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Orléans, 169University of Oxford, 170University of Padova, 171University of

Queensland, 172University of San Francisco, 173University of Southern California,
174University of St. Gallen, 175University of Stavanger, 176University of Stuttgart,

177University of Sussex, 178University of Sydney, 179University of Technology
Sydney, 180University of Texas at Arlington, 181University of Torino, 182University

of Toronto, 183University of Toronto Mississauga, 184University of Tübingen,
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196Université Paris 1 Panthéon-Sorbonne, 197Utrecht University, 198Vienna
Graduate School of Finance, 199Vienna University of Economics and Business,
200Vrije Universiteit Amsterdam, 201WU Vienna University of Economics and

Business, 202Waseda University, 203West Virginia University, 204Wilfrid Laurier
University, 205Xi’an Jiaotong-Liverpool University, 206York University,

207Zhongnan University of Economics and Law

November 16, 2022

*The first nine authors in italics are the project coordinators. They conceptual-
ized and designed the project, managed it, conducted the meta-analyses, and wrote
the manuscript. Any errors are therefore their sole responsibility. The other authors
all significantly contributed to the project by participating either as a member of a
research team, or as a peer evaluator. The views expressed here are the authors’
and do not represent the views of the Federal Reserve Bank of New York or the
Federal Reserve System, or any other of the institutions that the authors are affili-
ated with or receive financing from. The coordinators thank Andrew Chen, Amit
Goyal, Campbell Harvey, Lucas Saru, Eric Uhlmann, and participants at the Mi-
crostructure Exchange 2021, Derivatives Forum Frankfurt 2022, Financial Interme-
diation Research Society (FIRS) 2022, Research in Behavioral Finance Conference
(RBFC) 2022, Society for Experimental Finance (SEF) 2022, Society for Financial
Econometrics (SoFiE) 2022 where the paper was runner-up for the best-paper prize,
Vienna-Copenhagen Conference on Financial Econometrics 2022, and the Western
Finance Assocation (WFA) 2022 for valuable comments. They further thank Adam
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Non-Standard Errors

Abstract

In statistics, samples are drawn from a population in a
data-generating process (DGP). Standard errors measure the
uncertainty in estimates of population parameters. In science,
evidence is generated to test hypotheses in an evidence-
generating process (EGP). We claim that EGP variation across
researchers adds uncertainty: Non-standard errors (NSEs).
We study NSEs by letting 164 teams test the same hypotheses
on the same data. NSEs turn out to be sizable, but smaller
for better reproducible or higher rated research. Adding
peer-review stages reduces NSEs. We further find that this
type of uncertainty is underestimated by participants.

Online appendix with additional results and all forms used in
#fincap is available at https://bit.ly/3DIQKrB.

https://bit.ly/3DIQKrB


1 Introduction
In their recent book, Kahneman, Sibony, and Sunstein (2021) (KSS)
discuss variability in human judgment in terms of noise. They illus-
trate their analysis by judges passing sentence. They decompose total
variation in sentencing into two canonical components: level noise
and pattern noise (Ch. 6). Level noise captures the extent to which
some judges are more lenient than others. Pattern noise, on the other
hand, refers to variation in judgment when the same judge sentences
similar cases. In statistical terms, this distinction can be defined as
across-judge versus within-judge variation. Variation across judges is
also referred as variation in judge fixed effects.

There are similarities to empirical science, where researchers an-
alyze samples to test hypotheses. There is within-researcher variation
due to sampling error. Re-sampling (or bootstrapping) yields different
values of the estimator. The standard deviation (SD) of this distribu-
tion is referred to as standard error (SE) (Yule, 1897). It is a source of
uncertainty that researchers are well aware of when conducting their
tests.

Researchers are less aware that there is an additional level of un-
certainty due to there not being a standard analysis path. Researchers
vary in what they deem to be the most reasonable path in the “gar-
den of forking paths” (Gelman and Loken, 2014). Conditional on the
path, there is a well-defined estimator and standard error. Conditional
on the sample, however, estimates may vary across researchers as
they might pick different paths.1 We refer to this additional variation
as non-standard error (NSE). Note that the adjective, non-standard,
emphasizes the lack of a standard approach. In other words, if all re-
searchers agree on one path being the most reasonable one, then NSE
is zero.

The schema below summarizes the overarching idea of non-
standard errors. Statisticians use the term data-generating process
(DGP) to convey the idea that samples are random draws from a
population. Estimators, therefore, exhibit standard error.

1An important source of such variation is that researchers need to translate con-
ceptual research questions to empirical research questions (Breznau et al., 2022).
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Using the same language, one could say that scientists collectively
engage in an evidence-generating process (EGP). Researchers poten-
tially pick different analysis paths, which is a source of additional
error: Non-standard error. Note that error in this case is to be under-
stood as erratic as opposed to erroneous, in the sense that there simply
is no right path in an absolute sense.2

Let us illustrate the idea with an example. In microstructure, mar-
ket efficiency is conceptually defined as the extent to which a price
process resembles a random walk. Suppose that one is interested in
estimating the trend in market efficiency. To estimate, say, the mean
annual change in market efficiency, a researcher faces many forks in
the road: How to measure market efficiency, at what frequency to
sample the data, how to define outliers, etc. Collectively, we refer to
these decisions as the analysis path.

Our objective is to measure and analyze non-standard errors. The
four questions that we focus on are:

1. How large are non-standard errors in finance?

2. Can they be “explained” in the cross-section of researchers?
Are they smaller

(a) for papers by higher quality teams?

(b) for papers with better reproducible results?

(c) for papers that score higher in peer evaluations?
2Variation in estimates reported in meta studies is of both types. The polar cases

are the following. Estimates vary because researchers did the analysis in the exact
same way, but on different samples (SE). Or, estimates vary because the sample is
the same, but the analysis differs (NSE). Mavroeidis, Plagborg-Møller, and Stock
(2014) is a special case, because they conduct their meta study by applying all ob-
served analysis paths on all samples. They, unlike us, do not focus on distinguishing
the two sources of variation explicitly. For a review of meta studies in finance, see
Geyer-Klingeberg, Hang, and Rathgeber (2020).
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3. Does peer feedback reduce non-standard errors?

4. Are researchers accurately aware of the size of non-standard
errors?

The motivation for these questions is that non-standard errors are un-
desirable in the sense that they add uncertainty. Such uncertainty
becomes particularly worrisome when some estimates are positive,
while others are negative. It is reminiscent of the negative result
known as the Sonnenschein-Mandel-Debreu “anything goes” theorem
(Mas-Colell, Whinston, and Green, 1995, Ch. 17-E). We therefore
want to learn if higher quality coincides with tighter NSEs, and if
feedback reduces NSEs.

Finding answers to the four questions is extremely costly in
terms of human resources. The core structure of an ideal experiment
involves two sizable sets of representative researchers. A first set
of researchers independently tests the same hypotheses on the same
data, and writes a short paper presenting the results. A second,
non-overlapping set of researchers obtains these papers, evaluates
them, and provides feedback in a single-blind process.

We have run such an experiment under the #fincap tag (FINance
Crowd Analysis Project). 164 research teams (RTs) and 34 peer eval-
uators (PEs) participated, with each PE evaluating about ten papers.
The Deutsche Börse kindly made proprietary data available spanning
17 years of trading in Europe’s most actively traded instrument: the
EuroStoxx 50 index futures. This data enabled researchers to test
pre-defined RT-hypotheses3 on several important market trends. This
unique opportunity might explain why participation was exception-
ally high (at least double that of similar experiments elsewhere, dis-
cussed later in the introduction).4 A back-of-the-envelope calculation
shows that total human resources for #fincap span almost a single aca-
demic career: (164 × 2 months + 34 × 2 days ≈ 27 years).

Statistical framework. We define non-standard error as the
interquartile-range (IQR) in estimates across researchers. The reason

3We refer to these hypotheses as RT-hypotheses to distinguish them from the
hypotheses that we test when analyzing the #fincap results. Our hypotheses are
based on the four overarching questions (Section 2.2).

4#fincap was presented to all involved by means of a dedicated website
(https://fincap.academy) and a short video (https://youtu.be/HPtnus0Yu-o).
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for picking a robust dispersion measure instead of SD, is that this
distribution could exhibit fat tails, and thus be prone to outliers.
#fincap itself is a case in point as will become clear. The distribution
of estimates across researchers tends to the distribution of researcher
fixed effects (RFEs), which could be any distribution. Using a robust
dispersion measure, therefore, is a prudent choice.5

Statistical inference in #fincap needs to account for multiple hy-
pothesis testing (MHT) (Bonferroni, 1936; Šidák, 1967). The critical
values for individual tests need to account for multiple teams testing
the same hypothesis. Put simply, if individual tests are performed at
a five percent level, then the probability of at least one turning signif-
icant for multiple tests, (weakly) exceeds five percent. Harvey, Liu,
and Zhu (2016) illustrate how to adjust levels in asset pricing tests.
In his presidential address, Harvey (2017) emphasizes that MHT af-
fects all of finance. We follow in his footsteps when applying MHT
in #fincap.

Finally, to address the overarching questions, we need to analyze
how NSEs co-vary with quality measures, and how they change
across stages. Since NSE is defined in terms of quantiles, we will use
quantile regression to conduct this analysis (Koenker and Bassett Jr.,
1978). Note that ordinary least-squares only models conditional
means, and it is therefore unfit for an analysis of dispersion. In
addition to the first and the third quartile, we will also model the
median, the first decile, and the ninth decile, in order to obtain a more
complete view of the distribution, including results on the inter-decile
range (IDR).

Summary of our findings. We first show that the group of #fincap
participants is representative of the academic community in empirical
finance/liquidity. About a third of the 164 research teams have at least
one member with publications in the top-three finance, or the top-five

5The intuition is as follows. If the number of researchers tends to infinity, then
the distribution of estimates tends to the distribution of RFEs, plus sampling errors.
If, in addition, the sample size tends to infinity, then the distribution of estimates
tends to the distribution of RFEs (because, for each analysis path, the group mean
for this path tends to the RFE associated with this path). This distribution can be any
distribution and might, therefore, exhibit fat tails. Section 2.3 provides a statistical
framework.
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economics journals.6 For the group of peer evaluators, this share is
85%. 52% of RTs consist of at least one associate or full professor.
For PEs, this is 88%. On a scale from 1 (low) to 10, the average self-
ranked score on experience with empirical finance is 8.1 for RTs, and
8.4 for PEs. For experience with market liquidity, it is 6.9 for RTs,
and 7.8 for PEs.

The evidence on the four overarching questions is as follows.
First, the dispersion in estimates across RTs is sizable. All six RT-
hypotheses had to be tested by proposing a measure and computing
the average per-year percentage change. The first RT-hypothesis,
for example, was “Market efficiency has not changed over time.”
The median estimate across RTs is -1.1% with a non-standard
error (IQR) of 6.7%. The IDR is 27.3%.7 The dispersion for the
other RT-hypotheses is similar in magnitude, albeit smaller for
RT-hypotheses that arguably involve fewer decisions on the analysis
path (e.g., testing for a trend in market share).

Statistical tests show that, for all RT-hypotheses, at least a few
estimates are significant (at a family level of 0.5%).8 This number
ranges from 6 (out of 164) for RT-H6 to 125 for RT-H3. We further
test the null hypothesis of no dispersion in researcher fixed effects.
We reject it for all RT-hypotheses. NSEs are therefore statistically
significant for all RT-hypotheses.

