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Abstract

We develop a novel regularized GMM (RegGMM) approach to estimating time-varying coefficient
models via a ridge fusion penalty with a high-dimensional set of moment conditions. Our RegGMM pro-
cedure only requires a mild condition on the total amount of oscillations between consecutive parameter
values over the whole sample period, which allows for both abrupt structural breaks and smooth changes.
While enjoying a closed-form solution for linear models, RegGMM avoids smoothed nonparametric esti-
mation and implements a global one-step procedure. We establish consistency and derive the convergence
rate and limiting distribution of the RegGMM estimator for independent and dependent observations. The
simulation study shows its robust finite sample performance over existing methods under various scenar-
ios. When applied to asset pricing modeling, RegGMM provides an alternative solution for estimating the
time-varying stochastic discount factor model by utilizing a large cross section and/or many condition-
ing variables. We apply our method to U.S. equity data from 1972 to 2021. Reflecting the macroeconomic
information, our time-varying estimate paths for factor risk prices respond to changing performance for
multiple risk factors and summarize potential regime-switching scenarios. By outperforming alternative
methods, we document the gains in asset pricing and investment performance from RegGMM for both

in-sample and out-of-sample analysis.
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1 Introduction

There is growing empirical evidence that the structure of economic relationships is changing over time (e.g., Stock
and Watson, 1996, Qu and Perron, 2007; Brunnermeier and Nagel, 2008; Hong et al., 2017). Capturing time-varying
economic relationships is important for inference and forecasts (e.g., Koop and Korobilis, 2012). Economic theory (e.g.,
Lucas, 1976) suggests that it is appropriate to view behavioral relationships varying over time, yet it does not indicate how
to capture the time variation structurally. There are a few popular approaches to modeling time variation in econometrics.
The first is to assume that time-varying parameters are a deterministic function of time (e.g., Robinson, 1989; Orbe et al.,
2000; Chen and Hong, 2012; Chen et al., 2018), which is appropriate when the driving factors for time variation are
external events, such as policy shifts, technology progress, and preference changes. The second is to specify time variation
as a function of observable variables (e.g., Ferson and Harvey, 1991; Nagel and Singleton, 2011), which has desirable
interpretability. The third is to model time variation as a latent stochastic process, either stationary or unit root (e.g.,
Engle, 2002; Dangl and Halling, 2012), which is often used when time-varying parameters are driven by unobservable
factors, such as the evolving beliefs of policymakers that lead to policy changes (Cogley and Sargent, 2001).

In a seminal paper, Hansen (1982) proposes the generalized method of moments (GMM), which provides a gen-
eral framework to unify many estimation and inference procedures, including those for regression with endogeneity.
GMM has been widely used to exploit asset pricing models by solving dynamic conditional pricing moment restrictions
(Hansen and Singleton, 1982)."! There has been a growing interest in developing new GMM procedures to accommodate
time-varying parameters. For example, Andrews (1993) extends GMM to allow for structural breaks and develops a
test to detect unknown breakpoints. Based on Lewbel’s (2007) local smoothing GMM estimator, Gospodinov and Otsu
(2012) propose estimating time-varying parameters via local kernel smoothing by using a nonparametric conditional
moment. Gagliardini et al. (2011) extend the nonparametric method of moments estimation to handle unconditional
and conditional moment restrictions. Gagliardini and Ronchetti (2020) employ a local smoothing GMM to character-
ize a conditional Hansen-Jagannathan (HJ) distance for dynamic pricing errors. Cui et al. (2021) estimate time-varying
price-dividend ratios via a global smoothing GMM, whose moment conditions step from Euler equations.

The aforementioned methods make important methodological contributions and significantly extend the scope of
application for GMM. However, there are some undesirable features of the existing GMM methods for time-varying
models. First, modeling time-varying parameters as a function of observable variables may suffer from the omitted
variable problem and the curse of dimensionality issue for smoothed nonparametric methods. An exception is Antoine
et al. (2020), which proposes employing a broader choice of conditioning variables to estimate time variation via fixed
bandwidth asymptotics. Second, modeling time variation as a deterministic function of the scaled time requires cer-
tain smoothness (differentiability) conditions for smooth, nonparametric methods that rule out abrupt structural breaks.
Finally, modeling time-varying parameters as a latent stochastic process may suffer from model misspecification. We

note that to resolve the curse-of-dimensionality issue, Creal et al. (2018) model time-varying parameters in GMM as a

'Hansen and Jagannathan (1997) and Kan and Zhou (1999), provide GMM estimations to the constant parameter
stochastic discount factor model. Ghysels (1998) use GMM to estimate the conditional CAPM with time-varying betas.



parametric autoregressive-type updating scheme and provide asymptotic properties for the updating parameters with a
special choice of instrumental variables,” which is subject to model specification risk.

It has been a long-standing challenge in the literature to avoid model misspecification for time variation and allow
for various types of structural changes. This paper proposes a novel regularized GMM (RegGMM) approach to estimat-
ing time-varying parameters, which depend on the information set, without assuming its relationships with covariates or
time. By utilizing a high-dimensional set of moment conditions with a ridge fusion penalty, RegGMM estimates all real-
ization values of time-varying parameters over the sample period, which avoids specifying the data-generating process
(DGP) for time-varying parameters and allows for various types of time variation.” Our RegGMM objective function con-
tains a quadratic form of the sample moment vectors that time-varying parameters satisfy and a smoothness condition
that regularizes the parameter time-variation magnitude. Built on a mild condition that the total amount of oscillations
between consecutive realization values over the sample period is bounded, we promote similarities between the coeffi-
cient values over consecutive periods via a ridge fusion penalty, defined as the sum of the squared first differences of
unknown parameters over time.

Our proposed regularization scheme is related to the fused LASSO penalty (Tibshirani et al., 2005) and the ridge
fusion penalty (Price et al., 2015), which assist in variables selection and precision matrix estimation. The ridge fusion
penalty in a high-dimensional moment condition setup helps consistently estimate all time-varying parameter values
over the sample period, without specifying the time variation. In particular, it allows for various types of structural
changes, including abrupt breaks and smooth changes. The large dimensionality for the moment conditions becomes a
“ blessing” rather than a “curse” for RegGMM. RegGMM treats all realization values of time-varying parameters over
the sample period as a high-dimensional parameter vector, which can be consistently estimated by trading off the overall
parameter oscillations and the satisfaction level of moment restrictions. Avoiding directly assuming deterministic or ran-
dom processes for time-varying parameter values is also related to the analogy with fixed versus random effects in the
panel data regression literature. Fernandez-Val and Weidner (2018) propose treating the realization values of the individ-
ual and time effects as parameters to be estimated without specifying their distributions or relationships with covariates.
Our work is among the first to consistently estimate time-varying parameter values without assuming specifications on
time variation but by regularizing the smoothness levels of time-varying parameters, which is coherent with the argu-
ment by Fu et al. (2022) that main distinctions between deterministic and random processes mainly lie in the smoothness
of time-varying parameters.Our asymptotic results complement existing studies that employ a penalization based on a
bounded variation of the parameter process (Horenko, 2010), which are particularly useful when time variation changes

continuously over time ¢, rather than the scaled time (t/T).!

“The instrumental variables include the lagged time-varying parameter value 1, and the lagged updating descent
st—1 so that v, = (I — B)w + Byi—1 + As;—1 where w, A, B are unknown updating parameter matrices to be estimated.
We refer readers to Creal et al. (2018) for details and thank one referee for suggesting this related work.

*Section 2 provides detailed discussions on the construction of the required moment conditions when researchers face
a set of cross-sectional conditional moment restrictions and many instrumental variables.

“The nonstationary time series literature needs to determine time-dependent weights on some stationary models to
resemble nonstationary observations. The employed regularizations include the integration of the squared first derivative
of the affiliation function for smooth changes (Horenko, 2010), the fused Lasso penalty for abrupt breaks (Marchenko



Our approach has several appealing features. First, we do not have to specify the driving factors and functional
forms for time-varying parameters, so it is free of model misspecification. Second, unlike the smoothed nonparametric
methods that assume time variation as a deterministic function of time, we avoid differentiability conditions that rule
out abrupt structural breaks and the boundary bias problem near the endpoints of the sample period. Third, unlike the
smoothed nonparametric methods that assume time variation as a function of observable variables, we avoid the curse
of dimensionality problem with many conditioning variables and the omitted variable problem. Fourth, RegGMM is a
global one-step procedure that delivers consistent estimates for all realization values of time-varying parameters simul-
taneously. Moreover, it enjoys an appealing closed-form solution for linear models. However, we need to point out the
trade-off between the flexibility of our approach and its lack of interpretability (e.g., sources) for time variation. Therefore,
our approach should be a complement to, not a substitute for, the existing estimation methods for time variation.

An important application of RegGMM is asset pricing modeling. There exists a strong demand for empirical studies
on the stochastic discount factor (SDF) models with time-varying parameters. Figure 2 illustrates various changes in time-
varying performance for multiple well-known risk factors in recent decades that have posed a challenge for empirical
researchers. The current literature prefers using conditioning (i.e., explanatory) variables to model time-varying SDF
weights, such as fundamental predictors or macroeconomic variables, for better economic interpretation. Still, they might
encounter the variable selection and model misspecification difficulty (Nagel and Singleton, 2011). Another empirical
modeling challenge is determining the type of time variation in parameters, where RegGMM stands out for its flexible
smoothness requirement for time variation.

Our paper also adds to the fast-growing field of high-dimensional model regularization and machine learning in
asset pricing. Feng et al. (2020) develop variable selection methods to select risk factors for the SDF model. Gu et al.
(2020) use machine learning to perform dimension reduction and predict cross-sectional returns using many predictors.
Regularized portfolio optimization problems with a large number of assets and their connection to the SDF are also ad-
dressed (Ao et al., 2019; Kozak et al., 2020). Rather than performing shrinkage or dimension reduction, RegGMM benefits
from a large cross section of asset returns and/or a long list of instrumental variables, given their role in constructing the
required high-dimensional moment restrictions.

We apply RegGMM to estimate the dynamic SDF model using monthly U.S. equity data from 1972 to 2021 and
consider 10 published traded risk factors for the time-varying SDF composition. Because we use macroeconomic con-
ditioning variables, our estimated time-varying factor price paths can reflect market timing information about business
cycles, such as treasury bills, inflation, term spread, and default yield. For example, RegGMM produces time-varying
risk price estimate paths, which respond to the decaying performance of HML (Value) and the rising performance of SMB
(Size) in the 2000s. We find that our time-varying estimates react to the changing performance of multiple risk factors
and summarize potential factor regime-switching scenarios. We show that the time-varying SDF model outperforms the
constant parameter SDF model in terms of HJ measures, demonstrating the time-varying SDF model’s goodness of fit. By

outperforming multiple benchmark models, we document the out-of-sample gains for risk-adjusted and model-adjusted

et al., 2018), and the ridge fusion type penalty to de-noise nonstationary time-series observations (Pospisil et al., 2018).
We appreciate one referee for pointing out this intriguing connection.



investment, which suggests that the superior in-sample performance of RegGMM is not due to overfitting.

The rest of this paper proceeds as follows. Section 2 introduces the RegGMM estimation method for time-varying
models. Section 2.2 establishes consistency and derives the convergence rate and limiting distribution of the RegGMM
estimator. Monte Carlo simulation studies for verifying RegGMM'’s scope of application are given in section 3. We
present an empirical application to a flexible time-varying SDF model and demonstrate its in-sample and out-of-sample

performance in section 4. Section 5 concludes the paper, and all technical proofs are provided in Appendix.

2 Regularized GMM Estimation

2.1 Regularized GMM Estimation for Time-Varying Coefficient Models

Given empirical evidence of time-varying dynamic models, we start with the following econometric model:

E(utynl|l) = On, M

where uiyn = F(Xi4n,Yt+n) is @ N X 1 vector representing the cross-sectional information with N individual units
(e.g., assets), and Xy, contains observable variables. For example, X¢1n = (r;,1, f{11)" with n = 1 in Section 2.3 and
Xitn = (yi, 1) with n = 0 in Section 3. We denote o t+n = F(Xitn,Yo,t4n) fort = n +1,--- | T. We further denote
z; € Iy asa K x 1 vector of conditioning variables, which is observed by the modeler.

