Statistics Puts

# Contracts 1,123 4,590 6,405 4,319 4,340 3,991 1,941 891 1,472 29,072
% Contracts 3.9% 15.8% 22.0% 14.9% 14.9% 13.7% 6.7% 3.1% 5.1% 100%
Avg IV 44.7% 31.4% 24.3% 19.1% 15.5% 13.4% 17.6% 23.8% 49.5% 23.1%
Avg Mid-Quotes 2.3 1.2 2.0 4.7 12.1 37.6 86.3 144.2 402.0 38.9
Relative BA Spread 20.5% 35.6% 23.2% 10.3% 4.3% 4.9% 4.7% 3.7% 2.6% 14.9%
Option Bounds Spread 155.8% 147.2% 127.9% 94.8% 41.8% 2.5% 0.4% 0.2% 0.0% 78.1%
Avg NetBuy MM 3 -44 11 65 2 -4 -6 -8 -6 4
% Volume MM 50% 44% 48% 48% 52% 52% 50% 50% 50% 49%
Total Volume 387 2,338 6,878 7,737 8,007 1,973 253 81 70 27,724
Total Open Interest 1,575 12,456 22,548 17,188 14,504 5,505 1,913 945 1,291 77,925

Panel D: Puts Mispricing vs. SA Bounds

Mid-Quotes Within Bounds 801 3,079 4,123 2,388 706 339 210 91 56 11,793
71% 67% 64% 55% 16% 8% 11% 10% 4% 41%

Overpriced Contracts 296 627 1,197 1,582 2,763 1,502 193 67 117 8,344
26% 14% 19% 37% 64% 38% 10% 8% 8% 29%

Cross-sections >1 Overpriced 24 52 105 231 350 292 35 11 5 365
19% 14% 25% 54% 82% 68% 9% 5% 4% 85%

Cross-sections >50% Overpriced 23 46 74 155 310 168 17 8 1 66
18% 12% 17% 36% 72% 39% 5% 4% 1% 15%

Cross-sections 100% Overpriced 21 43 57 104 204 51 12 5 1 1
17% 11% 13% 24% 48% 12% 3% 2% 1% 0%

This table presents summary statistics for the merged CBOE time-stamped End-of-Week Weekly option quotes data (EoW Weeklys) with the
trading volume data from Market Data Express Open/Close database. Option quotes observed on Monday at 3:00 PM from 20110317 to
20220317 with one week to maturity for the total of 428 expiring Fridays. The sample only contains options with non-zero trading volume
and minimum bid price of 10 cents. Options are grouped across different moneyness bins. “Relative BA Spread” (“Option Bounds Spread”)
is the average bid-ask (upper and lower bounds) spreads in proportion of mid-quotes (mid-bounds). “Avg NB MM” is the average number
of contracts purchased minus sold by market makers. “Total Volume” and “Total Open Interest” are in thousands. “Cross-sections >50%
Overpriced" shows number of cross sections where more than 50% of contracts in the cross section are overpriced.
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Table 2: Summary Statistics Weeklys - 7 Days-to-Maturity (Friday)

<.90 .90-.93 .93-.96 .96-.98 .98-1.0 1.0-1.02 1.02-1.04 1.04-1.06 >1.06 All

Panel A: Summary Statistics Calls

# Contracts 1,204 965 2,681 3,667 4,594 4,095 2,471 1,286 1,327 22,290
% Contracts 5.4% 4.3% 12.0% 16.5% 20.6% 18.4% 11.1% 5.8% 6.0% 100%
Avg IV 64.9% 33.9% 25.4% 19.8% 16.3% 14.3% 16.1% 19.8% 31.0% 21.4%
Avg Mid-Quotes 614.4 249.1 155.0 90.7 42.9 13.0 4.7 2.8 2.4 89.6
Relative BA Spread 1.6% 2.2% 3.2% 3.5% 3.1% 5.3% 16.5% 34.8% 64.4% 10.3%
Option Bounds Spread 0.2% 0.7% 1.2% 2.4% 6.0% 20.6% 32.3% 33.0% 25.9% 12.6%
Avg NetBuy MM 2 3 -8 -10 14 37 112 87 8 25
% Volume MM 60% 52% 52% 51% 51% 50% 50% 46% 50% 50%
Total Volume 16 17 107 259 2,562 7,871 2,790 926 509 15,058
Total Open Interest 89 254 1,382 3,953 11,787 13,818 4,976 1,996 1,477 39,732

Panel B: Calls Mispricing vs. SA Bounds

Mid-Quotes Within Bounds 405 622 1,514 1,438 621 248 358 137 87 5,430
34% 64% 56% 39% 14% 6% 14% 11% 7% 24%

Overpriced Contracts 49 104 483 1,411 3,202 2,526 634 172 183 8,764
4% 11% 18% 38% 70% 62% 26% 13% 14% 39%

Cross-sections >1 Overpriced 15 28 106 255 404 373 136 27 13 415
5% 9% 24% 55% 88% 81% 46% 18% 16% 90%

Cross-sections >50% Overpriced 9 25 70 177 360 338 115 21 8 217
3% 8% 16% 38% 78% 73% 39% 14% 10% 47%

Cross-sections 100% Overpriced 6 24 54 122 249 298 95 19 7 5
2% 8% 12% 27% 54% 65% 32% 13% 9% 1%

Panel C: Summary Statistics Puts

# Contracts 2,343 5,944 6,952 4,652 4,640 4,311 2,176 976 1,467 33,461
% Contracts 7.0% 17.8% 20.8% 13.9% 13.9% 12.9% 6.5% 2.9% 4.4% 100%
Avg IV 43.0% 31.1% 24.8% 19.9% 16.3% 13.9% 16.9% 22.5% 39.0% 23.9%
Avg Mid-Quotes 2.7 1.8 3.2 7.0 15.3 39.8 86.1 145.1 350.4 34.6
Relative BA Spread 20.6% 24.0% 14.7% 7.3% 3.9% 4.6% 4.8% 3.8% 2.9% 11.4%
Option Bounds Spread 157.6% 150.1% 128.7% 96.0% 44.5% 3.2% 0.5% 0.2% 0.1% 84.4%
Avg NetBuy MM 35 -21 96 84 72 44 8 3 -10 46
% Volume MM 48% 43% 47% 49% 50% 50% 50% 50% 49% 48%
Total Volume 1,058 5,209 8,337 8,496 8,691 2,143 215 80 87 34,315
Total Open Interest 2,567 14,151 20,632 15,362 13,257 5,083 1,775 799 1,043 74,668

Panel D: Puts Mispricing vs. SA Bounds

Mid-Quotes Within Bounds 1,637 4,387 4,642 2,104 699 274 233 90 56 14,122
70% 74% 67% 45% 15% 6% 11% 9% 4% 42%

