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Abstract

We develop a novel regularized GMM (RegGMM) approach to estimating time-varying coefficient

models via a ridge fusion penalty with a high-dimensional set of moment conditions. Our RegGMM pro-

cedure only requires a mild condition on the total amount of oscillations between consecutive parameter

values over the whole sample period, which allows for both abrupt structural breaks and smooth changes.

While enjoying a closed-form solution for linear models, RegGMM avoids smoothed nonparametric esti-

mation and implements a global one-step procedure. We establish consistency and derive the convergence

rate and limiting distribution of the RegGMM estimator for independent and dependent observations. The

simulation study shows its robust finite sample performance over existing methods under various scenar-

ios. When applied to asset pricing modeling, RegGMM provides an alternative solution for estimating the

time-varying stochastic discount factor model by utilizing a large cross section and/or many condition-

ing variables. We apply our method to U.S. equity data from 1972 to 2021. Reflecting the macroeconomic

information, our time-varying estimate paths for factor risk prices respond to changing performance for

multiple risk factors and summarize potential regime-switching scenarios. By outperforming alternative

methods, we document the gains in asset pricing and investment performance from RegGMM for both

in-sample and out-of-sample analysis.
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1 Introduction

There is growing empirical evidence that the structure of economic relationships is changing over time (e.g., Stock

and Watson, 1996; Qu and Perron, 2007; Brunnermeier and Nagel, 2008; Hong et al., 2017). Capturing time-varying

economic relationships is important for inference and forecasts (e.g., Koop and Korobilis, 2012). Economic theory (e.g.,

Lucas, 1976) suggests that it is appropriate to view behavioral relationships varying over time, yet it does not indicate how

to capture the time variation structurally. There are a few popular approaches to modeling time variation in econometrics.

The first is to assume that time-varying parameters are a deterministic function of time (e.g., Robinson, 1989; Orbe et al.,

2000; Chen and Hong, 2012; Chen et al., 2018), which is appropriate when the driving factors for time variation are

external events, such as policy shifts, technology progress, and preference changes. The second is to specify time variation

as a function of observable variables (e.g., Ferson and Harvey, 1991; Nagel and Singleton, 2011), which has desirable

interpretability. The third is to model time variation as a latent stochastic process, either stationary or unit root (e.g.,

Engle, 2002; Dangl and Halling, 2012), which is often used when time-varying parameters are driven by unobservable

factors, such as the evolving beliefs of policymakers that lead to policy changes (Cogley and Sargent, 2001).

In a seminal paper, Hansen (1982) proposes the generalized method of moments (GMM), which provides a gen-

eral framework to unify many estimation and inference procedures, including those for regression with endogeneity.

GMM has been widely used to exploit asset pricing models by solving dynamic conditional pricing moment restrictions

(Hansen and Singleton, 1982).1 There has been a growing interest in developing new GMM procedures to accommodate

time-varying parameters. For example, Andrews (1993) extends GMM to allow for structural breaks and develops a

test to detect unknown breakpoints. Based on Lewbel’s (2007) local smoothing GMM estimator, Gospodinov and Otsu

(2012) propose estimating time-varying parameters via local kernel smoothing by using a nonparametric conditional

moment. Gagliardini et al. (2011) extend the nonparametric method of moments estimation to handle unconditional

and conditional moment restrictions. Gagliardini and Ronchetti (2020) employ a local smoothing GMM to character-

ize a conditional Hansen-Jagannathan (HJ) distance for dynamic pricing errors. Cui et al. (2021) estimate time-varying

price-dividend ratios via a global smoothing GMM, whose moment conditions step from Euler equations.

The aforementioned methods make important methodological contributions and significantly extend the scope of

application for GMM. However, there are some undesirable features of the existing GMM methods for time-varying

models. First, modeling time-varying parameters as a function of observable variables may suffer from the omitted

variable problem and the curse of dimensionality issue for smoothed nonparametric methods. An exception is Antoine

et al. (2020), which proposes employing a broader choice of conditioning variables to estimate time variation via fixed

bandwidth asymptotics. Second, modeling time variation as a deterministic function of the scaled time requires cer-

tain smoothness (differentiability) conditions for smooth, nonparametric methods that rule out abrupt structural breaks.

Finally, modeling time-varying parameters as a latent stochastic process may suffer from model misspecification. We

note that to resolve the curse-of-dimensionality issue, Creal et al. (2018) model time-varying parameters in GMM as a

1Hansen and Jagannathan (1997) and Kan and Zhou (1999), provide GMM estimations to the constant parameter
stochastic discount factor model. Ghysels (1998) use GMM to estimate the conditional CAPM with time-varying betas.
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parametric autoregressive-type updating scheme and provide asymptotic properties for the updating parameters with a

special choice of instrumental variables,2 which is subject to model specification risk.

It has been a long-standing challenge in the literature to avoid model misspecification for time variation and allow

for various types of structural changes. This paper proposes a novel regularized GMM (RegGMM) approach to estimat-

ing time-varying parameters, which depend on the information set, without assuming its relationships with covariates or

time. By utilizing a high-dimensional set of moment conditions with a ridge fusion penalty, RegGMM estimates all real-

ization values of time-varying parameters over the sample period, which avoids specifying the data-generating process

(DGP) for time-varying parameters and allows for various types of time variation.3 Our RegGMM objective function con-

tains a quadratic form of the sample moment vectors that time-varying parameters satisfy and a smoothness condition

that regularizes the parameter time-variation magnitude. Built on a mild condition that the total amount of oscillations

between consecutive realization values over the sample period is bounded, we promote similarities between the coeffi-

cient values over consecutive periods via a ridge fusion penalty, defined as the sum of the squared first differences of

unknown parameters over time.

Our proposed regularization scheme is related to the fused LASSO penalty (Tibshirani et al., 2005) and the ridge

fusion penalty (Price et al., 2015), which assist in variables selection and precision matrix estimation. The ridge fusion

penalty in a high-dimensional moment condition setup helps consistently estimate all time-varying parameter values

over the sample period, without specifying the time variation. In particular, it allows for various types of structural

changes, including abrupt breaks and smooth changes. The large dimensionality for the moment conditions becomes a

“ blessing” rather than a “curse” for RegGMM. RegGMM treats all realization values of time-varying parameters over

the sample period as a high-dimensional parameter vector, which can be consistently estimated by trading off the overall

parameter oscillations and the satisfaction level of moment restrictions. Avoiding directly assuming deterministic or ran-

dom processes for time-varying parameter values is also related to the analogy with fixed versus random effects in the

panel data regression literature. Fernández-Val and Weidner (2018) propose treating the realization values of the individ-

ual and time effects as parameters to be estimated without specifying their distributions or relationships with covariates.

Our work is among the first to consistently estimate time-varying parameter values without assuming specifications on

time variation but by regularizing the smoothness levels of time-varying parameters, which is coherent with the argu-

ment by Fu et al. (2022) that main distinctions between deterministic and random processes mainly lie in the smoothness

of time-varying parameters.Our asymptotic results complement existing studies that employ a penalization based on a

bounded variation of the parameter process (Horenko, 2010), which are particularly useful when time variation changes

continuously over time t, rather than the scaled time (t/T ).4

2The instrumental variables include the lagged time-varying parameter value �t�1, and the lagged updating descent
st�1 so that �t = (I � B)! + B�t�1 + Ast�1 where !, A,B are unknown updating parameter matrices to be estimated.
We refer readers to Creal et al. (2018) for details and thank one referee for suggesting this related work.

3Section 2 provides detailed discussions on the construction of the required moment conditions when researchers face
a set of cross-sectional conditional moment restrictions and many instrumental variables.

4The nonstationary time series literature needs to determine time-dependent weights on some stationary models to
resemble nonstationary observations. The employed regularizations include the integration of the squared first derivative
of the affiliation function for smooth changes (Horenko, 2010), the fused Lasso penalty for abrupt breaks (Marchenko
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Our approach has several appealing features. First, we do not have to specify the driving factors and functional

forms for time-varying parameters, so it is free of model misspecification. Second, unlike the smoothed nonparametric

methods that assume time variation as a deterministic function of time, we avoid differentiability conditions that rule

out abrupt structural breaks and the boundary bias problem near the endpoints of the sample period. Third, unlike the

smoothed nonparametric methods that assume time variation as a function of observable variables, we avoid the curse

of dimensionality problem with many conditioning variables and the omitted variable problem. Fourth, RegGMM is a

global one-step procedure that delivers consistent estimates for all realization values of time-varying parameters simul-

taneously. Moreover, it enjoys an appealing closed-form solution for linear models. However, we need to point out the

trade-off between the flexibility of our approach and its lack of interpretability (e.g., sources) for time variation. Therefore,

our approach should be a complement to, not a substitute for, the existing estimation methods for time variation.

An important application of RegGMM is asset pricing modeling. There exists a strong demand for empirical studies

on the stochastic discount factor (SDF) models with time-varying parameters. Figure 2 illustrates various changes in time-

varying performance for multiple well-known risk factors in recent decades that have posed a challenge for empirical

researchers. The current literature prefers using conditioning (i.e., explanatory) variables to model time-varying SDF

weights, such as fundamental predictors or macroeconomic variables, for better economic interpretation. Still, they might

encounter the variable selection and model misspecification difficulty (Nagel and Singleton, 2011). Another empirical

modeling challenge is determining the type of time variation in parameters, where RegGMM stands out for its flexible

smoothness requirement for time variation.

Our paper also adds to the fast-growing field of high-dimensional model regularization and machine learning in

asset pricing. Feng et al. (2020) develop variable selection methods to select risk factors for the SDF model. Gu et al.

(2020) use machine learning to perform dimension reduction and predict cross-sectional returns using many predictors.

Regularized portfolio optimization problems with a large number of assets and their connection to the SDF are also ad-

dressed (Ao et al., 2019; Kozak et al., 2020). Rather than performing shrinkage or dimension reduction, RegGMM benefits

from a large cross section of asset returns and/or a long list of instrumental variables, given their role in constructing the

required high-dimensional moment restrictions.

We apply RegGMM to estimate the dynamic SDF model using monthly U.S. equity data from 1972 to 2021 and

consider 10 published traded risk factors for the time-varying SDF composition. Because we use macroeconomic con-

ditioning variables, our estimated time-varying factor price paths can reflect market timing information about business

cycles, such as treasury bills, inflation, term spread, and default yield. For example, RegGMM produces time-varying

risk price estimate paths, which respond to the decaying performance of HML (Value) and the rising performance of SMB

(Size) in the 2000s. We find that our time-varying estimates react to the changing performance of multiple risk factors

and summarize potential factor regime-switching scenarios. We show that the time-varying SDF model outperforms the

constant parameter SDF model in terms of HJ measures, demonstrating the time-varying SDF model’s goodness of fit. By

outperforming multiple benchmark models, we document the out-of-sample gains for risk-adjusted and model-adjusted

et al., 2018), and the ridge fusion type penalty to de-noise nonstationary time-series observations (Pospı́šil et al., 2018).
We appreciate one referee for pointing out this intriguing connection.
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investment, which suggests that the superior in-sample performance of RegGMM is not due to overfitting.

The rest of this paper proceeds as follows. Section 2 introduces the RegGMM estimation method for time-varying

models. Section 2.2 establishes consistency and derives the convergence rate and limiting distribution of the RegGMM

estimator. Monte Carlo simulation studies for verifying RegGMM’s scope of application are given in section 3. We

present an empirical application to a flexible time-varying SDF model and demonstrate its in-sample and out-of-sample

performance in section 4. Section 5 concludes the paper, and all technical proofs are provided in Appendix.

2 Regularized GMM Estimation

2.1 Regularized GMM Estimation for Time-Varying Coefficient Models

Given empirical evidence of time-varying dynamic models, we start with the following econometric model:

E(ut+n|It) = 0N , (1)

where ut+n = F (Xt+n, �t+n) is a N ⇥ 1 vector representing the cross-sectional information with N individual units

(e.g., assets), and Xt+n contains observable variables. For example, Xt+n = (r0t+1, f
0
t+1)

0 with n = 1 in Section 2.3 and

Xt+n = (y0
t, x

0
t)

0 with n = 0 in Section 3. We denote uo,t+n = F (Xt+n, �o,t+n) for t = n + 1, · · · , T . We further denote

zt 2 It as a K ⇥ 1 vector of conditioning variables, which is observed by the modeler.

We consider estimating the unknown time-varying parameters �t+n = �(It), which depend on the observations

in It. Our paper treats the realization values of � ⌘ {�t}
T�n
t=1 as p(T � n) parameters to be estimated, whose dimension

grows to infinity as T ! 1. Then, to estimate a high-dimensional vector of parameters {�t}
T�n
t=1 , we first transform

the conditional moment restriction in (1) into the following unconditional ones by multiplying instrumental variables.