We consider estimating the unknown time-varying parameters v¢+» = (I;), which depend on the observations
in I;. Our paper treats the realization values of I' = {,}- " as p(T — n) parameters to be estimated, whose dimension
grows to infinity as 7 — oco. Then, to estimate a high-dimensional vector of parameters {7, }- ", we first transform
the conditional moment restriction in (1) into the following unconditional ones by multiplying instrumental variables.
Particularly, we consider

Ele(Ustn, ve4n)] = Elutyn @ 2] = 0g, (2

where Uiyn, = (X{4n, %), ® is the Kronecker product and Z can be functions of some observable conditioning vari-
ables z;. When N, the number of conditional moments, and K, the number of conditioning variables, are both fixed,
without further prior knowledge of time variation, we could consider expanding the conditioning variables, z, to a
high-dimensional set of instrumental variables by applying a sequence of transformations z; = {¢(2)}E, such that the
unconditional moments have dimension § = NK. The literature has documented substantial benefits of such trans-
formations in different contexts, such as when estimating pricing functions and facilitating model misspecification tests
(Hansen and Richard, 1987; Gagliardini and Ronchetti, 2020; Cui et al., 2021).

We propose estimating the realization values I' in a one-step procedure by utilizing an increasing set of moment

conditions from the following regularized optimization problem:

- 1
[ = argmin —lgr (DI + AJ (), 3)



where gr(T') = 7 ST e(Utsn, Ye4n) is the sample analogue of equation (2), and | - || denotes the Euclidean norm.
Because we will use cross-validation (CV) among moment conditions to select the tuning parameter value A\, we denote
q as the effective number of moment conditions used in estimation, and we require ¢ = G(k — 1)/k > p(T — n) for the
k-fold CV.* In the rest of this paper, for generality, we will make use of a high-dimensional set of moment restrictions in
equation (2) by requiring ¢ > p(T — n) — oo as the sample size T — oo, which can be ensured by either N — oo or
K — o0, or both, at a suitable rate.

To offset the impact of the divergent dimension of moment restrictions, we normalize the quadratic term by ¢;
otherwise, the total sum of the quadratic sample moment vectors in (3) could be large even if each element is small. The
penalized optimization (3) involves a key ingredient J(I'), a ridge fusion penalty, which is defined as the sum of the

squared differences of parameters over time:

T—n
J(O) =T'D'DT = Y |l = el ©
t=2
where Disap(T —n — 1) x p(T — n) matrix such that
Dij=4 1 i+p=j, ®)
0 otherwise.

We assume that the total amount of time variation, as measured by J(I"), is bounded, allowing for various structural
changes, including abrupt breaks and smooth changes, or a mixture of them. The tuning parameter A represents the
extent of penalization imposed on time variation J(I"). In section 2.2, we explain the selection and evaluation of A to aid
in calibrating the performance of our procedure.

Notably, the ridge fusion regularization on coefficient values over time amounts to shrinking the total consecutive
pairwise squared differences of unknown parameters over the sample period. In a special case, if only smooth structural
changes exist, in that the true parameter ~; is continuously differentiable with respect to time or a set of conditioning
variables, the ridge fusion penalty is equivalent to penalizing the squared first derivatives of unknown parameters as
in Wahba et al. (1995) and Horenko (2010). Under such a scenario, nonparametric local and global smoothing methods
are appropriate if econometricians observe the correct set of conditioning variables that drive time variation. However,
they suffer from the curse of dimensionality problem if the set of conditioning variables is large. In another important
scenario with abrupt structural breaks, existing nonparametric smoothing strategies are no longer applicable due to a loss
of estimation consistency. In contrast, RegGMM estimates all time-varying parameter values over the sample without
having to specify the DGP for time variation. We allow both abrupt breaks and smooth changes.

We could also use a fused LASSO penalty, 7" |+ — -1/, to control for the level of time variation. However, if

5We thank one referee for pointing out this aspect. When conducting over-identification tests, such as extending the .J-
test proposed by Hansen (1982) and the student ¢ test proposed by Dong et al. (2021), we need to regulate the rate at which
g will diverge as T" — oo. For high-dimensional moment restriction models with regularization, the over-identification
test is an interesting topic, which we leave for future research.



this Li-type penalty is used, the optimization problem (3) cannot yield a closed-form solution for linear models. More
importantly, given the nature of the L;-type penalty, it is most suitable for abrupt structural breaks because it keeps a
few non-zero piece-wise constant parameter values over time while forcing the differences between coefficients in most
periods to be zero. It would have little power to capture smooth structural changes over time. Thus, without a certain
economically motivated prior for time variation, the ridge fusion regularization in equation (3) appears more suitable for
economic studies because it allows for both abrupt breaks and smooth changes as their mixtures.

The intuition behind RegGMM is that the first component in equation (3) provides enriched information for es-
timating 7. at each time period. By appropriately penalizing J(I'), we can uncover general time-varying patterns and
guarantee a unique global solution given the strict convexity of optimization (3). For linear models, our method delivers
an appealing closed-form solution. Another strength of the ridge fusion penalty is that it significantly helps stabilize the
resulting estimates because the positive penalty term ) enters into an involved large-dimensional covariance matrix. As

a result, the minimum eigenvalue is bounded from below and away from zero.

2.2 Asymptotic Theory

The large sample properties below cover both independent and dependent observations. To simplify our analysis,
we use m-dependency to capture the degree of dependency. We first recall the definition of an m-dependent process
{X:}+>1 and define the distance between two subsets A and B by d(A, B) := inf{|i — j| : i € A,j € B}. Then, {X¢}i>1
is an m-dependent process if {X;,t € A} and {X,,7 € B} are independent whenever d(A, B) > m. We further recall
the notation I = (v,,41,--- ,77)" and denote A(T") = (T — n)9gr(I')/OT for the rest of the paper. Let pmin(+), pi(-) and
Pmax(-) denote the minimum, i-th, and maximum eigenvalues of a matrix, respectively. Further, |M||r = \/tr(M’'M)

denotes the matrix Frobenius norm and ||M||2 = \/pmax(M’M) denotes the matrix Lo-norm.

Assumption 1. E(u¢in|l;) = On has a unique zero at ~Yo,i1n, which depends on the information set I, for each t. T, =

(Yomtts s Yor) € S = S5~ " with So being a finite-dimensional compact parameter space.

Assumption 2. (i) Let {e(Uitn,Yi+n)} and {Uisn} be stationary m-dependent processes with m/T — 0as T — oc; (ii) For

some n > 0, a positive constant c1 exists that E|e;(Ursn, Yo,t4n)|>T7 <1 <oofor 1 <t <T —nand1<j <q.
Assumption 3. (i) For any € > 0, there exists a sufficiently small constant vr . > 0 such that infreg r—r, |>e %HE[gT(F) I >

vy, (if) max{\J,, (1 + m)/T} = o(vy,c) with J, = T,D'DI, < co.

Assumption 4. For T, T € S, a measurable positive function By (Uy) exists that || e; (Ustn, Fe-4n)—€j (Ustn, Fo+n)|| < B1(Us)||T—
T||, where E[B}(Uy)] < cofor 1 <t <T —nand1<j<q.

e (Utqn, 7t+n)E607(Ut+na’Yr+n)} >

Assumption 5. For I in a neighborhood of T, positive constants cz and cs exist that pmin { E Dot 5y
n t+n

de (Ut+7z Yitn) 795 (Ut fn,Yetn)
c2 > 0 and pmax{ B o E=4 T/ }<es<ooforl1<t<T—-nand1<j<gq

Assumption 6. (i) There exist positive constants c4 and cs such that pm‘m{%Ee(UH—na70,t+n)e(Ut+n7’Yo,t+n),} >y >0

and pmax{%Ee(U,H.n,'yo,t+n)e(Ut+n,%,t+n)’} < s <ooforalll <t < T —mn;(ii) For T,T" € S, a measurable positive

7



function BQ(Uf) exists that ||8€j(Uf,+n7ﬁ/1,+n)/671,+n — 86]-(Ut+n,7yt+n)/8'yt+n|\ S BQ(Uf)Hf — f‘”, where E[Bg(Uf)] < o0

for1 <j<qand1 <t<T —n.

Assumption 1 is a standard condition in the GMM literature, which implies that the time-varying parameter vector
', can be uniquely identified through the moment conditions. In this paper, p(T' — n), the number of parameters to be
estimated, and ¢, the number of moment conditions, are both large, with ¢ > p(T — n) for identification purposes. The
compactness condition in Assumption 1 avoids some ill-posedness issues encountered in the literature. It holds when
the finite-dimensional parameter space S is closed and bounded.® Alternatively, we could consider a compact subset of
RPT=™) that S, = {T' € RPFT=™) . ||| < Cr}, where Cr = o(T/+/T + m) is some positive number that diverges with 7.
The proof is collected in Appendix B.

Assumption 2 imposes a mild condition on the serial dependency of the dataset over time, where m is allowed
to increase with the sample size T' as long as m/T — 0. Such a blocking technique on moment conditions is also
used in Chang et al. (2015) when the dimensions of both moment restrictions and parameters of interest grow with the
sample size T. Like mixing conditions, m-dependency is also commonly used to regulate serial dependency in time
series analysis (Hansen and Singleton, 1982; Rao and Sreehari, 2016). For instance, a special case of an m-dependent
process is an i.i.d. process where m = 0. In another example, a first-order moving average (MA) process with i.i.d.
innovations is a stationary m-dependent process with m = 1. In nonparametric statistics, one often uses m-dependence
to test for independence or lack of correlation. For example, a random indicator variable W,, = 1{X; > X1} with 1(-)
being the indicator function can be used to test the dependent structure in X;’s, which is also m-dependent (Islak, 2013).
Inoue and Shintani (2006) point out that, given the Wold decomposition theorem, a stationary process admits a moving
average (MA) representation with possibly infinite order, which can be approximated by an m-dependent process with
m growing to infinity with 7. We conjecture that similar results from our paper could be established under mixing
conditions. However, assuming m-dependence simplifies our analysis, we can establish an explicit relationship that
describes how serial dependency may affect the convergence rate. We note that the m-dependence assumption could be
further weakened to be a strictly stationary process, and we refer readers to Hong and Lee (2005) for such an extension
in a different context.®

Assumption 3 (i) is a generalized condition on global identification. Note that we need to scale down the squared

norm due to the diverging dimension of moment restrictions. This relaxed condition can also be seen in Dong et al.

®We refer readers to Chen (2007) for a detailed discussion.

"To obtain time-varying parameter values, existing econometric literature often further assumes some parametric
specification on time variation, such as yi4-n = v(t/T") or ¢4 = y(w¢) for some observable w; € I; (Chen and Hong, 2012;
Dong et al., 2021). Creal et al. (2018) also consider such a conditional moment restriction with time-varying parameters,
whose realization values depend on the past data in I;. However, in this paper, we avoid specifying the DGP for time
variation, which is allowed to display various types. Econometricians and empirical researchers may be more interested
in discovering the path of the time-varying parameter values.

8Specifically, Assumption 2 (i) could be weakened such that for each sufficiently large m, there ex-
ists a strictly stationary process {em,i+n} that is measurable with respect to the sigma field generated
by {e(Uttn—1,Vi4n-1)"s ** ,€(Uttn—m,Vt4+n—m)}’ and satisfy that as m — oo, {em,4n} is independent of
{e(Ut+n7m717 ’Yt+’ll*7ﬂ*1),7 e(Ut+n7m727’Yt+n7m72),7 e },r and E|ej(Ut+n77t+n) - e]}7n,t+n|2 S Cm_C fOI‘ some C Z 1
andalll < j<gand1<t<T —n.



(2021). A stronger version of this condition has been used in the literature with v = v > 0 (Ai and Chen (2003)). As
argued by Chen and Pouzo (2012), given that (S, || - ||) is compact, the condition in Assumption 3 (ii) can be reduced to
max{AJ,, (1 +m)/T} — 0. Assumption 3 (ii) also imposes restrictions on the ridge fusion penalty tuning parameter A
and its relationship with ¢ via the normalized squared norm. Similar to Cui et al. (2021), we can let the penalty term play a
key role in smoothing when deriving large sample properties. We show in Theorem 1 that when A satisfies Assumption 3,
I, which minimizes the RegGMM criterion over a compact space, is consistent. In Theorem 3, we show that Assumption
3 is also required to ensure the asymptotic unbiasedness nature of the estimated values of time-varying parameters.

Assumption 4 is a Lipschitz condition, which is widely used in the GMM literature (Han and Phillips, 2006). It is
essential for establishing uniform convergence because it relates to stochastic equicontinuity (Newey, 1991). Assumption
4 also ensures the applicability of our result to time-varying nonlinear GMM models. Dong et al. (2021) use this condition
through global smoothing estimation with many moment conditions.

