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Abstract

We propose a parametric approach for directly estimating the tangency portfolio

weights by combining fundamental finance theory and deep learning techniques.

The deep tangency portfolio is a combination of the market factor and a deep long-

short factor constructed using a large number of characteristics. We apply our ap-

proach to the corporate bond market. Albeit acting as a market-hedged portfolio,

the deep factor achieves a sizable risk premium with an out-of-sample annualized

Sharpe ratio of 2.08. The deep tangency portfolio outperforms those constructed

from commonly used observable or latent factors with an out-of-sample annual-

ized Sharpe ratio of 2.90.
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1 Introduction

A fundamental theory in asset pricing is the equivalence of the stochastic discount

factor (SDF) and the mean-variance efficient (MVE) portfolio. The minimum vari-

ance of the SDF equals the maximal squared Sharpe ratio of the MVE portfolio in the

economy (Hansen and Jagannathan, 1991). Markowitz (1952) marks the beginning of

modern portfolio theory, which formulates the solution to the optimal portfolio only

using expected returns and covariance of individual assets (Σ−1µ). However, it is no-

toriously difficult to estimate the MVE portfolio in real-world situations accurately,

making Cochrane (p.7, 2014) state “but this formula is essentially useless in practice.

The hurdles of estimating large covariance matrices, overcoming the curse of σ/
√
T

in estimating mean returns, and dealing with parameter uncertainty and drift are not

minor matters.”

A common alternative approach in the finance literature is to proxy the SDF as a

linear function of a small number of characteristics-managed factors (e.g., Fama and

French, 1996, 2015), hoping that those factors can span the minimum-variance SDF or

the mean-variance frontier. However, the commonly used factors can hardly achieve

the maximal Sharpe ratio of the asset universe (e.g., Kozak et al., 2018; Daniel et al.,

2020; He et al., 2022; Lopez-Lira and Roussanov, 2020), leaving many “anomalies”

unexplained. The literature has then examined and proposed a large number of factors

(Harvey, Liu, and Zhu, 2016; Hou, Xue, and Zhang, 2020), leading to an issue of “factor

zoo” (Cochrane, 2011).

This paper proposes a deep learning framework for constructing the optimal or

tangency portfolio without relying on expected returns and covariance matrix esti-

mates. Firm characteristics contain rich information on the joint distribution of asset

returns. Cochrane (2011) asserts that expected returns, variances, and covariances are

stable functions of characteristics (also see, e.g., Kelly, Pruitt, and Su, 2019; Kozak,

Nagel, and Santosh, 2020). Therefore, we directly parameterize the tangency portfolio

weights as a nonlinear function of a large number of characteristics. Indeed, using a

large set of characteristics and their nonlinear combinations is crucial, as the existing
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studies on machine learning (ML) show that there does not exist clear-cut evidence of

sparsity of characteristics (see, e.g., Kozak, Nagel, and Santosh, 2020; Giannone, Lenza,

and Primiceri, 2021), and nonlinearity is important (see, e.g., Freyberger, Neuhierl, and

Weber, 2020; Gu, Kelly, and Xiu, 2020; Cong, Feng, He, and He, 2022).1

We aim to construct the tangency portfolio using a large panel of individual assets

and a benchmark portfolio, such as the market factor. Our parametric portfolio pol-

icy mimics the commonly used portfolio sorting approach in empirical asset pricing

through an economically-guided deep learning model, which extends and generalizes

the one proposed by Feng et al. (2022). The multi-layer nonlinear deep neural network

provides a supervised dimension reduction by transforming a large number of char-

acteristics into one deep characteristic for each asset, based on which a deep factor is

constructed as a long-short portfolio of individual assets using a nonlinear ranking

scheme. The deep tangency portfolio is formed by combining the deep factor and the

benchmark factor by maximizing its squared Sharpe ratio. Our deep learning frame-

work is flexible enough to introduce multiple deep factors to augment the benchmark.

The economically-guided deep factor plays two important roles: (i) under the risk-

adjusted objective of the tangency portfolio, the deep factor should have a low or even

negative correlation with the benchmark factor, providing us with a potential hedge

portfolio; and (ii) the deep factor spans to a large extent any missing risk factors other

than the benchmark factor that should enter the pricing kernel. Our deep paramet-

ric portfolio policy only relies on the Sharpe ratio improvement over the benchmark

without using any test assets, similar to the factor selection of Barillas and Shanken

(2017) and Barillas et al. (2020). All the above features make our deep learning model

more economically interpretable and largely alleviate the “black-box” criticism.

To demonstrate our methodology, we apply it to the corporate bond market, given

that relative to the equity market, studies on the cross-sectional pricing of corporate

bonds remain limited. The literature has proposed some observable factors for ex-

plaining time-series comovements and cross-sectional variations of corporate bond

1See the latest textbook (Negal, 2021) and review (Giglio et al., 2022), as well as references therein.
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returns. For example, Fama and French (1993) argue that two factors based on bond

term and default, together with the bond market portfolio, can capture common vari-

ation in both equity and bond returns. Bai, Bali, and Wen (2019) (BBW hereafter)

propose an alternative bond factor model based on downside risk, credit risk, and liq-

uidity risk. However, these models impose a strong ad hoc sparsity when constructing

the factors.2 Therefore, those observable factor models may be incapable of competing

with latent factor models that take into account a large number of characteristics (see,

e.g., Kelly, Palhares, and Pruitt, 2022; Kelly and Pruitt, 2022).

Empirical Highlights. We construct the monthly corporate bond returns using trans-

action data on corporate bond prices from the enhanced version of the Trade Report-

ing and Compliance Engine (TRACE). Three types of characteristics are taken into

account. The first type is bond characteristics. Combining the data of TRACE and

the Mergent Fixed Income Securities Database (FISD), we construct a set of 41 bond

characteristics. Second, given that both bond and stock prices are contingent on firm

fundamentals, we also collect 61 equity characteristics that are commonly used in the

literature (see, e.g., Freyberger, Neuhierl, and Weber, 2020; Feng, He, Polson, and Xu,

2022). Lastly, given that the recent literature has found that equity option-related vari-

ables contain information on future corporate bond returns (see, e.g., Cao, Goyal, Xiao,

and Zhan, 2022; Chung, Wang, and Wu, 2019; Huang, Jiang, and Li, 2021), we construct

30 equity option-related characteristics. Altogether, 132 characteristics are fed into our

deep learning model. The sample period ranges from July 2004 to December 2020. We

take the subsample from July 2004 to June 2014 for model training and validating and

the subsample from July 2014 to December 2020 for out-of-sample testing.