Overpriced Contracts 608 1,169 1,997 2,392 3,373 2,194 270 55 38 12,096
26% 20% 29% 51% 73% 51% 12% 6% 3% 36%

Cross-sections >1 Overpriced 46 94 178 312 406 371 57 12 4 418
20% 21% 39% 68% 88% 81% 14% 5% 3% 91%

Cross-sections >50% Overpriced 44 83 123 248 377 274 24 5 1 125
19% 19% 27% 54% 82% 60% 6% 2% 1% 27%

Cross-sections 100% Overpriced 40 72 105 181 287 93 16 4 1 0
17% 16% 23% 39% 62% 20% 4% 2% 1% 0%

This table presents summary statistics for the merged CBOE time-stamped End-of-Week Weekly option quotes data (EoW Weeklys) with
the trading volume data from Market Data Express Open/Close database. Option quotes observed on Friday at 3:00 PM from 20110317 to
20220317 with one week to maturity for the total of 461 expiring Fridays. The sample only contains options with non-zero trading volume and
minimum bid price of 10 cents. Options are grouped across different moneyness bins. “Relative BA Spread” (“Option Bounds Spread”) is
the average bid-ask (upper and lower bounds) spreads in proportion of mid-quotes (mid-bounds). “Avg NB MM” is the average number of
contracts purchased minus sold by market makers. “Total Volume,”“Avg Volume,” and “Total Open Interest” are in thousands. “Cross-sections
>50% Overpriced" shows number of cross sections where more than 50% of contracts in the cross section are overpriced.
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Table 3: Summary Statistics Weeklys - 9 Days-to-Maturity (Wednesday)

<.90 .90-.93 .93-.96 .96-.98 .98-1.0 1.0-1.02 1.02-1.04 1.04-1.06 >1.06 All

Panel A: Summary Statistics Calls

# Contracts 776 688 2,047 3,182 4,407 4,062 2,749 1,459 1,394 20,764
% Contracts 3.7% 3.3% 9.9% 15.3% 21.2% 19.6% 13.2% 7.0% 6.7% 100%
Avg IV 53.5% 30.8% 24.2% 18.8% 15.6% 13.6% 14.5% 17.5% 27.7% 19.0%
Avg Mid-Quotes 560.7 251.7 165.3 95.9 47.2 15.9 5.5 3.3 3.0 74.6
Relative BA Spread 1.6% 2.1% 2.6% 2.7% 2.4% 3.9% 11.0% 21.3% 38.9% 7.6%
Option Bounds Spread 0.2% 0.9% 1.7% 3.2% 7.5% 22.2% 33.3% 35.6% 31.4% 15.7%
Avg NetBuy MM 0 1 -6 -7 -3 7 24 -8 16 3
% Volume MM 53% 50% 51% 54% 51% 50% 50% 50% 51% 50%
Total Volume 9 13 55 133 1,565 4,070 1,515 361 249 7,970
Total Open Interest 81 194 1,105 3,410 10,283 13,045 5,491 2,185 1,851 37,646

Panel B: Calls Mispricing vs. SD Bounds

Mid-Quotes Within Bounds 222 396 1,004 1,112 623 243 361 236 213 4,410
29% 58% 49% 35% 14% 6% 13% 16% 15% 21%

Overpriced Contracts 77 125 624 1,529 3,140 2,411 745 147 112 8,910
10% 18% 30% 48% 71% 59% 27% 10% 8% 43%

Cross-sections >1 Overpriced 19 35 121 278 369 334 162 24 13 392
7% 14% 32% 66% 87% 79% 52% 14% 13% 92%

Cross-sections >50% Overpriced 10 29 81 187 343 311 137 19 7 242
4% 12% 21% 44% 81% 73% 44% 11% 7% 57%

Cross-sections 100% Overpriced 4 26 57 142 253 277 112 17 4 7
2% 11% 15% 34% 60% 65% 36% 10% 4% 2%

Panel C: Summary Statistics Puts

# Contracts 3,479 5,874 6,613 4,502 4,489 3,995 1,745 731 1,027 32,455
% Contracts 10.7% 18.1% 20.4% 13.9% 13.8% 12.3% 5.4% 2.3% 3.2% 100%
Avg IV 37.1% 28.0% 22.7% 18.5% 15.5% 13.3% 15.7% 19.8% 37.6% 22.4%
Avg Mid-Quotes 2.5 2.2 4.4 9.0 18.9 43.9 90.9 147.2 358.0 30.4
Relative BA Spread 17.3% 18.0% 10.2% 5.5% 3.0% 3.5% 4.1% 3.3% 2.6% 9.2%
Option Bounds Spread 157.8% 148.1% 123.8% 89.1% 41.7% 4.1% 0.8% 0.3% 0.1% 87.6%
Avg NetBuy MM -1 -8 -9 10 10 16 -12 15 -6 1
% Volume MM 44% 46% 48% 50% 51% 51% 49% 46% 45% 49%
Total Volume 855 1,829 3,268 3,211 3,749 974 134 62 61 14,142
Total Open Interest 5,882 13,732 17,906 12,975 10,584 4,123 1,510 666 862 68,240

Panel D: Puts Mispricing vs. SD Bounds

Mid-Quotes Within Bounds 2,559 4,655 4,187 1,841 654 272 235 94 82 14,579
74% 79% 63% 41% 15% 7% 13% 13% 8% 45%

Overpriced Contracts 878 1,072 2,277 2,518 3,271 2,075 205 49 32 12,377
25% 18% 34% 56% 73% 52% 12% 7% 3% 38%

Cross-sections >1 Overpriced 54 86 191 313 368 330 51 7 4 396
15% 20% 45% 74% 87% 78% 14% 3% 3% 93%

Cross-sections >50% Overpriced 49 64 132 223 344 280 19 5 0 109
13% 15% 31% 53% 81% 66% 5% 2% 0% 26%

Cross-sections 100% Overpriced 48 55 88 173 277 104 14 4 0 1
13% 13% 21% 41% 65% 25% 4% 2% 0% 0%

This table presents summary statistics for the merged CBOE time-stamped End-of-Week Weekly option quotes data (EoW Weeklys) with the
trading volume data from Market Data Express Open/Close database. Option quotes observed on Wednesday at 3:00 PM from 20110317 to
20220317 with one week to maturity for the total of 424 expiring Fridays. The sample only contains options with non-zero trading volume and
minimum bid price of 10 cents. Options are grouped across different moneyness bins. “Relative BA Spread” (“Option Bounds Spread”) is the
average bid-ask (upper and lower bound) spreads in proportion of mid-quotes (mid-bounds). “Avg NB MM” is the average number of contracts
purchased minus sold by market makers. “Total Volume” and “Total Open Interest” are in thousands. “Cross-sections >50% Overpriced"
shows number of cross sections where more than 50% of contracts in the cross section are overpriced.
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Table 4: Return Characteristics Option Trader Portfolios

