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1 Introduction

There is a burgeoning literature that attempts to examine and dissect the relation between
high dimensional firm characteristics (or firm characteristic related factors, a.k.a factor zoo)
and the cross-sectional asset returns, see Cochrane (2011), Harvey et al. (2015), Green et al.
(2017), Hou et al. (2020), Feng et al. (2020), Freyberger et al. (2020) and among others for
example. However, a vigorous discussion regarding the factor correlations and their impact
and implications on cross-sectional asset returns has fallen short in the related literature.
In a high-dimensional setting, many firm characteristics (or the related factor zoo) are often
close cousins and highly correlated between each other. Ignoring factor correlations would
compromise the robustness of standard models and therefore cast doubts on the validity of
such models. For example, in our empirical analysis, we show that standard econometric
models, such as the Fama-Macbeth two-step procedure and the LASSO shrinkage method,
both failed to identify the ‘market’ factor as an important factor in driving cross-sectional
asset returns due to the fact that the ‘market’ factor is highly correlated with many factors
in the “factor zoo”.

In this paper, we utilize and further develop a LASSO-type estimator, namely the
Ordered- Weighted-LASSO (OWL, Figueiredo and Nowak (2016)) estimator, to find pre-
vailing factors for the cross sectional asset returns with a focus on disentangling correlated
factors. In other words, how do we robustly choose important factors when they are highly
correlated? Our contribution to the related literature is twofold. First, we further develop
the asymptotic properties of the OWL estimator under relaxed assumptions which are more
suitable for economic and finance related research questions compared to Figueiredo and
Nowak (2016) and show the consistency of such estimator under some mild conditions.
In addition, we combine the OWL shrinkage method with the stochastic discount factor
(SDF) method (Cochrane, 2005) to choose factors. Based on that, we derive the grouping
property of factor selection for the cross section of asset returns (i.e., we quantify conditions
of identifying highly correlated factors for cross-sectional asset returns). Monte Carlo sim-
ulation exercise shows favorable results of the OWL shrinkage method compared to other
machine learning benchmarks such as the LASSO, the adaptive LASSO and the Elastic

Net models, especially when factors are highly correlated.



The second fold of our contribution offers new insights on some puzzling questions in
the cross-sectional asset pricing literature. High correlation among factors often attenu-
ates statistical significance of many factors, and in particular, renders the ‘market’ factor
insignificant to drive asset prices. Traditional tactic to avoid such problem often involves
excluding highly correlated factors in the model. For example, Green et al. (2017) exclude
‘beta’ related factors in their Fama-MacBeth framework before finding factors that drive
cross-sectional returns in the US stock market. However, such procedure requires a thresh-
old level to decide which factors to be dropped and, such decision often lacks rigorous
justification. Furthermore, if two factors are highly correlated, it is not trivial to decide
which one to drop and which one to keep. By contrast, our method is robust to correlated
factors - highly correlated factors receive similar coefficients in our model. Thus, we avoid
any ad hoc screenings of factors before applying our model. Furthermore, we provide am-
ple evidence to show that the ‘market’ factor, despite often being deemed insignificant in
standard testing procedures due to high-correlation with other factors, is indeed an im-
portant factor in driving cross-sectional asset returns in our estimation framework. This
coincides with a new finding made in Harvey and Liu (2021) utilizing a bootstrap based
testing procedure. We discuss this in detail in the following text.

For empirical analysis, we consider 100 factors documented in Green et al. (2017) for
factor investing, then we form hedging portfolios following Freyberger et al. (2020) using
a sparse set of factors selected by various methods. To do this, we first construct anomaly
factors (i.e., factors other than the ‘market’ factor) for each firm characteristic via portfolio
sorting. Then, we follow Feng et al. (2020) to form thousands of bi-variate sorted portfolios
as our test assets.! It is worth stressing that we are using sorted portfolios (by firm
characteristics) as test assets instead of individual stocks. This is because large proportion
of individual stocks are small stocks which takes an insignificant weight in the aggregated
market value, whereas some small number of large stocks take a large proportion of the
aggregated market value. Therefore, factor selection, if using individual stocks as test
assets, will biased towards explaining mainly small stocks, rather than the aggregated

market. On the other hand, using (value weighted) sorted portfolios as test assets can

IFor robustness check (see Appendix I'), we also consider other methods of constructing test portfolios
while controlling for micro stocks.



effectively test for prevailing factors for cross-sectional asset returns at the aggregated
level.

Our empirical findings complement and challenge some common stances in the asset
pricing literature. First, when we implement a Fama-MacBeth regression procedure we find
serious correlations among factor loadings: 68% of the correlation coefficients are higher
than 0.5 (absolute value), which casts doubts on the validity of using standard estimation
methods such as Fama-MacBeth regression and the LASSO shrinkage method: we find that
the Fama-MacBeth, the LASSO and the Elastic Net shrinkage methods all failed to identify
the ‘market’ factor as an important factor to drive the cross section of asset returns. That
is because the ‘market’ factor is highly correlated with many characteristics-based factors
and correlation between factors erodes the valid inference for those methods. On the
contrary, the OWL shrinkage method can consistently identify the ‘market’ factor as the
most important driver for cross-sectional returns. This finding coincides with the empirical
evidence by Harvey and Liu (2021) showing that the ‘market’ factor is the primary factor
to drive asset prices following a bootstrap motivated test.

Second, we find that ‘liquidity’, ‘asset growth rate’, ‘profitability’ and ‘investment’
related factors are the main drivers of the variation of cross-sectional average returns. This
finding is consistent with Hou et al. (2020, 2021). Interestingly, we also find that the ‘size
effect’ disappears during the 1980-2000 period, which is well documented in the literature,
see Amihud (2002) and Asness et al. (2018) for an example. Nonetheless, the size effect
becomes evident again after removing more small stocks (smaller than 40 percentile of the
NYSE listed), implying that the vanishing size effect is likely to be caused by some small
“junk” stocks. Once “junk” stocks are removed, the size effect resurfaces, which echoes the
discovery by Asness et al. (2018): “size matters, if you control your junk”.?

Third, we follow a similar procedure to Freyberger et al. (2020) to conduct an out-of-
sample exercise to find which method selects factors that can best predict the cross-sectional
asset returns and use those factors to construct hedged portfolios. We compare hedged
portfolios and find that the hedged portfolio using OWL selected factors produces 20% to
30% higher out-of-sample Sharpe ratios than those of other methods, suggesting that the

2 Asness et al. (2018) add some controlling factors measuring the “junk-level” of stocks in their regression
model and find that the size-effect is evident again after controlling the “junk”.



OWL shrinkage method, compared to other benchmarks, can pick the best factors that
contribute to the cross section of asset returns in an environment where factor correlation
is prevalent.

Finally, it is worth stressing that the OWL estimator, like many other machine learn-
ing methods, is biased. Therefore, it is unfit to conduct statistical tests without further
developing an unbiased version and deriving its asymptotic properties. We elaborate on
this subject in Section 2.4. Having mentioned that, we want to point out that our main
object in this paper is not to conduct statistical tests to determine a parsimonious asset
pricing model - although such research agenda is crucially important, it can be a topic
of future research. Nonetheless, our paper focuses on the robust estimation and selec-
tion of correlated factors in high-dimensional factor models. Then, we postulate a sparse
model, say a five-factor model,® and we compare such selection of factors with other bench-
marks. Our empirical result coincides with some recent empirical findings and also offers

explanations to some puzzling questions faced in the cross-sectional asset pricing literature.

Related literature

This paper naturally builds on a series of papers devoted to identifying pricing factors for
cross-sectional asset returns, for example see Fama and French (1992), Carhart (1997) ,
Hou et al. (2014), Fama and French (2016), Fama and French (2018) among others. Now
after over half a century since the CAPM of Sharpe (1964) and Lintner (1965), hundreds of
anomaly factors have been proposed to explain the cross-sectional asset returns. However,
Harvey et al. (2015) document 316 factors and find most of them are the result of data-
snooping. Hou et al. (2020) try to replicate 447 anomaly factors, and find 64% to 85%
of them cannot be replicated depending on the choice of a significance level. Kan and
Zhang (1999) caution that the presence of useless factors bias test results, leading to a
lower than normal threshold to accept priced factors. Gospodinov et al. (2014) develop

a model mis-specification robust test to tackle suprious factors, using a step-wise test to

3Note that we do not assume that the true model is a five-factor model. Instead, we use various methods
to choose important factors and we restrict all benchmarks to have the same number of factors to conduct
a prediction exercise, such that we ensure each benchmark does not suffer from the over-fitting problems
in this out-of-sample exercise. We also implement such an exercise with a four factor model and the result
is similar, thus it is not reported.



remove useless factors one by one. Fama and French (2018) use Sharpe ratio and employ
the Right-Hand-Side method of Barillas and Shanken (2018) to “choose factors”. Harvey
and Liu (2021) suggest a step-wise bootstrap method to test for factors and find that the
‘market’ factor is the most important factor for cross-sectional asset returns.

This paper also relates to the strand of research focuses on methodologies of selecting
and testing factors. Fama and MacBeth (1973) put forward the two-pass regression method
which is commonly used to test for factors with significant risk premiums. Green et al.
(2017) use Fama-MacBeth regression procedure to find significant factors among 100 candi-
date factors for the US stock market. Lewellen (2015) studies the cross sectional properties
of return forecasts derived from the Fama-MacBeth regression and finds that forecasts vary
substantially across stocks and have strong predictive power for actual returns.

This paper also contributes to the rapidly growing literature using machine learning
techniques for financial research questions. Tibshirani (1996) proposes the LASSO esti-
mator which receives huge success and becomes a new norm nowadays in dealing with
high-dimensional data-sets. Since then, many adaptations and improvements have been
made to achieve various targets. The literature about the LASSO family evolves rapidly.
Belloni et al. (2014) devised the double LASSO selection procedure for causal inference
while having large number of control variables. Feng et al. (2020) employ the double
LASSO selection procedure to recursively evaluate (in a chronological order) if factors are
significant to explain the cross-sectional stock returns. Yuan and Lin (2006) propose the
group LASSO estimator which allows for correlated factors - we can put correlated factors
or factors share similar characteristics in groups. During estimation, the group LASSO es-
timator can shrink off all variables together in a group if such group is deemed unimportant
by the group LASSO estimator. Freyberger et al. (2020) employ the adaptive group LASSO
to find pervasive factors to predict cross-sectional stock returns.” Babii et al. (2021) utilize
the sparse group LASSO estimator for nowcasting GDP. Our paper is closely related to
the group-LASSO shrinkage method in the sense that both estimation methods allow for

factor correlation. However, the crucial difference is that group LASSO method requires

4Tt is worth mentioning that Freyberger et al. (2020) use the group LASSO to put all terms of the
non-parametric transformation of each firm characteristic in a group, while potential correlations between
firm characteristics are not discussed.



prior knowledge of how to cluster factors in various groups before implementing the model.
On the contrary, the OWL shrinkage method does not require such prior knowledge and the
OWL estimator can identify highly correlated factors during estimation. This identification
of correlated factors happens simultaneously with the shrinkage of useless factors. Zou and
Hastie (2005) propose the Elastic Net estimator, which stabilizes factor selection among
correlated variables. Kozak et al. (2020) employ the Elastic Net estimator in a Bayesian
framework and find that sparse principle components can largely explain the cross-section
of the average returns. Gu et al. (2020) compare popular machine learning techniques used
in empirical asset pricing literature and demonstrate large economic gains using random
forest and neuron networks. van Binsbergen et al. (2022) show that, using a sophisticated
random forest algorithm, ‘machine’ wins the contest against ‘man’ in the contest of pre-
dicting earnings of stocks. On the other hand, Cao et al. (2021) argue that ‘man’ wins the
competition against ‘machine’ when firms are complex and with intangible assets, while
‘machine’ wins the contest when information is transparent and voluminous - combining
them, however, yields the best result in forecasting stock prices.

Finally, the shrinkage method used in this paper is built directly upon the work of
Figueiredo and Nowak (2016) and Zeng and Figueiredo (2014). Our innovation in this
paper compared to their work is two folds: first, we further develop statistical properties of
the OWL estimator under less restrictive assumptions (we relax the Gaussianity assump-
tion and instead, impose tail bounds on the distribution of random variables). Second, we
combine the OWL shrinkage method with the stochastic discount factor (SDF) method in

finance to search for prevailing factors that drives cross-sectional asset returns.

The remainder of this paper is organized as follows: Section 2 presents the methodology
to find prevailing factors that drive cross-sectional returns. Then, we move on to introduce
the OWL shrinkage method and discuss its statistical properties. Section 3 use Monte Carlo
simulation experiments to evaluate the performance of the OWL shrinkage method under
various settings and compare it with some benchmarks that are commonly employed in
economic and finance research for high dimensional data-sets. Section 4 presents empirical

findings and discuss our contributions to the asset pricing literature. Section 5 presents



conclusions.

2 Methodology

We adopt the SDF method in Cochrane (2005) to infer factors that drive cross-sectional
asset returns. Section 2.1 compare the SDF method and the Fama-MacBeth two-pass
regression method and point out that the former should be adopted when factors are cor-
related; Section 2.2 introduces the model and discusses challenges and opportunities in
high-dimensional financial applications. Sections 2.3 and 2.3.2 introduce the OWL shrink-

age method and discuss its statistical properties.

