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Abstract

A methodology for high dimensional causal inference in a time series context
is introduced. It is assumed that there is a monotonic transformation of the
data such that the dynamics of the transformed variables are described by a
Gaussian vector autoregressive process. This is tantamount to assume that the
dynamics are captured by a Gaussian copula. No knowledge or estimation of
the marginal distribution of the data is required. The procedure consistently
identifies the parameters that describe the dynamics of the process and the
conditional causal relations among the possibly high dimensional variables under
sparsity conditions. The methodology allows us to identify such causal relations
in the form of a directed acyclic graph. As an application we estimate the
directed acyclic graph for the order book on one-minute aggregated data on
four stock constituents of the S&P500.
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1 Introduction

Identifying and estimating causal relations is a problem that has received much in-
terest in economics. In the last two decades the statistical and machine learning
literature has made a number of advances on the front of identification and esti-
mation within the framework of causal graphs (Comon, 1994, Hyvérinen and Oja,
2000, Pearl, 2000, Spirtes et al., 2000, Hyvéarinen et al., 2001, Shimizu et al., 2006,
Meinshausen and Biihlmann, 2006, Kalisch and Biihlmann, 2007, Cai et al., 2011,
Biihlmann et al., 2014, Peters et al., 2014), where the data generating process can
be characterized as a system of structural equations. This complex causal relations
system might be represented through the causal graph, which conveys essential topo-
logical information to estimate causal effects.

However, the true data generating process is often a latent object to researchers,
which can only rely on finite sample observations to infer the causal structure and
mechanism of the true system. A causal model entails a probabilistic model from
which a researcher can learn from observations and outcomes about changes and in-
terventions of the system variables (Pearl, 2000, Peters et al., 2014). Thus, causality
can be formally defined using the do-notation of Pearl (2000) in terms of intervention
distributions. This definition of causality is quite different from the well known con-
cept of Granger causality. However, causal relations in economics and finance require
to account for time series dependence.

In this paper we develop a methodology to extract the causal relations of time
series data, conditioning on the past in a flexible way. We assume that there is a
monotone transformation of the data that maps the original variables into a Gaussian
vector autoregressive (VAR) model (see also Fan et al., 2022). There are a number
of advantages to this approach. First, we are able to retain the interpretability of
VAR models building on the rich econometrics literature on structural VAR models.
Second, we do not need any assumptions on the marginal distribution of the data.
This means that the procedure is robust to fat tails, as we do not make any assumption
on the existence of any moments. For instance, given that the existence of a second
moment for financial data has been a much debated topic in the past (Mandelbrot,
1963, Clarke, 1973, for some of the earliest references) dispensing all together of this
unverifiable condition should be welcomed. Third, we can model variables that take

values in some subset of the real line, for example variables that only take positive



values or are truncated. This is not possible using a standard VAR model.

The estimation of the contemporaneous causal structure of a time series is equiv-
alent to solving the identification problem of a structural VAR model. The latter
can be achieved by finding a unique Choleski type decomposition of the covariance
matrix of the VAR innovations (Rigobon, 2003, Moneta et al., 2013, Gouriéroux et
al., 2017, Lanne et al., 2017). However, the time series dynamics of economic and
financial data may not be captured well by a linear VAR model when the data is
not Gaussian. For example, some variables may only be positive. The problem of
estimation is exacerbated if the data have fat tails. This may distort the estimates.
Such problems reflect negatively on the estimation of causal relations for time se-
ries data. Furthermore, due to the curse of dimensionality issue, SVAR analysis is
only feasible in a low-dimensional context. Restricting the VAR model only to a few
variables may lead to unreasonable adverse effects such as ‘price-puzzles’ in impulse
responses (Sims, 1992, Christiano et al., 1999, Hanson, 2004). To avoid the curse of
dimensionality, factor augmented VAR models (Bernanke et al., 2005) and dynamical
factor models (Forni et al., 2000, Forni et al., 2009) are often employed. However, the
interpretation of the causal relations with factor models is not always straightforward.
Our methodology does not require the machinery of factor models.

This paper builds on a number of previous contributions and develops a method-
ology to address the aforementioned problems. Our approach is tantamount to the
assumption that the cross-sectional and transition distribution of the variables can
be represented using a Gaussian copula. The procedure builds on the work of Liu et
al. (2012) and does not require us to estimate any transformation of the variables
or the marginal distribution of the data, as commonly done when estimating a cop-
ula. In fact, our procedure bypasses the estimation of the innovations of the model
altogether. Our methodology is built for high dimensional time series, as commonly
found in some economics and financial applications. What we require is some form
of sparsity in the partial dependence of the data. This is different from assuming
that the covariance matrix of innovations or the matrix of autoregressive coefficients
are sparse. Such two restrictions can be restrictive. We shall make this clear in the
text when we discuss our assumptions. Finally, even when not all causal relations
are identified, we are able to identify the largest number of causal relations. This
statement is formalized by the concept of complete partially acyclic graph using the
PC algorithm (Spirtes et al., 2000, Kalisch and Biihlmann, 2007). These concepts



are reviewed in the main body of the paper (Section 3).

We conclude this introduction with a few remarks whose aim is to put the goals
of this paper into a wider perspective. The process of scientific discovery is usually
based on 1. the observation of reality, 2. the formulation of a theory, and 3. tests of
that the theory. The plethora of data available allows the researcher to observe differ-
ent aspects of reality that might have been precluded in the past. High dimensional
estimation methods are particularly suited to explore the present data-centric reality.
However, the next step forward requires formulation of a theory or hypothesis. Such
theory needs to be able to explain rather than predict in order to enhance our under-
standing. This very process requires the identification of a relatively small number of
explanatory causes for the phenomenon that we are trying to understand. The prob-
lem’s solution, in a complex and rather random environment, should then be a simple
approximation. This approximation can then be tested in a variety of situations in
order to verify its applicability. The program of this paper is to follow this process of
scientific discovery. We start from possibly high dimensional dynamic datasets. We
aim to provide a reduced set of possible contemporaneous causes conditioning on the

past.

1.1 Relation to Other Work

One of the main empirical econometric tools for the study of policy intervention effects
is the VAR approach (Sims, 1980, Kilian and Liitkepohl, 2017). In the first step, the
so called reduced form model is estimated. Then, the structural counterpart needs
to be recovered. This gives rise to an identification problem, which is equivalent to
finding the contemporaneous causal relations among the variables.

Traditionally, the identification of Structural Vector Autoregressive (SVAR) mod-
els was achieved by imposing model restrictions. Such restrictions can be derived
from an underlying economic model, such as short and long-run restrictions on the
shocks impact (Bernanke, 1986, Blanchard and Quah, 1989, Faust and Leeper, 1997),
or imposing sign restrictions on impulse response functions (Uhlig, 2005, Chari et al.
2008).

The success of the VAR approach is its reliance on data characteristics, thus allow-
ing the validation of economic models under reasonably weak assumptions. However,

standard restrictions necessary for the identification invalidate the data-driven nature



of SVAR. In recent years, it has been shown that different statistical features of the
data can be exploited to achieve identification of the SVAR model. For instance,
identification can be obtained by relying on either heteroskedasticity (Sentana and
Fiorentini, 2001, Rigobon, 2003, Liitkepohl and NetSunajev, 2017) or non-Gaussianity
of the residuals (Moneta et al., 2013, Gouriéroux et al., 2017, Lanne et al., 2017) or
instrumental variables (Mertens and Ravn, 2013, Stock and Watson, 2018). Another
approach relies on the graphical causal model literature (Swanson and Granger, 1997,
Demiralp and Hoover, 2003, Moneta, 2008). There, identification can be achieved by
exploiting the statistical distribution of estimated residuals. We shall show that this
last approach is related to our method.

Our work is also related to the statistical and machine learning literature for the
identification of causal graph structures in a high dimensional setting (Meinshausen
and Biihlmann, 2006, Kalisch and Biihlmann, 2007, Liu et al., 2009, Zhou et al.,
2011, Biihlmann et al., 2014). However, these approaches do not account for con-
temporaneous causal inference conditioning on the past, as required for time series
problems.

To account for the time series dependence, we employ a modelling assumption
that can be viewed as a Gaussian copula VAR model, a definition that will be made
clear in the text. We recently discovered that Fan et al. (2022) have used the same
time series assumption for the analysis of high dimensional Granger causality. The
present paper is concerned with conditional causal relations and identification of the
Gaussian copula VAR. Moreover, some basic assumptions are also different. For
example, Fan et al. (2022) assume that the autoregressive matrix of the Gaussian
copula VAR is sparse. We instead assume that the inverse of the scaling matrix of the
Gaussian copula that leads to a VAR representation is sparse. This is a very different

assumption. Hence, the contributions are related, but complementary.

1.2 Outline of the Paper

The plan for the paper is as follows. In Section 2, we introduce the model and briefly
discuss its statistical properties. In Section 3 we discuss identification of the model
and the causal relations. In Section 4 we describe algorithms to find estimators for
the population quantities, including the complete partially acyclic graph. In Section

5 we state conditions and results for the consistency of the quantities derived from the



algorithms. Section 6 applies the methodology to shed light on the causal relations in
the order book and trades, in high frequency electronic trading. Section 7 concludes.
Proofs and additional details can be found in the Electronic Supplement to this paper.
There we also present the main conclusions from a simulation study as evidence
of the finite sample properties of our methodology (Section A.3 in the Electronic

Supplement).

2 The Model

Let X := (X,)

or some subset of it. For each k = 1,2, ..., K, we suppose that there is a monotone

1z b€ a sequence of stationary random variables taking values in RE
function fi such that Z,, = fi (Xix) is a standard Gaussian random variable such
that Zt = (Zt,h Zt727 ey Zth)/

Zt = Athl + & (1)

where A has singular values in (0,1) and (&¢),.; is a sequence of independent iden-
tically distributed random variables with values in R¥ and covariance matrix X..
Throughout, the prime symbol ’ denotes transposition. All vectors in the paper are
arranged as column vectors. We do not require knowledge of the functions f;. We
also note that there is always a monotone transformation that maps any univariate
random variable into a standard Gaussian (Riischendorf and de Valk, 1993). Hence,
the assumption is that such transformed variables satisfy the VAR dynamics in (1).
We do not consider higher order VAR models, as these can always be recast into a
VAR of order one. Under stationarity assumptions, all the information of the model
can be obtained from the covariance matrix of the 2K -dimensional vector (Z;, Zg_l)/,

which we denote by X. We can then partition X as

Yuu X% r Ar
5 121z | (2)
o1 9o ra- r
with obvious notation, once we note that A is as in (1) and I' := EZ,Z,. Clearly,
Yo =T — AT A’ (recall X, := Eege}).
The above setup can be recast into a formal probabilistic framework using the

copula function to model Markov processes (Darsow et al., 1992). The copula tran-

sition density would be the ratio of two Gaussian copulae: one with scaling matrix



Y} and one with scaling matrix I". Given that we shall not use this in the rest of
the paper, we omit the details. However, given this fact, for short, we refer to our
model as a Gaussian copula VAR. We note that when X; has an invariant distribu-
tion with marginals that are continuous, the functions f; are necessarily equal to the
unconditional distribution of X, x, by Sklar’s Theorem (Joe, 1997).

We consider a high dimensional framework, where K can go to infinity with the
sample size. Formally, this would require us to consider a family of models (1) indexed
by the sample size n to allow for increasing dimension K (Han and Wu, 2019, for
more details). We do not make explicit this in the notation. Next, we summarise the

main properties of the model under the possibility that K — oo.

Proposition 1 Define Z,), = fi, (Xix) for some increasing monotonic transforma-
tion fr, : R = R, k = 1,2,..., K, such that (Z;),., follows a Gaussian VAR as
described in (1). Furthermore, suppose that the singular values of A are in a com-
pact interval inside (0,1) and the eigenvalues of ¥, are in a compact interval inside
(0,00), wniformly in K. Then, (X;),o, is a stationary Markov chain with strong

mixing coefficients that decay exponentially fast, uniformly in K even for K — oo.

Recall that the singular values of a matrix A are the square root of the eigenvalues
of A’A. Hence, the condition means that A is full rank with eigenvalues inside the
unit circle. We note that for fixed K the model is not only strong mixing, but also
absolutely regular (beta mixing), with exponentially decaying coefficients (Doukhan,
1995, Theorem 5, p.97). However, when K is allowed to increase, this is not the case
anymore (Han and Wu, 2019, Theorem 3.2). Nevertheless, allowing for increasing

dimension K, it is still strong mixing with exponentially decaying coefficients.

3 Identification

3.1 Preliminary Concepts

A graph G = (V,€) consists of a set of vertices V = {1,2,...,p}, where p is the
number of vertices, and edges £ C V x V. The edges are a set of ordered pairs of
distinct vertices. The edges are directed if the order matters, (k,1) € € but (I, k) ¢ &,
otherwise it is undirected. Arrows are commonly used to define the direction when
there is one. In our context, V is the set of indices of W; = (X{, Xg_l)/ ,i.e. p=2K,



while £ contains the direction in the causal relations if any. For example, we know
that we cannot have X;; — X;_,, while the other way around is possible if X; ;;
Granger causes X, ;. In the language of graphs we say that X;_;; is a parent of X ;.
In this paper we focus on the causal relations of X; conditioning on X;_;. This is
different from Granger causality. Given that the statistical relations of the elements
in X; conditioning on X, ; are defined by &;, we focus on finding the set of parents
of each £,,. For example, ¢, is a parent of €, if €;,; causes ;2 and not the other
way around. We write ¢;,; — €;,2. When the variables ¢;; are jointly Gaussian, we
immediately see that conditional independence is not enough to identify the direction
of the relation (Moneta et al., 2013, Peters et al., 2014).