Our empirical findings can be briefly summarized as follows. First, while it earns

a relatively small mean excess return compared to the bond market factor and some

other traded factors (e.g., BBW factors), the deep factor only slightly varies over time,

resulting in a much higher Sharpe ratio than all other factors under consideration for

2Other corporate bond factors include liquidity (Lin, Wang, and Wu, 2011), momentum (Jostova,
Nikolova, Philipov, and Stahel, 2013), volatility (Chung, Wang, and Wu, 2019), and long-term reversal
(Bali, Subrahmanyam, and Wen, 2021).
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Figure 1: Bond Market Factor v.s. Deep Factor

This figure displays the time series of deep factor and market factor returns in the out-of-
sample period(2014.07 to 2020.12).

both in-sample and out-of-sample periods. Furthermore, the deep factor negatively

correlates with the bond market factor, and they hardly go down simultaneously, pro-

viding us with a market-hedge portfolio. Figure 1 presents time series of returns on

the deep factor and the market factor for the out-of-sample period. During those mar-

ket downturn periods, the deep factor always keeps positive, and this is particularly

striking during the outbreak of the Covid-19 pandemic.

Second, the deep tangency portfolio constructed from the market portfolio and the

deep factor earns an out-of-sample annualized Sharpe ratio of as large as 2.90, much

higher than that of the market portfolio (0.86), of the tangency portfolio constructed

from the BBW four factors (1.07), and of the tangency portfolio constructed from the

Fama-French three equity factors (MKTRF, SMB, and HML) plus two bond factors

(term and default factors) (1.26). Consistently, we find that neither of these factor
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models can explain excess returns on the deep factor and the deep tangency portfolios

in the factor-spanning regressions. The deep factor loads negatively on the bond mar-

ket factor, and the deep tangency portfolio has negligible exposure to the bond market

factor, further highlighting the deep factor’s market-hedging role.

Third, we further show that it is crucial to consider various types of characteris-

tics in constructing the deep tangency portfolio. We find that when we exclude the

option-related variables, the out-of-sample annualized Sharpe ratio of the deep tan-

gency portfolio decreases to 1.91, and it has a further decrease when only bond char-

acteristics are used. Indeed, for largely spanning expected returns and covariance, it

is essential to introduce as many characteristics as possible. This evidence is in stark

contrast to previous studies that argue those characteristics that predict equity returns

do not necessarily forecast corporate bond returns (see, e.g., Chordia et al., 2017; Bali

et al., 2021). However, it provides further empirical evidence in support of integra-

tion between bond and equity markets (see, e.g., Schaefer and Strebulaev, 2008; Kelly,

Palhares, and Pruitt, 2022).

Finally, our deep parametric portfolio policy provides an alternative latent fac-

tor construction. We then make additional analysis by comparing the performance

of our deep tangency portfolio with those constructed from two recently developed

latent-factor methods, i.e., risk-premium principal component analysis (RP-PCA) of

Lettau and Pelger (2020) and instrumental principal component analysis (IPCA) of

Kelly, Pruitt, and Su (2019) and Kelly, Palhares, and Pruitt (2022). Our deep tangency

portfolio outperforms: for the same out-of-sample period, the tangency portfolio from

the five RP-PCA factors earns an annualized Sharpe ratio of only 0.91, and that from

the five IPCA factors achieves an annualized Sharpe ratio of 2.32.

Literature. Our paper contributes to several strands of literature. First, it contributes

to the recent literature on ML methods constructing latent factors to approximate the

SDF by considering a large number of characteristics. Kelly, Pruitt, and Su (2019)

propose an instrumental principal component analysis (IPCA) that allows for time-
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varying factor loadings depending on characteristics. Kozak, Nagel, and Santosh

(2020) assume that the SDF loading is a linear function of characteristics, and find

no clear evidence of sparsity of characteristics in the SDF loading. Bryzgalova, Pelger,

and Zhu (2019) propose penalized regressions on tree-basis portfolios for constructing

the maximal Sharpe ratio SDF, and Cong, Feng, He, and He (2022) develop a panel-

tree approach for generating latent factors and constructing the SDF. In addition, our

paper also relates to recent attempts that develop nonlinear deep neural networks for

latent factor models, such as the auto-encoder (Gu, Kelly, and Xiu, 2021), generative

adversarial network (Chen, Pelger, and Zhu, 2022), and characteristics-sorted factor

approximation (Feng, He, Polson, and Xu, 2022). Differently, based on a fundamen-

tal economic theory of the equivalence between the SDF and the MVE portfolio, our

paper develops a flexible and interpretable methodology, aiming to create a tangency

portfolio without estimating expected returns and covariance.

Second, our paper contributes to the literature that investigates the cross-sectional

predictability of characteristics to corporate bond returns.3 However, most of those

papers impose a strong ad hoc sparsity in modeling. Bali, Goyal, Huang, Jiang, and

Wen (2021) and He et al. (2021b) investigate bond return predictability via machine

learning methods. In the same vein as our paper, Kelly, Palhares, and Pruitt (2022)

examine the cross-sectional pricing of corporate bonds relying on the IPCA method,

showing that a five-factor model outperforms commonly used observable factor mod-

els on the ICE corporate bond dataset. Kelly and Pruitt (2022) further confirm that

the main analysis of Kelly, Palhares, and Pruitt (2022) is robust to using the TRACE

dataset. However, our method is more flexible and allows for modeling nonlinearity

and interactions of characteristics. As discussed above, our deep tangency portfolio

has a higher out-of-sample Sharpe ratio than the IPCA tangency portfolio within our

data context.