Finally, it is worth noting that the uncertainty due to non-standard
errors is similar in magnitude to that due to standard errors. For RT-
H1, for example, the median standard error across RTs is 2.5%. For
a Gaussian distribution, this implies an IQR of 1.35 × 2.5% = 3.4%,
which compares to an NSE of 6.7%.

Second, the quantile regressions show that higher quality tends
to coincide with smaller NSEs. A one SD increase in reproducibil-
ity significantly reduces NSEs by 25.0% and a one SD increase in

6Finance: Journal of Finance, Journal of Financial Economics, and Review of
Financial Studies. Economics: American Economic Review, Econometrica, Jour-
nal of Political Economy, Quarterly Journal of Economics, and Review of Economic
Studies.

7This RT-hypothesis further illustrates the importance of robust statistics. One
RT reports an estimate of +74,491%. This extreme outlier causes the mean and
standard deviation to be 446.3% and 5,817.5%, respectively.

8We use the conservative significance levels advocated by Benjamin et al.
(2018): 0.5% for significance and 5% for weak significance. They refer to the
latter as “suggestive evidence.”
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peer-evaluator rating significantly reduces them by 33.3%. A one
SD increase in team quality, however, significantly raises NSEs by
2.8%. This effect, however, is small in economic magnitude. If IDR
were used instead of IQR, then a one SD increase significantly re-
duces IDRs for all quality measures: 13.3%, 17.9%, and 11.9%, re-
spectively. Overall, higher quality seems to make extreme values less
likely.

Third, peer feedback significantly reduces non-standard errors.
The peer-feedback process involves multiple stages. We find that
each stage reduces NSEs, albeit insignificantly. The reduction across
all four stages is significant and amounts to 47.2%. This number
for IDRs is also significant, and amounts to an even larger decline:
68.2%.

Fourth, RTs mostly underestimate the dispersion in estimates
across RTs, which we tested in an incentivized belief survey. Such
underestimation might well be the reason why non-standard errors
never attracted much attention, until recently.

Finally, we dig deeper to discover what drives dispersion in es-
timates. A particularly useful tool for such analysis is a multiverse
analysis (Liu et al., 2021). For key forks on the analysis path, the
multiverse reveals how sensitive the distribution of estimates is to de-
cisions at each particular fork.

It turns out that many of the key forks in #fincap add substantial
noise. For RT-H1 on market efficiency, for example, it matters which
frequencies teams choose for their variance ratio calculations. Some
teams compare seconds to minutes, others days to months. A compar-
ison of higher frequencies tends to find a decline in market efficiency,
whereas for lower frequencies some find an increase in market effi-
ciency.

The multiverse further reveals that Jensen’s inequality can cause
large dispersion. If a researcher is interested in assessing an N-period
(long-term) trend in Xt, and estimates it based on one-period obser-
vations, then this could add substantial noise (Blume, 1974). Con-
sider, for example, the expectation of a product of two independent
and identically distributed relatives, where a relative is defined as
Xt/Xt−1. Jensen’s inequality implies that the expectation of this prod-
uct is larger than the product of the expected relatives. The multiverse
shows that the noise this adds can become particularly large for teams
who sample at a daily frequency to estimate an annual trend, and use
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relatives instead of, for example, log-differences or a trend-stationary
approach.

Contribution to the literature. The issue of variability in the re-
search process is not new. Leamer (1983), for example, was troubled
by the “fumes which leak from our computing centers.” He called for
studying “fragility in a much more systematic way.”

Replication studies echo his concern as they typically find
much weaker effects and less statistical strength (Ioannidis, 2005,
Open Science Collaboration, 2015, Camerer et al., 2016, 2018).
This is potentially the result of p-hacking: the process by which
researchers try analysis paths until non-significant results turn
significant.9 We caution, however, that poor replication could also
be demand-driven instead of supply-driven. This is the case when
journals prefer to publish papers with low p-values. Munafò et al.
(2017) survey the various threats to credible empirical science and
propose several fixes.

The literature on replicability in finance is young, but growing
rapidly. Examples are: McLean and Pontiff (2016), Hou, Xue, and
Zhang (2018), Linnainmaa and Roberts (2018), Chordia, Goyal, and
Saretto (2020), Harvey and Liu (2020), Ben-David, Franzoni, and
Moussawi (2021), Black et al. (2021), Chen (2021), Mitton (2021),
and Jensen, Kelly, and Pedersen (2022).

None of these replication studies focus on explaining the disper-
sion of estimates in a cross-section of researchers, or study the im-
pact of peer feedback. We are the first to run an experiment, where
this can be done in a clean way. Our objective is to study disper-
sion in estimates, short of a potential bias due to p-hacking. By de-
sign, there is no need to p-hack for #fincap researchers, because any-
one who completes all stages of the project had been guaranteed co-
authorship. Similarly, peer evaluators are guaranteed co-authorship to
ensure clean feedback.

We are the first in finance to run an experiment to study disper-
sion in estimates, but we are not the first in science. Silberzahn et al.
(2018) pioneered the multi-analyst study by letting multiple teams
test whether soccer referees are more likely to draw red cards for

9The p-value is the probability of observing an effect that is at least as large as
the estimated effect, under the null hypothesis that there is no effect.
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players with a darker skin color. Other examples are Botvinik-Nezer
et al. (2020) for neuroscience, Huntington-Klein et al. (2021) for eco-
nomics, and Breznau et al. (2021) and Schweinsberg et al. (2021)
for sociology. We innovate relative to these studies by explaining
dispersion in estimates with quality attributes, by adding peer feed-
back stages, and by soliciting beliefs on dispersion ex-ante. A fur-
ther strength of our study is the large cross-section of research teams:
N=164. It is more than twice the size of any of the other multi-analyst
samples.

The remainder of the paper is organized as follows. Section 2 pro-
vides an in-depth discussion of the project design.10 It further presents
the hypotheses associated with the four overarching questions, and
develops an appropriate statistical framework to test them. Section 3
presents our results. Section 4 concludes.

2 Project design and hypotheses
This section first presents the details of the #fincap experiment, then
presents hypotheses based on the four overarching questions, and fin-
ishes by discussing an appropriate statistical framework.

2.1 Project design
Before starting the #fincap experiment, we had filed a pre-analysis
plan (PAP) with the Open Science Foundation (https://osf.io/h82aj/).
The original version of Non-Standard Errors contains the results of
the analysis outlined in the PAP. This original version remains avail-
able as Tinbergen Institute Discussion Paper TI 2021-102/IV. Sub-
sequent feedback from various presentations and from reviewers at
the Journal of Finance have led to the results presented here. Rel-
ative to the PAP, we now use robust methods to cope with unantici-
pated extreme outliers, we account for multiple testing, and we add a
multiverse analysis to add deeper insight. Appendix A reconciles the
current results with those in the original version.

In a nutshell, the #fincap experiment is about multiple research
teams independently testing the same hypotheses on the same sam-

10The design of #fincap follows the guidelines for multi-analyst studies proposed
by Aczel et al. (2021).
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ple. We refer to these hypotheses as RT-hypotheses and to this sam-
ple as RT-sample. This is to distinguish them from the hypotheses
that we will test based on the results generated by RTs and PEs (Sec-
tion 2.2).11

The RT-sample is a plain-vanilla trade sample for the EuroStoxx
50 index futures with, added to it, a principal-agent flag.12 For each
side to a trade (i.e., buy and sell), we therefore know whether the
exchange members traded for their own account, or for a client. The
sample runs from 2002 through 2018 and contains 720 million trade
records. These index futures are among the world’s most actively
traded index derivatives. They give investors exposure to Europe, or,
more precisely, to a basket of euro-area blue-chip equities. With the
exception of over-the-counter activity, all trading is done through an
electronic limit-order book (see, e.g., Parlour and Seppi, 2008, for
details on limit-order book markets).

The RT-hypotheses are all statements about annual trends in the
following market characteristics (with the null being no change):

RT-H1 market efficiency

RT-H2 realized bid-ask spread,

RT-H3 share of client volume in total volume,

RT-H4 realized bid-ask spread on client orders,

RT-H5 share of market orders in all client orders, and

RT-H6 gross trading revenue of clients.

11RTs and PEs have been recruited mostly by alerting appropriate candidates
through suitable channels (e.g., the https://microstructure.exchange/). To inform
them about #fincap, we created an online repository: https://fincap.academy. The
repository remains largely unaltered (except for, e.g., adding FAQs).

12Trade records contain the following fields: Datetime, expiration, buy-sell indi-
cator, size, price, aggressor flag, principal-agent flag, and a full- or partial-execution
flag. Note that each side to a trade becomes a record, where the aggressor is the side
whose incoming, say, buy order is matched with a resting sell order of the other side.
The record is labeled principal if the exchange member trades for his own account,
and agent when he trades for a client. More details on the sample are in Figure OA.6
of the Online Appendix.
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The RT-hypotheses are presented only briefly here to conserve space.
The full presentation of RT-H1, for example, characterizes informa-
tionally efficient prices as a random walk. Appendix B motivates and
discusses all RT-hypotheses in detail. For the purpose of our analysis,
we like to highlight two points. First, the RT-hypotheses are picked to
address first-order questions in the field of empirical-finance/liquidity.
These questions were used to market #fincap and convince appropri-
ate candidates to join the project. Second, we ask for trends expressed
as percentage changes to make them invariant to choice of unit (e.g.,
are measures expressed in thousands, or not).

Note that there is, purposefully, considerable variation across RT-
hypotheses in the level of abstraction. RT-H1, for example, is on the
relatively abstract notion of market efficiency. RT-H3, on the other
hand, is on the share of client volume in total volume. Such share
should be relatively straightforward to calculate because, in the RT-
sample, each buy and sell trade is flagged agent (client) or principal
(proprietary).

RTs are asked to test these RT-hypotheses by estimating an av-
erage yearly change for a self-proposed measure.13 They are further
asked to report standard errors for these estimates. We compute the
ratio of the two, which we refer to as the implied t-value, or t-value
for short.

RTs write a short academic paper in which they present and dis-
cuss their findings. These papers are evaluated by PEs who were re-
cruited outside the set of researchers who registered as RTs. RT pa-
pers were randomly and evenly assigned to PEs in such a way that
each paper is evaluated twice, and each PE evaluates nine or ten pa-
pers. PEs score the papers by providing an overall rating and a rating
per RT-hypothesis. They do so in a single-blind process: PEs see
the names of RTs, but not vice versa.14 The reason for single-blind
instead of double-blind is to incentivize RTs to exercise maximum
effort.

PEs are asked to motivate their scores in a feedback form where
13RTs are asked to express their results in annualized terms. To some, it was not

clear. We therefore notified everyone of the following clarification that we added
to the FAQ section on https://fincap.academy: “Research teams are asked to report
annualized estimates (and the corresponding standard errors); research teams are
not required, however, to consider only annualized data.”

14In our analysis, we remove PE fixed effects by demeaning (see Section 2.2).
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they are encouraged to add constructive feedback. RTs receive this
feedback unabridged, and are allowed to update their results based
on it. Importantly, the design of #fincap was common knowledge
to all because it had been available on a dedicated website before
registration opened (see footnote 4).

More specifically, #fincap consists of the following four stages:

Stage 1 (January 11 - March 23, 2021.) RTs receive the detailed in-
structions along with access to the RT-sample. They con-
duct their analysis and hand in their results (short paper plus
code). We emphasized in our emails and on the project web-
site that RTs should work in absolute secrecy so as to ensure
independence across RTs.