Panel A: Panel B: Panel C: Panel D: Panel E:
Open @Bid - Close @UB Open @Bid - Close @NAE Open @Bid - Close @Ask Open @Bid - Close @UB Open @Bid - Close @Ask

DTM4 DTM7 DTM9 DTM4 DTM7 DTM9 DTM4 DTM7 DTM9 DTM4 DTM7 DTM9 DTM4 DTM7 DTM9

Calls:

Avg Return 17.2% 23.7% 25.9% 17.7% 24.9% 29.3% -10.0% 4.1% -7.5% 13.6% 19.2% 20.5% -8.5% 3.4% -6.5%
St. Dev. 5.9% 6.8% 5.2% 5.9% 6.8% 5.2% 6.0% 6.4% 4.9% 5.0% 5.7% 4.3% 5.1% 5.4% 4.1%
Info Ratio 2.91 3.47 4.95 2.99 3.65 5.67 -1.66 0.64 -1.54 2.74 3.35 4.74 -1.65 0.63 -1.61
H0: OT ⊁2 IT 0.001 0 0 0 0 0 1 0.206 1.000 0.002 0 0 1 0.210 1
H0: OT ⊁2 IT (5% Trim) 0 0 0 0 0 0 1 0.011 1 0 0 0 1 0.009 1
H0: OT ⊁2 IT (10% Trim) 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1
% CS Ret>0 52% 60% 60% 53% 60% 62% 39% 50% 42% 52% 60% 60% 39% 50% 42%
No. CS 318 361 354 318 361 354 318 361 354 318 361 354 318 361 354
No. Contracts 3,698 4,944 5,170 3,698 4,944 5,170 3,698 4,944 5,170 3,698 4,944 5,170 3,698 4,944 5,170

Puts:

Avg Return 12.7% 29.1% 28.6% 18.6% 37.7% 41.7% -12.3% 6.1% -7.6% 9.9% 23.6% 22.6% -10.4% 5.1% -6.7%
St. Dev. 7.2% 8.4% 6.2% 7.2% 8.5% 6.2% 6.7% 7.4% 5.2% 6.0% 7.0% 5.1% 5.6% 6.2% 4.3%
Info Ratio 1.76 3.45 4.62 2.57 4.45 6.75 -1.84 0.82 -1.45 1.66 3.38 4.44 -1.87 0.82 -1.55
H0: OT ⊁2 IT 0.013 0 0 0.003 0 0 1 0.15 1 0.021 0 0 1 0.144 1
H0: OT ⊁2 IT (5% Trim) 0.005 0 0 0 0 0 1 0.014 1 0.006 0 0 1 0.004 1
H0: OT ⊁2 IT (10% Trim) 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1
% CS Ret>0 47% 54% 55% 49% 56% 60% 40% 48% 42% 47% 54% 55% 40% 48% 42%
No. CS 332 362 353 332 362 353 332 362 353 332 362 353 332 362 353
No. Contracts 3,967 4,925 5,147 3,967 4,925 5,147 3,967 4,925 5,147 3,967 4,925 5,147 3,967 4,925 5,147

The table reports statistical properties of excess returns of option trader (OT) portfolio, including arithmetic average daily returns (annualized) and standard deviations. The row “% CS
Ret>0" shows the percentage of weeks (trades) with positive portfolio returns. The returns in Panels A to C are computed when an OT writes an overpriced option at its bid quote and
closes her position, respectively at the option upper bound, equilibrium price, and at the ask quote. Panels D and E reports similar results when OT is more risk averse. The trading
strategy implement using 2% ATM options, end-of-week expiration, with non-zero volume in two consecutive days. Column DTM7 shows returns when the portfolio is set using options with
four days-to-maturity on Monday and the positions are closed the next trading day. The OT portfolios are across all weeks in the sample and when there is no overpriced ATM option,
OT=IT. The table also reports p-values for Davidson-Duclos (2007) second order stochastic dominance test for paired (correlated) outcomes.The row H0: OT ⊁2 reports p-values for the
null of non-dominance of time series of OT portfolio returns over time series of IT portfolio returns, with no trimming in the right tail (fourth row), 5% trimming in the right tail (fifth row),
and 10% trimming in the right tail (six row).
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Figure 1: Cumulative Excess Return OT Portfolio
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This figure shows the cumulative return OT portfolio in excess of the index returns separately for calls
(left panel) and puts (right panel) across all cross-sections. OT portfolio is set only with 2% ATM
Weeklys, end-of-week expiration, with non-zero volume on any two consecutive trading days.
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A. Proof of equation 2.1 

The kernel 
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− is obviously monotone decreasing in TI , from which it follows that the implied 

upper boundary Q -distribution is given by (1.3). Since the return distribution is independent and 
identically distributed according to (1.1)’ for every time partition t∆ , we apply (1.3) recursively. 
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 from which we get (2.1) for 0t∆ → after setting exp( )J j ϕϕ −− = , QED.  

B. Proof that 
max
,t Tϕ
ϕ

is the highest fraction of option that can be shorted when ax
.ϕ ϕ> m

t T    

Let Cζ denote the maximum quantity of a given overpriced option per unit index held in the IT 
portfolio that can be shorted by the OT investor at t to achieve SA. The return of this short option 
position, equal to (1 )t tzζ +∆+ , is invested in proportions *

tβ  and *1 tβ− respectively in the index 
and the riskless asset. As shown in the model free derivation of the SA bounds,1 the overpriced 
option position must exceed the value of the expected return of the position with discretized risk 
neutral dynamics given by (1.3), with (1 )t tzζ +∆+ replacing (1 )t tz +∆+ . At the continuous time limit 

of the jump diffusion, however, these risk neutral dynamics tend to ( , )Q Qλ κ  such that 
Q Qrµ λκ λ κ− = − . Since for 1ζ = and ax

.
m
t Tϕ ϕ> this equation defines a higher SA upper bound 

than (2.2), the only way it can hold is if ax
.
m
t Tζϕ ϕ= , QED.        

  

 
1 See Perrakis (2019, pp. 23-26). 
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C. Intermediate Market Structure  

Under competitive conditions assume that an IT investor holds a portfolio with tx  in the riskless 
asset and a starting long position ty in a futures contract, corresponding to at least one unit of the 
index at maturity T’.  The SPXW option matures at T and the futures at some value T’>T, the 
nearest futures maturity time. At T’ the IT liquidates her portfolio by maximizing a concave utility 
function. As an OT she adds an appropriate position in one call option at t, which is closed at T. 
The IT portfolio is being revised along the path from t to T’, with transaction costs 1+k for additions 
to the long and 1-k to the short futures positions, with no costs for the riskless asset.  