Finally, our paper contributes to robust portfolio construction that sidesteps direct

estimation of the covariance matrix and average returns. Brandt (1999) and Ait-Sahalia

3See, for example, Bai, Bali, and Wen (2019), Lin, Wang, and Wu (2011), Jostova, Nikolova, Philipov,
and Stahel (2013), Chung, Wang, and Wu (2019), Huang, Jiang, and Li (2021), and He et al. (2021a).
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and Brandt (2001) propose a nonparametric approach for estimating portfolio weights

from the Euler first-order conditions, thus bypassing the estimation of return covari-

ance and averages. Brandt, Santa-Clara, and Valkanov (2009) provide a parametric

approach by estimating the portfolio weights as a linear function of characteristics

(size, value, and momentum). Based on the same approach as Brandt, Santa-Clara,

and Valkanov (2009), Brandt and Santa-Clara (2006) examine a market-timing prob-

lem involving stocks, bonds, and cash, and DeMiguel et al. (2020) show the economic

rationale of transaction cost by utilizing multiple characteristics. Raponi, Uppal, and

Zaffaroni (2021) combine an “alpha” portfolio and a “beta” portfolio relying on a factor

model for the robust portfolio choice. Our paper provides a parametric approach for

estimating the portfolio weights directly, where the unique design of long-short port-

folio weights reflects the nonlinear risk-return relationship on the deep characteristics

generated from the multi-layer deep neural network.

The remainder of the paper is organized as follows. Section 2 presents our model

and the deep learning algorithms. Section 3 presents data on corporate bond returns

and characteristics. Section 4 provides empirical findings. Section 5 concludes the pa-

per. Additional materials and empirical results are reported in the Internet Appendix.

2 Methodology

2.1 Maximal Sharpe Ratio Portfolio

There exists a duality between the SDF variance and Sharpe ratios. We start with

the minimum-variance SDF in the economy that spans N individual asset excess re-

turns, rt = [r1,t, ..., rN,t]
′, as constructed by Hansen and Jagannathan (1991),

mt+1 = 1− w′
t

(
rt+1 − µt

)
, (1)

where µt = Et[rt+1] represents the conditional expectation of asset excess returns.

By plugging in the linear SDF in Equation (1) into the fundamental pricing relation,
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Et[mt+1rt+1] = 0, the solution to the SDF loading wt takes the form of

wt = Σ−1
t µt, (2)

where Σt is the conditional variance-covariance matrix of excess returns, Σt = Covt(rt+1).

The conditional variance of the SDF is then given by

V art(mt+1) = µ′
tΣ

−1
t µt, (3)

which equals the maximal conditional squared Sharpe ratio of the tangency portfolio,

Ropt
t+1 = w′

trt+1, (4)

whose weights are the same as the SDF loadings in Equation (2).

In practice, it is challenging to estimate expected returns and covariance matrix.

The number of individual assets, N , is usually large, making it difficult to estimate the

large covariance matrix (Σt). Moreover, as a general observation, mean estimates (µt)

are often imprecise even with long samples and a high frequency of excess returns (see,

e.g., Merton, 1980; Cochrane, 2014). Both issues yield a very inaccurate estimate of wt

in Equation (2), resulting in the poor out-of-sample performance of optimal portfolios

(see, e.g., DeMiguel, Garlappi, and Uppal, 2009).

A common approach in the finance literature is to adopt a factor model to reduce

the dimensionality of the SDF by approximating it with a small number of factors (e.g.,

Fama and French, 1996, 2015). Assume that the SDF loading wt in Equation (1) can be

largely captured in a linear form by J characteristics, zt, a N × J matrix for J ≪ N ,

such that

wt = w̃t + ztκ, (5)

where following the convention of the finance literature, w̃t is normalized weights on

market capitalization of firms, zt is usually cross-sectionally standardized to have zero

mean, and κ is a J × 1 vector of coefficients. Define Rm,t+1 = w̃′
trt+1, representing the
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market portfolio, and ft+1 = z′trt+1, representing J factors, which are zero-investment

characteristic-managed long-short portfolios. Equation (5) suggests that the SDF takes

the form of

mt+1 = 1− δ′
(
Ft+1 − µF,t

)
, (6)

where δ = [1, κ′]′, and Ft = [Rm,t, f
′
t ]
′.

Such a dimension reduction aims to use those small number of factors (Ft) to ap-

proximate the SDF (see Equation (1)) and span the MVE portfolio (see Equation (3)).

Building on the intertemporal capital asset pricing model of Merton (ICAPM, 1973),

Fama and French (1996, 2015) also interpret those factors of ft as “[they] are just di-

versified portfolios that provide different combinations of exposure to the unknown

state variables”. However, the literature has found that there does not exist clear-cut

evidence of sparsity of characteristics (e.g., Kozak et al., 2020; Giannone et al., 2021)

and many characteristics and their nonlinear combinations contain information on the

joint distribution of asset returns for characterizing the cross-sectional variation (e.g.,

Freyberger et al., 2020; Gu et al., 2020; Cong et al., 2022).

Therefore, in this paper, we sidestep direct estimation of µt and Σt, or simple re-

duction of dimension with few characteristics, but instead approximate the tangency

portfolio weights by parameterizing wt as a nonlinear function of a large number of K

assets’ characteristics, zt, a N ×K matrix with K ≫ J . We formulate wt as

wi,t = w̃i,t + θ wd(zi,t; Φ), i = 1, . . . , N, (7)

where, as before, w̃i,t is the weight of asset i in the market portfolio, wd(·) is a function

of zi,t that can account for any potential nonlinear relations among a large number of

characteristics of asset i, Φ is the required parameters, and θ is a scalar controlling the

relative weight in the tangency portfolio. We estimate the portfolio weights as a single

function of characteristics that applies to all assets (see, e.g., Brandt, Santa-Clara, and

Valkanov, 2009).

To be explained clearly in the next subsection, the function, wd(·), produces weights
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with economically-guided nonlinearity for forming a zero-cost long-short portfolio

with the sums of weights for long and short legs normalized to 1 and -1, respectively.

The tangency portfolio return in Equation (4) can then be represented by

Ropt
t+1 =

N∑
i=1

w̃i,tri,t+1 + θ

N∑
i=1

wd(zi,t; Φ)ri,t+1 = Rm,t+1 + θRd,t+1, (8)

where Rm,t+1, as before, is the market portfolio return, and given that wd(·) cross-

sectionally sums to zero, Rd,t+1 is, in fact, the returns on a long-short portfolio con-

structed based on non-linear combinations of characteristics. The parameterization

of Equation (7) suggests a two-factor reduced-form SDF with factors of Rm,t and Rd,t.

When the function wd(·) takes a linear form, and the number of characteristics is small,

our parameterization becomes the standard approach as in Equation (5).