Particularly, we consider

E[e(Ut+n, �t+n)] = E[ut+n ⌦ z̃t] = 0q̃, (2)

where Ut+n = (X 0
t+n, z̃

0
t)

0, ⌦ is the Kronecker product and z̃t can be functions of some observable conditioning vari-

ables zt. When N , the number of conditional moments, and K, the number of conditioning variables, are both fixed,

without further prior knowledge of time variation, we could consider expanding the conditioning variables, zt, to a

high-dimensional set of instrumental variables by applying a sequence of transformations z̃t = {�(zt)}
K̃
t=1 such that the

unconditional moments have dimension q̃ = NK̃. The literature has documented substantial benefits of such trans-

formations in different contexts, such as when estimating pricing functions and facilitating model misspecification tests

(Hansen and Richard, 1987; Gagliardini and Ronchetti, 2020; Cui et al., 2021).

We propose estimating the realization values � in a one-step procedure by utilizing an increasing set of moment

conditions from the following regularized optimization problem:

�̂ = argmin
�

1
q
kgT (�)k

2 + �J(�), (3)

5

Electronic copy available at: https://ssrn.com/abstract=3814520



where gT (�) ⌘
1

T�n

PT�n
t=1 e(Ut+n, �t+n) is the sample analogue of equation (2), and k · k denotes the Euclidean norm.

Because we will use cross-validation (CV) among moment conditions to select the tuning parameter value �, we denote

q as the effective number of moment conditions used in estimation, and we require q = q̃(k � 1)/k > p(T � n) for the

k-fold CV.5 In the rest of this paper, for generality, we will make use of a high-dimensional set of moment restrictions in

equation (2) by requiring q � p(T � n) ! 1 as the sample size T ! 1, which can be ensured by either N ! 1 or

K ! 1, or both, at a suitable rate.

To offset the impact of the divergent dimension of moment restrictions, we normalize the quadratic term by q;

otherwise, the total sum of the quadratic sample moment vectors in (3) could be large even if each element is small. The

penalized optimization (3) involves a key ingredient J(�), a ridge fusion penalty, which is defined as the sum of the

squared differences of parameters over time:

J(�) = �0D0D� =
T�nX

t=2

k�t � �t�1k
2, (4)

where D is a p(T � n� 1)⇥ p(T � n) matrix such that

Dij =

8
>>><

>>>:

�1 i = j,

1 i+ p = j,

0 otherwise.

(5)

We assume that the total amount of time variation, as measured by J(�), is bounded, allowing for various structural

changes, including abrupt breaks and smooth changes, or a mixture of them. The tuning parameter � represents the

extent of penalization imposed on time variation J(�). In section 2.2, we explain the selection and evaluation of � to aid

in calibrating the performance of our procedure.

Notably, the ridge fusion regularization on coefficient values over time amounts to shrinking the total consecutive

pairwise squared differences of unknown parameters over the sample period. In a special case, if only smooth structural

changes exist, in that the true parameter �t is continuously differentiable with respect to time or a set of conditioning

variables, the ridge fusion penalty is equivalent to penalizing the squared first derivatives of unknown parameters as

in Wahba et al. (1995) and Horenko (2010). Under such a scenario, nonparametric local and global smoothing methods

are appropriate if econometricians observe the correct set of conditioning variables that drive time variation. However,

they suffer from the curse of dimensionality problem if the set of conditioning variables is large. In another important

scenario with abrupt structural breaks, existing nonparametric smoothing strategies are no longer applicable due to a loss

of estimation consistency. In contrast, RegGMM estimates all time-varying parameter values over the sample without

having to specify the DGP for time variation. We allow both abrupt breaks and smooth changes.

We could also use a fused LASSO penalty,
PT�n

t=2 |�t � �t�1|, to control for the level of time variation. However, if

5We thank one referee for pointing out this aspect. When conducting over-identification tests, such as extending the J-
test proposed by Hansen (1982) and the student t test proposed by Dong et al. (2021), we need to regulate the rate at which
q will diverge as T ! 1. For high-dimensional moment restriction models with regularization, the over-identification
test is an interesting topic, which we leave for future research.
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this L1-type penalty is used, the optimization problem (3) cannot yield a closed-form solution for linear models. More

importantly, given the nature of the L1-type penalty, it is most suitable for abrupt structural breaks because it keeps a

few non-zero piece-wise constant parameter values over time while forcing the differences between coefficients in most

periods to be zero. It would have little power to capture smooth structural changes over time. Thus, without a certain

economically motivated prior for time variation, the ridge fusion regularization in equation (3) appears more suitable for

economic studies because it allows for both abrupt breaks and smooth changes as their mixtures.

The intuition behind RegGMM is that the first component in equation (3) provides enriched information for es-

timating �t at each time period. By appropriately penalizing J(�), we can uncover general time-varying patterns and

guarantee a unique global solution given the strict convexity of optimization (3). For linear models, our method delivers

an appealing closed-form solution. Another strength of the ridge fusion penalty is that it significantly helps stabilize the

resulting estimates because the positive penalty term � enters into an involved large-dimensional covariance matrix. As

a result, the minimum eigenvalue is bounded from below and away from zero.

2.2 Asymptotic Theory

The large sample properties below cover both independent and dependent observations. To simplify our analysis,

we use m-dependency to capture the degree of dependency. We first recall the definition of an m-dependent process

{Xt}t�1 and define the distance between two subsets A and B by d(A,B) := inf{|i � j| : i 2 A, j 2 B}. Then, {Xt}t�1

is an m-dependent process if {Xt, t 2 A} and {X⌧ , ⌧ 2 B} are independent whenever d(A,B) > m. We further recall

the notation � = (�0
n+1, · · · , �

0
T )

0 and denote A(�) = (T � n)@gT (�)/@� for the rest of the paper. Let ⇢min(·), ⇢i(·) and

⇢max(·) denote the minimum, i-th, and maximum eigenvalues of a matrix, respectively. Further, kMkF =
p

tr(M 0M)

denotes the matrix Frobenius norm and kMk2 =
p
⇢max(M 0M) denotes the matrix L2-norm.

Assumption 1. E(ut+n|It) = 0N has a unique zero at �o,t+n, which depends on the information set It for each t. �o =

(�0
o,n+1, · · · , �

0
o,T )

0
2 S ⌘ ST�n

0 with S0 being a finite-dimensional compact parameter space.

Assumption 2. (i) Let {e(Ut+n, �t+n)} and {Ut+n} be stationary m-dependent processes with m/T ! 0 as T ! 1; (ii) For

some ⌘ > 0, a positive constant c1 exists that E|ej(Ut+n, �o,t+n)|
2+⌘

 c1 < 1 for 1  t  T � n and 1  j  q.

Assumption 3. (i) For any ✏ > 0, there exists a sufficiently small constant ⌫T,✏ > 0 such that inf�2S,k���ok>✏
1
q kE[gT (�)k

2 >

⌫T,✏; (ii) max{�Jo, (1 +m)/T} = o(⌫T,✏) with Jo = �0
oD

0D�o < 1.

Assumption 4. For �̃, �̄ 2 S, a measurable positive function B1(Ut) exists that kej(Ut+n, �̃t+n)�ej(Ut+n, �̄t+n)k  B1(Ut)k�̃�

�̄k, where E[B2
1(Ut)] < 1 for 1  t  T � n and 1  j  q.

Assumption 5. For � in a neighborhood of �o, positive constants c2 and c3 exist that ⇢min

�
E

@ej(Ut+n,�t+n)

@�t+n
E

@ej(Ut+n,�t+n)

@�0
t+n

 
�

c2 > 0 and ⇢max

�
E

@ej(Ut+n,�t+n)

@�t+n
E

@ej(Ut+n,�t+n)

@�0
t+n

 
 c3 < 1 for 1  t  T � n and 1  j  q.

Assumption 6. (i) There exist positive constants c4 and c5 such that ⇢min

n
1
qEe(Ut+n, �o,t+n)e(Ut+n, �o,t+n)

0
o

� c4 > 0

and ⇢max

n
1
qEe(Ut+n, �o,t+n)e(Ut+n, �o,t+n)

0
o

 c5 < 1 for all 1  t  T � n; (ii) For �̃, �̄ 2 S, a measurable positive
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function B2(Ut) exists that k@ej(Ut+n, �̃t+n)/@�t+n � @ej(Ut+n, �̄t+n)/@�t+nk  B2(Ut)k�̃ � �̄k, where E[B2
2(Ut)] < 1

for 1  j  q and 1  t  T � n.

Assumption 1 is a standard condition in the GMM literature, which implies that the time-varying parameter vector

�o can be uniquely identified through the moment conditions. In this paper, p(T � n), the number of parameters to be

estimated, and q, the number of moment conditions, are both large, with q � p(T � n) for identification purposes. The

compactness condition in Assumption 1 avoids some ill-posedness issues encountered in the literature. It holds when

the finite-dimensional parameter space S is closed and bounded.6 Alternatively, we could consider a compact subset of

Rp(T�n) that Sc = {� 2 Rp(T�n) : k�k  CT }, where CT = o(T/
p
1 +m) is some positive number that diverges with T .

The proof is collected in Appendix B.7

Assumption 2 imposes a mild condition on the serial dependency of the dataset over time, where m is allowed

to increase with the sample size T as long as m/T ! 0. Such a blocking technique on moment conditions is also

used in Chang et al. (2015) when the dimensions of both moment restrictions and parameters of interest grow with the

sample size T . Like mixing conditions, m-dependency is also commonly used to regulate serial dependency in time

series analysis (Hansen and Singleton, 1982; Rao and Sreehari, 2016). For instance, a special case of an m-dependent

process is an i.i.d. process where m = 0. In another example, a first-order moving average (MA) process with i.i.d.

innovations is a stationary m-dependent process with m = 1. In nonparametric statistics, one often uses m-dependence

to test for independence or lack of correlation. For example, a random indicator variable Wn = {Xt > Xt+1} with (·)

being the indicator function can be used to test the dependent structure in Xt’s, which is also m-dependent (Islak, 2013).

Inoue and Shintani (2006) point out that, given the Wold decomposition theorem, a stationary process admits a moving

average (MA) representation with possibly infinite order, which can be approximated by an m-dependent process with

m growing to infinity with T . We conjecture that similar results from our paper could be established under mixing

conditions. However, assuming m-dependence simplifies our analysis, we can establish an explicit relationship that

describes how serial dependency may affect the convergence rate. We note that the m-dependence assumption could be

further weakened to be a strictly stationary process, and we refer readers to Hong and Lee (2005) for such an extension

in a different context.8

Assumption 3 (i) is a generalized condition on global identification. Note that we need to scale down the squared

norm due to the diverging dimension of moment restrictions. This relaxed condition can also be seen in Dong et al.

6We refer readers to Chen (2007) for a detailed discussion.
7To obtain time-varying parameter values, existing econometric literature often further assumes some parametric

specification on time variation, such as �t+n = �(t/T ) or �t+n = �(!t) for some observable !t 2 It (Chen and Hong, 2012;
Dong et al., 2021). Creal et al. (2018) also consider such a conditional moment restriction with time-varying parameters,
whose realization values depend on the past data in It. However, in this paper, we avoid specifying the DGP for time
variation, which is allowed to display various types. Econometricians and empirical researchers may be more interested
in discovering the path of the time-varying parameter values.

8Specifically, Assumption 2 (i) could be weakened such that for each sufficiently large m, there ex-
ists a strictly stationary process {em,t+n} that is measurable with respect to the sigma field generated
by {e(Ut+n�1, �t+n�1)

0, · · · , e(Ut+n�m, �t+n�m)0}0 and satisfy that as m ! 1, {em,t+n} is independent of
{e(Ut+n�m�1, �t+n�m�1)

0, e(Ut+n�m�2, �t+n�m�2)
0, · · · }0, and E|ej(Ut+n, �t+n) � ej,m,t+n|

2
 Cm�⇣ for some ⇣ � 1

and all 1  j  q and 1  t  T � n.

8
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(2021). A stronger version of this condition has been used in the literature with ⌫T,✏ = ⌫ > 0 (Ai and Chen (2003)). As

argued by Chen and Pouzo (2012), given that (S, k · k) is compact, the condition in Assumption 3 (ii) can be reduced to

max{�Jo, (1 + m)/T} ! 0. Assumption 3 (ii) also imposes restrictions on the ridge fusion penalty tuning parameter �

and its relationship with q via the normalized squared norm. Similar to Cui et al. (2021), we can let the penalty term play a

key role in smoothing when deriving large sample properties. We show in Theorem 1 that when � satisfies Assumption 3,

�̂, which minimizes the RegGMM criterion over a compact space, is consistent. In Theorem 3, we show that Assumption

3 is also required to ensure the asymptotic unbiasedness nature of the estimated values of time-varying parameters.

Assumption 4 is a Lipschitz condition, which is widely used in the GMM literature (Han and Phillips, 2006). It is

essential for establishing uniform convergence because it relates to stochastic equicontinuity (Newey, 1991). Assumption

4 also ensures the applicability of our result to time-varying nonlinear GMM models. Dong et al. (2021) use this condition

through global smoothing estimation with many moment conditions.

Assumption 5 is to regulate the eigenvalues of moment conditions. Such conditions are employed and justified in

Chang et al. (2015) when maximizing a high-dimensional generalized empirical likelihood, which can also be framed into

a GMM setup with many parameters and moments. Assumption 6 facilitates the limit theory by imposing an additional

Lipschitz condition on the first-order derivative of moments with respect to unknown parameters.