In the case when all causal relations are identified with no cycles, the causal graph
is a directed acyclic graph (DAG): all edges are directed and there are no cycles. There
are no cycles if no descendant can be a parent of their ancestor. When the direction
cannot be identified we shall content to obtain the undirected edges. The graph
with no directions is called the skeleton. When we use observational data, we work
with their distribution, possibly under model assumptions as in (1). We say that the
distribution of the data is faithful to the graph if the set of all (possibly conditional)
independence relations of the distribution of the data and the graph coincide. The
(possibly conditional) independence relations of the graph are defined as the set of
vertices for which there is no edge between them. Such relations only require to
identify the skeleton. Unfortunately, a given distribution of data can generate an
infinite number of DAG’s. In the case of a VAR this is equivalent to say that the
structural VAR cannot be identified. This means that we cannot draw arrows for
all edges. A triangular system always allow us to draw edges, but this can be the
exception rather than the norm. Hence, we may need to content ourselves with the
complete partially directed acyclic graph (CPDAG), which is a graph where some
edges are undirected because they cannot be identified.

The PC algorithm (Spirtes et al., 2000) is an algorithm that identifies the skeleton
of the graph from conditional independence relations. It then uses some rules to
find the edges when identified. The skeleton needs to be estimated when we use
observational data (Kalisch and Biithlmann, 2007). For high dimensional time series
data, we require special tools as devised in the present paper. Hence, a main goal is
to identify the skeleton of €;. The first step in this direction is to be able to estimate

Y. The inverse of this matrix plays a special role as it allows us to identify all



the partial regression coefficients. In particular, the set of nonzero entries in row
¢ of the inverse of ¥. identifies the neighbours of €;,. The set of all neighbours
defines the so called moral graph. This is larger than the skeleton as it includes
edges between two vertices even when these are unconditionally independent, but
conditionally dependent. Such situation arises when there is a so called immorality,
e.g. €,1 and €, 3 are unconditionally independent and cause ;5. Clearly, conditioning

on &9, the variables €;; and €; 3 are not independent anymore.

3.2 Identification of the Gaussian Copula VAR

We conclude with two results that show the identification strategy in our methodology.

We define the precision matrix © = 71, As we did for 3 in (2), we partition it with

@21 @22

The parameters in (1) are identified from the precision matrix (3). The following,

same dimensions as in (2):

is a consequence of the classical result on graphical Gaussian models (Lauritzen, 1996,
eq. C3 and C4).

Lemma 1 Suppose that the conditions of Proposition 1 hold. Then, A = —07]'01,
and . = O}

When the DAG is identified, we can identify the SVAR. To this end, we introduce
some notation. Let II be a K x K matrix that can be transformed into the identity by
simple permutation of its rows. We call II a permutation matrix as it permutes the

rows of the conformable matrix that it premultiplies. We have the following result
for identification of the SVAR.

Lemma 2 Suppose that the conditions of Proposition 1 hold and that the causal graph
for et in (1) is a DAG. Then, we can find a permutation matriz I1 such that

1Z, = DIIZ; + (I — D)IIAZ,_, + &, (4)

where D is lower triangular with diagonal elements equal to zero, and & s a vector of
independent Gaussian random variables such that B is a diagonal full rank matriz.
In particular, the innovation in (4) satisfies lle, = HE where H = (I — D)f1 1S a

9



full rank lower triangular matriz with diagonal elements equal to one. Furthermore,

the process admits the infinite moving average representation
o0
7, = Z Y&, where Y; = ATIT'H. (5)
i=0

The matrix Y; represents the impulse response of Z, to the shock! &_; , i > 0.
The permutation matrix II can be recovered from the topological order of the con-
temporaneous causal DAG, where each row of II identifies an ancestor in its nonzero
entry, ordered by “birth”. For example, e,3 — €,1 — €12 says that &3 is the first
ancestor, ;7 is the second ancestor and ¢; 5 is the third one. Clearly, ;2 has no de-

0 01
scendant. Then, the permutation matrixis [I= | 1 0 0 |, and is unique. When

010
an ancestor has more than one descendant, II is not unique. The simplest example

is €,1 — €12 and €,1 — &3, so that the first variable has two descendants. It is not
difficult to see that we have two possible permutation matrices II because €, is the
first ancestor while ¢, 5 and €, 3 are not ancestors of each other. Hence we can choose

to have either €, or £, 3 in the second row of 1I. One choice is II = I, the identity
1 00

matrix, the second is Il = 0 0 1 |. In what follows, we shall always refer to

010
the II matrix as the one that is obtained from the least number of row permutations

of the identity matrix. In this case II is unique. Hence, estimation of the DAG is
equivalent to estimation of the permutation matrix II.

Finally, we remark that a significant instantaneous effect on the Impulse Response
Function (IRF) does not provide any information about the true contemporaneous
causal structure. This is because correlation does not imply causation. It is easy
to construct an example with a causal chain e — 3 — &3 to show that a shock
on & ; might instantaneously propagate to ;3 even if there is no direct path in the
contemporary causal graph. Therefore, the restrictions derived by the causal structure

cannot be employed to estimate directly the matrix H from the covariance matrix

!'We have to permute the vector & by II, so that & and the shocked variables Z;have the same
ordering. For instance, if we want to observe the impact of the shock related to the first variable on
Z; we have to consider the vector II- (1,0, ---,0)’, since in the topological order described by II the
first variable of Z; might be in another position.

10



of ;. Imposing restrictions on H would correspond to a different causal structure
with respect to the true one. First, the permutation matrix II has to be estimated.
Then, we can estimate D and recover an estimator for the matrix H of instantaneous
effect, as defined in Lemma 2. Next, we introduce algorithms that will be shown to

be produce consistent estimators, under regularity conditions.

4 Estimation Algorithms

For any positive integer p, [p| := {1,2,...,p}. For any matrix @ of dimensions p x ¢
and sets A C [p] and B C [q], A4 is the submatrix with rows in A and columns in
B. In Asp, when A = [p] we write A. g and similarly if B = [¢]. When A = [p] \ {i}
for some i € [p], we write A_; g and similarly for B. When A is a vector, it is always
assumed that it is a column vector and we shall use the same notation, but with one
single subscript. This notation will be used throughout the paper with no further
mention.

The estimation methodology is based on a number of steps which extend the
methodology in Liu et al. (2012). First, we find an estimator of the matrix ¥ in (2),
which is the Gaussian copula scaling matrix of the vector W; = (X{,X{_l)/. This is
achieved using Algorithm 1. Once, the estimator for X is available, we identify the
set of zero entries in the precision matrix, i.e., the inverse of >. This can be achieved
using Lasso, as described in Algorithm 2. This algorithm follows the approach of
Meinshausen and Biithlmann (2006) to find the zeros in the inverse of (2). However,
the algorithm also thresholds the resulting Lasso estimators in order to achieve sign
consistency. In this form, the algorithm is equivalent to Gelato (Zhou et al., 2011).

In Algorithm 2, (6) is solved by the x that satisfies the first order conditions in
a Lasso minimization problem. The constraint z; = 0 is needed to avoid running
the regression of the i*" variable on all the other covariates and itself. We need the
estimator to be in this form for later use. A competing algorithm to find the zeros
of the precision matrix is the CLIME estimation algorithm with thresholding (Cai et
al., 2011). The procedure is described in Algorithm 3. The minimization problem in
Algorithm 3 can be solved for one column of 2 at the time, with €2 as defined there,
due to the use of the uniform norm. We shall show the validity of both algorithms
within the time series context of this paper.

Algorithm 4 allows us to estimate the parameters in (1). In particular, it uses the

11



information on the zeros of the estimator for the precision matrix © to construct a
sparse estimator (Le and Zhong, 2021). Using Lemma 1, such sparse estimator of the
precision matrix is used to estimate the autoregressive matrix A and the covariance
matrix of the innovations &; in (1).

Finally, using Algorithm 5, we identify the PCDAG. Algorithm 5 makes reference
to the PC-algorithm. We do not report the details in Algorithm 5, as the number of
steps is relatively large and can be found in Spirtes et al. (2000) among many other
places. The aim of the PC-algorithm is to start with a dense graph with undirected
edges for all variables. It then aims at removing edges to obtain the skeleton of the
graph. Finally, it uses a set of rules to direct all possible edges based on deterministic
rules. It is not guaranteed that all edges can be directed, of course.

In order to delete edges, the PC algorithm uses the correlation coefficients between
two variables, conditional on subsets of other variables. Note that the innovations
in the latent model (1) are Gaussian so that zero correlation implies independence.
As soon as we find a set of conditioning variables such that the two variables are
conditionally uncorrelated, we remove an edge between these two variables. Given
that the conditional correlations are unknown, Kalisch and Biithlmann (2007) suggest
to replace these with sample versions as in Algorithm 5. They define a parameter
a, as in Algorithm 5, and show that for &« — 0 at a certain speed we can obtain a
consistent estimator of the PCDAG, as if we knew the true conditional correlations.
For this reason, Algorithm 5 only gives details on the sample estimator leaving out
the deterministic steps, to avoid distracting details.

Identification of the SVAR requires that all edges are directed. Assuming that
Algorithm 5 can direct all the edges, for each i € [K], we obtain estimators V (i) for
the set of parents of ¢,;, using the notation in Algorithm 6. According to Lemma 2,
to find the matrix D, we need to find the regression coefficients of the innovation e, ;
on &y, ¢ € [K]. Algorithm 6 finds such regression coefficients and collects them
into a K x K matrix A, i =1,2,..., K. In particular, the i"* row of A has entries
1% (7) equal to the coefficients found regressing £;; on 4.90) and zeros elsewhere. By
the fact that the graph is a DAG, there is a permutation matrix IT such that ITAIT!
is an estimator for D and is a lower triangular matrix with zeros along the diagonal.
The regression coefficients are obtained relying on 3, := (:)1’11. This is because ©1;
is a sparse estimator with good asymptotic properties. Such properties are inherited

by 3. even though . is not sparse. The estimator 3. is not necessarily sparse.
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Algorithm 1 Copula Scaling Matrix Estimation.

Define W, := (X[, X;_,)’, t € [n].

For1 <1< j <2K:

Let p;; be the sample Spearman’s rho coefficient between (W37i)s€[n] and (W, ;)
(i.e. the sample correlation of their ranks). A

Define the 2K x 2K matrix estimator ¥ for (2) with 7, j entry 3;; = 2sin (§p;;) and
set f]w = i”

Ensure that the entries in 3 corresponding to 3q; and gy in (2) are the same by
taking averages of the two estimators if needed.

s€[n]

Algorithm 2 High Dimensional Causal Estimation with Lasso. Use Lasso (Mein-
shausen and Biithlmann, 2006) to find the moral graph of W;.

Set 7> X > 0.

Run Algorithm 1 to obtain 3.

For i € [K]:

Denote by 3® € R?X the solution to

Y. — Yz = Xsign (z), s.t. 2; =0, z € RE (6)

o)

Let j be a neighbour of i if B](l) # 0.

For each i € [K]:

Set Q0 equal to 8@, but let O = 1, where Q' is the i*" entry.

Redefine BJ(Z) as Bj(i)l{

Moreover, regression coefficients are found directly from 3. with no need to estimate
the innovations.

The tuning parameters for Algorithms 2 and 3 are chosen using crossvalidation
(Section A.2 in the Electronic Supplement, for details).

In the Electronic Supplement, we also use simulations to investigate the finite
sample properties of the estimators in our algorithms (see Section A.3 in the Elec-
tronic Supplement). There, we also evaluate the performance of the PC algorithm
when we use the zeros in ©1; to remove edges from the skeleton with the purpose of
skipping some time consuming steps in the PC Algorithm. This considerably reduces
the compute time in the high dimensional case. However, when imposing such a priori
restrictions, we need to be careful not to increase the possibility of not including an
edge that should instead be included (a false negative). The PC algorithm can only
delete edges and not add them back. This means that we should undersmooth by

13



Algorithm 3 High Dimensional Causal Estimation with CLIME. Use CLIME (Cai
et al., 2011) to find the moral graph of W;.

Set 7>\ > 0.

Run Algorithm 1 to obtain 3.

Let ) € R2%2K he the solution to min Q4 s.t. )f]Q — I‘ <A\
Redefine Q” as Qi’j1{|ﬂm|27} and denote by Q@ the it* column of the redefined ).

Algorithm 4 Estimation of the Parameters in (1).

Run either Algorithm 2 or 3 to find & and Q@, i = 1,2, ..., 2K.

Let Q@ be the subvector obtained by deleting the zero elements in Q® and denote
by §; its size.

Denote by B; the 2K x § rrllatrix such that Q@ = B,Q®

Define 60 = B, (3{23) Egei where e; is the 2K x 1 vector with " entry equal
to one and zero otherwise.

Let 6 = 1 [(é<1>,é<2>, - 60) 1 (61, 6@), ...,é@K))'].

Denote by Oy, the entries (k,1) in ©, k,1 =1,2,..., K.

Denote by O, the entries (k,1) of © with k =1,2,..., K, and | = K+1, K+2, ..., 2K.
Define A = —07!0y, as an estimator for A in (2).

Define 3. = ©7! as an estimator for ¥, := Ee,e).

Algorithm 5 Estimation of the PCDAG.

Run Algorithm 4 to find ..