When we have a priori knowledge that a particular set of observable factors is help-

ful in spanning the efficient portfolio frontier, we can introduce these factors by insert-

ing them into Equation (7) and construct the portfolio weights, wi,t, as follows,

wi,t = w̃i,t + w̃p
i,tθp + θdwd(zi,t; Φ), i = 1, . . . , N, (9)

where w̃p
t is a N × P vector of weights on individual assets for constructing the P

observable factors, and θp is a P × 1 vector of coefficients. The tangency portfolio

return is then given by

Ropt
t+1 = Rm,t+1 + θ′pRp,t+1 + θdRd,t+1, (10)

where Rp,t+1 is a P × 1 vector of returns on P observable factors at time t + 1. Now

denote θ = [θ′p, θd]
′.

The main objective of our model is to find the minimum-variance SDF or a tan-

gency portfolio that delivers the maximal Sharpe ratio. For this purpose, we search

for the functional form of wd(·) and estimate the model parameters θ and Φ by maxi-
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mizing the average conditional squared Sharpe ratio of the portfolio Ropt
t+1,

max
θ,Φ

1

T

T−1∑
t=0

SR2
t (R

opt
t+1). (11)

The long-short portfolio, Rd,t+1, plays two fundamental roles: (i) according to the prin-

ciple of diversification, Equation (11) suggests it should have a low or even negative

correlation with the market (and other benchmark factors), providing us with a po-

tential hedge portfolio; and (ii) when the market (and other benchmark factors) alone

cannot capture all systematic risk, the deep factor spans to a large extent any missing

risk factors that should enter the pricing kernel, implying that it may have a sizable

market price of risk.

Our approach can also be interpreted as a dimension reduction of characteristics

and risk factors. Empirically, many studies have proved the failure of CAPM, i.e.,

other than the market factor, more factors need to be introduced to the pricing kernel

for explaining time-series comovements of asset returns and expected return spreads

across assets. The most popular factors are characteristic-managed portfolios, such as

the Fama-French factors (Fama and French, 1996, 2015) and the BBW corporate bond

factors (Bai, Bali, and Wen, 2019). Our framework aims to find such characteristic-

managed portfolios based on a fundamental economic theory: the MVE portfolio is

equivalent to the SDF. The proposed nonlinear modeling approximates the long-short

factor construction using a large number of characteristics and reflects the underly-

ing risk-return relationship. The dimension reduction in constructing characteristic-

managed portfolios only relies on Sharpe ratio improvement over the market or other

benchmark factors without using any test assets. Such irrelevance of test assets in

factor model comparison has been discussed by Barillas and Shanken (2017, 2018).

In what follows, we propose a deep learning method for constructing the portfolio

weights of wd(·) in Equations (7) and (9) and the characteristic-managed long-short

portfolio Rd,t. While many popular characteristic-managed factors have sidestepped

the high-dimensional problem by focusing on only a small number of characteristics,
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our approach can easily consider many potential characteristics and their nonlinear

combinations.

2.2 Deep Factor and Deep Tangency Portfolio

Our construction of the long-short portfolio, Rd,t, relies on a deep learning model,

aiming to construct the tangency portfolio by complementing the benchmark factors.

Rather than specifically relying on average returns and covariance matrix of high-

dimensional individual assets, we retain the conventional sorting scheme in deep

learning based on information of many characteristics. For this purpose, we extend

and generalize the deep learning method proposed by Feng et al. (2022).

We first clarify notations. A typical training observation indexed by time t includes

the following types of data:

• {ri,t}Ni=1, excess returns of N individual assets;

• {zk,i,t−1 : 1 ≤ k ≤ K}Ni=1 , K lagged characteristics of N assets;

• {Rb,t}P+1
b=1 , a (P + 1) × 1 vector of excess returns on the market factor and P ob-

servable factors.

We design a L-layer neural network that transforms K characteristics to one deep

characteristic that is relatively interpretable. At each time t and for each asset i, i =

1, . . . , N , our deep learning model works as follows,

Z
(0)
i,t−1 = [z1,i,t−1, · · · , zK,i,t−1]

′
, (12)

Z
(l)
i,t−1 = G(A(l)Z

(l−1)
i,t−1 + b(l)), (13)

for l = 1, . . . , L, where Z
(l)
i,t−1 is the i-th column of the Kl × N matrix of Z(l)

t−1, for 1 ≤

Kl ≤ K, and G(·) is a univariate activation function, which is chosen to be the tanh

function in the paper, G(x) = (ex − e−x)/(ex + e−x). A(l) and b(l) are deep learning

weight and bias parameters, respectively, and need to be trained in the algorithm.

The algorithm performs the transformation and dimension reduction for each asset
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without interactions among different assets through the univariate activation function.

In the end, we have a 1×N matrix of deep characteristics, Z(L)
t−1. The parameters to be

trained in this part are deep learning weights A and biases b, namely,

{(
A(l), b(l)

)
: A(l) ∈ RKl×Kl−1 , b(l) ∈ RKl

}L

l=1
. (14)

Different from the stepwise sorting approach that is commonly used to construct

zero-cost long-short factors (e.g., the Fama-French SMB and HML factors), we adopt a

nonlinear approach to proxy for the long-short portfolio weights as follows,

wd(zt−1) ≡ Wt−1 = h(Z
(L)
t−1), (15)

where the function h(·) uses the softmax activation and calculates the portfolio weights

based on the ranking of the deep characteristic. For the 1 × N vector of x = Z
(L)
t−1, it

takes the form of,

h(x) =



softmax(x+
1 )

softmax(x+
2 )

...

softmax(x+
N)


−



softmax(x−
1 )

softmax(x−
2 )

...

softmax(x−
N)


, (16)

where we define x+ := −a1e
−a2x and x− := −a1e

a2x, and a1 and a2 are two hyperpa-

rameters. The nonlinear softmax function is an increasing function,

softmax(xi) =
exi∑N
j=1 e

xj

, (17)

and
∑N

i=1 softmax(xi) = 1. On the right-hand side of Equation (16), the first term rep-

resents the long position weights of assets, and the second term is for the symmetric

short position. In implementation, we choose a1 = 50 and a2 = 8 such that at each

time, about 50% to 70% assets are in the middle rank and have weights of zero, similar

to the traditional sorting procedure. Furthermore, we normalize the portfolio weights
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such that the sum of weights in the long leg is equal to 1 and that in the short leg is

equal to -1. As discussed in Feng et al. (2022), such a nonlinear rank-weighting scheme

depends not only on the cross-sectional rank information but also on the distributional

properties of characteristics. Nevertheless, in implementation, we also construct the

deep portfolio weights using the standard sorting approach that longs top 30% indi-

vidual assets and shorts bottom 30% individual assets on the basis of individual deep

characteristics.