Stage 2 (May 10 - May 28, 2021.) RTs receive feedback from two
anonymous PEs and are allowed to update their analysis
based on it. They are asked to report their findings in the
same way they did in stage 1.

Stage 3 (May 31 - June 18, 2021.) RTs receive the five best papers
based on the average raw PE score. The names of the authors
of these five papers were removed before distributing the pa-
pers.15 Similar to stage 2, all RTs are allowed to update their
analysis and resubmit their results.

Stage 4 (June 20 - June 28, 2021.) RTs report their final results, this
time not constrained by delivering code that produces them.
In other words, RTs are allowed to Bayesian update their re-
sults (i.e., estimates and standard errors) taking in all the in-
formation that has become available to them, in particular the
five best papers. They could, for example, echo the results
of one of these papers, simply because of an econometric ap-
proach that they believe is superior but that is beyond their
capacity to code. This stage was added to remove all con-
straints and see how far the RT community can get in terms
of reaching consensus.

15If two papers were tied in terms of their average score, then, following the pre-
analysis plan, we picked the one that had highest reproducibility score provided by
Cascad. For more information on Cascad, see the statement of H2 in Section 2.2.
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The stages subsequent to the first one mimic the feedback researchers
get from various interactions with peer researchers in the research pro-
cess before a first journal submission. Stage 2 mimics, for example,
immediate feedback from colleagues over lunch, during seminars, or
in coffee breaks at conferences. Stage 3 mimics indirect feedback by
means of seeing competitive papers that gain a lot of visibility through
endorsements by colleagues, or by being presented in seminars or at
conferences. Stage 4 solicits a final estimate whereby researchers are
allowed to attach weight to estimates of others whom, for example,
they believe implement a superior methodology that they are unable
to code themselves. We like to emphasize that all these stages are de-
signed in a way to keep the full dynamics of a refereeing process at a
scientific journal out of scope.16

2.2 Hypotheses
Before running the experiment, we translated the project’s four over-
arching questions into a set of pre-registered hypotheses. These hy-
potheses all center on the dispersion in estimates across RTs. Our
main measure is the interquartile range, which we refer to as non-
standard error. All hypotheses are stated as null hypotheses and tests
will be two-sided.

The first set of three hypotheses focuses on how NSEs relate to
various quality measures:

H1 NSE of stage-1 estimates does not co-vary with team quality.
Team quality is proxied by the largest common factor in various
candidate proxies for team quality. We prefer an appropriately
weighted average over simply adding all proxies to maximize
statistical power in the regressions. More specifically, we define
team quality as the first principal component of the following
standardized series:17

16Studying such dynamics requires a different experiment that involves “publish-
ing” papers, including the names of the authors. Note that we do reveal the best
five papers (according to PEs) to all RTs in stage 4, but the authors of these papers
remain hidden. Our focus is narrowly on the pure findings and beliefs of the RTs,
avoiding any possible corruption by “the publication game.”

17An important advantage of a principal-component analysis (PCA) is that the
weighting is data-driven, thus avoiding subjective weights. Note that even the five
proxies that enter were picked ex-ante in the pre-analysis plan filed at OSF. The

12



(a) Top publications: The team has at least one top-three
publication in finance or one top-five publication in
economics (0/1) (see footnote 6).

(b) Expertise in the field: Average of self-assessed experience
in market liquidity and empirical finance (scale from 0 to
10).

(c) Experience with big data: The team has worked with sam-
ples at least as large as the sample they analyze in #fincap
(0/1).

(d) Academic seniority: At least one team member holds an
associate or a full professorship (0/1).

(e) Team size: The team size attains its maximum of two
members (0/1).

H2 NSE of stage-1 estimates does not co-vary with reproducibility
score. This score measures the extent to which RT estimates are
reproducible from RT code. The scoring was done by the Certi-
fication Agency for Scientific Code and Data (Cascad). Cascad
is a non-profit certification agency created by academics with
the support of the French National Science Foundation (CNRS)
and a consortium of French research institutes. The objective of
Cascad is to provide researchers with a way to credibly signal
the reproducibility of their research (used by, for example, the
American Economic Review).18

H3 NSE of stage-1 estimates does co-vary with the average PE rat-
ing (RT-hypothesis level). To remove a possible PE fixed effect,
we use demeaned PE ratings in all of our analysis.

The next hypothesis is about convergence in estimates across the four
stages.

H4 NSE does not change across all feedback stages.

PCA results will be discussed in Section 3.2.1.
18Cascad rates reproducibility on a five-category scale: RRR (perfectly repro-

ducible), RR (practically perfect), R (minor discrepancies), D (potentially serious
discrepancies), and DD (serious discrepancies). For #fincap, Cascad converted their
standard categorical rating to an equal-distance numeric one: RRR, RR, R, D, and
DD become 100, 75, 50, 25, 0, respectively.

13
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The final hypothesis focuses on RT beliefs about the dispersion in
estimates across RTs.

H5 The average belief of RTs on the dispersion in estimates across
RTs, is correct. The dispersion predictions were solicited in
terms of the SD measure.

2.3 Statistical framework
To formalize the analysis of non-standard errors in a statistical sense,
consider a set of researchers indexed by j ∈ {1, . . . , J}. All researchers
are given the same sample of size K. Researchers are asked to es-
timate the mean of a particular object (e.g., the per-year change in
market efficiency). All researchers independently decide on the opti-
mal analysis path and estimate the mean accordingly. Collectively, let
these estimates, X1, . . . , XJ, be distributed as:

X j = e j + ε j, (1)

where e j is a researcher-specific mean, henceforth referred to as a
researcher fixed effect (RFE), and ε j is a sampling error. The Central
Limit Theorem (CLT) implies that, for large K, ε j is approximately
normal with mean zero and variance σ2

j,K = σ
2
j/K, where σ2

j is the
path-specific variance of residuals.

Note that sampling errors are likely to correlate across researchers
so that, collectively, the estimates are approximately distributed as:

X
(J×1)
= e

(J×1)
+ ε

(J×1)
, where ε

(J×1)
∼ N

(
0

(J×1)
, Σ

(J×J)

)
, (2)

where Σ is a positive semidefinite matrix. The off-diagonal elements
of Σ are expected to be mostly positive since, if for a particular sample
draw, Xi is above its (unconditional) mean ei, then X j is, most likely,
also above its mean ei.19

19For example, consider the case of estimating the mean of a distribution. If two
researchers estimate this mean by taking the sample average, but one winsorizes the
sample and the other does not, then a particular sample draw with unusually high
values likely yields above-mean estimates for both researchers.
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Non-standard error. Non-standard error is defined as the inter-
quartile range in estimates:

NSE := Q0.75(x) − Q0.25(x), (3)

where x denotes a realization of the random vector X, and Qα(x) is
the αth quantile of x. Note that NSE tends to the IQR of RFEs when
J and K both tend to infinity:

NSE
J,K→∞
→ Q0.75(e) − Q0.25(e). (4)

We reiterate that for the distribution of RFEs (i.e., the distribution of
e) could be any distribution. It is, therefore, prudent to pick a robust
dispersion measure, which is why we use IQR instead of SD. The
latter tends to get dominated by the size of extreme outliers.20

Testing for non-standard error. We test for “significance of non-
standard errors” by testing whether or not there is any dispersion in
RFEs. We do this by testing the following set of null hypotheses:

H0 : e j = ν, ∀ j ∈ {1, . . . , J} , (5)

where ν is the median RFE. Since X j is an estimator of e j, these hy-
potheses can be tested by verifying, for each j ∈ {1, . . . , J}, whether
X j is statistically different from ν. In the implementation, we set ν
equal to the median estimate. If any of these tests rejects the null,
then dispersion is non-zero, and we consider non-standard errors to
be statistically significant.21

20#fincap is a case in point. For RT-H4, one team reports an estimate of
-6,275,383%, whereas the estimates of other teams range from -2,897% to 870%.
The SD based on all estimates is 490,024%, but it is only 245% if one leaves out
the outlier.

21Two more technical points merit discussion. First, we prefer the median over
the mean to have a robust location parameter. The asymptotic variance of the mean
is smaller than that of the median for Gaussian distributions, but typically not for
distributions with fat tails. The reason is that the former depends on variance and
thus on extreme outliers, whereas the latter does not: σ2/N and 1/(4N f (m)), respec-
tively, where N is the sample size, f is the density function, and m is the median.
Figure OA.1 in the Online Appendix shows that, in #fincap, the variance of the me-
dian is an order of magnitude smaller than the variance of the mean. Second, the
proposed test assumes that sampling error is negligible for the median estimate as
an estimator for the median RFE, because randomness in the median estimate is
ignored. Figure OA.1 illustrates that, indeed, the variance of the median estimate is
negligible for #fincap.
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Conceptually, the distribution of X could be obtained by boot-
strapping. Such procedure, however, is infeasible because it requires
that researchers redo their analysis for every new draw of the sample.
Instead, we use multiple hypothesis testing (MHT) results to develop
a feasible testing procedure.

Before turning to MHT, let us pause for a moment and take stock
of what is available to us. The #fincap sample consists of estimates
x j, along with their standard error s j. This is useful, but misses infor-
mation on the covariance among all possible pairs of estimates across
researchers.

To account for multiple testing, we rely on well developed statis-
tical theory. If one aims to test at a level of 5% for a family of N
tests, then individual tests should be performed with a (5/N)% criti-
cal value, if the test statistics are mutually independent (Bonferroni,
1936; Šidák, 1967; Harvey, Liu, and Zhu, 2016).22

In summary, we propose an NSE test where the null hypothesis is
that there is no dispersion in RFEs. We use a Bonferroni adjustment
of significance levels to account for multiple testing. The test is con-
servative, because Bonferroni assumes independence. As pointed out
in footnote 19, estimates are likely to correlate across researchers, in
which case the effective number of tests is likely to be smaller than the
actual number of tests. In the implementation, we add a trivial exten-
sion where correlations between estimates are calibrated based on our
multiverse analysis (Section 3.3). We close the section by discussing
an alternative test and pointing out a caveat.

Alternative test. Note that a natural alternative to the proposed test
is to simply test if IQR is statistically different from zero. We did
not pick this shortcut, because our focus is on whether there is any
dispersion at all in estimates across researchers. Although we pick
IQR to express dispersion in a single number, the deeper interest is
whether the distribution in estimates is non-degenerate.

22If the N tests statistics are independent, then the probability of at least one
significant result is (1 − (1 − α)N). For example, for α = 0.05 and N = 10, this
probability is 40 percent. Šidák (1967) proposes to adjust the significance level for
the individual tests to α′ = 1 − (1 − α)1/N . A Taylor expansion of α′ around zero
yields α′ ≈ α/N, which is known as the Bonferroni correction (Bonferroni, 1936).
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Caveat. We like to point out one potential caveat. The procedure
to obtain a conservative test on RFEs implicitly assumes that SEs re-
ported by researchers are consistent estimators of the true SEs. This
might not be true if (some) researchers report non-robust SEs. Non-
robust SEs tend to be smaller, because they ignore commonalities. If
true, then NSE tests tend to turn significant more often. NSEs them-
selves, however, remain consistent estimators.23

3 Results
This section presents all our findings. They are based on a balanced
sample of 164 research teams who completed all stages of the project
(out of 168 research teams). The first subsection presents various
summary statistics and tests whether non-standard errors are statisti-
cally significant. The second subsection tests our hypotheses. The
third subsection digs deeper by means of a multiverse analysis. The
fourth and final subsection discusses alternative explanations.