2.1 Risk price or risk premium?

Let m denote the stochastic discount factor (SDF)

m =7 (L =V (f = E(f))), (1)

where 7q is the zero beta rate which is a constant, f is a K x 1 vector of K factor returns,
which can be either traded factors or mimicking portfolio returns of non-traded factors. b
is a K x 1 vector of the unknown SDF coefficient, referred to as the risk price; a non-zero
(zero) entry of b means the corresponding factor is (not) priced. We want to draw inferences
on the risk prices of factors. Finding useful factors (i.e., factors with non-zero risk prices)
is our target. Useful factors drive the variation of SDF, thus contain pricing information:
they reflect the marginal utility of factors to explain the cross-section of average returns.

On the other hand, factors can be useless or redundant. Useless factors are those whose
risk prices are zero and uncorrelated with other useful factors. Redundant factors also have
zero risk prices but they are correlated with some useful factors. The difference between
useless factors and redundant factors plays an important role when choosing between the
SDF method and the two-pass Fama-MacBeth regression method to search for prevailing
factors.

A closely related concept to risk price is the risk premium. It refers to the slope



coefficient in the second pass Fama-MacBeth regression.” Cochrane (2005) shows that risk

price and risk premium are directly related through the covariance matrix of factors

A =E(f1)b, (2)

where b is a vector of risk prices and A is a vector of risk premiums. However, they differ
substantially in their interpretation. Risk premium of a factor infers how much an investor
demands to pay for bearing the risk of the factor. Risk price implies whether a factor is
useful to explain the cross-section of average asset returns. When factors are uncorrelated,
that is, E(ff’) is a diagonal matrix. Then, b; = 0 (the " factor is not priced) implies
Ai = 0 (the 7*" factor earns zero risk premium), and vice verse. In this case, using risk
premium to infer prevailing factors for cross-sectional returns yields the same result as do
risk prices. However, this is not true when factors are correlated: an unpriced factor can

earn positive risk premium by being correlated with a useful factor. To give an example,

10 1
suppose we have two factors f; and f,, the covariance matrix is E(f ') = , the

1 10
first factor is priced and the second is not, that is by = 1 # 0 and by = 0. Then, according

to (2), we have \; = 10 and Ay = 1. So we find that the unpriced factor fo (i.e. by = 0)
earns non-zero risk premium (i.e. Ay # 0) by simply being correlated with a useful factor
f1. As discussed before, if factors are uncorrelated it is valid to use either risk price (SDF
method) or risk premium (Fama-MacBeth regression) to select factors. However, factors
are typically correlated in a high dimensional setting, so we should use risk price to infer

priced factors under such circumstance.

2.2 Model

Denote by R the excess returns of a vector of N test assets. Define Y = (f’, R’)’, so

V. Cov(R, f)
Var(Y) = ar(f) VR, ) , where Var(f) and Var(R) are the K x K and

Cov(R, f)  Var(R)

5The two-pass Fama-MacBeth regression procedure involves the following two steps: the first pass
regression obtains the factor loadings by running time-series regressions of each asset on factors; the
second pass runs cross-sectional regressions of asset returns on factor loadings.

9



N x N variance-covariance matrices of factors f and test asset returns R, respectively.
Cov(R, f) is the N x K covariance matrix of returns and factors. The fundamental asset
pricing equation states that E(Rm) = 0 for any admissible SDF. However, the fundamental
equation may not hold when m is unknown and is estimated from a model. The deviation
from zero of the above equation is regarded as the pricing error. Let m(b) denote the
unknown SDF which depends on the unknown risk price b. Pricing error e(b) can be

written and simplified as

e(b) = E[Rm(b)] = E(R)E(m(b)) + Cov(R,m(b))
=rg BE(R)E(L —V'(f — E(f))) +ro ' Cov(R,1 = V(f — E(f)))
=1y [E(R) — Cov(R, f)b]
=75 (nr — Cb),

(3)

where ugr := E(R) is the N x 1 vector of the expectation of excess returns of test assets

and C := Cov(R, f). A quadratic form of the pricing error can be defined as
Q(b) = e(b) W e(b), (4)
where W is a N x N weighting matrix. Then we can estimate b by minimizing Q(b):°
b= argmin Q(b) = arg min (jux — CO)'W (s — Cb), (5)

which gives

b= (C'WC)'C'W g, (6)

For the weighting matrix W, Ludvigson (2013) offers two choices of W for comparing
models. First, W = E(RR’)™!, which connects Q(b) to the well known Hansen-Jagannathan
(HJ) distance. Ludvigson (2013) points out that the use of HJ distance accounts for and
offsets the variations of test assets, leading to stable estimators. Therefore, it is preferred
when small number of test assets are available. On the other hand, when test assets are

prolific, Ludvigson (2013) advocates the second choice of W: the identity matrix. She

6Since g in (3) is a constant, it can be dropped out in the minimization problem.
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argues that using the identity matrix does not tilt the weight to favour any subset of
test assets, especially when test assets represent particular economic interests. In our
application, the test assets consist of firm characteristic sorted portfolios, hence we do not
want to tilt the weights to favour any firm characteristics, so the identity matrix will be
used as the weighting matrix throughout this paper.

Cochrane (2011) points out that traditional methods to identify useful factors have
fallen short in the high-dimensional world. On the other hand, recent finance research has
demonstrated ample evidence that many firm-characteristics based factors are not priced.
Thus, the sparsity assumption which originates from the machine learning literature be-
comes a useful tool to handle these problems. The LASSO estimator (Tibshirani, 1996)
is a powerful tool to achieve sparse models and gains immense popularity in recent years
in the finance related literature. However, the LASSO estimator is also well known for its
poor performance when covariates are correlated. To circumvent the curse of dimension-
ality while taking account of factor correlations, we introduce a newly developed machine
learning tool, the Ordered-Weighted-LASSO (OWL) estimator (Figueiredo and Nowak,
2016), and tailor it to select factors from the (highly correlated) factor zoo under the SDF

framework.

2.3 The Ordered-Weighted-LASSO (OWL) estimator

The OWL estimator is achieved by adding a penalty term in equation (5)7

~ 1
b = arg min §(MR — Ob)(ur — Cb) + Q,(b), Q,(b) = '[b|,, (7)
b

where [b]; = (|b|p), |bl12), - -, [blixy)" and [blpy > bl = -+ > [b]ix], is a vector of the
absolute values of risk prices, decreasingly ordered by their magnitude. w is a pre-specified

K x 1 weighting vector, defined as

wi:)\l—l—(K—z’))\g, izl,...,K, (8)

"We use the identity matrix for the weighting matrix W.

11



where A\; and Ay are two tuning parameters. In order to solve (7), we use the proximal
gradient descent algorithm. More details about this algorithm are included Appendix
C. The OWL estimator is sensitive to the choice of the weighting vector w. So finding
appropriate values for tuning parameters A\; and Ay, which pin down the weighting vector,
is crucial. Following the machine learning literature, we use a ten-fold cross-validation
method to find tuning parameters.®

In Appendix A, we present a geometric interpretation of the OWL penalty and a com-
prehensive comparison between the OWL and the LASSO shrinkage methods, following an
argument typically employed in the machine learning literature. In the next section, we

start to discuss statistical properties of the OWL estimator.

2.3.1 The grouping property

Next, we present the grouping property, which quantifies the condition for identifying
correlated factors - this is a key property of the OWL estimator which enables correlation-

robust estimation.

Theorem 2.1 (Grouping). Let f; and f; denote the i and j™ factor (both of size T x 1).
b, and I;j are OWL estimates of risk prices of factor i and j. Let o(f; — f;) denote the
standard deviation of the vector f; — f;, and pr, or be the N x 1 wvectors collecting the

mean and standard deviation of N test assets. If

A
olfi=fi) < T
7 lprlle Nlorll

then bl = i)j.
Proof: see Appendiz B.1.

8Specifically, given a grid of values for A\; and \», at each point on the grid, we first divide the sample
into ten equal parts in its time series dimension. Then, we use nine parts (training sample) to estimate
the model with the OWL estimator. After obtaining the estimated model, we forecast the returns of the
tenth part (testing sample), and compute the root of mean squared forecast error (RMSE). We repeat the
same procedure ten times by rotating the training samples and testing samples, and therefore compute
the average RMSE for this point on the grid. Tuning parameters are determined by the smallest average
RMSE on the grid.”

12



Corollary 2.1. Let f;, f;, X2, tr, 0r be the same as in Theorem 2.1. If

A

lprllz llorlls’

o(fi+ fj) <

then ZA?Z = —bj.
Proof: see Appendiz B.2.

Theorem 2.1 has several implications. First, when factors are highly correlated (i.e.
o(f; — f;) is small) they are more likely to be grouped together (i.e. receive similar coef-
ficients, b; ~ l;j): two factors exhibiting high correlation could be the result of the same
unobservable underlying factor that dictates these observable factors simultaneously. Thus,
they should share similar magnitude in explaining asset returns which are driven by the
same unobservable underlying factor. Second, the hyper parameter Ay in (8) has direct
impact on the grouping property: large Ay encourages grouping. This property comes with
the key design of the OWL shrinkage method as discussed above, more detailed discussion
can be found in Appendix A. Third, the mean (pug) and standard deviation (og) of test
assets affect the grouping property. A set of less informative assets (small pr and/or small
or) will result in factor grouping: factors are equally weak to explain a set of test assets
whose returns vary little across time. Corollary 2.1 extends the grouping property of the
OWL estimator to negatively correlated factors: highly but negatively correlated factors
will receive a similar magnitude in the coefficient but with opposite signs.

It is worth mentioning that the grouping property distinguishes the OWL estimator from
other related machine learning methods, such as the LASSO and Elastic Net estimators,
and it is the main reason why we argue that the OWL estimator should be employed
when factors are highly correlated. Theorem 2.1 shows that the OWL estimator permits
correlations among factors and assigns them with similar coefficients. On the other hand,
the LASSO estimator may arbitrarily set some highly correlated factors to zeros while

keeping others as non-zeros, resulting in unstable estimation results.'”

10Tn Appendix A, we present a detailed analysis on the problems that the LASSO estimator may en-
counter when factors are highly correlated.
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2.3.2 Asymptotic properties

This section discusses the asymptotic properties of the OWL estimator under less restrictive
assumptions made in Figueiredo and Nowak (2016). We allow the number of factors K to
diverge and potentially K > N. Under some regularity conditions, we derive the oracle
inequality (error bounds) and the convergence rate of the OWL estimator, and hence the
conditions for consistent OWL estimation. Consider a linear high-dimensional asset pricing

model and suppose that

pp = Cb° +e, 9)

where 0° is the true risk price coefficients and e is the pricing error from (3) after scaling a

constant r;'. Equation (7) is a penalized estimator of model (9) and it can be written as'!
1 1«

b=argmin  Fllur—Oblls + 5 Zl A Ao (K = D)][blg, (10)

Where|b|m is the i*" element of |b|¢ = (|b|[1], |b|[2], e ,|b|[K])/ and ’b|[1} > |b|[2} > ... > |b|[K].

First, we use the following notations and assumptions to derive our theoretical results.
N

N . ,
Denote by ¢; = ¢CW = S CY := 3¢, where C@ is the j column of C' and

i=1 i=1
¢ is defined in (9). We denote & = %C’ C' as the scaled Gram Matrix of C. For any
scalar y € R, we denote |y| the absolute value of y. For any vector z € RY, we denote
|zl = (% e)V2 x| = % |z;] and ||z]|cc = maxj<;<y |7;|. In order to derive the next
theorem,lxzvle make the follolvzving assumptions.

Assumption 1 (Random Variables). {¢;;}, are identically and independently distributed
and E(( ;) =0 fori=1,--- ,Nandj=1,--- K. The distributions of variable C’i(j) and €;
foralli=1,---, N are uniformly subgaussian such that sup, ; P(]Ci(j)] > a) < ¢ exp|—caa?]
and sup; P(|e;] > a) < ¢y exp[—cea?] for alli=1,--- N, a > 0 and some c1,cy > 0 which

do not depend on a,t,].

Assumption 1 outlines the conditions for random variables. Note that Assumption

"Note that the scalar “2” on the second term of (10) is dropped because it is negligible for tuning

parameter % = 1°§VK , which will be introduced in the next theorem.
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1 is more relaxed compared to Figueiredo and Nowak (2016) (i.e., i.i.d. Gaussian) and
these assumptions on random variables are commonly assumed in the high-dimensional

econometric literature according to Kock (2016).

Assumption 2 (Sparsity). Denote by S the number of non-zero parameters in b° =
log K
{69,09,--- 0% }. We assume that Sy | O]gv = o(1) when N, K — oo.

Let sy denote a subset, sg C {1,---,K}, and |so| the cardinality of so. For b =
{by, - b} € RE denote by, := b;1{i € sg,i = 1,--- K}, bee = b1{i & s0,i =
L,--+,K}. Then b= by, + bs.