The deep factor portfolio weights, Wt−1, in Equations (15) and (16), sum to zero by

construction. Our deep factor, Rd,t, can be computed as

Rd,t = Wt−1rt, (18)

which can be combined with the market or other benchmark factors to form the deep

tangency portfolio as in Equation (8). Note that more than one deep factor can be

constructed in an iterative fashion by treating the previous one as a new benchmark

factor in our algorithm. As a result, the additional deep factor should capture pricing

information not contained in the previous one.

Given that all parameters in our model are time-invariant and that we implicitly

assume that characteristics fully capture all aspects of expected returns and covari-

ance relevant to optimal portfolios, the conditional model becomes an unconditional

one, and the objective function in Equation (11) can be replaced by the unconditional

squared Sharpe Ratio of optimal portfolio Ropt
t on F̃t = [R′

b,t, Rd,t]
′,

SR2(Ropt
t ) ≡ SR2(F̃t) = E(F̃t)

′ Cov(F̃t)
−1E(F̃t). (19)

There are usually a large number of parameters for modeling a multi-layer neural

network. To avoid overfitting and improve the model’s out-of-sample performance,

we augment the objective function by introducing L1- and L2-norm penalties and min-
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Figure 2: Deep Learning Network Architecture

This figure provides a visualization of the deep learning architecture. The equity, bond, and

option characteristics Z(0) are transformed via the multi-layer neural network to deep charac-

teristics Z(L), which are nonlinearly ranked to calculate deep factor portfolio weights W . Com-

bining W and individual bond returns, we construct the long-short deep factors, Rd, which are

used with the benchmark factors, Rb, to compose an optimal portfolio Ropt.

imize the following loss function,

Lγ1,γ2 = exp
{
−SR2(Ropt

t )
}
+ γ1

L−1∑
l=1

∑
i ̸=j

∣∣∣A(l)
i,j

∣∣∣+ γ2

L−1∑
l=1

||A(l)
i,j ||2︸ ︷︷ ︸

penalty

, (20)

where the L1-norm penalizes the off-diagonal weights, aiming to stabilize the model

and make interactions of characteristics sparse, and the L2-norm penalizes the com-

plexity of the neural network, avoiding overfitting. The hyperparameters, γ1 and γ2,

need to be tuned through training and validation. Figure 2 presents a visualization of

our deep learning architecture and summarizes the critical stages for constructing the

deep factor and the deep tangency portfolio.
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3 Data

To illustrate the performance of our methodology, we apply it to the corporate

bond market, given that relative to the equity market, studies on the cross-sectional

pricing of corporate bonds remain limited. We first construct the corporate bond re-

turns based on the TRACE data in Subsection 3.1; we then introduce various types

of characteristics that will be fed into our deep learning model in Subsection 3.2 and

present the benchmark factor and competing factor models in Subsection 3.3.

3.1 Corporate Bond Returns and Summary Statistics

We obtain corporate bond intraday transaction data from the enhanced version of

TRACE, which offers the best-quality data on corporate bond prices, trading volume,

and buy-sell indicators. The importance of using TRACE transaction data to measure

abnormal corporate bond performance is emphasized in Bessembinder et al. (2009).

We merge the TRACE dataset with the FISD to obtain bond characteristics such as

offering date, offering amount, maturity date, coupon type and rate, bond type and

rating, interest payment frequency, and issuer information.

Following the standard procedures in Dick-Nielsen (2009, 2014), we exclude du-

plicates, withdrawn, and erroneous trade entries in the TRACE data. Additionally,

we follow Bai, Bali, and Wen (2019) to apply several filters to the data such that we

remove: (i) bonds that are not listed or traded in the U.S. public market; (ii) bonds

that are structured notes, mortgage-backed, asset-backed, agency-backed, or equity-

linked; (iii) convertible bonds whose option feature distorts the return calculation and

makes it impossible to compare the returns of convertible and nonconvertible bonds;

(iv) bonds with time to maturity of fewer than two years; and (v) bonds that trade un-

der $5 or above $1,000. We then calculate the daily bond price as the trading-volume-

weighted average of intraday prices, as in Bessembinder et al. (2009). In line with the
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literature, for each corporate bond i, its return at month t is calculated as follows:

r̃i,t =
Pri,t + AIi,t + Ci,t

Pri,t−1 + AIi,t−1

− 1, (21)

where Pri,t is its transaction price in month t, AIi,t is its accrued interest, and Ci,t is its

coupon payment in month t. As in Bai, Bali, and Wen (2019), we identify two scenarios

to calculate a realized return at the end of the month t: (i) from the end of the month

t− 1 to the end of the month t and (ii) from the beginning of month t to the end of the

month t. The end (beginning) of the month refers to the last (first) five trading days in

that month, and if there is more than one trading record in this five-day window, we

use the last (first) observation of the month. If a return at the end of a month is realized

in both scenarios, we use the realized return from the end of the month t−1 to the end

of month t. The excess bond return is then defined as the difference between the bond

return and the risk-free rate, ri,t = r̃i,t − rf,t, where the risk-free rate, rf,t, is proxied by

the one-month Treasury bill rate obtained from CRSP. Furthermore, as in Feng et al.

(2022), we make a balanced panel by only keeping 3,200 bonds with the largest size

each month.4 The final sample of corporate bond returns spans the period from July

2004 to December 2020.

Table 1 presents the summary statistics of excess corporate bond returns and some

typical bond characteristics. The sample includes 24,789 corporate bonds issued by

3,383 unique firms and a total of 633,600 bond-month return observations. As shown

in Panel A, the mean monthly excess bond return is about 0.63% with a standard de-

viation of 5.37%. The sample contains bonds with a mean size of about 803 million, a

mean rating of 8.78, which is a BBB+ rating 5. Panel A also reports the cross-sectional

statistics of investment grade (IG) bonds, which takes about 74.8% of all observations,

and non-investment grade (NIG) bonds. Compared to the NIG bonds, the IG bonds

4To avoid the volatility and liquidity effect of small market-value bonds, we select the largest 3200
bonds among all available bonds each month.

