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Abstract

A methodology for high dimensional causal inference in a time series context

is introduced. It is assumed that there is a monotonic transformation of the

data such that the dynamics of the transformed variables are described by a

Gaussian vector autoregressive process. This is tantamount to assume that the

dynamics are captured by a Gaussian copula. No knowledge or estimation of

the marginal distribution of the data is required. The procedure consistently

identi�es the parameters that describe the dynamics of the process and the

conditional causal relations among the possibly high dimensional variables under

sparsity conditions. The methodology allows us to identify such causal relations

in the form of a directed acyclic graph. As an application we estimate the

directed acyclic graph for the order book on one-minute aggregated data on

four stock constituents of the S&P500.
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1 Introduction

Identifying and estimating causal relations is a problem that has received much in-

terest in economics. In the last two decades the statistical and machine learning

literature has made a number of advances on the front of identi�cation and esti-

mation within the framework of causal graphs (Comon, 1994, Hyvärinen and Oja,

2000, Pearl, 2000, Spirtes et al., 2000, Hyvärinen et al., 2001, Shimizu et al., 2006,

Meinshausen and Bühlmann, 2006, Kalisch and Bühlmann, 2007, Cai et al., 2011,

Bühlmann et al., 2014, Peters et al., 2014), where the data generating process can

be characterized as a system of structural equations. This complex causal relations

system might be represented through the causal graph, which conveys essential topo-

logical information to estimate causal e�ects.

However, the true data generating process is often a latent object to researchers,

which can only rely on �nite sample observations to infer the causal structure and

mechanism of the true system. A causal model entails a probabilistic model from

which a researcher can learn from observations and outcomes about changes and in-

terventions of the system variables (Pearl, 2000, Peters et al., 2014). Thus, causality

can be formally de�ned using the do-notation of Pearl (2000) in terms of intervention

distributions. This de�nition of causality is quite di�erent from the well known con-

cept of Granger causality. However, causal relations in economics and �nance require

to account for time series dependence.

In this paper we develop a methodology to extract the causal relations of time

series data, conditioning on the past in a �exible way. We assume that there is a

monotone transformation of the data that maps the original variables into a Gaussian

vector autoregressive (VAR) model (see also Fan et al., 2022). There are a number

of advantages to this approach. First, we are able to retain the interpretability of

VAR models building on the rich econometrics literature on structural VAR models.

Second, we do not need any assumptions on the marginal distribution of the data.

This means that the procedure is robust to fat tails, as we do not make any assumption

on the existence of any moments. For instance, given that the existence of a second

moment for �nancial data has been a much debated topic in the past (Mandelbrot,

1963, Clarke, 1973, for some of the earliest references) dispensing all together of this

unveri�able condition should be welcomed. Third, we can model variables that take

values in some subset of the real line, for example variables that only take positive
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values or are truncated. This is not possible using a standard VAR model.

The estimation of the contemporaneous causal structure of a time series is equiv-

alent to solving the identi�cation problem of a structural VAR model. The latter

can be achieved by �nding a unique Choleski type decomposition of the covariance

matrix of the VAR innovations (Rigobon, 2003, Moneta et al., 2013, Gouriéroux et

al., 2017, Lanne et al., 2017). However, the time series dynamics of economic and

�nancial data may not be captured well by a linear VAR model when the data is

not Gaussian. For example, some variables may only be positive. The problem of

estimation is exacerbated if the data have fat tails. This may distort the estimates.

Such problems re�ect negatively on the estimation of causal relations for time se-

ries data. Furthermore, due to the curse of dimensionality issue, SVAR analysis is

only feasible in a low-dimensional context. Restricting the VAR model only to a few

variables may lead to unreasonable adverse e�ects such as `price-puzzles' in impulse

responses (Sims, 1992, Christiano et al., 1999, Hanson, 2004). To avoid the curse of

dimensionality, factor augmented VAR models (Bernanke et al., 2005) and dynamical

factor models (Forni et al., 2000, Forni et al., 2009) are often employed. However, the

interpretation of the causal relations with factor models is not always straightforward.

Our methodology does not require the machinery of factor models.

This paper builds on a number of previous contributions and develops a method-

ology to address the aforementioned problems. Our approach is tantamount to the

assumption that the cross-sectional and transition distribution of the variables can

be represented using a Gaussian copula. The procedure builds on the work of Liu et

al. (2012) and does not require us to estimate any transformation of the variables

or the marginal distribution of the data, as commonly done when estimating a cop-

ula. In fact, our procedure bypasses the estimation of the innovations of the model

altogether. Our methodology is built for high dimensional time series, as commonly

found in some economics and �nancial applications. What we require is some form

of sparsity in the partial dependence of the data. This is di�erent from assuming

that the covariance matrix of innovations or the matrix of autoregressive coe�cients

are sparse. Such two restrictions can be restrictive. We shall make this clear in the

text when we discuss our assumptions. Finally, even when not all causal relations

are identi�ed, we are able to identify the largest number of causal relations. This

statement is formalized by the concept of complete partially acyclic graph using the

PC algorithm (Spirtes et al., 2000, Kalisch and Bühlmann, 2007). These concepts
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are reviewed in the main body of the paper (Section 3).

We conclude this introduction with a few remarks whose aim is to put the goals

of this paper into a wider perspective. The process of scienti�c discovery is usually

based on 1. the observation of reality, 2. the formulation of a theory, and 3. tests of

that the theory. The plethora of data available allows the researcher to observe di�er-

ent aspects of reality that might have been precluded in the past. High dimensional

estimation methods are particularly suited to explore the present data-centric reality.

However, the next step forward requires formulation of a theory or hypothesis. Such

theory needs to be able to explain rather than predict in order to enhance our under-

standing. This very process requires the identi�cation of a relatively small number of

explanatory causes for the phenomenon that we are trying to understand. The prob-

lem's solution, in a complex and rather random environment, should then be a simple

approximation. This approximation can then be tested in a variety of situations in

order to verify its applicability. The program of this paper is to follow this process of

scienti�c discovery. We start from possibly high dimensional dynamic datasets. We

aim to provide a reduced set of possible contemporaneous causes conditioning on the

past.

1.1 Relation to Other Work

One of the main empirical econometric tools for the study of policy intervention e�ects

is the VAR approach (Sims, 1980, Kilian and Lütkepohl, 2017). In the �rst step, the

so called reduced form model is estimated. Then, the structural counterpart needs

to be recovered. This gives rise to an identi�cation problem, which is equivalent to

�nding the contemporaneous causal relations among the variables.

Traditionally, the identi�cation of Structural Vector Autoregressive (SVAR) mod-

els was achieved by imposing model restrictions. Such restrictions can be derived

from an underlying economic model, such as short and long-run restrictions on the

shocks impact (Bernanke, 1986, Blanchard and Quah, 1989, Faust and Leeper, 1997),

or imposing sign restrictions on impulse response functions (Uhlig, 2005, Chari et al.

2008).

The success of the VAR approach is its reliance on data characteristics, thus allow-

ing the validation of economic models under reasonably weak assumptions. However,

standard restrictions necessary for the identi�cation invalidate the data-driven nature
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of SVAR. In recent years, it has been shown that di�erent statistical features of the

data can be exploited to achieve identi�cation of the SVAR model. For instance,

identi�cation can be obtained by relying on either heteroskedasticity (Sentana and

Fiorentini, 2001, Rigobon, 2003, Lütkepohl and Net²unajev, 2017) or non-Gaussianity

of the residuals (Moneta et al., 2013, Gouriéroux et al., 2017, Lanne et al., 2017) or

instrumental variables (Mertens and Ravn, 2013, Stock and Watson, 2018). Another

approach relies on the graphical causal model literature (Swanson and Granger, 1997,

Demiralp and Hoover, 2003, Moneta, 2008). There, identi�cation can be achieved by

exploiting the statistical distribution of estimated residuals. We shall show that this

last approach is related to our method.

Our work is also related to the statistical and machine learning literature for the

identi�cation of causal graph structures in a high dimensional setting (Meinshausen

and Bühlmann, 2006, Kalisch and Bühlmann, 2007, Liu et al., 2009, Zhou et al.,

2011, Bühlmann et al., 2014). However, these approaches do not account for con-

temporaneous causal inference conditioning on the past, as required for time series

problems.

To account for the time series dependence, we employ a modelling assumption

that can be viewed as a Gaussian copula VAR model, a de�nition that will be made

clear in the text. We recently discovered that Fan et al. (2022) have used the same

time series assumption for the analysis of high dimensional Granger causality. The

present paper is concerned with conditional causal relations and identi�cation of the

Gaussian copula VAR. Moreover, some basic assumptions are also di�erent. For

example, Fan et al. (2022) assume that the autoregressive matrix of the Gaussian

copula VAR is sparse. We instead assume that the inverse of the scaling matrix of the

Gaussian copula that leads to a VAR representation is sparse. This is a very di�erent

assumption. Hence, the contributions are related, but complementary.

1.2 Outline of the Paper

The plan for the paper is as follows. In Section 2, we introduce the model and brie�y

discuss its statistical properties. In Section 3 we discuss identi�cation of the model

and the causal relations. In Section 4 we describe algorithms to �nd estimators for

the population quantities, including the complete partially acyclic graph. In Section

5 we state conditions and results for the consistency of the quantities derived from the
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algorithms. Section 6 applies the methodology to shed light on the causal relations in

the order book and trades, in high frequency electronic trading. Section 7 concludes.

Proofs and additional details can be found in the Electronic Supplement to this paper.

There we also present the main conclusions from a simulation study as evidence

of the �nite sample properties of our methodology (Section A.3 in the Electronic

Supplement).

2 The Model

Let X := (Xt)t∈Z be a sequence of stationary random variables taking values in RK

or some subset of it. For each k = 1, 2, ..., K, we suppose that there is a monotone

function fk such that Zt,k = fk (Xt,k) is a standard Gaussian random variable such

that Zt = (Zt,1, Zt,2, ..., Zt,K)′

Zt = AZt−1 + εt (1)

where A has singular values in (0, 1) and (εt)t∈Z is a sequence of independent iden-

tically distributed random variables with values in RK and covariance matrix Σε.

Throughout, the prime symbol ′ denotes transposition. All vectors in the paper are

arranged as column vectors. We do not require knowledge of the functions fk. We

also note that there is always a monotone transformation that maps any univariate

random variable into a standard Gaussian (Rüschendorf and de Valk, 1993). Hence,

the assumption is that such transformed variables satisfy the VAR dynamics in (1).

We do not consider higher order VAR models, as these can always be recast into a

VAR of order one. Under stationarity assumptions, all the information of the model

can be obtained from the covariance matrix of the 2K-dimensional vector
(
Z ′t, Z

′
t−1

)′
,

which we denote by Σ. We can then partition Σ as

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
=

(
Γ AΓ

ΓA′ Γ

)
(2)

with obvious notation, once we note that A is as in (1) and Γ := EZtZ ′t. Clearly,

Σε := Γ− AΓA′ (recall Σε := Eεtε′t).
The above setup can be recast into a formal probabilistic framework using the

copula function to model Markov processes (Darsow et al., 1992). The copula tran-

sition density would be the ratio of two Gaussian copulae: one with scaling matrix
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Σ and one with scaling matrix Γ. Given that we shall not use this in the rest of

the paper, we omit the details. However, given this fact, for short, we refer to our

model as a Gaussian copula VAR. We note that when Xt has an invariant distribu-

tion with marginals that are continuous, the functions fk are necessarily equal to the

unconditional distribution of Xt,k, by Sklar's Theorem (Joe, 1997).

We consider a high dimensional framework, where K can go to in�nity with the

sample size. Formally, this would require us to consider a family of models (1) indexed

by the sample size n to allow for increasing dimension K (Han and Wu, 2019, for

more details). We do not make explicit this in the notation. Next, we summarise the

main properties of the model under the possibility that K →∞.

Proposition 1 De�ne Zt,k = fk (Xt,k) for some increasing monotonic transforma-

tion fk : R → R , k = 1, 2, ..., K, such that (Zt)t∈Z follows a Gaussian VAR as

described in (1). Furthermore, suppose that the singular values of A are in a com-

pact interval inside (0, 1) and the eigenvalues of Σε are in a compact interval inside

(0,∞), uniformly in K. Then, (Xt)t∈Z is a stationary Markov chain with strong

mixing coe�cients that decay exponentially fast, uniformly in K even for K →∞.

Recall that the singular values of a matrix A are the square root of the eigenvalues

of A′A. Hence, the condition means that A is full rank with eigenvalues inside the

unit circle. We note that for �xed K the model is not only strong mixing, but also

absolutely regular (beta mixing), with exponentially decaying coe�cients (Doukhan,

1995, Theorem 5, p.97). However, when K is allowed to increase, this is not the case

anymore (Han and Wu, 2019, Theorem 3.2). Nevertheless, allowing for increasing

dimension K, it is still strong mixing with exponentially decaying coe�cients.

3 Identi�cation

3.1 Preliminary Concepts

A graph G = (V , E) consists of a set of vertices V = {1, 2, ..., p}, where p is the

number of vertices, and edges E ⊆ V × V . The edges are a set of ordered pairs of

distinct vertices. The edges are directed if the order matters, (k, l) ∈ E but (l, k) /∈ E ,
otherwise it is undirected. Arrows are commonly used to de�ne the direction when

there is one. In our context, V is the set of indices of Wt =
(
X ′t, X

′
t−1

)′
, i.e. p = 2K,
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while E contains the direction in the causal relations if any. For example, we know

that we cannot have Xt,i → Xt−1,i while the other way around is possible if Xt−1,i

Granger causes Xt,i. In the language of graphs we say that Xt−1,i is a parent of Xt,i.

In this paper we focus on the causal relations of Xt conditioning on Xt−1. This is

di�erent from Granger causality. Given that the statistical relations of the elements

in Xt conditioning on Xt−1 are de�ned by εt, we focus on �nding the set of parents

of each εt,i. For example, εt,1 is a parent of εt,2 if εt,1 causes εt,2 and not the other

way around. We write εt,1 → εt,2. When the variables εt,k are jointly Gaussian, we

immediately see that conditional independence is not enough to identify the direction

of the relation (Moneta et al., 2013, Peters et al., 2014).

In the case when all causal relations are identi�ed with no cycles, the causal graph

is a directed acyclic graph (DAG): all edges are directed and there are no cycles. There

are no cycles if no descendant can be a parent of their ancestor. When the direction

cannot be identi�ed we shall content to obtain the undirected edges. The graph

with no directions is called the skeleton. When we use observational data, we work

with their distribution, possibly under model assumptions as in (1). We say that the

distribution of the data is faithful to the graph if the set of all (possibly conditional)

independence relations of the distribution of the data and the graph coincide. The

(possibly conditional) independence relations of the graph are de�ned as the set of

vertices for which there is no edge between them. Such relations only require to

identify the skeleton. Unfortunately, a given distribution of data can generate an

in�nite number of DAG's. In the case of a VAR this is equivalent to say that the

structural VAR cannot be identi�ed. This means that we cannot draw arrows for

all edges. A triangular system always allow us to draw edges, but this can be the

exception rather than the norm. Hence, we may need to content ourselves with the

complete partially directed acyclic graph (CPDAG), which is a graph where some

edges are undirected because they cannot be identi�ed.