Assumption 3 (Restricted eigenvalue condition, Bickel et al. (2009)). For all b such that

[[bs |1 < 3[]bsy []1, S satisfies the restricted eigenvalue condition

V'Sh
¢3:= min min 5 > 0. (11)
soc{l,.. K} beRr\{0} ||bso][3
[so|<K 165 111 <3[bsg 1

Assumption 2 and 3 are necessary conditions for deriving asymptotic properties in
high-dimensional statistics. Assumption 2 is often referred to as the approximate sparsity
assumption which is a rather mild assumption - it only requires that the log-rate of the
high-dimensional parameter K, scaled by the sparsity parameter S grows slower than the
rate of the number of observations N. Yet the exact sparsity parameter S is not assumed.
The restricted eigenvalue condition in Assumption 3 circumvents the issues stemmed from
a degenerate scaled gram matrix under high-dimensional factor models. See Appendix D

for a detailed discussion on restricted eigenvalue condition and its implications.

Theorem 2.2 (Oracle inequality). Let Assumptions 1, 2 and 3 be satisfied. Suppose that

e A b Slog K
Of;\[ = o(1), where k is a positive constant. Let Nl = 2)o and WQ = O( ]\(;%( )A

Then, by selecting a sufficiently large k, as N, K — oo, with probability tending to one, b

/\0:/{

satisfies

. A A - Ap S A
(b=t~ 1) + b=l <45 + 2R K - DIl (12
0

Proof: see Appendiz B.35.
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Note that the oracle inequality of (12) can be further developed to offer upper bounds
separately for the prediction error (b—5°)'S(b—b°) := ||C(b—b°)||2/N and the estimation
error ||b — b9)|;. Therefore, we further utilize these bounds for the prediction error and

estimation error to obtain the convergence rate of the OWL estimator.

Corollary 2.2 (Convergence rate of OWL). Let all conditions in Theorem 2.2 be satisfied,

~ log K - Slog K
Hb—bwl:o(s §§V>, ||b—bonzO< e ) (13)

Proof: see Appendiz B.J.

then

Corollary 2.2 shows that the convergence rate of the OWL estimator is the same as the
LASSO estimator if we restrict the rate of Ay is slower than A; as specified in Theorem
2.2. Furthermore, with Assumption 2, Corollary 2.2 also implies that the OWL estimator

1s consistent.

2.4 Discussion on the cross-sectional asset returns and the factor

Zz00

Cochrane (2011) brought up the “factor zoo” enigma. Since then, it has attracted con-
siderable attention and spurred development of methodological contributions to dissect
the factor zoo for cross-sectional asset returns. Green et al. (2017) employed the Fama-
MacBeth two-step regression method to select factors from the “factor zoo” for US stock
returns. They removed some factors (i.e., the ‘beta’ related factors) before conducting their
analysis, as highly correlated factors would dampen the robustness of the inference in the
Fama-Macbeth framework. However, such ad hoc treatment of screening out correlated
factors is not a trivial task - a vigorous discussion on the criteria used for such a procedure
is much needed. On the other hand, the fast-evolving technology developed in Statistic
and Machine Learning literature has shed light on new methods which can be utilized for
dissecting the factor zoo. Feng et al. (2020) employed the double-LASSO selection proce-
dure devised by Belloni et al. (2014) to recursively test factors for driving cross-sectional

asset returns. The double-LASSO selection method is devised to test a small number of
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factors which are of interest to economists while having a large number of controlling fac-
tors. Belloni et al. (2014) show that the double LASSO selection method can overcome the
omitted variable bias. Having said that, our paper is closely related to Feng et al. (2020)
in terms of the research question (i.e., the factor zoo and cross-sectional asset returns).
However, the focus of the research question and the methods utilised are drastically dif-
ferent. First, the focus of our paper is correlation-robust selection: the OWL shrinkage
method will assign similar coefficients to factors if they are highly correlated, while the
LASSO shrinkage method will likely shrink some highly correlated factors to zeros while
keeping others as non-zeros, resulting in unstable factor selections when factors are highly
correlated. Second, conducting statistical testing is the focus in Feng et al. (2020): the
double LASSO selection method is employed to test the significance of factors that were
proposed in a specific calendar year while having all previously proposed factors as con-
trolling factors. They conduct such tests recursively, based on each calendar year. On the
other hand, conducting statistical testing is beyond the scope of this paper. Note that
the OWL estimator is biased in small samples. To conduct statistical tests for the OWL
shrinkage method, a debiased version of the OWL estimator and its asymptotic properties
need to be developed, which can be addressed in a future research agenda. Third, since
the double LASSO selection procedure only conducts test on a small number of factors
(i.e., it does not make inference on the large number of controlling factors), we need to
hand-pick a small subset of factors to be tested (in the case of Feng et al. (2020) they use
each calendar year as the criterion to form such a subset). On the other hand, the OWL

shrinkage method is not restricted by such constraints.

3 Simulation

This section studies the performance of the OWL estimator together with other benchmark

estimators in various Monte Carlo simulation experiments.
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3.1 Simulation design

In our experiment, we consider K candidate factors, 2K /3 of them are useful factors, that is
they are priced (b # 0), and K /3 of them are useless or redundant factors (b = 0). Within
these useful factors, we set half of them (1/3 of total factors) are correlated, while the
remaining half are uncorrelated. In this setting, we include correlated factors, uncorrelated
factors and useless factors in our models.

Let p denote the K x K correlation coefficient matrix of C' (N x K') defined in (3). We
suppose that p1, pa, p3 € (—1,1) and p is divided into 3 blocks such that:

by = | + . i |y bhe=| o i |y bhks=

K/3 K/3 K/3

and

In the block bk; (block 1) the diagonal elements are ones and off-diagonal elements are
p1; similarly for the block bks and bks where off-diagonal elements are p, and p3, respectively.
These three blocks constitute the diagonal direction of matrix p, and elsewhere p is filled
with zeros. This setting allows three blocks of factors. Within each block, factors are
correlated with a correlation coefficient pq,ps or ps, but factors in different blocks are
uncorrelated.

We first set the values of pi, po and p3, and then randomly generate an N x K matrix
C, denoted as simC, which has the correlation coefficient matrix of p. We use block
3 to represent uncorrelated useful factors, thus ps is set to be zero in our experiments.
We consider different correlation coefficient values for p; and ps. Then, we specify the
oracle value for b (risk price) before simulating the cross section of average returns as

ur = simC xb—+ e, where e is the pricing error. We use block 2 to represent useless factors,
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therefore the oracle value of b in block 2 are set to be zeros. Finally, we estimate risk price
with simulated data simC' and ugr using OWL, LASSO, adaptive LASSO, Elastic Net, and

naive OLS estimators.'> Then we compare these estimates with the oracle value of b.

3.2 Simulation results

We consider 90 candidate factors (K = 90). We set the first block of 30 factors as useful
factors (b = 0.1) and they are correlated with correlation coefficient p;; the second block
of 30 factors are useless/redundant factors (b = 0) and they are correlated with correlation
coefficient po; the third block of 30 factors (block 3) are uncorrelated useful factors (we set
b = —0.1 and p3 = 0). For simplicity, we set p; = po and they are chosen from the set
{0.3, 0.5, 0.9 }, which gives various profiles of correlation structure between factors. We
also consider how the variation of N (the number of assets) compared to K (the number of
factors, which is set to be 90 in our experiments) affects model comparisons. To do that,
we choose N from the set {70, 100, 1000 }. When N > K it represents a near-asymptotic
setting. On the other hand, if N ~ K or N < K, it approximate a setting where the
number of factors can be larger than the number of observations - a common characteristic
shared in high-dimensional data-sets. We run 500 trails in our simulation experiment and
we use the mean squared estimation error (MSE) of candidate models as our comparison

criterion. To fix ideas, for the i model, MSE for all factors is defined as follows

500

) 1 A
MSE' = —— b, —
500K Zl H Tep H27

rep=

where rep is the index for the trail in our simulation experiment. To better under the
performance of candidate models under various settings, we look into the MSE for each

blocks, such that
500

i 1 1d
MSEbk’l = m T;1 ||bbk’1,rep - b2k1H27

Similarly, MSE for block 2 and block 3 factors can be defined accordingly.

12Gee Appendix G for an introduction to LASSO, adaptive LASSO, and Elastic Net (EN) estimators.
The OLS estimator is comparable to the Fama-MacBeth regression method. It is only included as a
benchmark if N > K.
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Table 1. Simulation results

Useful factors in bkl Useless factors in bk2 All factors

OWL LASSO adaLLASSO EN | OWL LASSO adaLLASSO EN | OWL LASSO adaLLASSO EN

rho = 0.3 | 0.0008  0.0047 0.0072 0.0037 | 0.0006  0.0005 0.0003 0.0005 | 0.0008  0.0035 0.0049  0.0030

N=70 rho = 0.5 | 0.0006  0.0054 0.0080 0.0041 | 0.0005  0.0004 0.0002 0.0003 | 0.0006  0.0036 0.0051 0.0029
rho = 0.9 | 0.0002  0.0100 0.0120 0.0057 | 0.0002  0.0000 0.0000 0.0000 | 0.0002  0.0043 0.0058 0.0027

rho = 0.3 | 0.0001  0.0007 0.0008 0.0005 | 0.0001  0.0001 0.0000 0.0001 | 0.0001  0.0006 0.0005 0.0005

N =100 rho = 0.5 | 0.0001  0.0010 0.0011 0.0008 | 0.0001  0.0001 0.0000 0.0001 | 0.0001  0.0007 0.0006  0.0006
rho = 0.9 | 0.0001  0.0040 0.0038 0.0024 | 0.0001  0.0000 0.0015 0.0000 | 0.0001  0.0017 0.0020 0.0011

rho = 0.3 | 0.0000  0.0000 0.0000 0.0000 | 0.0000  0.0000 0.0000 0.0000 | 0.0000  0.0000 0.0000 0.0000

N =1000 rho = 0.5 0.0000 0.0000 0.0000 0.0000 | 0.0000  0.0000 0.0000 0.0000 | 0.0000  0.0000 0.0000 0.0000
rho = 0.9 | 0.0000  0.0001 0.0000 0.0001 | 0.0000  0.0000 0.0000 0.0000 | 0.0000  0.0001 0.0000 0.0001

Note: this table reports the Mean Squared Error (MSE) from candidate models. The number of
factors K is 90. We consider three different settings of N: N = 70 high-dimensional setting where N < K
N = 100, where N is marginally larger than K and N = 1000, low-dimensional setting where N > K.
We also consider different correlation setting between factors which is indicated by the parameter p. This
table reports the MSE for the useful factors in block 1, useless factors in block 2 and all factors and MSE
for all factors. Note that MSE for factors in block 3 is not reported but they can be inferred from this
table.

Table 1 reports the simulation results by comparing four candidate models including
the OWL, the LASSO, the adaptive LASSO and the Elastic Net estimators.'® For the
first and second block of factors we allow correlation coefficients between factors to vary
p € {0.3,0.5,0.9}, whereas the third block of factors are set to be uncorrelated. We
also consider three different settings for the value of N. When N = 70, it represents an
environment when the number of observations is smaller than the number of factors, which
typically resembles the characteristics of a high-dimensional setting. When N = 100, it
represents an environment where the number of observations is about the same size with
the number of factors. When N = 1000 it represents an ideal setting where the number
of observation is much larger than the number of factors, which approximates a near-
asymptotic setting. The left panel reports the MSE of the first block of factors which are
useful factors with correlation specified in the table. The middle panel reports the second
block of factors which are useless factors. The right panel reports the MSE for all factors.
Note that the third block of factors are not reported, but it can be inferred from the table.

13Note that the LASSO and EN models are evaluated using a 3-fold cross-validation method for their
tuning parameters. However, we set A\ = Ay = 107° as fixed to ease the computational burden. It implies
that the OWL estimator potentially can perform better if we use cross-validation method to find optimal
tuning parameters for each simulated trials. Furthermore, for the adaptive LASSO we use the OLS estimate
as the adaptive weights when N > K, while we use the LASSO estimate as the adaptive weights when
N < K, since OLS estimation would be infeasible in this case.
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First, we investigate the performance of correlated useful factors (i.e. factors in block
1) as well as “all factors”. Table 1 shows that when N = 70 (which approximate a high-
dimensional setting where K > N) and when N = 100 (i.e. N ~ K), we find that the OWL
estimator achieves the smallest MSE for the correlated useful factors compared to other
benchmarks. Furthermore, we find that other benchmarks such as LASSO, adaptive LASSO
and EN; their performance deteriorate when factor correlation increases and by contrast,
the OWL estimator is less affected. The performance of MSE for all factors also suggests
that the OWL estimator outperforms other benchmarks yielding the smallest MSEs for all
settings for p. When N = 1000 (i.e. N > K which approximates the near-asymptotic
setting), the OWL estimator achieves MSE close to zero in all settings, which confirms
the theoretical result in Corollary 2.2 that the OWL estimator is a consistent estimator.
Although other benchmarks are also consistent estimators, we find that the OWL estimator
achieves smaller MSE compared to LASSO and EN when p = 0.9, suggesting that the OWL
estimator consistently outperforms the LASSO and EN when factors are highly correlated.

It is worth noting that for factors in block 2, the OWL estimator is less effective to
shrink off useless factors compared to the LASSO and EN estimators, with MSE marginally
larger than LASSO and EN in the N = 70 and N = 100 settings. On the other hand,
when N = 1000 (at the near-asymptotic setting) the OWL estimator, along with all other
shrinkage estimators, successfully shrink off all useless factors.

