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1 Introduction

There is a burgeoning literature that attempts to examine and dissect the relation between

high dimensional firm characteristics (or firm characteristic related factors, a.k.a factor zoo)

and the cross-sectional asset returns, see Cochrane (2011), Harvey et al. (2015), Green et al.

(2017), Hou et al. (2020), Feng et al. (2020), Freyberger et al. (2020) and among others for

example. However, a vigorous discussion regarding the factor correlations and their impact

and implications on cross-sectional asset returns has fallen short in the related literature.

In a high-dimensional setting, many firm characteristics (or the related factor zoo) are often

close cousins and highly correlated between each other. Ignoring factor correlations would

compromise the robustness of standard models and therefore cast doubts on the validity of

such models. For example, in our empirical analysis, we show that standard econometric

models, such as the Fama-Macbeth two-step procedure and the LASSO shrinkage method,

both failed to identify the ‘market’ factor as an important factor in driving cross-sectional

asset returns due to the fact that the ‘market’ factor is highly correlated with many factors

in the “factor zoo”.

In this paper, we utilize and further develop a LASSO-type estimator, namely the

Ordered-Weighted-LASSO (OWL, Figueiredo and Nowak (2016)) estimator, to find pre-

vailing factors for the cross sectional asset returns with a focus on disentangling correlated

factors. In other words, how do we robustly choose important factors when they are highly

correlated? Our contribution to the related literature is twofold. First, we further develop

the asymptotic properties of the OWL estimator under relaxed assumptions which are more

suitable for economic and finance related research questions compared to Figueiredo and

Nowak (2016) and show the consistency of such estimator under some mild conditions.

In addition, we combine the OWL shrinkage method with the stochastic discount factor

(SDF) method (Cochrane, 2005) to choose factors. Based on that, we derive the grouping

property of factor selection for the cross section of asset returns (i.e., we quantify conditions

of identifying highly correlated factors for cross-sectional asset returns). Monte Carlo sim-

ulation exercise shows favorable results of the OWL shrinkage method compared to other

machine learning benchmarks such as the LASSO, the adaptive LASSO and the Elastic

Net models, especially when factors are highly correlated.
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The second fold of our contribution offers new insights on some puzzling questions in

the cross-sectional asset pricing literature. High correlation among factors often attenu-

ates statistical significance of many factors, and in particular, renders the ‘market’ factor

insignificant to drive asset prices. Traditional tactic to avoid such problem often involves

excluding highly correlated factors in the model. For example, Green et al. (2017) exclude

‘beta’ related factors in their Fama-MacBeth framework before finding factors that drive

cross-sectional returns in the US stock market. However, such procedure requires a thresh-

old level to decide which factors to be dropped and, such decision often lacks rigorous

justification. Furthermore, if two factors are highly correlated, it is not trivial to decide

which one to drop and which one to keep. By contrast, our method is robust to correlated

factors - highly correlated factors receive similar coefficients in our model. Thus, we avoid

any ad hoc screenings of factors before applying our model. Furthermore, we provide am-

ple evidence to show that the ‘market’ factor, despite often being deemed insignificant in

standard testing procedures due to high-correlation with other factors, is indeed an im-

portant factor in driving cross-sectional asset returns in our estimation framework. This

coincides with a new finding made in Harvey and Liu (2021) utilizing a bootstrap based

testing procedure. We discuss this in detail in the following text.

For empirical analysis, we consider 100 factors documented in Green et al. (2017) for

factor investing, then we form hedging portfolios following Freyberger et al. (2020) using

a sparse set of factors selected by various methods. To do this, we first construct anomaly

factors (i.e., factors other than the ‘market’ factor) for each firm characteristic via portfolio

sorting. Then, we follow Feng et al. (2020) to form thousands of bi-variate sorted portfolios

as our test assets.1 It is worth stressing that we are using sorted portfolios (by firm

characteristics) as test assets instead of individual stocks. This is because large proportion

of individual stocks are small stocks which takes an insignificant weight in the aggregated

market value, whereas some small number of large stocks take a large proportion of the

aggregated market value. Therefore, factor selection, if using individual stocks as test

assets, will biased towards explaining mainly small stocks, rather than the aggregated

market. On the other hand, using (value weighted) sorted portfolios as test assets can

1For robustness check (see Appendix F), we also consider other methods of constructing test portfolios
while controlling for micro stocks.
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effectively test for prevailing factors for cross-sectional asset returns at the aggregated

level.

Our empirical findings complement and challenge some common stances in the asset

pricing literature. First, when we implement a Fama-MacBeth regression procedure we find

serious correlations among factor loadings: 68% of the correlation coefficients are higher

than 0.5 (absolute value), which casts doubts on the validity of using standard estimation

methods such as Fama-MacBeth regression and the LASSO shrinkage method: we find that

the Fama-MacBeth, the LASSO and the Elastic Net shrinkage methods all failed to identify

the ‘market’ factor as an important factor to drive the cross section of asset returns. That

is because the ‘market’ factor is highly correlated with many characteristics-based factors

and correlation between factors erodes the valid inference for those methods. On the

contrary, the OWL shrinkage method can consistently identify the ‘market’ factor as the

most important driver for cross-sectional returns. This finding coincides with the empirical

evidence by Harvey and Liu (2021) showing that the ‘market’ factor is the primary factor

to drive asset prices following a bootstrap motivated test.

Second, we find that ‘liquidity’, ‘asset growth rate’, ‘profitability’ and ‘investment’

related factors are the main drivers of the variation of cross-sectional average returns. This

finding is consistent with Hou et al. (2020, 2021). Interestingly, we also find that the ‘size

effect’ disappears during the 1980-2000 period, which is well documented in the literature,

see Amihud (2002) and Asness et al. (2018) for an example. Nonetheless, the size effect

becomes evident again after removing more small stocks (smaller than 40 percentile of the

NYSE listed), implying that the vanishing size effect is likely to be caused by some small

“junk” stocks. Once “junk” stocks are removed, the size effect resurfaces, which echoes the

discovery by Asness et al. (2018): “size matters, if you control your junk”.2

Third, we follow a similar procedure to Freyberger et al. (2020) to conduct an out-of-

sample exercise to find which method selects factors that can best predict the cross-sectional

asset returns and use those factors to construct hedged portfolios. We compare hedged

portfolios and find that the hedged portfolio using OWL selected factors produces 20% to

30% higher out-of-sample Sharpe ratios than those of other methods, suggesting that the

2Asness et al. (2018) add some controlling factors measuring the “junk-level” of stocks in their regression
model and find that the size-effect is evident again after controlling the “junk”.
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OWL shrinkage method, compared to other benchmarks, can pick the best factors that

contribute to the cross section of asset returns in an environment where factor correlation

is prevalent.

Finally, it is worth stressing that the OWL estimator, like many other machine learn-

ing methods, is biased. Therefore, it is unfit to conduct statistical tests without further

developing an unbiased version and deriving its asymptotic properties. We elaborate on

this subject in Section 2.4. Having mentioned that, we want to point out that our main

object in this paper is not to conduct statistical tests to determine a parsimonious asset

pricing model - although such research agenda is crucially important, it can be a topic

of future research. Nonetheless, our paper focuses on the robust estimation and selec-

tion of correlated factors in high-dimensional factor models. Then, we postulate a sparse

model, say a five-factor model,3 and we compare such selection of factors with other bench-

marks. Our empirical result coincides with some recent empirical findings and also offers

explanations to some puzzling questions faced in the cross-sectional asset pricing literature.

Related literature

This paper naturally builds on a series of papers devoted to identifying pricing factors for

cross-sectional asset returns, for example see Fama and French (1992), Carhart (1997) ,

Hou et al. (2014), Fama and French (2016), Fama and French (2018) among others. Now

after over half a century since the CAPM of Sharpe (1964) and Lintner (1965), hundreds of

anomaly factors have been proposed to explain the cross-sectional asset returns. However,

Harvey et al. (2015) document 316 factors and find most of them are the result of data-

snooping. Hou et al. (2020) try to replicate 447 anomaly factors, and find 64% to 85%

of them cannot be replicated depending on the choice of a significance level. Kan and

Zhang (1999) caution that the presence of useless factors bias test results, leading to a

lower than normal threshold to accept priced factors. Gospodinov et al. (2014) develop

a model mis-specification robust test to tackle suprious factors, using a step-wise test to

3Note that we do not assume that the true model is a five-factor model. Instead, we use various methods
to choose important factors and we restrict all benchmarks to have the same number of factors to conduct
a prediction exercise, such that we ensure each benchmark does not suffer from the over-fitting problems
in this out-of-sample exercise. We also implement such an exercise with a four factor model and the result
is similar, thus it is not reported.
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remove useless factors one by one. Fama and French (2018) use Sharpe ratio and employ

the Right-Hand-Side method of Barillas and Shanken (2018) to “choose factors”. Harvey

and Liu (2021) suggest a step-wise bootstrap method to test for factors and find that the

‘market’ factor is the most important factor for cross-sectional asset returns.

This paper also relates to the strand of research focuses on methodologies of selecting

and testing factors. Fama and MacBeth (1973) put forward the two-pass regression method

which is commonly used to test for factors with significant risk premiums. Green et al.

(2017) use Fama-MacBeth regression procedure to find significant factors among 100 candi-

date factors for the US stock market. Lewellen (2015) studies the cross sectional properties

of return forecasts derived from the Fama-MacBeth regression and finds that forecasts vary

substantially across stocks and have strong predictive power for actual returns.

This paper also contributes to the rapidly growing literature using machine learning

techniques for financial research questions. Tibshirani (1996) proposes the LASSO esti-

mator which receives huge success and becomes a new norm nowadays in dealing with

high-dimensional data-sets. Since then, many adaptations and improvements have been

made to achieve various targets. The literature about the LASSO family evolves rapidly.

Belloni et al. (2014) devised the double LASSO selection procedure for causal inference

while having large number of control variables. Feng et al. (2020) employ the double

LASSO selection procedure to recursively evaluate (in a chronological order) if factors are

significant to explain the cross-sectional stock returns. Yuan and Lin (2006) propose the

group LASSO estimator which allows for correlated factors - we can put correlated factors

or factors share similar characteristics in groups. During estimation, the group LASSO es-

timator can shrink off all variables together in a group if such group is deemed unimportant

by the group LASSO estimator. Freyberger et al. (2020) employ the adaptive group LASSO

to find pervasive factors to predict cross-sectional stock returns.4 Babii et al. (2021) utilize

the sparse group LASSO estimator for nowcasting GDP. Our paper is closely related to

the group-LASSO shrinkage method in the sense that both estimation methods allow for

factor correlation. However, the crucial difference is that group LASSO method requires

4It is worth mentioning that Freyberger et al. (2020) use the group LASSO to put all terms of the
non-parametric transformation of each firm characteristic in a group, while potential correlations between
firm characteristics are not discussed.
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prior knowledge of how to cluster factors in various groups before implementing the model.

On the contrary, the OWL shrinkage method does not require such prior knowledge and the

OWL estimator can identify highly correlated factors during estimation. This identification

of correlated factors happens simultaneously with the shrinkage of useless factors. Zou and

Hastie (2005) propose the Elastic Net estimator, which stabilizes factor selection among

correlated variables. Kozak et al. (2020) employ the Elastic Net estimator in a Bayesian

framework and find that sparse principle components can largely explain the cross-section

of the average returns. Gu et al. (2020) compare popular machine learning techniques used

in empirical asset pricing literature and demonstrate large economic gains using random

forest and neuron networks. van Binsbergen et al. (2022) show that, using a sophisticated

random forest algorithm, ‘machine’ wins the contest against ‘man’ in the contest of pre-

dicting earnings of stocks. On the other hand, Cao et al. (2021) argue that ‘man’ wins the

competition against ‘machine’ when firms are complex and with intangible assets, while

’machine’ wins the contest when information is transparent and voluminous - combining

them, however, yields the best result in forecasting stock prices.

Finally, the shrinkage method used in this paper is built directly upon the work of

Figueiredo and Nowak (2016) and Zeng and Figueiredo (2014). Our innovation in this

paper compared to their work is two folds: first, we further develop statistical properties of

the OWL estimator under less restrictive assumptions (we relax the Gaussianity assump-

tion and instead, impose tail bounds on the distribution of random variables). Second, we

combine the OWL shrinkage method with the stochastic discount factor (SDF) method in

finance to search for prevailing factors that drives cross-sectional asset returns.

The remainder of this paper is organized as follows: Section 2 presents the methodology

to find prevailing factors that drive cross-sectional returns. Then, we move on to introduce

the OWL shrinkage method and discuss its statistical properties. Section 3 use Monte Carlo

simulation experiments to evaluate the performance of the OWL shrinkage method under

various settings and compare it with some benchmarks that are commonly employed in

economic and finance research for high dimensional data-sets. Section 4 presents empirical

findings and discuss our contributions to the asset pricing literature. Section 5 presents
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conclusions.

2 Methodology

We adopt the SDF method in Cochrane (2005) to infer factors that drive cross-sectional

asset returns. Section 2.1 compare the SDF method and the Fama-MacBeth two-pass

regression method and point out that the former should be adopted when factors are cor-

related; Section 2.2 introduces the model and discusses challenges and opportunities in

high-dimensional financial applications. Sections 2.3 and 2.3.2 introduce the OWL shrink-

age method and discuss its statistical properties.

2.1 Risk price or risk premium?

Let m denote the stochastic discount factor (SDF)

m = r−1
0 (1− b′(f − E(f))), (1)

where r0 is the zero beta rate which is a constant, f is a K × 1 vector of K factor returns,

which can be either traded factors or mimicking portfolio returns of non-traded factors. b

is a K × 1 vector of the unknown SDF coefficient, referred to as the risk price; a non-zero

(zero) entry of b means the corresponding factor is (not) priced. We want to draw inferences

on the risk prices of factors. Finding useful factors (i.e., factors with non-zero risk prices)

is our target. Useful factors drive the variation of SDF, thus contain pricing information:

they reflect the marginal utility of factors to explain the cross-section of average returns.

On the other hand, factors can be useless or redundant. Useless factors are those whose

risk prices are zero and uncorrelated with other useful factors. Redundant factors also have

zero risk prices but they are correlated with some useful factors. The difference between

useless factors and redundant factors plays an important role when choosing between the

SDF method and the two-pass Fama-MacBeth regression method to search for prevailing

factors.

