Influencer Detection meets Network AutoRegression
— Influential Regions in the Bitcoin Blockchain

Simon Trimborn *!, Hangiu Peng?, and Ying Chen??

I Amsterdam School of Economics, University of Amsterdam
?Department of Mathematics, National University of Singapore
SRisk Management Institute, National University of Singapore

December 8, 2022

Abstract

Known as an active global virtual money network, Bitcoin blockchain with
millions of accounts has played an ever-growing important role in fund transi-
tion, digital payment and hedging. We propose a method to Detect Influencers
in Network AutoRegressive models (DINAR) via sparse-group regularization
to detect regions influencing others cross-border. For a granular analysis we
analyze if the transaction record size plays a role for the dynamics of the cross-
border transactions in the network. With two-layer sparsity, DINAR enables
discovering 1) the active regions with influential impact on the global digital
money network and 2) if changes in the transaction record size impact the
dynamic evolution of Bitcoin transactions. We illustrate the finite sample per-
formance of DINAR along with intensive simulation studies and investigate its
asymptotic properties. In the real data analysis on Bitcoin blockchain from
Feb 2012 to December 2021, we found that in the earlier years (2012-2016) net-
work effects came surprisingly from Africa and South America. In 2017 Asia
and Europe dominate whereas from 2018 effects majorly originate from North
America. The effects are robust in regard to different groupings, evaluation
periods and choice of regularization parameters.
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1 Introduction

Powered by the blockchain technology, Bitcoin (BTC) brought an innovative financial
asset class into the market. Just as banking customers in the United States send USD
denominated transactions to settle their financial obligations, BTC blockchain users
send BTC denominated transactions to each other, but as a borderless decentralized
digital currency. BTC has grown into an active global virtual money network with
millions of accounts. The number of BTC transactions has increased incredibly too.
According to blockchain.com, there have been more than 730 million transactions
completed by 1 May 2022. The average daily number of transactions was 91 in 2009,
further rose to 69,084 in 2014 and peaked with more than 300,000 average daily
transactions in 2019 and 2020, an annual increase of 300% from 2009 onwards.

Despite its impressive growth, public’s attention is on the potential massive risks
of BTC suffered from e.g. sudden price drops and liquidation risk. Several studies
have reported high volatility and tail risk in BTC (Elendner et al., 2017; Feng et al.,
2018), frequent jumps (Scaillet et al., 2018), informed trading (Feng et al., 2017),
bubbles, sudden drops in market value (Hafner, 2018) and other common market risk
factors (Liu et al., 2019). For example, the price dropped by 50% and 63% over two
and four weeks in December 2013 and January 2018 respectively. An even worse case
would happen if all users stopped interacting on the BTC blockchain, which would
cause a suffer of losing all invested capitals to every user. This insolvency has already
happened to 1705 cryptocurrencies (CCs), according to deadcoins.com. Although
BTC seems safer as a much more liquid CC, risk is indeed higher than conventional
financial instruments. Motivated by the huge market risks yet simultaneously desir-
able disruptive functions, there has been a demand on BTC exchanges as well as the
construction of tunnels between BTC and traditional financial markets. This fur-
ther triggered public concern on the impact of BTC on systemic risk. Unfortunately,
one knows little about the BTC users’ behaviour. While investors’ behaviour can
be studied via Limit Order Books of exchanges, the evolution of BTC price that is
determined by the users’ behaviour in the BTC blockchain is rarely studied. The
anonymity of the BTC blockchain while providing high-end privacy protection masks
the purposes of BTC transactions and often also the frequency of transactions. The
dynamic evolution of the virtual money flows recorded in the BTC blockchain can
provide a number of insightful implications about the users’ behaviours. As a pay-
ment network, transactions in blockchain need to be carried out first to enable new
transactions by other users. If the locations can be extracted from users’ IP address, a
combination of the blockchain and geographical information creates a valuable chance
to study the influence of certain regions and certain types of users on the growth of
the fast growing network.

For the borderless BTC, this question naturally has to be addressed at the global
level. Europe and North America have for many years been considered as leaders in
the financial markets. However the recent frantic enthusiasm for crypto mining in
certain areas, in particular China, Japan and Korea as reported in the media, calls
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into question the regional composition in the BTC blockchain network.

The first question of our study is:

Q1: Which regions influence other regions transaction behaviour on the
BTC blockchain network?

We are interested in studying the regional effect in BTC blockchain given identify-
ing leading regions provides insights for e.g. regulators who are interested in sys-
temic risks. For exchanges where BTC are traded, Makarov and Schoar (2019) found
cross-country arbitrage opportunities which widen up in times of strong BTC price
increases. Sabah (2020) studied the relation between the geographical distribution
and acceptance of BTC and the relation to the price performance. For the BTC
blockchain, where the virtual currency is sent from user to user directly, Ron and
Shamir (2013) analysed the transaction behaviours of the accounts from the emer-
gence of Bitcoin until 13 May 2012. Foley et al. (2019) analysed the BTC blockchain
for evidence of illegal activity and found 46% of BTC transactions are associated to
respective cases. While studies like Lischke and Fabian (2016) have looked into the
geographical distribution and the official vendor BTC transactions, little is known
about the effect of regions on each other.

To investigate the regional interactions of the entire global network, we group the
BTC transactions by continent. Inside each of these groups, the data are further
split into 10 groups according to the transaction record size, resulting in all in 60
groups. These serve as a proxy for the wealth of a BTC investor, which is used to
classify the users. The heuristic behind this is that only Bitcoiners with large hold-
ings are able to execute large transactions, while small Bitcoiners contribute to small
transactions. As surveyed by Trimborn and Yu (2022), heuristics are commonly ap-
plied to construct blockchain networks which can be analysed with analytic methods.
This analysis is targeted at investigating if e.g. small/large transactions are linked
to small/large transactions. Detecting the dynamic interactions between the regional
and transaction record size groups can help to answer the second question:

Q2: Do transactions have an influence on transactions of similar size in
other regions or do they impact transactions of different size?

Our analysis of the dynamic network activity finds the presence of serial cross-
correlation. The existence of serial correlations motivates the adoption of Vector
AutoRegressive (VAR) models for analysing the transactions of the BTC network.
Already since Ord (1975), VAR has been used to investigate spatial interactions in
networks. Pesaran et al. (2004) investigates the exposure of economies to each other,
Chudik and Pesaran (2011) study Infinite-dimensional VARs under the assumption
that each node is related to a small number of neighbouring nodes and a large num-
ber of non-neighbouring ones. Creal et al. (2013) propose Generalized AutoRegressive
models and study the relation between exchange rates and credit risk ratings. Zhu
et al. (2017) develop the Network vector AutoRegressive (NAR) model, where the
connectivity of the network is represented by an adjacency matrix that is a given or
pre-determined binary matrix, see also Zhou et al. (2017). Both papers assume that
the dynamic network connectivity is controlled by one network parameter, which, in



combination with the given adjacency matrix, circumvents the dimensionality prob-
lem with large-scale networks. Though simple, modelling with one single network
parameter and, more importantly, a known adjacency matrix, is a strong and un-
realistic constraint for studying the BTC blockchain. While the geographical origin
of a transaction can be identified, the geographical destination of a transaction is
unknown, requiring an estimation of the adjacency matrix of the network[l] This
motivates using a flexible VAR model with unknown adjacency matrix, which en-
counters the overfitting problem for high dimensional networks. The estimation is
often inefficient or even infeasible, unless one imposes some lower-dimensional struc-
tural assumptions, e.g. sparsity in the parameter space, see Basu and Michailidis
(2015). A flexible modeling also aides to tackle the next research question of this
study:

Q3: How is the network structure of the BTC blockchain related to the
market state and developments in the cryptocurrency ecosystem?

Regularization approaches were originally designed for the univariate case in re-
gressions, but have recently been brought to a vector time series context including
the high-dimensional VAR models. In an investigation of large Vector AutoRegressive
models with exogenous variables (VARX), Nicholson et al. (2017) propose five kinds
of penalties. Song and Bickel (2011) assume a sparse structure for the lags and apply
group sparsity to the columns of the parameter matrix. These studies build on the
l1/le-norm penalties proposed by Hoerl and Kennard (1988), Tibshirani (1996) and
Zou and Hastie (2005), also known as ridge regression, the lasso, and naive elastic
net. Yuan and Lin (2006) develop the group sparsity method for regression models.
The spline-lasso (Guo et al., 2016) allows for smoothly changing coefficients, which is
motivated by the fused lasso (Tibshirani et al., 2005), encouraging locally constant
coefficients within groups. Adopting both the ls-norm and the /;-norm in the re-
gression context, Simon et al. (2013) develop an algorithm to search for the solution
with group lasso penalization while allowing for individual penalizations inside of the
groups.

We propose a method to Detect Influencers in Network AutoRegressive (DINAR)
models via sparse-group regularization to study the dynamics in the BT C blockchain.
The entries of the adjacency matrix are considered unknown and not necessarily bi-
nary, introducing a flexibility of the existence and level of connectivity in the network.
By doing this, we essentially assume that only a few nodes are active. Moreover, di-
verse magnitudes of the parameters within the groups, with some being zero, implies
the existence of individual sparsity. The sparsity assumption is necessary due to the
huge dimensionality in combination with the limited data availability. The DINAR
model adopts two kinds of sparsity. Group sparsity is applied to the columns (nodes)
to identify the influential groups in certain continents, referred to as active nodes.

!The BTC blockchain uses relaying nodes to distribute the transactions to each participant. The
IP address of the relaying node can be observed and provides an approximation of the origin of a
transaction. Since the ownership of the funds is recorded in a public database distributed to each
user and not in the accounts only, the destination of the transaction is not observable. For more
details on the procedure used to observe this information, refer to Section



Individual sparsity is imposed on the individual parameters in an active node, in-
dicating that the active node does not have an effect on every other group. The
proposed DINAR estimator with this two-layer sparsity enables discovering 1) the
active regions with influential impact on the global digital money network and 2) if
changes in the transaction record size impact the dynamic evolution of Bitcoin trans-
actions. The DINAR estimator is designed for identifying influential regions and their
groups within the region. For the optimization of DINAR, we develop an algorithm
for the two-layer sparsity for high-dimensional networks. We investigate the perfor-
mance of DINAR in a large simulation study on various numbers of observations and
different strength of persistence which relates to different magnitude of parameters.
We compare DINAR against LASSO, SCAD and BGR (Tibshirani, 1996; Fan and Li,
2001; Banbura et al., 2010). The results of the simulation study show that DINAR
is overall more accurate in identifying the influential groups, in particular for high
dimensions. We also apply the 3 competing models to the real data investigation on
the BTC blockchain data. The results show that neither LASSO, SCAD nor BGR
are capable of identifying the influential groups. Indeed they either estimate only the
autoregressive parameters or provide a messy adjacency parameter matrix estimate
with much more parameters than DINAR whereas the AIC and BIC is usually better
for DINAR.

This research is related to previous studies, yet there are several differences. DI-
NAR regularizes the VAR specification for the individual parameter and the columns
of the parameter matrix. The latter are all parameters associated with a single node
and represent its effect on the system. The econometric models of Zhu et al. (2017),
Davis et al. (2016), Ahelegbey et al. (2016), Bianchi et al. (2019), Billio et al. (2019)
only focus on the individual parameters which limits the analysis to node-to-node
insights. DINAR additionally allows for node-to-system analysis, hence it provides
the influential nodes in the network. Further DINAR is based on regularization tech-
niques. The work on Bayesian VARs by e.g. Banbura et al. (2010), Ahelegbey et al.
(2016), Bianchi et al. (2019), Billio et al. (2019) imposes different kinds of priors such
as normal inverted Wishard, a combination of graph theory with the Minnesota and
normal Wishard prior, graph theory and hyper-inverse Wishard and a nonparametric
LASSO prior. DINAR provides the adjacency matrix estimator with sparse-group
sparsity. Song and Bickel (2011) use a lasso type sparsity as a pre-selector for un-
regularized time series modelling. In the DINAR framework, we derive the least
square estimator under two penalties and introduce a two-step algorithm into the DI-
NAR model to obtain the estimator numerically. Simon et al. (2013) derive a related
algorithm for univariate regression models, whereas we develop the algorithm for high-
dimensional VAR type models. The interconnections strongly challenge the algorithm
compared to the univariate case, making it computationally intensive. Lastly, the DI-
NAR model contributes to the literature on econometric modelling for BT C networks.
Makarov and Schoar (2021) investigate the geographic distribution of BTC miners
and how the concentration of mining capacity varies with BTC price. In this study
we analyse the time dependent impact of regional transaction activity on the same
continent and other regions on the BTC blockchain. We investigate which regions



influence the others, how this relates to the state of the market and which conclu-
sions can be drawn from the changes in influential regions. For the study we consider
the real data of the BTC transactions from 25 February 2012 to 31 December 2021.
The results demonstrate the spatial connections and dynamic changes in the BTC
blockchain. In particular, it is shown that:

- In the early years (2012 to 2016) influential network effects originated from
Africa and South America. This is unexpected because neither hosts a major
financial centre nor is strongly covered by the media on cryptocurrency.

- In 2017 influential effects started to arise from Asia and Europe

- Even though a vast number of transactions originate from North America, be-
fore 2018 the continent did not show influential network effects though was
influential in 2018, 2019 and 2020. At the same time financial institutions,
frequently based in North America, started offering products comprising BTC
which might explain the stronger role of this continent and its impact on the
transaction behaviour on the BTC blockchain.

- Europe and North America are not strongly influenced by detected influential
regions, if at all. Instead they tend to influence each other or themselves.

- Taking into account that most Bitcoin mining farms are in Asia, it is surprising
to some extent that Asia is not the sole driver but operates Bitcoin for Europe,
North America, Africa, Oceania and South America, fostering the importance
of these regions in the blockchain.

This paper is organized as follows. Section [2| describes the BT C transaction data.
Section [3| presents the method to Detect Influencers in Network AutoRegressive (DI-
NAR) models via sparse-group regularization. In Section 4| we illustrate its advantage
over various other estimators in a large simulation study. Section[5applies the DINAR
model as well as 3 competing models to real Bitcoin transaction data and presents
an interpretation and discussion. Section [0] presents some conclusions. The data
and codes to carry out the numerical calculations are available on the corresponding
author’s \GitHub account.

2 Data description

We consider the BTC blockchain from 25 February 2012 to 31 December 2021 (3597
days with 3489 observed days). The raw data are published on the blockchain at 10-
minute frequencyE] with attributes of transaction record size (for the sake of brevity
we will refer to it as ‘transaction size’), account ID, accounts participating in the

2Note that on the Bitcoin blockchain, the transactions are not published at the moment they
occur. The miners collect the records and publish them as a block at a 10-minute frequency.
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transactions, the timestamp of the transaction, source Blockchain.info and Google
Cloud. Blockchain.info provides additional information on the IP address from the
relaying party of the origin of the transaction which is used to label the region. We
acquired this information from 25 February 2012 until 17 July 2017, after which the
IP address are no longer published by blockchain.info. To extend the data further,
whenever an account, identified via the account ID, transacts again, we assign the
known IP address to it. Users of Bitcoin are encouraged not to reuse accounts and to
create a new one for each transaction. This practice challenges the mapping proce-
dure, however still a reasonable number of transactions and transacted amount of the
total can be identified, see Table [IL The percentages are derived by comparing the
average transaction size of each of the 6 continents in the time period 2014 to 2017
against the identified transaction size of the respective continent in the outlined time
periods. We chose this comparison because the overall transaction size on the BTC
blockchain did not change much after 2017, see Figure[I] For a while the transaction
size even shrank. Hence a comparison with the data from 2014 to 2017 is reasonable.
We observe that for the remainder of 2017 the mapping rate is very high and decreases
for various continents in 2018. In the real data analysis in section [5 we will exclude
continents from the analysis for certain years when their mapping rate is too low. For
the decision on which continent to exclude, we also take into account the transaction
size, illustrated in Figure [2|

Figure 1: Daily log aggregated transaction size on the BTC blockchain from 2009
until the end of 2021.
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Table 1: Percentage of matched transaction volume over 3 time periods relative to
the identified transaction volume over the time period 2014 - 2017.

AF AS EU NA 0oC SA
2017-07 - 2017-12 | 33.00 36.02 95.17 35.17 13.90 22.58
2018-01 - 2018-12 | 15.74  2.62 53.24 582 139 4.19
2019-01 - 2021-12 | 3.33 146 28.14 154 096 3.70

We group the data into 6 continents: Africa (AF), Asia (AS), Europe (EU), North
America (NA), Oceania (OC) and South America (SA). The continent is identified
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depending on the IP address compared with a dataset of IP address from MaxMind
Inc. We follow Reid and Harrigan (2013) in tracking the approximate location of the
origin of the transaction ] The node that informs first about a transaction is close to
the location where the transaction takes place, thus one can approximately identify
the location where the transaction originates. This approach only works as long as
the running node does not use an anonymizing technology. Lischke and Fabian (2016)
document that about 1.6% of all BTC nodes use anonymizing technology such as Tor
networks.