3.1 Summary statistics
(Insert Table 1 about here.)

Table 1 summarizes our stage-1 sample by means of three sets of
statistics, organized in three panels.24 Panel (a) summarizes the qual-
ities of the #fincap community. It consists of 164 research teams and
34 peer evaluators. Maximum RT size is two members, which is the
size of 79% of RTs.

The statistics testify to the high quality of the #fincap community.
31% of RTs have at least one top publication in finance or economics
(see footnote 6 for the list of journals). For PEs, this is 85%. The
percentage of RTs who have at least one member who is tenured at
the associate or full professor level is 52% for RTs. For PEs, this is

23Unfortunately, we do not have precise information on the SEs reported in #fin-
cap, because not all RTs provide detailed information on how they calculate SEs.

24Table OA.1 through OA.3 in the Online Appendix repeat panel (c) of Table 1 for
the other stages. Panel (a) is the same for all stages, and panel (b) is only available
for stage-1 results, since only these results are evaluated by peers and scored by
Cascad on reproducibility.
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88%. Feedback seems to come from more established scholars, which
likely mirrors reality.

RT members and PEs cover the global academic-finance commu-
nity reasonably well (see Figure OA.2 in the Online Appendix). RT
members reside in 34 countries with most residing in the US (51 out
of 293). PEs reside in 13 countries with, again, most residing in the
US (13 out of 34). The strong skew towards the US is not surpris-
ing given that the more senior, well-published finance scholars are
predominantly affiliated with US universities.

Most RTs and PEs seem to have the appropriate background
for testing the RT-hypotheses on the RT-sample. Their average
self-reported scores on having experience in the field of empirical
finance is 8.1 for RTs and 8.4 for PEs on a scale from 0 (low) to
10. For experience with market liquidity, these average scores are
6.9 for RTs and 7.8 for PEs. There is considerable variation around
these averages as the SDs range from 1.7 to 2.4. When it comes to
working with samples as large as the RT-sample, 720 million trade
records, most RTs and PEs seem up to it. 65% of RTs have worked
with samples at least as large. For PEs, this percentage is 88%.

Panel (b) of Table 1 shows that the average quality of the RT anal-
ysis is solid, but the dispersion is large. The average reproducibility
score is 64.5 on a scale from 0 (low) to 100 (see footnote 18). This is
high when benchmarked against other studies on reproducibility (Col-
liard, Hurlin, and Pérignon, 2021). The accompanying SD is 43.7,
which shows that there is large variation across RTs: Most code ei-
ther reproduces close to perfectly or barely at all. The paper-quality
scores provided by PEs show a similar pattern, albeit with less disper-
sion. The average score across RTs is 6.2 on a scale from 0 (low) to
10, with an SD of 2.0.

Panel (c) provides descriptive statistics on the distribution of re-
sults across RTs. It does so by RT-hypothesis, and by type of result:
Estimate, standard error, and t-value. Since our focus is on disper-
sion in estimates across RTs, we relegate a discussion of RT medians
to Appendix B. More specifically, this appendix discusses the RT-
hypotheses in-depth and summarizes what RTs, as a group, seem to
find with a focus on the across-RT median instead of the across-RT
IQR (i.e., the non-standard error).

(Insert Figure 1 about here.)
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Perhaps the most salient feature of the extensive panel (c) is that
there is substantial variation across RTs for all RT-hypotheses, and
for all types of results. Panel (a) in Figure 1 illustrates this result for
estimates. For RT-H1 on market efficiency, for example, the median
estimate across RTs is -1.1% with an IQR of 6.7%. Even for RT-H3,
which is a seemingly straightforward calculation of a market share,
the dispersion is sizable: an IQR of 1.2% around a median of -3.3%.
The figure further illustrates that there are extreme outliers for all RT-
hypotheses, which motivates our analysis in terms of robust statistics.

(Insert Table 2 about here.)

NSE test results. Is the dispersion in estimates statistically signifi-
cant? Table 2 presents the non-standard error test results. The null
of no dispersion in researcher fixed effects is rejected for all RT-
hypotheses at a 0.5% (family) significance level. The conservative
Bonferroni adjustment in panel (a) yields at least 11 estimates that are
individually significantly different from the median (RT-H6), and at
most 38 significant differences (RT-H3). There are significant esti-
mates both above and below the median for all RT-hypotheses.

If, instead of assuming zero correlation across test statistics as in
Bonferroni, one calibrates them based on bootstrapping from the mul-
tiverse analysis (Section 3.3), results change to the ones presented in
panel (b). The implied “effective” number of tests is much lower than
the 164 tests used in Bonferroni. It ranges from 21 (RT-H3) to 86 (RT-
H6). The factor by which significance levels are adjusted is, therefore,
up to almost seven times smaller than what Bonferroni suggests (i.e.,
164/24=6.8). The result is that, indeed, more differences become sig-
nificant. The increases are moderate, though, with at most two more
differences becoming significant.

In sum, the statistics presented thus far show that there is substan-
tial dispersion across research teams, in terms of their estimates, but
also in team quality, in reproducibility score, and in peer-evaluator
rating. In the next subsection, we use this dispersion to test the first
three hypotheses. Is there more dispersion in estimates for lower qual-
ity teams, for results that are harder to reproduce, or for lower quality
papers?
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3.2 Hypotheses tests
The results on the three sets of hypotheses are discussed in the next
three subsections. Standard errors in the quantile regressions account
for correlation in residuals by adding RT-hypothesis fixed effects, and
by clustering per RT across all stages.

3.2.1 Co-variates for stage-1 dispersion (H1-3)

The first set of hypotheses relates NSEs to various quality variables.
One of these is team quality, which we measure by picking the first
principal component (PC1) of five standardized quality proxies (see
H1 in Section 2.2). PC1 explains 38.3% of total variance, and loads
positively on all quality proxies. It loads strongest on publications
and weakest on big-data but, importantly, it loads positively on all of
them. Table OA.4 in the Online Appendix provides detailed results
on the PCA.

(Insert Table 3 and Figure 2 about here.)

Table 3 summarizes the results of the stage-1 quantile regressions,
with as dependent variables, the 10th, 25th, 50th, 75th, and 90th per-
centile of the distribution in estimates across RTs. Figure 2 illustrates
the results by showing how a one SD increase in each co-variate af-
fects IQR (i.e., NSE) and IDR. Taken together, these results allow us
to test the first three hypotheses that relate quality variables to disper-
sion in estimates.

First, we find that higher team quality coincides with somewhat
larger IQR, but with smaller IDR. The effect of team quality on the
25th percentile is not significant, but for the 75th percentile, it is sig-
nificantly positive. The economic magnitude is small, though, as can
be seen in Figure 2. A one SD increase in quality raises IQR by only
(0.032 − 0.004) × 7.2 = 0.2 percentage points (pps), where 7.2 is the
average IQR across hypotheses (see panel (c) of Table 1). This in-
crease of 0.2 pps implies a relative increase of 2.8%.25 In contrast,

25A direct test on IQR, instead of separate tests on the 25th and 75th percentiles,
requires jointly modeling these percentiles. Such multivariate modeling, combined
with clustering on errors, is a non-trivial econometric challenge. Univariate mod-
eling with clustering, on the other hand, is relatively standard. We use a python
package to run these regressions: pyqreg.
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a one SD increase in team quality, reduces IDR by 6.7 pps (-11.9%,
since average IDR is 56.3). This is the result of a significant increase
in the first decile and a significant reduction in the ninth decile. These
findings suggest that higher quality teams are less likely to report ex-
treme estimates.

If one replaces team quality by the five quality variables on which
it is based, then a more nuanced picture emerges (Table OA.5 in the
Online Appendix). The statistically significant and sizable relation-
ships are the following. A one SD increase in academic seniority
(i.e., an associate/full professor in the team), reduces IQR by 1.4 pps
(-19.4%). A one SD increase in team size reduces it by 0.9 pps (-
12.5%).

A one SD increase in top publications, however, increases IQR
by 1.9 pps (+26.4%). These three variables are positively correlated
which explains why we find that the (aggregate) team variable has a
relatively small effect on IQR. For IDR, the effects are of the same
sign, but larger in magnitude: -19.4, -7.0, and +6.1 pps , respectively
(-34.4%, -12.4%, and +10.8%). Note that now the negative effects
really dominate, which explains that IDR co-varies negatively with
team quality. In sum, these findings suggest that well published schol-
ars seem to disagree more, but such effect is offset by the presence of
a senior scholar or a second team member.

Second, all percentiles co-vary significantly with reproducibility,
except for the median. The 10th and the 25th percentile co-vary pos-
itively and the 75th and the 90th percentile co-vary negatively. The
figure shows that these changes are sizable. A one SD increase in
reproducibility reduces IQR by 1.8 pps (-25.0%) and IDR by 7.5 pps
(-13.3%). In sum, better reproducibility lowers overall dispersion.

Third, the results for paper quality mirror those of reproducibil-
ity, albeit a bit stronger in magnitude. The 10th and 25th percentile
co-vary significantly positively, the 75th and 90th percentile co-vary
significantly negatively. A one SD increase in paper quality reduces
IQR by 2.4 pps (-33.3%) and IDR by 13.6 pps (-17.9%). Higher rated
papers exhibit less dispersion in estimates.

In summary, the evidence on the first three hypotheses is such that
the null of no co-variation is rejected for all three. Generally, higher
quality is associated with less dispersion in estimates.
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3.2.2 Convergence across stages? (H4)

The analysis of first-stage results has shown that dispersion in esti-
mates is sizable and statistically significant. Does peer feedback cre-
ate convergence? In other words, does dispersion in estimates decline
in the three subsequent stages where teams get feedback from peers.
This is the focus of the fourth hypothesis.

(Insert Table 4 and Figure 3 about here.)

Table 4 presents the results of quantile regressions to explain the
dispersion in estimates in all four stages (thus far, only stage 1 has
been analyzed). To account for heterogeneity in dispersion across
RT-hypotheses, the explanatory variables are stage dummies that are
multiplied by stage-1 (estimate) IQR per RT-hypothesis. The coeffi-
cients, therefore, measure a stage effect, expressed in IQR units. Fig-
ure 3 presents the results graphically.

The evidence makes us reject the null hypothesis of no conver-
gence across all stages. All changes across consecutive stages are
positive for the 10th and 25th percentile, and negative for the 75th
and 90th percentile. The majority, however, is insignificant. However,
the total change across stages is significant for all these percentiles at
the 5% level, and, for all but one at the 0.5% level. Taken together,
these results show that there is significant convergence from the first
to the last stage, but a decomposition across the various stages lacks
significance.

Figure 3 illustrates that the convergence is sizable. Panel (a)
shows that the total decline in IQR is 3.4 pps (-47.2%). The decline
seems evenly distributed across the stages, although this decompo-
sition is mostly insignificant. Panel (b) shows that the total decline
in IDR is even larger: 38.4 pps (-68.2%). More than half of it seems
to happen from the first to the second stage, where RTs receive
anonymized feedback from two PEs. However, this result is only
weakly significant, since only the increase in the first decile is weakly
significant (i.e., at a 5% level, not at a 0.5% level).