In the presence of frictions continuous time IT portfolio revisions are infeasible. As Constantinides 
showed in his seminal 1979 article, there exists a no trade (NT) zone for the IT investor, with 
trades occurring only when the risky asset dynamics bring the value of the risky asset holdings 
outside the NT zone. Analytical expressions for the derivation of this NT zone and the 
corresponding optimal IT portfolio policy for a finite horizon T’ are available only for CRRA 
utilities and diffusion or jump diffusion asset dynamics, with a numerical algorithm presented in 
Czerwonko and Perrakis (2016). If ( , , )t tV x y t  denotes the IT value function and 'TW the terminal 
wealth then ' ' ' ' '( , , ') ( ) ( (1 ) )T T T T TV x y T U w U x k y= = + − , which is equal to 1

' / (1 )Tw α α− −  under 
CRRA.  

Hedging the IT position with futures is equivalent to setting t t
t

t t

dI dF dt
I F

α= +   plus a random shock 

equal to the basis risk. To see this denote by tI and tF the underlying and futures prices at t and by

1tZ + the ex dividend return 
( , ')

1 1 1 1
1 ln( ) ln( ) ( , ')

t tq qt T
t t t t

t
t t t t

I e F e I e FZ t T
I F I F

ψ

ψ
− −

+ + + +
+ = = ⇒ = + , where tq  

is the (assumed constant) dividend yield and ( , ')t Tψ the basis risk, a zero mean independent error 
term that varies with the distance from futures maturity. At 'T we have ' 'T TI F= without error. It is 
clear from the above formulation that the dynamics of the index return can be very closely 
approximated by the dynamics of the futures return in our case, provided the diffusive volatility is 
increased to represent the basis risk. Hereafter the basis risk will be ignored in the expressions.  

The derivation of the NT zone was done numerically for the CRRA class of utility functions and 
shown in Czerwonko and Perrakis (2016, equations A.8-A.9) to converge to a continuous time 

limit when the return 1
1ln( )t

t
t

F z
F
+

+≡  converged for both diffusion and jump diffusion. Although 

we do not need the CRRA assumption for most of our results, we shall assume in what follows 
that the IT stays in the NT zone for the entire period to option expiration. This is probably a very 
good approximation for SPXW options, given that the costs for restructuring to the nearest NT 
boundary are very low in the CRRA case. In such a case at option expiration T the value function 
at t is ( , , ) [ ( , , )]T t

t t t t t TV x y t E V x R y z T−= .  
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Suppose there are 1,...,i n=  IT investors, each one of whom adopts a long position in one call 

option with price C  and set t
t

Km
F

≡ . Under competitive conditions that eliminate profits we have, 

if ( , , )i
t tJ x y t denotes the corresponding OT value function for the ith IT investor that  

( , , ) ( , , ) [ ( ) ( ) , , )]i i i
t t t t t t T TV x y t J x C y t E V x C R F K y T+= − = − + − .   (3.1) 

Maximizing, we get [ ( ) ]
[ ]

i
t x T t

t i
t x

E V z mF C
RE V

+−
= . Since we know that 

( ) ( )
( ) [ , ]

1 1
y y

x

V T V T
V T

k k
∈

+ −
 and that 

IT traders are marginal in the option market, marginal analysis shows that to a very close 

approximation we have for every trader 
( )( )

[ ( )] [ ( )]

ii
yx

i i
t x t y

V TV T
E V T E V T

≈ , which is clearly monotone 

decreasing in Tz . Hence, the term 
( )

[ ( )]

i
y

i
i t y

V T
E V T∑ has the interpretation of a market pricing kernel, 

which is monotone decreasing in the return and is equal in equilibrium to the competitive ask price. 
An equivalent result holds for the short option. A monotone pricing kernel implies automatically 
that the risk neutralization of the discretized jump diffusion index futures dynamics in (1.1)’ 
converges to an option value that lies within the two SA bounds and depends on the kernel 
aggregation. This value can be determined only for CRRA investors and with specific assumptions 
about their holdings in riskless asset and index futures. In such a case each point within the bounds 
corresponds to a state-varying partition of the risk premium into volatility and jump risk 
components, as shown in the previous section. We have thus shown that the SA bounds are 
consistent with perfect competition in the option market even in the presence of frictions in trading 
the underlying.  

Such a competitive environment is also consistent with equal prices for long and short options and 
with a DPM constrained to be a passive liquidity provider. Let the market consist of competitive 
end users and a monopolistic liquidity provider. Assume that the total end user demand for a given 
put option is ( , , )s s b aN D P P t= for short and ( , , )l l b aN D P P t=  for long, where the first is increasing 

in bP and the second is decreasing in aP . Assume also, as is reasonable, that 0S

a

D
P

∂
≥

∂
 and 0i

b

D
P
∂

≤
∂

. 

The total net position is 0l e eN N N− ≡ > , where eN is the put market’s net exposure, which is on 
average positive in the OTM region in our data. Then the passive monopolistic market maker is 
fully hedged in ( , , )s s b aN D P P t=  but must cover the net long end user demand with a short position 

in eN , which is increasing in both bP and aP , but which she must cover at a price of bP . Exactly the 
opposite occurs if the end users are net short and the DPM must cover it by purchasing at aP .    

Since this is clearly a suboptimal decision, we now allow the DPM to set freely the prices of the 
long and short options. Assume as above that the DPM faces a total demand that is net long, with 
a fully hedged component ( , , )s s b aN D P P t= , and residual exposure ( , , )e b aN P P t , increasing in both 
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arguments.  We then have a t time t ˆ ( )t t s a b e bx x N P P N P= + − +  and the following maximization 
problem ( ), ˆ , ,

a bP P b t tMax J x y t , where instead of (3.1) we have 

( )ˆ ˆ, , [ ( ( ) , , )]

[ ( ( ( ) ) ( ) , , )]
b t t t T e t t T T

t t s a b e b e t t T T

J x y t E V x N F m z y T

E V R x N P P N P N F m z y T

+

+

= − − =

+ − + − −
.     (3.2) 

Maximizing ( )ˆ , ,b t tJ x y t with respect to aP and bP  we get after simplification 

[ ( ) ] 1 [ ( ) ]
[ ]

[ ( ) ] 1 [ ( ) ]
[ ]

t x t T s e
t s a b b

et x a a

a

t x t T s e
t s a b b

et x b b

b

E V m z N NF N P P PNRE V P P
P

E V m z N NF N P P PNRE V P P
P

+

+

− ∂ ∂
= + − +
∂ ∂ ∂
∂

− ∂ ∂
= − + − +
∂ ∂ ∂
∂

.     (3.3) 

If aP and bP  are constrained to be equal to P  then it can be shown that the right-hand-side of both 
expressions in (3.3) is equal to 1(1 )NP e−+ , where 0Ne >  is the elasticity of residual demand 

( , )eN P t . This appears perverse, since the DPM charges less than P for the short position, but on 
the other hand it reduces the fully hedged position, from which she receives no income. It also 
justifies partially the observed consistency of the option market data with the SA bounds at the left 
tail. Conversely, the elasticity is negative when the DPM exposure is net long, as it is in the ATM 
zone. In both cases the bid-ask spread raises the prices. In either case the equilibrium prices depend 
on the demand elasticity, varying inversely with Ne . They do not depend on the asset dynamics 
and are specific to the degree of moneyness. Hence, they can accommodate the differing distances 
between the SA bounds and the observed bid-ask midpoint in our results since there is no reason 
for the demand forces to be the same along the cross section.2  
 

 
2 In fact, AFT point out in several places (e.g., p. 1336) that the pricing rules differ between OTM and ATM options, 
as shown also in our data. 