A closely related concept to risk price is the risk premium. It refers to the slope

8



coefficient in the second pass Fama-MacBeth regression.5 Cochrane (2005) shows that risk

price and risk premium are directly related through the covariance matrix of factors

λ = E(ff ′)b, (2)

where b is a vector of risk prices and λ is a vector of risk premiums. However, they differ

substantially in their interpretation. Risk premium of a factor infers how much an investor

demands to pay for bearing the risk of the factor. Risk price implies whether a factor is

useful to explain the cross-section of average asset returns. When factors are uncorrelated,

that is, E(ff ′) is a diagonal matrix. Then, bi = 0 (the ith factor is not priced) implies

λi = 0 (the ith factor earns zero risk premium), and vice verse. In this case, using risk

premium to infer prevailing factors for cross-sectional returns yields the same result as do

risk prices. However, this is not true when factors are correlated: an unpriced factor can

earn positive risk premium by being correlated with a useful factor. To give an example,

suppose we have two factors f1 and f2, the covariance matrix is E(ff ′) =

 10 1

1 10

 , the

first factor is priced and the second is not, that is b1 = 1 ̸= 0 and b2 = 0. Then, according

to (2), we have λ1 = 10 and λ2 = 1. So we find that the unpriced factor f2 (i.e. b2 = 0)

earns non-zero risk premium (i.e. λ2 ̸= 0) by simply being correlated with a useful factor

f1. As discussed before, if factors are uncorrelated it is valid to use either risk price (SDF

method) or risk premium (Fama-MacBeth regression) to select factors. However, factors

are typically correlated in a high dimensional setting, so we should use risk price to infer

priced factors under such circumstance.

2.2 Model

Denote by R the excess returns of a vector of N test assets. Define Y = (f ′, R′)′, so

Var(Y ) =

 Var(f) Cov(R, f)′

Cov(R, f) Var(R)

 , where Var(f) and Var(R) are the K × K and

5The two-pass Fama-MacBeth regression procedure involves the following two steps: the first pass
regression obtains the factor loadings by running time-series regressions of each asset on factors; the
second pass runs cross-sectional regressions of asset returns on factor loadings.
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N × N variance-covariance matrices of factors f and test asset returns R, respectively.

Cov(R, f) is the N ×K covariance matrix of returns and factors. The fundamental asset

pricing equation states that E(Rm) = 0 for any admissible SDF. However, the fundamental

equation may not hold when m is unknown and is estimated from a model. The deviation

from zero of the above equation is regarded as the pricing error. Let m(b) denote the

unknown SDF which depends on the unknown risk price b. Pricing error e(b) can be

written and simplified as

e(b) = E[Rm(b)] = E(R)E(m(b)) + Cov(R,m(b))

= r−1
0 E(R)E(1− b′(f − E(f))) + r−1

0 Cov(R, 1− b′(f − E(f)))

= r−1
0 [E(R)− Cov(R, f)b]

= r−1
0 (µR − Cb),

(3)

where µR := E(R) is the N × 1 vector of the expectation of excess returns of test assets

and C := Cov(R, f). A quadratic form of the pricing error can be defined as

Q(b) = e(b)′ W e(b), (4)

where W is a N ×N weighting matrix. Then we can estimate b by minimizing Q(b):6

b̂ = argmin
b

Q(b) = argmin
b

(µR − Cb)′W (µR − Cb), (5)

which gives

b̂ = (C ′WC)−1C ′WµR, (6)

For the weighting matrix W , Ludvigson (2013) offers two choices of W for comparing

models. First,W = E(RR′)−1, which connectsQ(b) to the well known Hansen-Jagannathan

(HJ) distance. Ludvigson (2013) points out that the use of HJ distance accounts for and

offsets the variations of test assets, leading to stable estimators. Therefore, it is preferred

when small number of test assets are available. On the other hand, when test assets are

prolific, Ludvigson (2013) advocates the second choice of W : the identity matrix. She

6Since r0 in (3) is a constant, it can be dropped out in the minimization problem.
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argues that using the identity matrix does not tilt the weight to favour any subset of

test assets, especially when test assets represent particular economic interests. In our

application, the test assets consist of firm characteristic sorted portfolios, hence we do not

want to tilt the weights to favour any firm characteristics, so the identity matrix will be

used as the weighting matrix throughout this paper.

Cochrane (2011) points out that traditional methods to identify useful factors have

fallen short in the high-dimensional world. On the other hand, recent finance research has

demonstrated ample evidence that many firm-characteristics based factors are not priced.

Thus, the sparsity assumption which originates from the machine learning literature be-

comes a useful tool to handle these problems. The LASSO estimator (Tibshirani, 1996)

is a powerful tool to achieve sparse models and gains immense popularity in recent years

in the finance related literature. However, the LASSO estimator is also well known for its

poor performance when covariates are correlated. To circumvent the curse of dimension-

ality while taking account of factor correlations, we introduce a newly developed machine

learning tool, the Ordered-Weighted-LASSO (OWL) estimator (Figueiredo and Nowak,

2016), and tailor it to select factors from the (highly correlated) factor zoo under the SDF

framework.

2.3 The Ordered-Weighted-LASSO (OWL) estimator

The OWL estimator is achieved by adding a penalty term in equation (5)7

b̂ = argmin
b

1

2
(µR − Cb)′(µR − Cb) + Ωω(b), Ωω(b) = ω′|b|↓, (7)

where |b|↓ := (|b|[1], |b|[2], · · · , |b|[K])
′ and |b|[1] ≥ |b|[2] ≥ · · · ≥ |b|[K], is a vector of the

absolute values of risk prices, decreasingly ordered by their magnitude. ω is a pre-specified

K × 1 weighting vector, defined as

ωi = λ1 + (K − i)λ2, i = 1, ..., K, (8)

7We use the identity matrix for the weighting matrix W .
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where λ1 and λ2 are two tuning parameters. In order to solve (7), we use the proximal

gradient descent algorithm. More details about this algorithm are included Appendix

C. The OWL estimator is sensitive to the choice of the weighting vector ω. So finding

appropriate values for tuning parameters λ1 and λ2, which pin down the weighting vector,

is crucial. Following the machine learning literature, we use a ten-fold cross-validation

method to find tuning parameters.8

In Appendix A, we present a geometric interpretation of the OWL penalty and a com-

prehensive comparison between the OWL and the LASSO shrinkage methods, following an

argument typically employed in the machine learning literature. In the next section, we

start to discuss statistical properties of the OWL estimator.

2.3.1 The grouping property

Next, we present the grouping property, which quantifies the condition for identifying

correlated factors - this is a key property of the OWL estimator which enables correlation-

robust estimation.

Theorem 2.1 (Grouping). Let fi and fj denote the ith and jth factor (both of size T × 1).

b̂i and b̂j are OWL estimates of risk prices of factor i and j. Let σ(fi − fj) denote the

standard deviation of the vector fi − fj, and µR, σR be the N × 1 vectors collecting the

mean and standard deviation of N test assets. If

σ(fi − fj) <
λ2

∥µR∥2 ∥σR∥2
,

then b̂i = b̂j.

Proof: see Appendix B.1.

8Specifically, given a grid of values for λ1 and λ2, at each point on the grid, we first divide the sample
into ten equal parts in its time series dimension. Then, we use nine parts (training sample) to estimate
the model with the OWL estimator. After obtaining the estimated model, we forecast the returns of the
tenth part (testing sample), and compute the root of mean squared forecast error (RMSE). We repeat the
same procedure ten times by rotating the training samples and testing samples, and therefore compute
the average RMSE for this point on the grid. Tuning parameters are determined by the smallest average
RMSE on the grid.9

12



Corollary 2.1. Let fi, fj, λ2, µR, σR be the same as in Theorem 2.1. If

σ(fi + fj) <
λ2

∥µR∥2 ∥σR∥2
,

then b̂i = −b̂j.

Proof: see Appendix B.2.

Theorem 2.1 has several implications. First, when factors are highly correlated (i.e.

σ(fi − fj) is small) they are more likely to be grouped together (i.e. receive similar coef-

ficients, b̂i ≈ b̂j): two factors exhibiting high correlation could be the result of the same

unobservable underlying factor that dictates these observable factors simultaneously. Thus,

they should share similar magnitude in explaining asset returns which are driven by the

same unobservable underlying factor. Second, the hyper parameter λ2 in (8) has direct

impact on the grouping property: large λ2 encourages grouping. This property comes with

the key design of the OWL shrinkage method as discussed above, more detailed discussion

can be found in Appendix A. Third, the mean (µR) and standard deviation (σR) of test

assets affect the grouping property. A set of less informative assets (small µR and/or small

σR) will result in factor grouping: factors are equally weak to explain a set of test assets

whose returns vary little across time. Corollary 2.1 extends the grouping property of the

OWL estimator to negatively correlated factors: highly but negatively correlated factors

will receive a similar magnitude in the coefficient but with opposite signs.

It is worth mentioning that the grouping property distinguishes the OWL estimator from

other related machine learning methods, such as the LASSO and Elastic Net estimators,

and it is the main reason why we argue that the OWL estimator should be employed

when factors are highly correlated. Theorem 2.1 shows that the OWL estimator permits

correlations among factors and assigns them with similar coefficients. On the other hand,

the LASSO estimator may arbitrarily set some highly correlated factors to zeros while

keeping others as non-zeros, resulting in unstable estimation results.10

10In Appendix A, we present a detailed analysis on the problems that the LASSO estimator may en-
counter when factors are highly correlated.
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2.3.2 Asymptotic properties

This section discusses the asymptotic properties of the OWL estimator under less restrictive

assumptions made in Figueiredo and Nowak (2016). We allow the number of factors K to

diverge and potentially K ≫ N . Under some regularity conditions, we derive the oracle

inequality (error bounds) and the convergence rate of the OWL estimator, and hence the

conditions for consistent OWL estimation. Consider a linear high-dimensional asset pricing

model and suppose that

µR = Cb0 + ϵ, (9)

where b0 is the true risk price coefficients and ϵ is the pricing error from (3) after scaling a

constant r−1
0 . Equation (7) is a penalized estimator of model (9) and it can be written as11

b̂ = argmin
b

1

N
||µR − Cb||22 +

1

N

K∑
i=1

λ1 + λ2(K − i)]|b|[i], (10)

where|b|[i] is the ith element of |b|↓ := (|b|[1], |b|[2], · · · , |b|[K])
′ and |b|[1] ≥ |b|[2] ≥ ... ≥ |b|[K].

First, we use the following notations and assumptions to derive our theoretical results.

Denote by ζj := ϵ′C(j) :=
N∑
i=1

ϵiC
(j)
i :=

N∑
i=1

ζi,j, where C(j) is the jth column of C and

ϵ is defined in (9). We denote Σ̂ =
1

N
C ′C as the scaled Gram Matrix of C. For any

scalar y ∈ R, we denote |y| the absolute value of y. For any vector x ∈ RN , we denote

∥x∥2 = (
N∑
i=1

x2
i )

1/2, ∥x∥1 =
N∑
i=1

|xi| and ∥x∥∞ = max1≤i≤N |xi|. In order to derive the next

theorem, we make the following assumptions.

Assumption 1 (Random Variables). {ζi,j}Ni=1 are identically and independently distributed

and E(ζi,j) = 0 for i = 1, · · · , N and j = 1, · · · , K. The distributions of variable C
(j)
i and ϵi

for all i = 1, · · · , N are uniformly subgaussian such that supi,j P(|C
(j)
i | > a) ≤ c1 exp[−c2a2]

and supi P(|ϵi| > a) ≤ c1 exp[−c2a2] for all i = 1, · · · , N , a > 0 and some c1, c2 > 0 which

do not depend on a, i, j.

Assumption 1 outlines the conditions for random variables. Note that Assumption

11Note that the scalar “2” on the second term of (10) is dropped because it is negligible for tuning

parameter λ1

N ≍
√

logK
N , which will be introduced in the next theorem.
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1 is more relaxed compared to Figueiredo and Nowak (2016) (i.e., i.i.d. Gaussian) and

these assumptions on random variables are commonly assumed in the high-dimensional

econometric literature according to Kock (2016).

Assumption 2 (Sparsity). Denote by S the number of non-zero parameters in b0 =

{b01, b02, · · · , b0K}. We assume that S

√
logK

N
= o(1) when N,K →∞.

Let s0 denote a subset, s0 ⊂ {1, · · · , K}, and |s0| the cardinality of s0. For b =

{b1, · · · , bK} ∈ RK , denote bs0 := bi1{i ∈ s0, i = 1, · · · , K}, bsc0 := bi1{i /∈ s0, i =

1, · · · , K}. Then b = bs0 + bsc0 .

Assumption 3 (Restricted eigenvalue condition, Bickel et al. (2009)). For all b such that

||bsc0||1 ≤ 3||bs0||1, Σ̂ satisfies the restricted eigenvalue condition

ϕ2
0 := min

s0⊂{1,...,K}
|s0|<K

min
b∈RK\{0}

||bsc0 ||1≤3||bs0 ||1

b′Σ̂b

||bs0||22
> 0. (11)

Assumption 2 and 3 are necessary conditions for deriving asymptotic properties in

high-dimensional statistics. Assumption 2 is often referred to as the approximate sparsity

assumption which is a rather mild assumption - it only requires that the log-rate of the

high-dimensional parameter K, scaled by the sparsity parameter S grows slower than the

rate of the number of observations N . Yet the exact sparsity parameter S is not assumed.

The restricted eigenvalue condition in Assumption 3 circumvents the issues stemmed from

a degenerate scaled gram matrix under high-dimensional factor models. See Appendix D

for a detailed discussion on restricted eigenvalue condition and its implications.

Theorem 2.2 (Oracle inequality). Let Assumptions 1, 2 and 3 be satisfied. Suppose that

λ0 = κ

√
logK

N
= o(1), where κ is a positive constant. Let

λ1

N
= 2λ0 and

λ2

N
= O(

S logK

NK
).