Assumption 5 is to regulate the eigenvalues of moment conditions. Such conditions are employed and justified in
Chang et al. (2015) when maximizing a high-dimensional generalized empirical likelihood, which can also be framed into
a GMM setup with many parameters and moments. Assumption 6 facilitates the limit theory by imposing an additional

Lipschitz condition on the first-order derivative of moments with respect to unknown parameters.

Theorem 1 (Consistency). Suppose Assumptions 1-4 hold. Let T minimizes RegGMM in (3). If further (1 +m)/T = O()\), we

have maxy y1<t<7 |9t — Yo,t|| = 0p(1) as T — oo

Theorem 1 implies the consistency of I" that minimizes the RegGMM criterion. It can be achieved by choosing
a positive but small penalization parameter that satisfies (1 + m)/T = O(X) and max{\J,, (1 + m)/T} = o(1) or a
smaller order o(vr,c) with vr . — 0. Intuitively, if A tends to infinity, it leads to time-invariant parameter estimates with
probability tending to 1. Similarly, if A.J, tends to a finite strictly positive constant, I will not converge in probability to
To. If X = 0, it leads to overfitting of time variation. Theorem 1 implies the consistency of the RegGMM estimator for
both dependent and independent observations. Note that for estimation consistency and identification purposes, ¢ must
go to infinity at a rate at least as fast as 7" on one hand and satisfy Assumption 3 on the other hand. In the next theorem,
we narrow the neighborhood around T',, to drive an estimation error upper bound, which requires additional moment

assumptions on pricing errors and their first-order derivatives when applied to asset pricing modeling.

Theorem 2 (Convergence Rate). Suppose Assumptions 1-5 hold and (1 4+ m)/T < AJo < 3(1 + m)logT/T. Then, we have
maxny1<e<t |9 — Yot = Op(v/(1 + m)log T/T) as T — oo and q — co.

Theorem 2 provides an error bound for the RegGMM estimator in a shrinking neighborhood of I',. This covers
all time points in the sample period, including the boundary regions near the endpoints. We note that the estimation
error bound involves a factor of log T, which is common to recent studies that involve high dimensionality in the ma-
chine learning literature. The reason log T’ emerges in our proof is that we use the Markov inequality when obtaining a
probability bound for the maximum of a sequence of random variables (Huang et al., 2008). Also, the serial dependency

m affects the error bound because it affects how fast sample analogues could converge in probability to their population



moments (Romano and Wolf, 2000). Since logT" grows to infinity at a rate slower than 7 for any small constant ¢ > 0,
\/log T/T converges to zero at a rate slower than /1/T1+¢. Therefore, the rate obtained in Theorem 2 is slightly slower
than the parametric root-7 rate if m is fixed or grows at a logarithmic rate as T' — oo. Hence, our method provides desir-
able estimation accuracy while avoiding the restrictive specification of time variation. In particular, the consistency of the
RegGMM estimator does not require y; to be continuously differentiable with respect to time or conditioning variables—
an otherwise indispensable condition for smoothed nonparametric estimation. Instead, the condition required by our

approach is more general and covers a broader range of applications.

Theorem 3 (Asymptotic Normality). Suppose Assumptions 1-6, and the conditions in Theorem 2 hold. Consider a = cZ®a, with
T being a (T—n)x 1 vector of ones, a, € R with ||a||* = 1. Let H = Jya;, D1V Dipa, with Dr = 72 S E [M]

MVttn
andV = var[ﬁ ST e(Utdns Yost4n)]- For T+ mlog T = o(V/T), we have

T = [ L @A) + AD'D])(P = To) % N (0, 1).

q(T' —n)

Theorem 3 recognizes a standard formula for the asymptotic variance of the RegGMM estimator with a correction
due to the penalization for the amplitude of parameter variations between consecutive periods. The Hessian matrix,
HI,T) = %;w % llgr (D)|? + AD’D, contains two parts. The first component is the Hessian function of an unpenalized
GMM loss function as in a high-dimensional moment conditional framework that %;F,%H gr(D)|? = A MA@ +
A(T,T), where A(T',T) = %gT(F)%A(F). It has been shown that %A'(f)A(f’) is almost surely positive definite and
AT, T)||r = 0p(1) for T' € S (Dong et al., 2021). The second component AD’D is due to the ridge fusion penalty that

82

577 J () = AD’D. We note that such an additional term associated with the penalty and the differencing matrix D also

appears in the covariance estimator of Li and Ruppert (2008) and Cui et al. (2021), who propose estimating unknown
functions in linear regression and high-dimensional GMM by a ridge fusion penalty on coefficient values of B-splines
basis functions. We note that Theorem 3 involves a bias term, H~'/2\/T — na’ AD’ DT',,, which is proven to be a small
order term and thus assists with a zero mean in Theorem 3. Such a result could be interpreted as an “undersmoothing”
condition.” Theorem 3 involves a sandwich formula for computing the covariance of our penalized estimator, which
coincides with the sandwich expression by the local quadratic approximation method (Fan and Li, 2001)."” The sandwich
formula in Theorem 3 reflects a bias-variance trade-off.

In practice, we would need a consistent estimator for H, which involves the unknown matrix V in the limiting
normal distribution as in Theorem 3. We first define the sample autocovariance function
a3) = — Zf;ﬁl e(Uttn, Gt+n)e(Ustn—j, Jt+n—j)  forj >0

T—n ~ - .
T =41 €(Ueinti, Fen+i)e(Utn, Je4n)  forj <0

If m is known, a consistent variance estimator of H can be obtained by defining V = 32" (4). However, in practice,

j=-—m

°There is a similar result in Dong et al. (2021), who require the approximation errors to be of a small order term.
1070u (2006) has a similar sandwich form in the adaptive LASSO estimator by iteratively computing the involved ridge
regression.
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the value of serial dependency m is generally unknown, which is analogous to the case when mixing conditions are
used to regulate serial dependency where the a-or 8-mixing values are also generally unknown. In such a case, we can
employ the well-known class of heteroskedasticity and autocorrelation (HAC) estimators as in Newey and West (1987)
and Andrews (1991) without having to estimate or select the practical value of m or mixing values (Inoue, 2006; Ma et al.,

2021). Specifically, we consider the class of HAC estimators for V' as follows:

T-n-1
V=" > kG/AnQG),
j=—(T—n—1)
where br is a smoothing parameter that grows with the sample size T' and k(-) is a real-valued kernel function, which
generally declines as j increases, with k(0) = 1."" A suitable choice of k(-), such as the Bartlett kernel k(u) = 1 — |u for
lu| < 1 and 0 otherwise, ensures the semi-positive definiteness property of V" in finite samples. In the present context, the
involved smoothing parameter by grows to infinity with the sample size T" at a slower rate, whose practical value can be
determined by the procedure in Inoue (2006) among others."?

We then consider the following estimator of H:
. 1 , Ao ~ =
H= q—2apDTVDTap,
where we save notations by denoting Dy = ﬁ tT;l" 0e(Utgn, Ye4n )/ OVt4n-

Theorem 4 (Asymptotic Variance Estimation). Suppose Assumptions 1-6 hold. There exists a positive constant cg such that
E\ej(Ut+n,'yo,t+n)|4 <eg<ooforalll <j<gandl <t<T —n.Suppose max{m,br} maxnri<i<t |9t — Yo,t|| = 0p(1)
and by /(1 + m)/T = o(1). Then we have |H — H| 5 0as T — .

Remarks on Asymptotic Theory. The asymptotic analysis will facilitate the construction of the confidence inter-
val for the time-varying parameters and their combinations. The conditions in Theorem 4 are a natural extension of those
in Newey and West (1987), which establishes the consistency of the HAC covariance estimator when both the numbers
of parameters and moment conditions are fixed.

It is well known that the asymptotic theory of the HAC covariance estimator and related test statistics do not
perform well in finite samples. The literature has documented that the bootstrap can help enhance the finite sample
performance compared with the critical values based on first-order asymptotic theory in GMM (Hall and Horowitz,
1996). Based on Theorems 3 and 4, we provide detailed descriptions of a bootstrap procedure by Kato (2011) and Inoue

and Shintani (2006) for conducting inference in Appendix C.2.

"The weights k(j/br) satisfy |k(j/br)| < C for finite constant C' and limy,. 00 k(j/br) = 1 for each j. Andrews
(1991) generalizes the class of kernels that satisfy {k(-) : R — [-1,1]|k(0) = 1,k(z) = k(-=z), [*_ K (z)dz <
00, k(-) is continuous at 0 and at all but a finite number of other points}. Examples of kernels include the truncated,
Bartlett, Parzen, Tukey-Hanning, and Quadratic spectral functions. We refer readers to Andrews (1991) for details.

2The main idea is to approximate the serially dependent moment conditions with a MA representation of possibly
large order. Such a strategy is also used in Ng and Perron (1995). Other methods include minimizing the mean squared
error of the HAC covariance matrix estimator in (Andrews, 1991), which excludes truncated and trapezoidal kernels.
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Estimation efficiency may be improved by including a q x ¢ weighting matrix I/ that may depend on the sample
data, in which case the objective function can be replaced by I' = arg minr %H gr(D)W~12||2 4 AJ(T). Similar to Dong
et al. (2021), who study a GMM procedure with global smoothing by choosing W = I, for ease of representation, in
the main context of this paper, we explore the RegGMM estimator by choosing W as the identity matrix but provide
a detailed analysis of the consistency of RegGMM under a general weight matrix in Appendix B. Efficiency gain could
be further achieved by considering a one-step continuously updated estimator (CUE), which is studied by Newey and
Smith (2004) under a conventional GMM framework without regularizations.

We do not have to specify the DGP for time variation in our setup, but we need a large ¢ > p(T — n). However, if
we impose the additional condition that time variation exhibits certain smoothness over the scaled time (e.g., v: = v(t/T")
for some unknown twice differentiable function +(-)), we conjecture that ¢ could be fixed. In such a case, we could use

local linear smoothing and formulate a local objective function at each fixed time period t € [n + 1,T1:

t+n+[Th] t+n+[Th]
. 2 2
iy I > Ko tyne(Us,vs)|I” + A > s —vs—1ll%,
s=t+n—[Th] s=t+n—[Th]+1

where 15 = ao + ou[s — (t+n)]/T, B = (ap, 1), Ko jp4n = + K( S’gf:’” ), the kernel K(-) : [-1,1] € R" is a prespecified
symmetric probability density, and h = h(T') is a bandwidth with » — 0 and Th — oo as T' = oco. We conjecture that
using the ridge fusion penalty could help alleviate the key smoothing role that the bandwidth h has been playing in local

smoothing estimation.

Selection of Penalty Tuning Parameter. RegGMM involves one penalty tuning parameter, A, which affects
its finite sample performance. Andrews (1999) and Inoue (2006) propose studying the GMM estimation efficiency and
asymptotic refinement by sampling the cross-sectional moment conditions. Empirically, in an application to asset pricing
modeling, a desirable SDF price test assets accurately while being less sensitive to different choices of instrumental
variables (Nagel and Singleton, 2011; Gagliardini and Ronchetti, 2020; Antoine et al., 2020). Hence, obtaining a balance
between first-order estimation accuracy and second-order stability across different moments is desirable. Hence, we
select A using cross-validation (CV) by sampling from moment conditions.

Specifically, for k-fold CV, (k — 1) folds are used for parameter estimation, and the hold-out fold is used to val-
idate the model. Borrowing the notations from Andrews (1999), for each A € M, for v-th fold, we obtain f‘(;) =
arg minreséHg<T_”)(F)H2 + ALDD'T, where g5 (1) = 7= ST " I ye(Uttn, Ye4n) and I_, is a ¢ x ¢ diagonal ma-
trix whose i-th diagonal value is 0 if the i-th moment condition is included in the v-fold, and 1 otherwise. Then,
the tuning parameter can be obtained by minimizing the average predictive error in the testing samples (CV error):
A" = argminye pm 25:1 I g(T”) (f&”))HQ, where gé? ) (D™ collects the predictive pricing errors in the testing moments. To
reduce variation in the assessment due to the sample splitting issue, we perform the 5-fold CV 10 times in our applications
and report the average selected tuning parameter. We will assess the validity of a selected tuning parameter by perform-
ing a test on whether the practically chosen tuning parameter is optimal, which can produce the least cross-validation

error. Practically, we conduct this hypothesis testing procedure and obtain the p-value via the CV with confidence (CVC)
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method from Lei (2020). We explain the p-value construction details in Appendix C.1.

