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Abstract

In this paper we consider the stochastic volatility model with a general stable error

distribution. We discuss the challenges of parameter estimation, the filtering of the

time-varying latent volatility and its forecasting. The indirect inference method is

adopted for parameter estimation, while the recently developed extremum Monte Carlo

method is used for filtering and forecasting. We argue that our approach is capable

of handling the econometric challenges. We further provide the details of the methods

used, and we present illustrations based on simulated data and a time series of Bitcoin

returns.
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1 Introduction

In the analysis of financial time series such as daily fluctuations in stock prices and exchange

rates, return series will usually be approximately serially uncorrelated. However, they may

not be serially independent because of dependence in the variance. In particular, it is

often found that the observational error variance is subject to substantial variability over
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time. This phenomenon is referred to as “volatility clustering” and was first recognised by

Mandelbrot (1963b), who wrote that “large changes tend to be followed by large changes,

of either sign, and small changes tend to be followed by small changes”. This notion and its

empirical relevance have led to the generalised autoregressive conditional heteroskedasticity

(GARCH) model of Engle (1982) and Bollerslev (1986), which has been widely adopted in

the econometrics and finance literature.

Another class of models that allow for the temporal variability in the variance of a

financial return series is known as the stochastic volatility (SV) model. The SV model has

a strong theoretical foundation in the finance theory on option pricing based on the work of

the economists Black and Scholes. The development of SV models has been initiated by the

work of Stephen Taylor, in particular in Taylor (1982) and Taylor (1986). It has also been

recognised early on that the SV model has a strong connection with the class of nonlinear

and non-Gaussian state space models; see Harvey, Ruiz, and Shephard (1994).

The estimation strategy for SV models has been widely regarded as an interesting and

challenging problem. Many different econometric methods have been explored. The estima-

tion approaches for SV models have been, for example, based on simple moment matching

(Taylor, 1986), generalized method of moments (GMM; Melino & Turnbull, 1990), quasi-

maximum likelihood (QML; Harvey et al., 1994), Bayesian methods such as Markov chain

Monte Carlo (MCMC; Jacquier, Polson, & Rossi, 1994; Kim, Shephard, & Chib, 1998),

the indirect inference method (Gourieroux, Monfort, & Renault, 1993; Lombardi & Calzo-

lari, 2009), efficient method of moments (Gallant, Hsieh, & Tauchen, 1997), simulation-based

maximum likelihood (Danielsson, 1994; Sandmann & Koopman, 1998), and direct maximum

likelihood via numerical integration (Fridman & Harris, 1998). A more complete review on

SV models, including their estimation methods, are collected in the book of Shephard (2005)

and in the review chapter of Shephard and Andersen (2009).

Many financial return series are typically noisy and characterized by excess kurtosis

and skewness. For example, crypto-currency return series, such as those of Bitcoin, are

often contaminated by relatively many extreme values. The initial attempt to account for

excess kurtosis in financial returns was by Mandelbrot (1963b). Although he assumed the

return series to be independent and identically distributed (IID), he replaced the Gaussian

assumption by the stable distribution for return series; see also Fama (1963); Mandelbrot
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(1963a, 1967). The stable distribution has recently also been considered in the context of SV

models by Vankov, Guindani, and Ensor (2019), and Lombardi and Calzolari (2009), who

argue that the stable distribution for the SV model can be more appropriate for financial

return series.

Although the flexible specification of the stable distribution is a convenient feature, its

econometric treatment is challenging due to the fact that its probability density function

(PDF) does not have a closed-form expression, and its second and higher moments do not

exist. In Lombardi and Calzolari (2008), Garcia, Renault, and Veredas (2011) and Lombardi

and Calzolari (2009) the method of indirect inference (II) of Gourieroux et al. (1993) is

explored and is shown to be effective in parameter estimation for the stable distribution. In

particular, the last of these contributions employs the symmetric stable distribution in the

SV model. In this paper we further explore the II approach by considering the asymmetric

stable distribution for the SV model. We show that the II method remains effective in this

more general setting.

A remaining issue of importance for the stable SV model is the estimation (or filtering)

of the unobserved time-varying volatility, as well as the related task of forecasting volatility.

The II method falls short of providing a method for extracting latent variables in the model.