Use 3. to find the estimator of the correlation coefficient of et and g, ; conditioning
on {ey; : 1 € k} where k C [K] is a set that excludes 7, j. Denote such correlation
coefficient by ém‘k.

Use the PC-algorithm (Spirtes et al., 2000) and delete a node between (i,j) if

vn—lkl—-3xyg <§”|k> < @71 (1—9) where g(z) = 27'In (1) (z € (-1,1))

and a € (0,1).
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Algorithm 6 Estimation of the impulse response.

Run Algorithm 5 and suppose that the PC algorithms identifies the DAG in the sense
that it produces and estimator £ C V x V for the true edges &, such that all elements
in € are directed.

For i € [K]:

Find all j € V such that (j,i) € € so that conditioning on the Z,_;, the j covariate
is a parent of the i one (i.e. g,; — ;). Denote such set by V (7).

. A__ S—1 )
Find d; = zg,f/(i),f;(i)ze,v(i),i‘

Let A be the matrix such that Az Vi) = cf; and zero otherwise.

Find the matrix II obtained from the least number of row permutations of the identity
matrix and such that D := IIAII"! is lower diagonal with diagonal elements equal to
Z€ero.

choosing tuning parameters that are smaller than the ones obtained by crossvalida-
tion. This produces a ©1; with less zeros. However, it has the negative consequence
of increasing the estimation error of 3, := (:)1_11. In conclusion, as far as sample
properties of the estimator are concerned, we found that imposing such restrictions
does not improve the performance of the estimator of the PC algorithm, but for some
special causal structures.

The simulation analysis show that our approach produces more reliable results
than methods that do not account for either sparsity or time series dependence,
i.e. setting A = 0 in Algorithms 2 and 3 or assuming A = 0 in (1). Even when the
persistence of the time series is reduced, our methodology produces the best results for
estimation of the causal structure and the VAR parameters (for details, see Tables 2-7
in Section A.3 in the Electronic Supplement). Although our approach is designed for
a high dimensional setting, it provides competitive results even in the low dimensional

case.

5 Asymptotic Analysis of the Algorithms

The consistency of the algorithms relies on a set of conditions. Before introducing

our conditions, we introduce some additional notation.
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5.1 Additional Notation
For any vector, the ¢, norm is denoted by ||, p € [0, 00]. For any I x J dimensional

a/p\ V1
matrix A, |A], = (Z‘] (25:1|Ai7j|p> ) is the elementwise norm. When

j=1

q = oo we define |A[, = max;<; <Z¢I=1 ]Am\p)l " When both p = q = 00 we
simply write |A|_ = max;<; j<s|A4;;|, and this should not cause confusion with the
oo norm. For p = 0, Al , = max;<; Zi]:l 14,1503 When p = ¢ = 0, this is
just the total number of non-zero elements in A. Finally, ||, is used to define the
following operator norm: |A\Op = maxXy., <1 |Az|,. Then, |A|Op is the largest singular
value of A. For ease of reference, we call this norm the operator’s norm.

Let U (w, s) = {Q € RHOK . 0w 0,10, . < w, Q. < s}. The symbol Q > 0
is used to mean that €2 is a symmetric strictly positive definite matrix. Then, U (w, s)
is the set of symmetric strictly positive definite matrices whose absolute sum of column
entries is at most w, and with maximum number of non-zero entries in each row equals
S.

We shorten left and right and side with L.h.s. and r.h.s., respectively. Finally, <
is used when the Lh.s. is bounded above by a constant times the r.h.s.; 2 is bounded
below by a constant times the r.h.s.; =< is used when the lL.h.s. is bounded below
and above by constants times the r.h.s.. Finally, to avoid notational trivialities, we
assume that K > 2.

5.2 Regularity Conditions

Assumption 1 (Model) There are monotone functions fi, such that Z, = fi (Xix)

is a standard Gaussian random variable such that (1) holds.

Assumption 2 (Dimension) The state space is a subset of R, where K = O (n"x)

for some ng < cc.

Assumption 3 (Precision matriz sparsity) The precision matriz © = X! is an

element of U (w, s) for s = O (n") for some ns, < 1/2.

Assumption 4 (Identifiability) Omim = 17", ng < 1/2, where O, is the smallest

absolute value of the nonzero elements in ©.
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Assumption 5 (Eigenvalues) The singular values of A are in a compact interval in-
side (0,1) and the eigenvalues of X. are in a compact interval inside (0, 00), uniformly
in K.

Strictly speaking, if K — 0o as n — oo, we should index both the process X and
its law by n and think in terms of a sequence of processes. We refrain to do so for
notational simplicity. No part in the proofs makes implicitly use of assumptions that

contradicts this.

5.3 Remarks on the Regularity Conditions

Condition 1. The modelling assumption includes a Gaussian linear vector autore-
gressive model as special case. However, it is clearly more general than that. Once,
we assume that the data satisfy a VAR model after a monotone transformation, we
do not need to impose any moment condition on the original data. Hence the pro-
cedure is robust to fat tails. As discussed in Section 2, we can view this assumption
as a Gaussian copula assumption for the cross-sectional and time series dependence.
Condition 1 can be viewed as a generalization of the framework of Liu et al. (2012)
in the time series direction and has been recently exploited by Fan et al. (2022) to

test for Granger causality in high dimensional models.

Condition 3. The precision matrix is supposed to have maximum absolute sum of
each column bounded by a constant w. Our bounds make explicit the dependence on
w so that we can have w — oo if needed. This constant is only used in Algorithms 2
and 3. The total number of non zero elements in each row is supposed to be bounded
by a constant s. This is allowed to grow to infinity with the sample size at a certain
rate. This assumption is different from Fan et al. (2022) who assumes that the
autoregressive matrix A in (1) is sparse. This is not the case here. By Lemma 1,

sparsity of © does not imply sparsity of either A or X..

Condition 4. This condition is only used to ensure that we can identify the zero
entries in ©. It is necessary in order to ensure the validity of post selection asymptotic,
though the rate can be arbitrarily slow when 6., — 0 (Leeb and Pé&tscher, 2005,
p.29ff).
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Condition 5. The eigenvalues condition means that the variables are linearly in-
dependent in the population. This could be weakened, but at the cost of technical

complexity. This condition also implies the following.

Lemma 3 Under Condition 5 the following statements hold uniformly in K:
1. The eigenvalues of ' = Var (Z;) are bounded away from zero and infinity;

2. There are constants Omin, Omax € (0,00) such that the eigenvalues of ¥ in (2)

are in the interval [omin, Omax);
3. There is a v > 0 such that |0, ;] > v?;

4. The partial correlations of €,; and £,; conditioning on any other subset of re-

maining innovations is bounded above by a constant o < 1.

5.4 Uniform Convergence of the Scaling Matrix Estimator

The uniform consistency of the covariance estimator from Algorithm 1 is well known
(Liu et al., 2012). It is still consistent for dependent data.

53~ or ().

Fan et al. (2022) show a similar result using Kendall’s tau instead of Spearman’s

Theorem 1 Under the Regularity Conditions,

rho with a different method of proof.

5.5 Estimation of the Undirected Graph
5.5.1 Consistency for Algorithm 2

The reader is referred to the Regularity Conditions and Algorithm 2 for the notation.
Let 8% be the population regression coefficient including a zero in the i entry, i.e.
the solution to X. ;2 — ¥ =0 s.t. z; = 0.

Theorem 2 Suppose that the Reqularity Conditions hold. There is a finite constant

¢ large enough such that in Algorithm 2, choosing A = A\, = cwy/ 2L with w is as in

n

= Op (ws@).

Condition & we have that maX;e(k) ‘B(i) - B®

18



One could choose ¢ — oo slowly enough, in which case the bound would be
Op <c X ws@) instead of Op <ws\/¥). The proof of this result shows that we
could have stated the results as finite sample one with high probability. However,
such statement would still depend on an unknown constant. Hence, for simplicity, we
have chosen not to do so.

Using appropriate thresholding, with threshold constant greater than the noise
level, but smaller than 6,,;,, the absolute value of the smallest nonzero entry in ©,
leads to set identification. In what follows sign () is the sign of the real variable z
with sign (0) = 0.

Theorem 3 Suppose that the Regularity Conditions hold. In Algorithm 2, set T =
Tpn = 0 (Omin) such that X\ = A\, = o (7,) with A as in Theorem 2. If wsvVn='In K — 0,
then,

Pr (sign (BJ(Z)) # sign (ﬁj(-i)) for at least one i € [K],j € [2[(]) — 0.

5.5.2 Consistency Results for Algorithm 3

The reader is referred to the Regularity Conditions and Algorithm 3 for the notation.

Theorem 4 Suppose that the Regularity Conditions hold. There is a finite constant ¢

large enough such that in Algorithm 3, A = \,, = cw IHTK, where w is as in Condition

3, implies that ‘Q — @‘ =0Op (wﬂ/%).

The same remark we made about ¢ in Theorem 2 applies here. Also here, we could
have stated the result as a finite sample one with high probability.
Using the appropriate level of thresholding, Theorem 4 implies the following.

Theorem 5 Suppose that the Regularity Conditions hold. In Algorithm 3, set T =
Ty = 0 (Omin) and X\ = N\, = o (7, /w) with X as in Theorem 4. If w>n='In K — 0,
then,

Pr (sign <Q”) # sign (0, ;) for somei,j € [2K]> — 0.

5.6 Estimation of the Process Parameters and Causal Graph

In what follows, we suppose that the conditions of either Theorem 3 or Theorem 5

hold, depending on which algorithm is used. For short we generically refer to these
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as the Regularity Conditions (A, 7) as they also involve restrictions on the choice of

penalty A and threshold 7.

5.6.1 Consistency of Precision Matrix Estimation

The estimator for the precision matrix is elementwise uniformly consistent under

sparseness conditions.

Theorem 6 Suppose that the Regularity Conditions (X, 7) hold. Then, the estimator
O from Algorithm 4 satisfies |© —©| = Op (1 / %)

While the quantity s = |©|, ., does not enter the bound, a constraint on its growth

rate, as prescribed by Condition 3, is required for Theorem 6 to hold.

5.6.2 Consistency of the Estimators for the Autoregressive Matrix and

Innovation Covariance Matrix

Recall that by Lemma 1, using the notation in (1) and (3), A = -0, and
Y = @ﬁl. Hence, we need consistency of ©15 and the inverse of ©17, which is the
case under sparseness. Recall that s = [©];  asin Condition 3. We have the following

bounds in terms of the operator’s norm.

Theorem 7 Suppose that the Regularity Conditions (X, ) hold. Then, . -8 =

Op <s\/¥> and ‘A —A o =0Op (5@)

5.6.3 PC-Algorithm

op

Let G be the estimated PCDAG from Algorithm 4 and G the true PCDAG. The next
result requires faithfulness of the distribution of the data to the graph, as defined
in Section 3.1. In what follows, ®(-) is the cumulative distribution function of a

standard normal random variable.

Theorem 8 Suppose that the Regularity Conditions (A, T) hold and that the joint dis-
tribution of the innovations e, in (1) is faithful to the DAG for all K. Run the PC al-
gorithm as referenced in Algorithm 5 with o = «, such that o, = 2 (1 - & (nl/an/Q))
for ¢, < n7 where 2n.+3ns < 1 with ns as in Condition 3. Then, Pr (@ #+ G) Sn7P

for any constant p < cc.
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Theorem 8 says that the estimator for the PCDAG converges to the true one at
an arbitrarily fast polynomial rate. This is worse that the exponential rate obtained
by Kalisch and Biithlmann (2007) for causal discovery using independent identically
distributed data.

5.6.4 Consistency of Impulse Response Function

We show that D from Algorithm 6 is consistent for D, with D as in Lemma 2. When
the PC-Algorithms in Algorithm 5 produces edges that are all directed, we interpret
D to be the one corresponding to the permutation matrix IT that is obtained by the
least number of row permutations of the identity. Then, D is unique.

In the following, we state the consistency of D for D, and the consistency of an
estimator H for H, in (5), with convergence rates. We shall denote by x the maximum
number of direct descendants among all parents. It is not difficult to show that this
is the same as the maximum number of nonzero elements among the columns of D.
Such number is bounded above by s, which corresponds to the maximum number of

adjacent variables across all the nodes.

Theorem 9 Suppose that the Regularity Conditions (A, 7) hold, that the joint dis-
tribution of the innovations e, in (1) is faithful to the DAG for oll K, and that all

the estimated edges resulting from Algorithm 5 are directed. Then, using Algorithm 6,
}ZA? —D| =0p (3@ / %), where D is as in (4) with I1 obtained by the least number
op

A N\ -1
of row permutations of the identity. Moreover, we also have that H = (I — D)

6 Empirical Application

satisfies )ﬁ —H

We apply our methodology to study the causal relations between aggregated order
book and trades variables in high frequency electronic trading. We aggregate the
information to one minute in order to filter out noise and be able to extract one-
minute causal relations. This is different from the analysis of order book tick data
which has been studied extensively in the literature (Cont et al., 2014, Kercheval
and Zhang, 2015, Sancetta, 2018, Mucciante and Sancetta, 2022a, 2022b). Tt is well

known that market participants look at the order book to extract market information
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(MacKenzie, 2017). We want to extract average causal relations. For example, such
relations are useful to decide how to place trading orders and understand how on
average these affect the order book and prices.

We shall estimate a model with 5 stocks to investigate the direction of information
dissemination within each stock, via the order book and trades, as well intra stocks.
This requires the estimation of a large dimensional model. Our results will also show
how the methodology of this paper allows us to disentangle contemporaneous causal

effects from time series effects.