2.3 Dynamic Stochastic Discount Factor Models.

Figure 2 shows smooth and abrupt changes in time-varying performance for multiple well-known risk factors dur-
ing recent decades, which challenge empirical asset pricing studies using constant parameter models. We now illustrate
the use of RegGMM in the conditional asset pricing literature for the SDF model. In this subsection, we consider a special
setup, where the pricing error w1, is a linear function of time-varying parameters. In this case, the RegGMM estimator
enjoys a closed-form solution for the entire set of unknown time-varying parameters over the sample period.

In the absence of arbitrage, a time-varying SDF, m;1, exists such that for any traded asset ¢ with an excess return

at time ¢ of r;, we have the conditional moment equation:
E[miyiripa|l] = On, (6)

where 741 is an IV x 1 vector of excess returns on NN assets. A beta pricing model can be cast in the SDF framework by

specifying the SDF as a linear function of f;41, where f;11 is a p x 1 vector of observable risk factors:

mi41 = 1— 7£+1ft+17 )

where v; is a p x 1 vector of time-varying SDF loadings or risk price parameters. We can plug equation (7) into equation

(6) to estimate the SDF loadings. In the following notation, 7411 f{1; is an N x p matrix of explanatory variables and
On = Elmetiren|l] = E[(1 = viga fer)reni L] = Elrer — (rev figa)ves | L)

The interpretation for ;41 is important from the economic perspective. Cochrane (1996) assumes E(fiy1|I:) = 0p,
and then, E(rii1f{.1|I¢) is the conditional covariance matrix between asset returns and risk factors, and 41 is the
corresponding conditional factor risk price. When E(fi+1|1:) # 0p and E(r¢41 f{+1|1¢) is the conditional second moment,
the factor risk price interpretation also applies in Cochrane (2009). As discussed in Feng et al. (2020), the risk prices of
factors differ from their risk premia. Risk premia are supposed to be positive to compensate for risk-taking behavior.
However, risk prices can be negative due to their combination with other factor exposures when constructing the SDF
model. The closed-form solution for the unconditional model exists when ~; 11 is constant.

In our setup, the time-varying parameter is not assumed to be a deterministic function of time or conditioning vari-
ables. As discussed in Cochrane (2009), conditional modeling requires instrumental variables for the GMM estimation.
To estimate T' = {7;41}7—,, we transform equation (6) from a conditional SDF representation to an unconditional one
by scaling instrumental variables, which can be functions of some conditioning variables. For the choice of condition-
ing variables in the empirical literature, econometricians usually consider those that do not correlate with future pricing
errors but might be weakly correlated with future returns, such as lagged returns, predictable firm or portfolio character-

istics, and macroeconomic or aggregate predictors. For example, Welch and Goyal (2008) document inflation, treasury bill
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return, various aggregate market characteristics, yields for TERM, and default factors as conditioning variables. Suppose

the instrumental vector %, € R¥ is uncorrelated with the future pricing error u¢41. Then we have

0; = E{(1—vsiferr)re: ® 7} ®)

= E(M,H.l ® gt), (9)

where w11 = mip1rie1 = (1 — Yip1 fe1)re41 is the N x 1 vector of pricing errors, which is also the ex-post discounted
return in asset pricing.
To implement the proposed procedure, we introduce the following equivalent matrix expression for the optimiza-

tion problem in equation (3):

I' = argmin
r

1 2
———||A' - B r 1
o AT — Bl ), (10)
where ¢ = G(k — 1)/k is the effective number of moment conditions in the k-fold CV procedure, B = ZtT;ll B; with
By =741 ® 2z being a g x 1 vector,and A = (A1, -+, Ar_1)isa ¢ x p(T — 1) matrix with A; = (1141 ® 2¢) ® fi4, being

a g x pmatrix fort = 1,--- ,T — 1. Therefore, the proposed RegGMM estimator enjoys a closed-form solution:
I=[AA+ X\(T -1)’D'D]"'A'B, (11)

where D is as specified in equation (5) with n = 1.

Practitioners often encounter a large pool of conditioning variables that affect return prediction or asset pricing
performance. In this paper, dimensionality becomes a blessing because it assists in estimating p(7" — 1) parameter val-
ues. Rather than shrinking or selecting variables from a large pool of conditioning variables, RegGMM utilizes the rich
information from a high-dimensional set of moment restrictions to determine the time-varying SDF weights. Hence, it
can help handle large-dimensional data and avoid degenerated model performance due to misspecification issues.

RegGMM could also be used to test parametric conditional SDF specifica’cions.13 For example, one could consider
a model specification mi41 = 1 — (0'z¢ + v4)’ fi+1, where 6 is a matrix of time-invariant parameters and z is a vec-
tor of conditioning variables that drive the time-varying SDF weights. Nagel and Singleton (2011) consider this linear
functional form in testing a conditional SDF model, and Roussanov (2014) propose a nonparametric cross-sectional re-
gression that is robust to functional form but still needs to specify conditioning variables. In our RegGMM setup, one
could estimate the path of 4:, and a constant (or zero if z; includes an intercept) path subject to sampling variation would
suggest linear modeling of risk premia through z; is adequate. This would provide a direct test for a parametric time-
varying SDF model that assumes time-varying SDF loadings as a linear function of a prespecified set of priced risk factors

met1 = 1 — (0'z) fi41, as is discussed in Cochrane (2009).

We thank one referee for suggesting this interesting extension for future work.
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3 Simulation Study

We now conduct comprehensive simulation studies to examine the finite sample performance of RegGMM. We
test two different DGPs for robustness. In DGP 1, we model time variation as a deterministic function of time, exhibiting
both abrupt breaks and smooth changes. In DGP 2, we focus on the capability of RegGMM to estimate parameter values
when time variation is a function of a relatively large set of conditioning variables. For DGP 2, smoothed nonparametric
estimators, such as global and local smoothing methods, encounter the curse of dimensionality problems. We also pro-
vide performance comparisons by reporting estimation results from existing parametric and smoothed nonparametric

methods. Specifically, we conduct simulation exercises in the following standard panel regression setting:
Yit = V1,6 +Y2,eTie + Wire, E(uig|ze) =0fort=1,--- ,Tandi=1,--- ,N,

where vy = (V1,t,72,¢) is the unknown time-varying parameter vector, and z; ~ N (0, Iv) and is orthogonal to the N x 1
conditional pricing error vector u;, which may have serial dependency u:,; = pi€i—1 + €:,c with €;,¢ ~ i.2.d.N(0,0.1)
and N = 100. The K x 1 vector z; with K = 10 is a set of conditioning variables that are orthogonal to u; and follows
zt = pazi—1+ve with vy ~ 1.4.d.N (0, 1). This is a set of base instruments to generate a large set of instrumental variables
for RegGMM. We examine the finite sample performance of RegGMM under different degrees of serial dependency by
altering the values of p1 € [0,0.95] and p2 € [0.5,0.95]. When p1 = 0, the unconditional moment functions have serial
dependency m = 1 with weak or strong linear dependence. When p; # 0, the unconditional moments exhibit serial
dependency as a mixture of moving average and autoregressive processes, which can be approximated by an M A(m)
sequence with m increasing with the sample size (e.g., Inoue, 2006).

We consider two sample sizes, T = 120 and 360 with an out-of-sample period of 60 observations. The choice
of T covers sample sizes typically encountered for monthly and daily data in the empirical asset pricing literature.
To construct the set of instrumental variables, we consider a sequence of orthogonal basis functions in the Hilbert
space L?[0,1] with ¥(z) = {¢;(2)}j=1, where 1o(2) = 1 and 9;(2) = v2cos(rjz) for j > 1. Let the instrumental
variables z, = (1, ¥ (%), V(ZTi—1), U(Te—2)", V(21,t)", ¥(21,0-1)", U (21,e—2) - , U (214)", ¥(21,6-1) , Y (21,4—2)")’, where
T =~ SN @i Foreach T, we let 7 = 3 or 9 and so have K = 133, 331 respectively, which correspond to two choices

of § = NK = 13300, 33100 given N = 100. We then have the following unconditional moment restrictions:
E[(y: — 71,6 — Y2,0%1) ® 2] = 0g,

where n = 0 in this example and we select the tuning parameter X via the repeated 5-fold CV and thus effectively use
q = 4q/5 > pT moment conditions for RegGMM.

We consider two classes DGPs to generate ;. In DGP 1, we consider the time-varying parameter as a deterministic
function of time but exhibits multiple structural breaks and different degrees of smoothness. In DGP 2, we allow time
variation as a function of 10 conditioning variables z;, where different conditioning variables drive time variation in

different subsampling periods.
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DGP 1 [Time-varying parameters as a deterministic function of time]:

2t|sin(4nt/T)|/T, t=1,---,T/2,
Yi,t =
G1(10¢/T,2,7), t=T/2+1,---,T
and
6(3t/T)° — 5(3t/T)" +8(3t/T)* — 7(3t/T)° + 3t/ T, t=1,---,T/3,
V2,6 = 4 3cos(67t/T), t=T/3+1,---,27/3,
9| sin(9t/T)| /T, t=2T/3+1,---,T

where G1(2, k,a) = {1+ exp[—k(z — a)]} "

DGP 2 [Time-varying parameters as a function of conditioning variables]:

1 l
Y2,6 = log <1 + ‘ Z@tijtvj > + Znt,j sinz,; t=1,2,..,T
j i

—y Py

where

0;1(5 < 5), t=1,---,7/2, n;1(j < 5), t=1,---,T/2,
05 = Nej =
GJH(]>5)7 t:T/2+177Ta n]]l(]>5)’ t:T/2+177T7

with 6; ~U(0,1),n; ~ U(0,1) and ~1 ¢ is as in DGP 1.

We compare RegGMM with Hansen’s (1982) constant parameter GMM (CGMM), and various alternative time-
varying estimation methods, including local kernel smoothing GMM (LGMM) (Lewbel, 2007), global series smoothing
GMM (GGMM) (Dong et al., 2021), and affine GMM (AGMM) (Nagel and Singleton, 2011)."* For out-of-sample com-
parison, following Lettau and Pelger (2020), we first estimate parameter values up to time ¢ with a rolling window of
T observations and obtain the one-step ahead forecast for the parameter’s value at ¢ + 1 using the estimates at time ¢."°
Such an out-of-sample approach, which assumes similarities between the consecutive parameter values, is widely used

16

in econometric and finance studies.” We also provide a roll window update for the out-of-sample evaluation in the

“We demonstrate the use of these time-varying methods using DGP 1 that y; = (t/T'), where we need to scale ¢ by
the sample size T for estimation consistency (Chen and Hong, 2012). (a) The LGMM estimates are obtained by for each
t € [Th,T—Th], (A1.4,%2.¢) = argmin, ¢ g & 35200 Kot [(yi,e—71 (6/T) =2 (t/T)wi 1)@ for t € (1, Th) J(T—Th, T,
we obtain a pseudo data at time ¢ by reflecting the observations from the time period [t — Th, t] (see Chen and Hong
(2012)). Kyt = + K(35t) and K (u) is the Epanechnikov kernel function K (u) = (1 — «?) if [u| < 1 and 0if |u| > 1. The
bandwidth h = ¢T~'/® with ¢ = 1/1/12 as suggested by Chen and Hong (2012). (b) The GGMM results are based on the
series estimation with Chebyshev polynomials {%(-)}%_,, where g is the order of series expansion and is determined by
AIC as suggested in Dong et al. (2021). Forall¢ € [1,T]and a € R? and b € R?, y1(¢t/T) = ¢'(¢t/T)a and v2(¢t/T) =
¥/ (t/T)b, where (a,b) = argmin, , + 37 [(yie — ¥’ (t/T)a — ' (t/T)bxi.e) ® %)% (c) AGMM assumes time variation as
a linear function of the conditioning variables that v, = a + b(¢/T) in DGP 1 and ~; = 2;6 in DGP 2. (d) For LGMM, we
also have tried ¢ = 1 and the one based on CV as in Li and Yang (2011) with the uniform and Daniel kernels. For GGMM,
we also tried the Fourier and Spline series. RegGMM demonstrates superior performance over LGMM and GGMM with
different kernels, bandwidths, and basis functions.