Each continental group is further categorized according to the transaction size.
Due to anonymity, characterizing BTC users is not easy. We thus group the users
according to the size of the daily transactions associated with the accounts. The
heuristic behind this is that only Bitcoiners with large holdings are able to execute
large transactions, while small Bitcoiners contribute to small transactions. As sur-
veyed by Trimborn and Yu (2022), heuristics are commonly applied to construct
blockchain networks which can be analysed with analytic methods. Inside each conti-
nental grouping, the data are separated into 10 size groups, depending on the deciles
of the sizes of the transactions. The first group, indicated by a 1 placed after the
abbreviation for the continent, has the smallest transactions, corresponding to the
0%-10% percentile, while the tenth group, with the largest transactions, is indicated
by a 10, and corresponds to the 91%-100% percentile. Later, for robustness analy-
sis, we also consider a 3 group per continent setting, where users are clustered into
three size groups corresponding to 0%—30%, 31%—-70%, and 71%—-100% percentiles for
small, medium, and big investors, respectively.

The identification of the originating continent and building of the groups we con-
ducted based on the raw data with 10-min frequency. Except for Europe and North
America, there are 1% and 25% zeros, meaning no transactions. A lack of liquidity
can be challenging for the model estimation. We overcome the liquidity problem by
aggregating the raw data to a daily frequency.

For the further analysis, we consider the log transactions. To avoid —oo in the
data for cases without any transactions in a continental grouping within a day, we
add 1 Satoshi [ to each transaction. Given the large numbers under consideration,
the bias effect of the correction is negligible.

Figure [2| displays the evolution of the daily log aggregated transaction sizes over
all groups in each continent. The left plot shows the data over the time period
February 2012 to July 2017, the right one from July 2017 until December 2021. Since
the data from July 2017 are based on the matching procedure, we display them in a
separate plot. We first analyse and comment on the data until July 2017 since the
data from then on are based on the matching procedure which induces a potential

3The location of the relaying node gets observed, which is geographically close to the origin of
the transaction. Since the information is saved in the blockchain and each user has a copy of it, no
information on receiving node gets recorded. Consequently the final destination is not traceable.

4The BTC transactions are reported in Satoshi values, the smallest fraction of a BTC, where 1
BTC = 100,000,000 Satoshi.



bias. Europe and North America on average have the largest transactions and the
dynamic pattern is quite steady. Asia and Oceania contain a few days (8 and 19)
without transactions, even after aggregating to daily frequency. They are also more
volatile than Europe and North America. Africa and South America are the most
volatile and have a relatively larger number of days, 364 and 241, respectively, without
transactions. The interpretation of Figure [2| is further supported by the descriptive
statistics, presented in Table [l Inferring from the mean and standard deviation,
Europe and North America, Asia and Oceania, Africa and South America indeed
show a related behaviour. Also the minimum values indicate the existence of zero
transactions, a lack of liquidity, in some areas, supporting the previous analysis. For
the matched data from July 2017, one can observe that all time series are decreasing
which is attributed to a lower matching rate the further one goes into the future.
We can also observe that the matched transactions in South America and Oceania
quickly go towards zero. Hence users in these continents observe the suggested rule
by Satoshi Nakamoto, not to reuse accounts, better than users in other continents. In
North America, Europe and Asia we are still able to match reasonable high amounts
of transactions to IP addresses. The aggregated transaction value is also shrinking
though for Europe and North America it remains on a steady level from 2019 onwards
whereas for Asia it continues to decrease.

Figure 2: Time series of daily log aggregated transactions. The time period is 25
February 2012 until 17 July 2017 (left plot) and 18 July 2017 until 31 December 2021
(right plot) in the 6 continents Africa, Asia, Europe, North America, Oceania,

Log aggregated transaction volume by region 2012-02-25 / 2017-07-17 Log aggregated transaction volume by region 2017-07-01 / 2021-12-31
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Table (3| provides the average daily transaction volumes in USD in each decile
of each continent. To avoid potential bias, the table is derived from the data from
February 2012 to July 2017. For the conversion to USD we consider the daily closing
price of BTC reported on YahooFinance. One sees that the daily transaction volumes
can be very low, especially in Africa and South America, see the lowest decile. At



the same time, the transactions in the top decile of Europe have a mean transaction
volume of over 144 million USD per day. In Africa and South America for the same
decile, it still ranges to over 200,000 and 425,000 USD on daily average. Apparently
there are quite high transaction volumes, especially when considering that BTC is
still an emerging asset.

For deeper insights into the features of the data of the groups in each continent,
the empirical distribution of the log of the sizes of the transactions is displayed as a
densityplot in Figure 3] again for the data from February 2012 to July 2017. For each
continent, the left plot corresponds to the first group, namely group 1 with the small-
est transactions, and the right one to group 10 with the largest transactions, leading
to an increasing pattern within each continent. The narrow box width of Europe and
North America suggests a smooth evolution of the transaction sizes with few spikes.
There are hardly any occurrences of zero transactions, indicating a healthy liquidity
in these regions. This indicates a more mature market in Europe and North America,
hence a clearer structure within an estimated model is to be expected. Asia and Ocea-
nia are relatively more dispersely distributed. The daily transaction sizes are more
volatile, inferred from the size of the center box and the length of the whiskers. South
America becomes again extreme in the sense of showing longer whiskers, translating
to a larger variation of the sizes of the transactions within each group. Even in group
10 with the highest transaction sizes, there are days without any transactions. Africa
follows a very different pattern from the other continents. The respective density-
plots indicate high volatilities with frequent drops to zero transaction volume. The
divergences between the groups eventually suggests, for the modelling, an adjacency
matrix with a flexible choice of parameters.

Table 2: Descriptive statistics of the log accumulated transactions of the 6 regions
Africa (AF), Asia (AS), Europe (EU), North America (NA), Oceania (OC), South
America (SA).

AF AS EU NA oC SA
mean | 18.65 26.01 30.43 30.41 24.76 20.48

sd | 947 219 095 085 3.08 8.15
skewness | -1.34 -7.17 -1.03 -0.74 -5.34 -1.96
kurtosis | 3.06 &85.75 11.73 15.79 43.06 5.24
min | 0.00 0.00 22.04 21.78 0.00 0.00
max | 28.91 31.65 35.38 34.40 31.21 31.85

There remains the question if there is any dynamic dependence between the BTC
transactions. As reflected by the lag 1 cross-correlations, Figure [ shows that there
is an autocorrelation effect for the groups of each continent. The effect appears
strongest in Europe and North America. Oceania and Asia, on the other hand, have
weaker serial dependences, as can be seen from the more shallow red. Frequently it
appears that the effect in the highest group 10, is stronger than in their correspond-
ing lowest group 1. The remaining continents, Africa and South America, share
similar serial dependence between the groups, which is also stronger than the one in
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Figure 3: Daily log transactions of the 10 groups displayed as density plots, with the
left density plot representing group 1 and the right one group 10 of the respective
continent. The time period is 25 February 2012 until 17 July 2017 in the 6 continents
Africa, Asia, Europe, North America, Oceania, . The first 8 density
plots for Africa range to 0 due to the little number of transactions in this continent
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Figure 4. Lag 1 cross-correlations between the size of the transactions — ordered in
10 groups — in the 6 regions: Africa (AF), Asia (AS), Europe (EU), North America
(NA), Oceania (OC), and South America (SA). Each block on the diagonal represents
the lag 1 dependence within a continent, while the off-diagonal blocks represent the
inter-continental effects.
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Asia and Oceania. Moreover, there are network effects within the BTC blockchain,
again reflected by the lag 1 cross-correlations between the groups and the regions,
see Figure The diagonal block of the heat map shows the lead-lag dependence
among the groups within the same continent, while the off-diagonal shows the intra-
continental cross-dependence. Europe and North America exhibit a stronger cross
dependence, both inter-continent and intra-continent, in terms of their influence on
the others (lead) and being affected by the others (lag). The network effect is much
less between the other continents. South America and Africa exhibit a connection
within themselves and simultaneously sparse cross-dependence with the other conti-
nents. This indicates that these continents are self-dependent. We observe frequently
a stronger intra-continental relationship between the groups than between groups of
different continents. This suggests that users may send and therefore trigger more
often transactions within their own geographical location. This makes sense from
the standpoint that payment systems are more frequently used for services in the
geographical vicinities of the end-users.

The magnitude of the cross dependence differs, suggesting flexibility in the dy-
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Table 3: Mean daily transaction value (in USD) in the deciles of the transactions of
the 6 regions Africa (AF), Asia (AS), Europe (EU), North America (NA), Oceania
(OC), South America (SA).

AF AS EU NA oC SA

1 7.18 52.52 920.34 333.46 11.71 4.06
2 34.53 205.43 5931.73 2470.26 96.53 19.53
3 89.94 448.50 18743.82 7341.04 147.04 57.45
4 197.07 1039.13 39903.12 15438.44 342.60 131.56
) 431.86 2074.87 83607.85 34735.14 771.13 302.91
.6 947.88 4386.15 177291.31 80343.77 1683.52 713.64
T 2179.41 17316.84 390226.22 193029.66 3853.24 1970.66
8 5834.54 66690.19 1011731.37 531628.26  10173.54 4955.48
91 20647.78  235919.06 3677787.40  2040912.93  40651.43  17731.31
10 | 425972.68  2789979.66 144060061.43 71684792.44 573119.69 211864.35

Table 4: AIC, HQ and BIC evaluation criteria for a VAR model selection procedure
derived on the data from 2012 to 2021.

Selected Lag  Lagl Lag2 Lag3 Lag4 Lagb Lag6 Lag?7
AIC 2.00 -11891 -119.18 -119.00 -118.59 -118.22 -117.84 -117.39
HQ 1.00 -116.60 -114.60 -112.14 -109.46 -106.82 -104.17 -101.45
BIC 1.00 -112.44 -106.34 -99.80 -93.03 -86.29 -79.55 -72.74

namic modeling parameters. In the heat map, there are a number of zeros, displayed
as blank fields, and values close to zero, which implies sparsity in the dynamic struc-
ture.

It remains to investigate the best possible lag structure for the network. We fit
VAR models to the data to identify the best lag structure to use during our modeling
procedure. The results are presented in Table BIC and HQ criterion favour a
model of order 1 whereas AIC suggest a model of order 2. Since our interest is rather
in identifying the true model, we place higher relevance upon the BIC. Further it can
be observed that the AIC is only slightly better for lag 2 than for lag 1, hence the
improvement is marginal. In the Appendix we also provide the lag selection of AIC,
BIC and HQ for a VAR modeling procedure on a yearly basis, see Table [I9] Again
BIC and HQ suggest the lag order 1 and AIC suggests often a model with further
lags. Since we place stronger emphasis upon the identification of the true model,
we follow the suggestion of the BIC and HQ. Consequently we will work with a lag
structure of order 1 in this study.
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3 Detecting Influencers in Network AutoRegres-
sion

We propose a method to Detect Influencers in Network AutoRegressive (DINAR)
models via sparse-group regularization to describe the dynamic dependence in a net-
work with an unknown and sparse adjacency matrix. The adjacency matrix reflects
both the connectivity with non-zero values and their strengths, shown as the mag-
nitudes among the nodes. The serial dependence on its own lagged value is not
regularized. To detect the dynamic dependence, a two-layer sparsity is imposed on
both group and individual effects. We develop a regularized least squares estimator
and a gradient descent algorithm for modelling the high dimensional network.

3.1 Specification

Let N denote the size of the network and Y;; denote the transaction size of Node i,
1 <i< Nattimet, 1 <t < T, where T is the length of the time period. The
DINAR model is defined as follows

N
Yie = Bo+ B1Yig—1) + Z a;j Y e—1) + €iy (1)

J=1

where the parameter (; controls the autoregressive dependence. The adjacency ma-
trix A = (ai;)1<i, j<n represents the connectivity. The elements of A reflect both the
connectivity between Node 7 and the lagged value of Node 7, if nonzero, but also the
strength of the dynamic influence of Node j’s lag on Node ¢. The adjacency matrix
is assumed to be sparse, with few non-zero entries, highlighting active groups and
nodes. If a;; # 0, Node j is active and has influence on Node ¢. For a;; = 0, Node
J has no influence on Node ¢. If a;; = 0 for all 7, then Node j is inactive. It is
unknown which elements are zeros and which are not. Since the autoregressive de-
pendence is parametrized by 1, the diagonal elements of A are forced to be zeros (i.e.
a; = 0,1 <i < N). In addition, ¢;; is white noise s.t. E(g;;) = 0, E(g;56;,) = 0,
Var(e;;) =0, 1<i<Nand 1<t s, 7<T.

Define Y, = (Yiy,---,Yn)' € RN, &, = (e1y,---,ent) | and write Iy for the N
dimensional identity matrix. The DINAR model can be represented in compact
matrix form:

Yt = 1B0 + (INﬁl -+ A)Yt_l + &¢. (2)

Our interest is to detect 1) the active groups and 2) the active elements within the
active groups, namely to estimate the adjacency matrix A under sparsity. The large
size of the network challenges the estimation of the N x N adjacency matrix, due to
the limited data availability with 7" as the number of observations.
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3.2 Regularization and Inference

Under the two-layer sparsity assumption, also referred to as sparse-group, the esti-
mation is achieved by carrying out a nonlinear regularized optimization:

T
o1
min 5 ;HYt — 18— (InB1 + A) Y17 (3)
N N N
+3 (1= a)AJAl[p+ D0 aMay]
i=1 i=1 j#i

where 0 = (8, 81, A)T. Note that the estimator is a multivariate version of the
univariate estimator introduced in Simon et al. (2013). Group sparsity is applied to
the columns of the adjacency matrix. The matrix A is partitioned to A,; with all
the elements being 0 except for the ith column, i.e. A; = {Alax; = O0VEA (§ # 1)},
and A_; = {Alax; = OVE A (j = i)} with the ith column being 0. Individual
sparsity is further applied only to the nonzero columns, namely, the active groups.
If a group is inactive, the entire corresponding columns of the adjacency matrix will

be shrunk to zero. Here a and A are the tuning parameters and [|A|[r= />, af;

refers to the Frobenius norm. The term (1 — «)A controls the group sparsity and a\
the individual sparsity. The group-regularization term applies the Frobenius norm
because for a vector it is equal to the 2-norm which is non-differentiable at 0. Hence it
allows for an estimation of some groups as 0. Similarly the parameters within groups
which were not estimated as 0 by the first regularization are estimated with L! norm
to allow for parameter selection.

We study the small sample behaviour of the estimator in section [dl We also study
the asymptotic properties of the estimator under fixed dimensionality N. For the
theorems and proofs, please refer to the Appendix, Section [[.4] and [[.5]

3.3 Implementation

To solve the optimization problem, we develop a gradient descent algorithm and
iteratively apply it to each column of A. It is an active-set algorithm, which optimizes
the parameters within a group while holding the other parameters fixed. After the
algorithm iterated over all groups, it starts again at the first group and reoptimizes
the parameters. This procedure is repeated until the parameters no longer change
but by a diminutive value. For details on the algorithm, please refer to the Appendix,
Section [Il

The estimation relies on the choice of @ and A\ as defined in the regularized op-
timization . The mixing parameter « controls if relatively stronger regularization
will be applied to the groups or individual parameters. It can be chosen data-driven
though we define it as a = 1/N which ensures that relatively the same regularization
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is applied to each group as to any single parameter. If o would be chosen as larger
than 1/N, a relatively stronger regularization would be applied to the individual
parameters than to the groups and vice versa for o lower than 1/N.

The choice of A on the other hand is data-driven. We design a sequence of \’s
starting from the one which sets all parameters in the model equal to 0. Then, a
halving sequence is created until the value 0 is reached. A popular approach to find
the best A out of the created sequence is cross-validation, though it ignores the serial
dependence in time series, see Nicholson et al. (2017). Hence, we use a forward-looking
criterion by selecting A such that the out-of-sample AICs and BICs are minimized.
This approach was also used in Baribura et al. (2010), Song and Bickel (2011) and
Nicholson et al. (2017).

4 Simulation

4.1 Simulation settings

In this section, we investigate the finite sample performance of the proposed DINAR
model. In particular, we evaluate parameter estimation accuracy, transaction pre-
diction errors, and sparsity detection of the adjacency matrices along with various
simulated networks. We consider five scenarios to demonstrate how the finite sample
performance would be influenced by the network size N, the dynamic evolution pe-
riod T" and a growth in the number of groups. We design a small dynamic network
with N = 10 groups, a medium one with N = 20, and a large one with N = 60. Each
type of networks further involve three different length of time periods, namely short
with T" = 100 transactions, medium with 7" = 500, and long with 7" = 1000. The
parameter vector 5y will not be considered here because in the real data application
we demean the data before the estimation procedure. This makes the inclusion of 3,
in the real data application not necessary and to make the settings comparable, we
omit it during the data generation process and estimation in the simulation study.
Each simulated data is constructed as

Y, ={0iIn+A}Y: 1+ & (4)

where €, ~ N(0, Iy). Attributes (Y4, -+, Yar), 1 <t < T are generated with serial
dependence 31 on its own past values and cross dependence A on others’ past values.