The PC algorithm (Spirtes et al., 2000) is an algorithm that identi�es the skeleton

of the graph from conditional independence relations. It then uses some rules to

�nd the edges when identi�ed. The skeleton needs to be estimated when we use

observational data (Kalisch and Bühlmann, 2007). For high dimensional time series

data, we require special tools as devised in the present paper. Hence, a main goal is

to identify the skeleton of εt. The �rst step in this direction is to be able to estimate

Σε. The inverse of this matrix plays a special role as it allows us to identify all
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the partial regression coe�cients. In particular, the set of nonzero entries in row

i of the inverse of Σε identi�es the neighbours of εt,i. The set of all neighbours

de�nes the so called moral graph. This is larger than the skeleton as it includes

edges between two vertices even when these are unconditionally independent, but

conditionally dependent. Such situation arises when there is a so called immorality,

e.g. εt,1 and εt,3 are unconditionally independent and cause εt,2. Clearly, conditioning

on εt,2, the variables εt,1 and εt,3 are not independent anymore.

3.2 Identi�cation of the Gaussian Copula VAR

We conclude with two results that show the identi�cation strategy in our methodology.

We de�ne the precision matrix Θ = Σ−1. As we did for Σ in (2), we partition it with

same dimensions as in (2):

Θ =

(
Θ11 Θ12

Θ21 Θ22

)
. (3)

The parameters in (1) are identi�ed from the precision matrix (3). The following,

is a consequence of the classical result on graphical Gaussian models (Lauritzen, 1996,

eq. C3 and C4).

Lemma 1 Suppose that the conditions of Proposition 1 hold. Then, A = −Θ−1
11 Θ12

and Σε = Θ−1
11 .

When the DAG is identi�ed, we can identify the SVAR. To this end, we introduce

some notation. Let Π be a K×K matrix that can be transformed into the identity by

simple permutation of its rows. We call Π a permutation matrix as it permutes the

rows of the conformable matrix that it premultiplies. We have the following result

for identi�cation of the SVAR.

Lemma 2 Suppose that the conditions of Proposition 1 hold and that the causal graph

for εt in (1) is a DAG. Then, we can �nd a permutation matrix Π such that

ΠZt = DΠZt + (I −D) ΠAZt−1 + ξt (4)

where D is lower triangular with diagonal elements equal to zero, and ξt is a vector of

independent Gaussian random variables such that Eξtξ′t is a diagonal full rank matrix.

In particular, the innovation in (4) satis�es Πεt = Hξt where H := (I −D)−1 is a
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full rank lower triangular matrix with diagonal elements equal to one. Furthermore,

the process admits the in�nite moving average representation

Zt =
∞∑
i=0

Υiξt−i, where Υi = AiΠ−1H. (5)

The matrix Υi represents the impulse response of Zt to the shock1 ξt−i , i ≥ 0.

The permutation matrix Π can be recovered from the topological order of the con-

temporaneous causal DAG, where each row of Π identi�es an ancestor in its nonzero

entry, ordered by �birth�. For example, εt,3 → εt,1 → εt,2 says that εt,3 is the �rst

ancestor, εt,1 is the second ancestor and εt,2 is the third one. Clearly, εt,2 has no de-

scendant. Then, the permutation matrix is Π =

 0 0 1

1 0 0

0 1 0

, and is unique. When

an ancestor has more than one descendant, Π is not unique. The simplest example

is εt,1 → εt,2 and εt,1 → εt,3, so that the �rst variable has two descendants. It is not

di�cult to see that we have two possible permutation matrices Π because εt,1 is the

�rst ancestor while εt,2 and εt,3 are not ancestors of each other. Hence we can choose

to have either εt,2 or εt,3 in the second row of Π. One choice is Π = I, the identity

matrix, the second is Π =

 1 0 0

0 0 1

0 1 0

. In what follows, we shall always refer to

the Π matrix as the one that is obtained from the least number of row permutations

of the identity matrix. In this case Π is unique. Hence, estimation of the DAG is

equivalent to estimation of the permutation matrix Π.

Finally, we remark that a signi�cant instantaneous e�ect on the Impulse Response

Function (IRF) does not provide any information about the true contemporaneous

causal structure. This is because correlation does not imply causation. It is easy

to construct an example with a causal chain ε1 → ε2 → ε3 to show that a shock

on ξt,1 might instantaneously propagate to εt,3 even if there is no direct path in the

contemporary causal graph. Therefore, the restrictions derived by the causal structure

cannot be employed to estimate directly the matrix H from the covariance matrix

1We have to permute the vector ξt by Π, so that ξt and the shocked variables Zthave the same
ordering. For instance, if we want to observe the impact of the shock related to the �rst variable on
Zt we have to consider the vector Π · (1, 0, · · · , 0)′, since in the topological order described by Π the
�rst variable of Zt might be in another position.
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of εt. Imposing restrictions on H would correspond to a di�erent causal structure

with respect to the true one. First, the permutation matrix Π has to be estimated.

Then, we can estimate D and recover an estimator for the matrix H of instantaneous

e�ect, as de�ned in Lemma 2. Next, we introduce algorithms that will be shown to

be produce consistent estimators, under regularity conditions.

4 Estimation Algorithms

For any positive integer p, [p] := {1, 2, ..., p}. For any matrix Q of dimensions p × q
and sets A ⊆ [p] and B ⊆ [q], AA,B is the submatrix with rows in A and columns in

B. In AA,B, when A = [p] we write A·,B and similarly if B = [q]. When A = [p] \ {i}
for some i ∈ [p], we write A−i,B and similarly for B. When A is a vector, it is always

assumed that it is a column vector and we shall use the same notation, but with one

single subscript. This notation will be used throughout the paper with no further

mention.

The estimation methodology is based on a number of steps which extend the

methodology in Liu et al. (2012). First, we �nd an estimator of the matrix Σ in (2),

which is the Gaussian copula scaling matrix of the vector Wt =
(
X ′t, X

′
t−1

)′
. This is

achieved using Algorithm 1. Once, the estimator for Σ is available, we identify the

set of zero entries in the precision matrix, i.e., the inverse of Σ. This can be achieved

using Lasso, as described in Algorithm 2. This algorithm follows the approach of

Meinshausen and Bühlmann (2006) to �nd the zeros in the inverse of (2). However,

the algorithm also thresholds the resulting Lasso estimators in order to achieve sign

consistency. In this form, the algorithm is equivalent to Gelato (Zhou et al., 2011).

In Algorithm 2, (6) is solved by the x that satis�es the �rst order conditions in

a Lasso minimization problem. The constraint xi = 0 is needed to avoid running

the regression of the ith variable on all the other covariates and itself. We need the

estimator to be in this form for later use. A competing algorithm to �nd the zeros

of the precision matrix is the CLIME estimation algorithm with thresholding (Cai et

al., 2011). The procedure is described in Algorithm 3. The minimization problem in

Algorithm 3 can be solved for one column of Ω at the time, with Ω as de�ned there,

due to the use of the uniform norm. We shall show the validity of both algorithms

within the time series context of this paper.

Algorithm 4 allows us to estimate the parameters in (1). In particular, it uses the
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information on the zeros of the estimator for the precision matrix Θ to construct a

sparse estimator (Le and Zhong, 2021). Using Lemma 1, such sparse estimator of the

precision matrix is used to estimate the autoregressive matrix A and the covariance

matrix of the innovations εt in (1).

Finally, using Algorithm 5, we identify the PCDAG. Algorithm 5 makes reference

to the PC-algorithm. We do not report the details in Algorithm 5, as the number of

steps is relatively large and can be found in Spirtes et al. (2000) among many other

places. The aim of the PC-algorithm is to start with a dense graph with undirected

edges for all variables. It then aims at removing edges to obtain the skeleton of the

graph. Finally, it uses a set of rules to direct all possible edges based on deterministic

rules. It is not guaranteed that all edges can be directed, of course.

In order to delete edges, the PC algorithm uses the correlation coe�cients between

two variables, conditional on subsets of other variables. Note that the innovations

in the latent model (1) are Gaussian so that zero correlation implies independence.

As soon as we �nd a set of conditioning variables such that the two variables are

conditionally uncorrelated, we remove an edge between these two variables. Given

that the conditional correlations are unknown, Kalisch and Bühlmann (2007) suggest

to replace these with sample versions as in Algorithm 5. They de�ne a parameter

α, as in Algorithm 5, and show that for α → 0 at a certain speed we can obtain a

consistent estimator of the PCDAG, as if we knew the true conditional correlations.

For this reason, Algorithm 5 only gives details on the sample estimator leaving out

the deterministic steps, to avoid distracting details.

Identi�cation of the SVAR requires that all edges are directed. Assuming that

Algorithm 5 can direct all the edges, for each i ∈ [K], we obtain estimators V̂ (i) for

the set of parents of εt,i, using the notation in Algorithm 6. According to Lemma 2,

to �nd the matrix D, we need to �nd the regression coe�cients of the innovation εt,i

on εt,V̂(i), i ∈ [K]. Algorithm 6 �nds such regression coe�cients and collects them

into a K × K matrix ∆̂, i = 1, 2, ..., K. In particular, the ith row of ∆̂ has entries

V̂ (i) equal to the coe�cients found regressing εt,i on εt,V̂(i) and zeros elsewhere. By

the fact that the graph is a DAG, there is a permutation matrix Π̂ such that Π̂∆̂Π̂−1

is an estimator for D and is a lower triangular matrix with zeros along the diagonal.

The regression coe�cients are obtained relying on Σ̂ε := Θ̂−1
11 . This is because Θ̂11

is a sparse estimator with good asymptotic properties. Such properties are inherited

by Σ̂ε even though Σε is not sparse. The estimator Σ̂ε is not necessarily sparse.
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Algorithm 1 Copula Scaling Matrix Estimation.

De�ne Wt :=
(
X ′t, X

′
t−1

)′
, t ∈ [n].

For 1 ≤ i < j ≤ 2K:
Let ρ̂i,j be the sample Spearman's rho coe�cient between (Ws,i)s∈[n] and (Ws,j)s∈[n]

(i.e. the sample correlation of their ranks).
De�ne the 2K× 2K matrix estimator Σ̂ for (2) with i, j entry Σ̂i,j = 2 sin

(
π
6
ρ̂i,j
)
and

set Σ̂j,i = Σ̂i,j.

Ensure that the entries in Σ̂ corresponding to Σ11 and Σ22 in (2) are the same by
taking averages of the two estimators if needed.

Algorithm 2 High Dimensional Causal Estimation with Lasso. Use Lasso (Mein-
shausen and Bühlmann, 2006) to �nd the moral graph of Wt.

Set τ > λ > 0.
Run Algorithm 1 to obtain Σ̂.
For i ∈ [K]:
Denote by β̂(i) ∈ R2K the solution to

Σ̂·,i − Σ̂x = λsign (x) , s.t. xi = 0, x ∈ RK (6)

Rede�ne β̂
(i)
j as β̂

(i)
j 1{∣∣∣β̂(i)

j

∣∣∣≥τ}.
Let j be a neighbour of i if β̂

(i)
j 6= 0.

For each i ∈ [K]:

Set Ω̂(i) equal to β̂(i), but let Ω̂
(i)
i = 1, where Ω̂

(i)
i is the ith entry.

Moreover, regression coe�cients are found directly from Σ̂ε with no need to estimate

the innovations.

The tuning parameters for Algorithms 2 and 3 are chosen using crossvalidation

(Section A.2 in the Electronic Supplement, for details).

In the Electronic Supplement, we also use simulations to investigate the �nite

sample properties of the estimators in our algorithms (see Section A.3 in the Elec-

tronic Supplement). There, we also evaluate the performance of the PC algorithm

when we use the zeros in Θ̂11 to remove edges from the skeleton with the purpose of

skipping some time consuming steps in the PC Algorithm. This considerably reduces

the compute time in the high dimensional case. However, when imposing such a priori

restrictions, we need to be careful not to increase the possibility of not including an

edge that should instead be included (a false negative). The PC algorithm can only

delete edges and not add them back. This means that we should undersmooth by
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Algorithm 3 High Dimensional Causal Estimation with CLIME. Use CLIME (Cai
et al., 2011) to �nd the moral graph of Wt.

Set τ > λ > 0.
Run Algorithm 1 to obtain Σ̂.

Let Ω̂ ∈ R2K×2K be the solution to min |Ω|1,1 s.t.
∣∣∣Σ̂Ω− I

∣∣∣
∞
≤ λ.

Rede�ne Ω̂i,j as Ω̂i,j1{|Ω̂i,j|≥τ} and denote by Ω̂(i) the ith column of the rede�ned Ω̂.

Algorithm 4 Estimation of the Parameters in (1).

Run either Algorithm 2 or 3 to �nd Σ̂ and Ω̂(i), i = 1, 2, ..., 2K.
Let Ω̃(i) be the subvector obtained by deleting the zero elements in Ω̂(i) and denote
by ŝi its size.
Denote by B̂i the 2K × ŝi matrix such that Ω̂(i) = B̂iΩ̃

(i)

De�ne Θ̂(i) = B̂i

(
B̂′iΣ̂B̂i

)−1

B̂′iei where ei is the 2K × 1 vector with ith entry equal

to one and zero otherwise.

Let Θ̂ = 1
2

[(
Θ̂(1), Θ̂(2), ..., Θ̂(2K)

)
+
(

Θ̂(1), Θ̂(2), ..., Θ̂(2K)
)′]

.

Denote by Θ̂11 the entries (k, l) in Θ̂, k, l = 1, 2, ..., K.
Denote by Θ̂12 the entries (k, l) of Θ̂ with k = 1, 2, ..., K, and l = K+1, K+2, ..., 2K.
De�ne Â = −Θ̂−1

11 Θ̂12 as an estimator for A in (2).
De�ne Σ̂ε = Θ̂−1

11 as an estimator for Σε := Eεtε′t.

Algorithm 5 Estimation of the PCDAG.

Run Algorithm 4 to �nd Σ̂ε.
Use Σ̂ε to �nd the estimator of the correlation coe�cient of εt,i and εt,j conditioning
on {εt,l : l ∈ k} where k ⊂ [K] is a set that excludes i, j. Denote such correlation

coe�cient by Ξ̂i,j|k.
Use the PC-algorithm (Spirtes et al., 2000) and delete a node between (i, j) if√
n− |k| − 3 × g

(
Ξ̂i,j|k

)
≤ Φ−1

(
1− α

2

)
where g (x) = 2−1 ln

(
1+x
1−x

)
(x ∈ (−1, 1))

and α ∈ (0, 1).
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Algorithm 6 Estimation of the impulse response.
Run Algorithm 5 and suppose that the PC algorithms identi�es the DAG in the sense
that it produces and estimator Ê ⊆ V ×V for the true edges E , such that all elements
in Ê are directed.
For i ∈ [K]:
Find all j ∈ V such that (j, i) ∈ Ê so that conditioning on the Zt−1, the j covariate
is a parent of the i one (i.e. εt,j → εt,i). Denote such set by V̂ (i).

Find d̂i = Σ̂−1

ε,V̂(i),V̂(i)
Σ̂ε,V̂(i),i.

Let ∆̂ be the matrix such that ∆̂i,V̂(i) = d̂′i and zero otherwise.

Find the matrix Π̂ obtained from the least number of row permutations of the identity
matrix and such that D̂ := Π̂∆̂Π̂−1 is lower diagonal with diagonal elements equal to
zero.

choosing tuning parameters that are smaller than the ones obtained by crossvalida-

tion. This produces a Θ̂11 with less zeros. However, it has the negative consequence

of increasing the estimation error of Σ̂ε := Θ̂−1
11 . In conclusion, as far as sample

properties of the estimator are concerned, we found that imposing such restrictions

does not improve the performance of the estimator of the PC algorithm, but for some

special causal structures.