Gallant and Tauchen (1998) propose a somewhat involved procedure to estimate latent

variables in the context of the II method. More general methods such as particle filtering,

including the bootstrap filter (Gordon, Salmond, & Smith, 1993) and the auxiliary particle

filter (Pitt & Shephard, 1999) cannot be applied since they require that the conditional

observation density (or error density) exists in closed form; this is not the case for the stable

distribution. To enable volatility extraction and forecasting for the stable SV model, we offer

the solution of applying the Extremum Monte Carlo (XMC) filter, recently introduced by

Blasques, Koopman, and Moussa (2022). The XMC filter applies generally to any dynamic

model and does not require densities to be available in closed form.

The remainder of this paper has Section 2 to introduce and discuss the stable SV model,

Section 3 to provide the details of the II estimation method for the asymmetric stable SV

model, Section 4 for introducing the XMC filter and its application to the SV model, and

Section 5 to illustrate our econometric approach to a Bitcoin time series.
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2 Stochastic volatility model with stable distribution

For a time series of financial returns y1:T = (y1, . . . , yT ), the SV model is given by

yt = exp(αt/2)εt, εt ∼ p(εt),

αt+1 = µ+ φ(αt − µ) + σηηt, ηt ∼ N(0, 1),
(1)

for t = 1, . . . , T , and where αt represents the unobserved log variance, p(εt) is the observation

error density, and with coefficients µ ∈ R, |φ| < 1 and ση > 0. Since the model is stationary,

the initial distribution may be chosen as α1 ∼ N(µ, σ2
η/(1− φ2)). In the initial development

of the SV model, the observation error εt was assumed to be normally distributed. However,

in later work it has been found that the Gaussian assumption is not sufficient in accounting

for several aspects of the conditional distribution, such as excess kurtosis and skewness; see,

for example, Gallant et al. (1997) and Durham (2006).

An alternative is to replace the normal distribution for the observation errors by the

more general stable distribution (e.g. Casarin, 2004; Lombardi & Calzolari, 2009; Vankov

et al., 2019). In this case, we set p(εt) = S(a, b; 1), which denotes the first parametrization

of the standard univariate stable distribution as in Nolan (2009), with tail index parameter

a ∈ (0, 2] and asymmetry parameter b ∈ [−1, 1]. Except for a few specific choices of the

parameters, the density is not available in closed form, hence the characteristic function is

used to describe the distribution:

E[exp(iuεt)] =

exp
(
−|u|

[
1 + ib 2

π
(sgnu) log |u|

])
if a = 1,

exp
(
−|u|a

[
1− ib tan(πa

2
)(sgnu)

])
else.

For a = 2, the distribution reduces to the normal one, but for other values the distribution has

finite moments only of orders less than a. An important property of the 1-parametrization

is E[εt] = 0 if a > 1, such that the mean is not impacted by the tail and asymmetry

parameters. Since the variance does not exist for a < 2, the volatility of yt thus refers to

the scale vt = exp(αt/2). To illustrate the impact of a on the time series yt, we present two

simulated time series from the stable SV model in Figure 1. It is clear that the coefficient a

has a large impact on the tail of the observation density, especially given that the two values
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Figure 1: A simulated path of the observations from SV model (1) based on the following param-
eter values: (a) Gaussian errors (a := 2); (b) stable errors (a := 1.677).

are not far apart: a = 2 in panel (a) and a = 1.677 in panel (b).

Apart from its heavy tails for a < 2, the stable distribution has several important and

intuitive properties. For instance, it is closed under summation, in the sense that any sum

of IID stable variates is itself stable. The distribution also arises in the generalized central

limit theorem (Gnedenko & Kolmogorov, 1954), which states that any limiting sum of IID

variables must be stable. However, despite its intuitiveness, the practical use of the stable

distribution has been somewhat limited, which may be due to its lack of analytic tractability.

For example, the absence of an analytical expression for the probability density function

p(εt) = p(yt|αt) implies that default methods of choice are often not directly available, such

as maximum likelihood estimation for the parameters, and particle filters (Gordon et al.,

1993; Kitagawa, 1996; Pitt & Shephard, 1999) or MCMC methods (e.g. Kim et al., 1998)

for the extraction of time-varying volatility in the SV model.

The II method of Gourieroux et al. (1993) is explored for the estimation of the static

parameters in the stable SV model. For volatility filtering and forecasting, the XMC filter, as
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recently introduced by Blasques et al. (2022), is considered because it is able to circumvent

the issue of limited model tractability by using basic simulation and regression methods.