Then, by selecting a sufficiently large κ, as N,K → ∞, with probability tending to one, b̂

satisfies

(b̂− b0)′Σ̂(b̂− b0) +
λ1

N
||b̂− b0||1 ≤ 4(

λ1

N
)2

S

ϕ2
0

+ 2
λ2

N
(K − 1)||b0||1. (12)

Proof: see Appendix B.3.
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Note that the oracle inequality of (12) can be further developed to offer upper bounds

separately for the prediction error (b̂− b0)′Σ̂(b̂− b0) := ∥C(b̂− b0)∥22/N and the estimation

error ∥b̂ − b0∥1. Therefore, we further utilize these bounds for the prediction error and

estimation error to obtain the convergence rate of the OWL estimator.

Corollary 2.2 (Convergence rate of OWL). Let all conditions in Theorem 2.2 be satisfied,

then

||b̂− b0||1 = O

(
S

√
logK

N

)
, ||b̂− b0||2 = O

(√
S logK

N

)
. (13)

Proof: see Appendix B.4.

Corollary 2.2 shows that the convergence rate of the OWL estimator is the same as the

LASSO estimator if we restrict the rate of λ2 is slower than λ1 as specified in Theorem

2.2. Furthermore, with Assumption 2, Corollary 2.2 also implies that the OWL estimator

is consistent.

2.4 Discussion on the cross-sectional asset returns and the factor

zoo

Cochrane (2011) brought up the “factor zoo” enigma. Since then, it has attracted con-

siderable attention and spurred development of methodological contributions to dissect

the factor zoo for cross-sectional asset returns. Green et al. (2017) employed the Fama-

MacBeth two-step regression method to select factors from the “factor zoo” for US stock

returns. They removed some factors (i.e., the ‘beta’ related factors) before conducting their

analysis, as highly correlated factors would dampen the robustness of the inference in the

Fama-Macbeth framework. However, such ad hoc treatment of screening out correlated

factors is not a trivial task - a vigorous discussion on the criteria used for such a procedure

is much needed. On the other hand, the fast-evolving technology developed in Statistic

and Machine Learning literature has shed light on new methods which can be utilized for

dissecting the factor zoo. Feng et al. (2020) employed the double-LASSO selection proce-

dure devised by Belloni et al. (2014) to recursively test factors for driving cross-sectional

asset returns. The double-LASSO selection method is devised to test a small number of
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factors which are of interest to economists while having a large number of controlling fac-

tors. Belloni et al. (2014) show that the double LASSO selection method can overcome the

omitted variable bias. Having said that, our paper is closely related to Feng et al. (2020)

in terms of the research question (i.e., the factor zoo and cross-sectional asset returns).

However, the focus of the research question and the methods utilised are drastically dif-

ferent. First, the focus of our paper is correlation-robust selection: the OWL shrinkage

method will assign similar coefficients to factors if they are highly correlated, while the

LASSO shrinkage method will likely shrink some highly correlated factors to zeros while

keeping others as non-zeros, resulting in unstable factor selections when factors are highly

correlated. Second, conducting statistical testing is the focus in Feng et al. (2020): the

double LASSO selection method is employed to test the significance of factors that were

proposed in a specific calendar year while having all previously proposed factors as con-

trolling factors. They conduct such tests recursively, based on each calendar year. On the

other hand, conducting statistical testing is beyond the scope of this paper. Note that

the OWL estimator is biased in small samples. To conduct statistical tests for the OWL

shrinkage method, a debiased version of the OWL estimator and its asymptotic properties

need to be developed, which can be addressed in a future research agenda. Third, since

the double LASSO selection procedure only conducts test on a small number of factors

(i.e., it does not make inference on the large number of controlling factors), we need to

hand-pick a small subset of factors to be tested (in the case of Feng et al. (2020) they use

each calendar year as the criterion to form such a subset). On the other hand, the OWL

shrinkage method is not restricted by such constraints.

3 Simulation

This section studies the performance of the OWL estimator together with other benchmark

estimators in various Monte Carlo simulation experiments.
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3.1 Simulation design

In our experiment, we considerK candidate factors, 2K/3 of them are useful factors, that is

they are priced (b ̸= 0), and K/3 of them are useless or redundant factors (b = 0). Within

these useful factors, we set half of them (1/3 of total factors) are correlated, while the

remaining half are uncorrelated. In this setting, we include correlated factors, uncorrelated

factors and useless factors in our models.

Let ρ denote the K ×K correlation coefficient matrix of C (N ×K) defined in (3). We

suppose that ρ1, ρ2, ρ3 ∈ (−1, 1) and ρ is divided into 3 blocks such that:

bk1 =


1 . . . ρ1
...

. . .
...

ρ1 . . . 1


︸ ︷︷ ︸

K/3

; bk2 =


1 . . . ρ2
...

. . .
...

ρ2 . . . 1


︸ ︷︷ ︸

K/3

; bk3 =


1 . . . ρ3
...

. . .
...

ρ3 . . . 1


︸ ︷︷ ︸

K/3

and

ρ =


bk1 0

bk2

0 bk3

 .

In the block bk1 (block 1) the diagonal elements are ones and off-diagonal elements are

ρ1; similarly for the block bk2 and bk3 where off-diagonal elements are ρ2 and ρ3, respectively.

These three blocks constitute the diagonal direction of matrix ρ, and elsewhere ρ is filled

with zeros. This setting allows three blocks of factors. Within each block, factors are

correlated with a correlation coefficient ρ1, ρ2 or ρ3, but factors in different blocks are

uncorrelated.

We first set the values of ρ1, ρ2 and ρ3, and then randomly generate an N ×K matrix

C, denoted as simC, which has the correlation coefficient matrix of ρ. We use block

3 to represent uncorrelated useful factors, thus ρ3 is set to be zero in our experiments.

We consider different correlation coefficient values for ρ1 and ρ2. Then, we specify the

oracle value for b (risk price) before simulating the cross section of average returns as

µR = simC ∗ b+ e, where e is the pricing error. We use block 2 to represent useless factors,
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therefore the oracle value of b in block 2 are set to be zeros. Finally, we estimate risk price

with simulated data simC and µR using OWL, LASSO, adaptive LASSO, Elastic Net, and

naive OLS estimators.12 Then we compare these estimates with the oracle value of b.

3.2 Simulation results

We consider 90 candidate factors (K = 90). We set the first block of 30 factors as useful

factors (b = 0.1) and they are correlated with correlation coefficient ρ1; the second block

of 30 factors are useless/redundant factors (b = 0) and they are correlated with correlation

coefficient ρ2; the third block of 30 factors (block 3) are uncorrelated useful factors (we set

b = −0.1 and ρ3 = 0). For simplicity, we set ρ1 = ρ2 and they are chosen from the set

{0.3, 0.5, 0.9 }, which gives various profiles of correlation structure between factors. We

also consider how the variation of N (the number of assets) compared to K (the number of

factors, which is set to be 90 in our experiments) affects model comparisons. To do that,

we choose N from the set {70, 100, 1000 }. When N ≫ K it represents a near-asymptotic

setting. On the other hand, if N ∼ K or N < K, it approximate a setting where the

number of factors can be larger than the number of observations - a common characteristic

shared in high-dimensional data-sets. We run 500 trails in our simulation experiment and

we use the mean squared estimation error (MSE) of candidate models as our comparison

criterion. To fix ideas, for the ith model, MSE for all factors is defined as follows

MSEi =
1

500K

500∑
rep=1

∥b̂irep − b0∥2,

where rep is the index for the trail in our simulation experiment. To better under the

performance of candidate models under various settings, we look into the MSE for each

blocks, such that

MSEi
bk1 =

1

500 ∗ 30

500∑
rep=1

∥b̂ibk1,rep − b0bk1∥2,

Similarly, MSE for block 2 and block 3 factors can be defined accordingly.

12See Appendix G for an introduction to LASSO, adaptive LASSO, and Elastic Net (EN) estimators.
The OLS estimator is comparable to the Fama-MacBeth regression method. It is only included as a
benchmark if N > K.
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Table 1. Simulation results

Useful factors in bk1 Useless factors in bk2 All factors
OWL LASSO adaLASSO EN OWL LASSO adaLASSO EN OWL LASSO adaLASSO EN

N=70
rho = 0.3 0.0008 0.0047 0.0072 0.0037 0.0006 0.0005 0.0003 0.0005 0.0008 0.0035 0.0049 0.0030
rho = 0.5 0.0006 0.0054 0.0080 0.0041 0.0005 0.0004 0.0002 0.0003 0.0006 0.0036 0.0051 0.0029
rho = 0.9 0.0002 0.0100 0.0120 0.0057 0.0002 0.0000 0.0000 0.0000 0.0002 0.0043 0.0058 0.0027

N = 100
rho = 0.3 0.0001 0.0007 0.0008 0.0005 0.0001 0.0001 0.0000 0.0001 0.0001 0.0006 0.0005 0.0005
rho = 0.5 0.0001 0.0010 0.0011 0.0008 0.0001 0.0001 0.0000 0.0001 0.0001 0.0007 0.0006 0.0006
rho = 0.9 0.0001 0.0040 0.0038 0.0024 0.0001 0.0000 0.0015 0.0000 0.0001 0.0017 0.0020 0.0011

N = 1000
rho = 0.3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
rho = 0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
rho = 0.9 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001

Note: this table reports the Mean Squared Error (MSE) from candidate models. The number of

factors K is 90. We consider three different settings of N: N = 70 high-dimensional setting where N < K;

N = 100, where N is marginally larger than K and N = 1000, low-dimensional setting where N ≫ K.

We also consider different correlation setting between factors which is indicated by the parameter ρ. This

table reports the MSE for the useful factors in block 1, useless factors in block 2 and all factors and MSE

for all factors. Note that MSE for factors in block 3 is not reported but they can be inferred from this

table.

Table 1 reports the simulation results by comparing four candidate models including

the OWL, the LASSO, the adaptive LASSO and the Elastic Net estimators.13 For the

first and second block of factors we allow correlation coefficients between factors to vary

ρ ∈ {0.3, 0.5, 0.9}, whereas the third block of factors are set to be uncorrelated. We

also consider three different settings for the value of N . When N = 70, it represents an

environment when the number of observations is smaller than the number of factors, which

typically resembles the characteristics of a high-dimensional setting. When N = 100, it

represents an environment where the number of observations is about the same size with

the number of factors. When N = 1000 it represents an ideal setting where the number

of observation is much larger than the number of factors, which approximates a near-

asymptotic setting. The left panel reports the MSE of the first block of factors which are

useful factors with correlation specified in the table. The middle panel reports the second

block of factors which are useless factors. The right panel reports the MSE for all factors.

Note that the third block of factors are not reported, but it can be inferred from the table.

13Note that the LASSO and EN models are evaluated using a 3-fold cross-validation method for their
tuning parameters. However, we set λ1 = λ2 = 10−6 as fixed to ease the computational burden. It implies
that the OWL estimator potentially can perform better if we use cross-validation method to find optimal
tuning parameters for each simulated trials. Furthermore, for the adaptive LASSO we use the OLS estimate
as the adaptive weights when N ≥ K, while we use the LASSO estimate as the adaptive weights when
N < K, since OLS estimation would be infeasible in this case.
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First, we investigate the performance of correlated useful factors (i.e. factors in block

1) as well as “all factors”. Table 1 shows that when N = 70 (which approximate a high-

dimensional setting where K > N) and when N = 100 (i.e. N ∼ K), we find that the OWL

estimator achieves the smallest MSE for the correlated useful factors compared to other

benchmarks. Furthermore, we find that other benchmarks such as LASSO, adaptive LASSO

and EN, their performance deteriorate when factor correlation increases and by contrast,

the OWL estimator is less affected. The performance of MSE for all factors also suggests

that the OWL estimator outperforms other benchmarks yielding the smallest MSEs for all

settings for ρ. When N = 1000 (i.e. N ≫ K which approximates the near-asymptotic

setting), the OWL estimator achieves MSE close to zero in all settings, which confirms

the theoretical result in Corollary 2.2 that the OWL estimator is a consistent estimator.

Although other benchmarks are also consistent estimators, we find that the OWL estimator

achieves smaller MSE compared to LASSO and EN when ρ = 0.9, suggesting that the OWL

estimator consistently outperforms the LASSO and EN when factors are highly correlated.

It is worth noting that for factors in block 2, the OWL estimator is less effective to

shrink off useless factors compared to the LASSO and EN estimators, with MSE marginally

larger than LASSO and EN in the N = 70 and N = 100 settings. On the other hand,

when N = 1000 (at the near-asymptotic setting) the OWL estimator, along with all other

shrinkage estimators, successfully shrink off all useless factors. 14

These findings suggest that, when factors are correlated, the OWL estimator is the

preferred estimator especially in the high-dimensional setting. The performance of the

LASSO estimator deteriorates when factor correlation increases. The Elastic Net model

does improve the performance of the LASSO model when factor correlation increases, but

it is substantially outperformed by the OWL estimator.

Table 1 summarizes the performance of four candidate models under various settings

by comparing their average MSEs under 500 trials. To have a better view on how those

candidate models perform for each block of factors, we randomly chose one trail and plot

the estimates from candidate models along with the oracle value. We present our results

14This under-performance of the OWL estimator to shrink off useless factors in small samples can be
overcome by applying thresholding (i.e. set small estimates to zero according to a validated threshold level)
or by applying statistical test utilising the de-biased estimator and its asymptotic properties. However,
those subjects are beyond the scope of this paper, which can be left in the future research agenda.
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and analysis in Appendix E.

4 Empirical analysis

In this section we employ the OWL shrinkage method to find useful factors among 80

(potentially highly correlated) factors. We first introduce the data-sets, followed by a

detailed account of constructing anomaly factors and test portfolios using portfolio sorting.

Then, we reveal the estimation results and discuss their implications.

4.1 Data

We use the U.S. stock data from the Center for Research in Security Prices (CRSP) and

Compustat database15 to construct anomaly factors and test portfolios. The period spans

from January 1980 to December 2017, totalling 456 months on all NYSE, AMEX and

NASDAQ listed common stocks. Risk-free rate and market excess returns are downloaded

from Kenneth French’s on-line data library. All anomaly factors are demeaned and scaled

to have the same standard deviation with the market factor.