The simulation analysis show that our approach produces more reliable results

than methods that do not account for either sparsity or time series dependence,

i.e. setting λ = 0 in Algorithms 2 and 3 or assuming A = 0 in (1). Even when the

persistence of the time series is reduced, our methodology produces the best results for

estimation of the causal structure and the VAR parameters (for details, see Tables 2-7

in Section A.3 in the Electronic Supplement). Although our approach is designed for

a high dimensional setting, it provides competitive results even in the low dimensional

case.

5 Asymptotic Analysis of the Algorithms

The consistency of the algorithms relies on a set of conditions. Before introducing

our conditions, we introduce some additional notation.
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5.1 Additional Notation

For any vector, the `p norm is denoted by |·|p, p ∈ [0,∞]. For any I × J dimensional

matrix A, |A|p,q =

(∑J
j=1

(∑I
i=1 |Ai,j|

p
)q/p)1/q

is the elementwise norm. When

q = ∞ we de�ne |A|p,∞ = maxj≤J

(∑I
i=1 |Ai,j|

p
)1/p

. When both p = q = ∞ we

simply write |A|∞ = maxi≤I,j≤J |Ai,j|, and this should not cause confusion with the

`∞ norm. For p = 0, |A|0,∞ = maxj≤J
∑I

i=1 1{|Ai,j |>0}. When p = q = 0, this is

just the total number of non-zero elements in A. Finally, |·|op is used to de�ne the

following operator norm: |A|op = maxx:x′x≤1 |Ax|2. Then, |A|op is the largest singular

value of A. For ease of reference, we call this norm the operator's norm.

Let U (ω, s) =
{

Ω ∈ R2K×2K : Ω � 0, |Ω|1,∞ ≤ ω, |Ω|0,∞ ≤ s
}
. The symbol Ω � 0

is used to mean that Ω is a symmetric strictly positive de�nite matrix. Then, U (ω, s)

is the set of symmetric strictly positive de�nite matrices whose absolute sum of column

entries is at most ω, and with maximum number of non-zero entries in each row equals

s.

We shorten left and right and side with l.h.s. and r.h.s., respectively. Finally, .

is used when the l.h.s. is bounded above by a constant times the r.h.s.; & is bounded

below by a constant times the r.h.s.; � is used when the l.h.s. is bounded below

and above by constants times the r.h.s.. Finally, to avoid notational trivialities, we

assume that K ≥ 2.

5.2 Regularity Conditions

Assumption 1 (Model) There are monotone functions fk such that Zt,k = fk (Xt,k)

is a standard Gaussian random variable such that (1) holds.

Assumption 2 (Dimension) The state space is a subset of RK, where K = O (nηK )

for some ηK <∞.

Assumption 3 (Precision matrix sparsity) The precision matrix Θ = Σ−1 is an

element of U (ω, s) for s = O (nηs) for some ηs < 1/2.

Assumption 4 (Identi�ability) θmin & n−ηθ , ηθ < 1/2, where θmin is the smallest

absolute value of the nonzero elements in Θ.
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Assumption 5 (Eigenvalues) The singular values of A are in a compact interval in-

side (0, 1) and the eigenvalues of Σε are in a compact interval inside (0,∞), uniformly

in K.

Strictly speaking, if K →∞ as n→∞, we should index both the process X and

its law by n and think in terms of a sequence of processes. We refrain to do so for

notational simplicity. No part in the proofs makes implicitly use of assumptions that

contradicts this.

5.3 Remarks on the Regularity Conditions

Condition 1. The modelling assumption includes a Gaussian linear vector autore-

gressive model as special case. However, it is clearly more general than that. Once,

we assume that the data satisfy a VAR model after a monotone transformation, we

do not need to impose any moment condition on the original data. Hence the pro-

cedure is robust to fat tails. As discussed in Section 2, we can view this assumption

as a Gaussian copula assumption for the cross-sectional and time series dependence.

Condition 1 can be viewed as a generalization of the framework of Liu et al. (2012)

in the time series direction and has been recently exploited by Fan et al. (2022) to

test for Granger causality in high dimensional models.

Condition 3. The precision matrix is supposed to have maximum absolute sum of

each column bounded by a constant ω. Our bounds make explicit the dependence on

ω so that we can have ω →∞ if needed. This constant is only used in Algorithms 2

and 3. The total number of non zero elements in each row is supposed to be bounded

by a constant s. This is allowed to grow to in�nity with the sample size at a certain

rate. This assumption is di�erent from Fan et al. (2022) who assumes that the

autoregressive matrix A in (1) is sparse. This is not the case here. By Lemma 1,

sparsity of Θ does not imply sparsity of either A or Σε.

Condition 4. This condition is only used to ensure that we can identify the zero

entries in Θ. It is necessary in order to ensure the validity of post selection asymptotic,

though the rate can be arbitrarily slow when θmin → 0 (Leeb and Pötscher, 2005,

p.29�).

17



Condition 5. The eigenvalues condition means that the variables are linearly in-

dependent in the population. This could be weakened, but at the cost of technical

complexity. This condition also implies the following.

Lemma 3 Under Condition 5 the following statements hold uniformly in K:

1. The eigenvalues of Γ = V ar (Zt) are bounded away from zero and in�nity;

2. There are constants σmin, σmax ∈ (0,∞) such that the eigenvalues of Σ in (2)

are in the interval [σmin, σmax];

3. There is a ν > 0 such that |Θi,i| ≥ ν2;

4. The partial correlations of εt,i and εt,j conditioning on any other subset of re-

maining innovations is bounded above by a constant σ̄ < 1.

5.4 Uniform Convergence of the Scaling Matrix Estimator

The uniform consistency of the covariance estimator from Algorithm 1 is well known

(Liu et al., 2012). It is still consistent for dependent data.

Theorem 1 Under the Regularity Conditions,
∣∣∣Σ̂− Σ

∣∣∣
∞

= OP

(√
lnK
n

)
.

Fan et al. (2022) show a similar result using Kendall's tau instead of Spearman's

rho with a di�erent method of proof.

5.5 Estimation of the Undirected Graph

5.5.1 Consistency for Algorithm 2

The reader is referred to the Regularity Conditions and Algorithm 2 for the notation.

Let β(i) be the population regression coe�cient including a zero in the ith entry, i.e.

the solution to Σ·,ix− Σ = 0 s.t. xi = 0.

Theorem 2 Suppose that the Regularity Conditions hold. There is a �nite constant

c large enough such that in Algorithm 2, choosing λ = λn = cω
√

lnK
n
, with ω is as in

Condition 3 we have that maxi∈[K]

∣∣∣β̂(i) − β(i)
∣∣∣
1

= OP

(
ωs
√

lnK
n

)
.
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One could choose c → ∞ slowly enough, in which case the bound would be

OP

(
c× ωs

√
lnK
n

)
instead of OP

(
ωs
√

lnK
n

)
. The proof of this result shows that we

could have stated the results as �nite sample one with high probability. However,

such statement would still depend on an unknown constant. Hence, for simplicity, we

have chosen not to do so.

Using appropriate thresholding, with threshold constant greater than the noise

level, but smaller than θmin, the absolute value of the smallest nonzero entry in Θ,

leads to set identi�cation. In what follows sign (x) is the sign of the real variable x

with sign (0) = 0.

Theorem 3 Suppose that the Regularity Conditions hold. In Algorithm 2, set τ =

τn = o (θmin) such that λ = λn = o (τn) with λ as in Theorem 2. If ωs
√
n−1 lnK → 0,

then,

Pr
(

sign
(
β̂

(i)
j

)
6= sign

(
β

(i)
j

)
for at least one i ∈ [K] , j ∈ [2K]

)
→ 0.

5.5.2 Consistency Results for Algorithm 3

The reader is referred to the Regularity Conditions and Algorithm 3 for the notation.

Theorem 4 Suppose that the Regularity Conditions hold. There is a �nite constant c

large enough such that in Algorithm 3, λ = λn = cω
√

lnK
n
, where ω is as in Condition

3, implies that
∣∣∣Ω̂−Θ

∣∣∣
∞

= OP

(
ω2
√

lnK
n

)
.

The same remark we made about c in Theorem 2 applies here. Also here, we could

have stated the result as a �nite sample one with high probability.

Using the appropriate level of thresholding, Theorem 4 implies the following.

Theorem 5 Suppose that the Regularity Conditions hold. In Algorithm 3, set τ =

τn = o (θmin) and λ = λn = o (τn/ω) with λ as in Theorem 4. If ω2
√
n−1 lnK → 0,

then,

Pr
(

sign
(

Ω̂i,j

)
6= sign (Θi,j) for some i, j ∈ [2K]

)
→ 0.

5.6 Estimation of the Process Parameters and Causal Graph

In what follows, we suppose that the conditions of either Theorem 3 or Theorem 5

hold, depending on which algorithm is used. For short we generically refer to these
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as the Regularity Conditions (λ, τ) as they also involve restrictions on the choice of

penalty λ and threshold τ .

5.6.1 Consistency of Precision Matrix Estimation

The estimator for the precision matrix is elementwise uniformly consistent under

sparseness conditions.

Theorem 6 Suppose that the Regularity Conditions (λ, τ) hold. Then, the estimator

Θ̂ from Algorithm 4 satis�es
∣∣∣Θ̂−Θ

∣∣∣
∞

= OP

(√
lnK
n

)
.

While the quantity s = |Θ|0,∞ does not enter the bound, a constraint on its growth

rate, as prescribed by Condition 3, is required for Theorem 6 to hold.

5.6.2 Consistency of the Estimators for the Autoregressive Matrix and

Innovation Covariance Matrix

Recall that by Lemma 1, using the notation in (1) and (3), A = −Θ−1
11 Θ12 and

Σε = Θ−1
11 . Hence, we need consistency of Θ12 and the inverse of Θ11, which is the

case under sparseness. Recall that s = |Θ|0,∞ as in Condition 3. We have the following

bounds in terms of the operator's norm.

Theorem 7 Suppose that the Regularity Conditions (λ, τ) hold. Then,
∣∣∣Σ̂ε − Σε

∣∣∣
op

=

OP

(
s
√

lnK
n

)
and

∣∣∣Â− A∣∣∣
op

= OP

(
s
√

lnK
n

)
.

5.6.3 PC-Algorithm

Let Ĝ be the estimated PCDAG from Algorithm 4 and G the true PCDAG. The next

result requires faithfulness of the distribution of the data to the graph, as de�ned

in Section 3.1. In what follows, Φ (·) is the cumulative distribution function of a

standard normal random variable.

Theorem 8 Suppose that the Regularity Conditions (λ, τ) hold and that the joint dis-

tribution of the innovations εt in (1) is faithful to the DAG for all K. Run the PC al-

gorithm as referenced in Algorithm 5 with α = αn such that αn = 2
(
1− Φ

(
n1/2cn/2

))
for cn � n−ηc where 2ηc+3ηs < 1 with ηs as in Condition 3. Then, Pr

(
Ĝ 6= G

)
. n−p

for any constant p <∞.
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Theorem 8 says that the estimator for the PCDAG converges to the true one at

an arbitrarily fast polynomial rate. This is worse that the exponential rate obtained

by Kalisch and Bühlmann (2007) for causal discovery using independent identically

distributed data.

5.6.4 Consistency of Impulse Response Function

We show that D̂ from Algorithm 6 is consistent for D, with D as in Lemma 2. When

the PC-Algorithms in Algorithm 5 produces edges that are all directed, we interpret

D to be the one corresponding to the permutation matrix Π that is obtained by the

least number of row permutations of the identity. Then, D is unique.

In the following, we state the consistency of D̂ for D, and the consistency of an

estimator Ĥ for H, in (5), with convergence rates. We shall denote by κ the maximum

number of direct descendants among all parents. It is not di�cult to show that this

is the same as the maximum number of nonzero elements among the columns of D.

Such number is bounded above by s, which corresponds to the maximum number of

adjacent variables across all the nodes.

Theorem 9 Suppose that the Regularity Conditions (λ, τ) hold, that the joint dis-

tribution of the innovations εt in (1) is faithful to the DAG for all K, and that all

the estimated edges resulting from Algorithm 5 are directed. Then, using Algorithm 6,∣∣∣D̂ −D∣∣∣
op

= OP

(
s
√

κ lnK
n

)
, where D is as in (4) with Π obtained by the least number

of row permutations of the identity. Moreover, we also have that Ĥ =
(
I − D̂

)−1

satis�es
∣∣∣Ĥ −H∣∣∣

op
= OP

(
s
√

κ lnK
n

)
.

6 Empirical Application

We apply our methodology to study the causal relations between aggregated order

book and trades variables in high frequency electronic trading. We aggregate the

information to one minute in order to �lter out noise and be able to extract one-

minute causal relations. This is di�erent from the analysis of order book tick data

which has been studied extensively in the literature (Cont et al., 2014, Kercheval

and Zhang, 2015, Sancetta, 2018, Mucciante and Sancetta, 2022a, 2022b). It is well

known that market participants look at the order book to extract market information
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(MacKenzie, 2017). We want to extract average causal relations. For example, such

relations are useful to decide how to place trading orders and understand how on

average these a�ect the order book and prices.

We shall estimate a model with 5 stocks to investigate the direction of information

dissemination within each stock, via the order book and trades, as well intra stocks.

This requires the estimation of a large dimensional model. Our results will also show

how the methodology of this paper allows us to disentangle contemporaneous causal

e�ects from time series e�ects.

6.1 The Data

We consider four stocks constituents of the S&P500 traded on the NYSE: Amazon

(AMZN), Cisco (CSCO), Disney (DIS) and Coca Cola (KO). We also consider the

ETF on the S&P500 (SPY). The stock tickers are given inside the parenthesis. The

sample period is from 01/March/2019 to 30/April/2019, from 9:30am until 4:30pm

on every trading day. The data were collected from the LOBSTER data provider2

(Huang and Polak, 2011). This is a Level 3 dataset, meaning that it contains all limit

orders and cancellations for the �rst 10 levels of the order book as well as trades, all

in a sequential order.

6.2 The Covariates

We construct a set of covariates related to the ones that are commonly found in the

studies of high frequency order book and trades. However, we use aggregated data

to one minute equally spaced frequency. We do so to reduce noise and to be able to

estimate an average propensity of each covariate to cause the other. In particular the

covariates are the book imbalance up to ten levels, a geometric average return, and the

trade imbalance, often termed order �ow imbalance. The covariates are listed in Table

1, where their de�nition can be found. In Table 1, Mid = (AskPrice1 + BidPrice1) /2

and LagMid is the Mid from the previous minute bucket, where AskPricei is the

ask price at level i and similarly for BidPricei. The operator avg (·) takes the data

from the same one minute bucket and computes the average value. In case of much

market activity, the exchange will use the same timestamp for a number of messages

at di�erent levels. In the case of the orderbook, we use the last book snapshot of

2https://lobsterdata.com/.
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Table 1: List of Covariates. The covariates are listed together with their de�nition.

Name Short Name De�nition

Book imbalance BookImbi
avg(BidSizei−AskSizei)
avg(BidSizei+AskSizei)

at level i ∈ [10]

Return Ret 100× [avg (ln (Mid))− avg (ln (LagMid))]

Trade Imbalance TradeImb avg(SignedTrdSize)
avg(TrdSize)

the many with the same time stamp. We do not apply this logic to trades. These

covariates are directional ones. For this reason, we have omitted other interesting

ones, such as the spread. Moreover, the instruments we use are all very liquid and

the spread does not change much in this case.

For ease of reference, in what follows, we shall use the convention of merging the

ticker and covariate short name.