Theorem 1 (Consistency). Suppose Assumptions 1-4 hold. Let �̂ minimizes RegGMM in (3). If further (1 +m)/T = O(�), we

have maxn+1tT k�̂t � �o,tk = op(1) as T ! 1 .

Theorem 1 implies the consistency of �̂ that minimizes the RegGMM criterion. It can be achieved by choosing

a positive but small penalization parameter that satisfies (1 + m)/T = O(�) and max{�Jo, (1 + m)/T} = o(1) or a

smaller order o(⌫T,✏) with ⌫T,✏ ! 0. Intuitively, if � tends to infinity, it leads to time-invariant parameter estimates with

probability tending to 1. Similarly, if �Jo tends to a finite strictly positive constant, �̂ will not converge in probability to

�o. If � = 0, it leads to overfitting of time variation. Theorem 1 implies the consistency of the RegGMM estimator for

both dependent and independent observations. Note that for estimation consistency and identification purposes, q must

go to infinity at a rate at least as fast as T on one hand and satisfy Assumption 3 on the other hand. In the next theorem,

we narrow the neighborhood around �o to drive an estimation error upper bound, which requires additional moment

assumptions on pricing errors and their first-order derivatives when applied to asset pricing modeling.

Theorem 2 (Convergence Rate). Suppose Assumptions 1-5 hold and (1 + m)/T  �Jo 
1
2 (1 + m) log T/T . Then, we have

maxn+1tT k�̂t � �o,tk = Op

�p
(1 +m) log T/T

�
as T ! 1 and q ! 1.

Theorem 2 provides an error bound for the RegGMM estimator in a shrinking neighborhood of �o. This covers

all time points in the sample period, including the boundary regions near the endpoints. We note that the estimation

error bound involves a factor of log T , which is common to recent studies that involve high dimensionality in the ma-

chine learning literature. The reason log T emerges in our proof is that we use the Markov inequality when obtaining a

probability bound for the maximum of a sequence of random variables (Huang et al., 2008). Also, the serial dependency

m affects the error bound because it affects how fast sample analogues could converge in probability to their population
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moments (Romano and Wolf, 2000). Since log T grows to infinity at a rate slower than T ✏ for any small constant ✏ > 0,
p

log T/T converges to zero at a rate slower than
p

1/T 1+✏. Therefore, the rate obtained in Theorem 2 is slightly slower

than the parametric root-T rate if m is fixed or grows at a logarithmic rate as T ! 1. Hence, our method provides desir-

able estimation accuracy while avoiding the restrictive specification of time variation. In particular, the consistency of the

RegGMM estimator does not require �t to be continuously differentiable with respect to time or conditioning variables—

an otherwise indispensable condition for smoothed nonparametric estimation. Instead, the condition required by our

approach is more general and covers a broader range of applications.

Theorem 3 (Asymptotic Normality). Suppose Assumptions 1-6, and the conditions in Theorem 2 hold. Consider a = cI⌦ap with

I being a (T�n)⇥1 vector of ones, ap 2 Rp
with kak2 = 1. Let H̄ = 1

q2
a0
pDTV D0

T ap with DT = 1
T�n

PT
t=n+1 E

⇥ @e(Ut+n,�o,t+n)

@�t+n

⇤

and V = var[ 1p
T�n

PT�n
t=1 e(Ut+n, �o,t+n)]. For

p
1 +m log T = o(

p
T ), we have

H̄�1/2
p
T � na0

⇣⇥ 1
q(T � n)2

A0(�̂)A(�̂) + �D0D
⇤⌘

(�̂� �o)
d
! N(0, 1).

Theorem 3 recognizes a standard formula for the asymptotic variance of the RegGMM estimator with a correction

due to the penalization for the amplitude of parameter variations between consecutive periods. The Hessian matrix,

H(�̂, �̂) = @2

@�@�0
1
q kgT (�̂)k

2 + �D0D, contains two parts. The first component is the Hessian function of an unpenalized

GMM loss function as in a high-dimensional moment conditional framework that @2

@�@�0
1
q kgT (�̂)k

2 = 1
qA

0(�̂)A(�̂) +

�(�,�), where �(�,�) = 1
q gT (�)

@
@�A(�). It has been shown that 1

qA
0(�̂)A(�̂) is almost surely positive definite and

k�(�,�)kF = op(1) for � 2 S (Dong et al., 2021). The second component �D0D is due to the ridge fusion penalty that
@2

@�@�0 J(�) = �D0D. We note that such an additional term associated with the penalty and the differencing matrix D also

appears in the covariance estimator of Li and Ruppert (2008) and Cui et al. (2021), who propose estimating unknown

functions in linear regression and high-dimensional GMM by a ridge fusion penalty on coefficient values of B-splines

basis functions. We note that Theorem 3 involves a bias term, H̄�1/2
p
T � na0�D0D�o, which is proven to be a small

order term and thus assists with a zero mean in Theorem 3. Such a result could be interpreted as an “undersmoothing”

condition.9 Theorem 3 involves a sandwich formula for computing the covariance of our penalized estimator, which

coincides with the sandwich expression by the local quadratic approximation method (Fan and Li, 2001).10 The sandwich

formula in Theorem 3 reflects a bias-variance trade-off.

In practice, we would need a consistent estimator for H̄ , which involves the unknown matrix V in the limiting

normal distribution as in Theorem 3. We first define the sample autocovariance function

⌦̂(j) =

2

4
1

T�n

PT�n
t=j+1 e(Ut+n, �̂t+n)e(Ut+n�j , �̂t+n�j)

0 for j � 0

1
T�n

PT�n
t=�j+1 e(Ut+n+j , �̂t+n+j)e(Ut+n, �̂t+n)

0 for j < 0

3

5 .

If m is known, a consistent variance estimator of H̄ can be obtained by defining V̂ =
Pm

j=�m ⌦̂(j). However, in practice,

9There is a similar result in Dong et al. (2021), who require the approximation errors to be of a small order term.
10Zou (2006) has a similar sandwich form in the adaptive LASSO estimator by iteratively computing the involved ridge

regression.
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the value of serial dependency m is generally unknown, which is analogous to the case when mixing conditions are

used to regulate serial dependency where the ↵-or �-mixing values are also generally unknown. In such a case, we can

employ the well-known class of heteroskedasticity and autocorrelation (HAC) estimators as in Newey and West (1987)

and Andrews (1991) without having to estimate or select the practical value of m or mixing values (Inoue, 2006; Ma et al.,

2021). Specifically, we consider the class of HAC estimators for V as follows:

V̂ =
T�n�1X

j=�(T�n�1)

k(j/bT )⌦̂(j),

where bT is a smoothing parameter that grows with the sample size T and k(·) is a real-valued kernel function, which

generally declines as j increases, with k(0) = 1.11 A suitable choice of k(·), such as the Bartlett kernel k(u) = 1 � |u| for

|u|  1 and 0 otherwise, ensures the semi-positive definiteness property of V̂ in finite samples. In the present context, the

involved smoothing parameter bT grows to infinity with the sample size T at a slower rate, whose practical value can be

determined by the procedure in Inoue (2006) among others.12

We then consider the following estimator of H̄ :

Ĥ =
1
q2

a0
pD̂T V̂ D̂T ap,

where we save notations by denoting D̂T ⌘
1

T�n

PT�n
t=1 @e(Ut+n, �̂t+n)/@�t+n.

Theorem 4 (Asymptotic Variance Estimation). Suppose Assumptions 1-6 hold. There exists a positive constant c6 such that

E|ej(Ut+n, �o,t+n)|
4 < c6 < 1 for all 1  j  q and 1  t  T � n. Suppose max{m, bT }maxn+1tT k�̂t � �o,tk = op(1)

and bT
p

(1 +m)/T = o(1). Then we have |Ĥ � H̄|
p
! 0 as T ! 1.

Remarks on Asymptotic Theory. The asymptotic analysis will facilitate the construction of the confidence inter-

val for the time-varying parameters and their combinations. The conditions in Theorem 4 are a natural extension of those

in Newey and West (1987), which establishes the consistency of the HAC covariance estimator when both the numbers

of parameters and moment conditions are fixed.

It is well known that the asymptotic theory of the HAC covariance estimator and related test statistics do not

perform well in finite samples. The literature has documented that the bootstrap can help enhance the finite sample

performance compared with the critical values based on first-order asymptotic theory in GMM (Hall and Horowitz,

1996). Based on Theorems 3 and 4, we provide detailed descriptions of a bootstrap procedure by Kato (2011) and Inoue

and Shintani (2006) for conducting inference in Appendix C.2.

11The weights k(j/bT ) satisfy |k(j/bT )|  C for finite constant C and limbT!1 k(j/bT ) = 1 for each j. Andrews
(1991) generalizes the class of kernels that satisfy {k(·) : R ! [�1, 1]|k(0) = 1, k(x) = k(�x),

R1
�1 k2(x)dx <

1, k(·) is continuous at 0 and at all but a finite number of other points}. Examples of kernels include the truncated,
Bartlett, Parzen, Tukey-Hanning, and Quadratic spectral functions. We refer readers to Andrews (1991) for details.

12The main idea is to approximate the serially dependent moment conditions with a MA representation of possibly
large order. Such a strategy is also used in Ng and Perron (1995). Other methods include minimizing the mean squared
error of the HAC covariance matrix estimator in (Andrews, 1991), which excludes truncated and trapezoidal kernels.
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Estimation efficiency may be improved by including a q ⇥ q weighting matrix Ŵ that may depend on the sample

data, in which case the objective function can be replaced by �̂ = argmin�
1
q kgT (�)Ŵ

�1/2
k
2 + �J(�). Similar to Dong

et al. (2021), who study a GMM procedure with global smoothing by choosing W = I , for ease of representation, in

the main context of this paper, we explore the RegGMM estimator by choosing Ŵ as the identity matrix but provide

a detailed analysis of the consistency of RegGMM under a general weight matrix in Appendix B. Efficiency gain could

be further achieved by considering a one-step continuously updated estimator (CUE), which is studied by Newey and

Smith (2004) under a conventional GMM framework without regularizations.

We do not have to specify the DGP for time variation in our setup, but we need a large q � p(T � n). However, if

we impose the additional condition that time variation exhibits certain smoothness over the scaled time (e.g., �t = �(t/T )

for some unknown twice differentiable function �(·)), we conjecture that q could be fixed. In such a case, we could use

local linear smoothing and formulate a local objective function at each fixed time period t 2 [n+ 1, T ]:

min
�2R2p

k
1
T

t+n+[Th]X

s=t+n�[Th]

Ks,t+ne(Us, �s)k
2 + �

t+n+[Th]X

s=t+n�[Th]+1

k�s � �s�1k
2,

where �s = ↵0 +↵1[s� (t+n)]/T , � = (↵0
0,↵

0
1)

0, Ks,t+n = 1
hK( s�(t+n)

Th ), the kernel K(·) : [�1, 1] 2 R+ is a prespecified

symmetric probability density, and h = h(T ) is a bandwidth with h ! 0 and Th ! 1 as T ! 1. We conjecture that

using the ridge fusion penalty could help alleviate the key smoothing role that the bandwidth h has been playing in local

smoothing estimation.

Selection of Penalty Tuning Parameter. RegGMM involves one penalty tuning parameter, �, which affects

its finite sample performance. Andrews (1999) and Inoue (2006) propose studying the GMM estimation efficiency and

asymptotic refinement by sampling the cross-sectional moment conditions. Empirically, in an application to asset pricing

modeling, a desirable SDF price test assets accurately while being less sensitive to different choices of instrumental

variables (Nagel and Singleton, 2011; Gagliardini and Ronchetti, 2020; Antoine et al., 2020). Hence, obtaining a balance

between first-order estimation accuracy and second-order stability across different moments is desirable. Hence, we

select � using cross-validation (CV) by sampling from moment conditions.

Specifically, for k-fold CV, (k � 1) folds are used for parameter estimation, and the hold-out fold is used to val-

idate the model. Borrowing the notations from Andrews (1999), for each � 2 M, for v-th fold, we obtain �̂(v)
� =

argmin�2S
1
q kg

(�v)
T (�)k2 + ��DD0�0, where g(�v)

T (�) = 1
T�n

PT�n
t=1 I�ve(Ut+n, �t+n) and I�v is a q ⇥ q diagonal ma-

trix whose i-th diagonal value is 0 if the i-th moment condition is included in the v-fold, and 1 otherwise. Then,

the tuning parameter can be obtained by minimizing the average predictive error in the testing samples (CV error):

�⇤ = argmin�2M
Pk

v=1 kg
(v)
T (�̂(v)

� )k2, where g(v)T (�̂(v)) collects the predictive pricing errors in the testing moments. To

reduce variation in the assessment due to the sample splitting issue, we perform the 5-fold CV 10 times in our applications

and report the average selected tuning parameter. We will assess the validity of a selected tuning parameter by perform-

ing a test on whether the practically chosen tuning parameter is optimal, which can produce the least cross-validation

error. Practically, we conduct this hypothesis testing procedure and obtain the p-value via the CV with confidence (CVC)
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method from Lei (2020). We explain the p-value construction details in Appendix C.1.