6.1 The Data

We consider four stocks constituents of the S&P500 traded on the NYSE: Amazon
(AMZN), Cisco (CSCO), Disney (DIS) and Coca Cola (KO). We also consider the
ETF on the S&P500 (SPY). The stock tickers are given inside the parenthesis. The
sample period is from 01/March/2019 to 30/April/2019, from 9:30am until 4:30pm
on every trading day. The data were collected from the LOBSTER data provider?
(Huang and Polak, 2011). This is a Level 3 dataset, meaning that it contains all limit
orders and cancellations for the first 10 levels of the order book as well as trades, all

in a sequential order.

6.2 The Covariates

We construct a set of covariates related to the ones that are commonly found in the
studies of high frequency order book and trades. However, we use aggregated data
to one minute equally spaced frequency. We do so to reduce noise and to be able to
estimate an average propensity of each covariate to cause the other. In particular the
covariates are the book imbalance up to ten levels, a geometric average return, and the
trade imbalance, often termed order flow imbalance. The covariates are listed in Table
1, where their definition can be found. In Table 1, Mid = (AskPrice; + BidPrice;) /2
and LagMid is the Mid from the previous minute bucket, where AskPrice; is the
ask price at level ¢ and similarly for BidPrice;. The operator avg (-) takes the data
from the same one minute bucket and computes the average value. In case of much
market activity, the exchange will use the same timestamp for a number of messages

at different levels. In the case of the orderbook, we use the last book snapshot of

https://lobsterdata.com/ .
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Table 1: List of Covariates. The covariates are listed together with their definition.

Name Short Name Definition

. avg(BidSize; — AskSize;)
Book imbalance  BookImb; ave(BidSize; T AskSize))
at level ¢ € [10]

Return Ret 100 x [avg (In (Mid)) — avg (In (LagMid))]

ignedTrdSi
Trade Imbalance Tradelmb avg(SignedTrdSize)
avg(TrdSize)

the many with the same time stamp. We do not apply this logic to trades. These
covariates are directional ones. For this reason, we have omitted other interesting
ones, such as the spread. Moreover, the instruments we use are all very liquid and
the spread does not change much in this case.

For ease of reference, in what follows, we shall use the convention of merging the

ticker and covariate short name.

6.3 Estimation

We estimate the causal graph using our proposed methodology. We used both Lasso
(Algorithm 2) and CLIME (Algorithm 3) for the estimation of the sparse precision
matrix. For these algorithms, the penalization parameter A and the threshold param-
eter 7 were selected using cross-validation (see Section A.2 in the Electronic Supple-
ment for details). We then applied Algorithms 4, 5, and 6 to estimate the Gaussian
copula VAR parameters, recover the contemporaneous causal structure and identify
the matrix of contemporaneous relations D for estimation of the IRFs. The code to
implement the PC-algorithm using the sample correlations and parameter « is avail-
able as part of the R-package pcalg https://cran.r-project.org/web/packages/
pcalg/pcalg.pdf. The PC algorithm was initialized with the restrictions provided
by Lasso and CLIME to speed up computations and obtain a more restricted graph.
We found that all the edges of the causal graph were directed.

It is well known that subset selection procedures are inherently unstable (Mein-
shausen and Biihlmann, 2010). For this reason, we resample the data 100 times and

carry out the above estimation procedure (Algorithms 1, 2 or 3, 4 and 5) for each
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sample. To ensure that we do not alter the time series structure of the data, the
resampling was performed to select the days. The total number of days in our sample
is 42. Then, to obtain the causal structure G from the PC, we keep the edges se-
lected at least 75% of the times within the 100 resamples. The above procedure can
produce cycles so that the graph is no longer a DAG. In this case, we would discard
the less frequently observed edge for each cycle, in order to obtain a DAG. However,
we remark that cycles were not observed.

Given that our estimated causal graph had no undirected edges, we recovered the
matrix of contemporaneous effects D from Algorithm 6 and then the (mixing) matrix
H = (I — D)™! necessary for recovering the IRFs (see Section 3.2).

To account for uncertainty in the estimation of IRFs we performed 500 bootstrap
sampling conditioning on the moral graph and skeleton obtained from the original
sample. This means that we only ran Algorithms 1, 4 and 6 on each sample, using
the matrices B; and the sets V (i) estimated on the original sample. Using the 500

samples, we computed the median and the related 95% confidence interval.

6.4 Summary of Results

The results for Lasso and CLIME were very similar. In the interest of space, we
report and discuss only the results when Lasso (Algorithm 2) is used as intermediate
step, with no further mention. Our results show that the causal structure of the
order book of each instrument exhibits a dense network structure. The first level of
order book imbalance is a source node for each instrument. This means that it is
not contemporaneously caused by any other variable. In general we observe how the
causal structure goes from top levels to deeper ones. Usually, the return is affected
directly by the deeper levels of the order book imbalance. For all but one instrument
(KO), the return is a parent of the trade imbalance variable that happens to be a sink
node variable. A sink node variable is a variable that is no parent of other variables.
We also observe crosscausal effects across instruments, where in particular we observe
how the SPY return is affected by the other returns. The details can be found in
Figure 1 that shows the DAG of contemporaneous causal relations obtained from our
estimation procedure.

The results from the IRF convey a complementary picture to the DAG, as the

two are distinct. However, identification of the SVAR requires identification of a
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CSCOBookImbl

CSCORet CSCOBookImb2

O
SPYRet

Figure 2: Subgraph of Estimated DAG. The subgraph only considers the contempo-
raneous causal relations between CSCOBookImb;, CSCOBookImb,, CSCORet and
SPYRet.

permutation matrix II (Lemma 2). Such matrix is identified from the DAG. By
looking only at the IRFs, one could conclude that a variable contemporaneously affects
another. This is because the IRF does not show how the information propagates from
one variable to the other at the contemporaneous level. For this reason, we need the
causal graph. This point is made vivid by some of our results.

For the sake of definiteness we consider the subgraph composed by CSCOBooklImby,
CSCOBooklImb,, CSCORet and SPYRet as shown in Figure 2. The related IRF’s are
plotted in Figure 3. From the latter, we observe that a shock on either CSCOBookImb,
and CSCOBookImbs produces an instantaneous effect on both CSCORet and SPY Ret.
Therefore, by looking only at the IRFs, we can conclude that CSCOBookImb; and
CSCOBooklmby are directly affecting CSCORet and SPYRet. However, this is not
the case (see Figure 2). There, we can see that CSCOBooklmb; and SPYRet are
independent when we condition on CSCOBooklmb, and CSCORet. This means that
CSCOBooklmb;, is confounding CSCOBookImby and SPYRet. The information de-
rived from the causal graph makes explicit the difference between the instantaneous
effects exhibited in Panel (a) of Figure 3. Any shock to CSCOBookImb; will first
affect the CSCOBookImb, and CSCORet. Hence, SPYRet is only affected through

the latter covariates.
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From Panel (b) of Figure 3 we observe that, despite the contemporaneous causal
relations, SPYRet affects CSCORet with a lagged impact. This effect is also observed
for the other instruments: changes in SPYRet affect other variables through its lags.

In summary, a thorough analysis of relations between these variables does require
to look both at the contemporaneous causal effects via a DAG and the IRF’s. The
former helps us identify causal effects within simultaneously occurring events. The

latter sheds light on the time series propagation of such effects.

7 Conclusion

This paper has introduced a novel approach for the estimation of causal relations in
time series. It essentially uses a Gaussian copula VAR model. Such causal relations
differ from Granger causality. Our methodology, allows us to identify causal relations
in high dimensional models. Using a sparsity condition we are able to consistently
estimate the model parameters. Our sparsity condition does not imply sparsity of
the autoregressive matrix and of the covariance matrix of the innovations implied by
the Gaussian copula VAR model. Our sparsity conditions can be viewed as weak
assumptions on conditional independence. We are then able to identify the related
directed acyclic graph of causal relations, using observational data, as if we knew the
true distribution of the data.

Asymptotic results and finite sample investigation confirm the viability of our
methodology and its practical usefulness for high dimensional problems. A finite
sample analysis, carried out using simulation (Section A.3 in the Electronic Sup-
plement), confirms the asymptotic results of the paper. Moreover, the simulations
show that not accounting for time series dependence leads to wrong causal inference.
Failing to exploit sparsity leads to suboptimal results, even in low dimensions.

We applied our methodology to the analysis of the conditional contemporaneous
causal relations of order book data in high frequency financial data. To the best of
our knowledge this has not been done before and has important implications for un-
derstanding the aetiology of electronic trading. The shape of the order book appears
to be a main causal factor for price changes. The shape of the order book of SPY
does not necessarily cause contemporaneous price changes in some of its constituents.
Nevertheless, the analysis of the estimated impulse response functions shows that the

order book of SPY can have a lagging effect on the price changes of other instruments.
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Figure 3: IRF’s for a Subset of the Covariates. Panel (a) shows the median IRF’s
(solid line) with its 95% confidence interval (dotted lines) for CSCORet, SPYRet as
a result of a unitary shock on CSCOBookImb;, CSCOBookImb,. Panel (b) show the

same information for CSCORet and SPYRet on each other. The time 1 on the x-axis
corresponds to the instantaneous effect of the shock, i.e., it is related to time t = 0.
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Hence, the approach put forward in this paper allows us to disentangle contempo-
raneous causality from time series effects. Causal inference and IRF’s analysis show
in a complementary way the nature of how the information propagates among the
variables of a dynamical system accounting for both contemporaneous and time series

effects.
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Supplementary Material to “Consistent Causal Infer-
ence for High Dimensional Time Series” by F. Cordoni
and A. Sancetta

A.1 Proofs

Throughout, we use cg, c1, o, ... to denote constants.

We also recall a property of symmetric strictly positive definite partitioned ma-
A Ap

trices. Let X = 2 A where A;; 4,5 € {1,2} is a partition of ¥. Then,
12 22
B, B
Y l=0= jl ") where
By, By

B = (All - A12A521A21)_1 , B1a = —BllA12A521, Byy = (AQQ — A21AI11A12)_1 (Al)

(e.g. Lauritzen, 1996, eq. B.2).
The conclusions from Lemma 3 will be used in a number of places. Hence, we

prove this first.

A.1.1 Proof of Lemma 3

We prove one point at the time.

Proof of Point 1. From the condition on A, we have that Var (X;) = 305, A'Y_ (A"
We note that

3 it (4. (') < eig (fj A’y <A’>Z') <3 eig (A (a))
1=0 =0 =0

j=1,2,.., K, where eig; (-), eig,, (-) and eig, ., (-) are the j" eigenvalue, the mini-
mum and the maximum eigenvalue of the argument (Bhatia, 1996, eq. III.13, using

induction). Moreover, we have that

eig, . (X.) g, (Ai (A’)i) < eig, . (AiEe (A’)Z')



and
Cigma (A'Z: (4)') < eige (A" (4)') ciga (22)

To see this note that

max ¥’ AN Az <  max ¢ Y.y = eig,. (A'A)eig, .. (Z.)
x:x’x=1 yy'y=z’' A’ Ax

and similarly for the lower bound and for i > 1. Given that the eigenvalues eig; (4’A)
are in (0,1) and the eigenvalues eig; (X.) are in (0,00) by assumption, we conclude
that the eigenvalues of Var (X;) are bounded away from zero and infinity, uniformly
in K.

Proof of Point 2.  From the definition in (2), we have the following equality,

) )G )

where, here, 0 represents a K x K matrix of zeros. From the assumption on A and

the fact that [' = Var (X;), we can use the definition of eigenvalues and, mutatis

mutandis, the previous inequalities, from the proof of Point 1, to deduce the result.

Proof of Point 3. From (A.1) and the definition of ¥ as variance of (Z], Zg_l)l, we
deduce that the (7,7) element in Oy, is the inverse of the variance of Z;; conditioning
on Z;_1,, all the other variables and their first lag. Given that the eigenvalues of X
are bounded away from zero, uniformly in K, the random variables are not perfectly

correlated. Hence there must be a constant v > 0 as in the statement of the lemma.

Proof of Point 4. The eigenvalues of 3. are in some compact interval inside (0, 00),
uniformly in K, by assumption. Hence, the innovation vector has entries that are not
perfectly dependent. This means that no conditional correlation between any two

variables can be equal to one, uniformly in K.

A.1.2 Proof of Proposition 1

It is clear that the process X is a stationary Markov chain. The mixing coefficients

are invariant of monotone transformations of the random variables. Hence, we can



consider the mixing coefficients of Z in (1). For the Gaussian VAR model in (1),
Theorem 3.1 in Han and Wu (2019) says that the strong mixing coefficient « (k) for
variables k periods apart satisfies o (k) < ¢ ]A\lsp where ¢ is the square root of the ratio
between the largest and smallest eigenvalue of Var (Z;). This ratio is bounded by
Lemma 3. On the other hand, |A|,; is the largest singular value of A, which is smaller
than one, uniformly in K, by assumption. Hence, the strong mixing coefficients decay

exponentially fast.

A.1.3 Proof of Lemmas 1 and 2

The conditions in Proposition 1 ensure that the model is stationary. We use this with

no explicit mention in the following.

A.1.3.1 Proof of Lemma 1

This follows from (2) and Lauritzen (1996, eq. C3-C4) or from (A.1).