3.2.3 Are RT-beliefs on dispersion in estimates accurate? (H5)

The fifth and final hypothesis focuses on whether RTs are accurately
aware of the dispersion in estimates across teams. Beliefs have been
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solicited in an incentivized way. All teams were asked to predict SDs
in estimates across teams.26 We randomly selected 20% of all RTs and
paid each of them $300 if one of their predictions (randomly drawn)
was within 50% of the realized SD. Details on the reward scheme
are in the instruction sheet they received before reporting their beliefs
(Figure OA.15 in the Online Appendix). The hypothesis pertains to
stage-1 estimates, because beliefs are solicited for this stage only.

As H5 is stated in terms of the average belief being correct, test-
ing it requires a test on the equality of means: the mean belief about
SDs in estimates across teams, and the SDs of these estimates in the
population. Let us define a test statistic D that measures the relative
distance between beliefs and realizations:

D =
1

6n

∑
i, j

(BeliefOnSDi j − RealizationOfSD j

RealizationOfSD j

)
, (6)

where BeliefOnSDi j is the belief of team i on the SD in estimates
across teams for RT-hypothesis j and RealizationOfSD j is the realized
SD for this RT-hypothesis in the raw sample.27 The distribution of D
under the null of equal means is obtained by bootstrapping. For details
on the bootstrap procedure, we refer to Appendix D.

(Insert Figure 4 about here.)

Figure 4 plots the distribution of beliefs on SDs, along with realized
SDs depicted by red dots. It illustrates that the vast majority of teams
underestimate dispersion in estimates. The interquartile range de-
noted by the boxes is consistently below the red dot, which implies
that at least 75% of the teams underestimate the dispersion.

One might think that teams simply overlook the extreme values
that make realized SDs explode. This, however, does not seem to be

26In retrospect, we should have (also) asked for an IQR prediction, because SD
is very sensitive to extreme outliers (see footnote 20). To assess whether RTs might
have overlooked such outliers, we will compare their SD predictions with realized
SDs, both on the full sample and on a trimmed sample.

27The benefit of a relative measure as opposed to an absolute one is that (i) it is
easy to interpret as it allows for statements of RTs over- or underestimating by some
percentage and (ii) it accounts for level differences across hypotheses (e.g., under
the null of accurate beliefs, a uniform distribution of beliefs on the support 0.09 to
0.11 will exhibit the same dispersion as a uniform distribution of beliefs on 900 to
1100).
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the case, because even if one trims the estimates by removing the top
and bottom 2.5%, the IQR box stays below these “trimmed” realized
SDs, depicted by orange dots. The only exception is RT-H3, for which
the orange dot is just within the top of the box.

The formal test results are in Table OA.6 of the Online Appendix.
Pooling across all RT-hypothesis, the test statistic shows that the pre-
dicted SD is 71.7% below the realized SD. This underestimation is
significant at a 0.5% level. Similar results holds for all RT-hypotheses
individually, except for RT-H3, for which the underestimation is in-
significant. Its value was also lowest of all, only 9.0% underestima-
tion. RT-H3 is an hypothesis on market shares that, arguably, is rel-
atively straightforward to test. In summary, the vast majority of tests
show significant underestimation and we therefore firmly reject the
null that beliefs on the dispersion in estimates are accurate.

3.3 Digging deeper: A multiverse analysis
Non-standard errors in #fincap are significant and sizable. Why? Can
we somehow identify which forks on the analysis paths cause most of
the dispersion? More specifically, can we rank key forks on the path
according to the degree of refraction they cause in the light the sam-
ple sheds on the research question at hand? We turn to a multiverse
analysis to address these questions.

Steegen et al. (2016) coined the term multiverse analysis to em-
phasize that data construction involves multiple decisions. The sam-
ple that enters the analysis, therefore, is a function of the set of rea-
sonable choices. The sample becomes a (p. 702) “many worlds or
multiverse of data sets.” A particular result of an analysis then be-
comes a distribution of results (because samples vary). We generalize
this approach by adding decision forks for the part of the analysis
that follows the sample construction (e.g., the choice of econometric
model).

The strength of a multiverse analysis is that it reveals how sensi-
tive an estimate is to a particular fork on the analysis path. It does
so by studying how much the estimates refract when varying across
all reasonable alternatives at the fork. For example, let there be N
reasonable analysis paths. Now suppose there are k ≤ N reasonable
alternatives at the jth fork. Then the N estimates associated with the
N paths are sorted into k sets, depending on the alternative picked at
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the fork. The degree to which the results differ across the k sets deter-
mines how sensitive results are to the jth fork. We measure the degree
to which k distributions differ by a k-sample Anderson-Darlin (AD)
test. Appendix E discusses the AD test in detail, including why it fits
our application particularly well. AD is a standard option in the Boba
software that we use (Liu et al., 2021).28

(Insert Table 5 about here.)

To make the multiverse feasible, we identify key forks on the anal-
ysis path and, for each fork, we ask RTs to select the alternative they
picked among a set of pre-defined alternatives. This was done by
means of a questionnaire that all filled out after the experiment. The
choice of forks and the alternatives at each fork is informed by the
short papers RTs wrote for #fincap. The discretization of the decision
space enables us to project the large space of realized analysis paths,
onto a manageable space of “representative” paths. Table 5 provides
an overview of all forks for the six RT-hypotheses. It lists the alter-
natives at each fork, along with the fraction of RTs that picked them
(depicted in Figure OA.5 of the Online Appendix).

For each fork, we also asked RTs to rate the fit between the alter-
native they picked from the set, and what they actually did in #fincap.
Their average rating ranges between 4.0 for RT-H6 and 4.4 for RT-H3
on a scale from 1 “Far from what we did” to 5 “Very close to what
we did” (see Figure OA.4 in the Online Appendix). We, therefore,
believe that the multiverse analysis is representative of the #fincap
analysis itself.

A multiverse analysis is powerful, but resource intensive. The
table illustrates that the analysis becomes very large very quickly. For
RT-H6, for example, the nine forks generate 2 × 2 × 3 × 4 × 3 × 4 ×
2 × 3 × 2 = 6, 912 possible paths. Not all possible paths are equally
reasonable, and the #fincap data help us select the most reasonable
ones. The result is a weighted multiverse, where untraveled paths get
zero weight. The other ones get weights proportional to the number
of teams who picked the path. The vast majority of paths, however,
was picked by only one team so the size of the multiverse is slightly
less than 164 (the actual number varies across RT-hypotheses).

28The Boba software is available at https://github.com/uwdata/boba.
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The analysis is done for the original sample as well as for 1000
bootstrapped samples. These additional samples are needed to es-
timate the correlations in test statistics across paths. These correla-
tions are used to adjust significance levels when accounting for MHT.
This is used in assessing whether NSEs are statistically significant,
and whether individual estimates are statistically significant (see pan-
els (b) in Table 2 and Table OA.7, where the latter is in the Online
Appendix, respectively). Each RT-hypothesis, therefore, requires pro-
cessing the 720 million trade records almost 164,000 times.29

(Insert Figure 5 about here.)

Results. Figure 5 illustrates that the multiverse is able to generate
dispersion in estimates that is on par with the dispersion in reported
estimates. The box plots for reported estimates are drawn in gray,
overlaid by the multiverse box plots in color. The large dispersion
in multiverse is remarkable, since they are based on a few decisions
only.30

(Insert Figure 6 and Figure 7 about here.)

Figure 6 illustrates how sensitive the distribution of estimates is to
variation across alternatives at the various forks. The plots reveal that
two common strong refractors are the (econometric) model choice
and the sampling frequency. A well-known force that drives a wedge

29To keep the multiverse analysis feasible, we optimized the code by identifying
commonalities across paths and use these to economize on loops. For example,
for a particular day, realized spread calculations can iterate once over all trades to
obtain realized spreads both for the path that retains all trading and the path that
excludes the first and last 30 minutes of trading. Efficient coding further involves
identifying opportunities for parallel processing. The multiverse analysis has been
implemented on Snellius, a national supercomputer available to Dutch scientists
(128 cores and 200 GB internal memory). With all this help, the code took a few
days instead of a few months to run for each RT-hypothesis.

30The multiverse models only a few forks and its estimates, therefore, are un-
likely to accurately predict reported estimates. The explanatory power of regres-
sions with reported #fincap estimates as dependent variables and multiverse es-
timates as explanatory variables is low. The larger point of the multiverse is to
illustrate that, for a subset of forks, variation across paths can generate large non-
standard errors. It further allows researchers to drill down and identify the forks
that generate most of the dispersion in estimates.
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between high- and low-frequency relatives is Jensen’s inequality
(Blume, 1974):

ΠT
t=1 E (Mt)︸ ︷︷ ︸

Expected
high

frequency
relative

< E
(
ΠT

t=1Mt

)︸       ︷︷       ︸
Expected low

frequency relative

, (7)

if Mt ∈ R
+ are identical independently distributed random variables,

since f (x) = xT is a convex function. First-order Taylor expanding the
left-hand side around one, and then subtracting one from both sides,
yields:

T (E (Mt) − 1) ≲ E
(
ΠT

t=1Mt

)
− 1. (8)

If there are T high-frequency periods in a low-frequency period, then
T times the average high-frequency return is expected to be lower
than the average low-frequency return. Figure 7 illustrates the ef-
fect of this inequality. The three right-most bars illustrate how, for
the relative-change model, the median annualized return is -23,000%
for data sampled at the daily frequency, -200% for the monthly fre-
quency, and only -4.56% for the yearly frequency. The left-most six
bars that correspond to the trend-stationary or log-difference model do
not show such discrepancy across frequencies. The reason is that both
these models are linear and, therefore, do not suffer from Jensen’s in-
equality. The trend-stationary model features a linear trend and in a
log-difference model, the log of a product of relatives becomes a sum
of log relatives.

Figure 6 further highlights some idiosyncratic sensitivities. For
RT-H1, for example, the second-most sensitive fork is the frequencies
that are picked to assess the deviation from a random walk. Further
analysis reveals that when comparing high frequencies, such as one-
second returns to one-minute returns, then almost all analyses exhibit
a decline in market efficiency. But, when comparing low frequencies,
such as daily returns to monthly returns, then about half of the analy-
ses show an increase in market efficiency whereas the other half show
a decline.

Another example is the retain-negative-sign fork, which is the
most sensitive one for RT-H6. The decision each team had to make is
whether a negative number that becomes more negative yields a posi-
tive percentage change, or a negative percentage change. The first one
emphasizes that a (negative) number becomes magnified, whereas the
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second one emphasizes a negative trend (i.e., “retain a negative sign”).
21% of the teams picked the first option, 79% picked the second one.
It is not surprising that mapping an estimate from the positive to the
negative domain causes strong refraction in estimates. This is an ex-
ample of how a decision that each team might have thought was a
trivial one (in sense that there is only one option) can generate non-
standard error.

3.4 Alternative explanations
After having presented all our results, it is useful to discuss alterna-
tive explanations. Might the sizable non-standard errors be due to the
presence of inexperienced researchers testing unsuitable hypotheses
with little effort? We believe this is unlikely to be the case for the
following reasons.

Experience. Aware of this potential pitfall, we selectively ap-
proached researchers (for RTs and PEs), whom we knew were
sufficiently experienced in the field. When signing up, they ticked
a box that they understood that participating in #fincap requires
research expertise and experience in empirical finance/liquidity and
the analysis of large datasets. Ticking the box further meant that they
acknowledge that one of the team members held a PhD in finance or
economics. After ticking the box, researchers had to motivate in an
open text box why they believe they meet these requirements. We
parsed the content of this box to make sure that the team qualifies
before accepting them into #fincap (see Figure OA.7 in the Online
Appendix for the sign-up sheet).