6.3 Estimation

We estimate the causal graph using our proposed methodology. We used both Lasso

(Algorithm 2) and CLIME (Algorithm 3) for the estimation of the sparse precision

matrix. For these algorithms, the penalization parameter λ and the threshold param-

eter τ were selected using cross-validation (see Section A.2 in the Electronic Supple-

ment for details). We then applied Algorithms 4, 5, and 6 to estimate the Gaussian

copula VAR parameters, recover the contemporaneous causal structure and identify

the matrix of contemporaneous relations D for estimation of the IRFs. The code to

implement the PC-algorithm using the sample correlations and parameter α is avail-

able as part of the R-package pcalg https://cran.r-project.org/web/packages/

pcalg/pcalg.pdf. The PC algorithm was initialized with the restrictions provided

by Lasso and CLIME to speed up computations and obtain a more restricted graph.

We found that all the edges of the causal graph were directed.

It is well known that subset selection procedures are inherently unstable (Mein-

shausen and Bühlmann, 2010). For this reason, we resample the data 100 times and

carry out the above estimation procedure (Algorithms 1, 2 or 3, 4 and 5) for each
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sample. To ensure that we do not alter the time series structure of the data, the

resampling was performed to select the days. The total number of days in our sample

is 42. Then, to obtain the causal structure G from the PC, we keep the edges se-

lected at least 75% of the times within the 100 resamples. The above procedure can

produce cycles so that the graph is no longer a DAG. In this case, we would discard

the less frequently observed edge for each cycle, in order to obtain a DAG. However,

we remark that cycles were not observed.

Given that our estimated causal graph had no undirected edges, we recovered the

matrix of contemporaneous e�ects D from Algorithm 6 and then the (mixing) matrix

H = (I −D)−1 necessary for recovering the IRFs (see Section 3.2).

To account for uncertainty in the estimation of IRFs we performed 500 bootstrap

sampling conditioning on the moral graph and skeleton obtained from the original

sample. This means that we only ran Algorithms 1, 4 and 6 on each sample, using

the matrices B̂i and the sets V̂ (i) estimated on the original sample. Using the 500

samples, we computed the median and the related 95% con�dence interval.

6.4 Summary of Results

The results for Lasso and CLIME were very similar. In the interest of space, we

report and discuss only the results when Lasso (Algorithm 2) is used as intermediate

step, with no further mention. Our results show that the causal structure of the

order book of each instrument exhibits a dense network structure. The �rst level of

order book imbalance is a source node for each instrument. This means that it is

not contemporaneously caused by any other variable. In general we observe how the

causal structure goes from top levels to deeper ones. Usually, the return is a�ected

directly by the deeper levels of the order book imbalance. For all but one instrument

(KO), the return is a parent of the trade imbalance variable that happens to be a sink

node variable. A sink node variable is a variable that is no parent of other variables.

We also observe crosscausal e�ects across instruments, where in particular we observe

how the SPY return is a�ected by the other returns. The details can be found in

Figure 1 that shows the DAG of contemporaneous causal relations obtained from our

estimation procedure.

The results from the IRF convey a complementary picture to the DAG, as the

two are distinct. However, identi�cation of the SVAR requires identi�cation of a
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CSCOBookImb1

CSCOBookImb2CSCORet

SPYRet

Figure 2: Subgraph of Estimated DAG. The subgraph only considers the contempo-
raneous causal relations between CSCOBookImb1, CSCOBookImb2, CSCORet and
SPYRet.

permutation matrix Π (Lemma 2). Such matrix is identi�ed from the DAG. By

looking only at the IRFs, one could conclude that a variable contemporaneously a�ects

another. This is because the IRF does not show how the information propagates from

one variable to the other at the contemporaneous level. For this reason, we need the

causal graph. This point is made vivid by some of our results.

For the sake of de�niteness we consider the subgraph composed by CSCOBookImb1,

CSCOBookImb2, CSCORet and SPYRet as shown in Figure 2. The related IRF's are

plotted in Figure 3. From the latter, we observe that a shock on either CSCOBookImb1

and CSCOBookImb2 produces an instantaneous e�ect on both CSCORet and SPYRet.

Therefore, by looking only at the IRFs, we can conclude that CSCOBookImb1 and

CSCOBookImb2 are directly a�ecting CSCORet and SPYRet. However, this is not

the case (see Figure 2). There, we can see that CSCOBookImb1 and SPYRet are

independent when we condition on CSCOBookImb2 and CSCORet. This means that

CSCOBookImb1 is confounding CSCOBookImb2 and SPYRet. The information de-

rived from the causal graph makes explicit the di�erence between the instantaneous

e�ects exhibited in Panel (a) of Figure 3. Any shock to CSCOBookImb1 will �rst

a�ect the CSCOBookImb2 and CSCORet. Hence, SPYRet is only a�ected through

the latter covariates.
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From Panel (b) of Figure 3 we observe that, despite the contemporaneous causal

relations, SPYRet a�ects CSCORet with a lagged impact. This e�ect is also observed

for the other instruments: changes in SPYRet a�ect other variables through its lags.

In summary, a thorough analysis of relations between these variables does require

to look both at the contemporaneous causal e�ects via a DAG and the IRF's. The

former helps us identify causal e�ects within simultaneously occurring events. The

latter sheds light on the time series propagation of such e�ects.

7 Conclusion

This paper has introduced a novel approach for the estimation of causal relations in

time series. It essentially uses a Gaussian copula VAR model. Such causal relations

di�er from Granger causality. Our methodology, allows us to identify causal relations

in high dimensional models. Using a sparsity condition we are able to consistently

estimate the model parameters. Our sparsity condition does not imply sparsity of

the autoregressive matrix and of the covariance matrix of the innovations implied by

the Gaussian copula VAR model. Our sparsity conditions can be viewed as weak

assumptions on conditional independence. We are then able to identify the related

directed acyclic graph of causal relations, using observational data, as if we knew the

true distribution of the data.

Asymptotic results and �nite sample investigation con�rm the viability of our

methodology and its practical usefulness for high dimensional problems. A �nite

sample analysis, carried out using simulation (Section A.3 in the Electronic Sup-

plement), con�rms the asymptotic results of the paper. Moreover, the simulations

show that not accounting for time series dependence leads to wrong causal inference.

Failing to exploit sparsity leads to suboptimal results, even in low dimensions.

We applied our methodology to the analysis of the conditional contemporaneous

causal relations of order book data in high frequency �nancial data. To the best of

our knowledge this has not been done before and has important implications for un-

derstanding the aetiology of electronic trading. The shape of the order book appears

to be a main causal factor for price changes. The shape of the order book of SPY

does not necessarily cause contemporaneous price changes in some of its constituents.

Nevertheless, the analysis of the estimated impulse response functions shows that the

order book of SPY can have a lagging e�ect on the price changes of other instruments.
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Figure 3: IRF's for a Subset of the Covariates. Panel (a) shows the median IRF's
(solid line) with its 95% con�dence interval (dotted lines) for CSCORet, SPYRet as
a result of a unitary shock on CSCOBookImb1, CSCOBookImb2. Panel (b) show the
same information for CSCORet and SPYRet on each other. The time 1 on the x-axis
corresponds to the instantaneous e�ect of the shock, i.e., it is related to time t = 0.
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Hence, the approach put forward in this paper allows us to disentangle contempo-

raneous causality from time series e�ects. Causal inference and IRF's analysis show

in a complementary way the nature of how the information propagates among the

variables of a dynamical system accounting for both contemporaneous and time series

e�ects.
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Supplementary Material to �Consistent Causal Infer-

ence for High Dimensional Time Series� by F. Cordoni

and A. Sancetta

A.1 Proofs

Throughout, we use c0, c1, c2, ... to denote constants.

We also recall a property of symmetric strictly positive de�nite partitioned ma-

trices. Let Σ =

(
A11 A12

A′12 A22

)
where Ai,j i, j ∈ {1, 2} is a partition of Σ. Then,

Σ−1 = Θ =

(
B11 B12

B′12 B22

)
where

B11 =
(
A11 −A12A

−1
22 A21

)−1
, B12 = −B11A12A

−1
22 , B22 =

(
A22 −A21A

−1
11 A12

)−1
(A.1)

(e.g. Lauritzen, 1996, eq. B.2).

The conclusions from Lemma 3 will be used in a number of places. Hence, we

prove this �rst.

A.1.1 Proof of Lemma 3

We prove one point at the time.

Proof of Point 1. From the condition onA, we have that V ar (Xt) =
∑∞

i=0A
iΣε (A′)i.

We note that

∞∑
i=0

eigmin

(
AiΣε (A′)

i
)
≤ eigj

(
∞∑
i=0

AiΣε (A′)
i

)
≤

∞∑
i=0

eigmax

(
AiΣε (A′)

i
)

j = 1, 2, ..., K, where eigj (·), eigmin (·) and eigmax (·) are the jth eigenvalue, the mini-

mum and the maximum eigenvalue of the argument (Bhatia, 1996, eq. III.13, using

induction). Moreover, we have that

eigmin (Σε) eigmin

(
Ai (A′)

i
)
≤ eigmin

(
AiΣε (A′)

i
)

1



and

eigmax

(
AiΣε (A′)

i
)
≤ eigmax

(
Ai (A′)

i
)

eigmax (Σε) .

To see this note that

max
x:x′x=1

x′AΣεA
′x ≤ max

y:y′y=x′A′Ax
y′Σεy = eigmax (A′A) eigmax (Σε)

and similarly for the lower bound and for i > 1. Given that the eigenvalues eigj (A′A)

are in (0, 1) and the eigenvalues eigj (Σε) are in (0,∞) by assumption, we conclude

that the eigenvalues of V ar (Xt) are bounded away from zero and in�nity, uniformly

in K.

Proof of Point 2. From the de�nition in (2), we have the following equality,

Σ =

[(
I 0

0 I

)
+

(
0 A

A′ 0

)](
Γ 0

0 Γ

)
,

where, here, 0 represents a K ×K matrix of zeros. From the assumption on A and

the fact that Γ = V ar (Xt), we can use the de�nition of eigenvalues and, mutatis

mutandis, the previous inequalities, from the proof of Point 1, to deduce the result.

Proof of Point 3. From (A.1) and the de�nition of Σ as variance of
(
Z ′t, Z

′
t−1

)′
, we

deduce that the (i, i) element in Θ11 is the inverse of the variance of Zt,i conditioning

on Zt−1,i, all the other variables and their �rst lag. Given that the eigenvalues of Σ

are bounded away from zero, uniformly in K, the random variables are not perfectly

correlated. Hence there must be a constant ν > 0 as in the statement of the lemma.

Proof of Point 4. The eigenvalues of Σε are in some compact interval inside (0,∞),

uniformly in K, by assumption. Hence, the innovation vector has entries that are not

perfectly dependent. This means that no conditional correlation between any two

variables can be equal to one, uniformly in K.

A.1.2 Proof of Proposition 1

It is clear that the process X is a stationary Markov chain. The mixing coe�cients

are invariant of monotone transformations of the random variables. Hence, we can

2



consider the mixing coe�cients of Z in (1). For the Gaussian VAR model in (1),

Theorem 3.1 in Han and Wu (2019) says that the strong mixing coe�cient α (k) for

variables k periods apart satis�es α (k) ≤ c |A|kop where c is the square root of the ratio

between the largest and smallest eigenvalue of V ar (Zt). This ratio is bounded by

Lemma 3. On the other hand, |A|op is the largest singular value of A, which is smaller

than one, uniformly in K, by assumption. Hence, the strong mixing coe�cients decay

exponentially fast.

A.1.3 Proof of Lemmas 1 and 2

The conditions in Proposition 1 ensure that the model is stationary. We use this with

no explicit mention in the following.

A.1.3.1 Proof of Lemma 1

This follows from (2) and Lauritzen (1996, eq. C3-C4) or from (A.1).

A.1.3.2 Proof of Lemma 2

By the assumption of the lemma, all edges of the graph of εt are directed. There are

also no cycles. Hence, there must be a permutation matrix Π of the elements in εt

such that the i element in Πεt is not a parent of the i− 1 element. This implies the

structure Πεt = Hξt where H is a lower triangular matrix with diagonal entries equal

to one. Note that H can have diagonal elements equal to one because we are not

assuming that Eξtξ′t is the identity. The fact that the graph is acyclic means that H

is full rank. Otherwise, we would have a descendant that is an ancestor of itself. Now

note that the inverse of a lower triangular matrix is also lower triangular. Moreover, if

the matrix has diagonal elements equal to one, also the inverse has diagonal elements

equal to one. Hence, we can write H−1 = I − D where D is as in the statement of

the lemma and obtain (4). To �nd the in�nite moving average representation, rewrite

(4) as H−1Π (I − AL)Zt = ξt where, here, L is the lag operator. By assumption,

(I − AL) can be inverted and has an in�nite convergent series representation. Hence,

we deduce (5) by standard algebra and the aforementioned remarks on H.
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A.1.4 Exponential Inequality for Spearman's Rho

Given that Spearman's rho is invariant of monotonically increasing transformations,

within our framework, we may consider variables that have been transformed into

Gaussian. The following, which is a special case of Theorem 1.5 in Piterbarg (1995),

will be useful to bound functions of Gaussian random vectors.

Lemma 4 Suppose that X and Y are p×1 mean zero Gaussian random vectors with

covariance matrices ΣX and ΣY , respectively. Suppose that the eigenvalues of such

matrices are in some compact interval inside (0,∞). Let h be a bounded function on

Rp. Then, there is a �nite constant c such that

|Eh (X)− Eh (Y )| ≤ c
∑
i,j

|ΣX,i,j − ΣY,i,j| .

With the help of Lemma 4, we bound the bias that arises from using dependent

data in the calculation of a U-statistic closely related to Spearman's rho.

Lemma 5 Let Z := (Zt)t∈Z be a sequence of 2× 1 dimensional stationary Gaussian

random variables with mean zero and variance one. Suppose that its 2 × 2 autoco-

variance function (ACF) is full rank for any lag value, and has elements that are

absolutely summable w.r.t. the lag value. Let Z̃ :=
(
Z̃t

)
t∈Z

be a sequence of i.i.d.

random variables such that Z̃1 has same distribution as Z1. For any sequence of 2×1

dimensional stationary random variables (Xt)t∈Z de�ne

ρ3 (X1, X2, ..., Xn) :=
3

n (n− 1) (n− 2)

∑
t1 6=t2 6=t3

sign (Xt1,1 −Xt2,1) sign (Xt1,2 −Xt3,2) .

Then, there is a �nite constant cZ such that∣∣∣Eρ3 (Z1, Z2, ..., Zn)− Eρ3

(
Z̃1, Z̃2, ..., Z̃n

)∣∣∣ ≤ cZ/n.

Proof. We shall �rst bound the expectation of the summand under two di�erent
expectations. With some abuse of notation, let Γ (k) be the 2 × 2 ACF of Z at
lag k. (In the text we have been using Γ to denote V ar (Zt), which here we shall

denote by Γ (0).) By assumption, we have that V ar
(
Z̃t

)
= V ar (Zt) = Γ (0) and

Γ1,1 (0) = Γ2,2 (0) = 1 because the variables have variance one. We shall use this fact
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momentarily. Let U := (Zt1,1, Zt2,1, Zt1,2, Zt3,2)′ and Ũ :=
(
Z̃t1,1, Z̃t2,1, Z̃t1,2, Z̃t3,2

)′
and let ΣU := V ar (U) and ΣŨ := V ar

(
Ũ
)
. The covariance matrices are functions

of the ACF Γ. De�ne V = RU where R =

(
1 −1 0 0

0 0 1 −1

)
. The variable V is

Gaussian with mean zero and variance RΣUR
′. De�ne k := t1 − t2, l := t1 − t3 and

v := t2 − t3. By direct calculation, we �nd that

RΣUR
′ =

(
2− 2Γ1,1 (k) , Γ1,2 (0) + Γ1,2 (v)− Γ1,2 (−k)− Γ1,2 (l)

Γ1,2 (0) + Γ1,2 (v)− Γ1,2 (−k)− Γ1,2 (l) 2− 2Γ2,2 (l)

)
.