These findings suggest that, when factors are correlated, the OWL estimator is the
preferred estimator especially in the high-dimensional setting. The performance of the
LASSO estimator deteriorates when factor correlation increases. The Elastic Net model
does improve the performance of the LASSO model when factor correlation increases, but
it is substantially outperformed by the OWL estimator.

Table 1 summarizes the performance of four candidate models under various settings
by comparing their average MSEs under 500 trials. To have a better view on how those
candidate models perform for each block of factors, we randomly chose one trail and plot

the estimates from candidate models along with the oracle value. We present our results

14This under-performance of the OWL estimator to shrink off useless factors in small samples can be
overcome by applying thresholding (i.e. set small estimates to zero according to a validated threshold level)
or by applying statistical test utilising the de-biased estimator and its asymptotic properties. However,
those subjects are beyond the scope of this paper, which can be left in the future research agenda.
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and analysis in Appendix E.

4 Empirical analysis

In this section we employ the OWL shrinkage method to find useful factors among 80
(potentially highly correlated) factors. We first introduce the data-sets, followed by a
detailed account of constructing anomaly factors and test portfolios using portfolio sorting.

Then, we reveal the estimation results and discuss their implications.

4.1 Data

We use the U.S. stock data from the Center for Research in Security Prices (CRSP) and
Compustat database'® to construct anomaly factors and test portfolios. The period spans
from January 1980 to December 2017, totalling 456 months on all NYSE, AMEX and
NASDAQ listed common stocks. Risk-free rate and market excess returns are downloaded
from Kenneth French’s on-line data library. All anomaly factors are demeaned and scaled

to have the same standard deviation with the market factor.

4.2 Constructing the factor zoo

We consider 100 firm characteristics described in Green et al. (2017),'% while deleting char-
acteristics that have more than 40% missing data. Then, for each remaining characteristic,
we sort stocks into decile portfolios at each month using uni-variate sorting. Micro stocks,
defined as having market capitalization smaller than the 20 percentile of NYSE listed stocks,
are removed.'” Then, a characteristic-based factor is computed as the spread returns be-
tween the top and the bottom decile portfolios with respect to each firm characteristic after

screening. '® Overall, we obtain 80 anomaly factors which are listed in Table 2. See Green

ISCRSP and Compustat data are downloaded from the Wharton Research Data Services.

16We are grateful to Jeremiah Green for providing SAS code to compute firm characteristics.

17 Although micro stocks only account for less than 10% of aggregated market capitalization, they con-
stitute about 56% of all stocks in the database, implying that small stocks would distort the interpretation
of the aggregated market capitalization if not removed, also see Hou et al. (2014) and Fama and French
(2016) for a similar treatment.

18Characteristics that have insufficient data to construct decile portfolios at every month will be dropped.
Note that the sorting is always from high to low according to characteristics, and the factors are computed
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et al. (2017) for a detailed description of each characteristic.

Next, we conduct a preliminary analysis by checking correlations between factors. Fig-
ure la displays the heat map of factor correlation coefficients matrix measured by their
time series. It shows that 16% of factors exhibit correlation coefficients (absolute value)
greater than 0.5. In particular, ‘beta’ related factors are highly correlated with ‘liquidity’,
‘profitability’, ‘investment’ and other factors. For that reason, Green et al. (2017) ex-
clude ‘beta’ related factors from candidate factors before they employ the Fama-MacBeth
method to find significant factors that drives the cross-sectional returns for the US stock
market. Figure 1b displays the heat map of factor correlation coefficients matrix measured
by factor loadings (i.e. the correlation coefficients of explanatory variables for the second
stage Fama-MacBeth regression). It exhibits much higher correlation compared to Figure
la: 64% correlation coefficients (absolute value) are greater than 0.5, implying a serious
multicollinearity issue if the standard Fama-MacBeth regression is employed.

This preliminary examination of factor correlations shows that many factors are highly
correlated, suggesting severe complications would occur if traditional methods such as the
Fama-MacBeth regression procedure or the LASSO regression model are employed to infer

useful factors. Therefore, a correlation-robust estimation method is much needed.

4.3 Constructing test assets

Regarding test assets, there is a debate in the literature about using either individual stocks
or sorted portfolios as test assets. The main concern in the literature of using individual
stocks as test assets is that it will introduce errors in variables (EIV). When regression
is made on estimated variables, i.e. factor loadings, the pre-estimated factor loadings
would incur estimation errors. Shanken (1992) modified the estimator by introducing
the “Shanken’s correction” term to mitigate EIV. However, others argue that “Shanken’s
correction” is minimal in small samples. On the other hand, Fama and French (2008),

Hou et al. (2014), Feng et al. (2020) advocate sorted portfolios as test assets. Individual

as the top decile return minus the bottom decile return. That will end up with some differences compared
to some familiar notations. For instance, the famous size factor ‘small-minus-big’ in our factor library would
be ‘big-minus-small’, however, they are essentially the same after giving a negative sign. In estimation,
we only care about the coefficient magnitude (i.e., the absolute value). The interpretation of the sign of
coefficients should be looked at together with the sorting order when forming anomaly variables.
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Table 2. Anomaly factors

This table lists all 80 factors considered in our factor library. The abbreviation is consistent with Green
et al. (2017). For a more detailed description of each factor, including the original paper where it is

proposed, please refer to Green et al. (2017).

Abbreviation Firm Characteristics Abbreviation Firm Characteristics

’absacc’ absolute accruals ‘momlm’ 1 month momentum

‘acc’ working capital accruals ‘mom36m’ 36 month momentum

“aeavol’ abnormal earnings announcement volume ’mom6m’ 6 month momentum

‘agr’ asset growth ‘ms’ financial statement score

’baspread’ bid-ask spread ‘mve’ size

"beta’ beta ‘mve_ia’ industry adjusted size

’betasq’ beta squared ‘nincr’ number of earnings increases

"bm’ book-to-market ’operprof’ operating profitability

’bm_ia’ industry adjusted book-to-market 'pchcapx_ia’ i.a. %change in capital expenditures
’cash’ cash holding 'pcheurrat’ % change in current ratio

’cashdebt’ cash flow to debt "pchdepr’ % change in depreciation

"cashpr’ cash productivity 'pchgm _pchsale’ % change in gross margin - %change in sales
‘cfp’ cash flow to price ratio "pchquick’ %change in quick ratio

‘cfp_ia’ industry adjusted cfp 'pchsale_pchinvt’ % change in sale - % change in inventory
’chatoia’ industry adjusted change in asset turnover ’pchsale_pchrect’ % change in sale - % change in A/R
’chesho’ change in share outstanding 'pchsale_pchxsga’ % change in sale - % change in SG&A
’chempia’ industry adjusted change in employees 'pchsaleinv’ % change in sales-to-inventory
"chinv’ change in inventory 'pctacc’ percent accruals

’chmom’ change in 6-month momentum "pricedelay’ price delay

’chpmia’ industry adjusted change in profit margin  ’ps’ financial statement score

“chtx’ change in tax expense ’quick’ quick ratio

"cinvest’ corporate investment retvol’ return volatility

‘currat’ current ratio roaq’ return on assets

"depr’ depreciation roavol’ earning volatility

"dolvol’ dollar trading volume roeq’ return on equity

dy’ dividend to price roic’ return on invested capital

‘ear’ earnings announcement return rsup’ revenue surprise

‘egr’ growth in common shareholder equity ’salecash’ sales to cash

‘ep’ earnings to price ’saleinv’ sales to inventory

gma’ gross profitability ’salerec’ sales to receivables

‘greapx’ growth in capital expenditure ’sgr’ sales growth

“grltnoa’ growth in long term net operating assets 'sp’ sales to price

"hire’ employee growth rate ’std_dolvol’ volatility of liquidity (dollar trading volume)
idiovol’ idiosyncratic return volatility ’std_turn’ volatility of liquidity (share turnover)
i illiquidity ’stdacc’ accrual volatility

"invest’ capital expenditure and inventory 'stdef’ cash flow volatility

lev’ leverage tang’ debt capacity/firm tangibility

g1’ growth in long term debt tb’ Tax income to book income

‘maxret’ max daily return ‘turn’ share turnover

‘mom12m’ 12 month momentum ’zerotrade’ zero trading days
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(b) Factor correlation measured by factor loadings

Figure 1. Factor correlation coefficients
This heat map displays the matrix of correlation coefficients of all 80 anomaly factors. Dark red and deep
blue colors signal high correlation (positive or negative) while light colours indicate low correlation. There
are N test assets and K factors, each asset/factor has T time series observations. “Factor correlation
measured by time series” means the correlation coefficients matrix is computed through the 7' x K factor
time series data. “Factor correlation measured by factor loadings” means the correlation coefficients matrix
is computed through the N x K factor loadings after the first stage of Fama-MacBeth regression.
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stocks are usually noisy and exhibit outliers, which are the main source of EIV. Sorted
portfolios are (weighted) mean returns of a group of stocks sharing similar characteristics,
which would be less affected by the EIV problem.

Nonetheless, the biggest drawbacks of using individual stocks stem from missing data
and micro stocks. It is inevitable, over a long period of time, to have new firms entering
and old firms exiting, which frequently causes missing data in our data-sets. Discontinuity
of data leads to imprecise estimation of the covariance matrix of returns and factors, which
is essential for factor inference. On the other hand, sorted portfolios are constructed at
each point of time while sorting (possibly varying) stocks that share similar characteristics
into portfolios, guaranteeing that they are immune to the missing data problem.

Small stocks bring up another major concern of using individual stocks as test assets.
Small stocks take up the majority of all stocks, while only a few big stocks constitute a large
share of total market capitalization. If individual stocks are used to gauge factor impact,
it is inevitable that they will distort the market implications: small stocks will dominate
the estimation result if individual stocks are used for test assets - big stocks which have
much larger impact on the market capitalization will be out-weighed by the large number
of small stocks. Sorted portfolios, on the other hand, can circumvent this issue by using the
value weighted sorting method, in which portfolio returns are computed by the weighted
average of stocks returns where the weights reflect their market capitalization.

Fama and French (1992, 2016) use bi-variate sorting to create the five by five test port-
folios which have now become popular choices for test assets. However, Harvey et al. (2015)
caution that when only a small set of sorted portfolios are considered for test assets, factor
selection is biased towards the same characteristics that are used to form test portfolios.
Lewellen et al. (2010) argue that the 25 size and value sorted portfolios are too low a thresh-
old to test factors. They recommend adding other portfolios in test assets. Following their
advice, Feng et al. (2020) construct a large set of combined bi-variate sorted portfolios as
test assets. In particular, they use the ‘size’ characteristic and the other remaining char-
acteristics to form five by five bi-variate sorted portfolios and pool them together as the

grand set of test assets. We follow Feng et al. (2020) to construct bi-variate sorted test
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portfolios and we obtain 1927 test portfolios as our grand set of test assets.'”

4.4 Estimation results: which factors matter?

We use the SDF method described in Section 2.2 to estimate the risk prices for all factors
using the OWL shrinkage method. We use sample analogs of C' and pg in our estimation.

' . P 1 T R R R 1 T R 1T
Specifically, C' = Cov(R, f) = = S2(Ri = i) (fi = i)', fiy = 7 32 fo and jin = — 3 R
t=1 t=1

For robust estimation, we lookqiﬂrft:o1 the following cases: first, we consider the full safmple
estimation as well as its sub-samples, to check the time-varying treand of factor selection.
Second, we compare different weighting methods (equal weighted or value weighted) for
sorting portfolios and investigate their impact on the estimation results - value weighted
portfolios would put more weights on large stocks whereas equal weighted portfolios are
dominated by small stocks. Third, we use different percentile (20, 30 and 40 percentiles,
respectively) to remove micro stocks before sorting portfolios. A larger percentile used to
remove micro stocks means larger proportion of small stocks are removed before sorting
portfolios, resulting in factor selection that is more influenced by larger stocks.

Table 3 reports the estimation results. The first 5 columns are estimated using the full
sample, columns 6-7 report results of the first half sample, from 1980 to 2000, and columns
8-9 reports the second half sample, from 2001 to 2017. Both the value weighted (vw) and
equal weighted (ew) methods are considered. Also, three levels to partition micro stocks are
considered. This table lists all anomaly factors selected in each estimation. It also reports
how many times each factor has been selected by all estimations and the ordinal number
(in the bracket) for each factor in a separate estimation, which indicates the importance of
the factor (smaller number implies greater importance).?’

Table 3 shows that ‘size’ (mve) factor has been selected as the most important factor
in most of these estimations which, however, is not surprising. ‘Size’ characteristic has
multiple entries in forming test portfolios, thus ‘size’ impact prevails in test portfolios. For

this reason we exclude ‘size’ factor as a competing factor, yet we include it in the table to

19We drop any test portfolios which have insufficient stocks to sort at any time, due to missing data.

20Tt is worth stressing that the factor selection in each estimation does not imply a true parsimonious
asset pricing model, as such an implication would require statistical tests on factors. Instead, we are
focusing on the important factors selected by the OWL estimator - since all factors are scaled to have the
same mean and variance, their estimated coefficient can be interpreted as the importance of factors.
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Table 3. Estimation results

This table reports the selected factors using the OWL shrinkage method. We consider the full sample from 1980 to 2017 and two sub samples divided
by year 2000. Equal weighted (ew) and valued weighted (vw) sorting methods are both considered. Three treatments of micro stocks are considered:

we remove stocks that are smaller than 20 (30 or 40 ) percentile of NYSE listed stocks. For each combination of the sample size, weighting method

and micro-stock treatment, we list all selected factors with the ordinal numbers in the bracket (smaller means more important).