We consider adjacency matrices of 3 different strength of persistence. We control
the persistence by checking the maximal eigenvalue of the companion matrix since
the roots of the polynomial of a process correspond to the eigenvalues of the com-
panion matrix. The maximal eigenvalue of the companion matrix of the respective
adjacency matrices are 0.75 (low persistence), 0.84 (medium persistence) and 0.94
(strong persistence). A value of 1 would indicate that the process does not ‘forget’
any past information and a value larger 1 would result in an explosive process. The
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matrices are constructed as follows:

e Low persistence: The autoregressive parameter (3, is 0.5 and 4 of the groups
have parameters different from 0. These group have alternating parameters of
magnitude 0.15.

e Medium persistence: Similar to the previous setting, the autoregressive param-
eter (3 is 0.5 and 4 of the groups have parameters different from 0. These group
have alternating parameters of magnitude 0.20.

e Strong persistence: Similar to the previous setting, the autoregressive parameter
By is 0.5 and 4 of the groups have parameters different from 0. These group
have alternating parameters of magnitude 0.25.

For the case an increasing number of groups with increasing dimensionality, we
construct the matrices as follows, which ensures again low, medium and strong per-
sistence. Note that we lower the magnitude of the serial dependence parameter which
allows us to introduce additional groups with high parameter magnitude whereas the
persistence remains controlled.

e Low persistence: For N = 20 the autoregressive parameter ; is 0.35 and 6
of the groups have parameters different from 0. These group have alternating
parameters of magnitude 0.15. For N = 60 the autoregressive parameter [, is
0.2 and 10 of the groups have parameters different from 0. These group repeat
the parameter vector 0.15, 0,0, hence one more 0 is introduced compared to the
N = 20 setting.

e Medium persistence: For N = 20 the autoregressive parameter ; is 0.35 and 6
of the groups have parameters different from 0. These group have alternating
parameters of magnitude 0.2. For N = 60 the autoregressive parameter [, is
0.15 and 10 of the groups have parameters different from 0. These group repeat
the parameter vector 0.2, 0,0, hence one more 0 is introduced compared to the
N = 20 setting.

e Strong persistence: For N = 20 the autoregressive parameter ; is 0.3 and 6
of the groups have parameters different from 0. These group have alternating
parameters of magnitude 0.25. For N = 60 the autoregressive parameter [3; is
0.05 and 10 of the groups have parameters different from 0. These group repeat
the parameter vector 0.25, 0, 0, hence one more 0 is introduced compared to the
N = 20 setting.

We compare the DINAR model against 3 alternative methods, namely LASSO
(Tibshirani, 1996), SCAD (Fan and Li, 2001) and BGR (Banbura et al., 2010).
The former two methods are designed for parameter selection whereas they do not
have a layer for network identification as DINAR does. The latter is has a bayesian
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VAR specification which shrinks parameters towards zero. It serves as a comparison
between non-sparse and sparse methods. Similarly to DINAR, the A\ sequence for
LASSO and SCAD is chosen so that the largest A sets all parameters in the models
equal to 0 and from then on a halving sequence is created until the A approaches
0. The tapering-off parameter in SCAD is set to 3.7, as recommended by Fan and
Li (2001). The models are estimated with a coordinate-wise descent algorithm. The
BGR model is estimated with the BigVAR package, Nicholson et al. (2022).

Each of the experiments is repeated V' = 100 times. In each replication 1 <
v <V, we obtain the penalized least square estimates (Bf”), A(”)) under both group
and individual sparsity. The following measurements are adopted to evaluate the
performance in terms of pattern identification and accuracy:

e To evaluate the pattern identification, we computed the False Negative (FN)
and False Positive (FP) rates on the estimated sets. FN refers to active set’s
being falsely identified as null, namely, under-detection or overly sparse. FP
refers to the set’s being wrongly identified as active, namely, overdetection or
overly dense. It is natural that the lower these two measures are, the better
the performance. Given the two-layer sparsity, there are then 4 metrics: FN.g
and FP.g for groups, and FN.e and FP.e for individual elements. In the case
of perfect detection, namely, all 4 metrics are zero, we conclude that the true
pattern was identified.

e Accuracy is measured using the Root Mean Squared Error (RMSE). There are
two different metrics. ‘RMSE para’ refers to the estimation accuracy, computed
based on the difference between the true and estimated parameters. ‘RMSE
out’ refers to the forecast accuracy, which is calculated based on the residuals
between the observed values of the time series and the predicted values based
on the model. It is an out-of-sample measure based on the testing dataset. In
both of the accuracy metrics, a low value indicates good accuracy.

The Figures [0} [0} [7] and [§] summarize the performance of DINAR and competing
estimators along with the 6 measurements in the 54 experiments, separated according
to model specification. The Figures [5 and [6] show the setting where the number of
groups remain steady with increasing dimensionality, the Figures [7] and [§] the ones
for increasing number of groups with increasing dimensionality. We evaluate the
simulations with AIC and BIC, Figures [f [7] show the results for BIC and Figures
6, [§ for AIC. The roseplots show the performance of the simulation study for the
3 dimensions, {10, 20,60}, for the number of observations, {100,500, 1000}, and the
3 strength of persistence, low, medium (med) and strong (str). Each roseplot is
separated into 3 sections, one for each covered dimensionality. Within each section,
3 subsections are assigned for the number of observations: 7' = {100,500, 1000}.
For each of these subsections, 3 further subsections are provided for the strength of
persistence. Within these subsections, 4 columns of rectangles are provided, named
A, B, C, D. The naming convention refers to DINAR (A), SCAD (B), LASSO (C)
and BGR (D).
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The entire circle has 6 tracks, each of which represents another evaluation criterion.
The most outer track is referred to as 1, and the most inner track is referred to as
6. We leave a gap for improved representation between track 5 and 6. The 4 most
outer tracks are for the False Negative and False Positive criteria: FN.g (1), FP.g (2),
FN.e (3), FP.e (4). The FN and FP rates vary between 0 and 1, whereas the color
palette goes from white (0) to red (1). No False Negatives and no False Positives are
the best possible outcomes; hence, the more white or shallow red the rectangles are,
the better. Track 5 reports the ‘RMSE para’ with a color palette from white (0) to
blue (maximum value of ‘RMSE para’). Again, the lower the value, the better; hence,
white or shallow blue rectangles are preferable. The ‘RMSE out’ is reported via track
6. The color palette goes from white (0) to green (maximum value of ‘RMSE out’).
Since these evaluation criteria reflect the error terms, the smaller the values are, the
better. Thus, white and shallow green is preferable.

4.2 Simulation evaluation

We select the models in the simulation study on out-of-sample data of same length
than during the estimation with AIC and BIC. The Figures [5] [0 [7] and [§] summa-
rize the results and show that for 100 observations and low persistence with 500
observations, the evaluation with AIC gives better results than with BIC. From 500
observations onwards with medium and strong persistence, AIC and BIC commonly
perform similar. Though BIC is performing slightly better in terms of FN.g, FP.g,
FN.e and FP.e for 1000 observations.

As we observe from the Roseplot [f [6] and the Tables 9] [11] [14] [15] [16] (in

Appendix), DINAR has a good ability to recover the underlying structure. For all
3 number of time series, N = {10,20,60}, and T" = 100, we observe that none of
the 4 models do particularly well. All models favour too sparse parameter matrices,
except for BGR which overparametrizes the model strongly. For lower dimension-
ality the models, DINAR, SCAD, LASSO and BGR have about the same ‘RMSE
out’. With increasing dimensionality, N = {20,60, DINAR performs increasingly
better. Notably the result with AIC outperforms the competing models stronger
than the one evaluated with BIC. So for T' = 100 we can conclude that all models do
equally poor in identifying the true model but DINAR does better in terms of predic-
tion accuracy when the dimensionality increases. For higher number of observations,
T = {500, 1000}, we observe that DINAR has a FP.e comparable to LASSO or just
better than it for most scenarios and dimensions. However SCAD is frequently out-
performing DINAR in terms of FP.e for N = 10, but for higher dimensions, N = 20
and N = 60 the difference becomes smaller though still in favor of SCAD. How-
ever DINAR is performing tremendously better when it comes to the identification
of the correct groups. Its FP.g and FN.g are usually around zero or zero exactly
for T = {500,1000}. But for the N = 60, which we consider in the application
of this study, DINAR is performing remarkably better than the competing models.
This indicates that DINAR is better suited for model identification in higher dimen-
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sions than the other models. As for FN.g and FP.g, the measurements to evaluate
the identification of the influential groups, DINAR is outperforming all 3 competing
models. Since at times DINAR has a worse FP.e than SCAD, this indicates that
DINAR identifies the influential groups but does not necessarily estimate parameters
which have zero magnitude as being 0. Indeed we observed that various parameters
are estimated as extremely close to zero but not zero exactly. This is likely due to
DINAR attempting to model the underlying variations as accurately as possible in
which it is successful as can be seen from the ‘RMSE out’ being similar to the other
models. However these models consider non-influential groups as being influential. In
particular for the highest dimension, N = 60, the competing models are far from the
true underlying structure. On the contrary the estimation with DINAR results in a
model which is much closer to the true underlying model though it tends to estimate
parameters within influential groups as non-zero which are zero in the true model.
Though the identification of the influential groups is the key target of this study and
DINAR does remarkably better in this regards than the competing models. These
observations are valid for evaluation with AIC and BIC. In line with the goals of this
study, DINAR is performing better in this simulation.

Figure 5: Roseplot for the first set of simulations evaluated with BIC
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So far we kept the number of influential groups fixed at 4 for each simulation. In
Figure [7] [§] and Tables [12], [13] [17] we show the results for an increasing number
of influential groups with increasing dimensionality. The settings of the simulation
remain as before, just the parameter magnitudes change to ensure the persistence
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Figure 6: Roseplot for the first set of simulations evaluated with AIC
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remains on a similar level as before. The results indicate that again DINAR is doing
much better in regards of identifying the influential groups. Similar to before it
is outperformed at times by SCAD. When the dimensionality grows to N = 60
and for evalution with AIC, then DINAR is doing much better than any of the
competing models for 7" = {500, 1000}. Given the high dimensionality, it is within
expectation that all models perform equally poor when estimating the model with
100 observations. The BIC has a stronger penalty term than the AIC and due to this
situation and the larger number of parameters different from 0 than before, frequently
the BIC criterion chooses a model for DINAR which performs poorly. However, as
illustrated with the AIC criterion, DINAR is able to identify a better model than
competing methods. Hence the conclusions from the previous case remain valid.

In terms of accuracy, we observe that the ‘RMSE para’ are usually better for DI-
NAR. They are consistently lower than for the three alternative methods. This result
is in line with the fact that DINAR has better FN and FP values than the alternative
methods. Even for the cases when LASSO has a lower FP.e, the ‘RMSE para’ is
similar for LASSO and DINAR which indicates that the magnitude of the wrongly
selected parameters for DINAR must be very close to 0 which only marginally harms
the parameter identification performance of DINAR. The ‘RMSE out’ are comparable
for all methods which suggests that LASSO, SCAD and BGR over-parameterize the
adjacency matrix since they do not provide better prediction accuracy out-of-sample.
Thus DINAR recovers the underlying structure better and gives overall a similar
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Figure 7: Roseplot for the simulations with increasing number of groups when dimen-
sionality increases, evaluated with BIC
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out-of-sample performance.

The key target of this study is the identification of influential groups in high
dimensions. As the simulation study showed, DINAR is outperforming all other
methods in this regards. Hence, overall the simulation results suggest that DINAR
outperforms the alternative methods in terms of identifying influential groups in high
dimensions.

5 Real Data: Bitcoin Transaction Analysis

In this section, we analyse the BTC blockchain and implement the DINAR model to
detect the regional and size effects in the global virtual currency transactions in the
BTC blockchain network.

5.1 Estimation procedure

We use the BTC transaction data described in Section [2| from February 2012 to
December 2021. To provide a better interpretation, the data is demeaned and scaled
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Figure 8: Roseplot for the simulations with increasing number of groups when dimen-
sionality increases, evaluated with AIC

with GARCH volatility. To ensure that the dynamics of each volatility process are
represented, a GARCH(7,7) model is fitted. The reason for the scaling is to make the
parameters comparable and to ensure that the LASSO type model does not favour
time series with a larger volatility due to varying scale of the data. Hence the data
are scaled to 0 mean and volatility 1. As such the magnitudes of the parameters
become comparable. The intercept [y is not required in the estimation since the data
are demeaned. We are modelling the transactions on a daily basis as follows:

N
Yie=51Yiq-1) + Z ai;Yj-1) + €ig (5)
j=1

where the parameters are defined as in . We focus on the estimation of the unknown
adjacency matrix A = {a;;} for network connectivity and the parameter j; of serial
dependence. To understand the time related dependence in the network, we split the
activity into years and perform the estimation independently for each year. In total,
there are 10 samples; each contains the daily transactions of the 60 groups within the
particular year.

The estimation relies on the choice of a and A as defined in the regularized op-
timization (3). The mixing parameter « is set to be 1/N, where N is the number
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of groups: in this case N = 60. The choice of A on the other hand is data-driven.
Although cross-validation is a standard technique, it ignores the serial dependence in
time series, see Nicholson et al. (2017). Hence, we use a forward-looking criterion by
selecting A such that the out-of-sample AICs and BICs are minimized on the next
year’s data, a year-to-year approach. This approach was also used in Banbura et al.
(2010), Song and Bickel (2011) and Nicholson et al. (2017). As an example, for the
period of 2015, the DINAR estimation is conducted on the sample period from 1
January 2015 to 31 December 2015. The hyperparameter X is selected such that the
forecasts for the next 90, 180, 270, 365 days from 1 January 2016, computed with the
adjacency matrix and (; estimated in 2015, has the minimal out-of-sample AIC and
BIC among all the alternatives. We chose 90, 180, 270 and 365 days to provide a short
and long term analysis which also serves as robustness analysis for the results. Since
DINAR is a method dependent on the evaluation period, a consistent choice over all
periods is crucial for a meaningful comparison. To select A, we carried out this year-
to-year estimation exercise for each period from 2012 to 2020 until we reached the
end of the sample, i.e. 2021. By this procedure the selected model will be evaluated
for its forecasting accuracy. For evaluation of the network effects over time, this is a
viable choice. A different evaluation scheme might result in a different model choice.
Accounting for that we also provide and analyse the networks of different A-values
from the model search. Further Table |5 shows the selected number of parameters
and groups of the optimal model chosen by AIC and BIC accounting for the different
length of evaluation periods. Due to its stronger penalty for complex models, BIC
frequently favours a sparser model. However, most of the time the metrics agree on
a similar model choice which is in particular the case when the evaluation period is
shorter. The longer the evaluation period more often AIC favours a model with more
parameters and consequently more active groups. Since the information criteria agree
most of the time on the same model and we are rather interested in a consistent model
choice, the main evaluation metric in the application will be the BIC. Additionally
the BIC displays higher stability in terms of the optimal model choice regardless for
shorter or longer evaluation periods.

5.2 Evaluation

We evaluate the estimation performance using metrics including the out-of-sample
AIC and BIC for the next 90, 180, 270, 365 observations of the coming year. These
metrics strike a balance between model fit and the complexity of the model, hence
are well suited to evaluate sparsity approaches.

We illustrate the serial cross-dependence with chord diagrams, see Figures [9] and
[[1l They demonstrate the dynamic connectivity in the global BTC blockchain net-
work. A chord diagram displays the direction and magnitude of the influence of each
node by showing the magnitude by means of the circle and the destination of the
signal by the chord. The wider the space on the circle, the larger the magnitude
and hence the higher the dynamic impact in the network. A chord diagram does
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not differentiate between positive and negative influences. The sum of the absolute
values of the parameters (magnitude) is displayed on the circle. Moreover, the colour
of the chord corresponds to the colour of the continent to which the effect is directed.
For an example, consider Figure [9¢, where EU.1 is outstanding with a magnitude of
12.5 and about one-third of the magnitude directly influencing the other European
groups. The remaining magnitude mostly reflects an influence on North American,
South American, Oceanian and Asian groups.

5.3 Results and interpretation: 10-groups

DINAR is applied to the grouped transactions (10 groups per continent) and we
tackle the problem of answering if user groups defined by transactions are related in
a time dependent manner between years. In the year-to-year analysis, zero entries in
the adjacency matrix indicate that the past transactions of the corresponding group
have no influence on the future transactions of another group. If there are only zero
entries in one column, this indicates the lack of network connectivity of the particular
regional size group with all the other groups. On the other hand, a group with a
non-zero entry in the adjacency matrix is considered as an active group as it is able
to influence the dynamic evolution of the virtual money flows.