The II estimation method is discussed in the next section while the XMC filter is explored

in Section 4.

3 Indirect inference parameter estimation

3.1 Indirect inference for the asymmetric stable SV model

In this section we propose an indirect inference (II; Gourieroux et al., 1993) estimator for

the parameters of the SV model (1) with asymmetric stable errors. The main idea behind

the II method is to estimate the parameters of a model of interest, the structural model,

by simulating data for various candidate values of its parameter vector, θ. The estimate is

then chosen as the value for which the simulated data are most “similar” to the observed

data. This similarity is expressed through auxiliary parameters, β, which are the arguments

of a corresponding auxiliary objective function Q(β; y1:T ). The first step is to estimate β by

optimizing over the auxiliary objective function based on the observed data:

β̂ ∈ arg maxQ(β; y1:T ).

Noting that the “score” ∂Q/∂β equals zero when evaluated at β̂ and y1:T , score-based II uses

this property to define an estimator for the structural parameters using M ∈ N simulated

paths y
(j)
1:T (θ), j = 1, . . . ,M :

θ̂ ∈ arg min s(θ)′Σs(θ), s(θ) =
1

M

M∑
j=1

∂Q
(
β; y

(j)
1:T (θ)

)
∂β

∣∣∣∣
β=β̂

, (2)

with Σ a positive definite weighting matrix. The estimator of the structural parameters is

thus defined as the minimizer of a quadratic form determined by the average score over the

M simulated paths.

In our case, M was set to 10 simulated paths and the weighting matrix to the identity

matrix I5. Since the number of structural parameters and the number of auxiliary parameters
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are equal, the optimization problem (2) is just identified (and therefore equivalent to a

multivariate root-finding problem), which makes the choice of weighting matrix irrelevant.

Furthermore, we have θ = (µ, φ, ση, a, b)
′ as the vector of structural parameters and Q as the

average log likelihood of the auxiliary model that we describe next. Combining the insights

from Lombardi and Calzolari (2008), who use a Skew-t distribution as auxiliary model for

the stable distribution, and Lombardi and Calzolari (2009), who use a GARCH(1,1) model

with Student’s t errors as auxiliary model for several symmetric SV models, we propose the

following GARCH(1,1) model with Skew-t errors as the auxiliary model:

yt = σtξt, ξt ∼ CST (ν, ρ),

σ2
t+1 = ω + γy2t + δσ2

t ,
(3)

where ω, γ, δ, ν > 0, ρ ∈ R are static coefficients and CST (ν, ρ) denotes the centered

version of the Skew-t distribution from Azzalini and Capitanio (2003). Following Lombardi

and Calzolari (2008) and Lombardi and Calzolari (2009), we additionally impose ν < 20, as

well as a > 1 in the structural model.

3.2 Illustration for a Bitcoin log return series

We apply the proposed II estimator to the Bitcoin data from Figure 2 (a). The observations

are the centered daily log returns of the BTCUSD exchange rate multiplied by 100, starting

from September 9th, 2014, to July 7th, 2021 (T = 2481).

Table 1 presents the parameter estimates for both the structural and auxiliary model.

The parameter constraints are incorporated by reparameterizing the optimization problem,

so that optimization could take place over unrestricted transformations of the parameters

(e.g. ω̃ : ω = exp(ω̃)). The tail index estimates indicate that frequent extreme values are to

Table 1: Parameter estimates for the structural model in (1) with stable errors and auxiliary
model in (3) based on the daily log returns of Bitcoin.

Parameters Tail Asymmetry Location (scale) Autocorr. (scale) Other
Structural a b µ φ ση

1.677 −0.061 1.910 0.994 0.165
Auxiliary ν ρ ω δ γ

2.508 −0.058 0.035 0.873 0.050
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Figure 2: Daily log returns of Bitcoin and filtered estimates of the volatility vt = exp(αt/2): (a)
centered log returns times 100; (b) absolute log returns and volatility estimates E[vt|y1:t] from the
Extremum Monte Carlo filter.

be expected, where we note that the estimate of ν = 2.508 implies that the third moment

of yt does not exist in the auxliary model. The asymmetry in the returns appears to be

slightly negative, but to a negligible degree according to both models. As expected, the

(log) scale was found to be highly autocorrelated. Overall, the estimates for the structural

and auxiliary models seem to be in agreement where direct comparison is possible.