4.2 Constructing the factor zoo

We consider 100 firm characteristics described in Green et al. (2017),16 while deleting char-

acteristics that have more than 40% missing data. Then, for each remaining characteristic,

we sort stocks into decile portfolios at each month using uni-variate sorting. Micro stocks,

defined as having market capitalization smaller than the 20 percentile of NYSE listed stocks,

are removed.17 Then, a characteristic-based factor is computed as the spread returns be-

tween the top and the bottom decile portfolios with respect to each firm characteristic after

screening. 18 Overall, we obtain 80 anomaly factors which are listed in Table 2. See Green

15CRSP and Compustat data are downloaded from the Wharton Research Data Services.
16We are grateful to Jeremiah Green for providing SAS code to compute firm characteristics.
17Although micro stocks only account for less than 10% of aggregated market capitalization, they con-

stitute about 56% of all stocks in the database, implying that small stocks would distort the interpretation
of the aggregated market capitalization if not removed, also see Hou et al. (2014) and Fama and French
(2016) for a similar treatment.

18Characteristics that have insufficient data to construct decile portfolios at every month will be dropped.
Note that the sorting is always from high to low according to characteristics, and the factors are computed
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et al. (2017) for a detailed description of each characteristic.

Next, we conduct a preliminary analysis by checking correlations between factors. Fig-

ure 1a displays the heat map of factor correlation coefficients matrix measured by their

time series. It shows that 16% of factors exhibit correlation coefficients (absolute value)

greater than 0.5. In particular, ‘beta’ related factors are highly correlated with ‘liquidity’,

‘profitability’, ‘investment’ and other factors. For that reason, Green et al. (2017) ex-

clude ‘beta’ related factors from candidate factors before they employ the Fama-MacBeth

method to find significant factors that drives the cross-sectional returns for the US stock

market. Figure 1b displays the heat map of factor correlation coefficients matrix measured

by factor loadings (i.e. the correlation coefficients of explanatory variables for the second

stage Fama-MacBeth regression). It exhibits much higher correlation compared to Figure

1a: 64% correlation coefficients (absolute value) are greater than 0.5, implying a serious

multicollinearity issue if the standard Fama-MacBeth regression is employed.

This preliminary examination of factor correlations shows that many factors are highly

correlated, suggesting severe complications would occur if traditional methods such as the

Fama-MacBeth regression procedure or the LASSO regression model are employed to infer

useful factors. Therefore, a correlation-robust estimation method is much needed.

4.3 Constructing test assets

Regarding test assets, there is a debate in the literature about using either individual stocks

or sorted portfolios as test assets. The main concern in the literature of using individual

stocks as test assets is that it will introduce errors in variables (EIV). When regression

is made on estimated variables, i.e. factor loadings, the pre-estimated factor loadings

would incur estimation errors. Shanken (1992) modified the estimator by introducing

the “Shanken’s correction” term to mitigate EIV. However, others argue that “Shanken’s

correction” is minimal in small samples. On the other hand, Fama and French (2008),

Hou et al. (2014), Feng et al. (2020) advocate sorted portfolios as test assets. Individual

as the top decile return minus the bottom decile return. That will end up with some differences compared
to some familiar notations. For instance, the famous size factor ‘small-minus-big’ in our factor library would
be ‘big-minus-small’, however, they are essentially the same after giving a negative sign. In estimation,
we only care about the coefficient magnitude (i.e., the absolute value). The interpretation of the sign of
coefficients should be looked at together with the sorting order when forming anomaly variables.
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Table 2. Anomaly factors

This table lists all 80 factors considered in our factor library. The abbreviation is consistent with Green

et al. (2017). For a more detailed description of each factor, including the original paper where it is

proposed, please refer to Green et al. (2017).

Abbreviation Firm Characteristics Abbreviation Firm Characteristics

’absacc’ absolute accruals ’mom1m’ 1 month momentum
’acc’ working capital accruals ’mom36m’ 36 month momentum
’aeavol’ abnormal earnings announcement volume ’mom6m’ 6 month momentum
’agr’ asset growth ’ms’ financial statement score
’baspread’ bid-ask spread ’mve’ size
’beta’ beta ’mve ia’ industry adjusted size
’betasq’ beta squared ’nincr’ number of earnings increases
’bm’ book-to-market ’operprof’ operating profitability
’bm ia’ industry adjusted book-to-market ’pchcapx ia’ i.a. %change in capital expenditures
’cash’ cash holding ’pchcurrat’ % change in current ratio
’cashdebt’ cash flow to debt ’pchdepr’ % change in depreciation
’cashpr’ cash productivity ’pchgm pchsale’ % change in gross margin - %change in sales
’cfp’ cash flow to price ratio ’pchquick’ %change in quick ratio
’cfp ia’ industry adjusted cfp ’pchsale pchinvt’ % change in sale - % change in inventory
’chatoia’ industry adjusted change in asset turnover ’pchsale pchrect’ % change in sale - % change in A/R
’chcsho’ change in share outstanding ’pchsale pchxsga’ % change in sale - % change in SG&A
’chempia’ industry adjusted change in employees ’pchsaleinv’ % change in sales-to-inventory
’chinv’ change in inventory ’pctacc’ percent accruals
’chmom’ change in 6-month momentum ’pricedelay’ price delay
’chpmia’ industry adjusted change in profit margin ’ps’ financial statement score
’chtx’ change in tax expense ’quick’ quick ratio
’cinvest’ corporate investment ’retvol’ return volatility
’currat’ current ratio ’roaq’ return on assets
’depr’ depreciation ’roavol’ earning volatility
’dolvol’ dollar trading volume ’roeq’ return on equity
’dy’ dividend to price ’roic’ return on invested capital
’ear’ earnings announcement return ’rsup’ revenue surprise
’egr’ growth in common shareholder equity ’salecash’ sales to cash
’ep’ earnings to price ’saleinv’ sales to inventory
’gma’ gross profitability ’salerec’ sales to receivables
’grcapx’ growth in capital expenditure ’sgr’ sales growth
’grltnoa’ growth in long term net operating assets ’sp’ sales to price
’hire’ employee growth rate ’std dolvol’ volatility of liquidity (dollar trading volume)
’idiovol’ idiosyncratic return volatility ’std turn’ volatility of liquidity (share turnover)
’ill’ illiquidity ’stdacc’ accrual volatility
’invest’ capital expenditure and inventory ’stdcf’ cash flow volatility
’lev’ leverage ’tang’ debt capacity/firm tangibility
’lgr’ growth in long term debt ’tb’ Tax income to book income
’maxret’ max daily return ’turn’ share turnover
’mom12m’ 12 month momentum ’zerotrade’ zero trading days
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(a) Factor correlation measured by time series

(b) Factor correlation measured by factor loadings

Figure 1. Factor correlation coefficients
This heat map displays the matrix of correlation coefficients of all 80 anomaly factors. Dark red and deep

blue colors signal high correlation (positive or negative) while light colours indicate low correlation. There

are N test assets and K factors, each asset/factor has T time series observations. “Factor correlation

measured by time series” means the correlation coefficients matrix is computed through the T ×K factor

time series data. “Factor correlation measured by factor loadings” means the correlation coefficients matrix

is computed through the N ×K factor loadings after the first stage of Fama-MacBeth regression.
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stocks are usually noisy and exhibit outliers, which are the main source of EIV. Sorted

portfolios are (weighted) mean returns of a group of stocks sharing similar characteristics,

which would be less affected by the EIV problem.

Nonetheless, the biggest drawbacks of using individual stocks stem from missing data

and micro stocks. It is inevitable, over a long period of time, to have new firms entering

and old firms exiting, which frequently causes missing data in our data-sets. Discontinuity

of data leads to imprecise estimation of the covariance matrix of returns and factors, which

is essential for factor inference. On the other hand, sorted portfolios are constructed at

each point of time while sorting (possibly varying) stocks that share similar characteristics

into portfolios, guaranteeing that they are immune to the missing data problem.

Small stocks bring up another major concern of using individual stocks as test assets.

Small stocks take up the majority of all stocks, while only a few big stocks constitute a large

share of total market capitalization. If individual stocks are used to gauge factor impact,

it is inevitable that they will distort the market implications: small stocks will dominate

the estimation result if individual stocks are used for test assets - big stocks which have

much larger impact on the market capitalization will be out-weighed by the large number

of small stocks. Sorted portfolios, on the other hand, can circumvent this issue by using the

value weighted sorting method, in which portfolio returns are computed by the weighted

average of stocks returns where the weights reflect their market capitalization.

Fama and French (1992, 2016) use bi-variate sorting to create the five by five test port-

folios which have now become popular choices for test assets. However, Harvey et al. (2015)

caution that when only a small set of sorted portfolios are considered for test assets, factor

selection is biased towards the same characteristics that are used to form test portfolios.

Lewellen et al. (2010) argue that the 25 size and value sorted portfolios are too low a thresh-

old to test factors. They recommend adding other portfolios in test assets. Following their

advice, Feng et al. (2020) construct a large set of combined bi-variate sorted portfolios as

test assets. In particular, they use the ‘size’ characteristic and the other remaining char-

acteristics to form five by five bi-variate sorted portfolios and pool them together as the

grand set of test assets. We follow Feng et al. (2020) to construct bi-variate sorted test

26



portfolios and we obtain 1927 test portfolios as our grand set of test assets.19

4.4 Estimation results: which factors matter?

We use the SDF method described in Section 2.2 to estimate the risk prices for all factors

using the OWL shrinkage method. We use sample analogs of C and µR in our estimation.

Specifically, Ĉ = ̂Cov(R, f) =
1

T

T∑
t=1

(Rt − µ̂R)(ft − µ̂f )
′, µ̂f =

1

T

T∑
t=1

ft and µ̂R =
1

T

T∑
t=1

Rt.

For robust estimation, we look into the following cases: first, we consider the full sample

estimation as well as its sub-samples, to check the time-varying treand of factor selection.

Second, we compare different weighting methods (equal weighted or value weighted) for

sorting portfolios and investigate their impact on the estimation results - value weighted

portfolios would put more weights on large stocks whereas equal weighted portfolios are

dominated by small stocks. Third, we use different percentile (20, 30 and 40 percentiles,

respectively) to remove micro stocks before sorting portfolios. A larger percentile used to

remove micro stocks means larger proportion of small stocks are removed before sorting

portfolios, resulting in factor selection that is more influenced by larger stocks.

Table 3 reports the estimation results. The first 5 columns are estimated using the full

sample, columns 6-7 report results of the first half sample, from 1980 to 2000, and columns

8-9 reports the second half sample, from 2001 to 2017. Both the value weighted (vw) and

equal weighted (ew) methods are considered. Also, three levels to partition micro stocks are

considered. This table lists all anomaly factors selected in each estimation. It also reports

how many times each factor has been selected by all estimations and the ordinal number

(in the bracket) for each factor in a separate estimation, which indicates the importance of

the factor (smaller number implies greater importance).20

Table 3 shows that ‘size’ (mve) factor has been selected as the most important factor

in most of these estimations which, however, is not surprising. ‘Size’ characteristic has

multiple entries in forming test portfolios, thus ‘size’ impact prevails in test portfolios. For

this reason we exclude ‘size’ factor as a competing factor, yet we include it in the table to

19We drop any test portfolios which have insufficient stocks to sort at any time, due to missing data.
20It is worth stressing that the factor selection in each estimation does not imply a true parsimonious

asset pricing model, as such an implication would require statistical tests on factors. Instead, we are
focusing on the important factors selected by the OWL estimator - since all factors are scaled to have the
same mean and variance, their estimated coefficient can be interpreted as the importance of factors.
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Table 3. Estimation results

This table reports the selected factors using the OWL shrinkage method. We consider the full sample from 1980 to 2017 and two sub samples divided

by year 2000. Equal weighted (ew) and valued weighted (vw) sorting methods are both considered. Three treatments of micro stocks are considered:

we remove stocks that are smaller than 20 (30 or 40 ) percentile of NYSE listed stocks. For each combination of the sample size, weighting method

and micro-stock treatment, we list all selected factors with the ordinal numbers in the bracket (smaller means more important).

Sample size full full full full full 1980:2000 1980:2000 2001:2017 2001:2017
Weighting vw vw vw ew ew vw vw vw vw
Micro stock 20 prctile 30 prctile 40 prctile 20 prctile 40 prctile 20 prctile 40 prctile 20 prctile 40 prctile

# selected
agr 5 agr (8) agr (8) agr (5) agr (4) agr (5)
baspread 2 baspread (7) baspread (4)
beta 2 beta (1) beta (1)
betasq 3 betasq (4) betasq (2) betasq (2)
cash 3 cash (6) cash (7) cash (6)
cashdebt 4 cashdebt (6) cashdebt (2) cashdebt (7) cashdebt (2)
dolvol 3 dolvol (10) dolvol (6) dolvol (6)
egr 3 egr (4) egr (3) egr (9)
ill 7 ill (2) ill (2) ill (6) ill (2) ill (5) ill (2) ill (6)
invest 2 invest (7) invest (10)
mom12m 1 mom12m (3)
mom6m 2 mom6m (1) mom6m (4)
mve 8 mve (1) mve (1) mve (1) mve (1) mve (3) mve (1) mve (1) mve (5)
pchcapx ia 1 pchcapx ia (5)
pchcurrat 4 pchcurrat (4) pchcurrat (3) pchcurrat (9) pchcurrat (4)
pchquick 2 pchquick (11) pchquick (4)
retvol 1 retvol (3)
roaq 2 roaq (2) roaq (7)
roic 3 roic (5) roic (7) roic (5)
salecash 1 salecash (3)
saleinv 1 saleinv (5)
sp 1 sp (6)
std dolvol 6 std dolvol (3) std dolvol (5) std dolvol (4) std dolvol (3) std dolvol (7) std dolvol (3)
stdcf 1 stdcf (7)
turn 1 turn (8)
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show that the OWL estimator can correctly identify relevant factors.

The ‘illiquidity’ (ill) factor (Amihud, 2002) is the most important anomaly factor for

cross-sectional returns. Its importance is particularly evident with smaller stocks. Portfo-

lios sorted with size greater than 20 or 30 percentile of NYSE listed stocks exhibit higher

importance of ‘illiquidity’ than those with 40 percentile, implying that small firms face

severer liquidity constraints. ‘Standard deviation of dollar volume’ (std dolvol) (Chordia

et al., 2001) which is another proxy for liquidity risk, follows ‘illiquidity’, becoming the

second most important anomaly factor. Meanwhile, its high correlation with ‘illiquidity’

is also identified by the OWL estimator. Liquidity as a risk source that influences cross-

sectional asset returns has been documented extensively in the literature, see Pastor and

Stambaugh (2003) and Acharya and Pedersen (2005) for example.