A.1.3.2 Proof of Lemma 2

By the assumption of the lemma, all edges of the graph of ¢; are directed. There are
also no cycles. Hence, there must be a permutation matrix Il of the elements in &,
such that the ¢ element in Ile; is not a parent of the 7+ — 1 element. This implies the
structure [le; = HE where H is a lower triangular matrix with diagonal entries equal
to one. Note that H can have diagonal elements equal to one because we are not
assuming that E&&; is the identity. The fact that the graph is acyclic means that H
is full rank. Otherwise, we would have a descendant that is an ancestor of itself. Now
note that the inverse of a lower triangular matrix is also lower triangular. Moreover, if
the matrix has diagonal elements equal to one, also the inverse has diagonal elements
equal to one. Hence, we can write H~! = I — D where D is as in the statement of
the lemma and obtain (4). To find the infinite moving average representation, rewrite
(4) as H'II (I — AL) Z; = & where, here, L is the lag operator. By assumption,
(I — AL) can be inverted and has an infinite convergent series representation. Hence,

we deduce (5) by standard algebra and the aforementioned remarks on H.



A.1.4 Exponential Inequality for Spearman’s Rho

Given that Spearman’s rho is invariant of monotonically increasing transformations,
within our framework, we may consider variables that have been transformed into
Gaussian. The following, which is a special case of Theorem 1.5 in Piterbarg (1995),

will be useful to bound functions of Gaussian random vectors.

Lemma 4 Suppose that X and Y are p x 1 mean zero Gaussian random vectors with
covariance matrices Xy and Xy, respectively. Suppose that the eigenvalues of such
matrices are in some compact interval inside (0,00). Let h be a bounded function on

RP. Then, there is a finite constant ¢ such that

[ER(X) =Eh(Y)[ <) [Exi5 — Svagl-
X

With the help of Lemma 4, we bound the bias that arises from using dependent

data in the calculation of a U-statistic closely related to Spearman’s rho.

Lemma 5 Let Z := (Z;),., be a sequence of 2 x 1 dimensional stationary Gaussian
random variables with mean zero and variance one. Suppose that its 2 X 2 autoco-
variance function (ACF) is full rank for any lag value, and has elements that are

absolutely summable w.r.t. the lag value. Let Z := <Zt) be a sequence of i.i.d.
tez

random variables such that Z1 has same distribution as Z,. For any sequence of 2 x 1

dimensional stationary random variables (X;),., define

3

p3 (X1, Xp, ., Xin) 2= n(n—1)(n—2)

Z SigIl (th,l — th,l) sign (th’Q — thyg) .
t17#taF#t3

Then, there is a finite constant cz such that

]Ep?) (ZhZQ’ s Zn) - Ep3 (217227 7Zn) < CZ/n'

Proof. We shall first bound the expectation of the summand under two different
expectations. With some abuse of notation, let I' (k) be the 2 x 2 ACF of Z at
lag k. (In the text we have been using I' to denote Var (Z;), which here we shall

denote by I'(0).) By assumption, we have that Var <Zt> = Var(Z;) = T'(0) and
I'11(0) =T'32(0) = 1 because the variables have variance one. We shall use this fact

4



~ ~ ~ ~ ~ /
momentarily. Let U := (Zy, 1, Zo,1, Zinos Zigo) and U = (Ztl’l,th,l,ztl,g,zt&z)
and let ¥y := Var (U) and X5 := Var (U) The covariance matrices are functions

1 =1 0 0
of the ACF I'. Define V = RU where R = 0 0 1 'k The variable V is

Gaussian with mean zero and variance RXyR’. Define k :=t; — t9, | := t; — t3 and
v =ty — t3. By direct calculation, we find that

REUR, _ < 2— 2F171 (k) 5 F172 (0) + FLQ (’U) - Fl,g (7](1) - FLQ (l) ) .

].—‘1’2 (0) + FLQ (U) - FLQ (—k) - FLQ (l) 2— 21_‘272 (l)

On the other hand RY; R’ is as in the above display with I'y 1 (i) = T'g2 (i) =112 (j) =
0 for 4,7 # 0.
Now, note that

sign (V1) sign (Vo) = sign (Zy, 1 — Zi,1) sign (Ze, 2 — Zty2)

using the symmetry properties of mean zero Gaussian random variables. Moreover,

sign (7) = 1{z>0} — l{z<0}, Where 1¢, is the indicator function. Hence,
Esign (V7)sign (Vo) =2Pr (V) < 0,V, <0) —2Pr (V3 <0,V2 > 0).

Moreover, Pr(V; <0,V, > 0) = 1/2 — Pr(V; < 0,V, < 0) by standard set manipu-
lation and using the fact that Pr (1] < 0) = 1/2 because V; is Gaussian with mean
zero. Hence, we deduce that

Esign (V1) sign (V3) — Esign (Vl) sign (f/g) ’ =4

Pr(V1<0,V2<o)—Pr(Vl<0,I72<o)).

To bound the r.h.s. we shall use Lemma 4 with function h () = 1(;, <0y 1{zs<0}. We
also note that the assumption of that lemma on the eigenvalues is satisfied because
RYy R and RY;R' are full rank and have bounded maximum eigenvalue. By as-
sumption, we can also deduce that there is a function 7 such that I'; ; (k) < v (k) for
i,j = 1,2 and all integers k and ), v (k) < ¥ < oo. Hence, by Lemma 4, there is a



constant ¢ (the same as in Lemma 4) such that

Eps (Zh Za, ..., Zn) —Eps (Zh 22, ey Zn)

12¢
= n(n—1)(n—2) tl%;m [y (b = t2) + (0 — t3) + v (f2 — £3)] -

By summability of v (k) w.r.t. k € Z we deduce the result, where the constant cy
used in the statement of the lemma can be chosen equal to 36¢7y. m

The following is a rephrasing of Theorem 3.1 in Han (2018) where we have added
the bias that results from the use of dependent data (see Han, 2018, eq. 3.1).

Lemma 6 Let X = (X;),., be a sequence of stationary random wvariables, possi-
bly vector valued, with exponentially decaying strong mizing coefficients. Let X =
(Xt) be a sequence of i.i.d. random wvariables such that X, and Xl have same
dz‘strig)eﬁion. Suppose that p (X1, X, ..., X,,) is a U-statistic of finite order with kernel
bounded by one. Define

bias := ‘Ep (X1, Xo, s X)) — Ep (Xl,fg, Xn> (A.2)

Then, there is a strictly positive constant ¢ such that for any x > 0,

>z + bias) <exps — cna
- =P U2 (Inn) (Inln (4n)) |

Pr (’p (X1, Xo, ., Xn) — Ep (Xl, X, Xn)

The proof of the above inequality in Han (2018) uses the strong mixing condition
to bound the estimation error (Theorem 3.1 in Han, 2018). Theorem 2.1 in Han
(2018) uses the beta mixing condition to bound the bias (A.2). We shall exploit the
structure of Spearman’s rho and use Lemma 5, instead.

The definition of the population version of Spearman’s rho (e.g., Joe, 1997, p.32)
between two random variables with joint distribution Fxy and marginals Fy and
Fy is p = 12 [ [ Fx (z) Fy (z) dFxy (z,y) — 3. It is not difficult to deduce that
Eps (Z1, Zs, ..., Z, ) in Lemma 5 is the Spearman’s rho population coefficient of Z. We
shall denote by p; ; the Spearman’s rho population coefficient (the rank correlation)
between the random variables W;; and W; ; in our dataset used in Algorithm 1 (recall
that W, := (X, Xéq),- Then, we have the following.



Lemma 7 Under the Regularity Conditions, for p;; as in Algorithm 1,

2
P 0ij — Pij] = 1) <K? - cone .
' (znjlgﬁ Prs = pisl 2+ e ) =0 e { 1+ 2 (lnn) (Inln (4n))

Here, c¢1 and co are absolute constants.

Proof. At first, we note that p; ; = Z_ﬁp&i,j + n%lpﬂm- where

P3,i,5 = P3 ((Xl,ia Xl,j) , (X2,7Z7 Xz,j) y e (Xn,i7 Xn,j))

is the U-statistic ps3 from Lemma 5, while p.; ; is the sample Kendall’s tau between
the i and j variables (Han, 2018, eq. 2.4). By the invariance of Spearman’s rho under
monotonically increasing transformations, we can replace the observable X := (X}),.,
with the unobservable Z := (Z;),.,,
ACF of the VAR model in (1) has entries that are all absolutely summable by the
Regularity Conditions on A. Hence, by Lemma 5, (A.2) is bounded above by some

which is Gaussian with dynamics as in (1). The

constant times n~'. Noting that “ps;; = p3i; — =7ps.; and that ‘n%lpg,i,ﬂ +

n%lpmj‘ < 6/n, we can find a finite constant ¢; such that Lemma 6 applies with
bias replaced by a ¢;/n. Applying the union bound, we deduce the statement of the

lemma. =

A.1.5 Lemmas on Control of the Sample Covariance Estima-
tor and Related Quantities

Recall that p;; is the rank correlation between W,; and W, ;. By stationarity, this
does not depend on t. We have the following.

Lemma 8 Under the Regularity Conditions, for n large enough, there is a finite

constant cog such that

R In K _
Pr (rglg;g 1015 = pisl = coyf T) <KL

Proof. This follows from the inequality in Lemma 7. There, we set 22 =



5In (K) / (can) to deduce that for ¢y = (\/5/62 + cl),

. /In K S5(nK)—2(14+¢lnK
o> | <« _
br (ir,?gl}g‘pz’] pil 2 co n ) - exp{ 1+e

for ¢ = /bIn K/ (con) (Inn) (Inln (4n)). Under the conditions of the lemma, for n
large enough, ¢ < 1. Substituting in the above display we find that the r.h.s. is

bounded above by K~! and this proves the lemma. m

We now show that the correlation matrix obtained from Spearman’s rho converges.

Lemma 9 Under the Regularity Conditions, for n large enough, there is a constant

co (the same as in Lemma 8), such that,

i,i<K T n

- 3 In K
Pr <max)2m—2m~ Z ﬂ n—> SKﬁl.
Proof. Recalling the link between Spreaman’s rho and the correlation coefficient
for the Gaussian copula (e.g. Liu et al., 2012), we have that EAJZ] —Y,;,; = 2sin (%ﬁi,j) —
2sin (%pm). Given that sin (x) is Lipschitz with constant one, the result follows from

Lemma 8. =

Lemma 10 Suppose that the Regularity Conditions hold. Then, there is a constant

c3 > 0, such that, for n large enough,

max Pr (‘ii,j — Ei,j

1,j<K

> z) < exp {—n03z2}

for any z satisfying zn'/?> = oo and z (Inn) (Inlnn) — 0.

Proof. By the proof of Lemmas 8 and 9,

Z-%(x-%cﬂme)):SeXp{__1+ﬁrﬂ;Z?zih1@”U)}

where the constants are from those lemmas. Set z = % (95 + cm_l/Q). Then, x =

Yij — Yij

(7/3) z—cin~ /2. Substituting in the above display, the probability is bounded above

by
ney |(m z — cln*1/2 2
exp {— [( /3) } }

1+e¢




where € = [(7/3) 2z — cin™'?] (Inn) (Inln (4n)). By the restriction on z, as in the
statement of the lemma, for n large enough, we have that ¢ < 1, and that there is a

constant c3 > 0 such that the above display is less than exp {—nc32?}. m

A.1.6 Lemmas for the Control of the Precision Matrix Esti-

mator

The following result for the control of the operator norm will be used in the proofs.

Lemma 11 Suppose that Q and Q are symmetric matrices such that Q has eigen-
= ¢, then ‘Q’l - Q!
op

values bounded away from zero an infinity. If }Q - Q

O <]Q‘1\ip e) as long as ]Q‘l\op < et

op

Proof. With the present notation, Lemma 4 Le and Zhong (2021) says that

< Q7 — (A.3)
o» Ti-le (@)

’Q—l _Q!

op

Then, the result follows from the fact that ‘Q‘l <Q — Q)‘ < 1R, Q- Q)
op op

together with the condition of the lemma to ensure that the denominator is greater

than zero. m
The operator norm can be bounded by the uniform norm of the elements using

the following.

Q-Q

Lemma 12 Suppose that Q and @ are symmetric matrices. Then, <

-, fe-ql

op

Proof. First, note that ’Q - Q

is well known because, for any matrix A (not to be confused with the autoregressive

< ’Q — Q‘ because Q—Q is symmetric. This
op 1,00

matrix in (1)), A’Ax = 0%z where ¢ is the maximum eigenvalue of A’A and z is the
corresponding eigenvector. Hence, o? |z| = |A’Axz| . By a special case of Holder in-
equality, [A'Az| <A’ |Al . |7].. This implies that 0 = |A\§p < [A]} . 4]
Then, using the fact that, in our case, A = @ — @) is symmetric, we deduce the

inequality at the start of the proof. Moreover, ’Q — Q‘l < ‘Q — Q‘O ‘Q — Q)
,O0 ,O0 o0

0o,1°

9



is the maximum number of nonzero elements across the columns
0,00

because ’Q —-Q

of Q—Q. =
Define the event

b= {1{éi,j>0} - 1{@i,j>0}} (A.4)
We shall derive a number of results conditional on such event. The event E means

that {BZ i€ [ZK]} in Algorithm 4 correctly identifies all the nonzero entries in ©.
The next result can be found in the proof of Theorem 3 in Le and Zhong (2021).

Lemma 13 Suppose that the Regularity Conditions hold. On the event (A.4), there

18 a constant ¢y such that
Pr (‘é—@‘ 22) < 2K Pr <‘2—Z‘ 2204). (A.5)
We can now use the lemmas from Section A.1.5.