2.3 Dynamic Stochastic Discount Factor Models.

Figure 2 shows smooth and abrupt changes in time-varying performance for multiple well-known risk factors dur-

ing recent decades, which challenge empirical asset pricing studies using constant parameter models. We now illustrate

the use of RegGMM in the conditional asset pricing literature for the SDF model. In this subsection, we consider a special

setup, where the pricing error ut+n is a linear function of time-varying parameters. In this case, the RegGMM estimator

enjoys a closed-form solution for the entire set of unknown time-varying parameters over the sample period.

In the absence of arbitrage, a time-varying SDF, mt+1, exists such that for any traded asset i with an excess return

at time t of rt, we have the conditional moment equation:

E[mt+1rt+1|It] = 0N , (6)

where rt+1 is an N ⇥ 1 vector of excess returns on N assets. A beta pricing model can be cast in the SDF framework by

specifying the SDF as a linear function of ft+1, where ft+1 is a p⇥ 1 vector of observable risk factors:

mt+1 = 1� �0
t+1ft+1, (7)

where �t is a p⇥ 1 vector of time-varying SDF loadings or risk price parameters. We can plug equation (7) into equation

(6) to estimate the SDF loadings. In the following notation, rt+1f
0
t+1 is an N ⇥ p matrix of explanatory variables and

0N = E[mt+1rt+1|It] = E[(1� �0
t+1ft+1)rt+1|It] = E[rt+1 � (rt+1f

0
t+1)�t+1|It].

The interpretation for �t+1 is important from the economic perspective. Cochrane (1996) assumes E(ft+1|It) = 0p,

and then, E(rt+1f
0
t+1|It) is the conditional covariance matrix between asset returns and risk factors, and �t+1 is the

corresponding conditional factor risk price. When E(ft+1|It) 6= 0p and E(rt+1f
0
t+1|It) is the conditional second moment,

the factor risk price interpretation also applies in Cochrane (2009). As discussed in Feng et al. (2020), the risk prices of

factors differ from their risk premia. Risk premia are supposed to be positive to compensate for risk-taking behavior.

However, risk prices can be negative due to their combination with other factor exposures when constructing the SDF

model. The closed-form solution for the unconditional model exists when �t+1 is constant.

In our setup, the time-varying parameter is not assumed to be a deterministic function of time or conditioning vari-

ables. As discussed in Cochrane (2009), conditional modeling requires instrumental variables for the GMM estimation.

To estimate � = {�t+1}
T
t=1, we transform equation (6) from a conditional SDF representation to an unconditional one

by scaling instrumental variables, which can be functions of some conditioning variables. For the choice of condition-

ing variables in the empirical literature, econometricians usually consider those that do not correlate with future pricing

errors but might be weakly correlated with future returns, such as lagged returns, predictable firm or portfolio character-

istics, and macroeconomic or aggregate predictors. For example, Welch and Goyal (2008) document inflation, treasury bill
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return, various aggregate market characteristics, yields for TERM, and default factors as conditioning variables. Suppose

the instrumental vector z̃t 2 RK̃ is uncorrelated with the future pricing error ut+1. Then we have

0q̃ = E{(1� �0
t+1ft+1)rt+1 ⌦ z̃t} (8)

= E(ut+1 ⌦ z̃t), (9)

where ut+1 = mt+1rt+1 = (1 � �0
t+1ft+1)rt+1 is the N ⇥ 1 vector of pricing errors, which is also the ex-post discounted

return in asset pricing.

To implement the proposed procedure, we introduce the following equivalent matrix expression for the optimiza-

tion problem in equation (3):

�̂ = argmin
�

1
(T � 1)2q

kA��Bk
2 + �J(�), (10)

where q = q̃(k � 1)/k is the effective number of moment conditions in the k-fold CV procedure, B =
PT�1

t=1 Bt with

Bt = rt+1 ⌦ zt being a q ⇥ 1 vector, and A = (A1, · · · , AT�1) is a q ⇥ p(T � 1) matrix with At = (rt+1 ⌦ zt)⌦ f 0
t+1 being

a q ⇥ p matrix for t = 1, · · · , T � 1. Therefore, the proposed RegGMM estimator enjoys a closed-form solution:

�̂ = [A0A+ �q(T � 1)2D0D]�1A0B, (11)

where D is as specified in equation (5) with n = 1.

Practitioners often encounter a large pool of conditioning variables that affect return prediction or asset pricing

performance. In this paper, dimensionality becomes a blessing because it assists in estimating p(T � 1) parameter val-

ues. Rather than shrinking or selecting variables from a large pool of conditioning variables, RegGMM utilizes the rich

information from a high-dimensional set of moment restrictions to determine the time-varying SDF weights. Hence, it

can help handle large-dimensional data and avoid degenerated model performance due to misspecification issues.

RegGMM could also be used to test parametric conditional SDF specifications.13 For example, one could consider

a model specification mt+1 = 1 � (✓0xt + �t)
0ft+1, where ✓ is a matrix of time-invariant parameters and xt is a vec-

tor of conditioning variables that drive the time-varying SDF weights. Nagel and Singleton (2011) consider this linear

functional form in testing a conditional SDF model, and Roussanov (2014) propose a nonparametric cross-sectional re-

gression that is robust to functional form but still needs to specify conditioning variables. In our RegGMM setup, one

could estimate the path of �t, and a constant (or zero if xt includes an intercept) path subject to sampling variation would

suggest linear modeling of risk premia through xt is adequate. This would provide a direct test for a parametric time-

varying SDF model that assumes time-varying SDF loadings as a linear function of a prespecified set of priced risk factors

mt+1 = 1� (✓0xt)
0ft+1, as is discussed in Cochrane (2009).

13We thank one referee for suggesting this interesting extension for future work.
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3 Simulation Study

We now conduct comprehensive simulation studies to examine the finite sample performance of RegGMM. We

test two different DGPs for robustness. In DGP 1, we model time variation as a deterministic function of time, exhibiting

both abrupt breaks and smooth changes. In DGP 2, we focus on the capability of RegGMM to estimate parameter values

when time variation is a function of a relatively large set of conditioning variables. For DGP 2, smoothed nonparametric

estimators, such as global and local smoothing methods, encounter the curse of dimensionality problems. We also pro-

vide performance comparisons by reporting estimation results from existing parametric and smoothed nonparametric

methods. Specifically, we conduct simulation exercises in the following standard panel regression setting:

yi,t = �1,t + �2,txi,t + ui,t, E(ui,t|zt) = 0 for t = 1, · · · , T and i = 1, · · · , N ,

where �t = (�1,t, �2,t)
0 is the unknown time-varying parameter vector, and xt ⇠ N(0, IN ) and is orthogonal to the N ⇥ 1

conditional pricing error vector ut, which may have serial dependency ui,t = ⇢1✏i,t�1 + ✏i,t with ✏i,t ⇠ i.i.d.N(0, 0.1)

and N = 100. The K ⇥ 1 vector zt with K = 10 is a set of conditioning variables that are orthogonal to ut and follows

zt = ⇢2zt�1+⌫t with ⌫i,t ⇠ i.i.d.N(0, 1). This is a set of base instruments to generate a large set of instrumental variables

for RegGMM. We examine the finite sample performance of RegGMM under different degrees of serial dependency by

altering the values of ⇢1 2 [0, 0.95] and ⇢2 2 [0.5, 0.95]. When ⇢1 = 0, the unconditional moment functions have serial

dependency m = 1 with weak or strong linear dependence. When ⇢1 6= 0, the unconditional moments exhibit serial

dependency as a mixture of moving average and autoregressive processes, which can be approximated by an MA(m)

sequence with m increasing with the sample size (e.g., Inoue, 2006).

We consider two sample sizes, T = 120 and 360 with an out-of-sample period of 60 observations. The choice

of T covers sample sizes typically encountered for monthly and daily data in the empirical asset pricing literature.

To construct the set of instrumental variables, we consider a sequence of orthogonal basis functions in the Hilbert

space L2[0, 1] with  (z) = { j(z)}
r
j=1, where  0(z) = 1 and  j(z) =

p
2cos(⇡jz) for j > 1. Let the instrumental

variables z̃t = (1, (x̄t)
0, (x̄t�1)

0, (x̄t�2)
0, (z1,t)

0, (z1,t�1)
0, (z1,t�2)

0, · · · , (zl,t)
0, (zl,t�1)

0, (zl,t�2)
0)0, where

x̄t = 1
N

PN
i=1 xi,t. For each T , we let r = 3 or 9 and so have K̃ = 133, 331 respectively, which correspond to two choices

of q̃ = NK̃ = 13300, 33100 given N = 100. We then have the following unconditional moment restrictions:

E[(yt � �1,t � �2,txt)⌦ z̃t] = 0q̃,

where n = 0 in this example and we select the tuning parameter � via the repeated 5-fold CV and thus effectively use

q = 4q̃/5 > pT moment conditions for RegGMM.

We consider two classes DGPs to generate �t. In DGP 1, we consider the time-varying parameter as a deterministic

function of time but exhibits multiple structural breaks and different degrees of smoothness. In DGP 2, we allow time

variation as a function of 10 conditioning variables zt, where different conditioning variables drive time variation in

different subsampling periods.
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DGP 1 [Time-varying parameters as a deterministic function of time]:

�1,t =

8
><

>:

2t|sin(4⇡t/T )|/T, t = 1, · · · , T/2,

G1(10t/T, 2, 7), t = T/2 + 1, · · · , T

and

�2,t =

8
>>>>><

>>>>>:

6(3t/T )5 � 5(3t/T )4 + 8(3t/T )3 � 7(3t/T )2 + 3t/T, t = 1, · · · , T/3,

3 cos(6⇡t/T ), t = T/3 + 1, · · · , 2T/3,

9t2| sin(9⇡t/T )|/T 2, t = 2T/3 + 1, · · · , T

where G1(z, k, a) = {1 + exp[�k(z � a)]}�1.

DGP 2 [Time-varying parameters as a function of conditioning variables]:

�2,t = log

 
1 +

���
lX

j=1

✓t,jzt,j
���

!
+

lX

j=1

⌘t,j sin zt,j t = 1, 2, ..., T

where

✓t,j =

8
><

>:

✓jI(j  5), t = 1, · · · , T/2,

✓jI(j > 5), t = T/2 + 1, · · · , T,
⌘t,j =

8
><

>:

⌘jI(j  5), t = 1, · · · , T/2,

⌘jI(j > 5), t = T/2 + 1, · · · , T,

with ✓j ⇠ U(0, 1), ⌘j ⇠ U(0, 1) and �1,t is as in DGP 1.

We compare RegGMM with Hansen’s (1982) constant parameter GMM (CGMM), and various alternative time-

varying estimation methods, including local kernel smoothing GMM (LGMM) (Lewbel, 2007), global series smoothing

GMM (GGMM) (Dong et al., 2021), and affine GMM (AGMM) (Nagel and Singleton, 2011).14 For out-of-sample com-

parison, following Lettau and Pelger (2020), we first estimate parameter values up to time t with a rolling window of

T observations and obtain the one-step ahead forecast for the parameter’s value at t + 1 using the estimates at time t.15

Such an out-of-sample approach, which assumes similarities between the consecutive parameter values, is widely used

in econometric and finance studies.16 We also provide a roll window update for the out-of-sample evaluation in the

14We demonstrate the use of these time-varying methods using DGP 1 that �t = �(t/T ), where we need to scale t by
the sample size T for estimation consistency (Chen and Hong, 2012). (a) The LGMM estimates are obtained by for each
t 2 [Th, T�Th], (�̂1,t, �̂2,t) = argmin�2R

1
T

Ps=t+Th
s=t�Th Kst[(yi,t��1(t/T )��2(t/T )xi,t)⌦z̃t]

2; for t 2 [1, Th)
S
(T�Th, T ],

we obtain a pseudo data at time t by reflecting the observations from the time period [t � Th, t] (see Chen and Hong
(2012)). Kst = 1

hK( s�t
Th ) and K(u) is the Epanechnikov kernel function K(u) = 3

4 (1� u2) if |u|  1 and 0 if |u| > 1. The
bandwidth h = cT�1/5 with c = 1/

p
12 as suggested by Chen and Hong (2012). (b) The GGMM results are based on the

series estimation with Chebyshev polynomials { (·)}gj=1, where g is the order of series expansion and is determined by
AIC as suggested in Dong et al. (2021). For all t 2 [1, T ] and a 2 Rg and b 2 Rg , �1(t/T ) =  0(t/T )a and �2(t/T ) =

 0(t/T )b, where (â, b̂) = argmina,b
1
T

PT
t=1[(yi,t � 0(t/T )a� 0(t/T )bxi,t)⌦ z̃t]

2. (c) AGMM assumes time variation as
a linear function of the conditioning variables that �t = a+ b(t/T ) in DGP 1 and �t = z0t✓ in DGP 2. (d) For LGMM, we
also have tried c = 1 and the one based on CV as in Li and Yang (2011) with the uniform and Daniel kernels. For GGMM,
we also tried the Fourier and Spline series. RegGMM demonstrates superior performance over LGMM and GGMM with
different kernels, bandwidths, and basis functions.