4 Extremum Monte Carlo filtering for the SV model

This section discusses the Extremum Monte Carlo filter (XMC; Blasques et al., 2022, BKM

hereafter). The main idea of XMC originates from the “simulation-regression” method of

Longstaff and Schwartz (2001) for the valuation of American options in financial trading.

Given that we have, say, two stochastic variablesX and Y , the method aims at approximating

the conditional expectation function E(X|Y ) by simulating N realizations of X and Y from
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their joint distribution p(X, Y ), and performing a least squares regression of X on Y . The

estimated regression function f̂ is then evaluated at any point of interest y (e.g. the observed

data) to provide the approximation f̂(y) ≈ E(X|Y = y). The method can be generalized

for sets of multiple variables. For example, the XMC method takes X and Y as time series

paths instead of scalar variables; in effect, both X and Y are T × 1 vectors where T is the

time series length. The regression step is repeated for each time index t, with t = 1, . . . , T .

The XMC method can also consider other loss functions such as the absolute error loss.

Furthermore, compared with the method from Longstaff and Schwartz (2001), the XMC

method improves the approximation by the employment of nonlinear regression methods

from the machine learning literature, such as gradient boosting and random forests.

The details of the XMC method are provided by Blasques et al. (2022) which can broadly

be applied to any dynamic model, including nonlinear and non-Gaussian state space models,

from which data can be simulated. For example, the method can be applied to multivariate

SV models since it is not liable to the curse of dimensionality. Furthermore, the use of ex-

tremum estimation allows for any conditioning set, including data sets with missing entries

and unequal spacing. The XMC filtering method places the computational burden predom-

inantly in the off-line phase. The combination of generality and computational modularity

entails that it is able to solve many signal extraction problems in real time.

Algorithm 1 presents a version of the XMC filter that is applied to the SV model given by

equation (1). The filtering starts with simulating N paths of the log variances αt and return

observations yt from the joint distribution implied by the SV model (1). Subsequently, we

perform regressions of the αt variates on the corresponding y1:t variates to predict the states.

For example, by using the squared error loss L(u) = u2 in Algorithm 1, this procedure allows

for estimating the conditional expectation functions E[αt|y1:t] for t = 1, . . . , T . In practice,

the covariates used in the regressions are subsets of the conditioning set, y1:t, chosen to

prevent overfitting of the training sample. More specifically, we use the W (window size)

observations from the conditioning set nearest to time t, which yields the covariate set yt˜:t̃
with t˜ = max {t−W + 1, 1} and t̃ = t. Together with the other tuning parameters of the

chosen regression method, W is determined from a set of candidate values as the minimizer

of the average loss in (4) for a separate validation sample of simulated data.

The combination of simulation and regression leads to a flexible filtering method. By
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Algorithm 1 XMC filter algorithm for the SV model (1)

1. Simulate: Consider SV model (1) to simulate N paths from the joint distribution,(
α
(i)
1:T , y

(i)
1:T

)
∼ p(α1:T , y1:T ), i = 1, . . . , N.

2. Fit: Perform the following regression for t = 1, . . . , T :

f̂Nt ∈ arg min
f∈FN

1

N

N∑
i=1

L
(
α
(i)
t − f

(
y
(i)
1:t

))
, (4)

with function space FN and loss function L.

3. Predict: Evaluate the estimated regression functions {f̂Nt }Tt=1 at the observed data y1:t for
t = 1, . . . , T to predict the states:

α̂t = f̂Nt (y1:t).

choosing the loss function appropriately, the method can be used to estimate conditional

quantiles (tilted absolute error loss), modes (all-or-nothing loss), and other quantities of

interest. By adjusting the conditioning set, it can be used to perform k-period forecast-

ing (conditioning set: y1:t−k, k ∈ N), or smoothing (conditioning set: y1:t+k). In addition,

unequally-spaced and unbalanced data sets with missing entries can be handled simply by

omitting the appropriate covariates. Furthermore, the same algorithm can be used to predict

functions of the states (e.g. vt = exp(αt/2)) or forecast the observations, simply by changing

the dependent variable in the regressions.