Sample size
Weighting
Micro stock

# selected
agr
baspread
beta
betasq
cash
cashdebt
dolvol
egr
ill
invest
mom12m
mom6m
mve
pchcapx_ia
pchecurrat
pchquick
retvol
roaq
roic
salecash
saleinv
sp
std_dolvol
stdef

turn

R R O R PP WNRFRNERFRONRFRDNSWWEREWWNDND O

full full full full full 1980:2000 1980:2000 2001:2017 2001:2017
VW VW VW ew ew VW VW VW VW
20 prctile 30 prctile 40 prctile 20 prctile 40 prctile 20 prctile 40 prctile 20 prctile 40 prctile
agr (8) agr (8) agr (5) agr (4) agr (5)
baspread (7) baspread (4)
beta (1) beta (1)
betasq (4) betasq (2) betasq (2)
cash (6) cash (7) cash (6)
cashdebt (6) cashdebt (2) cashdebt (7) cashdebt (2)
dolvol (10) dolvol (6) dolvol (6)
egr (4) egr (3) egr (9)
ill (2) ill (2) ill (6) il (2) ill (5) ill (2) ill (6)
invest (7) invest (10)
mom12m (3)
mom6m (1) mom6m (4)
mve (1) mve (1) mve (1) mve (1) mve (3) mve (1) mve (1) mve (5)
pcheapx_ia (5)
pcheurrat (4) pcheurrat (3) pcheurrat (9) pcheurrat (4)
pchquick (11) pchquick (4)
retvol (3)
roaq (2) roaq (7)

roic (5) roic (7)

std_dolvol (3) std_dolvol (5) std_dolvol (4)

std_dolvol (3) std_dolvol (7)

salecash (3)

saleinv (5)
sp (6)

stdef (7)
turn (8)

roic (5)

std_dolvol (3)




show that the OWL estimator can correctly identify relevant factors.

The ‘illiquidity’ (ill) factor (Amihud, 2002) is the most important anomaly factor for
cross-sectional returns. Its importance is particularly evident with smaller stocks. Portfo-
lios sorted with size greater than 20 or 30 percentile of NYSE listed stocks exhibit higher
importance of ‘illiquidity’ than those with 40 percentile, implying that small firms face
severer liquidity constraints. ‘Standard deviation of dollar volume’ (std_dolvol) (Chordia
et al., 2001) which is another proxy for liquidity risk, follows ‘illiquidity’, becoming the
second most important anomaly factor. Meanwhile, its high correlation with ‘illiquidity’
is also identified by the OWL estimator. Liquidity as a risk source that influences cross-
sectional asset returns has been documented extensively in the literature, see Pastor and
Stambaugh (2003) and Acharya and Pedersen (2005) for example.

‘Asset growth rate’ (agr) follows ‘illiquidity’ and ‘standard deviation of dollar volume’
as the third most frequently selected anomaly factor. This finding coincides with Hou et al.
(2021) in which they propose an augmented ¢5 model, adding ‘asset growth rate’ as a fifth
factor into their well celebrated ¢4 factor model (Hou et al., 2014). Other anomaly factors
that have been selected multiple times include ‘beta’; ‘beta squared’ (betasq), ‘cash to debt
ratio’, and ‘percentage change in current ratio’ (pchcurrat), which are also correlated with
liquidity risks. Beyond that, ‘momentum’, ‘return on invested capital’ (roic), ‘return on
assets’ (roaq) and other profitability related factors are also selected by the OWL estimator
as useful factors, particularly for the first half of the sample period.

Columns 6 and 7 report estimations using the 1980 - 2000 sub-sample and columns 8 and
9 report estimations using the 2001 - 2017 sub-sample. We find that liquidity constraint only
appears in the second sub-sample (2001 - 2017), where liquidity related factors (‘baspread’,
‘standard deviation of dollar volume’, ‘change in quick ratio’; etc...) play an important role
in explaining the cross section of average returns. However, in the first sub-sample (1980 -
2000), columns 6 and 7 show no strong evidence that liquidity related factors drive asset
prices. On the other hand, ‘momentum’ and ‘profitability’ factors are the most important
ones to drive asset prices between 1980 and 2000. This implies a time-varying trend of
factors that dictates cross-sectional returns.

Interestingly, from 1980 to 2000, with 20-percentile-micro-stocks excluded, we find ‘size’

29



(mve) is not selected as an useful factor to drive cross-sectional returns, which makes it the
only exception from all estimations. This phenomenon is well documented in the literature,
see Amihud (2002) and Asness et al. (2018) for example. The size effect weakened after its
discovery in the early 1980s. However, our estimation results suggest that the size effect
is evident during this period after removing 40-percentile-micro-stocks, which implies that
the vanishing size effect is likely to be caused by some small “junk” stocks. Once removing
these junk stocks, size effect resurfaces again, which echoes the discovery by Asness et al.
(2018): size matters, if you control your junk. Asness et al. (2018) shows that when adding
some controlling variables (measuring the junk-level of stocks) in their regression model,

they find that the size-effect is significant even in the early 1980s.

4.5 Robustness check

In this section, we check whether, and to what extend, different sorting methods and
different treatments of micro stocks would affect our estimation results and factor selections.

Because of the limitation of space, we place Section 4.5 in Appendix F.

4.6 Out-Of-Sample analysis

In this section, we use the selected factors to construct hedging portfolios in an out-of-
sample framework following Freyberger et al. (2020). This exercise aims to compare the
OWL shrinkage method with other benchmarks by evaluating their hedging portfolio re-
turns (based on different factors selected by each model). Apart from the OWL shrinkage
method, we consider three other benchmarks, including the LASSO shrinkage method, the
Elastic Net model, and the two-pass Fama-MacBeth (FM) procedure. To enable fair com-
parison, we consider a five-factor model and select only the five most important factors
determined by each method to form hedging portfolios.

To offer some insights on the time-varying trend in factor selection, we also consider
two sub-samples, divided before and after 2000. We report the five most important factors

selected by each method.?!

21For robustness check, we also experimented on a three-factor and a four-factor model for out-of-sample
prediction. We find that conclusions are similar.
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It is worth noting that we put the market factor (mkt) together with 80 anomaly factors
as the grand set of factors we can choose from. Because the market factor is often highly
correlated with many anomaly factors, its importance, though backed by financial theory,
is often compromised by the high-correlation with other factors. Therefore, it is frequently
deemed as an unimportant factor when using traditional methods. We further investigate
its implications in the following text.

Table 4 reports the five most important factors selected using various methods in differ-
ent samples while controlling micro stocks. We find that selected factors vary substantially
between different sample periods, signalling time-varying trend in prominent factors that
drive cross-sectional asset returns. In addition, controlling micro stocks has a big impact on
factor selection too. While including all micro stocks (P00), all methods select a mixture of
‘liquidity’, ‘profitability” and ‘momentum’ related factors. However, once we remove micro
stocks (P20 and P40), we can find some patterns in selected factors: OWL suggests that
the most important factors to drive asset prices in the first sub-sample are ‘momentum’
and ‘profitability’ related factors while ‘liquidity’ related factors are relatively unimportant.
However, the implication is reversed in the second sub-sample, where ‘liquidity’ related fac-
tors mainly drive asset prices. On the other hand, LASSO and other methods do not show
a clear pattern of change in characteristics.

Interestingly, we find that the OWL shrinkage method is the only method that con-
sistently identifies the market factor as an important factor to drive cross-sectional asset
returns, especially when micro stocks are removed before portfolio sorting. This finding is
consistent with numerous finance literature related to the CAPM model of Lintner (1965)
and Sharpe (1964). On the contrary, other benchmarks such as LASSO, Elastic Net and
Fama-MacBeth estimators all fail to identify the market factor as an important factor to
drive cross-sectional returns even when 40 percentile of micro stocks are removed. As
discussed before, this is caused by high correlation between the market factor and other
factors. This finding reiterates the merit of using the OWL shrinkage method when factors
are highly correlated.

Next, we want to compare the out-of-sample performance between various methods. In

particular, we follow a similar procedure to Freyberger et al. (2020) to form factor-hedged
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Table 4. Full/sub-sample factor selection using various methods

This table reports the first five factors selected with greatest magnitude of b using methods including OWL,
LASSO, Elastic Net (EN), and two-pass Fama-MacBeth regression (FM). We do factor selection either on
the full sample (full) or two sub-samples, divided by year 2000 (subl and sub2). We also control micro
stocks: we consider all stocks (P00), or remove micro stocks’ market capitalisation which is smaller than
20/40 percentile of NYSE listed stocks (P20/P40).

First five selected factors (decreasingly) ordered by their magnitude of b

Panel A: Full sample estimation

OWL i1 ‘mve’ "cash’ ’chpmia’ roeq’
LASSO "idiovol’ ‘mve’ ‘'mom6m’ 'zerotrade’ ‘operprof’
full POO EN "idiovol’ ‘mve’ ‘mom6m’ il "petace’
FM "idiovol’ ‘maxret’ Bk betasq’ beta’
OWL ‘mve’ il ‘mkt’ ’std_dolvol’ 'pcheurrat’
LASSO "idiovol’ ‘mve’ A ‘mom36m’ ‘ms’
full P20 EN ‘mve’ "idiovol’ i1 ‘mom36m’ "bm’
FM "idiovol’ "baspread’ A1 "beta’ "betasq’
OWL ‘mkt’ ‘mve’ "cashdebt’ ‘egr’ ’std_dolvol’
full P4 LASSO ‘mve’ "idiovol’ i1 ‘operprof’ roavol’
ull P40 EN ‘mve’ "idiovol’ Bk ‘operprof’ ‘mkt’
FM "idiovol’ "baspread’ i1 "betasq’ "beta’
Panel B: sub-sample estimation (1980:2000)
OWL 'pchecurrat’ 'sp’ "bm’ ‘mkt’ "absacc’
b1P LASSO ‘dy’ ‘turn’ "acc’ ‘mve’ 'sp’
subl_PO0 EN ‘dy’ turn’ "acc’ ‘mve’ il
FM ‘maxret’ retvol’ "idiovol’ "betasq’ ‘mom1m’
OWL ‘mkt’ ‘mom6m’ ‘roaq’ ’salecash’ ‘pcheurrat’
LASSO "baspread’ "dy’ ‘gma’ ‘mve’ A1
subl P20 pN "baspread’ dy’ ‘ema’ ‘mve’ il
FM "idiovol’ "betasq’ "beta’ ‘ep’ "baspread’
OWL ‘mkt’ ‘mve’ "cashdebt’ ‘mom12m’ ‘mom6m’
bLP LASSO ‘mve’ ‘mve_ia’ 'std_turn’ "invest’ ‘turn’
subl P40 EN ‘mve’ ‘mve_ia’ 'std_turn’ "invest’ ‘turn’
FM "idiovol’ beta’ "betasq’ "baspread’ retvol’
Panel C: sub-sample estimation (2001:2017)
OWL Al ‘mve’ "cash’ ‘mkt’ ‘roeq’
b2 P LASSO ‘mve’ i ‘stdacc’ ‘gma’ petace’
sub2_P0D EN ‘mve’ A1 "pctace’ ’stdacc’ ‘agr’
FM pilg "idiovol’ "dolvol’ "baspread’ ’std_dolvol’
OWL ‘mve’ i ‘mkt’ ’std_dolvol’ "pchquick’
LASSO ‘mve’ "pchquick’ "idiovol’ Al 'pcheurrat’
sub2.P20 gy ‘mve’ "pehquick’ il "idiovol’ "pcheurrat’
FM Al "baspread’ "idiovol’ ’std_dolvol’ "dolvol’
OWL ‘mkt’ "beta’ "betasq’ retvol’ "baspread’
b2 P4 LASSO ‘mve’ il ‘roavol’ ‘tang’ "pchquick’
sub2_P40 EN ‘mve’ i1r "sgr’ "pchquick’ ’salerec’
FM "idiovol’ "baspread’ i1 "betasq’ "beta’
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portfolios using a rolling window scheme to predict returns. First of all, we choose five most
prominent factors as shown in Table 4 while considering different samples and different
treatment of micro stocks (i.e. remove micro stocks at the 20- and 40-percentile levels).
Then we use a rolling window scheme (rolling window size is 120 months) to evaluate the
performance of the factor-hedged portfolios with each method. Specifically, at the end of
each estimation window, we regress each test asset on factors selected by each method, but
with one period lagged behind. For instance, at time ¢, we regress each test asset return
from ¢t — 120 — 1 to ¢ on selected factors from ¢ — 120 — 2 to ¢t — 1, and obtain B We then
forecast each test asset’s next period return (at ¢+ 1) by multiplying B and selected factors
at t. We then sort stocks by their predicted returns into decile portfolios and long the top
decile and short the bottom decile. At the next period (¢ + 1), when returns are realized,
we can compute the spread portfolio return. Subsequently, we roll the window one period
forward and repeat the steps until the end of period. In the end we compute four moments
of the factor-hedged portfolio returns in the out-of-sample period as well as the Sharpe
ratio.