On the other hand RΣŨR
′ is as in the above display with Γ1,1 (i) = Γ2,2 (i) = Γ1,2 (j) =

0 for i, j 6= 0.

Now, note that

sign (V1) sign (V2) = sign (Zt1,1 − Zt2,1) sign (Zt1,2 − Zt3,2)

using the symmetry properties of mean zero Gaussian random variables. Moreover,

sign (x) = 1{x>0} − 1{x<0}, where 1{·} is the indicator function. Hence,

Esign (V1) sign (V2) = 2 Pr (V1 < 0, V2 < 0)− 2 Pr (V1 < 0, V2 > 0) .

Moreover, Pr (V1 < 0, V2 > 0) = 1/2 − Pr (V1 < 0, V2 < 0) by standard set manipu-

lation and using the fact that Pr (V1 < 0) = 1/2 because V1 is Gaussian with mean

zero. Hence, we deduce that∣∣∣Esign (V1) sign (V2)− Esign
(
Ṽ1

)
sign

(
Ṽ2

)∣∣∣ = 4
∣∣∣Pr (V1 < 0, V2 < 0)− Pr

(
Ṽ1 < 0, Ṽ2 < 0

)∣∣∣ .
To bound the r.h.s. we shall use Lemma 4 with function h (x) = 1{x1<0}1{x2<0}. We

also note that the assumption of that lemma on the eigenvalues is satis�ed because

RΣUR
′ and RΣŨR

′ are full rank and have bounded maximum eigenvalue. By as-

sumption, we can also deduce that there is a function γ such that Γi,j (k) ≤ γ (k) for

i, j = 1, 2 and all integers k and
∑

k γ (k) ≤ γ̄ < ∞. Hence, by Lemma 4, there is a
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constant c (the same as in Lemma 4) such that∣∣∣Eρ3 (Z1, Z2, ..., Zn)− Eρ3

(
Z̃1, Z̃2, ..., Z̃n

)∣∣∣
≤ 12c

n (n− 1) (n− 2)

∑
t1 6=t2 6=t3

[γ (t1 − t2) + γ (t1 − t3) + γ (t2 − t3)] .

By summability of γ (k) w.r.t. k ∈ Z we deduce the result, where the constant cZ

used in the statement of the lemma can be chosen equal to 36cγ̄.

The following is a rephrasing of Theorem 3.1 in Han (2018) where we have added

the bias that results from the use of dependent data (see Han, 2018, eq. 3.1).

Lemma 6 Let X := (Xt)t∈Z be a sequence of stationary random variables, possi-

bly vector valued, with exponentially decaying strong mixing coe�cients. Let X̃ :=(
X̃t

)
t∈Z

be a sequence of i.i.d. random variables such that X1 and X̃1 have same

distribution. Suppose that ρ (X1, X2, ..., Xn) is a U-statistic of �nite order with kernel

bounded by one. De�ne

bias :=
∣∣∣Eρ (X1, X2, ..., Xn)− Eρ

(
X̃1, X̃2, ..., X̃n

)∣∣∣ (A.2)

Then, there is a strictly positive constant c such that for any x > 0,

Pr
(∣∣∣ρ (X1, X2, ..., Xn)− Eρ

(
X̃1, X̃2, ..., X̃n

)∣∣∣ ≥ x+ bias
)
≤ exp

{
− cnx2

1 + x (lnn) (ln ln (4n))

}
.

The proof of the above inequality in Han (2018) uses the strong mixing condition

to bound the estimation error (Theorem 3.1 in Han, 2018). Theorem 2.1 in Han

(2018) uses the beta mixing condition to bound the bias (A.2). We shall exploit the

structure of Spearman's rho and use Lemma 5, instead.

The de�nition of the population version of Spearman's rho (e.g., Joe, 1997, p.32)

between two random variables with joint distribution FXY and marginals FX and

FY is ρ = 12
´ ´

FX (x)FY (x) dFXY (x, y) − 3. It is not di�cult to deduce that

Eρ3

(
Z̃1, Z̃2, ..., Z̃n

)
in Lemma 5 is the Spearman's rho population coe�cient of Z̃. We

shall denote by ρi,j the Spearman's rho population coe�cient (the rank correlation)

between the random variablesWt,i andWt,j in our dataset used in Algorithm 1 (recall

that Wt :=
(
X ′t, X

′
t−1

)′
. Then, we have the following.
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Lemma 7 Under the Regularity Conditions, for ρ̂i,j as in Algorithm 1,

Pr

(
max
i,j≤K

|ρ̂i,j − ρi,j| ≥ x+ c1n
−1

)
≤ K2 exp

{
− c2nx

2

1 + x (lnn) (ln ln (4n))

}
.

Here, c1 and c2 are absolute constants.

Proof. At �rst, we note that ρ̂i,j = n−2
n+1

ρ3,i.j + 3
n+1

ρτ,i,j where

ρ3,i,j = ρ3 ((X1,i, X1,j) , (X2,i, X2,j) , ..., (Xn,i, Xn,j))

is the U-statistic ρ3 from Lemma 5, while ρτ,i,j is the sample Kendall's tau between

the i and j variables (Han, 2018, eq. 2.4). By the invariance of Spearman's rho under

monotonically increasing transformations, we can replace the observableX := (Xt)t∈Z
with the unobservable Z := (Zt)t∈Z, which is Gaussian with dynamics as in (1). The

ACF of the VAR model in (1) has entries that are all absolutely summable by the

Regularity Conditions on A. Hence, by Lemma 5, (A.2) is bounded above by some

constant times n−1. Noting that n−2
n+1

ρ3,i.j = ρ3,i.j − 3
n+1

ρ3,i.j and that
∣∣ 3
n+1

ρ3,i,j

∣∣ +∣∣ 3
n+1

ρτ,i,j
∣∣ ≤ 6/n, we can �nd a �nite constant c1 such that Lemma 6 applies with

bias replaced by a c1/n. Applying the union bound, we deduce the statement of the

lemma.

A.1.5 Lemmas on Control of the Sample Covariance Estima-

tor and Related Quantities

Recall that ρi,j is the rank correlation between Wt,i and Wt,j. By stationarity, this

does not depend on t. We have the following.

Lemma 8 Under the Regularity Conditions, for n large enough, there is a �nite

constant c0 such that

Pr

(
max
i,j≤K

|ρ̂i,j − ρi,j| ≥ c0

√
lnK

n

)
≤ K−1.

Proof. This follows from the inequality in Lemma 7. There, we set x2 =
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5 ln (K) / (c2n) to deduce that for c0 =
(√

5/c2 + c1

)
,

Pr

(
max
i,j≤K

|ρ̂i,j − ρi,j| ≥ c0

√
lnK

n

)
≤ exp

{
−5 (lnK)− 2 (1 + ε) lnK

1 + ε

}

for ε =
√

5 lnK/ (c2n) (lnn) (ln ln (4n)). Under the conditions of the lemma, for n

large enough, ε ≤ 1. Substituting in the above display we �nd that the r.h.s. is

bounded above by K−1 and this proves the lemma.

We now show that the correlation matrix obtained from Spearman's rho converges.

Lemma 9 Under the Regularity Conditions, for n large enough, there is a constant

c0 (the same as in Lemma 8), such that,

Pr

(
max
i,j≤K

∣∣∣Σ̂i,j − Σi,j

∣∣∣ ≥ 3c0

π

√
lnK

n

)
≤ K−1.

Proof. Recalling the link between Spreaman's rho and the correlation coe�cient

for the Gaussian copula (e.g. Liu et al., 2012), we have that Σ̂i,j−Σi,j = 2 sin
(
π
6
ρ̂i,j
)
−

2 sin
(
π
6
ρi,j
)
. Given that sin (x) is Lipschitz with constant one, the result follows from

Lemma 8.

Lemma 10 Suppose that the Regularity Conditions hold. Then, there is a constant

c3 > 0, such that, for n large enough,

max
i,j≤K

Pr
(∣∣∣Σ̂i,j − Σi,j

∣∣∣ ≥ z
)
≤ exp

{
−nc3z

2
}

for any z satisfying zn1/2 →∞ and z (lnn) (ln lnn)→ 0.

Proof. By the proof of Lemmas 8 and 9,

Pr

(∣∣∣Σ̂i,j − Σi,j

∣∣∣ ≥ 3

π

(
x+ c1n

−1/2
))
≤ exp

{
− nc2x

2

1 + x (lnn) (ln ln (4n))

}
where the constants are from those lemmas. Set z = 3

π

(
x+ c1n

−1/2
)
. Then, x =

(π/3) z−c1n
−1/2. Substituting in the above display, the probability is bounded above

by

exp

{
−
nc2

[
(π/3) z − c1n

−1/2
]2

1 + ε

}
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where ε =
[
(π/3) z − c1n

−1/2
]

(lnn) (ln ln (4n)). By the restriction on z, as in the

statement of the lemma, for n large enough, we have that ε ≤ 1, and that there is a

constant c3 > 0 such that the above display is less than exp {−nc3z
2}.

A.1.6 Lemmas for the Control of the Precision Matrix Esti-

mator

The following result for the control of the operator norm will be used in the proofs.

Lemma 11 Suppose that Q̂ and Q are symmetric matrices such that Q has eigen-

values bounded away from zero an in�nity. If
∣∣∣Q̂−Q∣∣∣

op
= ε, then

∣∣∣Q̂−1 −Q−1
∣∣∣
op

=

O
(
|Q−1|2op ε

)
as long as |Q−1|op < ε−1.

Proof. With the present notation, Lemma 4 Le and Zhong (2021) says that

∣∣∣Q̂−1 −Q−1
∣∣∣
op
≤
∣∣Q−1

∣∣
op

∣∣∣Q−1
(
Q̂−Q

)∣∣∣
op

1−
∣∣∣Q−1

(
Q̂−Q

)∣∣∣
op

. (A.3)

Then, the result follows from the fact that
∣∣∣Q−1

(
Q̂−Q

)∣∣∣
op
≤ |Q−1|op

∣∣∣Q̂−Q∣∣∣
op

together with the condition of the lemma to ensure that the denominator is greater

than zero.

The operator norm can be bounded by the uniform norm of the elements using

the following.

Lemma 12 Suppose that Q̂ and Q are symmetric matrices. Then,
∣∣∣Q̂−Q∣∣∣

op
≤∣∣∣Q̂−Q∣∣∣

0,∞

∣∣∣Q̂−Q∣∣∣
∞
.

Proof. First, note that
∣∣∣Q̂−Q∣∣∣

op
≤
∣∣∣Q̂−Q∣∣∣

1,∞
because Q̂−Q is symmetric. This

is well known because, for any matrix A (not to be confused with the autoregressive

matrix in (1)), A′Ax = σ2x where σ2 is the maximum eigenvalue of A′A and x is the

corresponding eigenvector. Hence, σ2 |x|∞ = |A′Ax|∞. By a special case of Holder in-
equality, |A′Ax|∞ ≤ |A′|∞,1 |A|∞,1 |x|∞. This implies that σ2 = |A|2op ≤ |A|1,∞ |A|∞,1.
Then, using the fact that, in our case, A = Q̂ − Q is symmetric, we deduce the

inequality at the start of the proof. Moreover,
∣∣∣Q̂−Q∣∣∣

1,∞
≤
∣∣∣Q̂−Q∣∣∣

0,∞

∣∣∣Q̂−Q∣∣∣
∞

9



because
∣∣∣Q̂−Q∣∣∣

0,∞
is the maximum number of nonzero elements across the columns

of Q̂−Q.
De�ne the event

E :=
{

1{Θ̂i,j>0} = 1{Θi,j>0}

}
(A.4)

We shall derive a number of results conditional on such event. The event E means

that
{
B̂i : i ∈ [2K]

}
in Algorithm 4 correctly identi�es all the nonzero entries in Θ.

The next result can be found in the proof of Theorem 3 in Le and Zhong (2021).

Lemma 13 Suppose that the Regularity Conditions hold. On the event (A.4), there

is a constant c4 such that

Pr
(∣∣∣Θ̂−Θ

∣∣∣
∞
≥ z
)
≤ 2K Pr

(∣∣∣Σ̂− Σ
∣∣∣
∞
≥ zc4

)
. (A.5)

We can now use the lemmas from Section A.1.5.

Lemma 14 Suppose that the Regularity Conditions hold. On the event (A.4), there

is a constant c5 > 0, such that, for n large enough,

Pr
(∣∣∣Θ̂−Θ

∣∣∣
∞
≥ z
)
≤ 2 exp

{
−nc5z

2 + 3 lnK
}

for any z satisfying zn1/2 → ∞ and z (lnn) (ln lnn) → 0. Moreover,
∣∣∣Θ̂−Θ

∣∣∣
∞

=

OP

(√
lnK
n

)
.

Proof. We bound the r.h.s. in the display of Lemma 13 using Lemma 10 and

the union bound. We can then deduce that the r.h.s. of (A.5) is bounded above

by 2K3 exp {−nc3c
2
4z

2}. De�ning c5 := c3c
2
4 and rearranging we deduce the �rst

statement. The second statement follows by choosing z large enough and propor-

tional to a quantity O
(√

lnK
n

)
so that the �rst statement immediately gives that∣∣∣Θ̂−Θ

∣∣∣
∞

= OP

(√
lnK
n

)
. Such choice of z is consistent with the constraint given in

the lemma.

We also need an exponential inequality for Θ̂−1
11 − Θ−1

11 . For simplicity, we state

the result for Θ̂−1 rather than Θ̂−1
11 .
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Lemma 15 Suppose that the Regularity Conditions hold and that s
√

lnK/n = o (1).

On the event (A.4), there is a constant c6 > 0 such that, for n large enough,

Pr
(∣∣∣Θ̂−1 −Θ−1

∣∣∣
∞
≥ z
)
≤ 2 exp

{
−ns−2c6z

2 + 3 lnK
}

for any z satisfying zn1/2 →∞ and z (lnn) (ln lnn)→ 0.

Proof. First, we note that for any symmetric matrix Q, |Q|∞ ≤ |Q|op. This is

because |Q|op = maxx,y x
′Qy where the maximum is over vectors with unit Euclidean

norm. By this remark and (A.3) we deduce that the set
{∣∣∣Θ̂−1 −Θ−1

∣∣∣
∞
≥ z
}

is

contained in the set ∣∣Θ−1
∣∣
op

∣∣∣Θ−1
(

Θ̂−Θ
)∣∣∣

op

1−
∣∣∣Θ−1

(
Θ̂−Θ

)∣∣∣
op

≥ z

 .

For arbitrary events A and B, we shall use the trivial decomposition A = {A ∩B} ∪
{A ∩Bc} ⊆ {A ∩B} ∪Bc, where Bc is the complement of B. Then, we deduce that

the event in the above display is contained in the event{∣∣∣Θ−1
(

Θ̂−Θ
)∣∣∣

op
≥ 1/2

}
∪
{∣∣Θ−1

∣∣
op

∣∣∣Θ−1
(

Θ̂−Θ
)∣∣∣

op
≥ z/2

}
(A.6)

For z/ |Θ−1|op → 0, the above union of two events is contained in the second event.