‘Asset growth rate’ (agr) follows ‘illiquidity’ and ‘standard deviation of dollar volume’

as the third most frequently selected anomaly factor. This finding coincides with Hou et al.

(2021) in which they propose an augmented q5 model, adding ‘asset growth rate’ as a fifth

factor into their well celebrated q4 factor model (Hou et al., 2014). Other anomaly factors

that have been selected multiple times include ‘beta’, ‘beta squared’ (betasq), ‘cash to debt

ratio’, and ‘percentage change in current ratio’ (pchcurrat), which are also correlated with

liquidity risks. Beyond that, ‘momentum’, ‘return on invested capital’ (roic), ‘return on

assets’ (roaq) and other profitability related factors are also selected by the OWL estimator

as useful factors, particularly for the first half of the sample period.

Columns 6 and 7 report estimations using the 1980 - 2000 sub-sample and columns 8 and

9 report estimations using the 2001 - 2017 sub-sample. We find that liquidity constraint only

appears in the second sub-sample (2001 - 2017), where liquidity related factors (‘baspread’,

‘standard deviation of dollar volume’, ‘change in quick ratio’, etc...) play an important role

in explaining the cross section of average returns. However, in the first sub-sample (1980 -

2000), columns 6 and 7 show no strong evidence that liquidity related factors drive asset

prices. On the other hand, ‘momentum’ and ‘profitability’ factors are the most important

ones to drive asset prices between 1980 and 2000. This implies a time-varying trend of

factors that dictates cross-sectional returns.

Interestingly, from 1980 to 2000, with 20-percentile-micro-stocks excluded, we find ‘size’
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(mve) is not selected as an useful factor to drive cross-sectional returns, which makes it the

only exception from all estimations. This phenomenon is well documented in the literature,

see Amihud (2002) and Asness et al. (2018) for example. The size effect weakened after its

discovery in the early 1980s. However, our estimation results suggest that the size effect

is evident during this period after removing 40-percentile-micro-stocks, which implies that

the vanishing size effect is likely to be caused by some small “junk” stocks. Once removing

these junk stocks, size effect resurfaces again, which echoes the discovery by Asness et al.

(2018): size matters, if you control your junk. Asness et al. (2018) shows that when adding

some controlling variables (measuring the junk-level of stocks) in their regression model,

they find that the size-effect is significant even in the early 1980s.

4.5 Robustness check

In this section, we check whether, and to what extend, different sorting methods and

different treatments of micro stocks would affect our estimation results and factor selections.

Because of the limitation of space, we place Section 4.5 in Appendix F.

4.6 Out-Of-Sample analysis

In this section, we use the selected factors to construct hedging portfolios in an out-of-

sample framework following Freyberger et al. (2020). This exercise aims to compare the

OWL shrinkage method with other benchmarks by evaluating their hedging portfolio re-

turns (based on different factors selected by each model). Apart from the OWL shrinkage

method, we consider three other benchmarks, including the LASSO shrinkage method, the

Elastic Net model, and the two-pass Fama-MacBeth (FM) procedure. To enable fair com-

parison, we consider a five-factor model and select only the five most important factors

determined by each method to form hedging portfolios.

To offer some insights on the time-varying trend in factor selection, we also consider

two sub-samples, divided before and after 2000. We report the five most important factors

selected by each method.21

21For robustness check, we also experimented on a three-factor and a four-factor model for out-of-sample
prediction. We find that conclusions are similar.
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It is worth noting that we put the market factor (mkt) together with 80 anomaly factors

as the grand set of factors we can choose from. Because the market factor is often highly

correlated with many anomaly factors, its importance, though backed by financial theory,

is often compromised by the high-correlation with other factors. Therefore, it is frequently

deemed as an unimportant factor when using traditional methods. We further investigate

its implications in the following text.

Table 4 reports the five most important factors selected using various methods in differ-

ent samples while controlling micro stocks. We find that selected factors vary substantially

between different sample periods, signalling time-varying trend in prominent factors that

drive cross-sectional asset returns. In addition, controlling micro stocks has a big impact on

factor selection too. While including all micro stocks (P00), all methods select a mixture of

‘liquidity’, ‘profitability’ and ‘momentum’ related factors. However, once we remove micro

stocks (P20 and P40), we can find some patterns in selected factors: OWL suggests that

the most important factors to drive asset prices in the first sub-sample are ‘momentum’

and ‘profitability’ related factors while ‘liquidity’ related factors are relatively unimportant.

However, the implication is reversed in the second sub-sample, where ‘liquidity’ related fac-

tors mainly drive asset prices. On the other hand, LASSO and other methods do not show

a clear pattern of change in characteristics.

Interestingly, we find that the OWL shrinkage method is the only method that con-

sistently identifies the market factor as an important factor to drive cross-sectional asset

returns, especially when micro stocks are removed before portfolio sorting. This finding is

consistent with numerous finance literature related to the CAPM model of Lintner (1965)

and Sharpe (1964). On the contrary, other benchmarks such as LASSO, Elastic Net and

Fama-MacBeth estimators all fail to identify the market factor as an important factor to

drive cross-sectional returns even when 40 percentile of micro stocks are removed. As

discussed before, this is caused by high correlation between the market factor and other

factors. This finding reiterates the merit of using the OWL shrinkage method when factors

are highly correlated.

Next, we want to compare the out-of-sample performance between various methods. In

particular, we follow a similar procedure to Freyberger et al. (2020) to form factor-hedged
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Table 4. Full/sub-sample factor selection using various methods

This table reports the first five factors selected with greatest magnitude of b̂ using methods including OWL,

LASSO, Elastic Net (EN), and two-pass Fama-MacBeth regression (FM). We do factor selection either on

the full sample (full) or two sub-samples, divided by year 2000 (sub1 and sub2). We also control micro

stocks: we consider all stocks (P00), or remove micro stocks’ market capitalisation which is smaller than

20/40 percentile of NYSE listed stocks (P20/P40).

First five selected factors (decreasingly) ordered by their magnitude of b̂

Panel A: Full sample estimation

full P00

OWL ’ill’ ’mve’ ’cash’ ’chpmia’ ’roeq’
LASSO ’idiovol’ ’mve’ ’mom6m’ ’zerotrade’ ’operprof’
EN ’idiovol’ ’mve’ ’mom6m’ ’ill’ ’pctacc’
FM ’idiovol’ ’maxret’ ’ill’ ’betasq’ ’beta’

full P20

OWL ’mve’ ’ill’ ’mkt’ ’std dolvol’ ’pchcurrat’
LASSO ’idiovol’ ’mve’ ’ill’ ’mom36m’ ’ms’
EN ’mve’ ’idiovol’ ’ill’ ’mom36m’ ’bm’
FM ’idiovol’ ’baspread’ ’ill’ ’beta’ ’betasq’

full P40

OWL ’mkt’ ’mve’ ’cashdebt’ ’egr’ ’std dolvol’
LASSO ’mve’ ’idiovol’ ’ill’ ’operprof’ ’roavol’
EN ’mve’ ’idiovol’ ’ill’ ’operprof’ ’mkt’
FM ’idiovol’ ’baspread’ ’ill’ ’betasq’ ’beta’

Panel B: sub-sample estimation (1980:2000)

sub1 P00

OWL ’pchcurrat’ ’sp’ ’bm’ ’mkt’ ’absacc’
LASSO ’dy’ ’turn’ ’acc’ ’mve’ ’sp’
EN ’dy’ ’turn’ ’acc’ ’mve’ ’ill’
FM ’maxret’ ’retvol’ ’idiovol’ ’betasq’ ’mom1m’

sub1 P20

OWL ’mkt’ ’mom6m’ ’roaq’ ’salecash’ ’pchcurrat’
LASSO ’baspread’ ’dy’ ’gma’ ’mve’ ’ill’
EN ’baspread’ ’dy’ ’gma’ ’mve’ ’ill’
FM ’idiovol’ ’betasq’ ’beta’ ’ep’ ’baspread’

sub1 P40

OWL ’mkt’ ’mve’ ’cashdebt’ ’mom12m’ ’mom6m’
LASSO ’mve’ ’mve ia’ ’std turn’ ’invest’ ’turn’
EN ’mve’ ’mve ia’ ’std turn’ ’invest’ ’turn’
FM ’idiovol’ ’beta’ ’betasq’ ’baspread’ ’retvol’

Panel C: sub-sample estimation (2001:2017)

sub2 P00

OWL ’ill’ ’mve’ ’cash’ ’mkt’ ’roeq’
LASSO ’mve’ ’ill’ ’stdacc’ ’gma’ ’pctacc’
EN ’mve’ ’ill’ ’pctacc’ ’stdacc’ ’agr’
FM ’ill’ ’idiovol’ ’dolvol’ ’baspread’ ’std dolvol’

sub2 P20

OWL ’mve’ ’ill’ ’mkt’ ’std dolvol’ ’pchquick’
LASSO ’mve’ ’pchquick’ ’idiovol’ ’ill’ ’pchcurrat’
EN ’mve’ ’pchquick’ ’ill’ ’idiovol’ ’pchcurrat’
FM ’ill’ ’baspread’ ’idiovol’ ’std dolvol’ ’dolvol’

sub2 P40

OWL ’mkt’ ’beta’ ’betasq’ ’retvol’ ’baspread’
LASSO ’mve’ ’ill’ ’roavol’ ’tang’ ’pchquick’
EN ’mve’ ’ill’ ’sgr’ ’pchquick’ ’salerec’
FM ’idiovol’ ’baspread’ ’ill’ ’betasq’ ’beta’
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portfolios using a rolling window scheme to predict returns. First of all, we choose five most

prominent factors as shown in Table 4 while considering different samples and different

treatment of micro stocks (i.e. remove micro stocks at the 20- and 40-percentile levels).

Then we use a rolling window scheme (rolling window size is 120 months) to evaluate the

performance of the factor-hedged portfolios with each method. Specifically, at the end of

each estimation window, we regress each test asset on factors selected by each method, but

with one period lagged behind. For instance, at time t, we regress each test asset return

from t− 120− 1 to t on selected factors from t− 120− 2 to t− 1, and obtain β̂. We then

forecast each test asset’s next period return (at t+1) by multiplying β̂ and selected factors

at t. We then sort stocks by their predicted returns into decile portfolios and long the top

decile and short the bottom decile. At the next period (t + 1), when returns are realized,

we can compute the spread portfolio return. Subsequently, we roll the window one period

forward and repeat the steps until the end of period. In the end we compute four moments

of the factor-hedged portfolio returns in the out-of-sample period as well as the Sharpe

ratio.

Table 5 reports performance scores including the Sharpe ratios and the four moments

of out-of-sample returns of hedged portfolios using the OWL, LASSO, Elastic Net and

Fama-MacBeth methods. Panel A suggests that in the full sample estimation, the OWL

estimator produces about 20% higher Sharpe ratio than other benchmarks. In addition,

we find that the skewness and the kurtosis of the OWL hedged portfolio are much smaller

those of other benchmarks. Fama-MacBeth estimator typically performs the worst. We

reckon that it is severely affected by factor correlations and estimation result is eroded

by weak factors in the second pass Fama-MacBeth regression, see Kleibergen (2009) for a

detailed discussion on this matter.

In sub-sample estimations, we find that the Sharpe ratios of the factor-hedged portfo-

lios are typically much higher than that of the full-sample estimation in all methods we

considered. Furthermore, we find that the skewness and the kurtosis of hedged portfolio

returns are significantly reduced compared to the full-sample estimation, making the distri-

bution of the out-of-sample returns more “normal” alike. This trend signals a time-varying

nature in prominent factors that drive asset prices. In addition, we find that the Sharpe
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Table 5. Out-of-sample portfolio performance with a five-factor model

This table reports the out-of-sample portfolio performance using a rolling window scheme while controlling

micro stocks (P20/P40: only include stocks are larger than 20/40 percentile of the NYSE listed stocks).

Factor selection strategies include OWL, LASSO, Elastic Net (EN), and Fama-MacBeth regression (FM).

The upper panel is obtained using the full sample; the middle and lower panels are obtained using

sub-samples.

SR Mean Std Skewness Kurtosis

Panel A: full sample estimation

full P20

OWL 1.21 2.17 6.24 -0.07 9.48
LASSO 1.01 2.13 7.30 2.21 31.09
EN 1.04 2.26 7.52 1.71 27.70
FM 0.96 1.96 7.08 2.88 37.37

full P40

OWL 0.90 1.59 6.13 1.39 25.06
LASSO 0.77 1.48 6.62 4.09 57.11
EN 0.82 1.52 6.39 3.17 46.12
FM 0.72 1.41 6.79 3.68 49.89

Panel B: sub-sample estimation (1980:2000)

sub1 P20

OWL 2.10 2.54 4.18 0.10 3.41
LASSO 1.87 2.09 3.87 0.10 3.48
EN 1.87 2.09 3.87 0.10 3.48
FM 1.66 1.92 4.01 0.65 5.45

sub1 P40

OWL 1.35 1.34 3.44 -0.03 4.37
LASSO 1.03 1.13 3.82 0.02 3.67
EN 1.03 1.13 3.82 0.02 3.67
FM 0.75 0.75 3.50 -0.21 5.62

Panel C: sub-sample estimation (2001:2017)

sub2 P20

OWL 2.10 2.43 4.67 1.02 8.72
LASSO 1.91 2.10 3.80 0.16 3.51
EN 1.91 2.10 3.80 0.16 3.51
FM 1.78 1.80 3.49 -0.48 3.82

sub2 P40

OWL 2.11 2.04 3.34 0.62 5.83
LASSO 1.80 1.69 3.27 0.58 6.16
EN 1.69 1.59 3.25 0.37 4.44
FM 1.80 1.75 3.35 0.13 2.91
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ratio of the OWL-hedged portfolios are consistently higher than other benchmarks in all

sample periods. In the first sub-sample, the OWL shrinkage method picked ‘momentum’

and ‘profitability’ related factors as the most important factors, whereas the other bench-

marks picked up mostly ‘liquidity’ and ‘beta’ related factors.22 Figure 5 Panel B shows

that those ‘momentum’ and ‘profitability’ related factors, selected by the OWL shrinkage

method, predict stock returns better than other benchmarks: resulting in 20% to 30%

higher Sharpe ratios. A similar result can be found in Panel C for the second half sample

estimation: the OWL-hedged portfolios yield the highest Sharpe ratios compared to other

methods.