PWhen conducting out-of-sample studies using local smoothing methods, we construct a pseudo data at time ¢ by
reflecting the observations from the period [t — Th, t].

16For example, when evaluating latent factor models, Lettau and Pelger (2020) use the factor loadings estimated from
the previous T observations on the testing sample. When evaluating covariance matrix estimators, Ait-Sahalia and Xiu
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empirical study.

We assess estimation accuracy based on the following performance metrics, including the average absolute estima-
tion error (Avg.Abs.Err.) £ ZtT:l I7¢ — 7¢||, the maximum absolute estimation error (Max.Abs.Err) maxci1, 1y [|5: — ¢,
and the average squared moment errors (Avg.Mom.Err.) = 37 @}, where T' = 120 or 360 for in-sample studies
and T' = 60 for out-of-sample comparisons. For fair comparisons, we implement CGMM, LGMM, GGMM, and AGMM
estimation under the two augmented unconditional moments respectively.

Table 1 summarizes the finite sample results for RegGMM and other methods under DGP 1. CGMM restricts
parameters to constant and encounters misspecification for time variation. Although AGMM allows for time variation
in parameter values, it also suffers from severe misspecification because it fits parameter values using a straight line.
LGMM and GGMM significantly improve estimation accuracy upon CGMM and AGMM. However, they are inferior to
RegGMM for all studied norms, even though time-variation satisfies the twice-continuous differentiability requirement
in all subsampling periods before and after structural breaks. The reason is that RegGMM can cater to abrupt, smooth,
or mixed types of structural changes and thus produces a more accurate estimation than smoothed nonparametric es-
timation over the whole sample, including the boundary regions. The out-of-sample results in Table 2 also confirm the
superior performance of RegGMM, which is robust to different choices of moment conditions, sample sizes, and degrees
of serial dependency. We show that even though we assist the existing estimation methods by providing the correct set
of conditioning variables, RegGMM still strictly dominates for both the in-sample and out-of-sample results.

Table 3 assesses estimation accuracy when time variation is a function of conditioning variables. We feed CGMM,
AGMM, LGMM, and GGMM with the correct set of conditioning variables so that the correct specification for time
variation is maintained for these methods. Compared with DGP 1, except for the difficulty in capturing the unknown
functional form, DGP 2 raises another serious concern about the curse of dimensionality for smoothed nonparametric
methods. In particular, GGMM is unfavorable because of a clear bias-variance trade-off: an increasing order of series
expansion reduces the approximation errors but leads to less precise or even inconsistent estimates. Not surprisingly,
compared with CGMM and AGMM, GGMM does not help improve estimation accuracy for most cases. We also observe
deteriorated performance for LGMM, mainly due to the boundary bias issue and the curse of dimensionality problem.'”
In contrast, RegGMM attains the best estimation accuracy because it circumvents high dimensionality issues by directly
estimating time-varying parameter realizations with the assistance of increasingly enriched information due to its ability
to strike a balance between model complexity and goodness of fit. In Table 4, we find that the curse of dimensionality
and misspecification issues further escalate the challenges faced by all the alternative methods. Still, RegGMM provides
a desirable resolution and considerably enhances out-of-sample performance in most cases.

We obtain the RegGMM estimates for each scenario based on the data-driven tuning parameter value A described

(2017) directly adopt the estimated covariance matrices using data from the previous month for the portfolio rebalancing.

7Both local constant and local linear GMM estimators are proven consistent, but the latter doubles the number of
parameters to be estimated compared with the first one. When there is a large number of conditioning variables, the
number of effective observations that fall in the neighborhood of the realization value of each conditioning variable
decreases. Thus, we report the results based on the local constant LGMM based on fixed bandwidth because the fixed-
bandwidth asymptotics is helpful when there are many conditioning variables (Antoine et al., 2020)
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in section 2.2. For robustness check, we also consider two other choices of tuning parameter, namely, A = 0and A = 1,
which correspond to overfitting and underfitting for parameter values, respectively. We evaluate the appropriateness of a
given tuning parameter by calculating its associated cross-validation error and p-value.'® A p-value smaller than a certain
significance level « indicates the rejection of the optimal hypothesis for a chosen tuning parameter. Table 5 summarizes
the tuning parameter performance. We note that the choice of A = 1, which results in underfitting, is inappropriate due to
the significant CV errors and close-to-zero p-values for all DGPs considered. When A\ = 0, zero penalties are imposed on
time variation, and we sometimes fail to reject its appropriateness when the sample size is small. The reason is that fewer
parameters need to be estimated when T is small, therefore more moment conditions can aid in accurate estimation.
When T is large, the choice of A = 0 does not balance the goodness of fit and the magnitude of time variation. Therefore,
we need a data-driven tuning parameter value. For each studied DGP with various degrees of serial dependency, the
5-fold repeated CV criterion generates the optimal tuning parameter values with the least CV error and p-values close
to 1. The penalty values in DGP 2 are generally smaller than those in DGP 1 because DGP 2 exhibits a more significant
amount of time variation and thus requires a smaller penalty. The appropriateness of the chosen tuning parameter A is
robust to different sample sizes and numbers of moment conditions.

Finally, Figure 1 plots the histograms of the studentized RegGMM's time-varying estimates for ~ >/ 42, from
bootstrap samples with (p1, p2) = (0.95,0.95). The asymptotic theory suggests that the studentized estimates should
follow an N (0, 1) distribution. We document that enabling serial dependency still offers a good approximation in finite

samples. The histograms reasonably match the N (0, 1) distribution, which verifies our inference results.

4 Empirical Applications to Asset Pricing Models

4.1 Data

In this section, we examine the performance of the time-varying SDF model based on the U.S. equity monthly data
from January 1972 to December 2021. We implement RegGMM using the training sample from 1972 to 2011 to study the
in-sample goodness of fit of the model. We consider the recent decade for the out-of-sample study.

The empirical literature primarily uses characteristics-sorted or managed portfolios for testing asset pricing models
because these portfolios have stable factor loadings and reflect various risk exposures. We follow the data construction
in Feng et al. (2021) and take 61 firm characteristics from 6 major categories: momentum, value, investment, profitability,
frictions (or size), and intangibles. To evaluate the RegGMM performance, we try different test assets for different cross-
section sizes. First, we use monthly bivariate-sorted 3 x 2 value-weighted portfolios between size and other characteristics
(3 x 2 x 60 = 360), which considers the effect for small caps. Second, we consider monthly univariate-sorted 5 x 1 value-
weighted portfolios (10 x 1 x 61 = 610).

We also try different factor combinations for robustness checks. Because of the out-of-sample research design for

18See Section 2.2 for the definition of the cross-validation error. The p-value is based on the null hypothesis that a given
tuning parameter is optimal. The construction of the p-value is provided in Appendix C.1.
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investment performance, only traded factors are considered. We consider 5 factors of Fama and French (2015): excess
market factor, small-minus-big (SMB), high-minus-low (HML), robust-minus-weak (RMW), and conservative-minus-
aggressive (CMA). For an extended model of 10 factors, we further add momentum (MOM, winner-minus-loser), short-
term reversal (STR), long-term reversal (LTR), betting-against-beta (BAB), and quality-minus-junk (QM]).

Finally, we have two lists of instrumental variables for further robustness checks. We follow Welch and Goyal (2008)
and include 10 equity predictors for conditioning variables, including treasury bill return, inflation, yields for TERM and
default factors, and various aggregate equity market characteristics (earnings-to-price ratio, stock variance, net equity
issues, dividend yields, leverage, and liquidity). We use these 10 conditioning variables and create 110 instrumental
variables from the one-month lagged predictors, quadratic terms, and interactions. We also create two-month and three-

month lagged versions and produced 330 instrumental variables.

4.2 Asset Pricing Performance

Hansen-Jagannathan Measure. The literature has adopted multiple performance criteria to evaluate asset pric-
ing models. To evaluate the goodness of fit of an SDF model, the H]J distance (Hansen and Jagannathan, 1997) is widely
used for GMM estimation.Recent literature adopts multiple R? measures for model performance to evaluate a linear beta
pricing model. For example, Feng et al. (2021) consider total R? and cross-sectional R? to evaluate the time-series and
cross-sectional goodness of fit. We follow these criteria and create an HJ-R?, which assesses the moment condition fitness
and reflects an SDF model’s relative asset pricing ability over a benchmark one. Given a model M4 withm: =1 — v, f:

and E(m¢r¢) = Onx1, the N X 1 vector of cross-sectional pricing errors is

T
1
e(Ma) = T Z MyeTe.
t=1
Then, the aggregated cross-sectional pricing errors with equal weight to each asset follow
Q(Ma) = e(Ma)'e(Ma).

We can do the same calculation for the constant parameter SDF model. Then, we define the HJ-R?* as

Q(Ma)
Q(Msp)

HJ-R*=1- (12)

A higher HJ-R? value indicates better asset pricing goodness of fit, and a positive HJ-R* value indicates that model M4
outperforms the benchmark model Mp. In the empirical analysis, we use the standard Capital Asset Pricing Model
(CAPM) as Mp, which assumes that the market factor is used to approximate the SDF. We estimate the corresponding
constant parameter SDF model in our training sample for this calculation.

Table 6 shows the improvement of the goodness of fit by allowing time-varying factor risk price estimates over the
constant parameter GMM model. We provide results for different test assets (bivariate- and univariate-sorted portfolios),

different factor models (10 and 5 factors), and different numbers of instrumental variables (330 and 110). We also calculate
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the performance values for alternative time-varying methods, including local GMM, global GMM, and affine GMM. For
in-sample goodness of fit, RegGMM generates higher HJ-R? values than all alternative methods. Allowing time-varying
modeling (local, global, and affine GMM) does not always help because the constant parameter GMM is more robust
than other methods. Alternative time-varying estimation methods might still suffer from model misspecification errors,
but RegGMM performs better because it avoids specifying the DGP for time variation. Furthermore, we do not find thata
larger number of instrumental variables has better goodness of fit. The reasons for this may be that the predictive signals
are mainly from the one-month lagged conditioning variables in Welch and Goyal (2008) and that there is no additional

information from two- and three-month lagged ones.

Time-Varying Risk Price. Figure 2 plots the year-by-year performance (annualized returns) of those 10 risk fac-
tors. Though all factors achieve highly positive gains in the overall sample, they show unsynchronized time-varying
performance in different periods. For example, during the 2008 financial crisis, the market and Betting-against-Beta
(BAB) factors dramatically dropped by 44%, but other fundamental factors such as RMW (Profitability) and QM] (Qual-
ity) delivered 20% and 30% gains, respectively. Even for the famous Fama-French factors, one can also find the relatively
weak performance of CMA in the 1980s, RMW in the 1990s, and HML in the 2000s, respectively. These unsynchronized
performances provide strong evidence for the time-varying risk premia or prices of factors. We must understand the
importance of their time-varying decomposition in forming the SDF.

The main advantage of RegGMM is that it provides the changing paths for time-varying parameters regardless
of the sources or forms of time variation. Thanks to the macroeconomic conditioning variables used in RegGMM, our
time-varying factor price paths can reflect market timing information about the business cycle, such as treasury bills,
inflation, term spread, and default yield. We can illustrate how risk price estimates of multiple factors change smoothly
over time '?, showing the individual factor time-varying importance of composing the SDF. We plot time-varying factor
risk price estimates in Figure 3 and 4.

In addition to fixing the last values for the out-of-sample strategy, we have also provided a rolling window updat-
ing scheme to show the robustness. To maintain the smoothness for the time variation, we plug the previously estimated
parameters into the fusion penalty and use the same penalization level. Therefore, for +; in a new period, its estimation
only uses information up to this period. More importantly, the previous estimation before this period is never revised
with the updated information. We show the rolling window update for +; in Figure 3 and 4 for the recent 10 years. There-
fore, the out-of-sample ; forecasts are also time-varying and capture information updates. For example, the increasing
weights for the market factor reflect the bull market in the recent decade.

Finally, the asymptotic variance and confidence intervals are another output of RegGMM, which helps identify
the significance of factor time-varying importance. We construct the 95% confidence intervals to evaluate the usefulness
and regime-switching of a factor for the time-varying SDF construction. Two examples are provided with graded 95%

confidence intervals in Figures 3 and 4. In the Fama-French 5-factor model, the factor risk price for CMA (Investment) has

“Researchers usually find abrupt changes or jumps for portfolio or factor returns in the daily or higher frequency data,
yet we study monthly data in this paper.
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decreased since its slow decline in the 1980s and became insignificant after 1997. For the 10-factor SDF, we also find that
Short-Term Reversal (STR) has become insignificant since 1996 due to its previous weak performance. These decreasing

factor risk price estimation results are robust for both bivariate- and univariate-sorted portfolios.