This is the case because the eigenvalues of Θ are bounded away from zero and in�nity

by Lemma 3. Hence, it is su�cient to bound the latter. Using a standard inequality

for operator norms, and then Lemma 12, we deduce that∣∣∣Θ−1
(

Θ̂−Θ
)∣∣∣

op
≤
∣∣Θ−1

∣∣
op

∣∣∣(Θ̂−Θ
)∣∣∣

0,∞

∣∣∣(Θ̂−Θ
)∣∣∣
∞
.

On the event E in (A.4),
∣∣∣(Θ̂−Θ

)∣∣∣
0,∞
≤ |Θ|0,∞ ≤ s. We assume E holds without

making it explicit in the notation. In consequence, recalling that, by Lemma 3, σmax

is the largest singular value of Θ−1 = Σ, which is bounded uniformly in K, we have

that

Pr

(∣∣Θ−1
∣∣
op

∣∣∣Θ−1
(

Θ̂−Θ
)∣∣∣

op
≥ z/2

)
≤ Pr

(∣∣∣(Θ̂−Θ
)∣∣∣
∞
≥ z/

(
2σ2

maxs
))
.
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By Lemma 14 and the conditions of the present lemma, the r.h.s. is bounded above

by 2 exp
{
−nc5z

2/ (2σ2
maxs)

2
+ 3 lnK

}
. Setting c6 = c5/ (4σ4

max), which is strictly

positive, gives the result.

The following result will be used in due course.

Lemma 16 Suppose that U , V1, V2 and Û , V̂1, V̂2 are random variables. Then, the

event
{∣∣∣ Û

V̂1V̂2
− U

V1V2

∣∣∣ ≥ x
}

is contained in the union of the following three events:{∣∣∣∣ Û(V̂1−V1)
V̂1V1V2

∣∣∣∣ ≥ x/4

}
,

{∣∣∣∣ Û(V̂2−V2)
V̂1V̂2V2

∣∣∣∣ ≥ x/4

}
and

{∣∣∣ Û−UV1V2

∣∣∣ ≥ x/2
}
.

Proof. Add and subtract Û
V1V2

to �nd that

Û

V̂1V̂2

− U

V1V2

=

(
Û

V̂1V̂2

− Û

V1V2

)
+

(
Û

V1V2

− U

V1V2

)
.

The �rst term on the r.h.s. can be written as(
Û

V̂1V̂2

− Û

V1V2

)
=

(
Û

V̂1V̂2V1V2

)[
V̂2

(
V̂1 − V1

)
+ V1

(
V̂2 − V2

)]
.

We can then deduce the statement of the lemma by basic set inequalities.

Let Ξ̂i,j = Σ̂ε,i,j/
√

Σ̂ε,i,iΣ̂ε,j,j and similarly for Ξi,j using Σε in place of Σ̂ε. These

are estimated and population correlation coe�cients between εt,i and εt,j.

Lemma 17 Suppose that the Regularity Conditions hold. There is a constant c7 > 0,

such that, for n large enough,

max
i,j≤K

Pr
(∣∣∣Ξ̂i,j − Ξi,j|k

∣∣∣ ≥ z
)
≤ 16 exp

{
−ns−2c7z

2 + 3 lnK
}

for any z satisfying zn→∞ and z (lnn) (ln lnn)→ 0.

Proof. We apply Lemma 16 to deduce that we need to bound the following

probabilities

Pr (E1) := Pr

∣∣∣∣∣∣
Σ̂ε,i,j

(
Σ̂ε,i,i − Σε,i,i

)
√

Σ̂ε,i,iΣε,i,iΣε,j,j

∣∣∣∣∣∣ ≥ z/4

 ,

Pr (E2) := Pr

∣∣∣∣∣∣
Σ̂ε,i,j

(
Σ̂ε,j,j − Σε,j,j

)
√

Σ̂ε,i,iΣ̂ε,j,jΣε,j,j

∣∣∣∣∣∣ ≥ z/4


12



and

Pr (E3) := Pr

∣∣∣∣∣∣
Σ̂ε,i,j

(
Σ̂ε,i,j − Σε,i,j

)
√

Σε,i,iΣε,j,j

∣∣∣∣∣∣ ≥ z/2

 .

We further de�ne the following events: E4 :=
{

maxi,j≤K

∣∣∣Σ̂ε,i,j

∣∣∣ ≤ 3/2
}
, and E5 :={

mini≤K Σ̂ε,i,i ≥ σmin/2
}
where σmin > 0 is the minimum eigenvalue of Σ, by Lemma

3. Then, Pr (E1) ≤ Pr (E1 ∩ E4 ∩ E5) + Pr (Ec
4) + Pr (Ec

5) where, as usual, the su-

perscript c is used to denote the complement of a set. Before bounding each term

separately, we note that by the Cauchy interlacing theorem (Bhatia, 1996, Corollary

III. 1.5), the smallest eigenvalue of Σε is no smaller than σmin. Moreover, Σε,i,i ≥ σmin.

To see this note that the l.h.s. is equal to e′iΣεei, where ei is the vector with i
th en-

try equal to one and all other entries equal to zero. On the other hand the r.h.s.

is smaller than minx:x′x=1 x
′Σεx by the de�nition of minimum eigenvalue and the

Cauchy's interlacing theorem. Now,

Pr (E1 ∩ E4 ∩ E5) ≤Pr
(∣∣∣3σ−3/2

min

(
Σ̂ε,i,i − Σε,i,i

)∣∣∣ ≥ z/4
)

≤2 exp
{
−ns−212−2σ3

minc6z
2 + 3 lnK

}
(A.7)

using the bounds implied by the events E4 and E5, the aforementioned remarks on

Σε,i,i, and then Lemma 15. Noting that Σ̂ε,i,j ≤ Σε,i,j +
∣∣∣Σ̂ε,i,j-Σε,i,j

∣∣∣ and that |Σε,i,j| ≤
1 because εt is the innovation of the variable Zt with entries having variance one, we

deduce that Pr (Ec
4) ≤ Pr

(∣∣∣Σ̂ε,i,j-Σε,i,j

∣∣∣ ≥ 1/2
)
and this probability is eventually

bounded by (A.7) as long as z → 0. By the same argument used to bound Pr (Ec
4),

we deduce that Pr (Ec
5) is eventually less than (A.7). Hence, Pr (E1) is bounded by

three times the r.h.s. of (A.7) for n large enough. By similar arguments, we also

note that Pr (E2) and Pr (E3) are bounded by three and two times, respectively, the

r.h.s. of (A.7). Putting everything together, and setting c7 := 12−2σ3
minc6, the result

follows.

For any set k ⊂ [K] we let Ξ̂i,j|k be the correlation of εt,i with εt,j conditioning on

{εt,l : l ∈ k}.

Lemma 18 Under the Regularity Conditions, there is a constant c7 > 0 (same as in

13



Lemma 17), such that, for n large enough,

max
i,j≤K,k∈Ki,j

Pr
(∣∣∣Ξ̂i,j|k − Ξi,j|k

∣∣∣ ≥ z
)
≤ 16 exp

{
− (n−m) s−2c7z

2 + 3 lnK
}

for Ki,j ⊆ {[K] \ {i, j}} of cardinality m and z satisfying

z (n−m)→∞ and z (ln (n−m)) (ln ln (n−m))→ 0.

Proof. By Lemma 2 in Kalisch and Bühlmann (2007) if the distribution of the

sample correlation coe�cient is f (x;n) where n is the sample size, the distribu-

tion of the partial correlation coe�cient is the same with n replaced by n −m, i.e.

f (x;n−m). Hence, we can use Lemma 10 with n replaced by n−m everywhere and

the lemma is proved.

The next is a trivial variation of lemma 3 in Kalisch and Bühlmann (2007) adapted

to our inequalities.

Lemma 19 Suppose that the Regularity Conditions hold. De�ne L := 1/
(
1− 2−2 [1 + σ̄]2

)
where σ̄ is as in Lemma 3. For g (x) = 2−1 ln

(
1+x
1−x

)
, x ∈ (−1, 1), there is a constant

c7 > 0 (same as the one in Lemma 18), such that, for n large enough,

max
i,j≤K,k∈Ki,j

Pr
(∣∣∣g (Ξ̂i,j|k

)
− g

(
Ξi,j|k

)∣∣∣ ≥ z
)
≤ 32 exp

{
− (n−m) s−2c8 (z/L) + 3 lnK

}
for Ki,j ⊆ {[K] \ {i, j}} of cardinality m and for z satisfying z (n−m) → ∞ and

z (ln (n−m)) (ln ln (n−m))→ 0.

Proof. By the mean value theorem g (x) − g (y) = ∂g (ỹ) (x− y) for ỹ is in

the convex hull of {x, y}, x, y ∈ (−1, 1); here, ∂g (ỹ) = 1/ (1− ỹ2) is the deriva-

tive of g evaluated at ỹ. Suppose |x− y| ≤ (1− σ̄) /2 and y ∈ [−σ̄, σ̄] for some

σ̄ < 1. Note that ỹ2 ≤ (y + |x− y|)2, so that ∂g (ỹ) ≤ L and substituting the

aforementioned upper bound for y and |x− y| in terms of σ̄, and using the de�-

nition of L. Set V := Ξ̂i,j|k − Ξi,j|k and U := ∂g
(

Ξ̃i,j|k

)
where Ξ̃i,j|k is in the

convex hull of
{

Ξ̂i,j|k,Ξi,j|k

}
. The event {UV ≥ z} is contained in the union of

the events {V ≥ z/L} and {U > L}. From Lemma 18 we have that Pr (V ≥ z/L) ≤
16 exp {− (n−m) s−2c7 (z/L) + 3 lnK} for z satisfying the conditions of that lemma.

The lemma then follows if we show that {U ≥ L} ⊆ {V ≥ z/L} for z → 0, as in the
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statement of the lemma. To this end, note that {U ≥ L} is contained in the union of

the events {U > L, V ≤ (1− σ̄) /2} and {V > (1− σ̄) /2}. The latter event is eventu-
ally contained in {V ≥ z/L} when z → 0. Finally, the event {U > L, V ≤ (1− σ̄) /2}
has probability zero because, by the remarks at the beginning of the proof, we know

that U ≤ L when V ≤ (1− σ̄) /2 and
∣∣Ξi,j|k

∣∣ ≤ σ̄, which is the case by Lemma 3,

uniformly in K, for any k ∈ Ki,j. Hence, the lemma is proved.

A.1.7 Technical Lemmas for Lasso

For S ⊆ [2K] and some constant L > 0, recall that the square of the compat-

ibility constant is φ2
comp (L, S,Σ) := min

{
sb′Σb
|b|21

: b ∈ R (L, S)
}

where R (L, S) :=

{b : |bSc|1 ≤ L |bS|1 6= 0} (van de Geer and Bühlmann, 2009) . Here Sc is the comple-

ment of S in [2K]. Throughout this section, the notation is as in Algorithm 2 and

Section 5.5.1 and σmin is as in Lemma 3. We have the following.

Lemma 20 Under the regularity Conditions, for any S ⊆ [2K] of cardinality s, and

L > 0, φcomp

(
L, S, Σ̂

)
≥ σ

1/2
min − (L+ 1)

√
s
∣∣∣Σ̂− Σ

∣∣∣
∞
.

Proof. Note that the square root of the minimum eigenvalue of a matrix is a

lower bound for the compatibility constant. To see this, note that sb′Σb/ |bS|21 ≥
sσmin |b|22 / |bS|

2
1 ≥ σmin because s |b|22 ≥ s |bS|22 ≥ |bS|

2
1. Then, the lemma is special

case of Corollary 10.1 in van de Geer and Bühlmann (2009).

We now derive a basic bound for the Lasso procedure computed across 2K response

variables, one at the time, using the su�cient statistic Σ̂.

Lemma 21 De�ne

λ0 = 2

1 + max
i∈[2K]

∑
j∈[2K]:j 6=i

|Θi,j/Θi,i|

∣∣∣Σ̂− Σ
∣∣∣
∞
. (A.8)

Under the Regularity Conditions, on the event ELasso := {λ ≥ 2λ0}, we have that

maxi∈[K]

∣∣∣β̂(i) − β(i)
∣∣∣
1

= OP (sλ/σmin).

Proof. We prove �rst the result for a �xed i. We shall then see that the bound

is uniform in i ∈ [K]. To avoid notational complexities, we use a notation that is

only local to this proof. Set Γ = Σ−i,−i , γ = Σ−i,i, b = β
(i)
−i and b̂ = β̂

(i)
−i . Note
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that b = Γ−1γ by de�nition. As in the text we use the hat for estimators of various

quantities. Write δ = b̂ − b. Given that the Lasso estimator minimises the Lasso

objective function we have that

−2γ̂′b̂+ b̂′Γ̂b̂+ λ
∣∣∣b̂∣∣∣

1
≤ −2γ̂′b+ b′Γ̂b+ λ |b|1 .

This can be rearranged to give the following inequality

δ′Γ̂δ ≤ 2
(
γ̂′ − b′Γ̂

)
δ + λ

(
|b|1 −

∣∣∣b̂∣∣∣
1

)
(Loh andWainwright, 2012, eq. 5.1). Adding and subtracting b′Γ, we write

(
γ̂′ − b′Γ̂

)
=

(γ̂′ − b′Γ) + b′
(

Γ− Γ̂
)
. Given that b′Γ = γ′, by de�nition of γ and γ̂, we have that

|γ̂ − Γb|∞ ≤
∣∣∣Σ̂− Σ

∣∣∣
∞
. By de�nition of Γ and Γ̂ and a basic inequality,

∣∣∣(Γ− Γ̂
)
b
∣∣∣
∞
≤

|b|1
∣∣∣Σ̂− Σ

∣∣∣
∞
. However, |b|1 =

∑
j∈[2K]:j 6=i |Θi,j/Θi,i| because the regression coe�-

cients can be obtained from the precision matrix: β
(i)
j = −Θi,j/Θi,i. Hence, by

de�nition of λ0 as in the statement of the lemma and the last display, we deduce that

δ′Γ̂δ ≤ λ0 |δ|1 + λ
(
|b|1 −

∣∣∣b̂∣∣∣
1

)
. This is in the form of the basic inequality in van de

Geer and Bühlmann (2009, last display on p.1387). On the set {λ ≥ 2λ0}, the r.h.s.
of the previous inequality is bounded above by 2−1λ |δ|1 + λ

(
|b|1 −

∣∣∣b̂∣∣∣
1

)
. Then, by

arguments in van de Geer and Bühlmann (2009, second and third display on p.1388,

replacing λ0 with 2−1λ in their de�nition of L, so that here L = 3), we deduce that

|δ|1 ≤ 4
√
sδ′Γ̂δ/φ̂2

comp

where φ̂comp := φcomp

(
L, S, Σ̂

)
is the compatibility constant, which we shall show

to be strictly positive. Lemma 11.2 in van de Geer and Bühlmann (2009) says that√
δ′Γ̂δ = O

(
λ
√
s

φ̂comp

)
once we replace λ0 with λ/2 in their lemma. By Lemmas 20

and 9, φ̂comp = σ
1/2
min − OP

(√
s lnK

n

)
choosing L = 3 in Lemma 20. We also have

that
√
s lnK

n
= o

(
σ

1/2
min

)
. By these remarks and the above display, we deduce |δ|1 =

OP

(
sλ
σmin

)
. The bound is uniform in i ∈ [K] because Lemma 3. Hence, the result

follows.

Lemma 22 Suppose that the Regularity Conditions hold. Then, for λ0 is as in (A.8),
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λ0 = OP

(
(ω/ν2)

√
lnK
n

)
where ν is as in Lemma 3.