We focus on the years where the adjacency matrices are not zero, in other words,
where network effects appeared. Figure [J illustrates the active network connectivity
based on the 10 groups per continent over the whole sample period evaluated upon
180 days out of sample. For an enlarged version of each plot, see Figures [14] [15]
[16], [17 in the Appendix. Comparing with Table [5] we see that the number of groups
and parameters chosen for 180 by BIC are relatively stable over the other evaluation
periods as well. It shows there are network effects for all years but 2013. 2012 was the
year when BTC received increasing attention. Its price doubled before it skyrocketed
in 2013 with its price reaching over 1000 USD for the first time in November 2013. For
this first year of the analysis only the smallest group in Africa had networks effects
and these effects were quite similar in magnitudeﬂ for any other group as can be seen
from the magnitude of the parameters being more or less equal (width of the chords),
see Figure In 2012 BTC was not that popular yet and it is interesting to observe
that more of the network connections are with South America, Asia and Oceania,
rather than with Europe or North America. Checking the robustness of the result, we
compare with the modeling choice of LASSO and SCAD, see Tables[7]and [§] LASSO
and SCAD both choose a model only containing the autoregressive effects, as can be
seen from the number of parameters matching the dimensionality and the number of
groups being 0. Even though the model is sparser, BIC and AIC are both worse for
LASSO and SCAD compared to the more complex solution of DINAR, which indicates
that for DINAR the goodness-of-fit improved strongly compared to its complexity.
With the price spiking in 2013 no network effects were detected in the BT C blockchain,

5Recall that the data are standardized, hence the magnitudes of the parameters are comparable
in their values.
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though again in 2014 effects arose. Africa had effects on itself as well as Asia and South
America, whereas Europe had network effects mostly on itself, Oceania and North
America. The effects on themselves are expected because as was displayed in Figure
[l there are strong intra-continent correlations, in particular in Africa and South
America. Interestingly the detected network effects in 2014 can be split between areas.
Most notably the continents which are heavyweights in the international financial
system, North America and Europe, do not receive strong network effects from Africa
and vice versa Furope is connected to North America and Oceania, whereas the latter
includes Australia and New Zealand. Figure [2 showed that akin to the traditional
financial system, the plethora of transactions in the BTC blockchain originate from
North America and Europe. In combination with the observed network effects from
2014, this leads to the conclusion that even early in its existence, the user behaviour on
the BTC blockchain hinted towards similar structures as they exist in the traditional
financial system. However it is remarkable that network effects originated from Africa,
which plays a less significant role in the global financial markets. In 2015 only network
effects originating from South America were detected which impacted mostly itself,
Oceania, Asia and Africa, though hardly Europe and North America. It appears that
as before the continents which have less transactions originating from them, compare
Figure 2, show network connections with each other. However Europe and North
America, only impact themselves via their respective autoregressive behaviours.

In 2016 the situation changed strongly. Akin to 2012, the price doubled on the ex-
changes before it skyrocketed at the end of 2017. The group representing the smallest
transactions originating from Europe, is now the only group showing network effects.
Notably most of the effects go to other groups in Europe, followed by South America,
Oceania and Asia. North America and Africa hardly receive any network effects and
remain mostly represented by their own autoregressive effects. Interestingly North
American transactions appear to be not impacted by other groups and also not to
impact others. This remains surprising since the vast majority of BTC transactions
originate from North America. It appears that the transaction network in North
America is mostly disentangled from users in other geographies. The results for 2017
include North America, Europe and Asia. Other geographies had to be excluded
from the analysis since identifiable transactions dropped too frequently to 0, see Fig-
ure [2] This year showed a surprisingly different structure than before. Asia has
network effects with itself, North America and Europe, whereas North America is
mostly impacting Europe and Asia, itself only marginally. 2017 was also the year of
the price spike of BTC, when it reached 20000 USD per Bitcoin for the first time
during a highly volatile market environment. It is well documented, see e.g. Griffin
and Shams (2020), that this time period was subject to market manipulation. The
exchange Bitfinex, which played a central role in the price manipulation, is located
in Asia, which might be one contributing reason to this phenomenon. However, the
actions of a few actors on the blockchain and markets are unlikely to result in such
strong network connectivity, hence it is likely that a structural change took place in
2017.

From 2018 onwards too few transactions originating from Asia could be identified
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which made it impossible to continue including the continent into the analysis. In
2018 and 2019, North America showed network effects originating from its largest
transactions group impacting itself and Europe. It is worth pointing out that North
America does play now a network role because previously its transactions had hardly
impact on other continents and groups. Since North America plays a central role in
the international financial system and in the past few years more and more finan-
cial institutions started offering product containing BTC, this network effects could
reflect the increasing activity of the financial institutions in this market. The same
observation and interpretation can be made for 2020, whereas now also Europe shows
networks effects which mostly relate back to other groups within Europe.

We have often observed strong network effects from a continent impacting groups
of its own geography. This observation is expectable since we observed in Figure
strong intra-continent correlations. This structure could be due to the rational that
users of a payment system usually spend their funds in locations or with companies /
shops which are geographically closer to themselves. It is more common for consumers
to facilitate local transactions than international ones.

We observed particularly in the earlier days that network effects coming from
South America and Africa and later on effects from Europe and North America dom-
inated. The groups and continents involved in the more recent years seem surprising
to some extent, because media reports often focus on the roles of CCs in Asia rather
than in Europe or North America, especially in terms of mining. But comparing the
time series plots, Figure [3] it is obvious the volumes of transactions in Europe and
North America are higher than in other regions. Also these are the regions where
financial institutions offer products involving BTC. This gives a good rationale for the
effects coming from these two regions, even from smaller groups like EU.1. Further
support for this finding comes from the surprising number of null values in Africa,
South America and Oceania, which (for South America and Oceania) occur more
often in 2016 and 2017. Explanations for these values may be that users from these
regions switched to other CCs, since in this period a bunch of altcoins (CCs other
than BTC) became important. Secondly, the number of transactions in the BTC
blockchain increased strongly (150%) in this time, see Figure , and simultaneously
the maximum block size of 1 Megabyte was reached. Since each block of transactions
has a limit on the possible number of included transactions, it is likely that certain
users from Europe, from where network effects originated in 2016, see Figure [9¢|, com-
pletely dominated the transaction chain in this period. Via the willingness to pay
transaction fees, the miners’ decisions about privileging one transaction over another
by including it into the next block can be influenced. The miners have an incentive
to include small transactions which pay high transaction fees, since by this action
they can maximize their personal profit. Hence the respective transactions would be
prioritized, which leads to the conclusion that high value transactions originated from
the continents detected in the analysis. This provides good evidence for the economic
reasons described for our finding. The limit on the possible number of transactions
included in each block led the developers to introduce a BTC without this restric-
tion, called Bitcoin Cash (BCH) on 1 August 2017. This event was a fork of the BTC
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source code in which the code was amended so that it would fit the features wished
for. As a result, BTC and BCH exist as individual CCs.

Finally, it can be inferred that we observe strong changes in the network over
the years. In the earlier years the network effects more often originated from Africa,
South America and Europe, whereas later on, when financial products including BTC
emerged, North America dominated the network effects.

Table 5: Number of parameters and identified groups when using AIC and BIC
for out-of-sample performance whereas a group is counted as active if 25% of the
parameters are different from 0. The results are displayed for the models found in
the respective years for DINAR. The first 4 columns show the results evaluated on
90 days out-of-sample, the second 4 columns the results evaluated on 180 days out-
of-sample, third 4 are for 270 days and the last 4 are for an entire year of data.

90 days 180 days 270 days one year
para group para group para group para group

AIC BIC AIC BIC | AIC BIC AIC BIC | AIC BIC AIC BIC | AIC BIC AIC BIC
2012 119 60 1 0 119 119 1 1 119 119 1 1 119 119 1 1
2013 60 60 0 0 237 60 3 0 237 60 3 0 237 237 3 3
2014 178 60 2 0 178 178 2 2 178 178 2 2 178 178 2 2
2015 119 60 1 0 119 119 1 1 119 119 1 1 119 119 1 1
2016 119 60 1 0 119 119 1 1 119 119 1 1 119 119 1 1
2017 88 59 2 1 88 88 2 2 88 88 2 2 88 88 2 2
2018 39 39 1 1 39 39 1 1 39 39 1 1 39 39 1 1
2019 39 39 1 1 39 39 1 1 286 39 14 1 286 39 14 1
2020 58 58 2 2 58 58 2 2 286 58 14 2 286 58 14 2

For the analysis of the out-of-sample fit, we compare the fit of DINAR against
alternative models. This comparison is performed together with the robustness check,
reported in section [5.6 Considering the regularization parameters, we compare their
values in each year for each evaluation period in Table [6f The high A penalties in
the early years indicate that a lot of noise is present in the data and the identified
network effects had to be strong to surpass the regularization applied. This gives
further evidence for the identified groups and parameters representing the underlying
network. We can observe that the regularization parameters shrink strongly over time
which indicates that network effects were spurious in the year-to-year analysis and
they represent a larger share of the volatility in the data.

5.4 Robustness check with different )\ values

The Figures [12] and [13| provide deeper insights into the network within the years. We
display the resulting adjacency matrices for 3 different levels of A in the respective
years. We show the results for A4, A5 and Aig because for up to A3 frequently no
network effects are visible and from A7 the model structure often becomes unclear
again. Additionally during the model selection exercise the best model was found to
be in this range.

We observe that the groups which are identified as being the originators for net-
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Figure 9: Adjacency matrices and serial dependence parameter in analysis with 10
groups and evaluation period length of 180 days.

(a) Adjacency matrices for (b) Adjacency matrices for (c¢) Adjacency matrices for
the 10 groups in 2012 the 10 groups in 2013 the 10 groups in 2014

(f) Adjacency matrices for
the 10 groups in 2017

(g) Adjacency matrices for (h) Adjacency matrices for (i) Adjacency matrices for
the 10 groups in 2018 the 10 groups in 2019 the 10 groups in 2020
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Figure 10: Daily Bitcoin Transactions (line) and the Block Size of Bitcoin (filled area)
in the time period 4 January 2009 to 17 July 2017.
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work effects remain strong and important even when the A value decreases and more
groups become active in the network. This gives further evidence that the identified
groups are important for the network. We also observe that in the earlier years, larger
A values already result in the identification of network effects. However from 2017
onwards, larger A do not uncover network effects. Taking into account the optimal A
for each year, it is interesting that the next smaller A often displays network effects
coming from North America which are not part of the best model. This is remark-
able since North America has various of the largest financial centres. Even for the
next A\ after the optimal one, the network effects coming from North America are
much smaller in magnitude than for other groups and continents. This gives further
evidence for the observation that North America does not play an important role in
the BTC blockchain. This, however, changes from 2018 onwards, which is the time
period during which more and more financial institutions started offering financial
products including BTC or being circled around BTC.

It is also an interesting observation that Africa and South America play important
roles in the BTC blockchain network, considering both continents have the lowest
transaction volume and are not financial centres. Asia on the other hand was expected
to show effects because it has an important role in the BTC community since many
miners and CC companies are located in Asia. Though only in 2017 network effects
are coming from Asia. Also for the A right after the optimal one, Asia usually does
not play an important role if any. Usually the magnitude of the parameters coming
from Asian groups is small and in 2014 and 2015, the network with the A right after
the optimal one, does not even include any group from Asia. Hence the network
effect of this continent on the BTC blockchain is even less than the one from North
America, even though it is rational to expect the opposite.
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Table 6: Regularization parameters for individual parameters and groups of parame-
ters when using BIC for the selection of the optimal model based upon out-of-sample
performance. The first 2 columns show the regulatization parameters for evaluation
on 90 days out-of-sample, the second 2 columns for evaluation on 180 days out-of-
sample, third 2 are for 270 days and the last 4 are for an entire year of data.

90 days 180 days 270 days one year

axA (I—a)xX| axd (I—-a)*xA| axX (1—-a)«xA| axA (I—a)*A
2012 | 0.0369 2.1771 | 0.0185 1.0886 | 0.0185 1.0886 | 0.0185 1.0886
2013 | 0.0208 1.2263 | 0.0208 1.2263 | 0.0208 1.2263 | 0.0104 0.6131
2014 | 0.0238 1.4056 | 0.0119 0.7028 | 0.0119 0.7028 | 0.0119 0.7028
2015 | 0.0359 2.1199 | 0.0180 1.0599 | 0.0180 1.0599 | 0.0180 1.0599
2016 | 0.0249 1.4683 | 0.0124 0.7341 | 0.0124 0.7341 | 0.0124 0.7341
2017 | 0.0082 0.2369 | 0.0041 0.1184 | 0.0041 0.1184 | 0.0041 0.1184
2018 | 0.0132 0.2503 | 0.0132 0.2503 | 0.0132 0.2503 | 0.0132 0.2503
2019 | 0.0079 0.1501 | 0.0079 0.1501 | 0.0079 0.1501 | 0.0079 0.1501
2020 | 0.0080 0.1515 | 0.0080 0.1515 | 0.0080 0.1515 | 0.0080 0.1515

5.5 Robustness check with alternative grouping: 3-groups

In order to understand whether the regional and size effects are robust to the grouping,
we carried out robustness checks with alternative three groups. For the three groups,
users in each continent are further split into small, medium, and large groups, ac-
cording to the sizes of their transactions. The other model settings remain the same
as previous. The resulting adjacency matrices for the three groups per continent are
illustrated in Figure |11} which again were obtained by minimizing the out-of-sample
BIC on 180 days forecast.

Due to the change in the grouping, naturally the network can change though
persistence in the results is a strong sign for the successful identification of underlying
structures. As Figure [11] shows, for 2012 again just one group has network effects on
all the other continents, similarly to the 10-grouping setting. However this setting
attributes the networks effects to South America instead of Africa. Though both
settings agree that there are no network effects in 2013. For 2014 the result is robust.
Similarly to the 10-group setting, the network effects originate from Europe and
Africa, with the identified groups comprising the previously identified ones in the
10-group setting. Hence the result is robust to the grouping.

For 2015 and 2016 the 3-group results in no network effects, whereas both times the
10-group setting uncovered effects from South America and Europe. From 2017 the
data matched with the IP address from the previous 5 years are used. Recall that for
the 10-group setting we had to exclude some continents because too few transactions
could be identified originating from these locations. Due to the less granular setting,
we are now able to still include Oceania and Africa, which we had to exclude earlier.
Note that similarly to the 10-group setting, Asia shows strong network effects in this
period though also Oceania with even stronger effects gets uncover. Oceania could
not be identified in the 10-group setting because we had to exclude it due to too few
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transactions in various groups. In the 10-group setting we also observed that network
effects originating from North America were always present from 2018 onwards. We
detect the same result for the 3-group setting, hence we conclude the result is robust
in regards to the grouping.

We found most of the result to be robust towards the granularity of the grouping,
with the exception of 2012, 2015 and 2016, where the results differed by a different
group being selected and, for the latter two years, no network effects present. How-
ever, for the other 6 years the results from the 10-group setting were detected as well,
hence we conclude that the results are robust in regards to the grouping.

5.6 Robustness check against alternative methods

Akin to the simulation study, we compare the results of DINAR against 3 alternative
methods. We compare against LASSO, SCAD and BGR whereas we evaluate the
estimation performance by AIC and BIC on out-of-sample data of different period
length for the next year’s observations. Further we compare how many parameters
were selected and how many groups were identified as active. We consider a group
as active if 25% of the parameters are different from 0. The results are reported in
Tables [7] and [§

We observe that DINAR has a better AIC and BIC than the optimal LASSO
solution in each year. Notably LASSO often chooses a model which has only au-
toregressive parameters, which can be inferred from the observation that the number
of parameters equals the dimensionality of the data and the number of identified
groups is 0. Only for 2019 and 2020, LASSO chooses models with a number of ac-
tive parameters, but even then DINAR has a better AIC and BIC, hence provides
the better solution despite being sparser. For SCAD the same interpretation holds
but for the last few years. For 2018, 2019 and 2020, SCAD chooses a more complex
model than DINAR with more active groups but the AIC and BIC outperform. This
indicates that the parameter estimation from SCAD must have been more accurate
than for DINAR which would result in a better goodness-of-fit. This interpretation
is supported by the fact that DINAR relies on a LASSO-type penalization, and we
observed that LASSO showed a worse AIC and BIC. By its nature BGR as a non-
sparse model estimates all parameters different from 0. The solution of any of the
three sparse models outperforms BGR.

Comparing against the results for the 3-grouping, see Tables[20]and 21], we observe
similar results as before. Again DINAR outperforms LASSO but gets outperformed
by SCAD twice, namely in 2016 and 2018, whereas for the latter only marginally.
Again we attribute this result to the fact that DINAR relies on a LASSO-type pe-
nalization, whereas SCAD has a different kind of regularization function, which can
result in differences in the parameter estimates and hence may result in a better
goodness-of-fit. The solution of any of the three sparse models outperforms BGR.
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Figure 11: Adjacency matrices and serial dependence parameter in analysis with 3
groups and evaluation period length of 180 days.

(a) Adjacency matrices for (b) Adjacency matrices for (c¢) Adjacency matrices for
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the 3 groups in 2018 the 3 groups in 2019 the 3 groups in 2020
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Overall DINAR outperforms the competing models in terms of AIC and BIC over
different length of evaluation periods, namely 90, 180, 270 and 365 days. Due to the
almost always better results from DINAR, we conclude that the solution outperforms
the competing models.