Hypotheses. We proceeded with care when designing RT-
hypotheses. Early versions were shared with senior scholars, and
their feedback helped us fine-tune RT-hypotheses. We, therefore, feel
comfortable that the RT-hypotheses are suitable and well motivated
hypotheses to test with the RT-sample (see Figure OA.11 in the
Online Appendix for the RT instruction sheet, which shows how
RT-hypotheses were presented to RTs).

Related to the suitability question, one might wonder whether
vagueness of an RT-hypothesis might be a viable alternative expla-
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nation for sizable NSEs. To address this concern, we included a very
precise RT-hypothesis: RT-H3 on client volume share. The results for
RT-H3 show that NSEs can be sizable, even for relatively precise hy-
potheses. It is true, however, that NSEs tend to be lower for the more
precise RT-hypotheses.

Effort. We incentivized research teams to exert effort by providing
them with the following information (before they sign up): the dead-
lines of the various stages so that they could plan for it; their non-
anonymized paper would be evaluated by senior peer reviewers; the
top-five (anonymized) papers would be announced to all others;31 and,
only those who complete all stages become co-authors. In addition to
these incentives, we believe that most scientists are propelled by an
intrinsic motivation to do good research.

Looking back, we have various reasons to believe that researchers
did indeed exert serious effort. First, only four out of 168 research
teams failed to complete all stages. 123 out of 168 teams (73.2%)
handed in their stage-1 report at least a day early, and none of the
teams seriously breached any deadline. The average reproducibil-
ity score was 64.5 on a scale from 0 (low) to 100, which is high in
comparison to what has been reported in other reproducibility stud-
ies (Colliard, Hurlin, and Pérignon, 2021). Finally, the average paper
quality was 6.2 on a scale from zero (low) to 10. As for peer eval-
uators, we also believe they exerted serious effort, because all who
signed up as a PE completed their reviews on time.

4 Conclusion
Researchers need to take many decisions when testing hypotheses on
a particular sample: pick an appropriate measure, treat outliers, select
a statistical model, etc. If researchers are not perfectly aligned on
these decisions, their estimates likely differ. This potential dispersion
in estimates therefore adds uncertainty to an estimate reported by a

31Individuals obtain “ego utility” from positive views about their ability to do
well and they exert more effort (or take more risks) when they are informed about
their rank in non-incentivized competitions (Köszegi, 2006; Tran and Zeckhauser,
2012; Kirchler, Lindner, and Weitzel, 2018).
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single team. Other teams might have reported other estimates based
on the same data.

We measure dispersion in estimates across researchers robustly
with an inter-quartile range, and refer to it as non-standard error. We
study NSEs in an experiment where 164 teams test the same six RT-
hypotheses on the same sample. We find NSEs to be substantial,
even for a relatively straightforward market-share hypothesis. For this
RT-hypothesis, we find it to be 1.2% around a median of -3.3%. A
more opaque RT-hypothesis on market-efficiency yields larger varia-
tion with an NSE of 6.7% around a median of 1.1%. We further find
that NSEs are smaller for better reproducibility and higher quality pa-
pers as rated by peers.

A multiverse analysis based on key forks sheds light on how im-
portant each fork is in generating dispersion in estimates. It turns out
that many forks add substantial dispersion in estimates. Two particu-
larly powerful ones are sampling frequency and the statistical model.
Using a non-linear model at high frequency to estimate a low fre-
quency trend can add substantial noise (Jensen’s inequality).

NSEs being substantial is worrisome. An encouraging result,
however, is that peer feedback reduces NSEs by half. In the real-
world, published papers likely have gone through more stages of
feedback, which makes #fincap NSEs an upper bound for real-world
dispersion in estimates. Published results might further be affected
by p-hacking (scoped out in #fincap), which is a selective process
and thus likely further reduces dispersion, and potentially introduces
bias. Overall, we believe the full process towards published empirical
research deserves further scrutiny.

Finally, our multiverse analysis provides guidance on what thresh-
old to use in individual tests when accounting for multiple testing.
Bonferroni assumes independence among test statistics and adjusts
significance levels by the number of tests: 164 in the case of #fincap.
Bootstrapped multiverse results show that there is substantial corre-
lation among test statistics and finds adjustment factors that range
between 13 and 91 (depending on RT-hypothesis). The threshold for
two-sided testing at 5% therefore should be at leastΦ(1−0.025/13) =
2.9. This is in line with the 3.0 lower bound recommended by Harvey,
Liu, and Zhu (2016) for factor tests in asset pricing.
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Appendices

A Reconciliation with pre-analysis-plan re-
sults

The original version of Non-Standard Errors contains the results of
the analysis outlined in the pre-analysis plan. This original version
is available as Tinbergen Institute Discussion Paper TI 2021-102/IV.
Most tables and figures have not changed.32

The only two tables that have changed are Table 3 and 4. The
reason is that these are the only two regression tables. In the original
version, we estimate a heteroskedasticity model with ordinary least-
squares (OLS). The dependent variable is log squared error. However,
OLS estimates are notoriously sensitive to extreme outliers, which
turn out to be a feature of the #finap sample (see footnote 20 or Fig-
ure 1). Quantile regressions are robust to the presence of extreme
outliers and are, therefore, more appropriate for the analysis of our
sample. Moreover, they model the entire distribution instead of just a
conditional mean (as emphasized in the introduction). In the remain-
der, we compare results across the two tables in the original version
and the current version to reconcile previous findings with current
ones.

Table 3 in the original version has become Table 3 in the current
version. These tables both relate dispersion in estimates to quality
variables in order to test the first hypothesis. In the original ver-
sion, most results are insignificant. The only significance is for re-
producibility when using a 2.5%-97.5% winsorized sample. The co-
efficient of -0.24 implies that a 10% increase in reproducibility co-
incides with a reduction in the standard deviation of estimates by
1/2 × 0.24 × 10% = 1.2% (the coefficient 1/2 converts variance to
SD, see footnote 21 in original paper). In the current version, the
first quartile (Q1) co-varies significantly positively with reproducibil-
ity and paper quality, whereas the third quartile co-varies significantly
negatively with them. They, therefore, co-vary significantly nega-

32More specifically, Table 1, 2, and 5, and Figure 1, 2, 3, 4, and 5 have not
changed. In the current version, they appear as Table 1, OA.4, and OA.6, and
Figure OA.2, 1a, 1b, OA.3, and 4, respectively, where the OA prefix indicates that
they are in the Online Appendix.
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tively with IQR. A 10% increase in reproducibility coincides with a
reduction in IQR by 10%× (0.109+0.142)×0.44 = 1.1%.33 Note that
this effect is in the same ballpark as the 1.2% in the original paper.

Table 4 in the original version has become Table 4 in the current
version. In the original version, the unwinsorized sample shows a
weakly significant decline in dispersion of estimates across all stages.
The effect is also relatively small in magnitude since the SD decline
is only 9%. With extreme outliers removed in the 2.5%-97.5% win-
sorized sample, the decline becomes both significant and larger in
magnitude. The SD now declines by 53.5% across all stages. The
results in the current version show that Q1 of the estimate distribution
increases significantly across all stages and Q3 declines significantly.
The result is a decline of 47.2% (depicted in Figure 3). Again, the
numbers in both versions are in the same ballpark.

B RT-sample, RT-hypotheses, and results
This appendix presents the RT-hypotheses in detail and the test results
of #fincap RTs as a group. The instruction sheet itself is available as
Figure OA.11 in the Online Appendix. We start by providing the
context that motivates the RT-hypotheses.

B.1 Context
Electronic order matching systems (automated exchanges) and elec-
tronic order generation systems (algorithms) have changed financial
markets over time. Investors used to trade through broker-dealers by
paying dealer ask prices when buying, and accepting dealer bid prices
when selling. The wedge between these bid and ask prices, the bid-
ask spread, was a useful measure of trading cost, and often still is.

Now, investors more commonly trade in electronic limit-order
markets (as is the case for EuroStoxx 50 futures). They still trade
at bid and ask prices. They do so by submitting so-called market
orders and marketable limit orders. However, investors can now also
quote bid and ask prices themselves by submitting (non-marketable)

33The square root of the average variance of reproducibility (de-meaned by RT-
hypothesis) is 0.44.
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standing limit orders. And, investors increasingly use agency algo-
rithms to automate their trades. Concurrently, exchanges have been
continuously upgrading their systems to better serve their clients.
Has market quality improved, in particular when taking the viewpoint
of non-exchange members: (end-user) clients?

B.2 RT-hypotheses and test results
The RT-hypotheses and results are discussed based on estimates in
the final stage of the project (available as Table OA.3 in the Online
Appendix). We therefore base our discussion on the results that RTs
settle on after receiving all feedback. What do RTs find after having
shown some convergence across the stages? And, consistent with the
main text, we base our discussion on robust location and dispersion
statistics: the median and IQR, respectively. Finally, we note that such
discussion is meaningful, because Table OA.7 in the Online Appendix
shows that, for all RT-hypotheses, the null of a zero trend is rejected at
a 0.5% significance level. This significance level is used for all tests
in the remainder of the subsection.

(The first two hypotheses focus on all trades.)

RT-H1. Assuming that informationally-efficient prices follow a ran-
dom walk, did market efficiency change over time?
Null hypothesis: Market efficiency has not changed over time.

Findings. The median estimate is -1.1% with an IQR of 2.6%. The
third quartile is -0.2% and the vast majority therefore finds a nega-
tive trend in efficiency. The Bonferroni tests show that 31 RTs find
a significant negative trend against only four who find a significant
positive trend. The decline seems modest as the across-RT median34

is -1.1% per year. The small changes add up, though, to a total change
in the 2002-2018 sample of approximately (0.98917 − 1) = −17.1%.
This might reflect a trend of declining depth in the market, possibly
due to new regulation in the aftermath of the global financial crisis
of 2007-2008. Post-crisis regulation constrains the supply of liquid-
ity by sell-side banks (e.g., Bao, O’Hara, and Zhou, 2018; Jovanovic

34The across-RT median includes all RTs, thus also those who report insignificant
results.
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and Menkveld, 2021). If these banks incur higher inventory costs as a
result, then, in equilibrium, one observes larger transitory price pres-
sures thus reducing market efficiency (e.g., Pastor and Stambaugh,
2003; Hendershott and Menkveld, 2014). In the interest of brevity,
we discuss all remaining hypotheses in the same way.

RT-H2. Did the (realized) bid-ask spread paid on market orders
change over time? The realized spread could be thought of as the
gross-profit component of the spread as earned by the limit-order
submitter.
Null hypothesis: The realized spread on market orders has not
changed over time.

Findings. The median estimate is -2.3% with an IQR of 4.3%. The
third quartile is -0.1% and the vast majority therefore finds a negative
trend in realized spread. The tests show that 38 RTs find a signifi-
cant negative trend, whereas only three RTs find a significant positive
trend. The median decline of 2.3% per year implies a 32.7% decline
over the full sample. This trend might be due to the arrival of high-
frequency market makers who operate at low costs. They do not have
the deep pockets that sell-side banks have, but they will offer liquidity
for regular small trades by posting near the inside of the market. Their
arrival is typically associated with a tighter bid-ask spread, but not
necessarily with better liquidity supply for large orders (e.g., Jones,
2013; Angel, Harris, and Spatt, 2015; Menkveld, 2016).