Lemma 14 Suppose that the Regularity Conditions hold. On the event (A.4), there

s a constant cs > 0, such that, for n large enough,
Pr (‘é — @‘ > z) < 2exp {—nc522 + SInK}

12 % o0 and z (Inn) (Inlnn) — 0. Moreover,

for any z satisfying zn
Op (, /IH—K).

Proof. We bound the r.h.s. in the display of Lemma 13 using Lemma 10 and
the union bound. We can then deduce that the r.h.s. of (A.5) is bounded above

by 2K3exp {—ncsciz?}. Defining ¢5 := c3¢i and rearranging we deduce the first

é—@]m -

statement. The second statement follows by choosing z large enough and propor-
tional to a quantity O (,/%) so that the first statement immediately gives that

’é — @‘ =0Op (@) Such choice of z is consistent with the constraint given in
the lemr(;loa. [

We also need an exponential inequality for é)l_ll — ©1;. For simplicity, we state
the result for ©~' rather than 7.

10



Lemma 15 Suppose that the Regularity Conditions hold and that s\/In K/n = o(1).
On the event (A.4), there is a constant cg > 0 such that, for n large enough,

o

for any z satisfying zn'/? — oo and z (Inn) (Inlnn) — 0.

0! - @_1‘ > z) < 2exp {—ns_206z2 +31In K}

Proof. First, we note that for any symmetric matrix @, |Q|, < |Q\Op. This is
because |Q|,, = max, , 2'Qy where the maximum is over vectors with unit Euclidean
norm. By this remark and (A.3) we deduce that the set { ol-ot > z} is

contained in the set

o0

‘@—1 (é) - @)

o] o>

P ‘@fl (é—@)

op

For arbitrary events A and B, we shall use the trivial decomposition A = {AN B} U
{ANn B} C {AN B} U B, where B¢ is the complement of B. Then, we deduce that

the event in the above display is contained in the event

{‘@—1 (6-6) oz 1/2} U {\@—%p o' (6-0)

For z/[©7!,, — 0, the above union of two events is contained in the second event.

oz Z/Q} (A.6)

This is the case because the eigenvalues of © are bounded away from zero and infinity
by Lemma 3. Hence, it is sufficient to bound the latter. Using a standard inequality

for operator norms, and then Lemma 12, we deduce that

(6-9)],..[(6-9)[.

On the event F in (A.4), ‘(é - @)‘ < |00 < 5. We assume E holds without
0,00 ’

making it explicit in the notation. In consequence, recalling that, by Lemma 3, o,ax

]@*1 (6-6)

Lo,

is the largest singular value of ©~! = 3, which is bounded uniformly in K, we have
that

P (je7,,

o' (6-0)

o > z/2> <Pr (‘ (@ - @) LO > z/ (2Jr2naxs)> :

11



By Lemma 14 and the conditions of the present lemma, the r.h.s. is bounded above
by Zexp{ —nesz?/ (202,.5)° + 31n K}. Setting ¢ = ¢/ (4o

positive, gives the result. m

which is strictly

max ) max)

The following result will be used in due course.

Lemma 16 Suppose that U, Vi, Vo and (7, Vl, Vs are random variables. Then, the

event {‘ U _ ‘ > x} 18 contained 1 the uniton of the following three events:

{ s ot} and {[458] > 12}

|

Proof. Add and subtract % to find that

v u (U U) (U U
ViV, Wil ViV, ViVa Viva. Wil )

The first term on the r.h.s. can be written as

(5%~ v2) = (o ) [ (=) v (5= 12)

We can then deduce the statement of the lemma by basic set inequalities. m

U(V1 )
ViViVs

U(VQ Va)
ViVaVa

Let Z;; = X /1) Xeii2e j; and similarly for Z; ; using . in place of .. These
are estimated and population correlation coefficients between ¢;; and & ;.

Lemma 17 Suppose that the Regularity Conditions hold. There is a constant ¢z > 0,

such that, for n large enough,

max Pr ( =

S T Sk
i<k s

> z) < 16exp {—ns’20722 +31n K}

for any z satisfying zn — oo and z (Inn) (Inlnn) — 0.

Proof. We apply Lemma 16 to deduce that we need to bound the following

probabilities
XA]E,ZJ (Ea,z,z Ea,m’)
Pr(FE;) :=Pr = >z/4 ],
\/Ea,mza,i,iza,j,j
Yeiij (Eem - EEJJ)
Pr(FEs) :=Pr — > z/4
\/Za,i,iza,j,jza,j,j

12



and

zAjs,i,j (is,i,j - Es,i,j)
Pr(E;) :=Pr > z/2
Ea,i,ize,j,j

We further define the following events: E, := {maxi,ng ‘igm < 3/2}, and E5 :=

{minig K ia,i,i > Omin/ 2} where o, > 0 is the minimum eigenvalue of 3, by Lemma
3. Then, Pr(E)) < Pr(EyNE;yN Es) + Pr(ES) + Pr(Ef) where, as usual, the su-
perscript ¢ is used to denote the complement of a set. Before bounding each term
separately, we note that by the Cauchy interlacing theorem (Bhatia, 1996, Corollary
II1. 1.5), the smallest eigenvalue of X, is no smaller than op,,. Moreover, ¥.;; > 0pin.
To see this note that the Lh.s. is equal to €;Y.e;, where e; is the vector with i’ en-
try equal to one and all other entries equal to zero. On the other hand the r.h.s.
is smaller than ming.,,—; 2’3.2 by the definition of minimum eigenvalue and the

Cauchy’s interlacing theorem. Now,

A

Pr(EyNE;NEs) <Pr (‘3073/2 (25,1',1' - Zs,i,i)

min

> z/ 4)

<2exp {—ns?12 %0} 62> + 3In K } (A7)
using the bounds implied by the events F, and Ej, the aforementioned remarks on
Es,i,h and then Lemma 15. NOtlIlg that 2571‘,]‘ S Es,i,j + ‘257@]‘—25’2"]’ and that |Es,i,j| S
1 because g, is the innovation of the variable Z; with entries having variance one, we
deduce that Pr(Ef) < Pr (‘ia,m‘-ze,@j > 1/2) and this probability is eventually
bounded by (A.7) as long as z — 0. By the same argument used to bound Pr (EY),
we deduce that Pr(EY) is eventually less than (A.7). Hence, Pr (E;) is bounded by

three times the r.h.s. of (A.7) for n large enough. By similar arguments, we also

note that Pr (F5) and Pr (E3) are bounded by three and two times, respectively, the
r.h.s. of (A.7). Putting everything together, and setting c; := 127203 cg, the result
follows. m

For any set k C [K] we let émk be the correlation of ,; with € ; conditioning on
{515,[ e k}

Lemma 18 Under the Regularity Conditions, there is a constant c¢; > 0 (same as in

13



Lemma 17), such that, for n large enough,

max Pr (
i,jSK,kEICi,j

éi,ﬂk — Ei,ﬂk‘ > z) < 16exp {— (n —m)s ?c;z® +3In K}
for Ki; CH{[K]\{i,j}} of cardinality m and z satisfying
z(n—m) — oo and z (In(n —m)) (Inln (n —m)) — 0.

Proof. By Lemma 2 in Kalisch and Biithlmann (2007) if the distribution of the
sample correlation coefficient is f (x;n) where n is the sample size, the distribu-
tion of the partial correlation coefficient is the same with n replaced by n — m, i.e.
f (z;n —m). Hence, we can use Lemma 10 with n replaced by n —m everywhere and
the lemma is proved. m

The next is a trivial variation of lemma 3 in Kalisch and Biithlmann (2007) adapted

to our inequalities.

Lemma 19 Suppose that the Regularity Conditions hold. Define L :==1/ (1 —27%[1 + 6]2)
where & is as in Lemma 3. For g(x) =27"In (H2), z € (—1,1), there is a constant
c7 > 0 (same as the one in Lemma 18), such that, for n large enough,

2 - 2
mgr}gié&j Pr (’g <:i,j|k> —g (:m’\k)‘ > z) <32exp{—(n—m)s?cs(z/L)+3In K}
for Ki; CAIK|\{i,j}} of cardinality m and for z satisfying z (n —m) — oo and
z(In(n—m)) (Inln (n —m)) — 0.

Proof. By the mean value theorem g (z) — g (y) = 9g(y) (x —y) for § is in
the convex hull of {z,y}, z,y € (—1,1); here, dg(y) = 1/(1 —g?) is the deriva-
tive of g evaluated at §. Suppose |r —y| < (1—0)/2 and y € [—37,a] for some
& < 1. Note that > < (y+ |z —y|)®, so that dg(j) < L and substituting the
aforementioned upper bound for y and |xr —y| in terms of &, and using the defi-
nition of L. Set V := ém‘k — ik and U := Jg éi,j|k> where éi,ﬂk is in the
convex hull of {éi,j|k,Ei7j|k}. The event {UV > z} is contained in the union of
the events {V > z/L} and {U > L}. From Lemma 18 we have that Pr(V > z/L) <
16 exp {— (n —m) s 2c; (2/L) + 3In K} for z satisfying the conditions of that lemma.
The lemma then follows if we show that {U > L} C{V > z/L} for z — 0, as in the

14



statement of the lemma. To this end, note that {U > L} is contained in the union of
the events {U > L,V < (1 —¢) /2} and {V > (1 — 7) /2}. The latter event is eventu-
ally contained in {V > z/L} when z — 0. Finally, the event {U > L,V < (1 —5) /2}
has probability zero because, by the remarks at the beginning of the proof, we know
that U < L when V < (1 —5) /2 and ’Emk‘ < &, which is the case by Lemma 3,

uniformly in K, for any k € KC; ;. Hence, the lemma is proved. m

A.1.7 Technical Lemmas for Lasso

For S C [2K] and some constant L > 0, recall that the square of the compat-
ibility constant is ¢2,, (L,S,%) := min{sféﬁb :beR(L, S)} where R (L,S) :=
{b:]bse|; < L|bg|, # 0} (van de Geer and Biihlmann, 2009) . Here 5S¢ is the comple-

ment of S in [2K]. Throughout this section, the notation is as in Algorithm 2 and

Section 5.5.1 and o, is as in Lemma 3. We have the following.

Lemma 20 Under the regularity Conditions, for any S C [2K| of cardinality s, and
L>0, domp (L,8,5) 2 042 = (L+1) [s[S 3]

o0
Proof. Note that the square root of the minimum eigenvalue of a matrix is a
lower bound for the compatibility constant. To see this, note that sb’>b/ |b5ﬁ >
50min [b]3 / |bs|7 > omin because s [b|5 > s|bg|5 > |bs|;. Then, the lemma is special
case of Corollary 10.1 in van de Geer and Biithlmann (2009). =
We now derive a basic bound for the Lasso procedure computed across 2K response

variables, one at the time, using the sufficient statistic 3.

Lemma 21 Define

Ao + max Z 1633/65 N (A.8)
JE[2K]:j#i
Under the Regularity Conditions, on the event Ep.so := {\ > 2\o}, we have that

maxie [A0 = 89| = Op (s3/m).

Proof. We prove first the result for a fixed :. We shall then see that the bound
is uniform in i € [K]. To avoid notational complexities, we use a notation that is

only local to this proof. Set I' = X_, _; , v = X_;;, b = ﬁ(f? and b = B(f) Note

3 3
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that b = I'"'y by definition. As in the text we use the hat for estimators of various
quantities. Write § = b —b. Given that the Lasso estimator minimises the Lasso

objective function we have that

~

24/ + Bfl3+)\‘ ( < —24b+UTh+ Ab|, .
This can be rearranged to give the following inequality
5T <2 (3 =) 5+ A (Jbl, - ‘b‘ )
1

(Loh and Wainwright, 2012, eq. 5.1). Adding and subtracting b'T", we write ( bT) =
(¥ =bT)+ ¥V <F — f) Given that 0'I"' = 4/, by definition of « and 4, we have that
|y —=Tb|, < ‘f) — Z‘ . By definition of I and T and a basic inequality, ’ (F — f‘) b’ <
1b], ‘i - E‘OO. However, [bl; = >~ c .z [©ij/©iil because the regression coeffi-
cients can be obtained from the precision matrix: BJ@ = —0,;/0,,;. Hence, by
definition of A\g as in the statement of the lemma and the last display, we deduce that
5T < o |0, + A (|b[1 - )I;‘ ) This is in the form of the basic inequality in van de
1
Geer and Biihlmann (2009, last display on p.1387). On the set {\ > 2o}, the r.h.s.
of the previous inequality is bounded above by 271X ], + A <|b|1 — ‘B‘ > Then, by
1

arguments in van de Geer and Bithlmann (2009, second and third display on p.1388,
replacing \g with 27!\ in their definition of L, so that here L = 3), we deduce that

‘5’1 S 4 \/ 56/F5/¢comp

where (;Bcomp ‘= Qcomp (L, S, 2) is the compatibility constant, which we shall show
to be strictly positive. Lemma 11.2 in van de Geer and Bithlmann (2009) says that
VTS = O <’\—‘/§> once we replace A\g with A/2 in their lemma. By Lemmas 20

comp

and 9, écomp — g2 Op (,/ lnnK> choosing L = 3 in Lemma 20. We also have

min

that |/s2E = o ( mm) By these remarks and the above display, we deduce |§], =

Op <U > The bound is uniform in i € [K] because Lemma 3. Hence, the result

follows. m

Lemma 22 Suppose that the Regularity Conditions hold. Then, for g is as in (A.8),
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Mo = Op ((w/y2) H%) where v is as in Lemma 3.