Table OA1: Jump Diffusion Parameter Estimates

Parameter Estimate Std Err t Value Approx Pr > |t|

µ 0.0707 0.0234 3.03 0.0025
σ 0.1497 0.0031 48.40 <.0001
µj -0.0322 0.0164 -1.96 0.0497
σj 0.1007 0.0107 9.42 <.0001
λ 0.2625 0.1572 1.67 0.095

This table presents parameter estimates for the the jump diffusion model
obtained from the GMM procedure using daily returns of the S&P 500 index
from 1963 to 2010.
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Table OA2: Summary Statistics Weeklys - All Cross Sections

All DTM1 DTM2 DTM3 DTM4 DTM7 DTM8 DTM9

Panel A: Summary Statistics Calls

# Contracts 140,305 17,170 18,769 19,601 20,059 22,290 21,652 20,764
Avg IV 22.7% 32.0% 25.7% 22.6% 21.2% 21.4% 20.1% 19.0%
Avg Moneyness (K/S) 0.98 0.96 0.97 0.98 0.98 0.99 0.99 0.99
Avg Mid-Quotes 94.5 128.8 115.5 94.3 90.5 89.6 77.2 74.6
Relative BA Spread 8.4% 6.3% 7.6% 8.8% 10.0% 10.3% 7.9% 7.6%
Option Bounds Spread 10.6% 3.5% 6.2% 8.8% 10.8% 12.6% 14.5% 15.7%
Avg NetBuy MM 4 -13 -1 -0.2 0.2 25 9 3
% Volume MM 51% 51% 52% 52% 51% 50% 51% 50%
Total Volume 101,788 24,412 16,716 13,562 13,327 15,058 10,744 7,970
Total Open Interest 265,293 33,565 36,738 40,007 39,723 39,732 37,882 37,646

Panel B: Calls Mispricing vs. SA Bounds

Mid-Quotes Within Bounds 33,128 3,687 4,495 4,985 5,345 5,430 4,776 4,410
24% 21% 24% 25% 27% 24% 22% 21%

Overpriced Contracts 51,880 4,866 6,397 6,947 6,334 8,764 9,662 8,910
37% 28% 34% 35% 32% 39% 45% 43%

Cross-sections >1 Overpriced 2,807 412 404 411 345 415 428 392
90% 93% 90% 90% 81% 90% 93% 92%

Cross-sections >25% Overpriced 2,274 251 305 330 285 369 385 349
73% 56% 68% 72% 67% 80% 83% 82%

Cross-sections >50% Overpriced 1,279 88 153 167 152 217 260 242
41% 20% 34% 37% 36% 47% 56% 57%

Panel C: Summary Statistics Puts

# Contracts 194,470 15,423 23,284 27,455 29,072 33,461 33,320 32,455
Avg IV 23.4% 24.5% 23.8% 23.1% 23.1% 23.9% 23.4% 22.4%
Avg Moneyness 0.98 1.01 0.99 0.98 0.98 0.97 0.97 0.96
Avg Mid-Quotes 37.2 60.2 45.2 34.4 38.9 34.6 30.8 30.4
Relative BA Spread 12.4% 10.1% 16.6% 16.6% 14.9% 11.4% 9.2% 9.2%
Option Bounds Spread 77.2% 39.4% 65.4% 75.4% 78.1% 84.4% 86.5% 87.6%
Avg NetBuy MM 5 -15 -13 -8 4 46 -2 1
% Volume MM 50% 51% 51% 50% 49% 48% 49% 49%
Total Volume 188,261 34,302 31,262 26,684 27,724 34,315 19,832 14,142
Total Open Interest 482,479 38,406 71,039 82,927 77,925 74,668 69,274 68,240

Panel D: Puts Mispricing vs. SA Bounds

Mid-Quotes Within Bounds 75,122 2,774 7,404 10,314 11,793 14,122 14,136 14,579
39% 18% 32% 38% 41% 42% 42% 45%

Overpriced Contracts 68,378 5,642 7,693 8,746 8,344 12,096 13,480 12,377
35% 37% 33% 32% 29% 36% 40% 38%

Cross-sections >1 Overpriced 2,853 419 409 413 365 418 433 396
91% 94% 91% 90% 85% 91% 94% 93%

Cross-sections >25% Overpriced 2,250 389 329 317 231 313 353 318
72% 87% 73% 69% 54% 68% 76% 75%

Cross-sections >50% Overpriced 785 138 111 92 66 125 144 109
25% 31% 25% 20% 15% 27% 31% 26%

This table presents summary statistics for the merged CBOE time-stamped End-of-Week Weekly option quotes data (EoW Weeklys) with
the trading volume data from Market Data Express Open/Close database. Option quotes are at 3:00 PM from 20110317 to 20220317
for the total of 477 expiring Fridays and 3,127 observation days. The sample only contains options with non-zero trading volume and
minimum bid price of 10 cents. Options are grouped based on the number of days-to-maturity (DTM), from 9 days to 1 day. “Relative BA
Spread” (“Option Bounds Spread”) is the average bid-ask (upper and lower bounds) spreads in proportion of mid-quotes (mid-bounds).
“Avg NB MM” is the average number of contracts purchased minus sold by market makers. “Total Volume” and “Total Open Interest” are
in thousands. “Cross-sections >25% Overpriced" shows number of cross sections where more than 25% of contracts in the cross section are
overpriced.
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Table OA3: Summary Statistics Weeklys - All Options