Proof. Under the Regularity Conditions, an upper bound for (A.8) is given by

2 (1 + ω/ν2)
∣∣∣Σ̂− Σ

∣∣∣
∞
. This is OP

(
(ω/ν2)

√
lnK
n

)
using Lemma 9. Hence, the result

follows.

A.1.8 Proof of Theorem 1

This follows from Lemma 9.

A.1.9 Proof of Theorem 2

An upper bound for (A.8) is given by 2 (1 + ω/ν2)
∣∣∣Σ̂− Σ

∣∣∣
∞
. Then, in Lemma 21,

the set Pr (ELasso) → 1 as K → ∞, for λ = 4 (1 + ω/ν2) × 3c0
π

√
lnK
n
, by Lemma 9.

Therefore, by Lemma 21, maxi∈[K]

∣∣∣β̂(i) − β(i)
∣∣∣
1

= OP

(
ωs
√

lnK
n

)
and we can choose

c = 12 (1 + ν−2) c0/π in the statement of the theorem. Hence, the result follows.

A.1.10 Proof of Theorem 3

Note that θmin is a lower bound on mini,j

{∣∣∣β(i)
j

∣∣∣ :
∣∣∣β(i)
j

∣∣∣ > 0
}
. This is because

∣∣∣β(i)
j

∣∣∣ =

|Θi,j/Θi,i|. Note that −Θi,i is the variance of Zt,i conditioning on all other covariates.

Hence, |Θi,i| ≤ 1 because V ar (Zti) = 1. Then, the event in the probability of the

theorem is contained in the event maxi∈[K]

∣∣∣β̂(i) − β(i)
∣∣∣
1
> τ , because τ = o (θmin).

The latter event has probability going to zero according to Theorem 2.

A.1.11 Proof of Theorem 4

By Theorem 6 in Cai et al. (2011),
∣∣∣Ω̂−Θ

∣∣∣
∞
≤ 4 |Θ|1,∞ λn, on the event EClime :={

λn ≥ |Θ|1,∞
∣∣∣Σ̂− Σ

∣∣∣
∞

}
. Choosing λn = ω

(
3c0
π

√
lnK
n

)
, by Lemma 9, Pr (EClime)→

1 as K →∞.

A.1.12 Proof of Theorem 5

Due to the fact that |Θi,j| ∈ {0} ∪ [θmin,∞) and
∣∣∣Ω̂i,j

∣∣∣ ∈ {0} ∪ [τ,∞) uniformly in

i, j ∈ [2K], the event in the probability of the theorem is eventually contained in
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{∣∣∣Ω̂−Θ
∣∣∣
∞
≥ τ

}
. This goes to zero by Theorem 4 because τ is of larger order of

magnitude than
∣∣∣Ω̂−Θ

∣∣∣
∞
.

A.1.13 Proof of Theorem 6

Under the event E in (A.4), we are within the framework of the results in Le and

Zhong (2021). When such event is true, the result follows from Theorem 3 in Le and

Zhong (2021). The proof of their result requires a bound in probability for
∣∣∣Σ̂− Σ

∣∣∣
∞
;

see the third display on their page 12. In their proof this is denoted by the symbol

|WX,nj|∞. We control this quantity using Lemma 9. To �nish the proof note that

Pr (E)→ 1 using either Theorem 3 or Theorem 5.

A.1.14 Proof of Theorem 7

From Lemma 1, recall that Σε = Θ−1
11 and A = −Θ−1

11 Θ12. By Lemmas 11 and

12, the Regularity Conditions and Theorem 6, we deduce that
∣∣∣Θ̂−1

11 −Θ−1
11

∣∣∣
op

=

OP

(
s
√

lnK
n

)
on the event E in (A.4); note that |Θ11|0,∞ ≤ s. The event E has

probability going to one by either Theorem 3 or Theorem 5. This proves the �rst

bound in the theorem. To prove the convergence of the autoregressive matrix es-

timator, we note that A − Â = Θ̂−1
11 Θ̂12 − Θ−1

11 Θ12. The r.h.s. can be rewrit-

ten as Θ̂−1
11

(
Θ̂12 −Θ12

)
+
(

Θ̂−1
11 −Θ−1

11

)
Θ12. The �rst term in the sum is equal

to Θ−1
11

(
Θ̂12 −Θ12

)
+
(

Θ̂−1
11 −Θ−1

11

)(
Θ̂12 −Θ12

)
. Then, by standard inequalities

and the previous bounds, it is not di�cult to deduce that its operator norm is

OP

(
s
√

lnK
n

)
. The same follows for the operator norm of

(
Θ̂−1

11 −Θ−1
11

)
Θ12. This

concluded the proof of the theorem.

A.1.15 Proof of Theorem 8

The assumptions in Kalisch and Bühlmann (2007) are satis�ed by our Regularity

Conditions together with the faithfulness condition stated in the theorem. In partic-

ular, from Kalisch and Bühlmann (2007, proof of Lemma 4), it is su�cient to bound

the probability of a Type I and Type II error, as given by the following

Pr
(∣∣∣g (Ξ̂i,j|k

)
− g

(
Ξi,j|k

)∣∣∣ ≥ z
)
≤ 32 exp

{
− (n−m) s−2c7 (z/L)2 + 3 lnK

}
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where m is the cardinality of k, g is as de�ned in Lemma 19, and setting z = cn

where cn as in Kalisch and Bühlmann (2007): cn � n−ηc . Choosing m equal to

the maximal number of adjacent nodes, there are O (Km) hypotheses to test. By

Lemma 5 in Kalisch and Bühlmann (2007), we can assume m ≤ s with probability

going to one. By this remark and the union bound we need the following to go

to zero: Ks32 exp
{
− (n− s) s−2c7 (cn/L)2 + 3 lnK

}
. By the Regularity Conditions,

s = O (nηs) = o
(
n1/2

)
and Ks = O (nsηK ) for some �nite ηK . Hence we must have

nηs lnn = o
(
n1−2(ηs+ηc)

)
. This is the case if 2ηc + 3ηs < 1, as stated in the theorem.

The theorem is then proved following the steps in the proof of Lemma 4 in Kalisch

and Bühlmann (2007).

A.1.16 Proof of Theorem 9

De�ne the set EG :=
{
Ĝ = G

}
, where Ĝ is the PCDAG estimated using Algorithm

5 and G is the true PCDAG. Hence, on EG we have that that V̂ (i) = V (i). By

Theorem 8, the event EG has probability going to one. Hence, in what follows, we

shall replace V̂ (i) with V (i). By the assumption of the present theorem, G has all

edges that are directed. Let

Ψ̂ :=


Σ̂ε,V̂(1),V̂(1) 0 · · · 0

0 Σ̂ε,V̂(2),V̂(2)

. . .
...

... 0
. . . 0

0 · · · 0 Σ̂ε,V̂(K),V̂(K)


and

Φ̂ :=


Σ̂ε,V̂(1),1 0 · · · 0

0 Σ̂ε,V̂(2),2

. . .
...

... 0
. . . 0

0 · · · 0 Σ̂ε,V̂(K),K

 ;

where the symbol 0 denotes a generic conformable matrix of zeros. Then, the nonzero

consecutive entries in the ith column of Ψ̂−1Φ̂ is equal to d̂i as de�ned in Algorithm

6. Here, we shall de�ne the population version of the above by Ψ and Φ. We de�ne

a matrix R such that ∆ =
(
RΨ̂−1Φ̂

)′
. The matrix R reshapes Ψ̂−1Φ̂ so that we can
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�nd ∆. We write such matrix R as

R :=


R

(1)
1 R

(2)
1 · · · R

(K)
1

R
(1)
2 R

(2)
2 · · · R

(K)
2

...
...

. . .
...

R
(1)
K R

(2)
K · · · R

(K)
K

 ,

where R
(i)
k is a 1 × V (i) vector de�ned as follows. If k /∈ V (i), then, R

(i)
k is a row

vector of zeros; for example R
(k)
k = 0, k ∈ [K]. If k ∈ V (i), R

(i)
k will have a one in

the position such that R
(i)
k d̂
′
iεt,V(i) = d̂i,jεt,k, where j is the position of the element

in V (i) that is equal to k; d̂i,j is the estimated regression coe�cient of εt,k in the

regression of εt,i on εt,V(i). This also means that the number of ones in the kth row

of R is equal to the number of direct descendants of the variable εt,k. We denote

such number by κk. Now, note that
∣∣∣RΨ̂−1Φ̂−RΨ−1Φ

∣∣∣
op
≤ |R|op

∣∣∣Ψ̂−1Φ̂−Ψ−1Φ
∣∣∣
op
.

Then, |R|2op is the maximum eigenvalue of RR′ and the latter matrix is diagonal with

(k, k) entry equal to κk. It is easy to see that RR′ is diagonal because the positions

for two di�erent parents cannot overlap, i.e. R
(i)
k

(
R

(i)
l

)′
= 0 when k 6= l. Then,

|R|op = κ1/2, where κ := maxk κk, as de�ned in the theorem. Hence, it remains to

bound
∣∣∣Ψ̂−1Φ̂−Ψ−1Φ

∣∣∣
op
; note that the singular values of a matrix are invariant of

transposition. Adding and subtracting Ψ−1Φ̂ , using the triangle inequality, and a

basic norm inequality,∣∣∣Ψ̂−1Φ̂−Ψ−1Φ
∣∣∣
op
≤
∣∣∣Ψ̂−1 −Ψ−1

∣∣∣
op

∣∣∣Φ̂∣∣∣
op

+
∣∣Ψ−1

∣∣
op

∣∣∣Φ̂− Φ
∣∣∣
op
. (A.9)

By Lemma 11,
∣∣∣Ψ̂−1 −Ψ−1

∣∣∣
op
≤ |Ψ−1|2op

∣∣∣Ψ̂−Ψ
∣∣∣
op
. The maximum singular value of a

block diagonal matrix is the maximum of the singular values of each of the blocks. By

Cauchy's interlacing theorem,
∣∣∣Ψ̂−Ψ

∣∣∣
op
≤
∣∣∣Σ̂ε − Σε

∣∣∣
op
and the latter is OP

(
s
√

lnK
n

)
by Theorem 7. Using again Cauchy's interlacing theorem, we deduce that the largest

singular value of Ψ−1 is bounded above by the largest singular value of Θ, which is

�nite. Moreover,
∣∣∣Φ̂∣∣∣

op
≤ |Φ|op +

∣∣∣Φ̂− Φ
∣∣∣
op
. The maximum singular value of Φ is just

the maximum of Σ′
ε,V̂(i),i

Σε,V̂(i),i w.r.t. i ∈ [K]. It is increasing in the cardinality of

V̂ (i). Hence, Σ′
ε,V̂(i),i

Σε,V̂(i),i ≤ Σ′ε,·,iΣε,·,i, recalling the notation at the start of Section

4. The latter is bounded above by maxx′x≤1 x
′Σ′εΣεx = |Σε|2op, which is bounded, by
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the Regularity Conditions. By the same argument as before, the maximum singular

value of Φ̂ − Φ is the square root of the largest, w.r.t. i ∈ [K], of the maximum

eigenvalue of (
Σ̂ε,V̂(i),i − Σε,V(i),i

)′ (
Σ̂ε,V̂(i),i − Σε,V(i),i

)
where on EG, V̂ (i) = V (i). This quantity is increasing in the cardinality of V (i) so

that the square root of the above display is bounded above by
∣∣∣Σ̂ε − Σε

∣∣∣
op
, which is

OP

(
s
√

lnK
n

)
by Theorem 7. Using the derived upper bounds, it is easy to deduce

that (A.9) is OP

(
s
√

κ lnK
n

)
.

From Lemma 2, deduce that Πεt = DΠεt + ξt. This can be rewritten as εt =

Π−1DΠεt + Π−1ξt. Hence, εt = ∆εt + Π−1ξt, where ∆ = Π−1DΠ. Now, note that

on the event EG, as de�ned at the start of the proof, any permutation matrix Π̂ that

makes Π̂∆̂Π̂−1 lower triangular, with diagonal entries equal to zero, also satis�es (4)

when we replace Π with it. According to Algorithm 6 we choose the one that requires

the least number of row permutations of the identity, which is unique. Then, on

EG, Π̂ = Π because also Π is unique. Therefore, on EG, D̂ := Π̂∆Π̂−1 converges to

D := Π∆Π−1. This shows the �rst statement of the theorem. The convergence rate

of Ĥ−H to zero can be deduce from the �rst statement of the theorem together with

Lemma 11, and Cauchy's interlacing theorem and the de�nition Σε = H (Eξtξ′t)H ′ in
order to bound the singular values of H−1 := (I −D).

A.2 Choice of Tuning Parameters

Algorithms 2 and 3 require to choose the penalty parameter λ and the threshold τ .

As shown in Theorems 3 and 5 we need τ > λ. The exact values can be chosen by

crossvalidation (CV). CV may not be suitable for time series problems. However, it

has been shown to work for prediction problems in the case of autoregressive process

of �nite order (Burmann and Nolan, 1992). To this end, we divide the sample data

into nCV nonoverlapping blocks of equal size each. Each block is a test sample. Given

the ith test sample, we use the remaining data as ith estimation sample. Compute Θ̂

on the ith estimation sample and denote this by Θ̂est (λ, τ, i) to make the dependence

on the parameters and block explicit. Compute the scaling matrix Σ̂ on the ith test

sample using Algorithm 1 and denote it by Σtest (i) to make the dependence explicit.
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We minimize the negative loglikelihood:

1

nCV

nCV∑
i=1

[
Trace

(
Σ̂test (i) Θ̂est (λ, τ, i)

)
− ln det

(
Θ̂est (λ, τ, i)

)]
w.r.t. (λ,τ) ∈ T where T ⊂ (0,∞)2. Here, for any matrix A, diag (A) a diagonal

matrix with same diagonal entries as A.

In our simulations and empirical analysis, the parameter τ is �xed to 2λ, and we

select λ employing CV with nCV = 5. Starting with a penalization equal to λ = 0.10,

we �rst search (by dividing iteratively by two) a value for the minimum λ such that

all o�-diagonal elements of Θ̂11 are zero (precisely smaller than 1e-6). We denote this

value as λ0. Then we search for the optimal λ in {λ0/2, λ0/(2
2), . . . , λ0/(2

5)}.
Computing both optimal parameters and a causal graph from the PC algorithm

can be time consuming over many simulations. Hence, in our simulations, we employ

an additional simpli�cation. Rather than carrying out CV for each simulation, we

use two separate simulation samples to compute two values of λ according to the

aforementioned procedure. We then use the average of these two values as tuning

parameter λ in all simulations with the same design.

A.3 Finite Sample Analysis via Simulations

We assess the �nite sample performance of the di�erent estimators and evaluate their

asymptotic properties for various degrees of time series persistence and cross-sectional

dimension. We compare our results to naive methods that either do not account for

sparsity in Θ or ignore the time series structure of the data.

A.3.1 The True Model

To generate the time series of equation (1) the K variables are divided into K̃ in-

dependent clusters. Each cluster is composed by N variables and shares the same

causal structure as well as the autoregressive matrix. We denote with Ã and H̃ the

related coe�cients of equation (1) for each cluster. The matrix H̃ is the matrix which

relates εt with the associated structural shocks ξt of a selected cluster. For the sake

of simplicity, for each cluster, the variables' order coincides with the topological order

so that the matrix Π in Lemma 2 can be set equal to the identity.
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We consider N = 3 and N = 4. When N = 3 the three basic causal structures are

selected for each cluster, i.e., the causal chain, common cause and v-structure. Given

three variables X, Y and Z, if X → Y → Z, the causal structure is called causal

chain while if X ← Y → Z it is termed common cause. The causal relation is named

v-structure or immorality if X → Y ← Z. We also consider two additional structures

when N = 4: diamond 1 and diamond 2. These are de�ned as X → Y ← Z,X →
U ← Z, and X → Y ← Z, Y → U , respectively.