4.3 Investment Performance

Risk-Adjusted Performance. Figure 5 plots in-sample and out-of-sample absolute investment gains. In theory,
a well-fitted SDF of traded factors is supposed to be the tangency portfolio as a portfolio. We normalize the time-varying
factor risk price estimates (SDF loadings) as portfolio weights and assess their investment performance over alternative
methods. The trade-off for avoiding model misspecification risk faced by alternative methods (local, global, and affine
GMM) is the lack of an explicit specification of driving factors for time-varying parameters. However, we could set the
risk price estimate for the most recent estimate from the time-varying parameter path, which follows the out-of-sample
implementation in the simulation study. Given the slow-moving path of time-varying factor risk price, the most recent
estimates should be helpful in subsequent periods. For a fair comparison between RegGMM and other methods, we fix
the portfolio weights for the entire out-of-sample period in the recent decade. Our RegGMM SDF strategies outperform
most alternative methods in both in-sample and out-of-sample periods in Figure 5.

As the tangency portfolio, the SDF should provide the highest Sharpe ratio for risk-adjusted performance. To
demonstrate its performance in fitting the time-varying risk price, we provide annualized Sharpe ratio numbers in Panel
A of Table 7. Our RegGMM SDF time-varying strategies deliver the highest in-sample Sharpe ratios for monthly rebal-
anced portfolios, even higher than the mean-variance efficient portfolio. This strong evidence shows that time-varying
SDF portfolio optimization benefits from additional investment information, possibly due to the macroeconomic con-
ditioning variables used in RegGMM. By responding to the time-varying performance of factors in different periods,
our RegGMM SDF portfolio weights show corresponding reactions in the SDF loadings. For factors that deliver robust
performance in the training sample, such as QM]J, RegGMM provides robust estimates for their SDF loadings.

The positive in-sample results do not necessarily guarantee similar out-of-sample performance. Overfitting risks
exist for regularization methods with the use of a high-dimensional set of macroeconomic conditioning variables. There-
fore, an out-of-sample evaluation is necessary to demonstrate the performance robustness of the SDF model, and it can
be conducted using the SDF strategy’s investment performance. This is why we mainly consider traded factors for con-
structing the time-varying SDF in the empirical analysis. RegGMM allows for both traded and nontraded factors (like the
consumption factor). For the out-of-sample performance in the recent decade, both the 5- and 10-factor RegGMM SDF
strategies outperform the market factor with higher Sharpe ratio values. These out-of-sample results further demon-
strate the advantages of allowing flexible time variation in the SDF model by RegGMM. For a robustness check, the
rolling-window updated RegGMM SDF strategies deliver slightly higher performance than the static ones.

Evaluating downside risk measures associated with trading the SDF or the tangency portfolio is also worthwhile.
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We follow Gu et al. (2020) and define the maximum drawdown for any overlapping one-year period as
MDD = mawogtlthST(Ytl — Yt2)7 s.t. |t2 — t1| <12, (13)

where Y3, and Y, refer to the cumulative log return from month 0 to ¢; and ¢2, and the duration between ¢; and ¢,
is no longer than 12 months. The one-year overlapping maximum drawdown reflects the investment tail risk better
than the overall goodness of fit. Results are provided in Panel B of Table 7. This downside risk measure reveals the
source of the high Sharpe ratio of our RegGMM SDF strategies: low maximum drawdown values. Although the market
factor achieves the highest cumulative return in the most recent decade (Figure 5), its maximum drawdown value is the
highest because the market factor differs from all the other long-short factors that hedge market exposure. Although the
Fama-French 5-factor RegGMM SDF strategies produce lower Sharpe ratios than the 10-factor case, they provide lower

maximum drawdown values.

Model-Adjusted Performance. As the tangency portfolio, our flexible time-varying SDF provides more invest-
ment information than existing asset pricing models, such as CAPM and the Fama-French 3-factor model. To demonstrate
the advantage of estimating the time-varying risk price by RegGMM, we provide robust and highly positive results for
unexplained monthly alphas and their significance in Table 8. Following the above implementation, we regress the in-
sample and out-of-sample RegGMM SDF strategies over the benchmark models and report the unexplained intercepts.
We also show comparison results for other methods.

We include the constant parameter GMM, the mean-variance efficient portfolio, and the equal-weighted portfolio,
which are commonly used comparison benchmarks for investigating the investment performance of SDE. We show robust
results for 360 bivariate- and 610 univariate-sorted portfolios as different sets of test assets, 5- and 10-factor models, and
110 and 330 instrumental variables. First, we find our 5- and 10-factor RegGMM SDF strategies deliver the highest in-
sample alphas against CAPM and the Fama-French 3-factor model. All RegGMM SDF strategies have economically and
statistically significant monthly alphas of more than 0.35% for a 40-year sample in Table 8. For a robustness check, the
rolling-window updated RegGMM SDF strategies deliver higher and more significant investment performance than the
static ones, demonstrating the advantages of the time-varying models.

Thanks to the use of macroeconomic conditioning variables with flexible time variation assumptions by RegGMM,
the additional investment information is driven by the factor timing ability given by the dynamic SDF model. For exam-
ple, in Figures 2 and 3, our time-varying risk price estimates respond to the decaying performance of HML and the rising
performance of SMB in the 2000s. For the 10-factor RegGMM SDF strategies in Figure 4, we also find that the slowly de-
creasing RegGMM estimates capture the decreasing performances for MOM and STR. The changes in our time-varying
SDF loadings help capture the time-varying risk premia for risk factors in various regime-switching scenarios.

Second, although the market factor dominates in the most recent decade in Figure 2, our 10-factor RegGMM strate-
gies robustly provide significantly high alphas of about 0.55% against CAPM and the Fama-French 3-factor model in

Table 8. By contrast, most investment strategies rarely show positive and significant results. We see that, though the
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Fama-French 3 factors are included in these portfolios, any portfolio with nested factors does not easily outperform
the benchmark. The constant GMM SDF strategies are helpful, but our RegGMM SDF strategies provide better results

because of the use of a high-dimensional set of macroeconomic variables with flexible assumptions on time variation.

5 Conclusion

By exploiting a high-dimensional set of moment restrictions, we propose a ridge fusion-based regularized GMM
(RegGMM) estimation method for flexible time-varying coefficient models. RegGMM consistently estimates time vari-
ation over the entire sample period without performing shrinkage, selection, or smoothed nonparametric estimation.
Existing smoothed nonparametric estimation methods assume that time-varying parameters are functions of time or ob-
servable conditioning variables and require differentiability conditions on time-varying parameters that rule out abrupt
structural breaks. They do not perform well near the endpoints of the sample period, due to the well-known bound-
ary bias problem. They also suffer from the curse of dimensionality problem when the set of conditioning variables is
large. To the best of our knowledge, our approach is among the first with the capability of consistently estimating flexible
structural changes, which can be driven by time, observable or unobservable factors, or a mixture of them. Moreover, by
introducing a ridge fusion regularization on the total amount of time variation in the whole sample, our method allows
for abrupt, smooth, and dual-type structural changes. It has a lower computational cost than existing methods because it
is a global one-step procedure and enjoys an appealing closed-form solution for linear models. We establish consistency
and derive the convergence rate and asymptotic distribution of the proposed RegGMM estimator.

In applications to asset pricing, RegGMM offers an alternative solution for estimating time-varying stochastic dis-
count factor models. For U.S. equities from the past five decades, our time-varying estimates for factor risk price respond
to the changing performance of multiple risk factors and summarize potential factor regime-switching scenarios. We
document improved asset pricing performance of the flexible time-varying SDF model over the constant parameter SDF
model in terms of HJ measures. By outperforming multiple benchmark models, we demonstrate the gains for risk-
adjusted and model-adjusted investment performance of the time-varying SDF model estimated by RegGMM for both
in-sample and out-of-sample analysis. The positive out-of-sample investment gains demonstrate the advantages of Reg-
GMM in capturing time variation, and our positive in-sample results are not due to overfitting. As Hansen (2001) points
out, structural changes can happen in the short or long run in various forms. Therefore, avoiding restrictive specifications
for time variation makes our proposed method free of misspecification errors and the curse of dimensionality issues.

Our approach offers a new direction for addressing some methodological constraints of existing smoothed non-
parametric methods. For example, it is possible to introduce the sparse Li-norm on time-varying parameters in our
penalty function to study regime-switching of factor model selection. One could extend our method to address situ-
ations where time-varying parameters depend on cross-section units in fixed- and large-dimensional panel regression
models. One could also employ our method to estimate large-dimensional dynamic covariance matrices by promoting

similarities in covariance matrices over consecutive periods. All of these could be pursued in future work.
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Table 1: Simulation in-sample Performance: Time Variation as a Function of Time

(p1,p2) Criteria RegGMM CGMM LGMM GGMM AGMM RegGMM CGMM LGMM GGMM AGMM
q=13300 q=33100
T=120
Avg.Abs Err. 0.02 125 0.19 0.18 1.25 0.02 1.25 0.19 0.18 1.24
(0,0.5) Max.Abs.Err. 0.09 311 0.75 0.70 3.14 0.05 3.12 0.74 0.69 3.17
Avg.Mom Err. 0.01 261 0.07 0.06 261 0.01 261 0.07 0.06 2,61
Avg.Abs Err. 0.02 1.26 0.19 0.18 1.26 0.02 1.26 0.19 0.18 1.26
(0,0.95)  Max.AbsFrr. 0.09 315 075 0.69 318 0.04 3.14 075 0.68 319
Avg.Mom Err. 0.01 2,61 0.07 0.06 2,61 0.01 2,61 0.07 0.06 261
Avg.Abs Err. 0.04 1.25 0.19 0.18 1.25 0.02 1.25 0.19 0.15 1.24
(0.95,0.5)  Max.Abs.Err. 0.19 311 0.75 071 3.13 0.09 3.12 0.75 055 3.17
Avg.Mom Err. 0.02 2.62 0.08 0.07 261 0.02 2.62 0.08 0.05 261
Avg.Abs Err. 0.04 1.26 0.19 0.18 1.26 0.02 1.26 0.19 0.18 1.26
(0.95,0.95)  Max.Abs.Err. 0.18 3.15 0.75 0.70 318 0.09 3.14 0.75 0.69 318
Avg.Mom Err. 0.02 2,62 0.08 0.07 2,62 0.02 2,62 0.08 0.07 2,62
T=360
Avg.Abs Err. 0.03 1.81 0.38 0.63 148 0.02 1.81 0.39 051 147
(0,0.5) Max.Abs Err. 0.12 5.49 2.93 3.26 416 0.07 5.46 2.93 3.07 419
Avg.Mom Err. 0.01 486 0.38 0.63 3.58 0.01 4.86 039 050 358
Avg.Abs Err. 0.04 1.81 0.38 052 1.48 0.02 1.82 0.39 052 147
(0,0.95)  Max.Abs.Err. 0.13 5.50 292 3.05 418 0.08 5.45 293 3.06 421
Avg.Mom Err. 0.01 4.86 0.38 051 3.58 0.01 4.86 0.39 0.50 3.58
Avg.Abs Err. 0.06 1.81 0.38 0.63 1.48 0.03 1.81 0.39 051 147
(0.95,0.5)  Max.Abs.Err. 0.23 5.50 292 3.26 415 0.13 5.46 2.93 3.06 419
Avg.Mom Err. 0.02 487 0.39 0.64 3.60 0.02 4.87 0.40 051 3.59
Avg.Abs.Err. 0.06 1.81 0.38 052 1.48 0.03 1.81 0.39 052 147
(0.95,0.95)  Max.Abs.Err. 0.21 551 292 3.04 417 0.13 5.46 2.93 3.05 420
AvgMom Err. 0.02 488 0.39 051 359 0.02 487 0.40 051 359

Notes: For DGP 1 in Section 3, the simulation study is designed to compare the in-sample finite sample performance for
different parameters: length of periods 7" (120 and 360), autocorrelation levels p; and p2, and number of instrumental
variables ¢ (13300 and 33100). We compare RegGMM with the constant parameter GMM (CGMM), local constant GMM
(LGMM), global series GMM (GGMM), and affine GMM (AGMM). We report three different norms of fitting errors:
average estimation error, maximum estimation error, and average moment error, respectively.
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Table 2: Simulation OOS Performance: Time Variation as a Function of Time