<.90 .90-.93 .93-.96 .96-.98 .98-1.0 1.0-1.02 1.02-1.04 1.04-1.06 >1.06 All

Panel A: Summary Statistics Calls

# Contracts 8,170 6,415 17,427 24,783 31,476 25,786 13,847 6,480 5,921 140,305
% Contracts 5.8% 4.6% 12.4% 17.7% 22.4% 18.4% 9.9% 4.6% 4.2% 100%
Avg IV 80.3% 38.8% 28.1% 20.9% 16.3% 14.6% 16.7% 20.7% 33.0% 22.7%
Avg Mid-Quotes 609.6 255.5 158.0 90.1 40.3 11.3 4.3 2.9 2.6 94.5
Relative BA Spread 1.5% 2.0% 2.9% 3.7% 3.6% 6.0% 17.9% 32.1% 49.8% 8.4%
Option Bounds Spread 0.1% 0.5% 0.9% 1.9% 5.0% 18.6% 30.3% 32.4% 26.0% 10.6%
Avg NetBuy MM -0.1 1 -5 -14 4 24 26 1 -13 4
% Volume MM 62% 51% 51% 49% 51% 51% 50% 49% 51% 51%
Total Volume 127 123 609 1,759 22,052 57,979 13,826 3,455 1,859 101,788
Total Open Interest 724 1,842 10,029 28,984 85,911 91,711 29,024 9,844 7,224 265,293

Panel B: Calls Mispricing vs. SA Bounds

Mid-Quotes Within Bounds 2,011 3,335 8,929 9,826 4,403 1,533 1,763 774 554 33,128
25% 52% 51% 40% 14% 6% 13% 12% 9% 24%

Overpriced Contracts 334 542 2,372 7,350 20,298 15,149 3,668 1,029 1,138 51,880
4% 8% 14% 30% 64% 59% 26% 16% 19% 37%

Cross-sections >1 Overpriced 83 134 478 1,340 2,733 2,456 769 156 76 2,807
4% 7% 17% 43% 87% 80% 45% 20% 18% 90%

Cross-sections >50% Overpriced 44 117 327 858 2,146 2,236 644 134 55 1,279
2% 6% 11% 28% 69% 73% 38% 17% 13% 41%

Cross-sections 100% Overpriced 22 106 234 593 1,330 2,015 550 117 47 26
1% 5% 8% 19% 43% 66% 32% 15% 11% 1%

Panel C: Summary Statistics Puts

# Contracts 10,262 26,944 38,921 29,219 31,201 28,978 13,793 6,103 9,049 194,470
% Contracts 5.3% 13.9% 20.0% 15.0% 16.0% 14.9% 7.1% 3.1% 4.7% 100%
Avg IV 41.4% 31.1% 25.2% 20.3% 16.3% 14.0% 18.4% 25.3% 47.9% 23.4%
Avg Mid-Quotes 2.7 1.7 2.7 5.5 12.5 37.6 86.5 145.2 368.0 37.2
Relative BA Spread 18.3% 25.6% 20.6% 11.2% 5.0% 5.1% 4.7% 3.6% 2.5% 12.4%
Option Bounds Spread 156.1% 148.8% 128.0% 98.2% 47.3% 2.6% 0.4% 0.2% 0.0% 77.2%
Avg NetBuy MM 3 -19 -4 45 0 12 -2 -3 -7 5
% Volume MM 47% 45% 48% 49% 52% 51% 49% 50% 48% 50%
Total Volume 3,214 13,533 33,585 47,364 71,141 16,902 1,556 534 433 188,261
Total Open Interest 14,630 64,515 125,974 108,641 102,448 40,460 12,743 5,704 7,364 482,479

Panel D: Puts Mispricing vs. SA Bounds

Mid-Quotes Within Bounds 7,168 19,968 24,935 14,046 4,953 1,839 1,339 501 373 75,122
70% 74% 64% 48% 16% 6% 10% 8% 4% 39%

Overpriced Contracts 2,865 4,667 9,869 13,550 22,405 13,045 1,383 327 267 68,378
28% 17% 25% 46% 72% 45% 10% 5% 3% 35%

Cross-sections >1 Overpriced 204 388 902 1,832 2,765 2,468 301 55 25 2,853
18% 18% 34% 63% 88% 79% 11% 4% 3% 91%

Cross-sections >50% Overpriced 189 319 628 1,332 2,505 1,512 118 34 3 785
17% 15% 23% 46% 80% 48% 4% 2% 0% 25%

Cross-sections 100% Overpriced 178 289 470 979 1,864 497 75 25 3 4
16% 13% 18% 34% 60% 16% 3% 2% 0% 0%

This table presents summary statistics for the merged CBOE time-stamped End-of-Week Weekly option quotes data (EoW Weeklys) with the
trading volume data from Market Data Express Open/Close database. Option quotes observed at 3:00 PM from 20110317 to 20220317, expiring
on Fridays. The sample only contains options with non-zero trading volume and minimum bid price of 10 cents. Options are grouped across
different moneyness bins. “Relative BA Spread” (“Option Bounds Spread”) is the average bid-ask (upper and lower bounds) spreads in proportion
of mid-quotes (mid-bounds). “Avg NB MM” is the average number of contracts purchased minus sold by market makers. “Total Volume” and
“Total Open Interest” are in thousands. “Cross-sections >50% Overpriced" shows number of cross sections where more than 50% of contracts in
the cross section are overpriced.
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Table OA4: Bid-Ask Quotes vs Option Bounds - All Cross Sections

<.90 .90-.93 .93-.96 .96-.98 .98-1.0 1.0-1.02 1.02-1.04 1.04-1.06 >1.06 All

Panel A: Call Mid-Quotes Within Option Bounds
DTM1-Thu 193 348 1029 1318 626 128 38 6 1 3687

13% 32% 36% 35% 14% 5% 6% 5% 1% 21%
DTM2-Wed 327 495 1243 1461 665 135 151 16 2 4495

21% 45% 47% 40% 15% 4% 12% 4% 1% 24%
DTM3-Tue 268 514 1471 1602 616 200 210 53 51 4985

24% 55% 58% 44% 13% 6% 12% 7% 9% 25%
DTM4-Mon 313 529 1487 1731 642 279 216 101 47 5345

29% 61% 60% 50% 15% 7% 10% 10% 5% 27%
DTM7-Fri 405 622 1514 1438 621 248 358 137 87 5430

34% 64% 56% 39% 14% 6% 14% 11% 7% 24%
DTM8-Thu 283 431 1181 1164 610 300 429 225 153 4776

31% 57% 54% 34% 13% 7% 15% 16% 11% 22%
DTM9-Wed 222 396 1004 1112 623 243 361 236 213 4410

29% 58% 49% 35% 14% 6% 13% 16% 15% 21%

Panel B: Call Overpricing Given Option Bounds
DTM1-Thu 13 15 78 384 2,353 1,665 246 45 67 4,866

1% 1% 3% 10% 52% 61% 41% 41% 87% 28%
DTM2-Wed 38 61 195 737 2,720 1,936 389 145 176 6,397

2% 6% 7% 20% 61% 58% 30% 35% 66% 34%
DTM3-Tue 38 56 213 867 3,034 2,092 404 130 113 6,947

3% 6% 8% 24% 66% 58% 23% 17% 19% 35%
DTM4-Mon 37 54 234 776 2,470 1,873 426 163 301 6,334