Proof. Under the Regularity Conditions, an upper bound for (A.8) is given by
2(1+w/v?) |3 . This is Op ((w/yz) ,/%) using Lemma 9. Hence, the result

follows. m

A.1.8 Proof of Theorem 1

This follows from Lemma 9.

A.1.9 Proof of Theorem 2

An upper bound for (A.8) is given by 2 (1 4 w/v?) |~ — . Then, in Lemma 21,

the set Pr(Epaso) — 1 as K — oo, for A = 4(1 4+ w/v?) x 22, /BE by Jemma 9.

36 _ gl
1

c=12(1+v7%)¢y/n in the statement of the theorem. Hence, the result follows.

Therefore, by Lemma 21, max;¢(x] =0Op (ws %) and we can choose

A.1.10 Proof of Theorem 3

) > 0}. This is because
1©,,;/0..|. Note that —©,; is the variance of Zm- conditioning on all other covariates.
Hence, |©;;| < 1 because Var(Z;;) = 1. Then, the event in the probability of the

> 7, because 7 = 0 (O )-

Note that O, is a lower bound on min, ; {

theorem is contained in the event max;e(x; ‘ B — g
1

The latter event has probability going to zero according to Theorem 2.

A.1.11 Proof of Theorem 4

By Theorem 6 in Cai et al. (2011),

‘ < 4|®|100/\n, on the event Ecjime :=

{)\n > 0], ‘f] - Z‘ } Choosing A, <3C°\/ 1HK> by Lemma 9, Pr (Eciime) —
1as K — oo.

A.1.12 Proof of Theorem 5

Due to the fact that |0, ;| € {0} U [fmin, 00) and ’QZJ) € {0} U [r, 00) uniformly in
i,j € [2K], the event in the probability of the theorem is eventually contained in
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{‘Q — @‘ > 7'}. This goes to zero by Theorem 4 because 7 is of larger order of

magnitude than ‘Q — @’ .

A.1.13 Proof of Theorem 6

Under the event F in (A.4), we are within the framework of the results in Le and
Zhong (2021). When such event is true, the result follows from Theorem 3 in Le and
Zhong (2021). The proof of their result requires a bound in probability for ‘f) — E‘ :
see the third display on their page 12. In their proof this is denoted by the symbogl
\(Wx njl.,- We control this quantity using Lemma 9. To finish the proof note that
Pr(E) — 1 using either Theorem 3 or Theorem 5.

A.1.14 Proof of Theorem 7

From Lemma 1, recall that ¥, = ©7}' and A = —6,'©;,. By Lemmas 11 and
12, the Regularity Conditions and Theorem 6, we deduce that ‘é)l_ll - 07

op
Op <31/%> on the event £ in (A.4); note that [©11], < s. The event £ has
probability going to one by either Theorem 3 or Theorem 5. This proves the first

bound in the theorem. To prove the convergence of the autoregressive matrix es-
timator, we note that A — A = 07015 — O7'015. The r.hs. can be rewrit-
ten as O} <@12 - @12> + (@fll - ®f11> ©12. The first term in the sum is equal
to @ﬂl (élg — @12) + (@1’11 — @1’11) (@12 — @12). Then, by standard inequalities
and the previous bounds, it is not difficult to deduce that its operator norm is
Op <s\/¥> The same follows for the operator norm of (él_ll — @1_11> ©12. This

concluded the proof of the theorem.

A.1.15 Proof of Theorem 8

The assumptions in Kalisch and Biithlmann (2007) are satisfied by our Regularity
Conditions together with the faithfulness condition stated in the theorem. In partic-
ular, from Kalisch and Bithlmann (2007, proof of Lemma 4), it is sufficient to bound

the probability of a Type I and Type II error, as given by the following

Pr (’g (ém‘k) —g (Ei,j‘k)‘ > z) < 32exp{—(n—m) s %cs (z/L)* +31n K}
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where m is the cardinality of k, ¢ is as defined in Lemma 19, and setting z = ¢,
where ¢, as in Kalisch and Biihlmann (2007): ¢, < n~". Choosing m equal to
the maximal number of adjacent nodes, there are O (K™) hypotheses to test. By
Lemma 5 in Kalisch and Biithlmann (2007), we can assume m < s with probability
going to one. By this remark and the union bound we need the following to go
to zero: K*32exp {— (n —s)s™2¢; (¢n/L)? +31n K}. By the Regularity Conditions,
s = O (n") = o(n'/?) and K* = O (n*%) for some finite ng. Hence we must have
n Inn = o (n'~2M=*7))  This is the case if 2n. + 31, < 1, as stated in the theorem.
The theorem is then proved following the steps in the proof of Lemma 4 in Kalisch
and Biithlmann (2007).

A.1.16 Proof of Theorem 9

Define the set Fg := {G’ = G}, where (' is the PCDAG estimated using Algorithm
5 and G is the true PCDAG. Hence, on Eg we have that that V(i) = V(i). By
Theorem 8, the event E; has probability going to one. Hence, in what follows, we
shall replace V (i) with V (i). By the assumption of the present theorem, G has all
edges that are directed. Let

A

za,f/(l),f/u) 0 T 0
& - 0 Yo v@ve) :
0 0
i 0 0 Ze,f)(K),f)(K)
and o -
Ze V(1),1 0 0
b — 0 E‘5,19(2) 2 7
0 0
L 0 0 Zan}(K) K |

where the symbol 0 denotes a generic conformable matrix of zeros. Then, the nonzero
consecutive entries in the i column of W1 is equal to d; as defined in Algorithm
6. Here, we shall define the population version of the above by ¥ and ®. We define
a matrix R such that A = (R\i/”é))/. The matrix R reshapes U~'® so that we can
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find A. We write such matrix R as

Rgl) R§2) . RgK)

R(l) R(2) . R(K)
e R

R%) Rg) . Rgf)

where R,(f) is a 1 x V(i) vector defined as follows. If & ¢ V (i), then, R,(j) is a row
vector of zeros; for example R,(f) =0, ke[K]. IfkeV(), R,(j) will have a one in
the position such that R,(f)czggtyv(i) = cfli,jst,k, where 7 is the position of the element
in V(i) that is equal to k; cZ” is the estimated regression coefficient of ;; in the
regression of €;,; on &, y(;). This also means that the number of ones in the kth row
of R is equal to the number of direct descendants of the variable ;5. We denote
such number by ;. Now, note that |RU~'® — RU~'P o <|R|,, U1 — Ul

op
Then, |R|(2)p is the maximum eigenvalue of RR’ and the latter matrix is diagonal with

(k, k) entry equal to k. It is easy to see that RR' is diagonal because the positions
for two different parents cannot overlap, i.e. R,(;) (Rg”)l = 0 when k£ # [. Then,
1B, = k2, where k := maxy Ky, as defined in the theorem. Hence, it remains to
bound ‘\if_lé) — ¥~1®| ; note that the singular values of a matrix are invariant of
transposition. Adding Ozznd subtracting 1o using the triangle inequality, and a

basic norm inequality,

)@—1@_\1/—1@ oot e b0

<
op

(A.9)

O

+ 7,
P

op op

gl < |\I/*1|C2)p ¥ — ¥| . The maximum singular value of a
op op

block diagonal matrix is the maximum of the singular values of each of the blocks. By

< )ig — .| and the latter is Op (s, /thK>
op op

by Theorem 7. Using again Cauchy’s interlacing theorem, we deduce that the largest

By Lemma 11,

Cauchy’s interlacing theorem, ‘\if - v

singular value of U~ is bounded above by the largest singular value of ©, which is
| < P, + ‘Ci) — ®| . The maximum singular value of ® is just
op op

the maximum of ¥/ D) e v Wt @ € [K]. It is increasing in the cardinality of

finite. Moreover,

A~

V (7). Hence, Z;7v(i)7i2579(i)7i

4. The latter is bounded above by max, ,<; 2'¥.¥ .z = |Ee|zp, which is bounded, by

< XL %, i, recalling the notation at the start of Section
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the Regularity Conditions. By the same argument as before, the maximum singular
value of ® — @ is the square root of the largest, w.r.t. i € [K], of the maximum

eigenvalue of
A / A
(Eg,mz-),i - Ee,vw,i) <25,1>(i),i - Ze,vum)

where on Eg, V (i) = V (i). This quantity is increasing in the cardinality of V (i) so

, which is

that the square root of the above display is bounded above by ‘f]s — 3
op

Op (31 / %) by Theorem 7. Using the derived upper bounds, it is easy to deduce

that (A.9) is Op (s@)

From Lemma 2, deduce that Ile; = Dlle; + &. This can be rewritten as ¢, =
[I-'DIle, + I17Y,. Hence, ¢, = Ag, + 1171, where A = II7!DII. Now, note that
on the event Eg, as defined at the start of the proof, any permutation matrix I1 that
makes [IATT™! lower triangular, with diagonal entries equal to zero, also satisfies (4)
when we replace I1 with it. According to Algorithm 6 we choose the one that requires
the least number of row permutations of the identity, which is unique. Then, on
Eg, II = II because also II is unique. Therefore, on Fg, D := TIAII! converges to
D := IIAII!. This shows the first statement of the theorem. The convergence rate
of H — H to zero can be deduce from the first statement of the theorem together with
Lemma 11, and Cauchy’s interlacing theorem and the definition ¥, = H (E&&)) H' in
order to bound the singular values of H~! := (I — D).

A.2 Choice of Tuning Parameters

Algorithms 2 and 3 require to choose the penalty parameter A and the threshold 7.
As shown in Theorems 3 and 5 we need 7 > A. The exact values can be chosen by
crossvalidation (CV). CV may not be suitable for time series problems. However, it
has been shown to work for prediction problems in the case of autoregressive process
of finite order (Burmann and Nolan, 1992). To this end, we divide the sample data
into ncy nonoverlapping blocks of equal size each. Each block is a test sample. Given
the i*" test sample, we use the remaining data as i*" estimation sample. Compute S)
on the i estimation sample and denote this by Oy (A, 7,7) to make the dependence
on the parameters and block explicit. Compute the scaling matrix S on the i test

sample using Algorithm 1 and denote it by s () to make the dependence explicit.
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We minimize the negative loglikelihood:

ncv
1

E 2 [Trace (iltest (1) éest (A, Z)) — Indet <éest (A7, Z))}

w.rt. (A7) € T where T C (0,00)>. Here, for any matrix A, diag(A) a diagonal
matrix with same diagonal entries as A.

In our simulations and empirical analysis, the parameter 7 is fixed to 2\, and we
select X\ employing CV with ngy = 5. Starting with a penalization equal to A = 0.10,
we first search (by dividing iteratively by two) a value for the minimum A such that
all off-diagonal elements of Oy, are zero (precisely smaller than le-6). We denote this
value as \g. Then we search for the optimal X in {\/2, A\o/(22),...,Ao/(2°)}.

Computing both optimal parameters and a causal graph from the PC algorithm
can be time consuming over many simulations. Hence, in our simulations, we employ
an additional simplification. Rather than carrying out CV for each simulation, we
use two separate simulation samples to compute two values of A according to the
aforementioned procedure. We then use the average of these two values as tuning

parameter A\ in all simulations with the same design.

A.3 Finite Sample Analysis via Simulations

We assess the finite sample performance of the different estimators and evaluate their
asymptotic properties for various degrees of time series persistence and cross-sectional
dimension. We compare our results to naive methods that either do not account for

sparsity in © or ignore the time series structure of the data.

A.3.1 The True Model

To generate the time series of equation (1) the K variables are divided into K in-
dependent clusters. FEach cluster is composed by N variables and shares the same
causal structure as well as the autoregressive matrix. We denote with A and H the
related coefficients of equation (1) for each cluster. The matrix H is the matrix which
relates ¢; with the associated structural shocks & of a selected cluster. For the sake
of simplicity, for each cluster, the variables’ order coincides with the topological order

so that the matrix II in Lemma 2 can be set equal to the identity.
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We consider N = 3 and N = 4. When N = 3 the three basic causal structures are
selected for each cluster, i.e., the causal chain, common cause and v-structure. Given
three variables X, Y and Z, if X — Y — Z, the causal structure is called causal
chain while if X <Y — Z it is termed common cause. The causal relation is named
v-structure or immorality if X — Y < Z. We also consider two additional structures
when N = 4: diamond 1 and diamond 2. These are defined as X — Y <+ Z, X —
U+ Z,and X =Y < Z,Y — U, respectively.

The PC algorithm cannot distinguish between causal chain and common cause,
since these structures are in the same Markov equivalence class. Then, the PC algo-
rithm will provide the same graph with undirected edges: X —Y — Z. Conversely, the
v-structure, diamond 1 and diamond 2 can be identified by the PC algorithm. In this
case, the PC algorithm will return the causal graph with edges correctly oriented.

To monitor the persistence of the time series, for each cluster, the autoregressive
matrix A is equal to a lower triangular matrix with all elements (including the diag-
onal) equal to a constant a, which describes the persistence of the series. The matrix

H is a function of the selected causal structure. For the v-structure

=

I
=
—_ = O
= o O

which is related to the causal structure ;7 — 43 < €;2. Each variable causes itself,
but may also affect other variables. Finally, for simplicity, we suppose that the data
have Gaussian marginals. In this case, simulation of (1) reduces to simulation of a
VAR(1) together with some linear transformations to ensure that all the covariates

have variance equal to one. The details are given in Algorithm 7.