(p1,p2) Criteria RegGMM CGMM LGMM GGMM AGMM RegGMM CGMM LGMM GGMM AGMM
q=13300 q=33100
T=120
Avg.Abs Err. 0.71 3.26 1.87 131 2.37 0.69 3.25 1.88 1.28 235
(0,0.5) Max.Abs.Err. 2.28 6.32 481 3.30 5.41 2.32 6.35 491 3.25 5.35
Avg.Mom Err. 0.68 13.19 4.62 2.40 6.93 0.65 13.13 4.68 231 6.82
Avg.Abs Err. 0.71 3.24 1.88 1.34 2.35 0.69 3.23 1.88 1.36 234
(0,0.95)  Max.Abs.Err. 2.30 6.33 477 3.24 5.39 2.34 6.34 482 3.30 5.39
Avg.Mom Err. 0.67 13.06 463 243 6.89 0.65 13.04 464 2.65 6.80
Avg.Abs Err. 0.69 3.26 1.87 1.32 237 0.70 3.25 1.88 1.32 235
(0.95,0.5)  Max.Abs.Err. 2.23 6.33 481 3.28 5.41 2.30 6.35 491 3.25 5.35
AvgMom Err. 0.65 1321 462 241 6.92 0.67 13.14 468 244 6.82
Avg.Abs Err. 0.69 3.24 1.88 135 2.35 0.70 3.24 1.88 1.34 2.34
(0.95,0.95)  Max.Abs.Err. 2.26 6.34 477 3.78 5.39 2.32 6.34 482 3.29 5.39
Avg.Mom Err. 0.65 13.08 463 254 6.88 0.67 13.06 464 258 6.80
T=360
Avg.Abs Err. 0.35 3.68 226 244 2.33 0.35 3.63 2.28 217 2.30
(0,0.5) Max.Abs Err. 0.63 6.90 498 5.84 453 0.61 6.81 495 5.06 459
Avg.Mom Err. 0.15 18.10 6.50 7.85 7.09 0.15 17.66 6.61 6.45 6.95
Avg.Abs Err. 0.35 3.68 227 233 231 0.35 3.63 2.29 217 2.29
(0,0.95)  Max.Abs.Err. 0.64 6.89 5.01 4.92 4.63 0.64 6.81 498 532 4.63
AvgMom Err. 0.15 18.07 6.54 6.91 6.93 0.15 17.64 6.64 6.92 691
Avg.Abs Err. 0.35 3.69 226 2.29 2.33 0.35 3.64 2.28 2.18 2.30
(0.95,0.5)  Max.Abs.Err. 0.67 6.90 498 5.33 451 0.63 6.81 495 5.07 458
Avg.Mom.Err. 0.16 18.16 6.49 6.61 711 0.15 17.69 6.61 6.55 6.96
Avg.Abs.Err. 0.36 3.69 227 2.19 231 0.36 3.63 2.29 2.28 2.29
(0.95,0.95)  Max.Abs.Frr. 0.66 6.89 5.01 541 462 0.65 6.82 4.98 5.34 463
Avg.Mom Err. 0.16 18.13 6.54 6.70 6.95 0.15 17.67 6.64 7.29 6.92

Notes: For DGP 1 in Section 3, the simulation study is designed to compare the out-of-sample finite sample performance
for different parameters: length of periods T" (120 and 360), autocorrelation levels p; and p2, and number of instrumental
variables ¢ (13300 and 33100). We compare RegGMM with the constant parameter GMM (CGMM)), local constant GMM
(LGMM), global series GMM (GGMM), and affine GMM (AGMM). We report three different norms of fitting errors
based on 60 time periods in excess of T': average estimation error, maximum estimation error, and average moment error,
respectively.
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Table 3: Simulation in-sample Performance: Time Variation as a Function of Variables

(p1,p2) Criteria RegGMM CGMM LGMM GGMM AGMM RegGMM CGMM LGMM GGMM AGMM
q=13300 q=33100
T=120
Avg.Abs.Err. 0.03 0.71 0.62 0.71 0.71 0.02 0.71 0.62 0.64 0.71
(0,0.5) Max.Abs.Err. 0.10 245 2.16 2.45 242 0.05 245 2.16 2.15 241
Avg.Mom. Err. 0.01 0.74 0.61 0.74 0.74 0.01 0.74 0.61 0.65 0.74
Avg.Abs Err. 0.03 0.97 0.66 0.68 0.96 0.02 0.97 0.67 0.65 0.96
(0,0.95) Max.Abs.Err. 0.10 2.57 2.55 2.50 2.64 0.04 2.59 2.52 2.46 2.61
Avg.Mom.Err. 0.01 1.40 0.71 0.75 1.39 0.01 1.40 0.72 0.71 1.38
Avg.Abs Err. 0.05 0.71 0.62 0.71 0.71 0.03 0.71 0.62 0.64 0.71
(0.95,0.5) Max.Abs.Err. 0.21 245 2.16 2.45 242 0.10 2.45 2.15 2.15 242
Avg.Mom. Err. 0.02 0.75 0.62 0.75 0.75 0.02 0.75 0.62 0.66 0.75
Avg.Abs Err. 0.05 0.97 0.66 0.68 0.96 0.03 0.97 0.67 0.65 0.96
(0.95,0.95)  Max.Abs.Err. 0.20 2.58 2.55 2.51 2.65 0.10 2.59 2.52 2.46 2.62
Avg Mom.Err. 0.02 1.41 0.72 0.75 1.40 0.02 1.41 0.72 0.72 1.39
T=360
Avg.Abs Err. 0.03 0.82 0.72 0.82 0.79 0.02 0.82 0.72 0.79 0.79
(0,0.5) Max.Abs.Err. 0.12 2.67 2.66 2.67 2.76 0.07 2.66 2.68 2.75 2.75
Avg.Mom. Err. 0.01 0.91 0.75 0.91 0.86 0.01 0.91 0.76 0.86 0.86
Avg.Abs Err. 0.04 0.90 0.73 0.90 0.86 0.02 0.90 0.73 0.84 0.86
(0,0.95) Max.Abs.Err. 0.14 2.65 2.34 2.65 2.54 0.09 2.65 2.30 2.59 2.55
Avg.Mom. Err. 0.01 1.13 0.78 1.13 1.07 0.01 1.13 0.79 1.01 1.06
Avg.Abs.Err. 0.06 0.82 0.72 0.82 0.79 0.04 0.82 0.72 0.79 0.79
(0.95,0.5) Max.Abs.Err. 0.24 2.67 2.66 2.67 2.76 0.14 2.67 2.68 2.75 2.75
Avg Mom.Err. 0.02 0.92 0.76 0.92 0.86 0.02 0.92 0.77 0.86 0.86
Avg.Abs Err. 0.06 0.90 0.73 0.90 0.86 0.04 0.90 0.73 0.84 0.86
(0.95,0.95) Max.Abs.Err. 0.21 2.66 2.34 2.66 2.55 0.14 2.65 2.30 2.60 2.55
Avg.Mom. Err. 0.02 1.14 0.79 1.14 1.08 0.02 1.14 0.80 1.02 1.07

Notes: For DGP 2 in Section 3, the simulation study is designed to compare the in-sample finite sample performance for
different parameters: length of periods 7" (120 and 360), autocorrelation levels p; and p2, and number of instrumental
variables ¢ (13300 and 33100). We compare RegGMM with the constant parameter GMM (CGMM)), local constant GMM
(LGMM), global series GMM (GGMM), and affine GMM (AGMM). We report three different norms of fitting errors:
average estimation error, maximum estimation error, and average moment error, respectively.
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Table 4: Simulation OOS Performance: Time Variation as a Function of Variables

(p1,p2) Criteria RegGMM CGMM LGMM GGMM AGMM RegGMM CGMM LGMM GGMM AGMM
q=13300 q=33100
T=120
Avg.Abs Err. 0.82 0.94 0.73 0.89 0.85 0.82 0.94 0.73 0.85 0.83
(0,0.5) Max.Abs.Err. 2.64 238 2.75 2.38 245 2.62 2.38 2.70 2.82 2.44
Avg.Mom Err. 1.09 1.07 0.84 1.00 0.93 1.10 1.07 0.83 112 091
Avg.Abs Err. 0.51 0.96 0.64 0.65 0.75 0.51 0.96 0.64 0.56 0.78
(0,0.95)  Max.AbsFrr. 191 1.79 1.63 233 211 191 1.82 1.68 217 2.15
Avg.Mom Err. 0.43 1.09 056 0.64 0.78 0.43 1.10 056 051 0.84
Avg.Abs Err. 0.82 0.94 0.73 0.89 0.85 0.82 0.94 0.73 0.86 0.83
(0.95,0.5)  Max.Abs.Err. 267 2.38 2.75 2.38 245 2,63 2.38 2.70 2.83 2.44
AvgMom Err. 1.10 1.08 0.84 1.00 0.93 1.10 1.07 0.83 1.14 091
Avg.Abs Err. 0.51 0.96 0.64 0.67 0.74 0.51 0.96 0.64 0.56 0.78
(0.95,0.95)  Max.Abs.Err. 191 1.80 1.63 231 211 191 1.82 1.68 217 2.15
Avg.Mom Err. 0.43 1.09 056 0.69 0.77 0.43 1.10 056 052 0.84
T=360
Avg.Abs Err. 0.63 0.94 0.72 0.94 0.80 0.62 0.94 0.72 0.80 077
(0,0.5) Max.Abs Err. 231 2.20 216 2.20 212 2.35 2.20 217 2.20 2.06
Avg.Mom Err. 0.64 1.05 0.79 1.04 0.87 0.64 1.04 0.79 0.89 0.83
Avg.Abs Err. 0.70 1.03 0.84 0.99 0.90 0.70 1.03 0.85 0.93 0.86
(0,0.95)  Max.Abs.Err. 1.96 2.08 221 2.08 1.93 1.96 2.07 2.20 241 1.94
AvgMom Err. 0.74 1.29 1.01 1.24 1.03 0.74 1.29 1.02 118 0.98
Avg.Abs Err. 0.63 0.94 0.72 0.94 0.80 0.63 0.94 0.72 0.80 077
(0.95,0.5)  Max.Abs.Err. 2.28 221 216 221 2.13 2.34 2.20 217 2.20 2.06
Avg.Mom.Err. 0.65 1.05 0.79 1.04 0.87 0.64 1.04 0.79 0.89 0.83
Avg.Abs.Err. 0.70 1.03 0.84 0.99 0.89 0.70 1.03 0.85 0.93 0.86
(0.95,0.95)  Max.Abs.Frr. 1.98 2.09 221 2.09 1.92 1.98 2.08 2.20 242 1.93
Avg.Mom Err. 0.75 1.30 1.01 125 1.02 0.75 1.29 1.02 118 0.98