3% 6% 9% 23% 57% 50% 19% 16% 33% 32%
DTM7-Fri 49 104 483 1,411 3,202 2,526 634 172 183 8,764

4% 11% 18% 38% 70% 62% 26% 13% 14% 39%
DTM8-Thu 82 127 545 1,646 3,379 2,646 824 227 186 9,662

9% 17% 25% 48% 74% 63% 30% 16% 14% 45%
DTM9-Wed 77 125 624 1,529 3,140 2,411 745 147 112 8,910

10% 18% 30% 48% 71% 59% 27% 10% 8% 43%

Panel C: Put Mid-Quotes Within Option Bounds
DTM1-Thu 0 0 624 1,160 668 172 109 23 18 2,774

0% 0% 68% 53% 17% 4% 5% 2% 1% 18%
DTM2-Wed 0 973 2,866 2,346 786 201 141 39 52 7,404

0% 76% 61% 55% 17% 5% 7% 4% 4% 32%
DTM3-Tue 236 2,255 4,110 2,403 760 271 191 58 30 10,314

62% 70% 64% 52% 16% 6% 10% 7% 2% 38%
DTM4-Mon 801 3,079 4,123 2,388 706 339 210 91 56 11,793

71% 67% 64% 55% 16% 8% 11% 10% 4% 41%
DTM7-Fri 1,637 4,387 4,642 2,104 699 274 233 90 56 14,122

70% 74% 67% 45% 15% 6% 11% 9% 4% 42%
DTM8-Thu 1,935 4,619 4,383 1,804 680 310 220 106 79 14,136

67% 77% 63% 39% 15% 7% 11% 13% 7% 42%
DTM9-Wed 2,559 4,655 4,187 1,841 654 272 235 94 82 14,579

74% 79% 63% 41% 15% 7% 13% 13% 8% 45%

Panel D: Put Overpricing Given Option Bounds
DTM1-Thu 9 35 222 905 2,883 1,460 114 14 0 5,642

100% 100% 24% 41% 74% 36% 6% 1% 0% 37%
DTM2-Wed 50 148 817 1,592 3,206 1,649 157 41 33 7,693

100% 12% 17% 37% 71% 40% 8% 5% 2% 33%
DTM3-Tue 136 403 988 1,853 3,354 1,810 151 32 19 8,746

36% 13% 15% 40% 72% 43% 8% 4% 2% 32%
DTM4-Mon 296 627 1,197 1,582 2,763 1,502 193 67 117 8,344

26% 14% 19% 37% 64% 38% 10% 8% 8% 29%
DTM7-Fri 608 1,169 1,997 2,392 3,373 2,194 270 55 38 12,096

26% 20% 29% 51% 73% 51% 12% 6% 3% 36%
DTM8-Thu 888 1,213 2,371 2,708 3,555 2,355 293 69 28 13,480

31% 20% 34% 58% 76% 56% 15% 8% 3% 40%
DTM9-Wed 878 1,072 2,277 2,518 3,271 2,075 205 49 32 12,377

25% 18% 34% 56% 73% 52% 12% 7% 3% 38%

Panels A and C report number and percentage of option contracts with the bid-ask quotes between option bounds. Panels B and D report
number and percentage of overpriced option contracts with the ask price above option upper bounds. Statistics are grouped based on the
number of days-to-maturity (DTM), from 9 days to 1 day.

OA9



Table OA5: Volume and Net Buy Market Makers

<.90 .90-.93 .93-.96 .96-.98 .98-1.0 1.0-1.02 1.02-1.04 1.04-1.06 >1.06 All

Panel A: Call Percentage Volume MM and Total Volume (x1000)

DTM1-Thu 77% 48% 52% 48% 51% 52% 51% 49% 53% 51%
39 24 104 365 6,512 15,352 1,782 163 71 24,412

DTM2-Wed 51% 52% 48% 50% 51% 52% 51% 50% 50% 52%
15 16 96 286 3,949 9,944 1,931 371 108 16,716

DTM3-Tue 58% 48% 52% 49% 52% 52% 50% 51% 51% 52%
18 18 84 258 3,048 7,739 1,766 410 221 13,562

DTM4-Mon 54% 56% 49% 47% 52% 51% 49% 47% 50% 51%
12 13 103 269 2,400 7,351 2,177 666 337 13,327

DTM7-Fri 60% 52% 52% 51% 51% 50% 50% 46% 50% 50%
16 17 107 259 2,562 7,871 2,790 926 509 15,058

DTM8-Thu 57% 51% 53% 50% 52% 50% 51% 51% 54% 51%
19 22 59 189 2,016 5,653 1,864 559 364 10,744

DTM9-Wed 53% 50% 51% 54% 51% 50% 50% 50% 51% 50%
9 13 55 133 1,565 4,070 1,515 361 249 7,970

Panel B: Call Net Buy MM

DTM1-Thu -2 0 -2 -27 -21 -4 17 -122 2 -13
DTM2-Wed 0 2 -4 -12 14 30 -55 -77 -80 -1
DTM3-Tue 1 0 -2 -19 9 42 -3 -68 -108 0
DTM4-Mon 0 2 -5 -18 4 23 8 -26 -22 0
DTM7-Fri 2 3 -8 -10 14 37 112 87 8 25
DTM8-Thu 0 2 -9 -6 7 29 22 18 -5 9
DTM9-Wed 0 1 -6 -7 -3 7 24 -8 16 3

Panel C: Put Percentage Volume MM and Total Volume (x1000)

DTM1-Thu 52% 53% 52% 51% 52% 52% 48% 49% 47% 51%
10 60 1,078 6,000 21,566 5,070 361 107 50 34,302

DTM2-Wed 55% 50% 49% 50% 52% 52% 49% 51% 47% 51%
18 563 4,367 9,264 13,738 2,947 253 51 62 31,262

DTM3-Tue 54% 47% 48% 49% 52% 52% 48% 49% 44% 50%
87 1,021 5,288 7,738 9,834 2,406 177 79 56 26,684

DTM4-Mon 50% 44% 48% 48% 52% 52% 50% 50% 50% 49%
387 2,338 6,878 7,737 8,007 1,973 253 81 70 27,724

DTM7-Fri 48% 43% 47% 49% 50% 50% 50% 50% 49% 48%
1,058 5,209 8,337 8,496 8,691 2,143 215 80 87 34,315

DTM8-Thu 45% 44% 49% 48% 52% 51% 52% 53% 52% 49%
799 2,513 4,370 4,919 5,556 1,389 164 74 47 19,832

DTM9-Wed 44% 46% 48% 50% 51% 51% 49% 46% 45% 49%
855 1,829 3,268 3,211 3,749 974 134 62 61 14,142