To illustrate the XMC filter, we used the Gaussian version of the SV model in (1) to

simulate a path of the log variances αt and observations yt, and used the latter to filter the

former. The parameters were set to µ = 0, φ = 0.96, and ση = 0.16, based on the maximum

likelihood estimates of Sandmann and Koopman (1998) for a time series of S&P500 daily

log returns. The simulated paths are shown in Figure 3 (a) and (b). The squared error loss

was selected to estimate the expectations E[αt|y1:t], which we can expect to be nonlinear in

the observations y1:t because αt is a (transformed) scale parameter. A nonlinear regression

method is therefore appropriate, hence we used a tree-based gradient boosting method (GB;

Friedman, 2001) as in BKM. Figure 3 (b) shows the filtered states alongside the true states

(dots). The regularized window size was W = 40, which means the covariate set remained of

constant size from t = 40 onwards. For comparison, we used the bootstrap filter (BF; Gordon
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et al., 1993) with 106 particles, which was also the number of paths for the XMC filter. The

estimates of the two filters are seen to be close, both largely following the movements of the

true states, which are relatively high at the beginning and lower near the end of the sample.

Further discussion of the XMC filter can be found in BKM, with conditions for convergence

to an optimal filter as N →∞ given in their Section 4.

Figure 3: Analysis of a simulated path from the Gaussian SV model: (a) simulated observations;
(b) true states and filtered estimates from the BF and GB-XMC filter (N = 106).

5 Applications

This section provides two pieces of evidence that the XMC filter is able to extract the time-

varying volatility for the SV model in (1) with stable errors. We first carry out a simulation

study to assess the predictive performance of the XMC filter. We then continue with an

empirical illustration where the XMC filter is used to extract the volatility for the daily

log returns of Bitcoin. In addition to filtering, we consider 1-period forecasting, and fixed-

interval (FI) smoothing, in which the entire sample y1:T is used as conditioning set. More
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details on this and other variants of smoothing using XMC will be given in the forthcoming

work of Moussa, Blasques, and Koopman (2023).

5.1 Simulation study

To assess the predictive performance of the XMC filter for the stable SV model in (1), we

performed a simulation study using the following parameters from Vankov et al. (2019):

µ = −0.2, φ = 0.95, ση = 0.2, a = 1.75 and b = 0.1. The path length was set to T = 100,

and the squared error loss was used to train the XMC filter and evaluate the performance of

predicting the log variances αt. The latter was done based on a separate test sample of 105

paths, and an equal number of paths was used to train the the XMC filter. For comparison,

we used the QML filter from Harvey et al. (1994), which remains applicable without a

tractable observation density. The QML filter starts by transforming the observations via

ỹt = log y2t to cast the SV model into a linear state space form, that is

ỹt = αt + 2ε̃t,

αt+1 = (1− φ)µ+ φαt + σηηt,

with ε̃t = log |εt|. Although ε̃t is not normally distributed, one can assume it is, so that

the Kalman filter (Kalman, 1960) can be used to act as an approximate filter for αt. This

approach uses the mean and variance of ε̃t, which are given by Lemma 3.19 of Nolan (2009)

for a 6= 1:

E[ε̃t] = γEuler(1/a− 1)− 1

a
log (cos[a · c(a, b)]),

Var[ε̃t] =
π2 (1 + 2/a2)

12
− c(a, b)2,

where γEuler ≈ 0.577 is Euler’s constant, and

c(a, b) = a−1 arctan
(
b tan

(πa
2

))
.

Figure 4 shows the root mean squared error (RMSE) against time for both methods

corresponding to 1-period forecasting (a), filtering (b), and FI smoothing (c). As expected,
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the RMSEs of both methods decrease as the conditioning set grows, which can be seen both

as t increases in plots (a) and (b), and by comparing the plots vertically. Table 2 contains the

overall RMSE for both methods. Similarly to the figure, it can be seen that the XMC filter

outperforms the QML filter for each choice of conditioning set. Perhaps most conclusive on

the difference in predictive quality is the fact that the 1-period forecasts of the XMC filter

outperform the filtered QML predictions, even though the former are based on a smaller

conditioning set that excludes the most informative element yt.

Figure 4: Results from simulation study based on model (1), showing the RMSE over time for
the QML and GB-XMC predictions: (a) 1-period forecasting; (b) filtering; (c) FI smoothing.
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Table 2: Results from simulation study based on model (1): overall RMSE of the QML and
GB-XMC filters for 1-period forecasting, filtering and FI smoothing.