Notes: For DGP 2 in Section 3, the simulation study is designed to compare the out-of-sample finite sample performance
for different parameters: length of periods T" (120 and 360), autocorrelation levels p; and p2, and number of instrumental
variables ¢ (13300 and 33100). We compare RegGMM with constant parameter GMM (CGMM), local constant GMM
(LGMM), global series GMM (GGMM), and affine GMM (AGMM). We report three different norms of fitting errors
based on 60 time periods in excess of T': average estimation error, maximum estimation error, and average moment error,
respectively.
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Table 5: Simulation Robustness on Tuning Parameters

q=13300 q=33100
Periods  (p1, p2) Tuning CV.Err. p-value Tuning CV.Err. p-value
DGP1
A= 12 1.425E-5 1 A =e 125 1.609E-5 0.99
(0,0.5) A=0 2.697E1 0 A=0 1.611E-5 0
A=1 3.921E-3 0 A=1 4.100E-3 0
N =e'?  1444E5 1 A =e 125 1617E5 1
(0,0.95) A=0 3.911E2 0 A=0 1.619E-5 0
T=120 A=1 4.074E-3 0 A=1 4.188E-3 0
A\t =e 1?5 3279E-5 1 A =e 12 3.417E-5 0.95
(0.95,0.5) A=0 2.702E1 0 A=0 3.423E-5 0
A= 3.919E-3 0 A= 4.106E-3 0
A =e 1?5 3211E-5 0.98 A =e 12 3.350E-5 0.74
(0.95,0.95) A=0 3.919E2 0 A=0 3.356E-5 0
A=1 4.073E-3 0 A=1 4.195E-3 0
N=¢ 16 4.640E-6 1 N=¢ 16 5.359E-6 1
(0,0.5) A= 7.596E1 0 A= 4.151E5 0
A=1 2.469E-3 0 A=1 2.511E-3 0
A= 16 4.597E-6 1 A =16 5.285E-6 1
(0,0.95) A=0 4.079E3 0 A=0 2.183E1 0
T=360 A=1 . 2.533E-3 0 A=1 2.568E-3 0
A" =e """ 1.008E-5 1 A =e !5 1.105E-5 1
(0.95,0.5) A=0 7.597E1 0 A=0 4.152E5 0
A=1 2.476E-3 0 A=1 2.517E-3 0
A =e 155 9943E-6 1 At =e 155 1.096E-5 1
(0.95,0.95) A=0 4.079E3 0 A=0 2.184E1 0
A=1 2.543E-3 0 A=1 2.575E-3 0
DGP2
At =e 175 1.433E-5 0.68 =1 1.611E-5 0.56
(0,0.5) A=0 3.525E1 0 A=0 1.611E-5 0.36
A=1 1.239E-3 0 A=1 1.235E-3 0
A=l 1.452E-5 1 A =e 85 1619E-5 0.63
(0,0.95) A=0 5.738E2 0 A=0 1.619E-5 0.30
T=120 A=1 . 2.395E-3 0 A=1 s 2.349E-3 0
A =e 3.294E-5 0.90 A =e " 3423E-5 0.52
(0.95,0.5) A=0 3.530E1 0 A=0 3.423E-5 0.37
A=1 1.259E-3 0 A=1 1.255E-3 0
A\t =e 165 3225E5 1 =18 3.356E-5 0.61
(0.95,0.95) A=0 5.747E2 0 A=0 3.356E-5 0.29
A=1 2.416E-3 0 A=1 2.365E-3 0
N=e X 4.649E-6 1 N =e 195 5366E-6 1
(0,0.5) A=0 7.780E1 0 A=0 4.256E5 0
A=1 5.568E-4 0 A=1 5.252E-4 0
A =e 195 4.606E-6 1 =1 5.293E-6 0.65
(0,0.95) A=0 3.868E3 0 A=0 2.072E1 0
T=360 A=1 ) 6.535E-4 0 A=1 6.394E-4 0
A=t 1.012E-5 1 A=t 1.108E-5 1
(0.95,0.5) A=0 7.781E1 0 A=0 4.258E5 0
A=1 5.633E-4 0 A=1 5.294E-4 0
A =e 185 9974FE-6 1 At =e 85 1.098E-5 1
(0.95,0.95) A=0 3.869E3 0 A=0 2.072E1 0
A=1 6.558E-4 0 A=1 6.438E-4 0

Notes: For a given tuning parameter value, this table reports the cross-validation error and the p-value under the null
hypothesis that the tuning parameter is optimal, for different parameters: length of periods 7" (120 and 360), autocorre-
lation levels p; and p2, and number of instrumental variables ¢ (13300 and 33100). The calculation of the p-value is given
in Appendix C.1. A* is based on the 5-fold repeated CV criterion.
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Table 6: Asset Pricing Performance: Hansen-Jagannathan R?

Bi-Sort Portfolios

Uni-Sort Portfolios

Bi-Sort Portfolios

Uni-Sort Portfolios

Constant GMM

RegGMM
Local GMM
Global GMM
Affine GMM

RegGMM
Local GMM
Global GMM
Affine GMM

76.5%

89.4%
73.0%
52.3%
82.1%

91.0%
75.0%
55.5%
84.6%

10 Factors

72.4%

59.8%

330 Instrumental Variables

88.7%
83.5%
50.6%
78.9%

74.5%
61.0%
23.9%
59.4%

110 Instrumental Variables

89.4%
83.8%
58.9%
80.2%

78.4%
64.1%
34.1%
60.2%

Five Factors

63.0%

77.9%
71.2%
25.7%
66.6%

79.5%
72.1%
39.0%
68.5%

Notes: This table reports the asset pricing performance of RegGMM for the monthly training sample from 1972 to 2011.
As described in section 4.1, we provide results for different test assets (bivariate and univariate sorted portfolios), differ-
ent factor models (10 and 5 factors), and different numbers of instrumental variables (330 and 110). Other comparison

methods are introduced in section 3. The formula for HJ R? is in equation (12).
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Table 7: Risk-Adjusted Investment Performance

MKTRF

CGMM._F5
RegGMM_F5.110
RegGMM_F5_330
MVE_F5

EW_F5

RegGMM_RW _F5_110
RegGMM_RW _F5_330

CGMM_F10
RegGMM_F10.110
RegGMM_F10_330
MVE_F10

EW_F10
RegGMM_RW _F10_110
RegGMM_RW _F10.330

In-Sample (1972-2011)

Out-of-Sample (2012-2021)

Bi-Sort Port

Panel A: Annualized Sharpe Ratio

Uni-Sort Port

Bi-Sort Port

Uni-Sort Port

0.33 0.33
0.96 1.06
1.50 1.43
1.50 1.38
1.18 1.18
0.98 0.98
1.45 1.59
1.84 1.85
1.96 1.83
1.84 1.84
1.46 1.46

1.16

0.73
1.04
0.96
0.77
0.56
0.97
0.93

0.75
1.23
1.26
1.23
0.96
1.19
1.27

1.16

0.83
0.94
0.76
0.77
0.56
0.94
0.75

0.72
1.00
0.98
1.23
0.96
0.97
0.96

MKTRF

CGMM_F5
RegGMM_F5_110
RegGMM_F5_330
MVE_F5

EW_F5
RegGMM_RW_F5_110
RegGMM_RW _F5_330

CGMM_F10
RegGMM_F10_110
RegGMM_F10_330
MVE_F10

EW_F10
RegGMM_RW _F10.110
RegGMM_RW _F10_330

Bi-Sort Port

Panel B: One-Year Maximum Drawdown (%)

Uni-Sort Port

Bi-Sort Port

Uni-Sort Port

46.34 46.34
8.43 9.78
521 6.23
5.64 7.25
7.71 7.71

12.49 12.49
8.99 9.15
9.22 9.68
7.68 8.98
7.74 7.74

10.72 10.72

20.51

541
5.39
437
6.61
12.70
7.18
4.53

10.17
8.52
7.66
6.72
8.99
8.66
7.79

20.51

3.90
7.49
8.98
6.61
12.70
6.96
8.70

8.25
16.95
17.48

6.72

8.99
17.32
18.08

34

Notes: This table reports the risk-adjusted investment performance (annualized Sharpe ratio and one-year maximum
drawdown) for factor investing using the SDF model. We estimate the SDF model from 1972 to 2011 and perform an
out-of-sample analysis from 2012 to 2021. In addition to RegGMM SDF strategies, we include the constant parameter
GMM (CGMM), the market factor, the mean-variance efficient portfolio (MVE), and the equal-weighted portfolio (EW),
for comparison. We also report results for the out-of-sample rolling window (RW) updated RegGMM. As described in
section 4.1, we report results for 360 bivariate- and 610 univariate-sorted portfolios as different sets of test assets, 5- and
10-factor SDF models, as well as 110 and 330 instrumental variables.



Table 8: Model-Adjusted Investment Performance

In-Sample (1972-2011) Out-of-Sample (2012-2021)

Panel A: Jensen’s Alpha (%)

Bi-Sort Port  Uni-Sort Port Bi-Sort Port  Uni-Sort Port
CGMM_F5 0.33*** 0.32%** 0.21 0.14
RegGMMfSJlO 0.38*** 0.42%** 0.26™ 0.14
RegGMM_F5_330 0.39*** 0.42%** 0.14 0.04
MVE_F5 0.33*** 0.33*** 0.05 0.05
EW_F5 0.29*** 0.29"** —0.10 —0.10
RegGMM_RW _F5.110 - - 0.38** 0.14
RegGMM_RW _F5_330 - - 0.21* 0.03
CGMM_F10 0.38*** 0.36™** 0.25% 0.13
RegGMM_F10.110 0.54*** 0.57** 0.61*** 0.32*
RegGMM_F10.330 0.53*** 0.57** 0.57"** 0.30
MVE_F10 0.43*** 0.43*** 0.26™** 0.26™**
EW_F10 0.44*** 0.44*** 0.09 0.09
RegGMM_RW _F10.110 - - 0.69"* 0.32*
RegGMM_RW _F10_330 - - 0.60™* 0.28
Panel B: FE3 Alpha (%)
Bi-Sort Port  Uni-Sort Port Bi-Sort Port  Uni-Sort Port
CGMM_F5 0.32*** 0.29*** 0.16 0.13
RegGMM_F5_110 0.36™** 0.39*** 0.14 0.09
RegGMM_F5_330 0.36™** 0.39*** 0.11 0.06
MVE_F5 0.23*** 0.23*** 0.10 0.10
EW_F5 0.13*** 0.13*** 0.05 0.05
RegGMM_RW _F5_110 - - 0.23* 0.09
RegGMM_RW _F5_330 - - 0.15 0.06
CGMM_F10 0.35"** 0.31"** 0.33"** 0.21**
RegGMM_F10-110 0.54*** 0.56™** 0.61*** 0.44™*
RegGMM_F10_330 0.52*** 0.57*** 0.59™** 0.43**
MVE_F10 0.38"** 0.38"** 0.327** 0.32%**
EW_F10 0.33*** 0.33*** 0.17*** 0.17***
RegGMM_RW _F10.110 - - 0.69"** 0.43**
RegGMM_RW _F10.330 - - 0.63*** 0.41**

Notes: This table reports the risk-adjusted investment performance (alphas from CAPM and the Fama-French 3-factor
model) for factor investing using the SDF model. We estimate the SDF model from 1972 to 2011 and perform an out-of-
sample analysis from 2012 to 2021. In addition to RegGMM SDF strategies, we include the constant parameter GMM
(CGMM), the mean-variance efficient portfolio (MVE), and the equal-weighted portfolio (EW), for comparison. We also
report results for the out-of-sample rolling window (RW) updated RegGMM. As described in section 4.1, we report
results for 360 bivariate- and 610 univariate-sorted portfolios as different sets of test assets, 5- and 10-factor SDF models,
as well as 110 and 330 instrumental variables.
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Figure 1: Simulation: Studentized Estimates for RegGMM

(a) DGP 1 (T=120) (b) DGP 2 (T=120)

— N(0,1) — N(0,1)
mmm Studentized Estimate = Studentized Estimate

(c) DGP 1 (T=360) (d) DGP 2 (T=360)

— N(0,1) — N(0,1)
mmm Studentized Estimate = Studentized Estimate

Notes: This figure shows the studentized RegGMM time-varying estimates for + ST | A2, from bootstrap samples.
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Figure 2: Year-by-Year Annualized Returns for Factors
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Figure 3: Time-Varying Risk Price for the 5-Factor SDF Model
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Notes: This figure shows the time-varying factor risk price (SDF loadings) for the Fama-French 5 factors. The training
sample is the first 40 years, and the test sample is the last 10 years. The out-of-sample rolling-window update scheme is

discussed in Section 4. The shaded area covers the 95% confidence interval for the investment factor, CMA. As described
in section 4.1, we report results for 360 bivariate- and 610 univariate-sorted portfolios as different sets of test assets.
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Figure 4: Time-Varying Risk Price for the 10-Factor SDF Model
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Notes: This figure shows the time-varying factor risk price (SDF loadings) for Fama-French five factors, plus additional
five factors introduced in section 4.1. The training sample is the first 40 years, and the test sample is the last 10 years.
The out-of-sample rolling-window update scheme is discussed in Section 4. The shaded area covers the 95% confidence
interval for the investment factor, STR. As described in section 4.1, we report results for 360 bivariate- and 610 univariate-
sorted portfolios as different sets of test assets.
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Figure 5: Absolute Investment Performance
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Notes: This figure shows the annualized average returns for factor investing using the SDF model. We estimate the model
from 1972 to 2011 and perform an out-of-sample analysis from 2012 to 2021. In addition to RegGMM SDF strategies, we
include the constant GMM (CGMM), the market factor (MKTRF), the mean-variance efficient portfolio (MVE), and the
equal-weighted portfolio (EW), for comparison. As described in section 4.1, we report results for 360 bivariate- and 610
univariate-sorted portfolios as different sets of test assets, 5- and 10-factor models, as well as 110 and 330 instrumental
variables.
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