15When conducting out-of-sample studies using local smoothing methods, we construct a pseudo data at time t by
reflecting the observations from the period [t� Th, t].

16For example, when evaluating latent factor models, Lettau and Pelger (2020) use the factor loadings estimated from
the previous T observations on the testing sample. When evaluating covariance matrix estimators, Aı̈t-Sahalia and Xiu
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empirical study.

We assess estimation accuracy based on the following performance metrics, including the average absolute estima-

tion error (Avg.Abs.Err.) 1
T

PT
t=1 k�̂t � �tk, the maximum absolute estimation error (Max.Abs.Err) maxt2[1,T ] k�̂t � �tk,

and the average squared moment errors (Avg.Mom.Err.) 1
NT

PT
t=1 û

0
tût, where T = 120 or 360 for in-sample studies

and T = 60 for out-of-sample comparisons. For fair comparisons, we implement CGMM, LGMM, GGMM, and AGMM

estimation under the two augmented unconditional moments respectively.

Table 1 summarizes the finite sample results for RegGMM and other methods under DGP 1. CGMM restricts

parameters to constant and encounters misspecification for time variation. Although AGMM allows for time variation

in parameter values, it also suffers from severe misspecification because it fits parameter values using a straight line.

LGMM and GGMM significantly improve estimation accuracy upon CGMM and AGMM. However, they are inferior to

RegGMM for all studied norms, even though time-variation satisfies the twice-continuous differentiability requirement

in all subsampling periods before and after structural breaks. The reason is that RegGMM can cater to abrupt, smooth,

or mixed types of structural changes and thus produces a more accurate estimation than smoothed nonparametric es-

timation over the whole sample, including the boundary regions. The out-of-sample results in Table 2 also confirm the

superior performance of RegGMM, which is robust to different choices of moment conditions, sample sizes, and degrees

of serial dependency. We show that even though we assist the existing estimation methods by providing the correct set

of conditioning variables, RegGMM still strictly dominates for both the in-sample and out-of-sample results.

Table 3 assesses estimation accuracy when time variation is a function of conditioning variables. We feed CGMM,

AGMM, LGMM, and GGMM with the correct set of conditioning variables so that the correct specification for time

variation is maintained for these methods. Compared with DGP 1, except for the difficulty in capturing the unknown

functional form, DGP 2 raises another serious concern about the curse of dimensionality for smoothed nonparametric

methods. In particular, GGMM is unfavorable because of a clear bias-variance trade-off: an increasing order of series

expansion reduces the approximation errors but leads to less precise or even inconsistent estimates. Not surprisingly,

compared with CGMM and AGMM, GGMM does not help improve estimation accuracy for most cases. We also observe

deteriorated performance for LGMM, mainly due to the boundary bias issue and the curse of dimensionality problem.17

In contrast, RegGMM attains the best estimation accuracy because it circumvents high dimensionality issues by directly

estimating time-varying parameter realizations with the assistance of increasingly enriched information due to its ability

to strike a balance between model complexity and goodness of fit. In Table 4, we find that the curse of dimensionality

and misspecification issues further escalate the challenges faced by all the alternative methods. Still, RegGMM provides

a desirable resolution and considerably enhances out-of-sample performance in most cases.

We obtain the RegGMM estimates for each scenario based on the data-driven tuning parameter value � described

(2017) directly adopt the estimated covariance matrices using data from the previous month for the portfolio rebalancing.
17Both local constant and local linear GMM estimators are proven consistent, but the latter doubles the number of

parameters to be estimated compared with the first one. When there is a large number of conditioning variables, the
number of effective observations that fall in the neighborhood of the realization value of each conditioning variable
decreases. Thus, we report the results based on the local constant LGMM based on fixed bandwidth because the fixed-
bandwidth asymptotics is helpful when there are many conditioning variables (Antoine et al., 2020)
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in section 2.2. For robustness check, we also consider two other choices of tuning parameter, namely, � = 0 and � = 1,

which correspond to overfitting and underfitting for parameter values, respectively. We evaluate the appropriateness of a

given tuning parameter by calculating its associated cross-validation error and p-value.18 A p-value smaller than a certain

significance level ↵ indicates the rejection of the optimal hypothesis for a chosen tuning parameter. Table 5 summarizes

the tuning parameter performance. We note that the choice of � = 1, which results in underfitting, is inappropriate due to

the significant CV errors and close-to-zero p-values for all DGPs considered. When � = 0, zero penalties are imposed on

time variation, and we sometimes fail to reject its appropriateness when the sample size is small. The reason is that fewer

parameters need to be estimated when T is small, therefore more moment conditions can aid in accurate estimation.

When T is large, the choice of � = 0 does not balance the goodness of fit and the magnitude of time variation. Therefore,

we need a data-driven tuning parameter value. For each studied DGP with various degrees of serial dependency, the

5-fold repeated CV criterion generates the optimal tuning parameter values with the least CV error and p-values close

to 1. The penalty values in DGP 2 are generally smaller than those in DGP 1 because DGP 2 exhibits a more significant

amount of time variation and thus requires a smaller penalty. The appropriateness of the chosen tuning parameter � is

robust to different sample sizes and numbers of moment conditions.

Finally, Figure 1 plots the histograms of the studentized RegGMM’s time-varying estimates for 1
T

PT
t=1 �̂2,t from

bootstrap samples with (⇢1, ⇢2) = (0.95, 0.95). The asymptotic theory suggests that the studentized estimates should

follow an N(0, 1) distribution. We document that enabling serial dependency still offers a good approximation in finite

samples. The histograms reasonably match the N(0, 1) distribution, which verifies our inference results.

4 Empirical Applications to Asset Pricing Models

4.1 Data

In this section, we examine the performance of the time-varying SDF model based on the U.S. equity monthly data

from January 1972 to December 2021. We implement RegGMM using the training sample from 1972 to 2011 to study the

in-sample goodness of fit of the model. We consider the recent decade for the out-of-sample study.

The empirical literature primarily uses characteristics-sorted or managed portfolios for testing asset pricing models

because these portfolios have stable factor loadings and reflect various risk exposures. We follow the data construction

in Feng et al. (2021) and take 61 firm characteristics from 6 major categories: momentum, value, investment, profitability,

frictions (or size), and intangibles. To evaluate the RegGMM performance, we try different test assets for different cross-

section sizes. First, we use monthly bivariate-sorted 3⇥2 value-weighted portfolios between size and other characteristics

(3⇥ 2⇥ 60 = 360), which considers the effect for small caps. Second, we consider monthly univariate-sorted 5⇥ 1 value-

weighted portfolios (10⇥ 1⇥ 61 = 610).

We also try different factor combinations for robustness checks. Because of the out-of-sample research design for

18See Section 2.2 for the definition of the cross-validation error. The p-value is based on the null hypothesis that a given
tuning parameter is optimal. The construction of the p-value is provided in Appendix C.1.
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investment performance, only traded factors are considered. We consider 5 factors of Fama and French (2015): excess

market factor, small-minus-big (SMB), high-minus-low (HML), robust-minus-weak (RMW), and conservative-minus-

aggressive (CMA). For an extended model of 10 factors, we further add momentum (MOM, winner-minus-loser), short-

term reversal (STR), long-term reversal (LTR), betting-against-beta (BAB), and quality-minus-junk (QMJ).

Finally, we have two lists of instrumental variables for further robustness checks. We follow Welch and Goyal (2008)

and include 10 equity predictors for conditioning variables, including treasury bill return, inflation, yields for TERM and

default factors, and various aggregate equity market characteristics (earnings-to-price ratio, stock variance, net equity

issues, dividend yields, leverage, and liquidity). We use these 10 conditioning variables and create 110 instrumental

variables from the one-month lagged predictors, quadratic terms, and interactions. We also create two-month and three-

month lagged versions and produced 330 instrumental variables.

4.2 Asset Pricing Performance

Hansen-Jagannathan Measure. The literature has adopted multiple performance criteria to evaluate asset pric-

ing models. To evaluate the goodness of fit of an SDF model, the HJ distance (Hansen and Jagannathan, 1997) is widely

used for GMM estimation.Recent literature adopts multiple R2 measures for model performance to evaluate a linear beta

pricing model. For example, Feng et al. (2021) consider total R2 and cross-sectional R2 to evaluate the time-series and

cross-sectional goodness of fit. We follow these criteria and create an HJ-R2, which assesses the moment condition fitness

and reflects an SDF model’s relative asset pricing ability over a benchmark one. Given a model MA with mt = 1 � �0
tft

and E(mtrt) = 0N⇥1, the N ⇥ 1 vector of cross-sectional pricing errors is

e(MA) =
1
T

TX

t=1

mtrt.

Then, the aggregated cross-sectional pricing errors with equal weight to each asset follow

Q(MA) = e(MA)
0e(MA).

We can do the same calculation for the constant parameter SDF model. Then, we define the HJ-R2 as

HJ-R2 = 1�
Q(MA)
Q(MB)

. (12)

A higher HJ-R2 value indicates better asset pricing goodness of fit, and a positive HJ-R2 value indicates that model MA

outperforms the benchmark model MB . In the empirical analysis, we use the standard Capital Asset Pricing Model

(CAPM) as MB , which assumes that the market factor is used to approximate the SDF. We estimate the corresponding

constant parameter SDF model in our training sample for this calculation.

Table 6 shows the improvement of the goodness of fit by allowing time-varying factor risk price estimates over the

constant parameter GMM model. We provide results for different test assets (bivariate- and univariate-sorted portfolios),

different factor models (10 and 5 factors), and different numbers of instrumental variables (330 and 110). We also calculate

19

Electronic copy available at: https://ssrn.com/abstract=3814520



the performance values for alternative time-varying methods, including local GMM, global GMM, and affine GMM. For

in-sample goodness of fit, RegGMM generates higher HJ-R2 values than all alternative methods. Allowing time-varying

modeling (local, global, and affine GMM) does not always help because the constant parameter GMM is more robust

than other methods. Alternative time-varying estimation methods might still suffer from model misspecification errors,

but RegGMM performs better because it avoids specifying the DGP for time variation. Furthermore, we do not find that a

larger number of instrumental variables has better goodness of fit. The reasons for this may be that the predictive signals

are mainly from the one-month lagged conditioning variables in Welch and Goyal (2008) and that there is no additional

information from two- and three-month lagged ones.

Time-Varying Risk Price. Figure 2 plots the year-by-year performance (annualized returns) of those 10 risk fac-

tors. Though all factors achieve highly positive gains in the overall sample, they show unsynchronized time-varying

performance in different periods. For example, during the 2008 financial crisis, the market and Betting-against-Beta

(BAB) factors dramatically dropped by 44%, but other fundamental factors such as RMW (Profitability) and QMJ (Qual-

ity) delivered 20% and 30% gains, respectively. Even for the famous Fama-French factors, one can also find the relatively

weak performance of CMA in the 1980s, RMW in the 1990s, and HML in the 2000s, respectively. These unsynchronized

performances provide strong evidence for the time-varying risk premia or prices of factors. We must understand the

importance of their time-varying decomposition in forming the SDF.

The main advantage of RegGMM is that it provides the changing paths for time-varying parameters regardless

of the sources or forms of time variation. Thanks to the macroeconomic conditioning variables used in RegGMM, our

time-varying factor price paths can reflect market timing information about the business cycle, such as treasury bills,

inflation, term spread, and default yield. We can illustrate how risk price estimates of multiple factors change smoothly

over time 19, showing the individual factor time-varying importance of composing the SDF. We plot time-varying factor

risk price estimates in Figure 3 and 4.

In addition to fixing the last values for the out-of-sample strategy, we have also provided a rolling window updat-

ing scheme to show the robustness. To maintain the smoothness for the time variation, we plug the previously estimated

parameters into the fusion penalty and use the same penalization level. Therefore, for �t in a new period, its estimation

only uses information up to this period. More importantly, the previous estimation before this period is never revised

with the updated information. We show the rolling window update for �t in Figure 3 and 4 for the recent 10 years. There-

fore, the out-of-sample �t forecasts are also time-varying and capture information updates. For example, the increasing

weights for the market factor reflect the bull market in the recent decade.

Finally, the asymptotic variance and confidence intervals are another output of RegGMM, which helps identify

the significance of factor time-varying importance. We construct the 95% confidence intervals to evaluate the usefulness

and regime-switching of a factor for the time-varying SDF construction. Two examples are provided with graded 95%

confidence intervals in Figures 3 and 4. In the Fama-French 5-factor model, the factor risk price for CMA (Investment) has

19Researchers usually find abrupt changes or jumps for portfolio or factor returns in the daily or higher frequency data,
yet we study monthly data in this paper.
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decreased since its slow decline in the 1980s and became insignificant after 1997. For the 10-factor SDF, we also find that

Short-Term Reversal (STR) has become insignificant since 1996 due to its previous weak performance. These decreasing

factor risk price estimation results are robust for both bivariate- and univariate-sorted portfolios.