6 Conclusion

Cryptocurrencies have become interesting asset classes. BTC, being the elephant in
the room, is traded all over the globe and virtually uncorrelated to any other asset
class, which in principle is good for purposes of diversification. Besides the trad-
ing data on the exchanges, the blockchain displays a second layer of transactions,
which are the actual shifts of funds directly between users without a middleman. The
anonymity of the blockchain challenges the analysis, even though understanding the
state of the network is important to understand a cryptocurrency. For the analysis of
the blockchain, its huge dimensionality is challenging. We have proposed a method to
Detect Influencers in Network AutoRegressive (DINAR) models via sparse-group reg-
ularization to analyse the time dependent network relations between the users of the
BTC blockchain. We investigated the finite sample performance of DINAR in a large
simulation study against 3 alternative methods which illustrates the outperformance
of DINAR in terms of uncovering the underlying structure, in particular to identify
the important network nodes. In the real data analysis, we discovered DINAR has
a better modeling fit by AIC and BIC compared to the 3 alternative methods. The
better fit is accompanied by DINAR uncovering the a underlying network structure,
which allows us to infer about the impact of transactions between continents. With
the developed algorithm to derive the adjacency matrix of DINAR, we find spatial
connections in the BTC blockchain. We found in the year-to-year analysis that in the
early years (2012 to 2016), network effects originated from continents such as Africa
and South America, which is unexpected considering neither hosts a major financial
centre nor is strongly covered by the media on cryptocurrency. Though the results
are robust against different groupings, evaluation time periods and choice of regular-
ization parameters. Additionally the DINAR model outperforms competing models
during these years. From 2017 onwards network effects originate from Asia, Europe
and for 2018, 2019 and 2020 majorly from North America which did not show any
network effects in the years before. At the same time financial institutions, frequently
based in North America, started offering products comprising BTC which might ex-
plain the stronger role of this continent and its impact on the transaction behaviour
on the BTC blockchain. Taking into account that most Bitcoin mining farms are
in Asia, it is surprising to some extent that Asia is not the sole driver but operates
Bitcoin for Europe, North America, Africa, Oceania and South America, fostering
the importance of these regions in the blockchain.
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Table 7: BIC and AIC for out-of-sample performance and the number of parameters
and identified groups whereas a group is counted as active if 25% of the parameters
are different from 0. The results are displayed for the models found in the respective
years for DINAR, LASSO, SCAD and BGR. The first 4 columns show the results
evaluated on 90 days out-of-sample, the second 4 columns the results evaluated on
180 days out-of-sample.

90 days 180 days

BIC AIC para groups BIC AIC para groups

2012 | -12156 -12306 60 0 | -20503 -20883 119 1
2013 | -16321 -16471 60 0 | -26209 -26401 60 0
2014 | -16253 -16403 60 0 | -30018 -30586 178 2

/m 2015 | -17328  -17478 60 0 |-31381 -31761 119 1
<Z: 2016 | -22014 -22164 60 0 |-35730 -36109 119 1
A 2017 | -5790  -5937 59 1]-10073 -10354 88 2
2018 | -4766  -4863 39 1] -8882 -9006 39 1
2019 | -5455  -H552 39 1] -9758  -9882 39 1
2020 | -5562  -5707 58 2| -10530 -10715 58 2
2012 | -12152 -12302 60 0| -20461 -20653 60 0
2013 | -16321 -16471 60 0 | -26208 -26399 60 0
2014 | -16255 -16405 60 0 |-29949 -30141 60 0
2 2015 | -17317 -17467 60 0 |-31224 -31416 60 0
w2016 | -22018 -22168 60 0 | -35577 -35768 60 0
j 2017 | -5621  -5696 30 0] -9481  -9577 30 0
2018 | -4720  -4770 20 0| -8709 -8773 20 0
2019 | -5214  -5264 20 0| -9159 -9763 189 13
2020 | -5212  -5467 102 7 -10094 -10615 163 13
2012 | -12152 -12302 60 0 | -20461 -20653 60 0
2013 | -16320 -16470 60 0 | -26253 -26448 61 0
2014 | -16254 -16404 60 0 |-29946 -30138 60 0

A 2015 | -17317 -17467 60 0 |-31224 -31416 60 0
S 2016 | -22016 -22166 60 0 | -35573 -35765 60 0
»v 2017 | -5621  -5696 30 0] -9481  -9577 30 0
2018 | -4814  -4894 32 0| -9023 -9125 32 0
2019 | -5350  -5560 84 4| -9805 -10073 84 4
2020 | -5723  -5903 72 4 |-10826 -11056 72 4
2012 3328  -5672 3600 60 | -3157 -14652 3600 60
2013 | -1036 -10035 3600 60 | -8947 -20442 3600 60
2014 | -1046 -10045 3600 60 | -13312 -24807 3600 60

. 2015 | -2009 -11008 3600 60 | -14150 -25645 3600 60
O 2016 | -6443 -15443 3600 60 | -17964 -29459 3600 60
A 2017 | -2161 -4410 900 30 | -6056  -8930 900 30
2018 | -3288  -4288 400 20 | -7348 -8625 400 20
2019 | -3826  -4826 400 20 | -7899  -9177 400 20
2020 | -4201  -5200 400 20 | -9022 -10299 400 20
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Table 8: BIC and AIC for out-of-sample performance and the number of parameters
and identified groups whereas a group is counted as active if 25% of the parameters
are different from 0. The results are displayed for the models found in the respective
years for DINAR, LASSO, SCAD and BGR. The first 4 columns show the results
evaluated on 270 days out-of-sample, the second 4 columns the results evaluated on
the entire following year out-of-sample.

270 days one year

BIC AIC para groups BIC AIC para groups

2012 | -31078 -31506 119 1]-42610 -43073 119 1
2013 | -36942 -37158 60 0 | -46934 -47854 237 3
2014 | -38792 -39433 178 2| -39412 -40055 178 2

/g 2015 | -44011  -44439 119 1| -56897 -57358 119 1
§§ 2016 | -65052 -65480 119 1]-72990 -73454 119 1
A 2017 | -14376 -14693 88 2| -17449 -17791 88 2
2018 | -13707 -13848 39 1] -18802 -18954 39 1
2019 | -13788 -13929 39 1] -18227 -18379 39 1
2020 | -14726 -14935 58 2|1 -20099 -20326 58 2
2012 | -30835 -31051 60 0 | -42175 -42409 60 0
2013 | -36940 -37156 60 0 | -46832 -47065 60 0
2014 | -38395 -38610 60 0 | -39004 -39220 60 0

2 2015 | -43571 -43787 60 0 | -56229 -56462 60 0
» 2016 | -64960 -65176 60 0| -72872 -73105 60 0
:5 2017 | -13250 -13358 30 0 |-16122 -16239 30 0
2018 | -13411 -13483 20 0 | -18375 -18453 20 0
2019 | -13239 -13919 189 13 | -17790 -18722 239 17
2020 | -14329 -14916 163 13 1 -19750 -20584 214 17
2012 | -30835 -31051 60 0 | -42175 -42409 60 0
2013 | -37046 -37266 61 0 | -46977 -47214 61 0
2014 | -38393 -38609 60 0 | -39002 -39218 60 0

A 2015 | -43571 -43787 60 0 | -56229 -56462 60 0
EB 2016 | -64959 -65175 60 0| -72871 -73105 60 0
v 2017 | -13286 -13945 183 7| -16122 -16239 30 0
2018 | -13919 -14034 32 0 | -19080 -19204 32 0
2019 | -13995 -14297 84 4 | -18750 -19077 84 4
2020 | -15267 -15588 89 6 | -20921 -21268 89 6
2012 | -12694 -25649 3600 60 | -23617 -37647 3600 60
2013 | -18913 -31868 3600 60 | -28511 -42471 3600 60
2014 | -20992 -33947 3600 60 | -21568 -34575 3600 60

- 2015 | -25676 -38630 3600 60 | -38100 -52039 3600 60
O 2016 | -46577 -59531 3600 60 | -53655 -67685 3600 60
A 2017 | -10166 -13404 900 30 | -13070 -16578 900 30
2018 | -12277 -13716 400 20 | -17502 -19061 400 20
2019 | -11950 -13389 400 20 | -16460 -18020 400 20
2020 | -13149 -14588 400 20 | -18555 -20114 400 20

37



References

Ahelegbey, D. F., M. Billio, and R. Casarin (2016). “Bayesian Graphical Models
for Structural Vector Autoregressive Processes”. Journal of Applied Econometrics
31.2, pp. 357-386.

Banbura, M., D. Giannone, and L. Reichlin (2010). “Large Bayesian vector auto
regressions”. Journal of Applied Econometrics 25.1, pp. 71-92.

Basu, S. and G. Michailidis (2015). “Regularized estimation in sparse high-
dimensional time series models”. The Annals of Statistics 43.4, pp. 1535-1567.
Bianchi, D., M. Billio, R. Casarin, and M. Guidolin (2019). “Modeling systemic risk
with Markov Switching Graphical SUR models”. Journal of Econometrics 210.1,

pp. 58-74.

Billio, M., R. Casarin, and L. Rossini (2019). “Bayesian nonparametric sparse VAR
models”. Journal of Econometrics 212.1, pp. 97-115.

Chudik, A. and M. H. Pesaran (2011). “Infinite-dimensional VARs and factor models”.
Journal of Econometrics 163.1, pp. 4-22.

Creal, D.; S. J. Koopman, and A. Lucas (2013). “Generalized Autoregressive Score
Models with Applications”. Journal of Applied Econometrics 28.5, pp. 777-795.

Davis, R. A., P. Zang, and T. Zheng (2016). “Sparse Vector Autoregressive Modeling”.
Journal of Computational and Graphical Statistics 25.4, pp. 1077-1096.

Elendner, H., S. Trimborn, B. Ong, and T. M. Lee (2017). “The Cross-Section of
Crypto-Currencies as Financial Assets: Investing in Crypto-currencies beyond Bit-
coin”. Handbook of Blockchain, Digital Finance and Inclusion: Cryptocurrency,
FinTech, InsurTech, and Regulation. Ed. by D. Lee Kuo Chuen and R. Deng.
1st ed. Vol. 1. Elsevier, pp. 145-173.

Fan, J. and R. Li (2001). “Variable selection via nonconcave penalized likelihood
and its oracle properties”. Journal of the American statistical Association 96.456,
pp. 1348-1360.

Feng, W., Y. Wang, and Z. Zhang (2017). “Informed trading in the Bitcoin market”.
Finance Research Letters.

Feng, W., Y. Wang, and Z. Zhang (2018). “Can cryptocurrencies be a safe haven: a
tail risk perspective analysis”. Applied Economics 50.44, pp. 4745-4762.

Foley, S., J. R. Karlsen, and T. J. Putnins (2019). “Sex, Drugs, and Bitcoin: How Much
Mlegal Activity Is Financed through Cryptocurrencies?” The Review of Financial
Studies 32.5, pp. 1798-1853.

Friedman, J., T. Hastie, and R. Tibshirani (2010). “A note on the group lasso and a
sparse group lasso”.

Griffin, J. M. and A. Shams (2020). “Is Bitcoin really untethered?” The Journal of
Finance 75.4, pp. 1913-1964.

Guo, J., J. Hu, B.-Y. Jing, and Z. Zhang (2016). “Spline-Lasso in High-Dimensional
Linear Regression”. Journal of the American Statistical Association 111.513,
pp. 288-297.

Hafner, C. (2018). “Testing for Bubbles in Cryptocurrencies with Time-Varying
Volatility”. Journal of Financial Econometrics.

38



Hoerl, A. and R. Kennard (1988). “Ridge regression”. in Encyclopedia of Statistical
Sciences 8, pp. 129-136.

Lischke, M. and B. Fabian (2016). “Analyzing the Bitcoin Network: The First Four
Years”. Future Internet 8.1.

Liu, Y., A. Tsyvinski, and X. Wu (2019). “Common Risk Factors in Cryptocurrency”.
25882.

Makarov, I. and A. Schoar (2019). “Trading and arbitrage in cryptocurrency markets”.
Journal of Financial Economics.

Makarov, I. and A. Schoar (2021). “Blockchain analysis of the bitcoin market”.

Nicholson, W., D. Matteson, and J. Bien (2017). “VARX-L: Structured Regulariza-
tion for Large Vector Autoregressions with Exogenous Variables”. International
Journal of Forecasting 33.3, pp. 627-651.

Nicholson, W., D. Matteson, J. Bien, and I. Wilms (2022). “BigVAR: Dimension
Reduction Methods for Multivariate Time Series”.

Ord, K. (1975). “Estimation Methods for Models of Spatial Interaction”. Journal of
the American Statistical Association 70.349, pp. 120-126.

Pesaran, M. H., T. Schuermann, and S. M. Weiner (2004). “Modeling Regional Inter-
dependencies Using a Global Error-Correcting Macroeconometric Model”. Journal
of Business €& Economic Statistics 22.2, pp. 129-162.

Reid, F. and M. Harrigan (2013). “An Analysis of Anonymity in the Bitcoin System”.
Security and Privacy in Social Networks. Ed. by Y. Altshuler, Y. Elovici, A. B.
Cremers, N. Aharony, and A. Pentland. Springer New York, pp. 197-223.

Ron, D. and A. Shamir (2013). “Quantitative Analysis of the Full Bitcoin Transaction
Graph”. Financial Cryptography and Data Security. Ed. by A.-R. Sadeghi. Lecture
Notes in Computer Science 7859. Springer Berlin Heidelberg, pp. 6-24.

Sabah, N. (2020). “Cryptocurrency accepting venues, investor attention, and volatil-
ity”. Finance Research Letters 36, p. 101339.

Scaillet, O., A. Treccani, and C. Trevisan (2018). “High-frequency jump analysis of
the bitcoin market”. Journal of Financial Econometrics.

Simon, N., J. Friedman, T. Hastie, and R. Tibshirani (2013). “A Sparse-Group Lasso”.
Journal of Computational and Graphical Statistics 22.2, pp. 231-245.

Song, S. and P. J. Bickel (2011). “Large vector auto regressions”. arXiv preprint
arXiv:1106.3915.

Tibshirani, R. (1996). “Regression Shrinkage and Selection via the Lasso”. Journal
of the Royal Statistical Society. Series B (Methodological) 58.1, pp. 267-288.
Tibshirani, R., M. Saunders, S. Rosset, J. Zhu, and K. Knight (2005). “Sparsity and
smoothness via the fused lasso”. Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 67.1, pp. 91-108.

Trimborn, S. and L. Yu (2022). “Blockchain meets network analytics: a tale of heuris-
tics, location and fraud detection”.

Wang, H., G. Li, and C.-L. Tsai (2007). “Regression Coefficient and Autoregressive
Order Shrinkage and Selection via the Lasso”. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 69.1, pp. 63-78.

Wu, T. T. and K. Lange (2008). “Coordinate descent algorithms for lasso penalized
regression”. The Annals of Applied Statistics 2.1, pp. 224-244.

39



Yuan, M. and Y. Lin (2006). “Model selection and estimation in regression with
grouped variables”. Journal of the Royal Statistical Society, Series B 68, pp. 49—
67.

Zhou, J., Y. Tu, Y. Chen, and H. Wang (2017). “Estimating Spatial Autocorrelation
With Sampled Network Data”. Journal of Business €& Economic Statistics 35.1,
pp. 130-138.

Zhu, X., R. Pan, G. Li, Y. Liu, and H. Wang (2017). “Network vector autoregression”.
The Annals of Statistics 45.3, pp. 1096-1123.

Zou, H. and T. Hastie (2005). “Regularization and variable selection via the elastic
net”. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
67.2, pp. 301-320.

40



I Appendix

I.1 Gradient Descent

In every iteration, the parameters of a particular group are optimized, while the
remaining parameters are fixed.

Specifically, let A.; be the ith column/group to be optimized in an iteration step.
The remaining parameters in A._; are held fixed when optimizing the ¢th column. We
construct the partial residuals of Y;, which contain the dependence unexplained by
the already optimized parameters:

Te—gy = Y — (ING1 +A) Y1,
Tt,—p = Y — 18— AY,; 4,
Te—a, = Ye— 100 — (InB1 + Ai) Yy,

The following are the loss functions:

T
1
L(r_gy; bo) = N > e -y — 1507
t=2
1 T
Lr—p; B1) = 53 > s — InB1 Yl
t=2
1 T
L(T—A,i§ A-i) = IN ZH”,—Ai - A.th—1||%~-
t=2

To simplify the notation, let 6, = 3y, 6o = 1 and 0, = A,;, k=3,---, N +2. We
rewrite the optimization in this particular iterative step as

N
O = argeminL(r_gk; Or) + (1 — ) MOkl [+ X[ (6)
k i=1

where for k = {1, 2} the penalty term is set to A = 0, namely no sparsity penalization
is applied for fy and f;.

There is no closed form solution for the non-convex optimization problem in ({3)).
We introduce a two-step gradient descent algorithm to numerically estimate 3y, (51
and A in the DINAR framework. We derive the updating function for each iteration
step [. Using a Taylor expansion, we formulate an upper bound for L(r 9,(61))

depending on the 8,(;_1) that has been optimized in the previous iteration step [ — 1.

—oV);
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The minimization problem can be equivalently solved by minimizing
_ 1 _
M(G) =L(r_ya: 6, ") + (6, = 6,7") VL(r_yon; 6 ") + iue,ﬁ” — VI
(7)

N
l l
+ (1= a0V ][+ arlo,
=1

where £ is small enough so that the quadratic term dominates the Hessian of the loss
function. This approach is also known as the majorize-minimization approach, Wu
and Lange (2008). Note in the case of k = {1,2}, A is set to 0.

The first term of Equation 1| does not depend on 9,?), thus it can be further
simplified to

1 _ _
M(e,i%ocine,i”—{e,? V= €VL(r_yeni 0 I (8)

N
l l
+ (1= a6V ][+ arloy).
=1

The loss function is embedded into the thresholding function of the Lasso as
follows:
S(z, ) =sign(z) o (|z|—ad)4,

where o denotes the Hadamard product. This leads to ék =0if

IK {e,ﬁf‘” — EVL(r_ ;00 "), §a)\} Ir< €(1 — a)X
and otherwise

{10 =600} 00 = s {0 = €VLEr_yun; 6, €ar}

The solution to satisfies

PON . §1 —a)A

S (I-1) €VL 1) 9([*1) ’éa)\ .
15600 = VL0060 V), EaN)lr @ (r_yg-:00 ). 6a)

(9)

I.2 Algorithm

The two-layer sparsity has both group and individual terms which are inseparably
connected. Friedman et al. (2010) outline an idea for an algorithm that would be
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applicable in such situations. Yet the idea was designed for the univariate case and
the groups are defined on the rows. In our multivariate case, we define the group on
the columns, as we are looking for leading groups which influence the future values
of other groups. This makes the groups dependent on each other.