5 Conclusion

In the zoo of factors, using traditional methods, such as Fama-MacBeth regression and

the LASSO shrinkage method to find factors that drive cross-sectional asset returns, faces

tremendous challenges due to factor correlations. Nonetheless, we find that among 80

anomaly factors we considered, 64% of them exhibit correlation coefficients greater than 0.5

(absolute value), which casts doubt on the validity of using these traditional methods. By

contrast, the OWL shrinkage method permits factor correlations and achieves correlation

identification and sparsity shrinkage simultaneously. We derive the statistical properties for

the OWL estimator and show that the OWL estimator is a consistent estimator under some

regularity conditions. Monte Carlo experiments confirm the superior performance of the

OWL estimator against other benchmarks when factors are correlated. Empirical analysis

reveals that the OWL shrinkage method consistently chooses the ‘market’ factor as the most

important factor to drive cross-sectional asset returns, while other benchmarks all failed to

identify the ‘market’ factor as an important factor due to its high-correlation with other

factors. In addition, out-of-sample analysis shows that the OWL shrinkage method can

select factors that yield the highest Sharpe ratios in the factor-hedged portfolios compared

to other benchmarks.

Finally, note that the purpose of this paper is not to find a “true” parsimonious asset

pricing model, but to robustly identify a set of sparse factors to drive cross-sectional asset

22Note that ‘beta’ related factors are highly correlated with many other factors.
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returns under potentially highly correlated factors. Bearing that in mind, our procedure

is particularly useful for factor investing: the OWL shrinkage method can identify corre-

lated factors that jointly drive stock returns, and can be further utilized to form portfolio

strategies, see Asness et al. (2013) for an example. However, finding a “true” parsimonious

asset pricing model remains as a key research question in the finance research. Such task

is achievable once a de-biased version of the OWL estimator is developed - and that can

be considered as a future research subject.
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Appendix

A The OWL penalty, geometric interpretation and

comparison with the LASSO

This section explains why the LASSO estimator is problematic whereas the OWL estimator

is robust with correlated factors. Recall that the OWL penalty is defined as

Ωω(b) = ω′|b|↓ =
K∑
i=1

ωi|b|[i], (A.1)

where |b|[i] and ωi are specified in (7) and (8), respectively. Consider a simple two dimen-

sional case, where K = 2. Then, the atomic norm of the LASSO and the OWL penalty

can be written as

Ωω,LASSO(b) = λ|b1|+ λ|b2| ≤ 1, (A.2)

Ωω,OWL(b) = ω1|b|[1] + ω2|b|[2] ≤ 1, (A.3)

respectively. Recall that |b|[1] = max(|b1|, |b2|) and |b|[2] = min(|b1|, |b2|). Therefore, equa-

tion (A.3) can be written as

Ωω,OWL(b) =

ω1|b1|+ ω2|b2| ≤ 1, if |b1| ≥ |b2|,

ω1|b2|+ ω2|b1| ≤ 1, if |b1| < |b2|,
(A.4)

which implies that the geometric interpretation of the atomic norm of the LASSO and

OWL penalties can be shown as in Figure 2.

Next, we will compare the LASSO and OWL penalties following a geometric argument,

typically illustrated in the machine learning literature. From Figure 2, we can see that the

LASSO norm has vertexes on both axes, which makes the LASSO estimator enjoy the sparse

selection property (i.e., it shrinks one variable to zero while keeping the other non-zero).

During estimation, the tangent point between the penalty norm and the contour coming
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Figure 2. Geometric interpretation of OWL and LASSO penalties
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from the un-regularized solution determines the estimation results. However, when two

variables are highly correlated, the frontier of the contour coming from the un-regularized

solution is flat. Given the shapes of the LASSO norm and the contour under correlated

factors, it is very unstable in determining which variable to shrink. A slight estimation

error from the un-regularized solution can easily produce opposite inferences on factors

selections. On the other hand, the OWL norm not only has vertexes on both axes, it also

has vertexes on the ±45 degree lines. Those vertexes on the axes produce sparse selection

like the LASSO estimator, while those on the ±45 degree lines yield grouping property

which ensures robust factor selection while factors are correlated. When factors are highly

correlated, they will be assigned with similar coefficients.

Also, note that

|b|[1] = max(|b1|, |b2|) =
1

2
(|b1|+ |b2|+

∣∣∣|b1| − |b2|∣∣∣),
|b|[2] = min(|b1|, |b2|) =

1

2
(|b1|+ |b2| −

∣∣∣|b1| − |b2|∣∣∣).
Then the OWL penalty can be written as

Ωω,LASSO(b) = ω1|b|[1] + ω2|b|[2] =
ω1 + ω2

2
(|b1|+ |b2|) +

λ2︷ ︸︸ ︷
ω1 − ω2

2

∣∣∣|b1| − |b2|∣∣∣,
which suggests that the OWL penalty term can be decomposed into two components: first,

|b1| + |b2|, which is the same as the LASSO shrinkage method, which produces sparse

factor selection; second,
∣∣∣|b1|− |b2|∣∣∣, which shrinks |b1| ≠ |b2|, where the shrinkage intensity

is controlled by (ω1 − ω2)/2. Note that, by the definition of ω, we have ω1 − ω2 = λ2.

Therefore, the turning parameter λ2 has a direct impact on the grouping property of the

OWL estimator and thus can be controlled to achieve desirable grouping intensity.
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B Proof of theorems

B.1 Proof of Theorem 2.1

The proof of Theorem 2.1 relies on the Pigou-Dalton transfer principle and the directional

derivative lemma at the minimum of a convex function. It follows using a similar argument

as in Figueiredo and Nowak (2016), except that we are dealing with both the time-series

and cross-sectional dimensions.

Lemma 1 (Pigou-Dalton transfer principle). Let be given vector x ∈ Rp
+, and its two

components xi, xj are such that xi > xj. Let ϵ ∈ (0, (xi − xj)/2), zi = xi − ϵ, zj = xj + ϵ,

and zk = xk, for k ̸= i, j. Set Ωω(x) = ω′x, where ω ∈ Rp
+, and ω1 ≥ ω2 ≥ · · · ≥ ωp. It

holds

Ωω(x)− Ωω(z) ≥ ∆ωϵ, ∆ω := min
i=1,··· ,p−1

ωi+1 − ωi.

Lemma 2 (Directional derivative). The directional derivative of function f : RK → R at

x ∈ dom(f), in the direction u ∈ RK is given by

f ′(x, u) = lim
α→0+

[f(x+ αu)− f(x)]/α, α > 0.

If f is a convex function, then x∗ ∈ argmin(f) if and only if f ′(x∗, u) ≥ 0 for any direction

u ∈ RK.

Proof of Theorem 2.1 . Denote the objective function in (7) as Q(b) :=
1

2
||µR − Cb||22 +

Ωω(b). By definition, b̂ is the minimizer of Q(b), Q(b̂) ≤ Q(b) for all b. Thus by Lemma 2,

for any u,

Q′(b̂, u) ≥ 0. (B.5)

Suppose

σ(fi − fj) <
λ2

||µR||2||σR||2
, (B.6)

and assume

b̂i ̸= b̂j.

We will show a contradiction between the assumption b̂i ̸= b̂j and (B.6). Without loss of the

generality, assume b̂i > b̂j, i < j. First we define a special direction vector u = (u1, · · · , uK).
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Set ui = −1, uj = 1, uk = 0, for k ̸= i, j. The directional derivative of Q at b̂ with such u is

Q′(b̂, u) = lim
α→0+

(
QLα(b̂, u) +RPα(b̂, u)

)
, (B.7)

where

QLα(b̂, u) =
||µR − C(b̂+ αu)||22 − ||µR − Cb̂||22

2α
,

RPα(b̂, u) =
Ωω(b̂+ αu)− Ωω(b̂)

α
.

By definition of u, we have −αCu = α(Ci − Cj), where Ci and Cj are the ith and jth

columns of the factor-return covariance matrix C. Hence QLα(b̂, u) can be written as

QLα(b̂, u) =
||µR − Cb̂+ α(Ci − Cj)||22 − ||µR − Cb̂||22

2α
.

Observe that

QLα(b̂, u) =
||µR − Cb̂||2 + 2α(µR − Cb̂)(Ci − Cj) + α2||Ci − Cj||22 − ||µR − Cb̂||22

2α

→ (µR − Cb̂)(Ci − Cj) as α→ 0.

Applying the Pigou-Dalton transfer principle on RPα(b̂, u) with ϵ = α, we obtain

−RPα(b̂, u)α = Ωω(b̂)− Ωω(b̂+ αu) ≥ ∆ωα.

So for any α and u,

RPα(b̂, u) ≤ −
∆ωα

α
= −∆ω.

By the definition of ω in (8), ∆ω = λ2. Therefore, applying the above bound in (B.7), we

obtain

Q′(b̂, u) ≤ (µR − Cb̂)(Ci − Cj)−∆ω

= (µR − Cb̂)(Ci − Cj)− λ2.
(B.8)
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Using Cauchy-Schwarz inequality, we have (µR −Cb̂)(Ci −Cj) ≤ ||µR −Cb̂||2 ||Ci −Cj||2.

So (B.8) becomes

Q′(b̂, u) ≤ ||µR − Cb̂||2 ||Ci − Cj||2 − λ2.

Since µR−Cb̂ is a pricing error, then ||µR−Cb̂||2 < ||µR||2, while by definition cov(R, fi−

fj) = Ci − Cj. Then we have

Q′(b̂, u) < ||µR||2 ||cov(R, fi − fj)||2 − λ2. (B.9)

Now we further utilize the covariance inequality. For any n = 1, · · · , N , Rn is the nth

column of the return matrix R, we have

cov(Rn, fi − fj) ≤
√

var(Rn)var(fi − fj) = σRnσ(fi − fj), (B.10)

where σRn is the standard deviation of the nth test asset. Apply (B.10) in (B.9), we have

Q′(b̂, u) < ||µR||2 ||σRσ(fi − fj)||2 − λ2

= ||µR||2 ||σR||2 σ(fi − fj)− λ2,
(B.11)

where σR is a N × 1 vector collecting the standard deviations of N test assets. So (B.11)

together with (B.6) implies

Q′(b̂, u) < 0,

which violates (B.5). Hence there is a contradiction between b̂i ̸= b̂j and (B.6). So we must

have

b̂i = b̂j,

which completes the proof. 2

B.2 Proof of Corollary 2.1

Proof. The proof of corollary 2.1 follows the same method as in Appendix B.1, except we

choose a special vector for u where we set ui = 1, uj = 1, uk = 0, for k ̸= i, j. The rest of

the proof follows trivially. 2
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B.3 Proof of Theorem 2.2

Proof. By definition the OWL estimator is minimizing the function

b̂ = b̂OWL = argmin
b

1

N
||µR − Cb||22 +

1

N

K∑
i=1

[λ1 + λ2(K − i)]|b|[i],

where |b|[·] denotes the element of the decreasingly ordered vector of |b|, such that |b|[1] ≥

|b|[2] ≥ ... ≥ |b|[K]. Let b0 be the vector of true values of risk prices, and µR = Cb0 + ϵ.

According to the “argmin” property, definition of b̂ implies

1

N
||µR−Cb̂||22 +

1

N

∑
i

[λ1 + λ2(K − i)]|b̂|[i] ≤
1

N
||µR−Cb0||22 +

1

N

∑
i

[λ1 + λ2(K − i)]|b0|[i].

(B.12)

Since ωi = λ1 + λ2(K − i) is in a monotone non-negative cone and ω1 ≥ ω2 ≥ ... ≥ ωK , we

have

∑
i

[λ1 + λ2(K − i)]|b̂|[i] ≥ ωK ||b̂||1 = λ1||b̂||1,∑
i

[λ1 + λ2(K − i)]|b0|[i] ≤ ω1||b0||1 = [λ1 + λ2(K − 1)]||b0||1.