A.3.2 Simulation Results

To study the effect of time series persistent, three values of such parameter a are
considered: 0.25, 0.5 and 0.75. These values of a produce a wide range of time series
dependence. For example, Figure A.1 shows the autocorrelation function of a cluster
for a v-structure. To analyze the relevance of sparsity in our approaches, we select
K = 3,30, 50 clusters. We investigate the finite sample properties of our estimator

by considering a sample size n = 1000, 5000.
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Algorithm 7 Simulation of the Gaussian Copula VAR in (1) when the Marginals
are Gaussian.

Set N x N matrices A and H s.t. H is full rank.

For k =1,2, e

Simulate i.i.d. N x 1 dimensional Gaussian vectors <e§k))t€[ | with mean zero and

identity covariance matrix.

Compute X¥ = AX® + He ¢ € [n].

End of For.

Define the K-dimensional VAR(1) X; = ApokXi—1 + Hplok€t, where X; =

/ / ~ / !
((Xt(l)) , (Xt@)) ey <Xt(K)> ) and similarly for e;, t € [n]; a fortiori, Apjoa and

Hyoccare block diagonal matrices, where each block equals Aand H , respectively.
Define S = [diag (Var (X;))]”" where diag (-) is the diagonal matrix with diagonal
equals to its argument.

Set A = SAbIOCkal7 Y = SHblOCkaI)IOCkSI.

Define the latent K x 1 vector Z, = SX;, t € [n].

We use Algorithms 2 and 3 find the moral graph. Recall that the moral graph is
defined from the nonzero entries in © as in Algorithm 4. We then follow Algorithms 5
and 6 to estimate any remaining parameters. The tuning parameters for Algorithms
2 and 3 are chosen by CV as described in Section A.2. This means only choosing .
We denote the estimated parameter by Acy. We use 250 simulations to compute the
performance of our methodology.

We also test the performance of the PC algorithm when we impose the restrictions
provided by Lasso and CLIME. The elements of ©1; which are equal to zero represent
those edges which we exclude from the skeleton. These restrictions can be embedded
in the PC using the appropriate firedGaps command, which guarantees that will be
no edge between nodes j and i if the element of ©,; in position (7,j) is equal to
zero. We obtain improved compute time performance of the PC algorithm in this
case. This is particularly relevant in the high dimensional case. As discussed in the
main text, when we impose the restrictions from the zeros of @11, it is advisable to
use a tuning parameter A smaller than the one suggested by CV. This is because
the PC algorithm can only delete edges, but not add them back. Hence, it is more
important to avoid false negatives than false positives when imposing restrictions. To
corroborate this claim, we also report results for Aoy /2 and Aoy /4.

We compare our results with two benchmarks. One does not account for sparsity
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and is essentially equivalent to choosing A = 0 in the estimation. The second does
not account for time series dependence and is equivalent to assuming (1) with A = 0.
In the simulations, we refer to the two benchmarks as A = 0 and A = 0, respectively.
The case A = 0 should produce sensible results in the low-dimensional case. The case
A = 0 might be appropriate when the time series persistence is low. In this case, the
procedure is usually biased, but incurs a lower estimation error.

All approaches are compared on their performance to estimate the contempora-
neous causal structure. To achieve this, we report the average structural Hamming
distance (SHD) of the estimated causal graph to the true (Acid and de Campos, 2003,
Tsamardinos et al., 2006). The SHD between two partially directed acyclic graphs
counts how many edge types do not coincide. For instance, estimating a non-edge in-

stead of a directed edge contributes an error of one to the overall distance. We remark



that the PC algorithm estimates the Markov equivalence class of a given graph, i.e.,
the related CPDAG, and some causal structure, as common cause and causal chain,
shares the same class, i.e., the same CPDAG, (e.g., for the v-structure the Markov
class coincides with the related DAG). Therefore, as the true causal structure in SHD
analysis we consider the (block) equivalence class attained by the PC, with a suffi-
ciently high significance level, 1-1e-13, to obtain a deterministic estimate performed
on the theoretical correlation matrix of each cluster.

Tables 2 and 3 display the average SHD and standard errors computed over 250
simulations for all approaches. For the sake of conciseness we only report results
for the v-structure for the persistency parameter a € {0.25,0.75} and the number
of clusters K € {3,50}3. Our approach produces estimators with superior finite
sample performance, relatively to the benchmarks, regardless of the considered causal
structures. While not reported here, we note that for both the causal chain and
common cause, the performance of the PC Algorithm deteriorates when we impose
the a priori restrictions from the zeros of él,l even if we undersmooth.

The discrepancy among the contemporaneous causal structure is also investigated
by computing the number of non-zero elements of ©;;. Indeed, we recall that non-zero
elements of ©1; correspond to possible edges between variables of the corresponding
row and column. We also compute the number of false positive and negative between
the estimated and true ©; of non-zero elements®. Tables 4 and 5 summarize the
results for the high and low dimensional case, respectively. We only report the results
for the v-structure, as we can draw similar conclusions for the other causal structures.

Finally, in Tables 6 and 7, we assess the finite sample performance of the estimators
of A and Y. and analyse their asymptotic properties stated in Theorem 7. We compute
the average distance from the true matrices, where the distance is measured in terms
of the operator’s norm: the largest singular value. These statistics are compared only
to the case A = 0.

3The complete results are available upon request.

4We say that an element of O, is a false positive, if it is estimated as non-zero element while it
is zero. Vice versa, it is a false negative, if it is estimated as zero element while it is different from
Z€ro.
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Table 2: Structural Hamming Distance for a Causal V-Structure. Expected value
approximated using 250 Monte Carlo simulations (standard errors in parenthesis)
for the SHD between the Lasso and CLIME estimators in Algorithms 2 and 3, and
the true one. The contemporaneous causal structure is a v-structure with K = 150
variables with K = 50 clusters. Results are reported for different values of A , where
Acv is the value obtained using cross-validation and denoted by Agy. The columns
labelled NR reports the SHD obtained when no restrictions provided by Lasso and
CLIME procedures, respectively, are used in the initialization step of the PC. The
columns A = 0 and A = 0 refer to the benchmarks that do not account for sparsity

and time series dependence, respectively.

Lasso
Aoy Aov /2 Aoy /4 A=0 A=0
n a NR NR NR
1000 0.25 9.208 9.212  58.032 58.160 66.080 71.616 40.424  45.628
(0.28) (0.28)  (0.48)  (0.48)  (0.49) (0.52)  (0.39) (0.57)
0.75  1.960 95.888  4.464 4.488  29.596 29.556 131.060 225.212
(0.14) (0.2) (0.2) (0.2) (0.35) (0.34)  (0.93) (0.48)
5000 0.25 3.124 3.124 44700 44.776 31.092 32.504 22.144 144.944
(0.16) (0.16)  (0.43) (0.43) (0.37) (0.38) (0.29) (0.29)
0.75 0 99.904  2.496 2.496 2.780  2.780  51.696 230.704
(0) (0.03) (0.17)  (0.17)  (0.17) (0.17)  (0.47) (0.62)
CLIME
Acv Aov /2 Aov /4
n a NR NR NR
1000 0.25 27.700 27.740 53.496 53.604 78.984 83.340
(0.51) (0.51)  (0.47) (0.47)  (0.51) (0.51)
0.75 100.012 100.012 56.776 105.104 12.880 96.220
(0.01) (0.01) (0.53) (0.19) (0.33) (0.32)
5000 0.25  2.488 2.488  41.744 41.892 39.896 41.104
(0.15) (0.15)  (0.45)  (0.45)  (0.37) (0.38)
0.75 119.440 138.064 3.192 4.392 6.348  6.348
(0.5) (0.18)  (0.19) (0.21) (0.23) (0.23)
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Table 3: Structural Hamming Distance for a Causal V-Structure. Expected value
approximated using 250 Monte Carlo simulations (standard errors in parenthesis) for
the SHD between the Lasso and CLIME estimators in Algorithms 2 and 3, and the
true one. The contemporaneous causal structure is a v-structure with K = 9 variables
with K = 3 clusters. Results are reported for different values of A , where ¢y is
the value obtained using cross-validation and denoted by Acy. The columns labelled
NR reports the SHD obtained when no restrictions provided by Lasso and CLIME
procedures, respectively, are used in the initialization step of the PC. The columns
A =0and A = 0 refer to the benchmarks that do not account for sparsity and time
series dependence, respectively.

Lasso
Aov Aov /2 Aoy /4 A=0 A=0
n a NR NR NR

1000 0.25 0.184 0.184 0.6 0172 0.156 0.16 0.16  2.756
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.16)

0.75 0.144 564 0.184 0.184 0244 0244 0372 9.156
(0.04) (0.06) (0.05) (0.05) (0.05) (0.05) (0.06) (0.04)

5000 0.25 0.18 0.8 0.272 0.272 0.244 0.256 0.224 8.632
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.07)

0.75 0 6 0.144 0.144 0.136 0.136 0.332 8&.712
(0) (0)  (0.04) (0.04) (0.04) (0.04) (0.05) (0.05)
CLIME
Acv Aov /2 Aov /4
n a NR NR NR

1000 0.25 0.256 0.256 0.184 0.188 0.16  0.152
(0.05) (0.05) (0.04) (0.04) (0.04) (0.04)

0.75 6.016 6.016 4.776 6.592 0.196 5.244
(0.01) (0.01) (0.12) (0.05) (0.05) (0.08)

5000 025 0.8 018 0264 0264 0256 0.26
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

0.75 0.084 5.028 0.184 0.192 0264 0.28
(0.03) (0.09) (0.05) (0.05) (0.05) (0.05)
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Table 6: Average distance between A and 121, Y. and flg, respectively, computed
over 250 simulations (standard errors in round brackets) when the contemporaneous
causal structure is a v-structure for K = 150 variables with K = 50 clusters. For
each method we report the results obtained also when undersmoohting is performed,
i.e., columns A\¢y /2 and Aoy /4. The column A = 0 refers to the benchmark that does
not account for sparsity.

‘A —A
op
Lasso CLIME
n a >\C’V )\C\//Q )\CV/4 >\CV )\Cq//2 )\Cq//4 A=0

1000 0.25 0.567  1.25  2.354  0.684  1.082  2.639 314.10
(0.003) (0.003) (0.006)  (0.006) (0.003) (0.012) (3.106)

0.75 4.265 1.093  1.095  0.798  3.200  3.812 1000
(0.048) (0.006) (0.003)  (0.016) (0.083) (0.054)  (-)

5000 0.25 0.131 0369  0.722 0297  0.307 0.644 24.610
(0.001) (0.001) (0.001) (0.005) (0.001) (0.001) (0.061)

0.75 3.604 0925 0135  3.555 1.404 0.250 >1000
(0.016) (0.001) (0.001) (0.101) (0.048) (0.001)  (-)

5. — 3.
op
Lasso CLIME
n a >\CV >\CV/2 )\CV/4 /\CV )\cv/2 )\CV/4 A=0

1000 0.25 0258 1.394  1.803 0292 1143 2531  0.916
(0.002) (0.007) (0.009) (0.002) (0.007) (0.019) (0.001)

0.75 0430 0.119 0228  0.118 0335 0616 0.331
(0.006) (0.001) (0.0014) (0.003) (0.007) (0.006) (0.003)

5000 0.25 0.081 0367  0.511  0.076 0.316 0.582  0.395
(0.001) (0.001) (0.002) (0.002) (0.001) (0.002) (0.001)

075 0.314 0039 0043 0390 0.184 0052  0.109
(0.001) (0.001) (0.001) (0.002) (0.010) (0.001) (0.001)
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Table 7: Average distance between A and 121, Y. and flg, respectively, computed
over 250 simulations (standard errors in round brackets) when the contemporaneous
causal structure is a v-structure for K = 9 variables with K = 3 clusters. For each
method we report the results obtained also when undersmoohting is performed, i.e.,
columns Acy /2 and Aoy /4. The column A = 0 refers to the benchmark that does not
account for sparsity.

[a- 4
op
MB CLIME
n a )\CV )\CV/2 )\CV/4 /\C’V )\Cq//Q )\cv/4 A=0

1000 0.25 0.243 0331 0345 0307 0311 0343  12.716
(0.004)  (0.004) (0.004) (0.007) (0.004) (0.004) (0.122)

0.75 2835 0845 0182 0673 1.774 2186 >1000
(0.039) (0.005) (0.004) (0.012) (0.079) (0.055)  (-)

5000 0.25 0.079  0.097 0.140  0.078  0.091  0.129  10.495
(0.001)  (0.002) (0.002) (0.002) (0.002) (0.002) (0.049)

0.75 2963 0853 0.050 3.143  0.840  0.100 >1000
(0.017)  (0.002) (0.001) (0.027) (0.010) (0.009)  (-)

5. — 3.
op
Lasso CLIME
n a >\CV /\CV/2 )\CV/4 /\CV >\CV/2 >\CV/4 A=0

1000 0.25 0.149 0176 0169 0125  0.185 0.179  0.158
(0.004) (0.003) (0.002) (0.004) (0.003) (0.002) (0.002)

0.75 0.262 0.051 0.057 0.08  0.180 0.397  0.062
(0.005) (0.001) (0.001) (0.002) (0.007) (0.008) (0.001)

5000 0.25 0.035 0.060 0.082  0.035  0.050 0.084  0.072
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

0.75 0257 0.022 0022 0415 0024 0028  0.027
(0.002) (0.001) (0.001) (0.004) (0.001) (0.002) (0.001)
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