Table 5 reports performance scores including the Sharpe ratios and the four moments
of out-of-sample returns of hedged portfolios using the OWL, LASSO, Elastic Net and
Fama-MacBeth methods. Panel A suggests that in the full sample estimation, the OWL
estimator produces about 20% higher Sharpe ratio than other benchmarks. In addition,
we find that the skewness and the kurtosis of the OWL hedged portfolio are much smaller
those of other benchmarks. Fama-MacBeth estimator typically performs the worst. We
reckon that it is severely affected by factor correlations and estimation result is eroded
by weak factors in the second pass Fama-MacBeth regression, see Kleibergen (2009) for a
detailed discussion on this matter.

In sub-sample estimations, we find that the Sharpe ratios of the factor-hedged portfo-
lios are typically much higher than that of the full-sample estimation in all methods we
considered. Furthermore, we find that the skewness and the kurtosis of hedged portfolio
returns are significantly reduced compared to the full-sample estimation, making the distri-
bution of the out-of-sample returns more “normal” alike. This trend signals a time-varying

nature in prominent factors that drive asset prices. In addition, we find that the Sharpe
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Table 5. Out-of-sample portfolio performance with a five-factor model

This table reports the out-of-sample portfolio performance using a rolling window scheme while controlling
micro stocks (P20/P40: only include stocks are larger than 20/40 percentile of the NYSE listed stocks).
Factor selection strategies include OWL, LASSO, Elastic Net (EN), and Fama-MacBeth regression (FM).
The upper panel is obtained using the full sample; the middle and lower panels are obtained using
sub-samples.

SR Mean Std Skewness Kurtosis

Panel A: full sample estimation

OWL 1.21 2.17 6.24 -0.07 9.48
LASSO 1.01 2.13 7.30 2.21 31.09
fullP20 - oy 1.04 2.6 7.52 1.71 27.70
FM 0.96 1.96 7.08 2.88 37.37
OWL 0.90 1.59 6.13 1.39 925.06
LASSO 0.77 1.48 6.62 4.09 57.11
full P40 py 0.82 1.52 6.39 3.17 46.12
FM 0.72 1.41 6.79 3.68 49.89
Panel B: sub-sample estimation (1980:2000)
OWL 2.10 92.54 4.18 0.10 3.41
LASSO 1.87 2.09 3.87 0.10 3.48
subl.P20 g 1.87 2.09 3.87 0.10 3.48
FM 1.66 1.92 4.01 0.65 5.45
OWL 1.35 1.34 3.44 -0.03 4.37
LASSO 1.03 1.13 3.82 0.02 3.67
subl P40 py 1.03 1.13 3.82 0.02 3.67
FM 0.75 0.75 3.50 -0.21 5.62
Panel C: sub-sample estimation (2001:2017)
OWL 2.10 2.43 4.67 1.02 8.72
LASSO 1.91 2.10 3.80 0.16 3.51
sub2 P20 by 1.91 2.10 3.80 0.16 3.51
FM 1.78 1.80 3.49 -0.48 3.82
OWL 92.11 2.04 3.34 0.62 5.83
LASSO 1.80 1.69 3.27 0.58 6.16
sub2 P40 oy 1.69 1.59 3.25 0.37 4.44
FM 1.80 1.75 3.35 0.13 2.91

34



ratio of the OWL-hedged portfolios are consistently higher than other benchmarks in all
sample periods. In the first sub-sample, the OWL shrinkage method picked ‘momentum’
and ‘profitability’ related factors as the most important factors, whereas the other bench-
marks picked up mostly ‘liquidity’ and ‘beta’ related factors.?” Figure 5 Panel B shows
that those ‘momentum’ and ‘profitability’ related factors, selected by the OWL shrinkage
method, predict stock returns better than other benchmarks: resulting in 20% to 30%
higher Sharpe ratios. A similar result can be found in Panel C for the second half sample
estimation: the OWL-hedged portfolios yield the highest Sharpe ratios compared to other
methods.

5 Conclusion

In the zoo of factors, using traditional methods, such as Fama-MacBeth regression and
the LASSO shrinkage method to find factors that drive cross-sectional asset returns, faces
tremendous challenges due to factor correlations. Nonetheless, we find that among 80
anomaly factors we considered, 64% of them exhibit correlation coefficients greater than 0.5
(absolute value), which casts doubt on the validity of using these traditional methods. By
contrast, the OWL shrinkage method permits factor correlations and achieves correlation
identification and sparsity shrinkage simultaneously. We derive the statistical properties for
the OWL estimator and show that the OWL estimator is a consistent estimator under some
regularity conditions. Monte Carlo experiments confirm the superior performance of the
OWL estimator against other benchmarks when factors are correlated. Empirical analysis
reveals that the OWL shrinkage method consistently chooses the ‘market’ factor as the most
important factor to drive cross-sectional asset returns, while other benchmarks all failed to
identify the ‘market’ factor as an important factor due to its high-correlation with other
factors. In addition, out-of-sample analysis shows that the OWL shrinkage method can
select factors that yield the highest Sharpe ratios in the factor-hedged portfolios compared
to other benchmarks.

Finally, note that the purpose of this paper is not to find a “true” parsimonious asset

pricing model, but to robustly identify a set of sparse factors to drive cross-sectional asset

22Note that ‘beta’ related factors are highly correlated with many other factors.
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returns under potentially highly correlated factors. Bearing that in mind, our procedure
is particularly useful for factor investing: the OWL shrinkage method can identify corre-
lated factors that jointly drive stock returns, and can be further utilized to form portfolio
strategies, see Asness et al. (2013) for an example. However, finding a “true” parsimonious
asset pricing model remains as a key research question in the finance research. Such task
is achievable once a de-biased version of the OWL estimator is developed - and that can

be considered as a future research subject.
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Appendix

A The OWL penalty, geometric interpretation and
comparison with the LASSO

This section explains why the LASSO estimator is problematic whereas the OWL estimator
is robust with correlated factors. Recall that the OWL penalty is defined as

K
Qu(b) = w'[bly = > wilbly, (A1)
i=1

where [b];) and w; are specified in (7) and (8), respectively. Consider a simple two dimen-
sional case, where K = 2. Then, the atomic norm of the LASSO and the OWL penalty

can be written as

Qu,rasso(b) = Alby| + Abo| < 1, (A.2)

Quowr(b) = wi|b|p) + walblig < 1, (A.3)

respectively. Recall that [b|;) = max (||, |b2]) and |b|y = min(|by], |b2|). Therefore, equa-

tion (A.3) can be written as

wi|by| + walbe] <1, if  |by| > |baf,
Quowr(b) = (A4)
wi|ba| +walbi| <1, if  |by| < b,

which implies that the geometric interpretation of the atomic norm of the LASSO and
OWL penalties can be shown as in Figure 2.

Next, we will compare the LASSO and OWL penalties following a geometric argument,
typically illustrated in the machine learning literature. From Figure 2, we can see that the
LASSO norm has vertexes on both axes, which makes the LASSO estimator enjoy the sparse
selection property (i.e., it shrinks one variable to zero while keeping the other non-zero).

During estimation, the tangent point between the penalty norm and the contour coming
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Figure 2. Geometric interpretation of OWL and LASSO penalties
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from the un-regularized solution determines the estimation results. However, when two
variables are highly correlated, the frontier of the contour coming from the un-regularized
solution is flat. Given the shapes of the LASSO norm and the contour under correlated
factors, it is very unstable in determining which variable to shrink. A slight estimation
error from the un-regularized solution can easily produce opposite inferences on factors
selections. On the other hand, the OWL norm not only has vertexes on both axes, it also
has vertexes on the +45 degree lines. Those vertexes on the axes produce sparse selection
like the LASSO estimator, while those on the £45 degree lines yield grouping property
which ensures robust factor selection while factors are correlated. When factors are highly
correlated, they will be assigned with similar coefficients.

Also, note that

)7

i 1
bl = min([bal, ba]) = 5 (1ba] + Ioa] = || = [ea]))

1
bliy = masx([br], [bo]) = (bl + [ba] + | 1] = [b2

Then the OWL penalty can be written as

+ -
w w w1 — W
Qu,passo(b) = wi|bl) + walbly = — 5 2 (b1 + ba]) + — 5 211a] = (b2,

which suggests that the OWL penalty term can be decomposed into two components: first,
|b1| + |b2|, which is the same as the LASSO shrinkage method, which produces sparse
b1 — |2

factor selection; second, , which shrinks |b;| # |bs|, where the shrinkage intensity

is controlled by (w; — wy)/2. Note that, by the definition of w, we have w; — wy = Ag.
Therefore, the turning parameter Ay has a direct impact on the grouping property of the

OWL estimator and thus can be controlled to achieve desirable grouping intensity.
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B Proof of theorems

B.1 Proof of Theorem 2.1

The proof of Theorem 2.1 relies on the Pigou-Dalton transfer principle and the directional
derivative lemma at the minimum of a convex function. It follows using a similar argument
as in Figueiredo and Nowak (2016), except that we are dealing with both the time-series

and cross-sectional dimensions.

Lemma 1 (Pigou-Dalton transfer principle). Let be given vector x € R, and its two
components x;, x; are such that x; > x;. Let € € (0, (x; — x;)/2), zi = x; — €, 2; = T; + €,
and z, = xy, for k #1i,j. Set Q,(x) = 'z, where w € RY, and wy > wy > -+ > w,. It
holds

Qu () — Qu(2) > Age, A, = 1min Wit — Wi
=Ty

Lemma 2 (Directional derivative). The directional derivative of function f: RE — R at
x € dom(f), in the direction u € RE is given by

f(z,u) = lim [f(z+ au) — f(2)]/o, > 0.

a—0t

If f is a convex function, then x* € argmin(f) if and only if f'(x*,u) > 0 for any direction
u e RE.

1
Proof of Theorem 2.1 . Denote the objective function in (7) as Q(b) := §H,uR — Cb||3 +
Q.,(b). By definition, b is the minimizer of Q(b), Q(b) < Q(b) for all b. Thus by Lemma 2,

for any wu,

Q'(b,u) > 0. (B.5)

Suppose
A2

||MR||2||0R||27

o(fi—fi) < (B.6)

and assume
b; # b;.
We will show a contradiction between the assumption b; # l;j and (B.6). Without loss of the

generality, assume b > i)j, i < j. First we define a special direction vector u = (uq,- - , ux).
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Set u; = —1, u; =1, ux, = 0, for k # 7, j. The directional derivative of () at b with such u is

Q’(i), U) = lim <QLa<67 U) + R.Pa(i), ’U,)) , (B7>
a—0t
where

A~ S 7 2 . . ~ 2

QL (b.u) = Ir = O+ aw)ll3 — |lus — CBII}
2a
RP, (b u) = Qu(b+ au) — Qw(b)‘
o

By definition of u, we have —aCu = «(C; — C}), where C; and C; are the i and 5

columns of the factor-return covariance matrix C. Hence Q L, (b, u) can be written as

OLu (b, u) = e = Cb+ a(Ci = I3 = |Ine = CIl
o 20 :
Observe that
QL) — = O + 20 = CH(C = C) + o), = O ln =
o 2a

— (g — CH)(C; — C;) as a — 0.
Applying the Pigou-Dalton transfer principle on RPQ(E), u) with € = o, we obtain

—RP,(b,u)a = Qu,(b) — (b + au) > Ao

So for any « and wu,

By the definition of w in (8), A, = Ag. Therefore, applying the above bound in (B.7), we

obtain

~

Q'(b,u) < (ur — CH)(Ci — Cy) — A,
= (g — CH)(C; — C}) = Xa.
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Using Cauchy-Schwarz inequality, we have (ur — C'l;)(C'Z- —Cy) <||lpr — CI;||2 [|Ci — Cll2-
So (B.8) becomes
Q'(b,u) < ||ur — Cbl|> |C; — Cjll2 — Xo.

Since y1g — Cb is a pricing error, then ||jug — Cbl|s < [|p|2, while by definition cov(R, fi -
fi) = C; — C;. Then we have

Q'(b,u) < |lurllz [lcov(R, fi = f)ll2 = Ao (B.9)

Now we further utilize the covariance inequality. For any n = 1,---, N, R, is the n*"

column of the return matrix R, we have

cov(R,, fi — fj) < \/V&l"(Rn)Val"(fi — fi)=ogr,o(fi — fi)s (B.10)
where o, is the standard deviation of the n'* test asset. Apply (B.10) in (B.9), we have

Q'(bw) <llugll lloro(fi = fi)llz = Ko
= [lurlle llorllz o(fi = f;) = Xa,

(B.11)

where o is a NV x 1 vector collecting the standard deviations of N test assets. So (B.11)
together with (B.6) implies
Q'(b,u) <0,

which violates (B.5). Hence there is a contradiction between b; # b; and (B.6). So we must

have

&
Il
>

<

which completes the proof. O

B.2 Proof of Corollary 2.1

Proof. The proof of corollary 2.1 follows the same method as in Appendix B.1, except we
choose a special vector for u where we set u; = 1, u; = 1, uy = 0, for k # ¢, j. The rest of

the proof follows trivially. O
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B.3 Proof of Theorem 2.2

Proof. By definition the OWL estimator is minimizing the function

K
P 1 1
b=bowr = arg;niﬂ NHNR — Cblf5 + N Zz:l:[/\l + A2 (K —4)]|blja,
where |b]( denotes the element of the decreasingly ordered vector of |b|, such that |b[p; >
bl > ... > |blik]. Let b° be the vector of true values of risk prices, and pp = Cb° + .