Simon et al. (2013) formulated the algorithm for univariate regression models,
which translates to a regression on a vector of length (7" — 1). Sparsity of the rows
instead of the columns would result in an optimization problem which requires less
computation time to find a solution since each group can be optimized independently
from the others. However this does not allow for a network interpretation. Because
of the interdependency of the groups, the optimization problem cannot be written in
a vectorized form. The complexity of the model challenges the algorithm, resulting in
a longer runtime. We propose a new algorithm customized for the multivariate case
with groups defined on the columns. The algorithm initializes with all parameters set
to be 0. It iterates through each group of parameters by starting with the parameters
Bo, B1 to control for the effects of the intercept and autoregressive dependence before
optimizing on the groups in the adjacency matrix A. The algorithm optimizes at the
update step width &, before the current group 6, gets updated. The update of 6, is
performed until an a priori chosen vectorized threshold value €y is reached. When
0, has been updated, the next group gets optimized until a full walk through all the
groups of parameters has been performed. This procedure repeats until it converges.
In detail, the algorithm works as described in Algorithm [T}

The parameter €; can be set to any value in (0,1). Its value controls the density
of the grid in which the search for the updating value of parameters takes place. The
smaller it is, the faster the algorithm, so one can use it to speed up the computationally
intensive method. The entire algorithm works under a chosen mixing parameter «
and a penalty parameter . The algorithm converges when a vectorized threshold
parameter €3 is satisfied.

The algorithm depends on the hyperparameter A. It controls the level of penal-
ization, which balances the sparseness of the model against the fit. We derive first
which level of X sets all groups to 0 by following the approach of Simon et al. (2013).
The path is started with \,,,, and from there on a halving sequence is created. In
the spirit of Simon et al. (2013), the mixing parameter « is set to be « = 1/N, which
gives equal importance to group and individual sparsity.

The settings for running Algorithm [I] are as described in Algorithm [2|
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Algorithm 1 DINAR optimization algorithm

Input: Data Y, forallt=1,...,N
Output: Adjacency matrix A

1:
2:
3:
4:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Initialization 5, =0, 51 =0, A=0, m=1
Set 0y = [y, 00 = f1,0, =A;i=1,..., Nk =1i+2
while vec{A(™ — Am=1} < 5 g — gD <oy or g™ — gV < 65 do
for k=1,...,N+2do
=2
while 6 — 0"V < ¢, do
£=1
while ¢ small enough such that it holds L(r_y;U) < L(r_elngl); 9,&171)) +
(U= 0,7 TVL(r_yan;07") + 5llU = 67|12 do
z= 9,(;71) —&x VL(T_Q(Z—l);elE:lil))
S — sign(z) o (|z|—ad)s
U={1-&0 = a)M[|S][}+5
§=e1*§
end while
9;531) =U_1 + %(Uz —U)
l=1+1
end while
end for
m=m+1
end while

Algorithm 2 DINAR algorithmic procedure

1: Run Algorithm [1] for each A with J iterations

Fix identified groups from step 1.

To obtain warm starting values, run Algorithm (1| without penalization for iden-
tified groups

Utilize results from 3. as starting values

Run Algorithm [1] with A sequence
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I[.3 Simulation results & additional Figures

Table 9: Simulation N = 10 with T = 100, 500, 1000 for low, medium, strong persis-
tence evaluated with BIC.

Persistence  Models FN.g FPg FN.e FPe RMSE para RMSE out
DINAR 0.8 0 0.66 0 0.07 0.89

low SCAD 0.62 0.01 0.62 0 0.07 0.89
LASSO 0.62  0.01 0.62 0 0.07 0.89

BGR 0 0.55 0 0.71 0.07 0.88

DINAR 0.79 0 0.64 0.01 0.09 0.87

S medium SCAD 0.47  0.05 0.54  0.02 0.09 0.86
= LASSO 0.58 0.01 0.61 0 0.09 0.87
BGR 0 0.55 0 0.71 0.08 0.83

DINAR 0.42 0 0.34 0.24 0.09 0.75

strong SCAD 0.08 0.26 0.23 0.13 0.1 0.74
LASSO 0.4 0.2 0.38 0.13 0.1 0.77

BGR 0 0.55 0 0.71 0.09 0.71

DINAR 0.13 0 0.1 0.34 0.04 0.86

low SCAD 0 0.37 0.01  0.15 0.04 0.86
LASSO 0.02 0.39 0.02 0.2 0.04 0.87

BGR 0 0.55 0 071 0.04 0.86

DINAR 0 0 0 0.37 0.04 0.81

S medium SCAD 0 024 0 0.08 0.04 0.81
D LASSO 0 0.42 0 0.22 0.04 0.81
BGR 0 0.55 0 071 0.05 0.81

DINAR 0 0 0 0.37 0.05 0.69

strong SCAD 0 0.08 0.01  0.03 0.05 0.69
LASSO 0 0.53 0 0.45 0.05 0.7

BGR 0 0.55 0 0.71 0.07 0.69

DINAR 0 0 0 0.37 0.03 0.86

low SCAD 0 0.15 0 0.05 0.03 0.86
LASSO 0 0.28 0 0.12 0.03 0.86

BGR 0 0.55 0 0.71 0.04 0.86

DINAR 0 0 0 0.37 0.04 0.81

= di SCAD 0 0.05 0 0.02 0.04 0.8
g medum LASSO 0 043 0 027 0.04 0.81
BGR 0 0.55 0 071 0.04 0.8

DINAR 0 0 0 0.37 0.05 0.69

strong SCAD 0 0.05 0 0.02 0.05 0.69
LASSO 0 054 0 0.52 0.05 0.69

BGR 0 0.55 0 071 0.06 0.69
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Table 10: Simulation N = 20 with 7" = 100, 500, 1000 for low, medium, strong
persistence evaluated with BIC.

Persistence ~ Models FN.g FP.g FN.e FP.e RMSE para RMSE out
DINAR 0.8 0 0.66 0 0.05 0.89

low SCAD 0.59 0.05 0.64 0.01 0.05 0.89
LASSO 0.59 0.05 0.64 0.01 0.05 0.89

BGR 0 0.76 0 0.85 0.07 0.91

DINAR 0.79 0 0.66 0.01 0.06 0.87

S edium SCAD 0.58 0.01 0.64 0 0.07 0.87
— LASSO 0.61 0.01 0.64 0 0.06 0.87
BGR 0 0.76 0 0.85 0.08 0.85

DINAR 0.6 0 0.49 0.18 0.08 0.76

strong SCAD 0.51 0.12 0.57  0.06 0.08 0.79
LASSO 0.71 0.03 0.64 0.01 0.08 0.8

BGR 0 0.76 0 0.85 0.09 0.73

DINAR 0.36 0 0.29 0.22 0.04 0.87

low SCAD 0.16 0.32 0.21 0.11 0.04 0.87
LASSO 0.62 0.09 0.54 0.04 0.04 0.88

BGR 0 0.76 0 0.85 0.04 0.87

DINAR 0 0 0 0.39 0.03 0.81

S edium SCAD 0 0.13 0.04 0.02 0.03 0.81
) LASSO 0 0.72 0 0.35 0.03 0.81
BGR 0 0.76 0 0.85 0.04 0.81

DINAR 0 0 0 0.39 0.04 0.69

strong SCAD 0 0.58 0 0.17 0.05 0.69
LASSO 0 0.72 0 0.4 0.04 0.7

BGR 0 0.76 0 0.85 0.06 0.69

DINAR 0 0 0 0.39 0.02 0.86

low SCAD 0 0.45 0 0.09 0.02 0.86
LASSO 0 0.62 0 0.2 0.02 0.86

BGR 0 0.76 0 0.85 0.03 0.86

DINAR 0 0 0 0.39 0.03 0.8

= di SCAD 0 0.03 0.01 0.01 0.03 0.8
g fhedum LASSO 0 0.64 0 022 0.03 0.81
BGR 0 0.76 0 0.85 0.03 0.8

DINAR 0 0 0 0.39 0.04 0.69

strong SCAD 0 0.44 0 0.1 0.04 0.69
LASSO 0 0.76 0 0.6 0.03 0.69

BGR 0 0.76 0 0.85 0.05 0.68
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Table 11: Simulation N = 60 with 7" = 100,500, 1000 for low, medium, strong
persistence evaluated with BIC.

Persistence ~ Models FN.g FP.g FN.e FP.e RMSE para RMSE out
DINAR 0.8 0 0.66 0 0.03 0.89

low SCAD 0.55 0.18 0.66 0.01 0.03 0.89
LASSO 0.6 0.13 0.66 0.01 0.03 0.89

BGR 0 0.92 0 0.95 0.09 1.07

DINAR 0.8 0 0.66 0 0.04 0.87

S edium SCAD 0.32 0.35 0.64 0.04 0.04 0.87
— LASSO 0.66 0.07 0.66 0 0.04 0.87
BGR 0 0.92 0 0.95 0.09 0.99

DINAR 0.74 0 0.61 0.07 0.05 0.79

strong SCAD 0.25 0.48 0.62 0.08 0.05 0.8
LASSO 0.77 0.01 0.66 0 0.05 0.8

BGR 0 0.92 0 0.95 0.1 0.84

DINAR 0.8 0 0.66 0 0.03 0.89

low SCAD 0.67 0.06 0.61 0.01 0.03 0.89
LASSO 0.76 0 0.66 0 0.03 0.89

BGR 0 0.92 0 0.95 0.03 0.89

DINAR 0.04 0 0.03 0.38 0.02 0.81

S edium SCAD 0.11 0.59 0.23 0.24 0.03 0.83
) LASSO 0.78 0 0.66 0 0.04 0.86
BGR 0 0.92 0 0.95 0.04 0.83

DINAR 0 0 0 0.4 0.02 0.69

strong SCAD 0 0.9 0.01 0.58 0.04 0.69
LASSO 0 0.91 0 0.44 0.02 0.71

BGR 0 0.92 0 0.95 0.04 0.7

DINAR 0 0 0 0.4 0.01 0.86

low SCAD 0 0.22 0.08 0.01 0.02 0.86
LASSO 0.44 0.41 0.37  0.17 0.02 0.88

BGR 0 0.92 0 0.95 0.02 0.87

DINAR 0 0 0 0.4 0.02 0.8

= di SCAD 0 0.85 0 0.24 0.02 0.8
g fhedum LASSO 0 09 0 036 0.02 0.81
BGR 0 0.92 0 0.95 0.03 0.81

DINAR 0 0 0 0.4 0.02 0.68

strong SCAD 0 0.91 0 0.54 0.03 0.68
LASSO 0 0.87 0 0.25 0.02 0.71

BGR 0 0.92 0 0.95 0.04 0.69
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Table 12: Simulation N = 20 with 7" = 100,500, 1000 for low, medium, strong
persistence for an increasing number of groups with increasing dimensionality and
evaluated with BIC.

Persistence ~ Models FN.g FP.g FN.e FP.e RMSE para RMSE out
DINAR | 0.86 0 074 0 0.06 0.94

low SCAD 0.37 014 067 0.04 0.06 0.93
LASSO | 0.37 014 067 0.04 0.06 0.93

BGR 0 067 0 08 0.07 0.94

DINAR | 0.84 0 073 003 0.08 0.9

S medium SCAD 0.46 0.05 0.69 0.01 0.08 0.9
= LASSO | 0.49 0.04 0.69 0.01 0.08 0.9
BGR 0 067 0 08 0.07 0.84

DINAR | 067 001 058 023 0.1 0.78

strong SCAD 023 035 038 0.17 0.09 0.76
LASSO | 0.67 006 0.67 0.03 0.1 0.83

BGR 0 0.67 0 08 0.08 0.71

DINAR | 0.76 0 066 013 0.05 0.92

ow SCAD 0.02 015 0.16 0.04 0.04 0.9
LASSO | 025 014 039 0.03 0.05 0.92

BGR 0 0.67 0 08 0.03 0.89

DINAR 0 0 0 0.42 0.03 038

S medium SCAD 0 015 0.04 0.02 0.03 0.8
2 LASSO 0 0.63 0 03 0.03 0.81
BGR 0 067 0 08 0.04 0.8

DINAR 0 0 0 0.42 0.03 0.67

strong SCAD 0 035 001 0.08 0.04 0.67
LASSO 0 0.6 0 0.44 0.03 0.68

BGR 0 067 0 08 0.04 0.67

DINAR 0 0 0 042 0.02 0.89

ow SCAD 0 049 0 0.14 0.02 0.89
LASSO 0 061 0 025 0.02 0.89

BGR 0 0.67 0 08 0.02 0.89

DINAR 0 0 0 0.42 0.02 038

= g SCAD 0 0.02 0 0 0.02 0.8
g medum LASSO 0 057 0 023 0.03 0.81
BGR 0 0.67 0 08 0.03 0.8

DINAR 0 0 0 0.42 0.03 0.67

strong SCAD 0 013 0 0.02 0.03 0.67
LASSO 0 0.66 0 045 0.03 0.67

BGR 0 067 0 08 0.04 0.67
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Table 13: Simulation N = 60 with 7" = 100,500, 1000 for low, medium, strong
persistence for an increasing number of groups with increasing dimensionality and
evaluated with BIC.

Persistence ~ Models FN.g FP.g FN.e FP.e RMSE para RMSE out
DINAR | 0.1 0 077 0 0.04 0.98

ow SCAD 027 047 07 0.12 0.04 0.98
LASSO | 026 048 07 0.13 0.04 0.97

BGR 0 082 0 0.93 0.08 1.11

DINAR | 0.1 0 076 0 0.05 0.96

S medium SCAD 0.36 033 07 0.06 0.05 0.96
= LASSO | 042 027 071 0.05 0.05 0.96
BGR 0 082 0  0.93 0.09 1.04

DINAR | 088 00l 0.74 01 0.07 0.94

strong SCAD 0.39 028 0.69 0.05 0.07 0.92
LASSO 06 016 073 0.02 0.07 0.95

BGR 0 0.82 0 093 0.09 0.96

DINAR | 0.1 0 077 0 0.04 0.97

low SCAD 0.17 0.09 059 0.02 0.03 0.96
LASSO | 0.19 0.01 0.65 0 0.04 0.97

BGR 0 0.82 0 093 0.03 0.95

DINAR | 0.78 0 065 036 0.05 0.93

S medium SCAD 0 065 011 0.16 0.02 0.88
2 LASSO | 0.11 039 026 0.07 0.04 0.92
BGR 0 082 0 0.93 0.03 0.89

DINAR | 0.61 0 051 049 0.05 0.85

strong SCAD 012 071 0.15 0.1 0.03 0.81
LASSO 0 074 001 0.26 0.03 0.82

BGR 0 082 0 093 0.04 0.82

DINAR | 0.1 0 076 0 0.04 0.97

ow SCAD 0 026 005 0.02 0.01 0.93
LASSO | 0.01 038 004 0.04 0.02 0.94

BGR 0 0.82 0 0.93 0.02 0.94

DINAR 0 0 0 061 0.01 0.87

= g SCAD 0 051 0.09 0.08 0.02 0.87
g medum LASSO 0 074 0 024 0.02 0.88
BGR 0 0.82 0 093 0.02 0.88

DINAR 0 0 0 061 0.02 08

strong SCAD 0 073 001 0.29 0.02 0.8
LASSO 0 08 0 043 0.02 0.8

BGR 0 082 0 0.93 0.03 0.81
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Table 14: Simulation N = 10 with 7" = 100,500, 1000 for low, medium, strong
persistence evaluated with AIC.

Persistence ~ Models FN.g FP.g FN.e FP.e RMSE para RMSE out
DINAR 0.77 0 0.63  0.02 0.07 0.89

low SCAD 0.58 0.03 0.6 0.02 0.07 0.89
LASSO 0.59  0.03 0.6 0.01 0.07 0.89

BGR 0 0.55 0 071 0.07 0.88

DINAR 0.39 0 0.32 0.22 0.08 0.84

S medium SCAD 0.21  0.18 0.37  0.08 0.09 0.85
= LASSO 0.19 0.27 0.3 0.17 0.07 0.85
BGR 0 0.55 0 0.71 0.08 0.83

DINAR 0.12 0.01 0.09 0.36 0.08 0.72

strong SCAD 0.01  0.33 0.16  0.18 0.1 0.73
LASSO 0.01  0.51 0.04 0.39 0.07 0.72

BGR 0 0.55 0 0.71 0.09 0.71

DINAR 0 0.01 0 0.38 0.04 0.86

low SCAD 0 0.37 0.01 0.16 0.04 0.86
LASSO 0 0.44 0 0.26 0.04 0.86

BGR 0 0.55 0 0.71 0.04 0.86

DINAR 0 0 0 0.37 0.04 0.81

S medium SCAD 0 0.25 0 0.08 0.04 0.81
) LASSO 0 0.53 0 0.44 0.04 0.81
BGR 0 0.55 0 071 0.05 0.81

DINAR 0 0.01 0 0.38 0.05 0.69

strong SCAD 0 0.14 0 0.06 0.06 0.69
LASSO 0 0.54 0 0.54 0.06 0.69

BGR 0 0.55 0 071 0.07 0.69

DINAR 0 0 0 0.37 0.03 0.86

low SCAD 0 0.16 0 0.05 0.03 0.86
LASSO 0 0.52 0 0.38 0.03 0.86

BGR 0 0.55 0 071 0.04 0.86

DINAR 0 0 0 0.37 0.04 0.81

S di SCAD 0 0.06 0 0.02 0.04 0.8
g fhedum LASSO 0 053 0 043 0.04 0.81
BGR 0 0.55 0 0.71 0.04 0.8

DINAR 0 0.02 0 0.38 0.05 0.69

strong SCAD 0 021 0 0.13 0.06 0.69
LASSO 0 0.55 0 0.6 0.06 0.69

BGR 0 0.55 0 0.71 0.06 0.69
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Table 15: Simulation N = 20 with 7" = 100, 500, 1000 for low, medium, strong
persistence evaluated with AIC.