4.3 Investment Performance

Risk-Adjusted Performance. Figure 5 plots in-sample and out-of-sample absolute investment gains. In theory,

a well-fitted SDF of traded factors is supposed to be the tangency portfolio as a portfolio. We normalize the time-varying

factor risk price estimates (SDF loadings) as portfolio weights and assess their investment performance over alternative

methods. The trade-off for avoiding model misspecification risk faced by alternative methods (local, global, and affine

GMM) is the lack of an explicit specification of driving factors for time-varying parameters. However, we could set the

risk price estimate for the most recent estimate from the time-varying parameter path, which follows the out-of-sample

implementation in the simulation study. Given the slow-moving path of time-varying factor risk price, the most recent

estimates should be helpful in subsequent periods. For a fair comparison between RegGMM and other methods, we fix

the portfolio weights for the entire out-of-sample period in the recent decade. Our RegGMM SDF strategies outperform

most alternative methods in both in-sample and out-of-sample periods in Figure 5.

As the tangency portfolio, the SDF should provide the highest Sharpe ratio for risk-adjusted performance. To

demonstrate its performance in fitting the time-varying risk price, we provide annualized Sharpe ratio numbers in Panel

A of Table 7. Our RegGMM SDF time-varying strategies deliver the highest in-sample Sharpe ratios for monthly rebal-

anced portfolios, even higher than the mean-variance efficient portfolio. This strong evidence shows that time-varying

SDF portfolio optimization benefits from additional investment information, possibly due to the macroeconomic con-

ditioning variables used in RegGMM. By responding to the time-varying performance of factors in different periods,

our RegGMM SDF portfolio weights show corresponding reactions in the SDF loadings. For factors that deliver robust

performance in the training sample, such as QMJ, RegGMM provides robust estimates for their SDF loadings.

The positive in-sample results do not necessarily guarantee similar out-of-sample performance. Overfitting risks

exist for regularization methods with the use of a high-dimensional set of macroeconomic conditioning variables. There-

fore, an out-of-sample evaluation is necessary to demonstrate the performance robustness of the SDF model, and it can

be conducted using the SDF strategy’s investment performance. This is why we mainly consider traded factors for con-

structing the time-varying SDF in the empirical analysis. RegGMM allows for both traded and nontraded factors (like the

consumption factor). For the out-of-sample performance in the recent decade, both the 5- and 10-factor RegGMM SDF

strategies outperform the market factor with higher Sharpe ratio values. These out-of-sample results further demon-

strate the advantages of allowing flexible time variation in the SDF model by RegGMM. For a robustness check, the

rolling-window updated RegGMM SDF strategies deliver slightly higher performance than the static ones.

Evaluating downside risk measures associated with trading the SDF or the tangency portfolio is also worthwhile.
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We follow Gu et al. (2020) and define the maximum drawdown for any overlapping one-year period as

MDD = max0t1t2T (Yt1 � Yt2), s.t. |t2 � t1| < 12, (13)

where Yt1 and Yt2 refer to the cumulative log return from month 0 to t1 and t2, and the duration between t1 and t2

is no longer than 12 months. The one-year overlapping maximum drawdown reflects the investment tail risk better

than the overall goodness of fit. Results are provided in Panel B of Table 7. This downside risk measure reveals the

source of the high Sharpe ratio of our RegGMM SDF strategies: low maximum drawdown values. Although the market

factor achieves the highest cumulative return in the most recent decade (Figure 5), its maximum drawdown value is the

highest because the market factor differs from all the other long-short factors that hedge market exposure. Although the

Fama-French 5-factor RegGMM SDF strategies produce lower Sharpe ratios than the 10-factor case, they provide lower

maximum drawdown values.

Model-Adjusted Performance. As the tangency portfolio, our flexible time-varying SDF provides more invest-

ment information than existing asset pricing models, such as CAPM and the Fama-French 3-factor model. To demonstrate

the advantage of estimating the time-varying risk price by RegGMM, we provide robust and highly positive results for

unexplained monthly alphas and their significance in Table 8. Following the above implementation, we regress the in-

sample and out-of-sample RegGMM SDF strategies over the benchmark models and report the unexplained intercepts.

We also show comparison results for other methods.

We include the constant parameter GMM, the mean-variance efficient portfolio, and the equal-weighted portfolio,

which are commonly used comparison benchmarks for investigating the investment performance of SDF. We show robust

results for 360 bivariate- and 610 univariate-sorted portfolios as different sets of test assets, 5- and 10-factor models, and

110 and 330 instrumental variables. First, we find our 5- and 10-factor RegGMM SDF strategies deliver the highest in-

sample alphas against CAPM and the Fama-French 3-factor model. All RegGMM SDF strategies have economically and

statistically significant monthly alphas of more than 0.35% for a 40-year sample in Table 8. For a robustness check, the

rolling-window updated RegGMM SDF strategies deliver higher and more significant investment performance than the

static ones, demonstrating the advantages of the time-varying models.

Thanks to the use of macroeconomic conditioning variables with flexible time variation assumptions by RegGMM,

the additional investment information is driven by the factor timing ability given by the dynamic SDF model. For exam-

ple, in Figures 2 and 3, our time-varying risk price estimates respond to the decaying performance of HML and the rising

performance of SMB in the 2000s. For the 10-factor RegGMM SDF strategies in Figure 4, we also find that the slowly de-

creasing RegGMM estimates capture the decreasing performances for MOM and STR. The changes in our time-varying

SDF loadings help capture the time-varying risk premia for risk factors in various regime-switching scenarios.

Second, although the market factor dominates in the most recent decade in Figure 2, our 10-factor RegGMM strate-

gies robustly provide significantly high alphas of about 0.55% against CAPM and the Fama-French 3-factor model in

Table 8. By contrast, most investment strategies rarely show positive and significant results. We see that, though the
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Fama-French 3 factors are included in these portfolios, any portfolio with nested factors does not easily outperform

the benchmark. The constant GMM SDF strategies are helpful, but our RegGMM SDF strategies provide better results

because of the use of a high-dimensional set of macroeconomic variables with flexible assumptions on time variation.

5 Conclusion

By exploiting a high-dimensional set of moment restrictions, we propose a ridge fusion-based regularized GMM

(RegGMM) estimation method for flexible time-varying coefficient models. RegGMM consistently estimates time vari-

ation over the entire sample period without performing shrinkage, selection, or smoothed nonparametric estimation.

Existing smoothed nonparametric estimation methods assume that time-varying parameters are functions of time or ob-

servable conditioning variables and require differentiability conditions on time-varying parameters that rule out abrupt

structural breaks. They do not perform well near the endpoints of the sample period, due to the well-known bound-

ary bias problem. They also suffer from the curse of dimensionality problem when the set of conditioning variables is

large. To the best of our knowledge, our approach is among the first with the capability of consistently estimating flexible

structural changes, which can be driven by time, observable or unobservable factors, or a mixture of them. Moreover, by

introducing a ridge fusion regularization on the total amount of time variation in the whole sample, our method allows

for abrupt, smooth, and dual-type structural changes. It has a lower computational cost than existing methods because it

is a global one-step procedure and enjoys an appealing closed-form solution for linear models. We establish consistency

and derive the convergence rate and asymptotic distribution of the proposed RegGMM estimator.

In applications to asset pricing, RegGMM offers an alternative solution for estimating time-varying stochastic dis-

count factor models. For U.S. equities from the past five decades, our time-varying estimates for factor risk price respond

to the changing performance of multiple risk factors and summarize potential factor regime-switching scenarios. We

document improved asset pricing performance of the flexible time-varying SDF model over the constant parameter SDF

model in terms of HJ measures. By outperforming multiple benchmark models, we demonstrate the gains for risk-

adjusted and model-adjusted investment performance of the time-varying SDF model estimated by RegGMM for both

in-sample and out-of-sample analysis. The positive out-of-sample investment gains demonstrate the advantages of Reg-

GMM in capturing time variation, and our positive in-sample results are not due to overfitting. As Hansen (2001) points

out, structural changes can happen in the short or long run in various forms. Therefore, avoiding restrictive specifications

for time variation makes our proposed method free of misspecification errors and the curse of dimensionality issues.

Our approach offers a new direction for addressing some methodological constraints of existing smoothed non-

parametric methods. For example, it is possible to introduce the sparse L1-norm on time-varying parameters in our

penalty function to study regime-switching of factor model selection. One could extend our method to address situ-

ations where time-varying parameters depend on cross-section units in fixed- and large-dimensional panel regression

models. One could also employ our method to estimate large-dimensional dynamic covariance matrices by promoting

similarities in covariance matrices over consecutive periods. All of these could be pursued in future work.
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Table 1: Simulation in-sample Performance: Time Variation as a Function of Time

(⇢1, ⇢2) Criteria RegGMM CGMM LGMM GGMM AGMM RegGMM CGMM LGMM GGMM AGMM

q=13300 q=33100

T=120

(0, 0.5)
Avg.Abs.Err. 0.02 1.25 0.19 0.18 1.25 0.02 1.25 0.19 0.18 1.24
Max.Abs.Err. 0.09 3.11 0.75 0.70 3.14 0.05 3.12 0.74 0.69 3.17
Avg.Mom.Err. 0.01 2.61 0.07 0.06 2.61 0.01 2.61 0.07 0.06 2.61

(0, 0.95)
Avg.Abs.Err. 0.02 1.26 0.19 0.18 1.26 0.02 1.26 0.19 0.18 1.26
Max.Abs.Err. 0.09 3.15 0.75 0.69 3.18 0.04 3.14 0.75 0.68 3.19
Avg.Mom.Err. 0.01 2.61 0.07 0.06 2.61 0.01 2.61 0.07 0.06 2.61

(0.95, 0.5)
Avg.Abs.Err. 0.04 1.25 0.19 0.18 1.25 0.02 1.25 0.19 0.15 1.24
Max.Abs.Err. 0.19 3.11 0.75 0.71 3.13 0.09 3.12 0.75 0.55 3.17
Avg.Mom.Err. 0.02 2.62 0.08 0.07 2.61 0.02 2.62 0.08 0.05 2.61

(0.95, 0.95)
Avg.Abs.Err. 0.04 1.26 0.19 0.18 1.26 0.02 1.26 0.19 0.18 1.26
Max.Abs.Err. 0.18 3.15 0.75 0.70 3.18 0.09 3.14 0.75 0.69 3.18
Avg.Mom.Err. 0.02 2.62 0.08 0.07 2.62 0.02 2.62 0.08 0.07 2.62

T=360

(0, 0.5)
Avg.Abs.Err. 0.03 1.81 0.38 0.63 1.48 0.02 1.81 0.39 0.51 1.47
Max.Abs.Err. 0.12 5.49 2.93 3.26 4.16 0.07 5.46 2.93 3.07 4.19
Avg.Mom.Err. 0.01 4.86 0.38 0.63 3.58 0.01 4.86 0.39 0.50 3.58

(0, 0.95)
Avg.Abs.Err. 0.04 1.81 0.38 0.52 1.48 0.02 1.82 0.39 0.52 1.47
Max.Abs.Err. 0.13 5.50 2.92 3.05 4.18 0.08 5.45 2.93 3.06 4.21
Avg.Mom.Err. 0.01 4.86 0.38 0.51 3.58 0.01 4.86 0.39 0.50 3.58

(0.95, 0.5)
Avg.Abs.Err. 0.06 1.81 0.38 0.63 1.48 0.03 1.81 0.39 0.51 1.47
Max.Abs.Err. 0.23 5.50 2.92 3.26 4.15 0.13 5.46 2.93 3.06 4.19
Avg.Mom.Err. 0.02 4.87 0.39 0.64 3.60 0.02 4.87 0.40 0.51 3.59

(0.95, 0.95)
Avg.Abs.Err. 0.06 1.81 0.38 0.52 1.48 0.03 1.81 0.39 0.52 1.47
Max.Abs.Err. 0.21 5.51 2.92 3.04 4.17 0.13 5.46 2.93 3.05 4.20
Avg.Mom.Err. 0.02 4.88 0.39 0.51 3.59 0.02 4.87 0.40 0.51 3.59

Notes: For DGP 1 in Section 3, the simulation study is designed to compare the in-sample finite sample performance for
different parameters: length of periods T (120 and 360), autocorrelation levels ⇢1 and ⇢2, and number of instrumental
variables q (13300 and 33100). We compare RegGMM with the constant parameter GMM (CGMM), local constant GMM
(LGMM), global series GMM (GGMM), and affine GMM (AGMM). We report three different norms of fitting errors:
average estimation error, maximum estimation error, and average moment error, respectively.
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Table 2: Simulation OOS Performance: Time Variation as a Function of Time

(⇢1, ⇢2) Criteria RegGMM CGMM LGMM GGMM AGMM RegGMM CGMM LGMM GGMM AGMM

q=13300 q=33100

T=120

(0, 0.5)
Avg.Abs.Err. 0.71 3.26 1.87 1.31 2.37 0.69 3.25 1.88 1.28 2.35
Max.Abs.Err. 2.28 6.32 4.81 3.30 5.41 2.32 6.35 4.91 3.25 5.35
Avg.Mom.Err. 0.68 13.19 4.62 2.40 6.93 0.65 13.13 4.68 2.31 6.82