5Ratings are represented in numerical scores, where 1 refers to an AAA rating, 2 refers to an AA+
rating, . . . , and 21 refers to a C rating. Investment-grade bonds have ratings from 1 (AAA) to 10 (BBB-),
and non-investment-grade bonds have ratings of 11 or above. Similar to Bai, Bali, and Wen (2019), we
use the ratings of Standard & Poor’s (S&P) or Moody’s to determine a bond’s rating. When both rating
companies rate a bond, we use the average of their ratings.
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have a smaller average monthly excess return (0.52% vs. 0.94%), a lower standard de-

viation (3.00% vs. 9.38%), and a higher rating level (7.04 vs. 13.95). Similarly, the last

two columns report summary statistics of the public and private bonds. The public

bonds take about 76.7% of all the bond-month observations, their returns are smaller

on average, and their ratings are higher on average, compared to private bonds. Both

IG and Public bonds have much larger average sizes than their counterparts. Panel B

and C report the sample distributions by Rating & Maturity and Ownership & Rating,

respectively. A general observation is that most bonds with high ratings are long-

maturity bonds.

3.2 Characteristics

We consider three types of characteristics that are relevant to corporate bond re-

turn predictability. The first includes 41 bond characteristics that can be classified into

three major categories: basis characteristics (e.g., rating, duration, liquidity), return-

distribution characteristics (e.g., momentum, reversal, variance, skewness), and co-

variances with common risk factors (e.g., market beta, TERM beta, DEF beta).

Furthermore, given that both bond and stock prices are contingent on firm funda-

mentals, we also consider some equity characteristics, which have been shown helpful

in predicting equity returns. Recent studies have shown that bond and equity markets

are largely integrated. Choi and Kim (2018) argue that market integration suggests

different markets should share common factors. Schaefer and Strebulaev (2008) show

that bond and equity returns are related through the capital structure hedge ratio. By

approximating the hedge ratio with a Merton model for debt, they find that the sensi-

tivity of debt returns to equity is close to that predicted by the Merton model. Building

on Schaefer and Strebulaev (2008) and Choi and Kim (2018), Kelly, Palhares, and Pruitt

(2022) find that debt and equity markets are more integrated than previous estimates

suggest, and that these markets are substantially more integrated in terms of their sys-

tematic risks than their idiosyncratic risks. Therefore, the second type includes a total

of 61 equity characteristics that cover six major categories: momentum, value, invest-
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Table 1: Summary Statistics

Our final data sample includes 633,600 monthly return observations of 24,789 unique corporate bonds
from July 2004 to December 2020. We report the summary statistics not only around the whole
Trace Data(ALL) but also sub-set separated by Rating type(Investment Grade(IG) & Non-Investment
Grade(NIG)) and ownership(Public & Private).

Panel A: Cross-sectional statistics

ALL IG NIG Public Private

Bond-month observations 633,600 474,225 159,375 485,992 147,608
Ret mean (%) 0.63 0.52 0.94 0.55 0.87
Ret std (%) 5.37 3.00 9.38 3.77 8.79
Rating mean 8.78 7.04 13.95 8.32 10.29
Duration mean 3.96 4.25 3.09 4.06 3.62
Age mean 4.30 4.40 4.01 4.28 4.39
Size mean (million) 803 858 640 831 711

Panel B: Sample Distribution(%) by Maturity and Rating

Maturity AAA AA A B Junk ALL

2 0.15 0.71 2.63 2.71 1.45 7.66
3 0.19 0.78 3.00 3.36 2.02 9.35
4 0.18 0.77 3.02 3.57 2.55 10.09
5 0.15 0.75 2.99 3.70 3.13 10.72
6 0.10 0.39 1.93 2.86 3.44 8.72
7 0.09 0.38 1.88 2.89 3.41 8.66
8 0.08 0.34 1.76 2.79 2.61 7.58
9 0.07 0.34 1.72 2.78 1.90 6.81

10 0.07 0.34 1.66 2.63 1.32 6.01
≥11 0.58 1.51 8.62 10.35 3.33 24.40
ALL 1.67 6.33 29.20 37.64 25.15 100

Panel C: Sample Distribution(%) by Ownership and Rating

Ownership AAA AA A B Junk ALL

Private 0.12 1.22 4.53 8.50 8.93 23.30
Public 1.56 5.10 24.68 29.14 16.22 76.70
ALL 1.67 6.33 29.20 37.64 25.15 100.00

ment, profitability, frictions or size, and intangibles, most of which have been used in

empirical asset pricing (see, e.g., Green, Hand, and Zhang, 2017; Freyberger, Neuhierl,

and Weber, 2020).

In addition, the recent literature has found that a number of option-related vari-

ables have predictive power for corporate bond returns (see, e.g., Cao et al. (2022);

Chung et al. (2019), Huang, Jiang, and Li (2021)). We, therefore, construct a total of

30 option-related characteristics. Many of those option-related variables have been
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shown to have predictive power for equity returns (see, e.g., Neuhierl et al., 2021);

here we examine whether they help forecast corporate bond returns as well.

Altogether, we have a large number of characteristics, 132. The bond, equity, and

option characteristics are listed in Table A1, Table A2, and Table A3, respectively, in

Appendix. Before we feed those characteristics into our deep learning model, we

cross-sectionally rank and standardize them each month such that they are in the range

of [−1, 1], and their cross-sectional averages are equal to 0. Any missing values are im-

puted to be 0. One advantage of using the cross-sectional ranks of characteristics is

that the impact of potential data errors and outliers in individual characteristics can

be largely alleviated (see, e.g., Kelly, Pruitt, and Su, 2019; Freyberger, Neuhierl, and

Weber, 2020; Kozak, Nagel, and Santosh, 2020).

3.3 Benchmark Market Factor and Competing Factors

Benchmark Market Factor. Given that there do not exist well-established characteristic-

managed factors in the corporate bond market, we just take the corporate bond market

portfolio as our benchmark. Similar to Kelly, Palhares, and Pruitt (2022), our bench-

mark market portfolio is constructed simply as the equal-weighted average of excess

corporate bond returns in our sample, i.e., w̃i,t = 1/N .

Competing Factor Models. We consider two corporate bond factor models: one is

the BBW four-factor model (Bai, Bali, and Wen, 2019), and the other is a Fama-French

five-factor model that combines three equity factors and two bond factors (Fama and

French, 1993, 1996):

(i) The BBW four factors. Bai, Bali, and Wen (2019) propose a four-factor model

for the corporate bond market. Those factors include the bond market factor, the

downside risk factor (DRF), the credit risk factor (CRF), and the liquidity factor (LRF).