Panel D: Put Net Buy MM

DTM1-Thu -393 -126 -26 104 -66 -25 -15 -10 -15 -15
DTM2-Wed 36 -90 -102 35 16 18 1 -8 -4 -13
DTM3-Tue -34 -26 -51 78 -28 2 -3 -8 -8 -8
DTM4-Mon 3 -44 11 65 2 -4 -6 -8 -6 4
DTM7-Fri 35 -21 96 84 72 44 8 3 -10 46
DTM8-Thu -13 9 0 -27 -17 28 11 -3 -3 -2
DTM9-Wed -1 -8 -9 10 10 16 -12 15 -6 1

Panels A and C report percentage of volume by market markers and the total trading volume for calls and puts. Panels B and D reports
the average net buy by market makers. Options are grouped based on the number of days-to-maturity (DTM), from 9 days to 1 day and
statistics are provided across moneyness bins. The option data are based on the merged CBOE time-stamped End-of-Week Weekly
option quotes data (EoW Weeklys) with the trading volume data from Market Data Express Open/Close database. Option quotes are at
3:00 PM from 20110317 to 20220317 for the total of 477 expiring Fridays and 3,127 observation days. The sample only contains options
with non-zero trading volume and minimum bid price of 10 cents.
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Table OA6: Return Characteristics Option Trader Portfolios

Panel A: Panel B: Panel C:
Open @Bid - Close @UB Open @Bid - Close @Ask Open @Midpoint - Close @Midpoint

DTM2 DTM3 DTM4 DTM7 DTM8 DTM9 DTM2 DTM3 DTM4 DTM7 DTM8 DTM9 DTM2 DTM3 DTM4 DTM7 DTM8 DTM9

Calls:

Avg Return 28.7% 16.6% 17.2% 23.7% 29.4% 25.9% 7.1% -8.7% -10.0% 4.1% -2.4% -7.5% 13.2% -3.0% -4.6% 9.9% 3.8% -2.5%
St. Dev. 6.8% 7.0% 5.9% 6.8% 6.2% 5.2% 6.7% 6.9% 6.0% 6.4% 5.8% 4.9% 6.5% 6.7% 5.9% 6.4% 5.7% 4.8%
Info Ratio 4.20 2.36 2.91 3.47 4.78 4.95 1.06 -1.26 -1.66 0.64 -0.41 -1.54 2.02 -0.45 -0.78 1.55 0.66 -0.53
H0: OT ⊁2 IT 0 0.004 0.001 0 0 0 0.082 1 1 0.206 1 1 0.004 1 1 0.044 0.189 1
H0: OT ⊁2 IT (5%) 0 0 0 0 0 0 0.010 1 1 0.011 1 1 0.001 1 1 0 0.009 1
H0: OT ⊁2 IT (10%) 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1
% CS Ret>0 62% 62% 52% 60% 64% 60% 52% 48% 39% 50% 50% 42% 56% 51% 41% 53% 53% 44%
No. CS 382 387 318 361 399 354 382 387 318 361 399 354 382 387 318 361 399 354
No. Contracts 3,868 4,451 3,698 4,944 5,615 5,170 3,868 4,451 3,698 4,944 5,615 5,170 3,868 4,451 3,698 4,944 5,615 5,170

Puts:

Avg Return 22.6% 13.9% 12.7% 29.1% 30.3% 28.6% 2.7% -9.3% -12.3% 6.1% -4.7% -7.6% 7.2% -5.3% -8.5% 11.4% 0.7% -3.2%
St. Dev. 7.7% 8.3% 7.2% 8.4% 7.7% 6.2% 7.0% 7.5% 6.7% 7.4% 6.6% 5.2% 7.1% 7.6% 6.7% 7.6% 6.7% 5.3%
Info Ratio 2.95 1.68 1.76 3.45 3.94 4.62 0.38 -1.23 -1.84 0.82 -0.71 -1.45 1.02 -0.70 -1.26 1.50 0.10 -0.61
H0: OT ⊁2 IT 0 0.019 0.013 0 0 0 0.308 1 1 0.149 1 1 0.108 1 1 0.027 0.445 1
H0: OT ⊁2 IT (5%) 0 0 0.005 0 0 0 0.133 1 1 0.014 1 1 0.024 1 1 0 0.099 1
H0: OT ⊁2 IT (10%) 0 0 0 0 0 0 0.040 1 1 0 1 1 0.001 1 1 0 0.006 1
% CS Ret>0 55% 54% 47% 54% 59% 55% 49% 47% 40% 48% 49% 42% 51% 47% 41% 50% 51% 43%
No. CS 383 387 332 362 404 353 383 387 332 362 404 353 383 387 332 362 404 353
No. Contracts 4,158 4,879 3,967 4,925 5,712 5,147 4,158 4,879 3,967 4,925 5,712 5,147 4,158 4,879 3,967 4,925 5,712 5,147

The table reports statistical properties of excess returns of option trader (OT) portfolios, including arithmetic average daily returns (annualized) and standard deviations. The row “% CS
Ret>0" shows the percentage of weeks (trades) with positive portfolio returns. The returns in Panels A to B are computed when OT writes an overpriced option at its bid quote and closes her
position at the option upper bound and at the ask quote. Panels C reports similar results when OT open and close her position at the midpoint of bid and ask quotes. The trading strategy is
implemented by using 2% ATM options, end-of-week expiration, with non-zero volume in two consecutive days. Column DTM2 shows statistics when the portfolio is set using options with
two days-to-maturity on Wednesday and the positions are closed at the next trading day. The OT portfolios are across all weeks in the sample and when there is no overpriced ATM option,
OT=IT. The table also reports p-values for Davidson-Duclos (2007) second order stochastic dominance test for paired (correlated) outcomes.The row H0: OT ⊁2 reports p-values for the null
of non-dominance of time series of OT portfolio returns over time series of IT portfolio returns, with no trimming in the right tail (fourth row), 5% trimming in the right tail (fifth row), and
10% trimming in the right tail (six row).
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Figure OA1: SA Implied Upper Bound RRA
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This figure shows the distribution of relative risk aversions implied by stochastic arbitrage upper bounds
on option prices over the entire sample. The implied RRAs are reported in groups based on number of
day-to-maturity. The results are obtained for weekly options, end-of-week expiration, with nonzero volume in
two consecutive trading days.
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Figure OA2: Percentage Overpriced Options
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This figure shows the percentage overpriced call (left panel) and put (right panel) contracts with respect
to the stochastic arbitrage upper bounds on option prices. The statistics are obtained for weekly options,
end-of-week expiration, with nonzero trading volume in two consecutive trading days.
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Figure OA3: 1-day Log-Return - All but Overpriced Options
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The figure shows cumulative one-day returns for an option trader portfolio when OT trades all
but overpriced options identified by the SA approach. The trading strategy is implemented by
using 2% ATM options, end-of-week expiration, with non-zero volume in two consecutive days.
The bottom panel plots the cumulative return of an index trader.
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