Together with µR = Cb0 + ϵ, this implies that (B.12) can be simplified as:

1

N
||C(b̂− b0)||22 +

λ1

N
||b̂||1 ≤

2

N
ϵ′C(b̂− b0) +

1

N
[λ1 + λ2(K − 1)]||b0||1. (B.13)

Note that

2|ϵ′C(b̂− b0)| ≤
(

max
1≤j≤K

2|ϵ′C(j)|
)
||b̂− b0||1. (B.14)

Hence, (B.13) can be written as

1

N
||C(b̂−b0)||22+

λ1

N
||b̂||1 ≤

(
1

N
max
1≤j≤K

2|ϵ′C(j)|
)
||b̂−b0||1+

1

N
[λ1+λ2(K−1)]||b0||1. (B.15)

Consider the event

E :=

{
1

N
max
1≤j≤K

2|ϵ′C(j)| ≤ λ0

}
, (B.16)
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where λ0 = κ

√
logK

N
and κ is a positive constant. Then, in view of (B.16), (B.15) can be

bounded as

1

N
||C(b̂− b0)||22 +

1

N
λ1||b̂||1 ≤ λ0||b̂− b0||1 +

1

N
[λ1 + λ2(K − 1)]||b0||1. (B.17)

By assumption,
λ1

N
= 2λ0. Therefore, (B.17) can be written as

2

N
||C(b̂− b0)||22 +

2

N
λ1||b̂||1 ≤

λ1

N
||b̂− b0||1 +

2

N
[λ1 + λ2(K − 1)]||b0||1. (B.18)

Note that

||b̂||1 = ||b̂s0||1 + ||b̂sc0||1 ≥ ||b
0
s0
||1 − ||b̂s0 − b0s0||1 + ||b̂sc0||1, (B.19)

||b̂− b0||1 = ||b̂s0 − b0s0||1 + ||b̂sc0||1. (B.20)

Therefore, using (B.19) and (B.20), (B.18) can be written as

2

N
||C(b̂− b0)||22 +

2λ1

N
(||b0s0||1 − ||b̂s0 − b0s0||1 + ||b̂sc0||1)

≤ λ1

N
(||b̂s0 − b0s0 ||1 + ||b̂sc0 ||1) +

2λ1

N
∥b0∥1 +

2λ2(K − 1)

N
||b0||1. (B.21)

Note that ∥b0s0∥1 = ∥b
0∥1, so (B.21) can be written as

2

N
||C(b̂− b0)||22 +

λ1

N
||b̂sc0||1 ≤ 3

λ1

N
||b̂s0 − b0s0||1 +

2λ2(K − 1)

N
||b0||1. (B.22)

By (B.20), ||b̂sc0||1 = ||b̂− b0||1 − ||b̂s0 − b0s0 ||1. Utilizing this in (B.22), we obtain

2

N
||C(b̂− b0)||22 +

λ1

N
||b̂− b0||1 ≤ 4

λ1

N
||b̂s0 − b0s0||1 +

2λ2(K − 1)

N
||b0||1. (B.23)

By Assumption 3, the restricted eigenvalue condition states that

ϕ2
0 := min

s0⊂{1,...,K}
|s0|<K

min
b∈RK\{0}

||bsc0 ||1≤3||bs0 ||1

b′Σ̂b

||bs0||22
> 0,
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which implies that for any b,

ϕ2
0 ≤

b′Σ̂b

||bs0 ||22
≤ b′Σ̂bS

||bs0||21
,

where S is defined in Assumption 2 and the second inequality follows by utilizing the norm

inequality ∥bs0∥1 ≤
√
S∥bs0∥2. Rearranging the above inequality, we have

||bs0||21 ≤ b′Σ̂bS/ϕ2
0, (B.24)

which is called the compatibility condition in Buhlmann and Van De Geer (2011) pp. 106.

Applying (B.24) on ||b̂s0 − b0s0||1 and using Σ̂ =
C ′C

N
, we have

||b̂s0 − b0s0||
2
1 ≤ (b̂− b0)′Σ̂(b̂− b0)S/ϕ2

0 = ||C(b̂− b0)||22S/(Nϕ2
0),

||b̂s0 − b0s0||1 ≤ ||C(b̂− b0)||2
√
S/(
√
Nϕ0).

Therefore, using inequality 4ab ≤ a2 + 4b2, we obtain

4
λ1

N
||b̂s0 − b0s0||1 ≤ 4

(
||C(b̂− b0)||2√

N

)(
λ1

N

√
S

ϕ0

)
≤ 1

N
||C(b̂− b0)||22 + 4(

λ1

N
)2

S

ϕ2
0

.

So (B.23) can be written as

1

N
||C(b̂− b0)||22 +

λ1

N
||b̂− b0||1 ≤ 4(

λ1

N
)2

S

ϕ2
0

+
2λ2(K − 1)

N
||b0||1. (B.25)

Note that
1

N
||C(b̂− b0)||22 = (b̂− b0)′Σ̂(b̂− b0), so (B.25) completes the proof of (12).

Now we have obtained (12) assuming (B.16). In the next step we want to evaluate the

probability of the inequality (B.16) to be true, i.e. P(E). By a union bound and using the

notation ζj = ϵ′C(j) =
N∑
i=1

ϵiC
(j)
i =

N∑
i=1

ζi,j, we obtain

P(EC) = P(
1

N
max
1≤j≤K

2|ϵ′C(j)|) ≥ λ0) ≤
K∑
j=1

P(
1

N
|ζj| ≥

λ0

2
). (B.26)
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Note that both {ϵi}Ni=1 and {C(j)
i }Ni=1 for all i = 1, · · · , N and j = 1, · · · , K are uniformly

subgaussian variables. Therefore, variables {ζi,j}Ni=1 are uniformly subexponentially dis-

tributed. Hence, applying Corollary 5.17 in Vershynin (2012) and utilizing λ0 = κ

√
logK

N
,

we obtain

P(EC) ≤ K max
1≤j≤K

P(
1

N
|ζj| ≥

λ0

2
) = K max

1≤j≤K
P(

1

N

∣∣∣∣∣
N∑
i=1

ζi,j

∣∣∣∣∣ ≥ λ0

2
)

≤ 2K exp[−cκ2 logK] = 2K1−cκ2

.

where c and κ are positive constants. Therefore, selecting κ such that cκ2 > 1, we have

the following property for (B.16):

P(E) = 1− P(EC) ≥ 1− 2K1−cκ2 → 1, (B.27)

as N,K →∞. This completes the proof of Theorem 2.2. 2

B.4 Proof of Corollary 2.2

Proof. By assumption of theorem
λ1

N
= 2λ0 = 2κ

√
logK

N
, where κ is a positive constant,

and
λ2

N
= O(

S logK

NK
). Therefore, both two terms on the right hand side of (B.25) are

O(
S logK

N
). Hence, (B.25) implies

1

N
||C(b̂− b0)||22 = O

(
S logK

N

)
, (B.28)

||b̂− b0||1 = O

(
S

√
logK

N

)
. (B.29)

So (B.29) proves the first claim of (13). Observe that

1

N
||C(b̂− b0)||22 = (b̂− b0)′(Σ̂− Σ)(b̂− b0) + (b̂− b0)′Σ(b̂− b0), (B.30)

Notice that

(b̂− b0)′Σ(b̂− b0) ≥ Λ2
min||b̂− b0||22,
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where Λmin denotes the smallest eigenvalue of Σ, and Σ is the true value of Σ̂, so Λmin > 0.

Moreover in (B.30), it holds

(b̂− b0)′(Σ̂− Σ)(b̂− b0) ≥ −||Σ̂− Σ||∞||b̂− b0||21,

where ||Σ̂−Σ||∞ := max
1≤i,j≤K

|Σ̂i,j−Σi,j|. Using Lemma 14.12 in Buhlmann and Van De Geer

(2011), we have max
1≤i,j≤K

|Σ̂i,j − Σi,j| = Op(
√

logK
N

). Hence (B.28) can be rewritten as

O

(
S logK

N

)
=

1

N
||C(b̂− b0)||22

≥ Λ2
min∥b̂− b0∥22 − ||Σ̂− Σ||∞||b̂− b0||21

≥ Λ2
min||b̂− b0||22 −Op

(
S2

(
logK

N

)3/2
)
.

(B.31)

Rearranging it, we have

||b̂− b0||22 ≤
1

Λ2
min

O(
S logK

N
) +

1

Λ2
min

Op

(
S2

(
logK

N

)3/2
)
.

By Assumption 2, S

√
logK

N
= o(1). Together with

1

Λ2
min

= O(1), we obtain

||b̂− b0||22 = Op(
S logK

N
), (B.32)

which proves the second claim of (13). 2

C Solving the OWL optimization problem

This section follows similar arguments in Zeng and Figueiredo (2014) and explains how

to use the proximal gradient descent algorithm to solve the optimization problem of the

OWL estimator. The first subsection introduces the OWL proximal function which is used

to compute the optimizer at each step. The second subsection outlines the fast-iterative-

soft-thresholding-algorithm (FISTA) used to find the global optimizer, together with a
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backtracking line search condition which speeds up computation greatly.

C.1 OWL proximal function

Denote by b = (b1, · · · , bn)′, x = (x1, · · · , xn)
′ column vectors. First we define the proximal

function as

ProxΩω(b) = argmin
x

[
1

2
||x− b||22 + Ωω(x)], Ωω(x) = ω′|x|↓ (C.33)

where ω ∈ κ, takes values from a monotone non-negative cone, defined as κ := {v ∈ Rn :

v1 ≥ v2 ≥ · · · ≥ vn ≥ 0}, |x|↓ = (|x|[1], |x|[2], · · · , |x|[n])′ and |x|[1] ≥ |x|[2] ≥ · · · ≥ |x|[n], is

the vector of absolute values of elements of vector x, decreasingly ordered. By the definition

of Ωω(b), we have

Ωω(b) = Ωω(|b|), (C.34)

where |b| = (|b1|, · · · , |bn|)′. It is easy to show that

||b− sign(b)⊙ |x|||22 ≤ ||b− x||22, (C.35)

where sign(b) = (sign(b1), · · · , sign(bn))′ is a function that retrieves signs from a vector,

with elements in {1,−1, 0} and ⊙ is a point-wise production operator. Therefore, (C.34)

and (C.35) imply

ProxΩω(b) = sign(b)⊙ ProxΩω(|b|). (C.36)

Let P be a permutation matrix that orders elements of a vector in decreasing order. Then

permutation matrix has property

||P (x− b)||22 = ||x− b||22, (C.37)

and by the definition of Ωω(b),

Ωω(b) = Ωω(Pb). (C.38)
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So (C.37) and (C.38) imply that (C.36) can be written as

ProxΩω(b) = sign(b)⊙ P ′ ProxΩω(|b|↓), (C.39)

where |b|↓ is defined as |x|↓, and P ′ is the transpose of the permutation matrix, which

recovers the order of |b|↓, i.e. P |b| = |b|↓, P ′|b|↓ = |b| and P ′P = I, where I is an identity

matrix.

Since |b|↓ ∈ κ, for any x∗ ∈ κ and any x ∈ Rn, we have |b|′↓x ≤ |b|′↓x∗. Therefore,

1

2
||x− |b|↓||22 + Ωω(x) =

1

2
||x||22 +

1

2
|||b|↓||22 − |b|′↓x+ Ωω(x)

≥ 1

2
||x∗||22 +

1

2
|||b|↓||22 − |b|′↓x∗ + Ωω(x

∗)

=
1

2
||x∗ − |b|↓||22 + Ωω(x

∗).

Note that ProxΩω(|b|↓) = argmin
x

[
1

2
||x − |b|↓||22 + Ωω(x)], and

1

2
||x∗ − |b|↓||22 + Ωω(x

∗) ≤

1
2
||x− |b|↓||22 +Ωω(x). It implies that ProxΩω(|b|↓) ∈ κ, and ProxΩω(|b|↓) = argmin

x∈κ
[
1

2
||x−

|b|↓||22 + ω′x]. Completing the square, we have

ProxΩω(|b|↓) = argmin
x∈κ

(
1

2
∥x− |b|↓∥22 + ω′x) = argmin

x∈κ

1

2
∥x− (|b|↓ − ω)∥22,

which is the projection of (|b|↓ − ω) onto κ 23. Then equation (C.39) can be written as

ProxΩω(b) = sign(b)⊙ P ′ Projκ(|b|↓ − ω)), (C.40)

where Projκ(.) is the projection operator onto κ.

After solving the proximal function, we can employ the iterative soft-thresholding al-

gorithm to find the global optimizer. First, we initialize b(0), 24 then repeat

b(k+1) = proxΩω(b
(k) − szk ▽ g(b(k))) (C.41)

23The projection onto κ is an isotonic optimization problem and can be obtained by using the Pool-
Adjacent-Violators algorithm in de Leeuw et al. (2009).

24For instance, we use the OLS estimate as initialization in our application but it can be any random
vector, which will results in the same global minimizer for b since it is a convex minimization problem.
However, a good choice of initialization can reduce computation time greatly.
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until a stopping criterion is met, where k = 1, 2, 3, ... are steps of each iteration, g(b) =

1
2
(µR − Cb)′W (µR − Cb) and szk is the step size at the kth iteration.

C.2 FISTA algorithm

Algorithm 1 is based on Zeng and Figueiredo (2014) and fast computation is achieved by

using the backtracking line condition (step 7) and the acceleration in u (step 12). The

backtracking line condition allows large step sizes if optimizer stays in the right direction,

otherwise shrinks step sizes. Steps 11 to 12 accelerate computation by moving the optimizer

further towards the global optimizer at early iterations, while this acceleration diminishes

when approaching the global optimizer.

Algorithm 1: FISTA-OWL

1 Input: µR, C, ω

2 Output: OWL estimator b̂

3 Initialisation:b0 = b̂OLS, t0 = t1 = 1, u1 = b0, k = 1, η ∈ (0, 1), τ0 ∈ (0, 1/L) a

4 while some stopping criterion not met do

5 τk = τk−1;

6 bk = ProxΩω(uk + τ ∗ C ′ ∗ (µR − Cb))

7 while 1
2
||µR − Cbk||22 > Q(bk, uk)

b do

8 τk = η ∗ τk;

9 bk = ProxΩω(uk + τ ∗ C ′ ∗ (µR − Cb))

10 end

11 tk+1 = (1 +
√

1 + 4t2k)/2

12 uk+1 = bk +
tk−1

tk+1
(bk − bk−1)

13 k ← k + 1

14 end

15 Return: bk−1

aL is a Lipschitz constant.
bQ(bk, uk) :=

1
2 ||µR−Cuk||22−(bk−uk)

′C ′(µR−Cuk)+
1

2τk
||bk−uk||22 is the backtracking line condition.
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D Motivating the “restricted eigenvalue condition”

The following lemma motivates the restricted eigenvalue condition. A matrix Σ̂ that satis-

fies the restricted eigenvalue condition

ϕ2
Σ̂
:= min

s0⊂{1,...,K}
|s0|<K

min
b∈RK\{0}

||bsc0 ||1≤3||bs0 ||1

b′Σ̂b

||bs0||22
> 0, (D.1)

if it is close to a matrix whose restricted eigenvalues are strictly positive. Let Σ = E(Σ̂) =

E(
C ′C

N
) be the population value of the scaled Gram matrix. Since Σ is a non-singular

matrix, its restricted eigenvalues are strictly positive: ϕ2
Σ > 0.

Lemma 3. Suppose S is the sparsity parameter, δ = max
1≤i,j≤N

|Σi,j − Σ̂i,j| , then for any

vector b that satisfies ||bsc0||1 ≤ 3||bs0||1, it holds

ϕ2
Σ̂
> ϕ2

Σ − 16Sδ.