(0, 0.95)
Avg.Abs.Err. 0.71 3.24 1.88 1.34 2.35 0.69 3.23 1.88 1.36 2.34
Max.Abs.Err. 2.30 6.33 4.77 3.24 5.39 2.34 6.34 4.82 3.30 5.39
Avg.Mom.Err. 0.67 13.06 4.63 2.43 6.89 0.65 13.04 4.64 2.65 6.80

(0.95, 0.5)
Avg.Abs.Err. 0.69 3.26 1.87 1.32 2.37 0.70 3.25 1.88 1.32 2.35
Max.Abs.Err. 2.23 6.33 4.81 3.28 5.41 2.30 6.35 4.91 3.25 5.35
Avg.Mom.Err. 0.65 13.21 4.62 2.41 6.92 0.67 13.14 4.68 2.44 6.82

(0.95, 0.95)
Avg.Abs.Err. 0.69 3.24 1.88 1.35 2.35 0.70 3.24 1.88 1.34 2.34
Max.Abs.Err. 2.26 6.34 4.77 3.78 5.39 2.32 6.34 4.82 3.29 5.39
Avg.Mom.Err. 0.65 13.08 4.63 2.54 6.88 0.67 13.06 4.64 2.58 6.80

T=360

(0, 0.5)
Avg.Abs.Err. 0.35 3.68 2.26 2.44 2.33 0.35 3.63 2.28 2.17 2.30
Max.Abs.Err. 0.63 6.90 4.98 5.84 4.53 0.61 6.81 4.95 5.06 4.59
Avg.Mom.Err. 0.15 18.10 6.50 7.85 7.09 0.15 17.66 6.61 6.45 6.95

(0, 0.95)
Avg.Abs.Err. 0.35 3.68 2.27 2.33 2.31 0.35 3.63 2.29 2.17 2.29
Max.Abs.Err. 0.64 6.89 5.01 4.92 4.63 0.64 6.81 4.98 5.32 4.63
Avg.Mom.Err. 0.15 18.07 6.54 6.91 6.93 0.15 17.64 6.64 6.92 6.91

(0.95, 0.5)
Avg.Abs.Err. 0.35 3.69 2.26 2.29 2.33 0.35 3.64 2.28 2.18 2.30
Max.Abs.Err. 0.67 6.90 4.98 5.33 4.51 0.63 6.81 4.95 5.07 4.58
Avg.Mom.Err. 0.16 18.16 6.49 6.61 7.11 0.15 17.69 6.61 6.55 6.96

(0.95, 0.95)
Avg.Abs.Err. 0.36 3.69 2.27 2.19 2.31 0.36 3.63 2.29 2.28 2.29
Max.Abs.Err. 0.66 6.89 5.01 5.41 4.62 0.65 6.82 4.98 5.34 4.63
Avg.Mom.Err. 0.16 18.13 6.54 6.70 6.95 0.15 17.67 6.64 7.29 6.92

Notes: For DGP 1 in Section 3, the simulation study is designed to compare the out-of-sample finite sample performance
for different parameters: length of periods T (120 and 360), autocorrelation levels ⇢1 and ⇢2, and number of instrumental
variables q (13300 and 33100). We compare RegGMM with the constant parameter GMM (CGMM), local constant GMM
(LGMM), global series GMM (GGMM), and affine GMM (AGMM). We report three different norms of fitting errors
based on 60 time periods in excess of T : average estimation error, maximum estimation error, and average moment error,
respectively.
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Table 3: Simulation in-sample Performance: Time Variation as a Function of Variables

(⇢1, ⇢2) Criteria RegGMM CGMM LGMM GGMM AGMM RegGMM CGMM LGMM GGMM AGMM

q=13300 q=33100

T=120

(0, 0.5)
Avg.Abs.Err. 0.03 0.71 0.62 0.71 0.71 0.02 0.71 0.62 0.64 0.71
Max.Abs.Err. 0.10 2.45 2.16 2.45 2.42 0.05 2.45 2.16 2.15 2.41
Avg.Mom.Err. 0.01 0.74 0.61 0.74 0.74 0.01 0.74 0.61 0.65 0.74

(0, 0.95)
Avg.Abs.Err. 0.03 0.97 0.66 0.68 0.96 0.02 0.97 0.67 0.65 0.96
Max.Abs.Err. 0.10 2.57 2.55 2.50 2.64 0.04 2.59 2.52 2.46 2.61
Avg.Mom.Err. 0.01 1.40 0.71 0.75 1.39 0.01 1.40 0.72 0.71 1.38

(0.95, 0.5)
Avg.Abs.Err. 0.05 0.71 0.62 0.71 0.71 0.03 0.71 0.62 0.64 0.71
Max.Abs.Err. 0.21 2.45 2.16 2.45 2.42 0.10 2.45 2.15 2.15 2.42
Avg.Mom.Err. 0.02 0.75 0.62 0.75 0.75 0.02 0.75 0.62 0.66 0.75

(0.95, 0.95)
Avg.Abs.Err. 0.05 0.97 0.66 0.68 0.96 0.03 0.97 0.67 0.65 0.96
Max.Abs.Err. 0.20 2.58 2.55 2.51 2.65 0.10 2.59 2.52 2.46 2.62
Avg.Mom.Err. 0.02 1.41 0.72 0.75 1.40 0.02 1.41 0.72 0.72 1.39

T=360

(0, 0.5)
Avg.Abs.Err. 0.03 0.82 0.72 0.82 0.79 0.02 0.82 0.72 0.79 0.79
Max.Abs.Err. 0.12 2.67 2.66 2.67 2.76 0.07 2.66 2.68 2.75 2.75
Avg.Mom.Err. 0.01 0.91 0.75 0.91 0.86 0.01 0.91 0.76 0.86 0.86

(0, 0.95)
Avg.Abs.Err. 0.04 0.90 0.73 0.90 0.86 0.02 0.90 0.73 0.84 0.86
Max.Abs.Err. 0.14 2.65 2.34 2.65 2.54 0.09 2.65 2.30 2.59 2.55
Avg.Mom.Err. 0.01 1.13 0.78 1.13 1.07 0.01 1.13 0.79 1.01 1.06

(0.95, 0.5)
Avg.Abs.Err. 0.06 0.82 0.72 0.82 0.79 0.04 0.82 0.72 0.79 0.79
Max.Abs.Err. 0.24 2.67 2.66 2.67 2.76 0.14 2.67 2.68 2.75 2.75
Avg.Mom.Err. 0.02 0.92 0.76 0.92 0.86 0.02 0.92 0.77 0.86 0.86

(0.95, 0.95)
Avg.Abs.Err. 0.06 0.90 0.73 0.90 0.86 0.04 0.90 0.73 0.84 0.86
Max.Abs.Err. 0.21 2.66 2.34 2.66 2.55 0.14 2.65 2.30 2.60 2.55
Avg.Mom.Err. 0.02 1.14 0.79 1.14 1.08 0.02 1.14 0.80 1.02 1.07

Notes: For DGP 2 in Section 3, the simulation study is designed to compare the in-sample finite sample performance for
different parameters: length of periods T (120 and 360), autocorrelation levels ⇢1 and ⇢2, and number of instrumental
variables q (13300 and 33100). We compare RegGMM with the constant parameter GMM (CGMM), local constant GMM
(LGMM), global series GMM (GGMM), and affine GMM (AGMM). We report three different norms of fitting errors:
average estimation error, maximum estimation error, and average moment error, respectively.
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Table 4: Simulation OOS Performance: Time Variation as a Function of Variables

(⇢1, ⇢2) Criteria RegGMM CGMM LGMM GGMM AGMM RegGMM CGMM LGMM GGMM AGMM

q=13300 q=33100

T=120

(0, 0.5)
Avg.Abs.Err. 0.82 0.94 0.73 0.89 0.85 0.82 0.94 0.73 0.85 0.83
Max.Abs.Err. 2.64 2.38 2.75 2.38 2.45 2.62 2.38 2.70 2.82 2.44
Avg.Mom.Err. 1.09 1.07 0.84 1.00 0.93 1.10 1.07 0.83 1.12 0.91

(0, 0.95)
Avg.Abs.Err. 0.51 0.96 0.64 0.65 0.75 0.51 0.96 0.64 0.56 0.78
Max.Abs.Err. 1.91 1.79 1.63 2.33 2.11 1.91 1.82 1.68 2.17 2.15
Avg.Mom.Err. 0.43 1.09 0.56 0.64 0.78 0.43 1.10 0.56 0.51 0.84

(0.95, 0.5)
Avg.Abs.Err. 0.82 0.94 0.73 0.89 0.85 0.82 0.94 0.73 0.86 0.83
Max.Abs.Err. 2.67 2.38 2.75 2.38 2.45 2.63 2.38 2.70 2.83 2.44
Avg.Mom.Err. 1.10 1.08 0.84 1.00 0.93 1.10 1.07 0.83 1.14 0.91

(0.95, 0.95)
Avg.Abs.Err. 0.51 0.96 0.64 0.67 0.74 0.51 0.96 0.64 0.56 0.78
Max.Abs.Err. 1.91 1.80 1.63 2.31 2.11 1.91 1.82 1.68 2.17 2.15
Avg.Mom.Err. 0.43 1.09 0.56 0.69 0.77 0.43 1.10 0.56 0.52 0.84

T=360

(0, 0.5)
Avg.Abs.Err. 0.63 0.94 0.72 0.94 0.80 0.62 0.94 0.72 0.80 0.77
Max.Abs.Err. 2.31 2.20 2.16 2.20 2.12 2.35 2.20 2.17 2.20 2.06

Avg.Mom.Err. 0.64 1.05 0.79 1.04 0.87 0.64 1.04 0.79 0.89 0.83

(0, 0.95)
Avg.Abs.Err. 0.70 1.03 0.84 0.99 0.90 0.70 1.03 0.85 0.93 0.86
Max.Abs.Err. 1.96 2.08 2.21 2.08 1.93 1.96 2.07 2.20 2.41 1.94

Avg.Mom.Err. 0.74 1.29 1.01 1.24 1.03 0.74 1.29 1.02 1.18 0.98

(0.95, 0.5)
Avg.Abs.Err. 0.63 0.94 0.72 0.94 0.80 0.63 0.94 0.72 0.80 0.77
Max.Abs.Err. 2.28 2.21 2.16 2.21 2.13 2.34 2.20 2.17 2.20 2.06

Avg.Mom.Err. 0.65 1.05 0.79 1.04 0.87 0.64 1.04 0.79 0.89 0.83

(0.95, 0.95)
Avg.Abs.Err. 0.70 1.03 0.84 0.99 0.89 0.70 1.03 0.85 0.93 0.86
Max.Abs.Err. 1.98 2.09 2.21 2.09 1.92 1.98 2.08 2.20 2.42 1.93

Avg.Mom.Err. 0.75 1.30 1.01 1.25 1.02 0.75 1.29 1.02 1.18 0.98

Notes: For DGP 2 in Section 3, the simulation study is designed to compare the out-of-sample finite sample performance
for different parameters: length of periods T (120 and 360), autocorrelation levels ⇢1 and ⇢2, and number of instrumental
variables q (13300 and 33100). We compare RegGMM with constant parameter GMM (CGMM), local constant GMM
(LGMM), global series GMM (GGMM), and affine GMM (AGMM). We report three different norms of fitting errors
based on 60 time periods in excess of T : average estimation error, maximum estimation error, and average moment error,
respectively.
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Table 5: Simulation Robustness on Tuning Parameters

q=13300 q=33100

Periods (⇢1, ⇢2) Tuning CV.Err. p-value Tuning CV.Err. p-value
DGP1

T=120

(0, 0.5)
�⇤ = e�12 1.425E-5 1 �⇤ = e�12.5 1.609E-5 0.99
� = 0 2.697E1 0 � = 0 1.611E-5 0
� = 1 3.921E-3 0 � = 1 4.100E-3 0

(0, 0.95)
�⇤ = e�12 1.444E-5 1 �⇤ = e�12.5 1.617E-5 1
� = 0 3.911E2 0 � = 0 1.619E-5 0
� = 1 4.074E-3 0 � = 1 4.188E-3 0

(0.95, 0.5)
�⇤ = e�12.5 3.279E-5 1 �⇤ = e�12 3.417E-5 0.95
� = 0 2.702E1 0 � = 0 3.423E-5 0
� = 1 3.919E-3 0 � = 1 4.106E-3 0

(0.95, 0.95)
�⇤ = e�12.5 3.211E-5 0.98 �⇤ = e�12 3.350E-5 0.74
� = 0 3.919E2 0 � = 0 3.356E-5 0
� = 1 4.073E-3 0 � = 1 4.195E-3 0

T=360

(0, 0.5)
�⇤ = e�16 4.640E-6 1 �⇤ = e�16 5.359E-6 1
� = 0 7.596E1 0 � = 0 4.151E5 0
� = 1 2.469E-3 0 � = 1 2.511E-3 0

(0, 0.95)
�⇤ = e�16 4.597E-6 1 �⇤ = e�16 5.285E-6 1
� = 0 4.079E3 0 � = 0 2.183E1 0
� = 1 2.533E-3 0 � = 1 2.568E-3 0

(0.95, 0.5)
�⇤ = e�15.5 1.008E-5 1 �⇤ = e�15.5 1.105E-5 1
� = 0 7.597E1 0 � = 0 4.152E5 0
� = 1 2.476E-3 0 � = 1 2.517E-3 0