The PC algorithm cannot distinguish between causal chain and common cause,

since these structures are in the same Markov equivalence class. Then, the PC algo-

rithm will provide the same graph with undirected edges: X−Y −Z. Conversely, the
v-structure, diamond 1 and diamond 2 can be identi�ed by the PC algorithm. In this

case, the PC algorithm will return the causal graph with edges correctly oriented.

To monitor the persistence of the time series, for each cluster, the autoregressive

matrix Ã is equal to a lower triangular matrix with all elements (including the diag-

onal) equal to a constant a, which describes the persistence of the series. The matrix

H̃ is a function of the selected causal structure. For the v-structure

H̃ =

1 0 0

0 1 0

1 1 1


which is related to the causal structure εt,1 → εt,3 ← εt,2. Each variable causes itself,

but may also a�ect other variables. Finally, for simplicity, we suppose that the data

have Gaussian marginals. In this case, simulation of (1) reduces to simulation of a

VAR(1) together with some linear transformations to ensure that all the covariates

have variance equal to one. The details are given in Algorithm 7.

A.3.2 Simulation Results

To study the e�ect of time series persistent, three values of such parameter a are

considered: 0.25, 0.5 and 0.75. These values of a produce a wide range of time series

dependence. For example, Figure A.1 shows the autocorrelation function of a cluster

for a v-structure. To analyze the relevance of sparsity in our approaches, we select

K̃ = 3, 30, 50 clusters. We investigate the �nite sample properties of our estimator

by considering a sample size n = 1000, 5000.

23



Algorithm 7 Simulation of the Gaussian Copula VAR in (1) when the Marginals
are Gaussian.

Set N ×N matrices Ã and H̃ s.t. H̃ is full rank.
For k = 1, 2, ...K̃:

Simulate i.i.d. N × 1 dimensional Gaussian vectors
(
e

(k)
t

)
t∈[n]

with mean zero and

identity covariance matrix.
Compute X

(k)
t = ÃX

(k)
t−1 + H̃e

(k)
t , t ∈ [n].

End of For.
De�ne the K-dimensional VAR(1) Xt = AblockXt−1 + Hblocket, where Xt =((

X
(1)
t

)′
,
(
X

(2)
t

)′
, . . . ,

(
X

(K̃)
t

)′)′
and similarly for et, t ∈ [n]; a fortiori, Ablock and

Hblockare block diagonal matrices, where each block equals Ã and H̃, respectively.
De�ne S = [diag (V ar (Xt))]

−1 where diag (·) is the diagonal matrix with diagonal
equals to its argument.
Set A = SAblockS

−1, Σε = SHblockH
′
blockS

′.
De�ne the latent K × 1 vector Zt = SXt, t ∈ [n].

We use Algorithms 2 and 3 �nd the moral graph. Recall that the moral graph is

de�ned from the nonzero entries in Θ̂ as in Algorithm 4. We then follow Algorithms 5

and 6 to estimate any remaining parameters. The tuning parameters for Algorithms

2 and 3 are chosen by CV as described in Section A.2. This means only choosing λ.

We denote the estimated parameter by λCV . We use 250 simulations to compute the

performance of our methodology.

We also test the performance of the PC algorithm when we impose the restrictions

provided by Lasso and CLIME. The elements of Θ̂11 which are equal to zero represent

those edges which we exclude from the skeleton. These restrictions can be embedded

in the PC using the appropriate �xedGaps command, which guarantees that will be

no edge between nodes j and i if the element of Θ̂11 in position (i, j) is equal to

zero. We obtain improved compute time performance of the PC algorithm in this

case. This is particularly relevant in the high dimensional case. As discussed in the

main text, when we impose the restrictions from the zeros of Θ̂11, it is advisable to

use a tuning parameter λ smaller than the one suggested by CV. This is because

the PC algorithm can only delete edges, but not add them back. Hence, it is more

important to avoid false negatives than false positives when imposing restrictions. To

corroborate this claim, we also report results for λCV /2 and λCV /4.

We compare our results with two benchmarks. One does not account for sparsity
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Figure A.1: Autocorrelation functions of the variable Zt of a cluster where the
contemporaneous causal relations are generated by a v-structure.

and is essentially equivalent to choosing λ = 0 in the estimation. The second does

not account for time series dependence and is equivalent to assuming (1) with A = 0.

In the simulations, we refer to the two benchmarks as λ = 0 and A = 0, respectively.

The case λ = 0 should produce sensible results in the low-dimensional case. The case

A = 0 might be appropriate when the time series persistence is low. In this case, the

procedure is usually biased, but incurs a lower estimation error.

All approaches are compared on their performance to estimate the contempora-

neous causal structure. To achieve this, we report the average structural Hamming

distance (SHD) of the estimated causal graph to the true (Acid and de Campos, 2003,

Tsamardinos et al., 2006). The SHD between two partially directed acyclic graphs

counts how many edge types do not coincide. For instance, estimating a non-edge in-

stead of a directed edge contributes an error of one to the overall distance. We remark
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that the PC algorithm estimates the Markov equivalence class of a given graph, i.e.,

the related CPDAG, and some causal structure, as common cause and causal chain,

shares the same class, i.e., the same CPDAG, (e.g., for the v-structure the Markov

class coincides with the related DAG). Therefore, as the true causal structure in SHD

analysis we consider the (block) equivalence class attained by the PC, with a su�-

ciently high signi�cance level, 1-1e-13, to obtain a deterministic estimate performed

on the theoretical correlation matrix of each cluster.

Tables 2 and 3 display the average SHD and standard errors computed over 250

simulations for all approaches. For the sake of conciseness we only report results

for the v-structure for the persistency parameter a ∈ {0.25, 0.75} and the number

of clusters K̃ ∈ {3, 50}3. Our approach produces estimators with superior �nite

sample performance, relatively to the benchmarks, regardless of the considered causal

structures. While not reported here, we note that for both the causal chain and

common cause, the performance of the PC Algorithm deteriorates when we impose

the a priori restrictions from the zeros of Θ̂1,1 even if we undersmooth.

The discrepancy among the contemporaneous causal structure is also investigated

by computing the number of non-zero elements of Θ11. Indeed, we recall that non-zero

elements of Θ11 correspond to possible edges between variables of the corresponding

row and column. We also compute the number of false positive and negative between

the estimated and true Θ11 of non-zero elements4. Tables 4 and 5 summarize the

results for the high and low dimensional case, respectively. We only report the results

for the v-structure, as we can draw similar conclusions for the other causal structures.

Finally, in Tables 6 and 7, we assess the �nite sample performance of the estimators

ofA and Σε and analyse their asymptotic properties stated in Theorem 7. We compute

the average distance from the true matrices, where the distance is measured in terms

of the operator's norm: the largest singular value. These statistics are compared only

to the case λ = 0.

3The complete results are available upon request.
4We say that an element of Θ11 is a false positive, if it is estimated as non-zero element while it

is zero. Vice versa, it is a false negative, if it is estimated as zero element while it is di�erent from
zero.
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Table 2: Structural Hamming Distance for a Causal V-Structure. Expected value
approximated using 250 Monte Carlo simulations (standard errors in parenthesis)
for the SHD between the Lasso and CLIME estimators in Algorithms 2 and 3, and
the true one. The contemporaneous causal structure is a v-structure with K = 150
variables with K̃ = 50 clusters. Results are reported for di�erent values of λ , where
λCV is the value obtained using cross-validation and denoted by λCV . The columns
labelled NR reports the SHD obtained when no restrictions provided by Lasso and
CLIME procedures, respectively, are used in the initialization step of the PC. The
columns λ = 0 and A = 0 refer to the benchmarks that do not account for sparsity
and time series dependence, respectively.

Lasso
λCV λCV /2 λCV /4 λ = 0 A = 0

n a NR NR NR

1000 0.25 9.208 9.212 58.032 58.160 66.080 71.616 40.424 45.628
(0.28) (0.28) (0.48) (0.48) (0.49) (0.52) (0.39) (0.57)

0.75 1.960 95.888 4.464 4.488 29.596 29.556 131.060 225.212
(0.14) (0.2) (0.2) (0.2) (0.35) (0.34) (0.93) (0.48)

5000 0.25 3.124 3.124 44.700 44.776 31.092 32.504 22.144 144.944
(0.16) (0.16) (0.43) (0.43) (0.37) (0.38) (0.29) (0.29)

0.75 0 99.904 2.496 2.496 2.780 2.780 51.696 230.704
(0) (0.03) (0.17) (0.17) (0.17) (0.17) (0.47) (0.62)

CLIME
λCV λCV /2 λCV /4

n a NR NR NR

1000 0.25 27.700 27.740 53.496 53.604 78.984 83.340
(0.51) (0.51) (0.47) (0.47) (0.51) (0.51)

0.75 100.012 100.012 56.776 105.104 12.880 96.220
(0.01) (0.01) (0.53) (0.19) (0.33) (0.32)

5000 0.25 2.488 2.488 41.744 41.892 39.896 41.104
(0.15) (0.15) (0.45) (0.45) (0.37) (0.38)

0.75 119.440 138.064 3.192 4.392 6.348 6.348
(0.5) (0.18) (0.19) (0.21) (0.23) (0.23)
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Table 3: Structural Hamming Distance for a Causal V-Structure. Expected value
approximated using 250 Monte Carlo simulations (standard errors in parenthesis) for
the SHD between the Lasso and CLIME estimators in Algorithms 2 and 3, and the
true one. The contemporaneous causal structure is a v-structure withK = 9 variables
with K̃ = 3 clusters. Results are reported for di�erent values of λ , where λCV is
the value obtained using cross-validation and denoted by λCV . The columns labelled
NR reports the SHD obtained when no restrictions provided by Lasso and CLIME
procedures, respectively, are used in the initialization step of the PC. The columns
λ = 0 and A = 0 refer to the benchmarks that do not account for sparsity and time
series dependence, respectively.

Lasso
λCV λCV /2 λCV /4 λ = 0 A = 0

n a NR NR NR

1000 0.25 0.184 0.184 0.16 0.172 0.156 0.16 0.16 2.756
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.16)

0.75 0.144 5.64 0.184 0.184 0.244 0.244 0.372 9.156
(0.04) (0.06) (0.05) (0.05) (0.05) (0.05) (0.06) (0.04)

5000 0.25 0.18 0.18 0.272 0.272 0.244 0.256 0.224 8.632
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.07)

0.75 0 6 0.144 0.144 0.136 0.136 0.332 8.712
(0) (0) (0.04) (0.04) (0.04) (0.04) (0.05) (0.05)

CLIME
λCV λCV /2 λCV /4

n a NR NR NR

1000 0.25 0.256 0.256 0.184 0.188 0.16 0.152
(0.05) (0.05) (0.04) (0.04) (0.04) (0.04)

0.75 6.016 6.016 4.776 6.592 0.196 5.244
(0.01) (0.01) (0.12) (0.05) (0.05) (0.08)

5000 0.25 0.18 0.18 0.264 0.264 0.256 0.26
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

0.75 0.084 5.028 0.184 0.192 0.264 0.28
(0.03) (0.09) (0.05) (0.05) (0.05) (0.05)
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Table 6: Average distance between A and Â, Σε and Σ̂ε, respectively, computed
over 250 simulations (standard errors in round brackets) when the contemporaneous

causal structure is a v-structure for K = 150 variables with K̃ = 50 clusters. For
each method we report the results obtained also when undersmoohting is performed,
i.e., columns λCV /2 and λCV /4. The column λ = 0 refers to the benchmark that does
not account for sparsity. ∣∣∣A− Â∣∣∣

op

Lasso CLIME
n a λCV λCV /2 λCV /4 λCV λCV /2 λCV /4 λ = 0

1000 0.25 0.567 1.25 2.354 0.684 1.082 2.639 314.10
(0.003) (0.003) (0.006) (0.006) (0.003) (0.012) (3.106)

0.75 4.265 1.093 1.095 0.798 3.290 3.812 >1000
(0.048) (0.006) (0.003) (0.016) (0.083) (0.054) (-)

5000 0.25 0.131 0.369 0.722 0.297 0.307 0.644 24.610
(0.001) (0.001) (0.001) (0.005) (0.001) (0.001) (0.061)

0.75 3.604 0.925 0.135 3.555 1.404 0.250 >1000
(0.016) (0.001) (0.001) (0.101) (0.048) (0.001) (-)∣∣∣Σε − Σ̂ε

∣∣∣
op

Lasso CLIME
n a λCV λCV /2 λCV /4 λCV λCV /2 λCV /4 λ = 0

1000 0.25 0.258 1.394 1.803 0.292 1.143 2.531 0.916
(0.002) (0.007) (0.009) (0.002) (0.007) (0.019) (0.001)

0.75 0.430 0.119 0.228 0.118 0.335 0.616 0.331
(0.006) (0.001) (0.0014) (0.003) (0.007) (0.006) (0.003)

5000 0.25 0.081 0.367 0.511 0.076 0.316 0.582 0.395
(0.001) (0.001) (0.002) (0.002) (0.001) (0.002) (0.001)

0.75 0.314 0.039 0.043 0.390 0.184 0.052 0.109
(0.001) (0.001) (0.001) (0.002) (0.010) (0.001) (0.001)
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Table 7: Average distance between A and Â, Σε and Σ̂ε, respectively, computed
over 250 simulations (standard errors in round brackets) when the contemporaneous

causal structure is a v-structure for K = 9 variables with K̃ = 3 clusters. For each
method we report the results obtained also when undersmoohting is performed, i.e.,
columns λCV /2 and λCV /4. The column λ = 0 refers to the benchmark that does not
account for sparsity. ∣∣∣A− Â∣∣∣

op

MB CLIME
n a λCV λCV /2 λCV /4 λCV λCV /2 λCV /4 λ = 0

1000 0.25 0.243 0.331 0.345 0.307 0.311 0.343 12.716
(0.004) (0.004) (0.004) (0.007) (0.004) (0.004) (0.122)

0.75 2.835 0.845 0.182 0.673 1.774 2.186 >1000
(0.039) (0.005) (0.004) (0.012) (0.079) (0.055) (-)

5000 0.25 0.079 0.097 0.140 0.078 0.091 0.129 10.495
(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.049)

0.75 2.963 0.853 0.050 3.143 0.840 0.100 >1000
(0.017) (0.002) (0.001) (0.027) (0.010) (0.009) (-)∣∣∣Σε − Σ̂ε

∣∣∣
op

Lasso CLIME
n a λCV λCV /2 λCV /4 λCV λCV /2 λCV /4 λ = 0

1000 0.25 0.149 0.176 0.169 0.125 0.185 0.179 0.158
(0.004) (0.003) (0.002) (0.004) (0.003) (0.002) (0.002)

0.75 0.262 0.051 0.057 0.086 0.180 0.397 0.062
(0.005) (0.001) (0.001) (0.002) (0.007) (0.008) (0.001)

5000 0.25 0.035 0.060 0.082 0.035 0.050 0.084 0.072
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

0.75 0.257 0.022 0.022 0.415 0.024 0.028 0.027
(0.002) (0.001) (0.001) (0.004) (0.001) (0.002) (0.001)
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