According to the “argmin” property, definition of b implies

1 N 1 N2 1 1 )
NHMR—CngJrNZP\l + Ao (K —4)]|bly < N||MR—CbO||§+NZ[AHL)\Q(K—Z)HZJOM

(3 3

(B.12)
Since w; = A1 + Ag(K — 1) is in a monotone non-negative cone and wy > we > ... > wg, wWe

have

D P+ XK = 0)]lbliy = wicl (bl = Al [bll1,

%

D Aa(K = DI < Bl = P+ A = DI,

7

Together with pup = Cb° + €, this implies that (B.12) can be simplified as:
1 7 0Y][2 AL 2 0 1 0
FNCG =)+ bl = e Cb =67 + A + Ao (K = D[] . (B.13)

Note that
/ 7 0 < / (]) 7 0
2|1€C(b—10b")| < (1m§j8£§<2’60 \) [|b—b"]1. (B.14)

Hence, (B.13) can be written as

1 2oz, My 1 1 () ) 1 0
G-+ 1l < (5 max 2€CON) =1t 5 DK~ D). (B.15)

Consider the event

1 )
E = {— max 2|¢'CY)| < /\0} , (B.16)

1<j<K
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log K
N

where \g = &

bounded as

—|IC(b—bO)||2+ )\1||b||1<)\0||b—b0||1+ [>\1+>\2( = DJ[[e°[]1.
S :
By assumption, N 2Xo. Therefore, (B.17) can be written as

2 2
NIIC(b—b°)||§+NA1IIbII1< IIb—b°||1+N[/\1+A2(K D81

Note that

12> 10 Il = [1bsq

c
sg 1

S0

16— 8111 = [[bsy — b2, [0 + |[bsg] 1.

Therefore, using (B.19) and (B.20), (B.18) can be written as

2. 2 )
1= + —1(|Ib [l = [1sg

sllh)

2>\1 20 (K — 1

S+

< X1l — 1,

1)+

Note that [|b9 [l; = [|6°]l1, so (B.21) can be written as

200 (K — 1)Hb°||
N r

2. AL
110Gk - )13+ < 3 by — 5, 11 +

By (B.20), [|bss|[1 = [|b — 0°||1 — [[bs, — b2, || Utilizing this in (B.22), we obtain

22 (K — 1

2 ~ )\1A )\1A )
~CG = )13 + 1o = 80111 < 45 by — 8, [l + =218l

By Assumption 3, the restricted eigenvalue condition states that

9 ) ) b'>b
o= min min 7 > 0,
soC{L K} beRrK\{0} [|by,[3

|so| <K [Ibsg [11<3][bs |1
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and k is a positive constant. Then, in view of (B.16), (B.15) can be

(B.17)

(B.18)

(B.19)
(B.20)

(B.21)

(B.22)

(B.23)



which implies that for any b,
o2 < V'Sh < y'SbS
DT 1o l3 T 11bsol17

where S is defined in Assumption 2 and the second inequality follows by utilizing the norm

inequality [|bs,||1 < V/'S||bs,||2- Rearranging the above inequality, we have
15, I7 < V'SbS/ 5, (B.24)

which is called the compatibility condition in Buhlmann and Van De Geer (2011) pp. 106.

!/

Applying (B.24) on ||bs, — bY |1 and using S =

, we have

[1bsy = 05, 11T < (b= 17YS(b = 1°)S/5 = ||C(b — ") 55/ (N &),
[1bsy = 05, 11 < [1C (b = 0)[12V'S/ (VN ).

Therefore, using inequality 4ab < a? + 4b%, we obtain

2 i _ 10
a2 by, 0 )y < 4 (1EC—Dle S
N VN N 6o

A1y S
< —IIC(b—b°)||2+4(A}) pol

So (B.23) can be written as

Al o S Mo(K —1) 4

1 N
FICO =+ = AL — 00])y < 422
Note that —HC(b —D)[]2 = (b—1)S(b — 1Y), so (B.25) completes the proof of (12).
Now we have obtained (12) assuming (B.16). In the next step we want to evaluate the

probability of the inequality (B.16) to be true, i.e. P(E). By a union bound and using the
N . N
notation ¢; = €CW = 3" CY = 3¢, ;, we obtain
i=1

=1

K

P(EC) = B(y max 2100 > \) < 3 B(xlGl >

N nax 2 3 ) (B.26)

j=1
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Note that both {e;}Y, and {CV}Y, foralli=1,--- ,N and j = 1,--- , K are uniformly

subgaussian variables. Therefore, variables {¢; ;}Y, are uniformly subexponentially dis-

tributed. Hence, applying Corollary 5.17 in Vershynin (2012) and utilizing \g = & loiK,
we obtain
Ao al 0
P(EY) < K 1I<r§§>;(]?(—|<g| > 5) = K max P(5 Zl > )

< 2K exp[—cr?log K] = 2K~

where ¢ and s are positive constants. Therefore, selecting & such that ck? > 1, we have

the following property for (B.16):
P(E)=1—-P(E) >1— 2K -1, (B.27)

as N, K — oo. This completes the proof of Theorem 2.2. O

B.4 Proof of Corollary 2.2

A [log K
Proof. By assumption of theorem ﬁl =2\ = 2K ?\7 , Where k is a positive constant,

log K
and % = O(S ]\(;i ). Therefore, both two terms on the right hand side of (B.25) are
log K
O(S (])5 ). Hence, (B.25) implies
1 ~ Slog K
licG -z =0 (THEE), (B.23)
. log K
16— ||, = O (s o8 ) . (B.29)
N
So (B.29) proves the first claim of (13). Observe that
1 . . . . . .
FICO=E = (b =8) (X =)0 = 8") + (b - 0")5(b 1), (B.30)

Notice that

(b—1")S(b—0") = A7 1o — 1) 3,
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where A,,;, denotes the smallest eigenvalue of ¥, and X is the true value of i, so Ayin > 0.

Moreover in (B.30), it holds
(b= (2= )b =) = —[|= = 2|l 1b = 8113,

where HXA] — Y| := max \ZA]” — 3 j|. Using Lemma 14.12 in Buhlmann and Van De Geer

1<i,j<K
(2011), we have max |3 ; — % ;| = Op(y/ e) Hence (B.28) can be rewritten as
1<i,j<K

Slog K\ 1 SN2
0(TER) = ylich - v

> Abinllb = 6115 = 11% — S|l [b — %113 (B.31)

min

) 3/2
> A2, 1~ ) - O, (52 & ) .

Rearranging it, we have

. 1 SlogK 1 log K\ */?
02 < 2
||b bHQ_A2 O( N )+A2 0, (S < N ) :

min min

log K 1
By Assumption 2, S/ O;C’TV = 0(1). Together with —— = O(1), we obtain

A2,
- Slog K
b~ 17113 = 0,( TR, (B.32)
which proves the second claim of (13). O

C Solving the OWL optimization problem

This section follows similar arguments in Zeng and Figueiredo (2014) and explains how
to use the proximal gradient descent algorithm to solve the optimization problem of the
OWL estimator. The first subsection introduces the OWL proximal function which is used
to compute the optimizer at each step. The second subsection outlines the fast-iterative-

soft-thresholding-algorithm (FISTA) used to find the global optimizer, together with a

47



backtracking line search condition which speeds up computation greatly.

C.1 OWL proximal function

Denote by b = (by,--- ,b,), x = (21, ,x,)" column vectors. First we define the proximal

function as
1
Prozxq, (b) = arg m1n[§|]x — b5+ Qu(2)], Qu(z)=d|z|, (C.33)

where w € k, takes values from a monotone non-negative cone, defined as x := {v € R" :
U1 2 vp 2 e 2 vy 2 0}, [y = (|l @l @) and [zl 2 [zlg = - 2 |2, s
the vector of absolute values of elements of vector z, decreasingly ordered. By the definition

of Q,(b), we have

€,(b) = €, (|0]), (C.34)

where |b| = (|b1],-- - ,|bn])’. It is easy to show that
1 = sign(b) © |=[5 < [|b— =[5, (C.35)
where sign(b) = (sign(by),--- ,sign(b,))’ is a function that retrieves signs from a vector,

with elements in {1, —1,0} and ® is a point-wise production operator. Therefore, (C.34)
and (C.35) imply
Prozq, (b) = sign(b) ® Proxq,(|b]). (C.36)

Let P be a permutation matrix that orders elements of a vector in decreasing order. Then

permutation matrix has property
|1P(z = b)|lz =[]z — ]2, (C.37)

and by the definition of Q,(b),
Q,(b) = Q,(PD). (C.38)
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So (C.37) and (C.38) imply that (C.36) can be written as
Prozgq,(b) = sign(b) ® P’ Proxq,(|b|,), (C.39)

where |b]; is defined as |z|;, and P’ is the transpose of the permutation matrix, which
recovers the order of |b|, i.e. P|b| =1|b|;, P'|b|; = |b| and P'P = I, where [ is an identity
matrix.

Since [b]; € &, for any z* € x and any » € R", we have |b\z < |b||z*. Therefore,
1 2 1 2 1 2 !
Sl = 1Blllz + Q@) = Sllally + SIBLIL = [blz + Qu(2)

1 * 1 * *
> Sl 15+ §|||b|¢||§ — [} 2" + Qu(27)

]' * *
= 3ll=" - [Blullz + Qu (@)

1 1
Note that Prozxq,(|b];) = argmin[§||a: — 10],]13 + Qu ()], and §||m* — bly|]3 4+ Qu(z*) <
' 1
Il — |b]y]|3 + Qu(2). It implies that Proxzq,(|b|,) € &, and Prozq,(|b];) = arg mm[éHx -
TEK

0], |3 + w'z]. Completing the square, we have

.1 !
Proza, (|bl,) = arg min(Z [z — [b|,[[3 + &) = arg min 2 [lz — (|bl, — )],

TER TEK

which is the projection of (|b|; — w) onto k ?*. Then equation (C.39) can be written as
Proxq, (b) = sign(b) ® P’ Proj.(|b|, — w)), (C.40)

where Proj,.(.) is the projection operator onto .
After solving the proximal function, we can employ the iterative soft-thresholding al-

gorithm to find the global optimizer. First, we initialize b, ?* then repeat

ph+1) — pronw(b(k) AV g(b(k))) (C.A41)

23The projection onto  is an isotonic optimization problem and can be obtained by using the Pool-
Adjacent-Violators algorithm in de Leeuw et al. (2009).

24For instance, we use the OLS estimate as initialization in our application but it can be any random
vector, which will results in the same global minimizer for b since it is a convex minimization problem.
However, a good choice of initialization can reduce computation time greatly.
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until a stopping criterion is met, where k = 1,2, 3, ... are steps of each iteration, g(b) =

+(pr — CbY'W (pg — Cb) and sz is the step size at the k™ iteration.

C.2 FISTA algorithm

Algorithm 1 is based on Zeng and Figueiredo (2014) and fast computation is achieved by
using the backtracking line condition (step 7) and the acceleration in u (step 12). The
backtracking line condition allows large step sizes if optimizer stays in the right direction,
otherwise shrinks step sizes. Steps 11 to 12 accelerate computation by moving the optimizer
further towards the global optimizer at early iterations, while this acceleration diminishes

when approaching the global optimizer.
Algorithm 1: FISTA-OWL

1 Input: pug,C,w

2 Output: OWL estimator b

s Initialisation:by = bors, to = t1 = 1,u; = by, k=1, € (0,1),7 € (0,1/L) *
4 while some stopping criterion not met do

5 Tk = Tk—1;

6 br = Prozq,(ur, + 7% C" % (ug — CD))

7 | while }||ug — Cb|[3 > Q(by,ux) " do

8 Th = 1) % Tk,

9 b = Proxq,(ux + 7% C" % (ugr — CD))
10 end
11| tpp = (14 /14 4¢3)/2
12 Upy1 = by, + z:; (by — br—1)

13 k+k+1

14 end

15 Return: b,_;

@[ is a Lipschitz constant.
Q by, ug) := 3||ur — Cug|3— (b —uk)'C' (g — Cug) + ﬁ”bk —uy|3 is the backtracking line condition.
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D DMotivating the “restricted eigenvalue condition”

The following lemma motivates the restricted eigenvalue condition. A matrix S that satis-

fies the restricted eigenvalue condition

)
¢§ = mmin min 7 > 0, (D.1)
soC{L, K} beRK\{0} |[bso][3
50| <K " 1bue 11 <3]lbsg 1

A

if it is close to a matrix whose restricted eigenvalues are strictly positive. Let ¥ = E(X) =
c'c
E(

) be the population value of the scaled Gram matrix. Since ¥ is a non-singular

matrix, its restricted eigenvalues are strictly positive: ¢% > 0.

Lemma 3. Suppose S is the sparsity parameter, 6 = max |¥;; — f)l]\ , then for any

1<i,j<N
vector b that satisfies ||bsc||1 < 3||bs, |1, it holds

92 > ¢3 — 16S56.

Proof.

Vb — VS < [VSh—0'Sh| = [B(Z — )b
< 1Bl (2 = )bl < 8118][3

Recall that b = by, +bsg, 50 [|b]|1 < [|bsy || + [|bsg[|1- Together with the assumption ||bg |1 <

307
3||bso |1, we have |[b]]3 < ([[bsg|]1 + [|bso||1)? < 16]|bs,|[3- Hence we have

V'Sb — b'Sh < 166 |bs, | 2.