(The remaining hypotheses focus on agency trades only.)

RT-H3. Did the share of client volume in total volume change over
time?
Null hypothesis: Client share volume as a fraction of total volume has
not changed over time.

Findings. The median estimate is -2.9% with an IQR of 1.7%. The
ninth decile is -1.1%, which shows that almost all RTs report a neg-
ative trend. The tests show that 123 RTs find a significant negative
trend against only two RTs documenting a significant positive trend.
An median decline of 2.9% per year implies a total decline of 39.4%
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for the full sample. Intermediation, therefore, seems to have increased
which should surprise those who believe that the arrival of agency al-
gorithms enables investors to execute optimally themselves, thus re-
ducing the need for intermediation.35

RT-H4. On their market orders and marketable limit orders, did the
realized bid-ask spread that clients paid, change over time?
Null hypothesis: Client realized spreads have not changed over time.

Findings. The median estimate is -0.2% with an IQR of 2.4%. The
third quartile, however, is positive suggesting that a modest major-
ity finds a negative trend. The tests show a bit stronger evidence for
a negative trend, because 15 RTs find it to be significantly negative
against only eight who find a significant positive trend. The median
decline of 0.2% per year translates to a 3.3% decline for the full sam-
ple. The decline in client realized spread is therefore only about a
tenth of the total realized spread decline, which suggests that mar-
ket orders of intermediaries benefited most from the general realized-
spread decline.

RT-H5. Realized spread is a standard cost measure for market or-
ders, but to what extent do investors continue to use market and mar-
ketable limit orders (as opposed to non-marketable limit orders)?
Null hypothesis: The fraction of client trades executed via market or-
ders and marketable limit orders has not changed over time.

Findings. The median estimate is 0.0% with an IQR of 0.6%. 13
RTs find a significantly negative trend, whereas nine find a signifi-
cantly positive trend. The results seem rather balanced between a neg-
ative and a positive trend. The results therefore seem to suggest that
clients neither increased their share of market orders, nor did they de-
crease it. One might have expected the latter because an increased use
of agency algorithms should allow them to execute more through non-
marketable limit orders as opposed to market orders or marketable

35We verified with Deutsche Börse that this change is not purely mechanical in
the sense that, in the sample period, many institutions became an exchange member
and, with it, the status of their volume changes from agency to principal.
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limit orders. The benefit of execution via a non-marketable limit or-
der is that one earns half the bid-ask spread as opposed to paying it.

RT-H6. A measure that does not rely on the classic limit- or market-
order distinction is gross trading revenue (GTR). Investor GTR for a
particular trading day can be computed by assuming a zero position at
the start of the day and evaluating an end-of-day position at an appro-
priate reference price. Relative investor GTR can then be defined as
this GTR divided by the investor’s total (euro) volume for that trading
day. This relative GTR is, in a sense, a realized spread. It reveals what
various groups of market participants pay in aggregate for (or earn on)
their trading. It transcends market structure as it can be meaningfully
computed for any type of trading in any type of market (be it trading
through limit-orders only, through market-orders only, through a mix
of both, or in a completely different market structure).
Null hypothesis: Relative gross trading revenue (GTR) for clients has
not changed over time.

Findings. The median estimate is 0.0% with an IQR of 1.1%. Three
RTs find a significantly positive trend and another three find a signif-
icantly negative one. The significance, therefore, is rather weak and
balanced. We cautiously conclude that GTR has stayed mostly at the
same level throughout the sample.

C Explanatory variables for error variance

C.1 Team quality
The quality measures for research teams are based on the survey that
participants filled out upon registration (see Figure OA.7 in the Online
Appendix). To keep the regression model both concise and meaning-
ful, we reduce the ordinal variable “current position” and the loga-
rithmic interval-based variable “size of largest dataset worked with”
to binary variables. The academic position variable is one if a re-
searcher is either associate or full professor. The dataset variable is
one if the researcher has worked with datasets that are contained at
least 100 million observations, because the #fincap sample contains
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720 million observations. We aggregate these binary variables to re-
search team level by taking the maximum across the team members.

As for self-assessed experience, we asked for both empirical fi-
nance and market liquidity, which we deem equally relevant for test-
ing the RT-hypotheses. Thus, and because of the anticipated high
correlation, we use the average of these two measures to obtain the in-
dividual score. And, in the interest of consistency, we again aggregate
to the team level by taking the maximum across the team members.

C.2 Workflow quality
We proxy for workflow quality with an objectively obtained score of
code quality provided by Cascad (see footnote 18). The scale ranges
from 0 (serious discrepancies) to 100 (perfect reproducibility).

C.3 Paper quality
Papers are rated by an external group of peer evaluators. They rate the
analyses associated with each RT-hypothesis individually, but also the
paper in its entirety (see Figure OA.16 in the Online Appendix). The
ratings range from from 0 (very weak) to 10 (excellent). Each paper is
rated by two PEs and the paper rating is the average of the two (after
removing a PE fixed effect as discussed in Section 2.1).

D Bootstrap procedure for belief statistic D

The distribution of D under the null of equal means is obtained by
bootstrapping as follows. For each RT-hypothesis, we subtract the
difference between the average belief on standard deviation and the
observed standard deviation, from the beliefs:

AdjBeliefOnSDi j =

BeliefOnSDi j −

1
n

∑
i

BeliefOnSDi j

 − RealizationOfSD j

 (9)

In this new sample with adjusted beliefs, the average belief about dis-
persion equals the observed dispersion, by construction. This sample
is input to the bootstrapping procedure which iterates through the fol-
lowing steps 10,000 times:
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1. As we have n RTs, in each iteration we draw n times from the
new sample, with replacement. Each draw picks a particular
RT and stores its beliefs and its results for all of the six RT-
hypotheses. The result of these n draws therefore is a simulated
sample that has the same size as the original sample.

2. The simulated sample is used to compute the test statistic D in
(6). This statistic for iteration k, a scalar, is stored as Dk.

The bootstrap procedure yields 10,000 observations of the test statis-
tic under the null. For a significance level of 0.005, the statistic ob-
served in the #fincap sample is statistically significant if it lands below
the 25th lowest simulated statistic or above the 25th highest simulated
statistic. Its p-value is:36

2 min(EmpiricalQuantileFincapStatistic,
1 − EmpiricalQuantileFincapStatistic). (10)

E Anderson-Darlin test
The sensitivity of dispersion to a particular fork is measured by a k-
sample Anderson-Darling test (Scholz and Stephens, 1987). This test
was designed to verify whether k separate samples are drawn from the
same distribution. The AD test statistic Tk−1 measures the distance
between the empirical distribution functions of k separate samples. It
does not rely on parametric assumptions. It is, therefore, particularly
attractive for our application as distributions are unknown ex-ante. In
case of independence, the percentiles of the asymptotic distributions
are known (Scholz and Stephens, 1987, Table 1 with m = k − 1). Tk−1

converges to a standard normal for k tending to infinity.
The AD approach builds on tests previously proposed by Kol-

mogorov, Smirnov, Cramér, and von Mises. It adds a weight func-
tion to allow the researcher to attach differential importance to various

36Note that the procedure accounts for within-RT correlations (i.e., including
possible non-zero correlations among a particular RT’s results and the beliefs that
it reports). The reason the procedure accounts for these correlations is that the
bootstrap uses block-sampling where, when an RT is drawn, all of its beliefs and all
of its estimates are drawn. One therefore only assumes independence across RTs
which holds by construction given the design of #fincap.
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portions of the distribution function (Anderson and Darling, 1964a).
It nests the Cramér-von Mises ω2 statistic which is based on equal
weighting. The AD default weighting is one that equalizes the sam-
pling error across the (empirical) support of the distribution function
(Anderson and Darling, 1964b, p. 767). It effectively attaches more
weight to the tails of the distribution. Scholz and Stephens (1987,
p. 919) argue that among alternatives, the AD test statistic has attrac-
tive small sample (i.e., small k) properties.
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Table 1: Summary statistics

This table presents summary statistics. Standard deviations are in
parentheses.

Panel (a): Quality of the #fincap community
Research

teams
Peer

evaluators

Fraction with top finance/econ publications (see footnote 6) 0.31 0.85
Fraction including at least associate/full professor 0.52 0.88

Experience empirical-finance research (low-high, 1-10) 8.1 (1.7) 8.4 (1.8)
Experience market-liquidity research (low-high, 1-10) 6.9 (2.4) 7.8 (2.3)

Relevant experience (average of the above two items) 7.5 (1.3) 8.1 (1.7)
Fraction with “big data” experience (>#fincap sample) 0.65 0.88
Fraction teams consisting of two members (maximum team size) 0.79
Number of observations 164 34

Panel (b): Quality of the analysis of research teams
Research

teams

Reproducibility score according to Cascad (low-high, 0-100) 64.5 (43.7)
Paper quality as judged by peer evaluators (low-high, 0-10) 6.2 (2.0)

(continued on next page)
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(continued from previous page)

Panel (c): Dispersion across teams of stage-1 results: Estimates, SEs,
and t-values

RT-H1
Efficiency

RT-H2
RSpread

RT-H3
Client

Volume

RT-H4
Client

RSpread

RT-H5
Client

MOrders

RT-H6
Client
GTR

Estimate (yearly change, %)
Mean 446.3 -1,093.4 -3.5 -38,276.1 -3.5 -87.1
SD 5,817.5 14,537.2 9.4 490,024.2 37.6 728.5
Min -171.1 -186,074.5 -117.5 -6,275,383.0 -452.9 -8,254.5
Q(0.10) -23.7 -6.9 -3.8 -6.7 -1.6 -192.1
Q(0.25) -6.2 -3.6 -3.5 -2.1 -0.6 -18.2
Median -1.1 -0.0 -3.3 0.1 -0.0 0.0
Q(0.75) 0.5 3.9 -2.4 3.8 0.2 3.2
Q(0.90) 3.7 21.5 -0.1 20.4 1.0 56.5
IQR (i.e., NSE) 6.7 7.5 1.2 5.9 0.8 21.4
IDR 27.3 28.4 3.7 27.1 2.5 248.5
Max 74,491.1 4,124.0 8.7 870.2 69.5 1,119.0

Standard error
Mean 468.7 1,195.3 3.7 38,302.0 6.2 148.2
SD 5,810.6 14,711.9 29.5 489,929.5 40.1 526.0
Min 0.0 0.0 0.0 0.0 0.0 0.0
Q(0.10) 0.1 0.2 0.1 0.2 0.1 0.0
Q(0.25) 0.5 1.1 0.3 1.2 0.2 0.7
Median 2.5 5.0 1.4 4.4 1.0 9.7
Q(0.75) 9.3 13.9 2.0 14.3 2.4 77.1
Q(0.90) 44.7 39.6 2.2 31.2 3.1 235.4
IQR 8.8 12.8 1.7 13.1 2.2 76.4
IDR 44.6 39.4 2.1 31.0 3.1 235.4
Max 74,425.5 188,404.1 378.8 6,274,203.0 463.7 4,836.2

t-value
Mean -3.6 35.3 -47.1 24.3 -5.7 -2.0
SD 28.4 541.2 269.9 406.0 60.1 21.2
Min -322.3 -764.6 -2,770.6 -852.6 -631.6 -191.7
Q(0.10) -4.7 -5.7 -37.4 -3.5 -2.3 -1.7
Q(0.25) -1.9 -1.5 -11.5 -1.0 -0.6 -1.0
Median -0.7 -0.1 -1.8 0.1 0.0 0.0
Q(0.75) 0.3 0.8 -1.6 1.0 0.8 0.7
Q(0.90) 1.7 1.5 -0.3 1.6 1.7 1.2
IQR 2.2 2.3 9.9 1.9 1.3 1.7
IDR 6.4 7.2 37.1 5.2 3.9 2.9
Max 51.6 6,880.5 29.5 5,119.5 89.6 100.6
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Table 2: Non-standard error test

This table tests for the presence of non-standard errors in stage 1. It
does so by testing whether estimates provided by researchers deviate
from the median across researchers. Critical values of the individual
tests are raised to achieve the desired significance level at the family
of tests. The number of significantly negative tests and significantly
positive tests is reported in brackets. The reported family p-value is
the probability that out of all test statistics, at least one is larger than
the reported value, under the null of a multivariate normal with means
equal to the realized #fincap medians, and a covariance matrix with
squared SEs (reported by the RTs) on the diagonal and off-diagonals
that are either zero (Bonferroni) or based on the multiverse analysis
(Section 3.3).