Proof.

b′Σb− b′Σ̂b ≤ |b′Σb− b′Σ̂b| = |b′(Σ− Σ̂)b|

≤ ||b||1||(Σ− Σ̂)b||∞ ≤ δ||b||21

Recall that b = bs0 + bsc0 , so ∥b∥1 ≤ ∥bs0∥1+ ∥bsc0∥1. Together with the assumption ||bsc0||1 ≤

3||bs0||1, we have ||b||21 ≤ (||bsc0||1 + ||bs0||1)
2 ≤ 16||bs0||21. Hence we have

b′Σb− b′Σ̂b ≤ 16δ||bs0||21.

Rearranging the above inequality, we have

b′Σ̂b

||bs0||22
≥ b′Σb

||bs0 ||22
− 16Sδ.
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By the definition of restricted eigenvalues in (D.1), we have

ϕ2
Σ̂
≥ ϕ2

Σ − 16Sδ.

2

Lemma 3 shows that for the restricted eigenvalue condition to be satisfied, i.e. ϕ2
Σ̂
> 0,

it suffices to show that δ is small, or that the Gram matrix Σ̂ is close to a positive definite

matrix Σ. The following lemma shows that the “Restricted eigenvalue condition” implies

the compatibility condition in Buhlmann and Van De Geer (2011) (pp. 106), which will be

used for deriving the error bound in Theorem 2.2.

Lemma 4 (Compatibility condition). If the scaled Gram matrix Σ̂ satisfies (D.1), then

||bs0||21 ≤ (b′Σ̂b)S/ϕ2
0.

Proof. From the definition of restricted eigenvalues, we have

ϕ2
0 = min

s0∈{1,...,K}
|s0|<K

min
b∈RK\{0}

||bsc0 ||1≤3||bs0 ||1

b′Σ̂b

||bs0||22
> 0.

By the norm inequality,
√
S∥bs0∥2 ≥ ∥bs0∥1. Hence for any b, it holds

ϕ2
0 ≤

b′Σ̂b

||bs0 ||22
≤ b′Σ̂bS

||bs0||21
.

Rearranging, we obtain

||bs0 ||21 ≤ (b′Σ̂b)S/ϕ2
0.

2

E Simulation

Table 1 summarizes the performance of four candidate models under various settings by

comparing their average MSEs under 500 trials. To have a better view on how those
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candidate models perform for each block of factors, we randomly chose one trail and plot

the estimates from candidate models along with the oracle value. In particular, we focus

on the highly correlated setting (i.e. ρ = 0.9).

Figure 3 looks into the setting when N ∼ K and it reports the plot of the OWL estimate

over 90 factors along with other benchmarks and the oracle value (black). The upper left

panel displays the plots of estimated coefficients for all factors. The remaining three panels

display the detailed plot of estimates for each of these three blocks of factors. The upper

right panel displays the plot of all estimates of useful factors that are correlated. In the

presence of high correlation, the LASSO estimator performs poorly with highest estimation

errors. Adaptive LASSO is strongly governed by the adaptive weights which is set to be

the OLS estimate. So adaptive LASSO exhibits very similar behaviour to the OLS estima-

tor. Elastic Net, as a hybrid estimator between LASSO and Ridge regression, is designed

to stabilize LASSO selections in the presence of correlation. Although Elastic Net does

improve the performance of LASSO in the context of correlated factors, it is still substan-

tially outperformed by OWL. OWL produces the smallest estimation error and is the only

estimator that groups together highly correlated variables by assigning them with similar

coefficients. The bottom left panel displays the plot of all estimates of useless/redundant

factors which are highly correlated. In terms of shrinking off useless/redundant factors,

LASSO, EN, and OWL all perform well: they set most of useless factors to zeros. By

contrast, adaptive LASSO is affected by the adaptive weights (i.e., the OLS estimate) and

fails to set many useless/redundant factors to zeros. The bottom right panel displays the

plot of all estimates of useful factors which are not correlated. Again, LASSO and Elastic

Net are the worst performers yielding the largest estimation error. Also note that in the

uncorrelated setting Elastic Net performs similarly to LASSO. In the ideal world where fac-

tors are uncorrelated, OLS and adaptive LASSO are the best performers, which is tightly

followed by OWL. Note that OWL, LASSO and Elastic Net are biased towards zero, which

is typically observed for shrinkage-estimators in small samples.

In the second experiment, there are 1000 test assets (N = 1000, N ≫ K) and ev-

erything else is the same as in the first experiment. This setting typically represents a

low-dimensional world.
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Figure 3. Estimation of SDF coefficients: N = 100, K = 90
This figure reports the values of the OWL estimator over 90 factors along with other benchmarks and

the oracle value (black). There are 100 test assets, 90 candidate factors, which are divided into 3 equal

blocks, where correlation coefficients of factors within each block are ρ1 = 0.9, ρ2 = 0.9, ρ3 = 0. The upper

left panel displays the plot of estimated SDF coefficients for all factors. The remaining three panels are

detailed plot of estimates for each of these three blocks of factors. The upper right panel displays the plot

of all estimates of useful factors that are highly correlated. The bottom left panel displays the plot of all

estimates of useless/redundant factors. The bottom right panel displays the plot of all estimates of useful

factors that are not correlated. In each plot, OWL estimator is displayed along with LASSO, adaptive

LASSO, Elastic Net, and naive OLS estimator.
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Figure 4. Estimation of SDF coefficients: N = 1000, K = 90
This figure reports the plot of the values of the OWL estimator along with other benchmark estimators.

The number of assets is 1000. The rest are the same with the first experiment in Figure 3.
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Figure 5. Estimation of SDF coefficients: N = 70, K = 90
This figure reports the plot of the values of the OWL estimator along with other benchmark estimators.

Adaptive LASSO is using the LASSO estimate as its adaptive weight. The number of assets is 70. The

rest are the same as in the first experiment in Figure 3.
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Figure 4 reports the plot of estimated SDF coefficients using OWL and other bench-

marks with 1000 test assets. When test assets are abundant, all shrinkage based estimators

do a good job to shrink off useless/redundant factors. Adaptive LASSO performs the best

at estimating uncorrelated factors: governed by the OLS weights, it is the only unbiased

estimator among shrinkage based estimators. LASSO and Elastic Net produce the most

biased estimators among all benchmarks. With highly correlated useful factors, OWL pro-

duces the most accurate estimation. With uncorrelated factors, OLS and adaptive LASSO

are undoubtedly the best estimators, followed closely by OWL. For that reason, adaptive

LASSO would be a good estimator in a low dimensional world where N ≫ K. However, in

a world of many factors, where K > N , OLS will be infeasible, hence the adaptive LASSO

using OLS weighting is also improbable.

In the third experiment, there are 70 test assets (N = 70, N < K), everything else is

the same as in the first two experiments. This setting represents a high-dimensional world,

where the number of factors is greater than the number of test assets.

Figure 5 reports estimation results of each method along with the oracle value. Once

K > N the naive OLS estimator becomes infeasible, thus we remove it from the bench-

marks. Meanwhile, we use the LASSO estimate as the adaptive weight for adaptive LASSO

estimator. As for useless factors, all machine learning methods do a good job to shrink

most useless factors to zeros. For the highly correlated useful factors, OWL is still the

best estimator, producing the smallest estimation error while LASSO and adaptive LASSO

are the worst performers producing very volatile estimates and wrongly shrinking many

useful factors to zero. Interestingly, we find that Elastic Net performs significantly better

compared to LASSO. However, despite this, Elastic Net is still substantially outperformed

by OWL. For the useful factors (both correlated and uncorrelated), adaptive LASSO, us-

ing the LASSO estimate as the adaptive weight, performs the worst. The adaptive weight

exacerbates the estimation severely.

These three experiments confirm that the LASSO estimator performs poorly when

factors are correlated. Elastic Net does improve the performance of LASSO under such

circumstance, however, it is still substantially outperformed by the OWL estimator, which

makes the OWL estimator the best candidate when factors are correlated. Adaptive LASSO
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is a good choice in a low-dimensional setting where N ≫ K, however, it performs the worst

in a high-dimensional setting where K > N (i.e., the OLS estimate becomes infeasible).

F Robustness check

In this section, we check whether various sorting methods would alter our estimation results

and investigate how small stocks affect priced factors;

F.1 Using various sorting methods for test assets

For the first task, we consider three additional types of sorting method for constructing

test portfolios and compare them with the sorting method used in the main body of this

paper to check whether liquidity related factors are consistently chosen. First, we apply

the uni-variate sorting method to sort all non-micro stocks into decile portfolios before

combining them together to obtain 800 test portfolios. Compared to the test portfolio in

empirical analysis, all characteristics are treated equally. Second, we consider the bi-variate

sorting method, but using all possible combinations of two out of 80 characteristics, that is

80× 79/2 = 3160 possibilities. To reduce the dimension of test portfolios, for each possible

combination, we consider the 2 by 2 (instead of 5 by 5) sorting method: we sort stocks

into ‘high’ and ‘low’ groups by each of these two characteristics where the thresholds are

the medians of these characteristics. We then obtain 3160× 4, total 12640 test portfolios.

Third, we consider a similar method in the empirical analysis, that is singling out ‘size’ as

a common characteristic, and using it with the remaining characteristics to form bi-variate

sorted portfolios; but instead of forming the 5 by 5 portfolios, we form 3 by 3 portfolios.

Figure 6a reports the estimation results using four different sets of test assets (including

the one used in the main body of this paper). First, ‘market’ along with ‘illiquidity’ and

‘standard deviation of dollar volume’ are consistently chosen as the most important factors

to drive asset prices, with ‘illiquidity’ topping the chart of anomaly factors. Second, the

impact of ‘size’ factor (mve) on test assets decreased colossally once it is not singled out

to form bi-variate sorted portfolios. We can conclude that in ‘type3’ and ‘type4’ where

‘size’ effect tops the chart, it is artificially caused by portfolio sorting methods. However in
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Figure 6. Robustness check with alternative test assets
Figure 6a reports the absolute value of SDF coefficients estimated by OWL using four types of test assets.

Figure 6b reports the OWL estimates with six different treatments of micro stocks.
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empirical analysis (‘type4’), ‘size’ is not a competing factor. Third, although singling out

‘size’ to form bi-variate sorted portfolios may alter the ‘size’ effect, it does not alter other

factors’ implications: liquidity related factors are primary factors driving asset prices.

F.2 How small stocks affect the inference of priced factors

For the second task, we use the same sorting method as in the empirical analysis, but we

consider six types of treatment of micro stocks: 1) keep all micro stocks (P00); 2) remove

stocks that are smaller than 10 percentile of NYSE listed stocks (P10); 3-6) similarly,

remove stocks that are smaller than (20-50) percentile of NYSE listed stocks (P20-P50).

We investigate how factor-selection varies between different scenarios.

Figure 6b reports the heat map of estimated risk prices using the OWL estimator

while controlling stock sizes. First, micro stocks alter the market factor’s interpretation

drastically. When micro stocks are all included to form test portfolios, market factor only

plays a moderate role for asset prices; however, liquidity related factors dominate the chart.

Market factor nonetheless consistently becomes the primary factor to drive asset prices

once micro stocks are removed (at P20 and above levels). Second, liquidity related factors

consistently top the chart in driving asset prices, particularly with the inclusion of small

stocks. It shows that small firms face severe liquidity constrains, and investors demand risk

premiums to bear that risk. Third, to be consistent with the finance literature, we consider

the typical 20 percentile cut-off level to remove micro stocks. In this case, profitability and

growth related factors, after liquidity related factors, become the second tier of factors that

drive asset prices.

G Introduction of LASSO, adaptive LASSO, Elastic

Net and OSCAR

Denote by y aN×1 vector of responses, byX aN×K data matrix and by β = (β1, · · · , βK)
′

a K × 1 parameter vector. The LASSO (Tibshirani, 1996) estimator solves the problem

β̂LASSO = argmin
β

[
1

2
||y −Xβ||2 + λ||β||1

]
, (G.1)
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where ||β||1 =
K∑
i=1

|βi| . The LASSO estimator can shrink the coefficients βi of unimportant

covariates to zeros. The Elastic net (EN) (Zou and Hastie, 2005) method solves the problem

β̂EN = argmin
β

[
1

2
||y −Xβ||2 + λα||β||1 + λ(1− α)||β||22

]
, (G.2)

where ||β||22 =
K∑
i=1

β2
i . Elastic net combines the ℓ1 norm (LASSO) and the ℓ2 norm (Ridge)

penalty together, which stabilizes the LASSO selections of β′s when variables are correlated.

Here, α ∈ (0, 1) is a tuning parameter used to tilt the weight between the ℓ1− and ℓ2−

shrinkage components. The adaptive LASSO (Zou, 2006) method minimizes the following

function

β̂adaLASSO = argmin
β

[
1

2
||y −Xβ||2 + λ

K∑
i=1

1

|β̂i,ada|γ
|βi|

]
, (G.3)

where γ > 0 and |β̂i,ada| is an adaptive weight for the ith element in β, which is obtained

through a first-stage estimation and typically based on the OLS estimate when it is feasi-

ble. Variables with small magnitudes in fist-stage estimated coefficients (i.e., small |β̂i,ada|)

receive stronger penalty and γ controls the intensity of penalty for small parameters. λ con-

trols the overall penalty level. The OSCAR (Octagonal shrinkage and clustering algorithm

for regression) (Bondell and Reich, 2008) method solves this problem

β̂OSCAR = argmin
β

[
1

2
||y −Xβ||2 + λ1||β||1 + λ2

∑
i<j

max{|βi|, |βj|}

]
, (G.4)

where
∑
i<j

max{|βi|, |βj|} compares all elements in β pair-wisely and penalizes more on

the larger one. Bondell and Reich (2008) show that OSCAR method encourages factor

clustering when they are correlated. Zeng and Figueiredo (2014) illustrate that by adopting

a linear weighting scheme for ω, the OWL estimator encompasses the OSCAR estimator.
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To gain some insights in this claim, we start from the OSCAR penalty term. Note that

ΩOSCAR(β) = λ1||β||1 + λ2

∑
i<j

max{|βi|, |βj|}

=
∑
i

λ1 + λ2(K − i)︸ ︷︷ ︸
linear decreasing weights

|β|[i] =
∑
i

ωi|β|[i]

= ω′|β|↓ = ΩOWL(β),

With a linear weighting scheme for ω, the OWL penalty term encompasses the OSCAR

penalty term. Furthermore, if we set λ2 = 0, OWL encompasses LASSO.
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