Method Forecasting Filtering FI smoothing

RMSE
QML 0.537 0.524 0.462
XMC 0.510 0.492 0.429

5.2 Extracting Bitcoin volatility

We consider several applications of the XMC filter to extract the time-varying volatility

from the daily log returns of Bitcoin shown in Figure 2 (a), using the II parameter estimates

from Table 1. For long time series such as the one used (T = 2481), large computational

savings can be obtained with the XMC filter by re-using the estimated regression functions

in future time periods. This idea is called a steady state (SS; BKM Section 5), and its

workings are particularly simple for filtering, where no new functions are estimated after

some time tSS ≥ W (where the covariate set remains of constant size). In this case, an SS

has been reached, and all subsequent prediction is done using the function estimate f̂Ntss . The

SS approach was used for all applications of the XMC filter in this section.

Figure 5: Filtered log variances αt for the log returns of Bitcoin from the QML (brown) and
GB-XMC (blue; N = 105) filters.

Figure 5 (a) shows the estimates of E[αt|y1:t] from the QML and GB-XMC filters (N =

105), with the SS estimate corresponding to t = 37 (W = 37). In this case, the SS estimate

has reduced the number of regressions by 98.5%. Furthermore, it can be seen that the esti-

mates of both methods are close and tend to move in the same direction as new observations

come available. The GB-XMC filter responds somewhat more strongly to the large negative

log return of -46.65 at March 12th, 2020, but it is striking that the impact is limited on both
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filters: the use of stable observation errors does not require a large value of the scale to make

extreme observations likely, which explains the robustness of both filters.

Figure 6: Filtered 10%, 50%, and 90% quantiles of the log variance αt for the log returns of
Bitcoin: (a) QML filter; (b) QRF-XMC (N = 105).

For many applications it is of interest to estimate conditional quantiles rather than the

expectation of the states or future observations, such as in the computation of value at risk

and expected shortfall in finance (McNeil, Frey, & Embrechts, 2015). As in BKM we use

the quantile regression forest (QRF; Meinshausen, 2006) for this purpose, which extracts

information of the conditional distribution from the weights of a random forest. Figure 6 (a)

and (b) show the 10%, 50%, and 90% quantile estimates of αt from the QML and QRF-XMC

filters, respectively. The QRF-XMC estimates are based on N = 105, and an SS estimate

corresponding to t = 170 (W = 35), which has reduced the number of regressions by 93.1%.

The differences between the two methods are more pronounced than when the mean was

estimated. Considering again the period shortly after the extreme negative log return at the

start of 2020, the 90% quantile was estimated close to four by the QRF-XMC filter, which

differs substantially from the corresponding QML estimate of around two. In general, the
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Gaussian approximation by the QML filter is less suitable when the analysis extends beyond

the first two moments. In such situations, the XMC filter may provide an adequate solution.

Figure 7: Estimated Bitcoin volatility vt = exp(αt/2) for the GARCH and GB-XMC (N = 105)
filters: (a) filtered GARCH volatility based on the estimated auxiliary model from Section 3; (b)
XMC 1-period forecasts; (c) XMC FI smoothing.

As was shown in Figure 2, the XMC filter can be used to directly extract the volatility

vt = exp(αt/2) instead of the states by using the former as dependent variables in the

regressions. For comparison, we used the estimated auxiliary GARCH model from Section 3

to filter the volatility using the update equation in (3). The GARCH predictions are shown
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in Figure 7 (a). It can be seen that the outlier at the start of 2020 caused the filtered volatlity

to increase drastically. Figure 7 (b) shows the 1-period forecasts of vt from the GB-XMC

filter, which uses the same observations as the GARCH filter. The volatility estimates of the

two filters are seen to have very similar movements, except that the impact of the outlier is

limited on the XMC filter. This difference in robustness can be explained by the fact that the

estimated stable distribution (a = 1.677) has fatter tails than the estimated t distribution

(ν = 2.508). Figure 7 (c) shows the FI smoothed estimates based on the GB-XMC filter.

Compared with the forecasts in Part (b), most of the jagged movements have disappeared

because the same conditioning set is used at all times. The enlarged conditioning set should

generally result in improved estimates, and it is interesting to note that the impact of the

outlier was estimated to be even more limited than before.
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