Persistence ~ Models FN.g FP.g FN.e FP.e RMSE para RMSE out
DINAR 0.79 0 0.65 0.01 0.05 0.89

low SCAD 0.59 0.05 0.64 0.01 0.05 0.89
LASSO 0.59 0.05 0.64 0.01 0.05 0.89

BGR 0 0.76 0 0.85 0.07 0.91

DINAR 0.62 0 0.51 0.16 0.06 0.85

S edium SCAD 0.51 0.08 0.6 0.03 0.07 0.86
— LASSO 0.58 0.03 0.62 0.01 0.06 0.87
BGR 0 0.76 0 0.85 0.08 0.85

DINAR 0.16 0 0.13 0.35 0.06 0.72

strong SCAD 0.08 0.61 0.23 0.32 0.09 0.74
LASSO 0.1 0.61 0.17 0.37 0.06 0.74

BGR 0 0.76 0 0.85 0.09 0.73

DINAR 0 0 0 0.39 0.03 0.86

low SCAD 0 0.68 0.02 0.28 0.03 0.86
LASSO 0 0.73 0.01 0.37 0.03 0.86

BGR 0 0.76 0 0.85 0.04 0.87

DINAR 0 0 0 0.39 0.03 0.81

S edium SCAD 0 0.2 0.03 0.05 0.03 0.81
) LASSO 0 0.73 0 0.39 0.03 0.81
BGR 0 0.76 0 0.85 0.04 0.81

DINAR 0 0 0 0.39 0.04 0.69

strong SCAD 0 0.58 0 0.18 0.05 0.69
LASSO 0 0.76 0 0.64 0.04 0.69

BGR 0 0.76 0 0.85 0.06 0.69

DINAR 0 0 0 0.39 0.02 0.86

low SCAD 0 0.45 0 0.09 0.02 0.86
LASSO 0 0.66 0 0.29 0.02 0.86

BGR 0 0.76 0 0.85 0.03 0.86

DINAR 0 0 0 0.39 0.03 0.8

= di SCAD 0 0.07 0 0.02 0.03 0.8
g fhedum LASSO 0 0.76 0 057 0.03 0.8
BGR 0 0.76 0 0.85 0.03 0.8

DINAR 0 0.04 0 0.41 0.04 0.69

strong SCAD 0 0.46 0 0.12 0.04 0.69
LASSO 0 0.76 0 0.7 0.04 0.69

BGR 0 0.76 0 0.85 0.05 0.68
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Table 16: Simulation N = 60 with 7" = 100, 500, 1000 for low, medium, strong
persistence evaluated with AIC.

Persistence ~ Models FN.g FP.g FN.e FP.e RMSE para RMSE out
DINAR 0.8 0 0.66 0 0.03 0.89

low SCAD 0.55 0.18 0.66 0.01 0.03 0.89
LASSO 0.6 0.13 0.66 0.01 0.03 0.89

BGR 0 0.92 0 0.95 0.09 1.07

DINAR 0.79 0 0.65 0.01 0.04 0.87

S edium SCAD 0.32 0.35 0.64 0.04 0.04 0.87
— LASSO 0.66 0.07 0.66 0 0.04 0.87
BGR 0 0.92 0 0.95 0.09 0.99

DINAR 0.54 0 0.45 0.23 0.04 0.75

strong SCAD 0.25 0.48 0.62 0.08 0.05 0.8
LASSO 0.77 0.01 0.66 0 0.05 0.8

BGR 0 0.92 0 0.95 0.1 0.84

DINAR 0 0 0 0.4 0.02 0.86

low SCAD 0.01 0.68 0.18 0.11 0.02 0.87
LASSO 0.03 0.57 0.17  0.08 0.02 0.88

BGR 0 0.92 0 0.95 0.03 0.89

DINAR 0 0 0 0.4 0.02 0.81

S edium SCAD 0 0.89 0.02 0.38 0.03 0.81
) LASSO 0 0.91 0 0.54 0.02 0.81
BGR 0 0.92 0 0.95 0.04 0.83

DINAR 0 0 0 0.4 0.02 0.69

strong SCAD 0 0.91 0 0.59 0.04 0.69
LASSO 0 0.92 0 0.71 0.03 0.69

BGR 0 0.92 0 0.95 0.04 0.7

DINAR 0 0 0 0.4 0.01 0.86

low SCAD 0 0.25 0.07  0.03 0.02 0.86
LASSO 0 0.91 0 0.4 0.02 0.86

BGR 0 0.92 0 0.95 0.02 0.87

DINAR 0 0 0 0.4 0.02 0.8

= di SCAD 0 0.85 0 0.24 0.02 0.8
g fhedum LASSO 0 09 0 036 0.02 0.81
BGR 0 0.92 0 0.95 0.03 0.81

DINAR 0 0 0 0.4 0.02 0.68

strong SCAD 0 0.91 0 0.54 0.03 0.68
LASSO 0 0.92 0 0.78 0.02 0.68

BGR 0 0.92 0 0.95 0.04 0.69
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Table 17: Simulation N = 20 with 7" = 100,500, 1000 for low, medium, strong
persistence for an increasing number of groups with increasing dimensionality and
evaluated with AIC.

Persistence ~ Models FN.g FP.g FN.e FP.e RMSE para RMSE out
DINAR | 0.86 0 074 0 0.06 0.94

low SCAD 0.37 014 067 0.04 0.06 0.93
LASSO | 0.37 014 067 0.04 0.06 0.93

BGR 0 067 0 08 0.07 0.94

DINAR | 0.66 0 057 021 0.07 0.87

S medium SCAD 024 028 05 0.13 0.08 0.88
= LASSO | 037 014 0.6 0.06 0.08 0.89
BGR 0 067 0 08 0.07 0.84

DINAR | 0.23 0 02 039 0.07 0.72

strong SCAD 0.0l 057 0.17 0.28 0.08 0.72
LASSO | 0.02 063 0.08 0.41 0.06 0.72

BGR 0 0.67 0 08 0.08 0.71

DINAR 0 0 0 0.42 0.02 0.89

low SCAD 0 045 006 0.21 0.03 0.9
LASSO 0 065 001 0.39 0.03 0.89

BGR 0 0.67 0 08 0.03 0.89

DINAR 0 0 0 0.42 0.03 038

S medium SCAD 0 019 003 0.04 0.03 0.8
2 LASSO 0 0.66 0 048 0.03 0.8
BGR 0 067 0 08 0.04 0.8

DINAR 0 0 0 0.42 0.03 0.67

strong SCAD 0 035 001 0.08 0.04 0.67
LASSO 0 0.67 0 0.54 0.04 0.67

BGR 0 067 0 08 0.04 0.67

DINAR 0 0 0 042 0.02 0.89

ow SCAD 0 0.51 0 0.14 0.02 0.89
LASSO 0 061 0 027 0.02 0.89

BGR 0 0.67 0 08 0.02 0.89

DINAR 0 0 0 0.42 0.02 038

= g SCAD 0 0.06 0 0.0l 0.02 0.8
g medum LASSO 0 066 0 047 0.02 0.8
BGR 0 0.67 0 08 0.03 0.8

DINAR 0 0 0 0.42 0.03 0.67

strong SCAD 0 013 0 0.02 0.03 0.67
LASSO 0 0.67 0 057 0.03 0.67

BGR 0 067 0 08 0.04 0.67
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Table 18: Simulation N = 60 with 7" = 100,500, 1000 for low, medium, strong
persistence for an increasing number of groups with increasing dimensionality and
evaluated with AIC.

Persistence ~ Models FN.g FP.g FN.e FP.e RMSE para RMSE out
DINAR | 0.1 0 077 0 0.04 0.98

ow SCAD 027 047 07 0.12 0.04 0.98
LASSO | 026 048 07 0.13 0.04 0.97

BGR 0 082 0 0.93 0.08 1.11

DINAR 0.9 0 075 003 0.05 0.96

S medium SCAD 0.36 033 07 0.06 0.05 0.96
= LASSO | 042 027 071 0.05 0.05 0.96
BGR 0 082 0  0.93 0.09 1.04

DINAR 08 001 067 03 0.06 0.01

strong SCAD 0.29 044 056 0.17 0.06 0.9
LASSO | 054 0.21 0.7  0.05 0.07 0.94

BGR 0 0.82 0 093 0.09 0.96

DINAR 0.7 0 059 034 0.03 0.96

low SCAD 0 066 014 0.15 0.02 0.94
LASSO 0 071 0.1 0.19 0.02 0.94

BGR 0 0.82 0 093 0.03 0.95

DINAR | 0.01 0 00l 061 0.02 0.88

S medium SCAD 0 065 011 0.16 0.02 0.88
2 LASSO 0 081 0 043 0.02 0.88
BGR 0 082 0 0.93 0.03 0.89

DINAR 0 0 0 061 0.02 0.81

strong SCAD 001 076 0.02 0.37 0.02 0.81
LASSO 0 0.81 0 053 0.03 0.81

BGR 0 082 0 093 0.04 0.82

DINAR 0 0 0 061 0.01 0.93

ow SCAD 0 026 005 0.02 0.01 0.93
LASSO 0 082 0 0.49 0.01 0.93

BGR 0 0.82 0 0.93 0.02 0.94

DINAR 0 0 0 061 0.01 0.87

= g SCAD 0 0.73 0 029 0.01 0.87
g medum LASSO 0 0.77 0  0.39 0.02 0.87
BGR 0 0.82 0 093 0.02 0.88

DINAR 0 0 0 061 0.02 08

strong SCAD 0 074 0 03 0.02 0.8
LASSO 0 081 0 045 0.02 0.8

BGR 0 082 0 0.93 0.03 0.81
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1.4 Theoretical properties

We derive the asymptotic properties of the estimator . Recall that the matrix A is
assumed to have a sparse ‘network’ structure. The residual term €; = (€14, -+, € N7t)T
is a vector that is assumed to be independently and identically distributed with
e; ~ (0,X). For ease of notation, we denote B = [15, (Inf1 + A)] asa N x (N + 1)
parameter matrix. To make the results wider applicable, we will derive the asymptotic
properties by applying the regularization function upon the entire matrix B. In the
model as it is applied in this study, A is set to 0 for Sy and ;. Hence the derivations
in this section cover the general regularization case and we denote pax (1—a) AB) =

SV — a)M|Billp+ N, Zj\gl aM|bi;|. In accordance with this study, we treat
a as a fixed predefined value. We assume that the model is stationary and ergodic,
with all roots of the polynomial Iy — BZ lying outside the unit ball. Note that N is
fixed during the investigation of the asymptotic properties. We assume the following

regularity conditions hold:

1. The observations Y; for all ¢ are i.i.d. with probability density f(Y, B). It shall
hold

[ Y. B
E[aogafTw} =0foralli=1,...,Nandj=1,...,N+1
tj

and
9?logf (Y, B)

I -
aBiljl aBi2j2

1j1.d2j2 — E
2. The Fisher Information matrix I(B) is finite and positive definite at B = B
with B the true parameter matrix.

3. There exists an open subset w in the parameter space €2 of B that contains the
true parameter matrix B. For almost all Y; the density f(Y, B) admits all third
&logf(V,B)

OBi, j, 0Biyj, 0B

such that

derivatives
M,

— for all B in the open subset. There exist functions
373

1J1,4252,1373
Plogf(Y, B)
8Bi1j1 aBiz]é 0B

< My iggasisis (Y) for all B € w

1373

whereas miljhm%igjs =E [Mi1j17’l'2j2,i3j3 (Y)] < Q.

Note that 7" will go to infinity which impacts the values of a\ and (1 —a)A, hence
8po¢)\T,(17a))\T .
837;]'

B;; # 0), which is the maximal regularization applied to any B;;. ¢meer Will only
take on the value 0 if Ap — 0. Also in case of a dense system, gy, Would be 0
but this contradicts the assumption of this study of a sparse parameter matrix. We

denote the true parameter matrix as B. The proofs to the results are given in detail

in Appendix

we denote adr and (1 —a)Ap from here onwards. Denote gpq. 7 = max(

%)



. 82 e —a
Theorem 1. Assume that the assumptions for model hold. If max{% :
ij \Dij

B;;j # 0} — 0, then there exists a local mazimizer B for (@ such that ||B — Bl|p=
OP(T71/2 + gmaz,T)-

When the hypotheses of Theorem [1] are fulfilled, a proper choice of the regular-
ization parameters aX and (1 — )\ ensures the existence of a local maximizer of (3),
which converges at speed vT. If alr, (1 — a)\r — 0, then the estimator is root-T'
consistent.

Next, we show that the estimator possesses the sparsity property and hence is
capable of selecting the model parameters in a sparse system. Denote by C'L(-) the
constrained likelihood. In what follows, assume without loss of generality that the
true parameter matrix B contains a submatrix of dimension N; x N7 whose elements
are different from 0 in the upper left corner. The remaining elements are equal to 0.
Let By, n, indicate the respective submatrix and B_y,_n, the remaining elements of
the respective matrix.

Lemma 1. Assume that the assumptions for model (9) hold. If aXr, (1 — a)Ar — 0
and VTorp, VT (1 — o)Ay — 0o as T — oo, then with probability tending to 1, for
any given By, n, satisfying || By, vy — By, ||r= Op(T7/2) and any constant Q,

CL(BNlNUO) = max CL<BN1N17BfN1fN1)7

[|B-ny -~y [|FP<QT—1/2
hence

P(B—Nl—Nl = O) — 1.

Finally, we show that the estimator possesses the oracle property, i.e., it chooses
the true model as if it were a theoretical estimator that knows the true model struc-
ture.

We define
F= |:pa)\T,(1—a))\T (811)7 s Parp,(1—a)Ar (BN1N1>:|

as a N; X N; symmetric matrix containing the second derivatives of the penalty
function and

G = |:p/a/\T,(17a))\T (Bll)sgn(B11)7 e 7p/o¢/\T,(lfa)/\T (BN1N1)Sgn(BN1N1)]

as a Vi x N; matrix containing the first derivatives of the penalty function.

Theorem 2. Assume that the assumptions for model (@) hold. If aAr, (1 —a)A\pr — 0
and NTarp, VT (1 — a)Ap — oo as T — oo, then with probability tending to 1, the
root-T consistent local mazimizer B = [By,n,, B_n,—n,] from Theorem[1] must satisfy

1. Sparsity: B_n,_n, =0

56



2. Asymptotic normality:

\/T(<BN1N1 - BN1N1)<I(BN1N1) + F) + G) i} N(O> I<BN1N1)) (1())

in  distribution, where I(Bn,n,) is the Fisher Information knowing that
B_n,-n, = 0.

1.5 Proofs

In this section we prove the consistency and oracle property of the estimator. We
prove the theorems under the assumptions made for model , stated in Appendix
[[.4 The proofs follow Fan and Li (2001), Song and Bickel (2011) and Wang et al.
(2007).

We further define Oy(+) as big O notation for elementwise convergence within
a matrix and Oy (-) as big O notation for elementwise convergence within a vector.
Likewise we define op/(-) and oy(-) as small o notation for matrices and vectors.
Let vec(-) denote the vectorizing operator to convert a matrix to a vector. Further,
we denote the Fisher information matrix by /(-), which is assumed to be finite and
positive definite.