Rearranging the above inequality, we have

V'Sb b'Sb

1515 [1bso 13

— 1650.
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By the definition of restricted eigenvalues in (D.1), we have
92 > ¢35, — 1650.

O

Lemma 3 shows that for the restricted eigenvalue condition to be satisfied, i.e. gz% > 0,
it suffices to show that & is small, or that the Gram matrix 3 is close to a positive definite
matrix X. The following lemma shows that the “Restricted eigenvalue condition” implies
the compatibility condition in Buhlmann and Van De Geer (2011) (pp. 106), which will be

used for deriving the error bound in Theorem 2.2.

Lemma 4 (Compatibility condition). If the scaled Gram matriz . satisfies (D.1), then
[1bs| [ < (V'S20)S/ 65,

Proof. From the definition of restricted eigenvalues, we have

9 , , b'3b
¢y = min min - ——— > 0.
so€ll K} beRK (0} [[bso] 3
lsol <K {[bsgl[1<3]lbsy |11

By the norm inequality, v/S||bs, |l2 > ||bs, ||1. Hence for any b, it holds

5 < VSh W3S
U bsolls T (bl

Rearranging, we obtain

107 < (VZ0)S/ 5.

E Simulation

Table 1 summarizes the performance of four candidate models under various settings by

comparing their average MSEs under 500 trials. To have a better view on how those
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candidate models perform for each block of factors, we randomly chose one trail and plot
the estimates from candidate models along with the oracle value. In particular, we focus
on the highly correlated setting (i.e. p = 0.9).

Figure 3 looks into the setting when NV ~ K and it reports the plot of the OWL estimate
over 90 factors along with other benchmarks and the oracle value (black). The upper left
panel displays the plots of estimated coefficients for all factors. The remaining three panels
display the detailed plot of estimates for each of these three blocks of factors. The upper
right panel displays the plot of all estimates of useful factors that are correlated. In the
presence of high correlation, the LASSO estimator performs poorly with highest estimation
errors. Adaptive LASSO is strongly governed by the adaptive weights which is set to be
the OLS estimate. So adaptive LASSO exhibits very similar behaviour to the OLS estima-
tor. Elastic Net, as a hybrid estimator between LASSO and Ridge regression, is designed
to stabilize LASSO selections in the presence of correlation. Although Elastic Net does
improve the performance of LASSO in the context of correlated factors, it is still substan-
tially outperformed by OWL. OWL produces the smallest estimation error and is the only
estimator that groups together highly correlated variables by assigning them with similar
coefficients. The bottom left panel displays the plot of all estimates of useless/redundant
factors which are highly correlated. In terms of shrinking off useless/redundant factors,
LASSO, EN, and OWL all perform well: they set most of useless factors to zeros. By
contrast, adaptive LASSO is affected by the adaptive weights (i.e., the OLS estimate) and
fails to set many useless/redundant factors to zeros. The bottom right panel displays the
plot of all estimates of useful factors which are not correlated. Again, LASSO and Elastic
Net are the worst performers yielding the largest estimation error. Also note that in the
uncorrelated setting Elastic Net performs similarly to LASSO. In the ideal world where fac-
tors are uncorrelated, OLS and adaptive LASSO are the best performers, which is tightly
followed by OWL. Note that OWL, LASSO and Elastic Net are biased towards zero, which
is typically observed for shrinkage-estimators in small samples.

In the second experiment, there are 1000 test assets (N = 1000, N > K) and ev-
erything else is the same as in the first experiment. This setting typically represents a

low-dimensional world.
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Figure 3. Estimation of SDF coefficients: N = 100, K = 90

This figure reports the values of the OWL estimator over 90 factors along with other benchmarks and
the oracle value (black). There are 100 test assets, 90 candidate factors, which are divided into 3 equal
blocks, where correlation coefficients of factors within each block are p; = 0.9, po = 0.9, p3 = 0. The upper
left panel displays the plot of estimated SDF coefficients for all factors. The remaining three panels are
detailed plot of estimates for each of these three blocks of factors. The upper right panel displays the plot
of all estimates of useful factors that are highly correlated. The bottom left panel displays the plot of all
estimates of useless/redundant factors. The bottom right panel displays the plot of all estimates of useful
factors that are not correlated. In each plot, OWL estimator is displayed along with LASSO, adaptive
LASSO, Elastic Net, and naive OLS estimator.
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Figure 4. Estimation of SDF coefficients: N = 1000, K = 90

The number of assets is 1000. The rest are the same with the first experiment in Figure 3.
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Figure 5. Estimation of SDF coefficients: N = 70, K = 90
This figure reports the plot of the values of the OWL estimator along with other benchmark estimators.
Adaptive LASSO is using the LASSO estimate as its adaptive weight. The number of assets is 70. The

rest are the same as in the first experiment in Figure 3.
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Figure 4 reports the plot of estimated SDF coefficients using OWL and other bench-
marks with 1000 test assets. When test assets are abundant, all shrinkage based estimators
do a good job to shrink off useless/redundant factors. Adaptive LASSO performs the best
at estimating uncorrelated factors: governed by the OLS weights, it is the only unbiased
estimator among shrinkage based estimators. LASSO and Elastic Net produce the most
biased estimators among all benchmarks. With highly correlated useful factors, OWL pro-
duces the most accurate estimation. With uncorrelated factors, OLS and adaptive LASSO
are undoubtedly the best estimators, followed closely by OWL. For that reason, adaptive
LASSO would be a good estimator in a low dimensional world where N > K. However, in
a world of many factors, where K > N, OLS will be infeasible, hence the adaptive LASSO
using OLS weighting is also improbable.

In the third experiment, there are 70 test assets (N = 70, N < K), everything else is
the same as in the first two experiments. This setting represents a high-dimensional world,
where the number of factors is greater than the number of test assets.

Figure 5 reports estimation results of each method along with the oracle value. Once
K > N the naive OLS estimator becomes infeasible, thus we remove it from the bench-
marks. Meanwhile, we use the LASSO estimate as the adaptive weight for adaptive LASSO
estimator. As for useless factors, all machine learning methods do a good job to shrink
most useless factors to zeros. For the highly correlated useful factors, OWL is still the
best estimator, producing the smallest estimation error while LASSO and adaptive LASSO
are the worst performers producing very volatile estimates and wrongly shrinking many
useful factors to zero. Interestingly, we find that Elastic Net performs significantly better
compared to LASSO. However, despite this, Elastic Net is still substantially outperformed
by OWL. For the useful factors (both correlated and uncorrelated), adaptive LASSO, us-
ing the LASSO estimate as the adaptive weight, performs the worst. The adaptive weight
exacerbates the estimation severely.

These three experiments confirm that the LASSO estimator performs poorly when
factors are correlated. Elastic Net does improve the performance of LASSO under such
circumstance, however, it is still substantially outperformed by the OWL estimator, which

makes the OWL estimator the best candidate when factors are correlated. Adaptive LASSO
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is a good choice in a low-dimensional setting where N > K, however, it performs the worst

in a high-dimensional setting where K > N (i.e., the OLS estimate becomes infeasible).

F Robustness check

In this section, we check whether various sorting methods would alter our estimation results

and investigate how small stocks affect priced factors;

F.1 Using various sorting methods for test assets

For the first task, we consider three additional types of sorting method for constructing
test portfolios and compare them with the sorting method used in the main body of this
paper to check whether liquidity related factors are consistently chosen. First, we apply
the uni-variate sorting method to sort all non-micro stocks into decile portfolios before
combining them together to obtain 800 test portfolios. Compared to the test portfolio in
empirical analysis, all characteristics are treated equally. Second, we consider the bi-variate
sorting method, but using all possible combinations of two out of 80 characteristics, that is
80 x 79/2 = 3160 possibilities. To reduce the dimension of test portfolios, for each possible
combination, we consider the 2 by 2 (instead of 5 by 5) sorting method: we sort stocks
into ‘high’ and ‘low’ groups by each of these two characteristics where the thresholds are
the medians of these characteristics. We then obtain 3160 x 4, total 12640 test portfolios.
Third, we consider a similar method in the empirical analysis, that is singling out ‘size’ as
a common characteristic, and using it with the remaining characteristics to form bi-variate
sorted portfolios; but instead of forming the 5 by 5 portfolios, we form 3 by 3 portfolios.
Figure 6a reports the estimation results using four different sets of test assets (including
the one used in the main body of this paper). First, ‘market’ along with ‘illiquidity’ and
‘standard deviation of dollar volume’ are consistently chosen as the most important factors
to drive asset prices, with ‘illiquidity’ topping the chart of anomaly factors. Second, the
impact of ‘size’ factor (mve) on test assets decreased colossally once it is not singled out
to form bi-variate sorted portfolios. We can conclude that in ‘type3d’ and ‘typed’ where

‘size’ effect tops the chart, it is artificially caused by portfolio sorting methods. However in
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Figure 6. Robustness check with alternative test assets
Figure 6a reports the absolute value of SDF coefficients estimated by OWL using four types of test assets.

Figure 6b reports the OWL estimates with six different treatments of micro stocks.
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empirical analysis (‘typed’), ‘size’ is not a competing factor. Third, although singling out
‘size’ to form bi-variate sorted portfolios may alter the ‘size’ effect, it does not alter other

factors’ implications: liquidity related factors are primary factors driving asset prices.

F.2 How small stocks affect the inference of priced factors

For the second task, we use the same sorting method as in the empirical analysis, but we
consider six types of treatment of micro stocks: 1) keep all micro stocks (P00); 2) remove
stocks that are smaller than 10 percentile of NYSE listed stocks (P10); 3-6) similarly,
remove stocks that are smaller than (20-50) percentile of NYSE listed stocks (P20-P50).
We investigate how factor-selection varies between different scenarios.

Figure 6b reports the heat map of estimated risk prices using the OWL estimator
while controlling stock sizes. First, micro stocks alter the market factor’s interpretation
drastically. When micro stocks are all included to form test portfolios, market factor only
plays a moderate role for asset prices; however, liquidity related factors dominate the chart.
Market factor nonetheless consistently becomes the primary factor to drive asset prices
once micro stocks are removed (at P20 and above levels). Second, liquidity related factors
consistently top the chart in driving asset prices, particularly with the inclusion of small
stocks. It shows that small firms face severe liquidity constrains, and investors demand risk
premiums to bear that risk. Third, to be consistent with the finance literature, we consider
the typical 20 percentile cut-off level to remove micro stocks. In this case, profitability and
growth related factors, after liquidity related factors, become the second tier of factors that

drive asset prices.

G Introduction of LASSO, adaptive LASSO, Elastic
Net and OSCAR

Denote by y a N x 1 vector of responses, by X a N x K data matrix and by 8 = (51, -+, Bk)’
a K x 1 parameter vector. The LASSO (Tibshirani, 1996) estimator solves the problem

R _ 1
5LAsso:al"ggmn §||y—Xﬁ|’2+)\|’5Hl ; (G.1)
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K

where ||5][1 = >_ 5| . The LASSO estimator can shrink the coefficients §; of unimportant
i=1

covariates to zeros. The Elastic net (EN) (Zou and Hastie, 2005) method solves the problem

R ' 1
Ben = arg min 5y = XBI + Aal[Bll + A1 = )lIBI3] , (G.2)

where ||3]]2 = Z (2. Elastic net combines the ¢; norm (LASSO) and the ¢, norm (Ridge)
penalty together Wthh stabilizes the LASSO selections of 8’s when variables are correlated.
Here, o € (0,1) is a tuning parameter used to tilt the weight between the ¢;— and ¢y—
shrinkage components. The adaptive LASSO (Zou, 2006) method minimizes the following

function

Badar 4850 = argﬁmin ||y — XBIP + A Z |Bil (G-3)

|5’L ada‘

where v > 0 and | Bmda| is an adaptive weight for the i** element in /3, which is obtained
through a first-stage estimation and typically based on the OLS estimate when it is feasi-
ble. Variables with small magnitudes in fist-stage estimated coefficients (i.e., small |5; qda|)
receive stronger penalty and v controls the intensity of penalty for small parameters. A con-
trols the overall penalty level. The OSCAR (Octagonal shrinkage and clustering algorithm
for regression) (Bondell and Reich, 2008) method solves this problem

A ) 1
BOSCAR:argBHHn §||y—X/6||2+>\1||5||1+)‘22maX{|ﬁi|>|ﬁj|} ; (G.4)

1<j

where > max{|5,|5;|} compares all elements in § pair-wisely and penalizes more on
i<j

the larger one. Bondell and Reich (2008) show that OSCAR method encourages factor

clustering when they are correlated. Zeng and Figueiredo (2014) illustrate that by adopting

a linear weighting scheme for w, the OWL estimator encompasses the OSCAR estimator.
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To gain some insights in this claim, we start from the OSCAR penalty term. Note that

Qoscar(B) = MBIl + A Y max{|i], |8;]}

1<j

=3 M +NE =) By =D wilbl

linear decreasing weights

=Bl = Qowwr(B),

With a linear weighting scheme for w, the OWL penalty term encompasses the OSCAR
penalty term. Furthermore, if we set Ay = 0, OWL encompasses LASSO.
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