The downside risk factor is the value-weighted average return difference between the

highest-VaR portfolio minus the lowest-VaR portfolio within each rating portfolio; the

credit risk factor is the value-weighted average return difference between the highest
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credit risk portfolio minus the lowest credit risk portfolio within each VaR portfolio,

and the liquidity risk factor is the value-weighted average return difference between

the highest illiquidity portfolio minus the lowest illiquidity portfolio within each rat-

ing portfolio. Given that the BBW factors are constructed using the TRACE data, we

obtain those factors from the authors, instead of constructing them ourselves.

(ii) The Fama-French five factors (FF5). We combine the Fama-French three equity

factors, i.e., MKT, SMB, and HML (Fama and French, 1996), and two bond factors, i.e.,

the term and default factors (Fama and French, 1993). The term factor is defined as

the difference between the long-term government bond returns and the one-month

Treasury bill rate, and the default factor is defined as the difference between the long-

term corporate bond returns and the long-term government bond returns.

4 Empirical Findings

In our empirical implementation, we split the sample into two parts: the subsam-

ple from July 2004 to June 2014 for model training and validating and the subsample

from July 2014 to December 2020 for out-of-sample testing. All out-of-sample results

are based on in-sample parameter estimates. We adopt a two-fold deterministic cross-

validation scheme using the first subsample as shown in Figure 3 to determine the

penalty parameters and learning rate for a given number of neural network layers,

which range from 1 to 3 Below presents our main empirical findings and examines

how much improvement the deep factors can make over the benchmark and compet-

ing models.

4.1 Deep Corporate Bond Factors

Table 2 presents summary statistics of deep factors in terms of mean return, volatil-

ity, annualized Sharpe ratio, and maximal drawdown in the past 12 months (Max DD).

When constructing deep factors, we take the equal-weighted corporate bond market

factor as the benchmark and restrict the sums of weights of the long and short legs to
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Figure 3: Two-Fold Cross Validation

This figure demonstrates the deterministic two-fold cross-validation scheme. We determine the hyper-
parameters for the first 120 months (Jul 2004 to Jun 2014). Specifically, the deterministic design divides
the sample into two consecutive parts (Jul 2004 to Jun 2009 and Jul 2009 to Jun 2014). We train our neu-
ral network separately on the train set and then compare the result with different parameter settings
on the validation set. For example, for the first fold case, we train the model using the data from Jul
2004 to Jun 2009 and evaluate the out-of-sample performance on the data set from Jul 2009 to Jun 2014.
After the same operation for the second fold case, we average the out-of-sample loss and choose the
parameter pair with the best performance on this criterion.

Fisrt Fold Train Validation Holdout

Second Fold Validation Train Holdout

Jul 2004 to Jun 2009 Jul 2009 to Jun 2014 Jul 2014 to Dec 2020

1 and -1, respectively, such that the deep factor weights sum to zero. Panel A presents

deep factors constructed from 1-, 2-, and 3-layer neural networks. In-sample training

evidence shows that the shallow neural network works well enough because the 1-

layer deep factor outperforms: it has the highest annualized Sharpe ratio (1.62). Such

a result is further confirmed in the out-of-sample tests: the 1-layer deep factor has

monthly mean return and volatility of 0.24% and 0.44%, respectively, resulting in an

annualized Sharpe ratio of 1.86, which is much larger than that of the 2- or 3-layer

deep factor.

We present the same summary statistics for the two competing factor models for

comparison. Panel B is for the BBW factors. We find that in the in-sample period, the

DRF and LRF factors earn significant average returns and annualized Sharpe ratios

that are larger than 1.00, but smaller than that of the 1-layer deep factor; we further

see that in the out-of-sample period, while both the DRF and LRF factors still earn

significant average returns, only the LRF factor earns an annualized Sharpe ratio of

larger than 1.00, which is also much smaller than that of the 1-layer deep factor (1.17

vs. 1.86). None of the Fama-French factors earns an annualized Sharpe ratio of larger

than one both in the in-sample and out-of-sample periods (Panel C).

To sum up, while the premium of our deep factor is restrained, its volatility is
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Table 2: Descriptive Statistics of Deep and Competing Factors

This table reports the descriptive statistics in percentage containing the mean of return, Newey
West standard error (Newey and West, 1994) adjusted t-statistics , Standard Deviation(Std),
annualized Sharpe Ratio (SR), and Maximal Drawdown (Max DD) of deep portfolios obtained
from Neural Network and the constructed long-short factors contained by BBW, and Fama-
French factors.

In Sample Period (2004.7–2014.6) Out of Sample Period (2014.7–2020.12)
Mean tstat Std SR Max DD Mean tstat Std SR Max DD

Panel A. Deep Factors

R1
d 0.29 (4.78) 0.63 1.62 6.78 0.24 (5.93) 0.44 1.86 0.97

R2
d 0.23 (3.88) 0.62 1.30 7.11 0.12 (2.60) 0.42 0.98 1.61

R3
d 0.34 (4.70) 0.75 1.58 7.53 0.18 (3.10) 0.58 1.06 2.03

Panel B. BBW Four Factors

MKTC 0.60 (2.36) 2.56 0.81 19.85 0.41 (2.28) 1.67 0.86 7.92

DRF 0.78 (2.83) 2.39 1.13 18.62 0.55 (2.02) 2.17 0.88 13.15

CRF 0.50 (2.08) 1.94 0.90 18.57 0.10 (0.43) 1.81 0.18 14.45

LRF 0.54 (2.57) 1.50 1.25 7.66 0.29 (2.42) 0.86 1.17 4.94

Panel C. FF Five Factors

MKTE 0.64 (1.34) 4.36 0.51 46.34 1.07 (2.62) 4.41 0.84 20.52

SMB 0.18 (0.95) 2.28 0.28 10.44 −0.10 (0.31) 2.84 −0.12 16.05

HML 0.07 (0.25) 2.53 0.09 24.33 −0.77 (1.94) 3.00 −0.88 33.74

TRM 0.49 (1.71) 3.36 0.51 14.40 0.54 (1.60) 2.87 0.65 11.97

DEF 0.03 (0.15) 2.30 0.05 19.41 0.08 (0.40) 1.93 0.14 13.53

small, leading to a high market price of risk and delivering relatively stable returns,

particularly during market downturns, a fact further supported by its maximal draw-

down. When we examine the maximal drawdowns of all single factors, our 1-layer

deep factor has a maximal drawdown of 6.78 in the in-sample period and a maximal

drawdown of 0.97 in the out-of-sample period, both of which are much smaller than

those of all the other factors.