1.6 Proof of Theorem [

Denote by CL(-) the constrained likelihood and by L(:) the likelihood. Define
CL(B) = L(B) = T3 Y% Parr.(1—apae (Byj). Further define g7 = T7Y2 + gyaerr
and U coordinates around B. For a large constant @, it holds that {B + ¢grU :
|U||r< @} is the ball around B and we intend to show that a local maximum with
maximizer B lies in the ball. So we intend to show that on the surface of the ball,
|U||r= Q, for any € > 0, there exists a large constant () such that

P{ sup CL(B+grU)<CL(B)} >1—e. (11)
WU Ir=@

The difference between the two penalized likelihoods C'L(B + grU) and C'L(B)
can be bounded from above by the likelihood and the penalization on B only for the
N2 parameters different from 0. For the construction of the upper bound, we make
use of the property paxs. (1—ajar(0) = 0, which holds for the (N — Ny)? — (N — Ny))
parameters which are 0. In case no parameter in B is 0, it will be equal, otherwise

larger:
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CL(B + grU) — CL(B) < L(B + g:+U) — L(B)

N1 M

(12)

T3 Y {parra—ape (Bij + 97U45) = Parr,(1—apar (Bij) }-

i=1 j=1

Approximating by a Taylor expansion for B 4+ grU around B gives

L(B+ grU) = L(B) 4+ (B + goU — B)L'(B)
+ %L”(B)(B 4+ 91U —B) (B+ goU — B)
+ o, 5L (B)(B + U — B)' (B + g:U — B)}
which leads to
LB+ g7U) — L(B) = gr L (B)vec(U) + %g%vec(U)TL”(B)Vecw)

+ L) L (Bvec()o, (1)

Also,

N1 Nl
T Z Parr,(1—a)rr (Bij + gTUij) =T Z pa,\T,(ka),\T(Bz'j)
i,j=1 i,j=1
Ny
+T > (B + grUi; — By)

,j=1

Daxg,(1—a)rr (BZJ) Sgn(Bij)

Ny
+ T Z(B” + gTUij — Bij)2
ij=1
pa)\T,(l—a))\T<Bij)
Ny
+ T Z Op(Bij —+ gTUij — 81)2
ij=1

Parr,(1—a) r (BZJ)

which leads to
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N1 Nl

T pore-ane By + 97U35) =T ) pare,-ane (By) (16)
i,j=1 B,j=1
N1
=T (97U j)Parr,(1-aire (Bij) sgn(Bi;) (17)
ij=1

N1
+ T3 (91U ) Parr.1—aprr (Bij)

ig—1
Ny
+T Z 97U7,05(1)?Pars.(1-a)rr (Bij)

ij=1

1"

Recall that L"(B) = —T1(B).

Hence,
CL(B+ grU) — CL(B) <bL' (B) "vec(U) (18)

1
- 5Tg%vec(U)T](B)vec(U)(1 +0,(1))
Ny
-T Z 9rParr,(1—aar (Bij) sgn(By;)U;
ij=1
Ny

—T Y (97U ) Parr,1-apne (Big)” (1 + 0,(1))

ij=1

If the right-hand side of the inequality is smaller 0, the inequality holds. Note
that it holds T'/2L(B)" = Oy(1). It follows that the first term on the right-hand
side is of order Oy (T"%gr). The second term is of order O,(T'g2), and it holds
O,(T%gr) = 0,(Tg?). For a sufficiently large @, the second term dominates the
first term uniformly in ||U||r= @. The third and fourth term are bounded by

N N
: 1 0”Parr,(1-a
Tgr Z Imaz Ui + T Z U;; max(# :Bi; #0)(1+0,(1)), (19)
i

i,j=1 ,j=1

and therefore are O,(Tgr) and O,(Tg7). Since max(%% : Bij #0) — 0 and
the term is of O,(Tg%), it is dominated by the second term in case of a large ). Also
the third term is dominated by the second term since it is of order O,(T g7 Gmaz1)
which is dominated by O,(T¢7) and @ takes on a larger effect in the second term.
Therefore, the negativity of the second term ensures the right-hand side to be smaller
0 in case of a large (). Hence holds. This implies that there exists a local

maximizer B for which |]§ —B||r= Op(gr). This completes the proof of the theorem.
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1.7 Proof of Lemma (1]

We carry out the proof by showing that all parameters in B_y, _n, cannot be different
from 0 since this would be a contradiction. One has

OCL(B,) OL(B) : ~ ~
9B, 0B, = TPorg (1—a)ng (Big)sgn(Bij), (20)

hence for a consistent selection of B_y,_n, all parameters have to be 0. Otherwise
the first derivative of the constrained likelihood would not equal the unconstrained
one, which is 0.

It is sufficient to show that 8CL(B # 0 if and only if B;; # 0. Hence we will show

that with probability tending to 1 for T — oo, for any By,n, satisfying By,n, —
By, n, = Op(T7Y/?) and for some small e = QT‘l/2 and 7,5 =1,..., Ny,

ICL(B)
W <0 for 0 < Bij < €7 (21)

>0 for —er < Bij <0 (22)

By Taylor’s expansion,

OCL(B)  OL(By) : ~ ~
9B, 0B, = TPorr (1—a)rg (Bij)sgn(Bij) (23)

oLB) NN L) -
- 75 a5 \Bub — 24
0B +lz::1[z:183ij03hl2( utz ~ Bus) (24)

+ Z Z Z Z 83”83111283[3[4 (B\hlz - 81112)(§l3l4 - Bl3l4)

l1=11a=113=114=1

TpO{)\T (1 a)AT(BZ])Sgn(B )

with B* lying between B and B.
Recall that

_,0L(B)

T = O(T'?)
ij
_, 0*L(B) 02L(B)
i S (B oA 1
9B.,0B,.1, (aszaBllb) +oll)
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The first term is therefore of order O(7%/2). The second term is also of order
O(T*"?) because it consists of the Fisher information matrix and o(1), where the
latter is negligible because o goes to 0 faster than O. The third term is obviously
faster at 0 due to the squared Oy, meaning it is bounded by Op(T~%/2)2, hence it
goes faster to 0 than the first and second term. It follows that

OCL(B) ;
55 =~ TPaxr.-ang (Bij)sgn(By) + O(T'?) (25)

ij
The first term dominates, because \/Tgmax,T — 00. Hence the sign of B;; determines

the sign of M_ Hence the inequalities and hold, which implies that

ACL(B)

oB;,  can only be 0 if and only if B;; = 0. This completes the proof.

1.8 Proof of Theorem [2

From Lemma [l there follows . It can be easily shown that there exists an B Ny N, In
Theorem [1|that is a root-T" consistent local maximizer of C'L((Bx,n,,0)) that satisfies
the likelihood equations

dC'L(B)

aBij =0 fOri:L...’Nl;j:L...’Nl (26)

B=[Bn; Ny BNy -]

Recall that By, n, is a consistent estimator,

OL(B)

5B — TPorg.(1—ayng (Bij)sgn(Byj) (27)
ij B:[BNINIB Ny —N]
N1 N
_ 1)) (B — B;; 2%
83” ZZ (aB”aBmQ op( ))( i — Bij) (28)
=11l=1

-T (pa)\T,(l—a))\T (Bij)sgn(Bij)

+(Parg.(1—ape (Big) + 0p(1)) (B — Bz‘j)) :

Setting the first derivative equal to 0 and rearranging terms gives

OL(B /
(Bi; — Bij) = — 55— TPory 1oy (Big)s9n(Big)
v H-TK
OL(B /
B IH-K :
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N N 02L(B "
whereas H =) ;"0 > 'L, (ﬁ + 0p(1)> and K = p,y. 1, (Bij) +op(1).

The nominator converges in distribution by the Central Limit Theorem to

10L(B) . d I(By, N, )ij
T 0B, Porg,(1—ang (Big)sgn(Bij) — N (0, Tllj) — Gy (29)
By Slutsky’s Theorem, the denominator goes to
N M
1 9?L(B)
- _gB) |
722 <8Bij8Blll2 +orl ))
li=11=1
+ (Parp.(t—apne (Big) + 0p(1)) = I(By,v,)ij + Fiy (30)

Combining the two results and writing this in matrix form gives

LB 1By ) + F)2) — G (Bryy) + F)

T
-1 d ](BN1N1) -2
(BNINI - BN1N1) + G(I(BN1N1> + F) — N(O, T(I(BNINI) + F) )

VT((Byyn, — Byyw ) I (Bayw,) + F) + G) % N(0,1(Br, )

(BNlNl - BN1N1) i} N(07

Hence by applying Slutsky’s Theorem and the Central Limit Theorem, we find

VT((Byn, — By )I(Baywy) + F) +G) % N(0,I(Bu,w,)) (31)

This completes the proof.
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Adjacency matrices for 3 A\-values in analysis with 10 groups and evaluation

period length of 180 days based upon BIC.

Figure 12

(b) 2012 aA;s = 0.0092  (c) 2012 i = 0.0046

(a) 2012 a1y = 0.0184

0.0052

(f) 2013 Oé)\lﬁ

0.0104

(e) 2013 Oé)\15

0.0060

(i) 2014 Oé)\16

0.0119

(h) 2014 Oé)\15

0.0238

(g) 2014 alyy

(1) 2015 @Ay = 0.0045

(k) 2015 aAg5 = 0.0090
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(0) 2016 ahyg = 0.0062

(n) 2016 aAys = 0.0124

(m) 2016 aAyy = 0.0249

63



Figure 13: Adjacency matrices for 3 A-values in analysis with 10 groups and evaluation
period length of 180 days based upon BIC.
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1.9 Additional tables

Table 19: AIC, HQ and BIC evaluation criteria for a VAR model selection procedure
derived on the yearly data.

Selected Lag Lag1l Lag2 Lag3
AlIC 3.00 -160.54 -158.81 -164.97
HQ 1.00 -143.02 -123.77 -112.41
BIC 1.00 -116.73 -71.20 -33.55
AIC 3.00 -191.41 -188.76 -192.03
HQ 1.00 -176.02 -157.99 -145.87
BIC 1.00 -152.70 -111.36 -75.92
AIC 3.00 -179.11 -177.92 -182.62
HQ 1.00 -163.48 -146.68 -135.76
BIC 1.00 -139.84 -99.39 -64.82
AIC 3.00 -214.00 -215.86 -235.79
HQ 1.00 -194.84 -177.54 -178.31
BIC 1.00 -166.28 -120.41 -92.62
AIC 3.00 -213.13 -211.23 -215.20
HQ 1.00 -197.44 -179.85 -168.12
BIC 1.00 -173.70 -132.37 -96.90
AIC 3.00 -212.87 -214.18 -220.66
HQ 1.00 -197.48 -183.41 -174.51
BIC 1.00 -174.17 -136.78 -104.56
AIC 1.00 -223.76 -218.99 -219.49
HQ 1.00 -208.37 -188.22 -173.33
BIC 1.00 -185.05 -141.59 -103.38
AlIC 1.00 -233.69 -229.96 -230.28
HQ 1.00 -218.34 -199.25 -184.23
BIC 1.00 -195.07 -152.71 -114.42
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Table 20: BIC and AIC for out-of-sample performance and the number of parameters
and identified groups for 3-grouping dataset whereas a group is counted as active
if 25% of the parameters are different from 0. The results are displayed for the
models found in the respective years for DINAR, LASSO, SCAD and BGR. The first
4 columns show the results evaluated on 90 days out-of-sample, the second 4 columns
the results evaluated on 180 days out-of-sample.

90 days 180 days

BIC AIC para groups | BIC AIC para groups

2012 | -1262 -1345 35 11-2319 -2425 35 1
2013 | -1924 -1969 18 0 |-2510 -2568 18 0
2014 | -1895 -1940 18 0 | -4038 -4195 52 2

= 2015 | -1472  -1517 18 0 | -2989 -3046 18 0
<ZG 2016 | -3182 -3227 18 0 | -5482 -5539 18 0
A 2017 | -1269 -1374 43 2 | -1930 -2064 43 2
2018 | -1178 -1235 23 11]-2163 -2236 23 1
2019 | -1361 -1404 17 1] -2342 -2397 17 1
2020 | -1413 -1453 17 11]-2620 -2672 17 1
2012 | -1235 -1280 18 0| -2219 -2277 18 0
2013 | -1924 -1969 18 0 |-2510 -2568 18 0
2014 | -1895 -1940 18 0 |-3995 -4052 18 0
2 2015 | -1472 -1517 18 0 | -2989 -3046 18 0
» 2016 | -3182 -3227 18 0 | -5482 -5539 18 0
ﬁ 2017 | -1235 -1273 15 0|-1673 -1721 15 0
2018 | -1155 -1182 12 0|-2094 -2148 17 0
2019 | -1271 -1331 24 2| -2211 -2333 38 4
2020 | -1267 -1290 9 0 |-2425 -2584 50 7
2012 | -1261 -1341 32 1]-2219 -2277 18 0
2013 | -1924 -1969 18 0 |-2510 -2568 18 0
2014 | -1895 -1940 18 0| -4013 -4118 33 1

~ 2015 | -1472 -1517 18 0 | -2989 -3046 18 0
Eg 2016 | -3224 -3284 24 0 |-5638 -5714 24 0
»v 2017 | -1235 -1273 15 0|-1673 -1721 15 0
2018 | -1165 -1212 19 2| -2164 -2225 19 2
2019 | -1329 -1402 29 3| -2322 -2415 29 3
2020 | -1407 -1447 16 1]-2596 -2685 28 3
2012 62 -745 324 18| -739 -1770 324 18
2013 | -648 -1458 324 18 | -1067 -2102 324 18
2014 | -667 -1474 324 18 | -2706 -3737 324 18

- 2015 | -166 -976 324 18 | -1490 -2525 324 18
O 2016 | -1784 -2594 324 18 | -3883 -4918 324 18
R 2017 | -482 -1044 225 15 | -1031 -1749 225 15
2018 | -b84  -944 144 12 | -1553 -2013 144 12
2019 | -802 -1005 81 9 |-1548 -1807 81 9
2020 | -961 -1163 81 9 |-1859 -2118 81 9
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Table 21: BIC and AIC for out-of-sample performance and the number of parameters
and identified groups for 3-grouping dataset whereas a group is counted as active if
25% of the parameters are different from 0. The results are displayed for the models
found in the respective years for DINAR, LASSO, SCAD and BGR. The first 4
columns show the results evaluated on 270 days out-of-sample, the second 4 columns
the results evaluated on the entire following year out-of-sample.

270 days one year

BIC AIC para groups BIC AIC para groups

2012 | -3748  -3866 35 1] -5291  -5420 35 1
2013 | -3673  -3738 18 0| -4504 -4574 18 0
2014 | -4347  -4412 18 0| -4420 -4485 18 0

/e 2015 | -4350 -4415 18 0| -5841 -5911 18 0
§§ 2016 | -12378 -12443 18 0 |-13678 -13748 18 0
A 2017 | -2672 -2823 43 2| -3554 -3718 43 2
2018 | -3414  -3497 23 1] -4913  -5003 23 1
2019 | -3357  -3418 17 1| -4420  -4486 17 1
2020 | -3752  -3809 17 1] -5205  -5267 17 1
2012 | -3580 -3645 18 0| -5064 -5134 18 0
2013 | -3672  -3737 18 0| -4504  -4573 18 0
2014 | -4348  -4412 18 0] -4420 -4485 18 0

O 2015 | -4350 -4414 18 0| -5841  -5910 18 0
G 2016 | -12378 -12443 18 0 | -13677 -13748 18 0
:E 2017 | -2287  -2636 97 10 | -3069  -3447 97 10
2018 | -3287  -3348 17 0| -4774  -4989 56 10
2019 | -3232  -3419 52 7| -4344 4547 52 7
2020 | -3574  -3790 60 9] -5054  -H288 60 9
2012 | -3656 -3771 32 1| -5149 -5274 32 1
2013 | -3672  -3737 18 0| -4550  -4651 26 1
2014 | -4348  -4412 18 0| -4420  -4485 18 0

~ 2015 | -4350  -4414 18 0| -5841  -5910 18 0
Eg 2016 | -12488 -12574 24 01]-13738 -13831 24 0
» 2017 | -2355  -2513 44 41 -3098  -3269 44 4
2018 | -3469  -3588 33 3] -4986 -5114 33 3
2019 | -3424  -3529 29 3| -4601  -4715 29 3
2020 | -3798  -3898 28 3| -5320  -5429 28 3
2012 | -2050 -3212 324 18 | -3485 4744 324 18
2013 | -2155 -3321 324 18 | -3024 4281 324 18
2014 | -2884  -4046 324 18 | -2947 4114 324 18

- 2015 | -2815 -3981 324 18 | -4225  -5480 324 18
O 2016 | -10622 -11784 324 18 | -11750 -13009 324 18
R 2017 | -1708 -2518 225 15| -2427  -3303 225 15
2018 | -2850 -3368 144 12 | -4364 -4926 144 12
2019 | -2377  -2669 81 9] -3266 -3582 81 9
2020 | -2814 -3101 81 9| -4015  -4327 81 9
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I.10 Chord diagrams
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Figure 14: Adjacency matrices and serial dependence parameter in analysis with 10
groups and evaluation period length of 180 days.

(a) Adjacency matrices for the 10 groups in 2012

69



Figure 15: Adjacency matrices and serial dependence parameter in analysis with 10
groups and evaluation period length of 180 days.

(a) Adjacency matrices for the 10 groups in 2015
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Figure 16: Adjacency matrices and serial dependence parameter in analysis with 10
groups and evaluation period length of 180 days.

(a) Adjacency matrices for the 10 groups in 2017
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Figure 17: Adjacency matrices and serial dependence parameter in analysis with 10
groups and evaluation period length of 180 days.

(a) Adjacency matrices for the 10 groups in 2019
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Figure 18: Adjacency matrices and serial dependence parameter in analysis with 3
groups and evaluation period length of 180 days.

(a) Adjacency matrices for the 3 groups in 2012
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Figure 19: Adjacency matrices and serial dependence parameter in analysis with 3
groups and evaluation period length of 180 days.

(a) Adjacency matrices for the 3 groups in 2017
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Figure 20: Adjacency matrices and serial dependence parameter in analysis with 3
groups and evaluation period length of 180 days.

(a) Adjacency matrices for the 3 groups in 2019
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