(0.95, 0.95)
�⇤ = e�15.5 9.943E-6 1 �⇤ = e�15.5 1.096E-5 1
� = 0 4.079E3 0 � = 0 2.184E1 0
� = 1 2.543E-3 0 � = 1 2.575E-3 0

DGP2

T=120

(0, 0.5)
�⇤ = e�17.5 1.433E-5 0.68 �⇤ = e�19 1.611E-5 0.56
� = 0 3.525E1 0 � = 0 1.611E-5 0.36
� = 1 1.239E-3 0 � = 1 1.235E-3 0

(0, 0.95)
�⇤ = e�17 1.452E-5 1 �⇤ = e�18.5 1.619E-5 0.63
� = 0 5.738E2 0 � = 0 1.619E-5 0.30
� = 1 2.395E-3 0 � = 1 2.349E-3 0

(0.95, 0.5)
�⇤ = e�17 3.294E-5 0.90 �⇤ = e�18.5 3.423E-5 0.52
� = 0 3.530E1 0 � = 0 3.423E-5 0.37
� = 1 1.259E-3 0 � = 1 1.255E-3 0

(0.95, 0.95)
�⇤ = e�16.5 3.225E-5 1 �⇤ = e�18 3.356E-5 0.61
� = 0 5.747E2 0 � = 0 3.356E-5 0.29
� = 1 2.416E-3 0 � = 1 2.365E-3 0

T=360

(0, 0.5)
�⇤ = e�20 4.649E-6 1 �⇤ = e�19.5 5.366E-6 1
� = 0 7.780E1 0 � = 0 4.256E5 0
� = 1 5.568E-4 0 � = 1 5.252E-4 0

(0, 0.95)
�⇤ = e�19.5 4.606E-6 1 �⇤ = e�19 5.293E-6 0.65
� = 0 3.868E3 0 � = 0 2.072E1 0
� = 1 6.535E-4 0 � = 1 6.394E-4 0

(0.95, 0.5)
�⇤ = e�19 1.012E-5 1 �⇤ = e�19 1.108E-5 1
� = 0 7.781E1 0 � = 0 4.258E5 0
� = 1 5.633E-4 0 � = 1 5.294E-4 0

(0.95, 0.95)
�⇤ = e�18.5 9.974E-6 1 �⇤ = e�18.5 1.098E-5 1
� = 0 3.869E3 0 � = 0 2.072E1 0
� = 1 6.558E-4 0 � = 1 6.438E-4 0

Notes: For a given tuning parameter value, this table reports the cross-validation error and the p-value under the null
hypothesis that the tuning parameter is optimal, for different parameters: length of periods T (120 and 360), autocorre-
lation levels ⇢1 and ⇢2, and number of instrumental variables q (13300 and 33100). The calculation of the p-value is given
in Appendix C.1. �⇤ is based on the 5-fold repeated CV criterion.
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Table 6: Asset Pricing Performance: Hansen-Jagannathan R2

Bi-Sort Portfolios Uni-Sort Portfolios Bi-Sort Portfolios Uni-Sort Portfolios

10 Factors Five Factors

Constant GMM 76.5% 72.4% 59.8% 63.0%

330 Instrumental Variables

RegGMM 89.4% 88.7% 74.5% 77.9%
Local GMM 73.0% 83.5% 61.0% 71.2%
Global GMM 52.3% 50.6% 23.9% 25.7%
Affine GMM 82.1% 78.9% 59.4% 66.6%

110 Instrumental Variables

RegGMM 91.0% 89.4% 78.4% 79.5%
Local GMM 75.0% 83.8% 64.1% 72.1%
Global GMM 55.5% 58.9% 34.1% 39.0%
Affine GMM 84.6% 80.2% 60.2% 68.5%

Notes: This table reports the asset pricing performance of RegGMM for the monthly training sample from 1972 to 2011.
As described in section 4.1, we provide results for different test assets (bivariate and univariate sorted portfolios), differ-
ent factor models (10 and 5 factors), and different numbers of instrumental variables (330 and 110). Other comparison
methods are introduced in section 3. The formula for HJ R2 is in equation (12).
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Table 7: Risk-Adjusted Investment Performance

In-Sample (1972-2011) Out-of-Sample (2012-2021)

Panel A: Annualized Sharpe Ratio

Bi-Sort Port Uni-Sort Port Bi-Sort Port Uni-Sort Port
MKTRF 0.33 0.33 1.16 1.16

CGMM F5 0.96 1.06 0.73 0.83
RegGMM F5 110 1.50 1.43 1.04 0.94
RegGMM F5 330 1.50 1.38 0.96 0.76
MVE F5 1.18 1.18 0.77 0.77
EW F5 0.98 0.98 0.56 0.56
RegGMM RW F5 110 - - 0.97 0.94
RegGMM RW F5 330 - - 0.93 0.75

CGMM F10 1.45 1.59 0.75 0.72
RegGMM F10 110 1.84 1.85 1.23 1.00
RegGMM F10 330 1.96 1.83 1.26 0.98
MVE F10 1.84 1.84 1.23 1.23
EW F10 1.46 1.46 0.96 0.96
RegGMM RW F10 110 - - 1.19 0.97
RegGMM RW F10 330 - - 1.27 0.96

Panel B: One-Year Maximum Drawdown (%)

Bi-Sort Port Uni-Sort Port Bi-Sort Port Uni-Sort Port
MKTRF 46.34 46.34 20.51 20.51

CGMM F5 8.43 9.78 5.41 3.90
RegGMM F5 110 5.21 6.23 5.39 7.49
RegGMM F5 330 5.64 7.25 4.37 8.98
MVE F5 7.71 7.71 6.61 6.61
EW F5 12.49 12.49 12.70 12.70
RegGMM RW F5 110 - - 7.18 6.96
RegGMM RW F5 330 - - 4.53 8.70

CGMM F10 8.99 9.15 10.17 8.25
RegGMM F10 110 9.22 9.68 8.52 16.95
RegGMM F10 330 7.68 8.98 7.66 17.48
MVE F10 7.74 7.74 6.72 6.72
EW F10 10.72 10.72 8.99 8.99
RegGMM RW F10 110 - - 8.66 17.32
RegGMM RW F10 330 - - 7.79 18.08

Notes: This table reports the risk-adjusted investment performance (annualized Sharpe ratio and one-year maximum
drawdown) for factor investing using the SDF model. We estimate the SDF model from 1972 to 2011 and perform an
out-of-sample analysis from 2012 to 2021. In addition to RegGMM SDF strategies, we include the constant parameter
GMM (CGMM), the market factor, the mean-variance efficient portfolio (MVE), and the equal-weighted portfolio (EW),
for comparison. We also report results for the out-of-sample rolling window (RW) updated RegGMM. As described in
section 4.1, we report results for 360 bivariate- and 610 univariate-sorted portfolios as different sets of test assets, 5- and
10-factor SDF models, as well as 110 and 330 instrumental variables.
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Table 8: Model-Adjusted Investment Performance

In-Sample (1972-2011) Out-of-Sample (2012-2021)

Panel A: Jensen’s Alpha (%)

Bi-Sort Port Uni-Sort Port Bi-Sort Port Uni-Sort Port
CGMM F5 0.33⇤⇤⇤ 0.32⇤⇤⇤ 0.21 0.14
RegGMM F5 110 0.38⇤⇤⇤ 0.42⇤⇤⇤ 0.26⇤ 0.14
RegGMM F5 330 0.39⇤⇤⇤ 0.42⇤⇤⇤ 0.14 0.04
MVE F5 0.33⇤⇤⇤ 0.33⇤⇤⇤ 0.05 0.05
EW F5 0.29⇤⇤⇤ 0.29⇤⇤⇤ �0.10 �0.10
RegGMM RW F5 110 - - 0.38⇤⇤ 0.14
RegGMM RW F5 330 - - 0.21⇤ 0.03

CGMM F10 0.38⇤⇤⇤ 0.36⇤⇤⇤ 0.25⇤ 0.13
RegGMM F10 110 0.54⇤⇤⇤ 0.57⇤⇤⇤ 0.61⇤⇤⇤ 0.32⇤

RegGMM F10 330 0.53⇤⇤⇤ 0.57⇤⇤⇤ 0.57⇤⇤⇤ 0.30
MVE F10 0.43⇤⇤⇤ 0.43⇤⇤⇤ 0.26⇤⇤⇤ 0.26⇤⇤⇤

EW F10 0.44⇤⇤⇤ 0.44⇤⇤⇤ 0.09 0.09
RegGMM RW F10 110 - - 0.69⇤⇤ 0.32⇤

RegGMM RW F10 330 - - 0.60⇤⇤⇤ 0.28

Panel B: FF3 Alpha (%)

Bi-Sort Port Uni-Sort Port Bi-Sort Port Uni-Sort Port
CGMM F5 0.32⇤⇤⇤ 0.29⇤⇤⇤ 0.16 0.13
RegGMM F5 110 0.36⇤⇤⇤ 0.39⇤⇤⇤ 0.14 0.09
RegGMM F5 330 0.36⇤⇤⇤ 0.39⇤⇤⇤ 0.11 0.06
MVE F5 0.23⇤⇤⇤ 0.23⇤⇤⇤ 0.10 0.10
EW F5 0.13⇤⇤⇤ 0.13⇤⇤⇤ 0.05 0.05
RegGMM RW F5 110 - - 0.23⇤ 0.09
RegGMM RW F5 330 - - 0.15 0.06

CGMM F10 0.35⇤⇤⇤ 0.31⇤⇤⇤ 0.33⇤⇤⇤ 0.21⇤⇤

RegGMM F10 110 0.54⇤⇤⇤ 0.56⇤⇤⇤ 0.61⇤⇤⇤ 0.44⇤⇤

RegGMM F10 330 0.52⇤⇤⇤ 0.57⇤⇤⇤ 0.59⇤⇤⇤ 0.43⇤⇤

MVE F10 0.38⇤⇤⇤ 0.38⇤⇤⇤ 0.32⇤⇤⇤ 0.32⇤⇤⇤

EW F10 0.33⇤⇤⇤ 0.33⇤⇤⇤ 0.17⇤⇤⇤ 0.17⇤⇤⇤

RegGMM RW F10 110 - - 0.69⇤⇤⇤ 0.43⇤⇤

RegGMM RW F10 330 - - 0.63⇤⇤⇤ 0.41⇤⇤

Notes: This table reports the risk-adjusted investment performance (alphas from CAPM and the Fama-French 3-factor
model) for factor investing using the SDF model. We estimate the SDF model from 1972 to 2011 and perform an out-of-
sample analysis from 2012 to 2021. In addition to RegGMM SDF strategies, we include the constant parameter GMM
(CGMM), the mean-variance efficient portfolio (MVE), and the equal-weighted portfolio (EW), for comparison. We also
report results for the out-of-sample rolling window (RW) updated RegGMM. As described in section 4.1, we report
results for 360 bivariate- and 610 univariate-sorted portfolios as different sets of test assets, 5- and 10-factor SDF models,
as well as 110 and 330 instrumental variables.
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Figure 1: Simulation: Studentized Estimates for RegGMM

(a) DGP 1 (T=120) (b) DGP 2 (T=120)

(c) DGP 1 (T=360) (d) DGP 2 (T=360)

Notes: This figure shows the studentized RegGMM time-varying estimates for 1
T

PT
t=1 �̂2,t from bootstrap samples.
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Figure 2: Year-by-Year Annualized Returns for Factors
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Figure 3: Time-Varying Risk Price for the 5-Factor SDF Model

Notes: This figure shows the time-varying factor risk price (SDF loadings) for the Fama-French 5 factors. The training
sample is the first 40 years, and the test sample is the last 10 years. The out-of-sample rolling-window update scheme is
discussed in Section 4. The shaded area covers the 95% confidence interval for the investment factor, CMA. As described
in section 4.1, we report results for 360 bivariate- and 610 univariate-sorted portfolios as different sets of test assets.
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Figure 4: Time-Varying Risk Price for the 10-Factor SDF Model

Notes: This figure shows the time-varying factor risk price (SDF loadings) for Fama-French five factors, plus additional
five factors introduced in section 4.1. The training sample is the first 40 years, and the test sample is the last 10 years.
The out-of-sample rolling-window update scheme is discussed in Section 4. The shaded area covers the 95% confidence
interval for the investment factor, STR. As described in section 4.1, we report results for 360 bivariate- and 610 univariate-
sorted portfolios as different sets of test assets.
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Figure 5: Absolute Investment Performance

Notes: This figure shows the annualized average returns for factor investing using the SDF model. We estimate the model
from 1972 to 2011 and perform an out-of-sample analysis from 2012 to 2021. In addition to RegGMM SDF strategies, we
include the constant GMM (CGMM), the market factor (MKTRF), the mean-variance efficient portfolio (MVE), and the
equal-weighted portfolio (EW), for comparison. As described in section 4.1, we report results for 360 bivariate- and 610
univariate-sorted portfolios as different sets of test assets, 5- and 10-factor models, as well as 110 and 330 instrumental
variables.
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