Panel (a): Multiple tests (Bonferroni)
Reject
no-NSE at
0.5%?

p-value of
family test

Mean (SD)
correlation
test statistics

Effective
number of
tests

RT-H1 Yes (8, 25) <0.0001 0.00 (0.00) 164
RT-H2 Yes (24, 10) <0.0001 0.00 (0.00) 164
RT-H3 Yes (13, 25) <0.0001 0.00 (0.00) 164
RT-H4 Yes (22, 4) <0.0001 0.00 (0.00) 164
RT-H5 Yes (13, 10) <0.0001 0.00 (0.00) 164
RT-H6 Yes (8, 3) <0.0001 0.00 (0.00) 164

Panel (b): Multiple tests (based on multiverse analysis)
Reject
no-NSE at
0.5%?

p-value of
family test

Mean (SD)
correlation
test statistics

Effective
number of
tests

RT-H1 Yes (8, 26) <0.0001 0.03 (0.21) 77
RT-H2 Yes (24, 10) <0.0001 0.05 (0.22) 81
RT-H3 Yes (13, 26) <0.0001 0.22 (0.34) 21
RT-H4 Yes (22, 4) <0.0001 0.08 (0.24) 67
RT-H5 Yes (13, 10) <0.0001 0.20 (0.34) 31
RT-H6 Yes (8, 3) <0.0001 0.02 (0.21) 86

52



Table 3: Stage-1 quantile regressions

This table presents the results of quantile regressions that characterize
how the distribution of stage-1 estimates co-varies with various qual-
ity metrics. These metrics are team quality, reproducibility score, and
(de-meaned) peer rating. The three quality variables have been stan-
dardized and, subsequently, multiplied by the IQR per RT-hypothesis.
Their coefficient therefore measures the result of a one-standard de-
viation change, expressed in terms of interquartile-range units. */**

correspond to significance at the 5/0.5% level, respectively.

Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90)

Team quality (standardized/scaled) 0.597∗∗
(0.030)

0.004
(0.014)

0.002
(0.007)

0.032∗∗
(0.012)

-0.325∗∗
(0.030)

Reproducibility score (standardized/scaled) 0.473∗∗
(0.033)

0.109∗∗
(0.014)

-0.001
(0.007)

-0.142∗∗
(0.011)

-0.555∗∗
(0.028)

Average rating (standardized/scaled) 0.766∗∗
(0.034)

0.230∗∗
(0.014)

-0.001
(0.007)

-0.097∗∗
(0.011)

-0.626∗∗
(0.028)

Dummy RT-H1 Efficiency -29.592∗∗
(0.813)

-6.099∗∗
(0.340)

-1.132∗∗
(0.166)

0.939∗∗
(0.269)

9.057∗∗
(0.708)

Dummy RT-H2 RSpread -15.933∗∗
(0.849)

-3.930∗∗
(0.342)

-0.017
(0.166)

3.674∗∗
(0.268)

22.451∗∗
(0.705)

Dummy RT-H3 Client Volume -5.629∗∗
(0.836)

-3.789∗∗
(0.339)

-3.319∗∗
(0.166)

-2.386∗∗
(0.268)

0.221
(0.721)

Dummy RT-H4 Client RSpread -12.089∗∗
(0.837)

-2.437∗∗
(0.340)

0.162
(0.166)

4.161∗∗
(0.266)

19.619∗∗
(0.704)

Dummy RT-H5 Client MOrders -2.479∗∗
(0.837)

-0.744∗
(0.339)

-0.001
(0.166)

0.297
(0.268)

1.625∗
(0.721)

Dummy RT-H6 GTR -194.457∗∗
(0.806)

-21.385∗∗
(0.337)

0.022
(0.167)

5.137∗∗
(0.268)

65.203∗∗
(0.679)

#Observations 984 984 984 984 984
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Table 4: All-stages quantile regressions

This table presents the results of quantile regressions that characterize
how the distribution of estimates varies across all stages of the #fin-
cap project. The stage dummies have been multiplied by the (stage-1)
IQR per RT-hypothesis. Their coefficient therefore measures the ef-
fect in terms of interquartile-range units. Standard errors account for
correlation in residuals by adding RT-hypothesis fixed effects and by
clustering per RT across all stages. */** correspond to significance at
the 5/0.5% level, respectively.

Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90)

Dummy Stage 2 - Dummy Stage 1 2.44∗
(1.18)

0.07
(0.14)

-0.00
(0.01)

-0.06
(0.06)

-0.73
(0.64)

Dummy Stage 3 - Dummy Stage 2 0.94∗
(0.41)

0.15
(0.09)

0.00
(0.01)

-0.09
(0.05)

-0.73
(0.40)

Dummy Stage 4 - Dummy Stage 3 0.21∗
(0.09)

0.06∗
(0.03)

0.00
(0.01)

-0.04
(0.03)

-0.25∗
(0.11)

Dummy Stage 4 - Dummy Stage 1 3.59∗∗
(1.23)

0.28∗
(0.14)

-0.00
(0.01)

-0.19∗∗
(0.05)

-1.71∗∗
(0.50)

RT-hypotheses dummies Yes Yes Yes Yes Yes
#Observations 3,936 3,936 3,936 3,936 3,936
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Table 5: Analysis paths

This table summarizes all analysis paths by spelling out all forks and
all alternatives at these forks. It further presents the empirical distri-
bution of decisions at all forks.

RT-
hypo-
thesis

Fork Fork description Alternatives Fre-
quen-

cy

All 1 Remove open/close No 79%
Yes, 30 minutes 21%

All 2 Days excluded None 81%
Settlement weeks 19%

All 3 Outlier treatment None 65%
Winsorize measure at 2.5 and 97.5
percentilea

20%

Trim measure at 2.5 and 97.5 percentilea 14%
All 4 Frequency analysis Daily 37%

Weekly 1%
Monthly 21%
Annual 41%

All 5 Model Trend stationary (regresion with linear trend) 35%
Log difference (trivial regression, i.e.,
intercept only)

5%

Relative difference (trivial regression) 60%
1 6 Measure Variance ratio (low-frequency in numerator) 63%

Autocorrelation (R2 of AR model for returns) 37%
1 7 Measure frequencies Second to minute 18%

One to five minutes 26%
Five to thirty minutes 34%
Day to week 13%
Day to month 10%

2,4,5 6 Tick test or aggressor flag Aggressor flag (available only for part of the
sample)

84%

Tick test 16%
2,4 7 Post-trade value Price 5 minutes after trade 81%

Price 10 minutes after trade 6%
Price 30 minutes after trade 13%

2,4 8 Aggregation Equal-weighted average 47%
Trade-size-weighted average 53%

3 6 Units. . . Volume expressed in #contracts 70%
Volume expressed in euro 30%

6 6 Reference price Last trade price in the day 62%
Last trade price one day later 1%
Volume-weighted-average-price (VWAP)
full-day

24%

VWAP based on last five trades in the day 0%
6 7 Mean or median Mean 96%

Median 4%
6 8 Handle non-negatives Translate and transform (ε = 0.001) 14%

Translate and transform (ε = 1) 7%
Set to missing 79%

6 9 Retain negative-trend sign Yes 79%
No 21%

a: Winsorization is applied at the frequency of analysis (fork 4).
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Figure 1: Dispersion of stage-1 estimates across research teams

This plot illustrates the dispersion of stage-1 estimates across research
teams. These estimates all focus on a trend in the sample, expressed
in terms of a yearly percentage change. The six box plots correspond
to the six trends RTs were asked to estimate. The boxes depict the
first and third quartile. The horizontal line in the box corresponds to
the median. The whiskers depict the 2.5% and 97.5% quantile. All
estimates are also plotted individually as gray dots.
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Figure 2: Dispersion in estimates related to quality measures

This figure plots how the dispersion in stage-1 estimates co-varies
with various quality measures. The top graph uses the interquartile
range (IQR) as a dispersion measure and the bottom graph uses the
interdecile range (IDR). The quality variables are team quality, repro-
ducibility score, and the rating by peer evaluators. The IQR and IDR
estimates are taken from Table 3, where relative changes are averaged
across RT-hypotheses. The baseline level is the average dispersion
across RT-hypotheses.
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Figure 3: Dispersion in estimates related to feedback stages

This figure plots how the dispersion in estimates changes across feed-
back stages. Stage 1 is the baseline stage, which is the stage before
any feedback. The top graph uses the interquartile range (IQR) as a
dispersion measure, whereas bottom graph uses the interdecile range
(IDR). The IQR and IDR values are based on the estimates in Table 4,
where relative changes are averaged across all RT-hypotheses. The
baseline level is the average dispersion in stage-1 estimates across
RT-hypotheses.
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Figure 4: Research team beliefs on dispersion stage-1 estimates

This plot illustrates the dispersion in beliefs across research teams,
for all six RT-hypotheses. All teams were asked to predict the SD in
estimates across all RTs. The boxes depict the first and third quar-
tile. The horizontal line in the box corresponds to the median. The
whiskers depict the 2.5% and 97.5% quantile. All estimates are also
plotted individually as gray dots. The red dots show the realized SD
in estimates across RTs. The orange dots do the same, but are based
on a 2.5%-97.5% trimmed sample.
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Figure 5: Dispersion in stage-1 estimates of multiverse analysis

This plot illustrates the dispersion in stage-1 estimates obtained from
the multiverse analysis. The dispersion in reported estimates appears
in gray and corresponds to panel (a) in Figure 1. The boxes depict the
first and third quartile. The horizontal line in the box corresponds to
the median. The whiskers depict the 2.5% and 97.5% quantile.
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Figure 6: Fork sensitivity of estimates in multiverse analysis

This figure plots how sensitive the distribution in estimates is to the
alternatives available at a fork in the multiverse analysis. The sensi-
tivity is measured by the standardized Anderson-Darling test statistic.
Higher values of the statistic imply that distributions become more
dissimilar across alternatives at the fork.
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Figure 7: Sensitivity of estimates in multiverse analysis of RT-H1

This plot illustrates how the distribution of RT-H1 estimates depends
on two influential forks in the multiverse analysis: (i) the model and
(ii) the frequency of the analysis. Distributions are obtained by boot-
strapping 1000 times from the original sample for each analysis path.
To avoid clutter, the weekly frequency is dropped since it is used by
only one team (out of 164).
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