4.2 Deep Tangency Portfolios

We now move on to examine the portfolio performance. Table 3 presents the Sharpe

ratios of our deep tangency portfolios and various optimal portfolios constructed from

the competing factors. In Panel A, we see that our deep tangency portfolio earns an
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annualized in-sample Sharpe ratio of as high as 11.65 when using the 1-layer neural

network, in stark contrast to the corresponding Sharpe ratio of the benchmark market

factor (0.81). Such a high in-sample Sharpe ratio is not surprising as our deep learning

model is trained to maximize the Sharpe ratio of the tangency portfolio formed by the

market factor and the deep factor. Panel A of Figure 4 presents the in-sample scatter

plot between the benchmark market factor and the 1-layer deep factor; we see that they

are highly negatively correlated, resulting in a high Sharpe ratio of the deep tangency

portfolio according to the principle of diversification. It seems that our deep factor

plays the role of a market-hedge portfolio. Increasing the depth of the neural network

does not help improve the performance of deep tangency portfolios.

We are, in fact, more interested in the out-of-sample performance of the deep tan-

gency portfolios and other optimal portfolios. Note that all portfolios’ weights are

determined by the in-sample estimations. In Panel B, we see that the deep tangency

portfolio that combines the market portfolio and the 1-layer deep factor has an annual-

ized out-of-sample Sharpe ratio of 2.90, much higher than that of the market portfolio

(0.86) and that of the deep factor itself (1.86, see Table 2). The scatter plot in Panel B

of Figure 4 suggests that the deep factor negatively correlates with the market port-

folio in the out-of-sample period. Interestingly, we find that the deep factor and the

market portfolio hardly go down simultaneously, as very few returns are positioned

in the lower-left coordinate (also see Figure 1). To further check this point, Panel C of

Figure 4 plots the cumulative returns over time of the market portfolio and the deep

factor for the in-sample and out-of-sample periods, respectively. We see that the deep

factor goes the opposite whenever there is a market downturn. For example, during

the 2008 global financial crisis (in sample) and the outbreak of the Covid-19 pandemic

(out of sample), the cumulative returns of the deep factor increased over time much

more smoothly than those of the market portfolio, consistent with the evidence found

in the previous subsection. Those results provide further evidence in support of the

deep factor as a market-hedge portfolio.

The optimal portfolios constructed from the competing factors perform much worse
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Table 3: Performance of the Deep Tangency Portfolio

This table presents the Sharpe ratios of the tangency portfolios constructed using the multiple
factors with the deep portfolio. The deep learning model is trained with the market factor as
the only benchmark. For the deep learning model, we consider the 1-3 layers in the neural
network architecture. We take the sample from Jul 2004 to Jun 2014 for model training and val-
idation, and from Jul 2014 to Dec 2020 for out-of-sample tests. We follow Barillas and Shanken
(2017) to statistically test the significance of the Sharpe ratio increase of one strategy over the
other. ∗ ∗ ∗, ∗∗, and ∗ denote the level of significance of 1%, 5%, and 10%, respectively.

Benchmark and Competing Factors L1 L2 L3

Panel A. In Sample Period (2004.7–2014.6)

MKTC 0.81 11.65*** 10.39*** 10.39***
BBW4 1.50 11.72*** 10.45*** 10.55***
FF5 0.89 3.49*** 2.99*** 3.52***

Panel B. Out of Sample Period (2014.7–2020.12)

MKTC 0.86 2.90*** 1.78*** 2.38***
BBW4 1.07 2.88*** 1.79*** 2.42***
FF5 1.26 2.86*** 1.94*** 2.58***

than the deep tangency portfolio both in the in-sample and out-of-sample periods.

The optimal portfolio constructed from the BBW four factors has an annualized in-

sample Sharpe ratio of only 1.50 and an annualized out-of-sample Sharpe ratio of 1.07.

The portfolio constructed from the Fama-French five factors has a smaller in-sample

Sharpe ratio of 0.89, but a larger out-of-sample Sharpe ratio of 1.26. Note that the FF

five factors contain three equity factors (MKT, SMB, and HML) plus two bond factors

(Term and Default factors) as in Fama and French (1993).

What happens when we combine the competing factors and our deep factors? Ta-

ble 3 also presents the Sharpe ratios of the portfolios constructed using various com-

peting factors and a deep factor. When we combine the deep factors with BBW four

factors, both in-sample and out-of-sample Sharpe ratios are very similar to those of

our deep tangency portfolios. For example, the out-of-sample Sharpe ratio of the op-

timal portfolio constructed from the BBW four factors and the 1-layer deep factor is

2.88, which is almost the same as our tangency portfolio (2.90). Given that our deep

factors are constructed by taking the bond market factor as a benchmark and using
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Figure 4: Correlations and Cumulative Returns

This figure displays the deep portfolio R1
d’s return distribution and investment curve. Panel

A and B are the scatter plots of bond market return and deep portfolio’s return in and out of

the sampling period. Panels C and D show the cumulative return of deep portfolio R1
d and

bond market and the cumulative return of tangency portfolio Ropt
1 of [Rm, R1

d] pairs and other

competing models: BBW4, and FF5.
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all firm characteristics, it should already contain non-market information of BBW fac-

tors; therefore, including those factors would not improve the Sharpe ratio over our

deep tangency portfolio. In fact, we notice that the portfolio weights on the three non-

market BBW factors are negligible. A notable result is that the in-sample performance

of the optimal portfolio constructed from the Fama-French five factors and a deep fac-

tor is much worse; the reason is that our deep factors are constructed by taking the

bond market factor, not the equity market factor, as a benchmark; however, its out-

of-sample performance is still on par with our deep tangency portfolio with a Sharpe

ratio of 2.86 in a one-layer neural network. Panel D1 of Figure 4 presents the cumula-

tive returns of our 1-layer deep tangency portfolio and optimal portfolios constructed

from the competing factor models in the out-of-sample period. We see that the cumu-

27



lative returns of our deep tangency portfolio increase monotonically over time, and

market downturns do not have any impacts on its returns; however, in spite that the

cumulative returns on the competing optimal portfolios increase over time, their vari-

ations are very large, and notably, those portfolios usually suffer big losses in periods

of market downturns. To further examine the performance of various portfolios, we

normalize all the above optimal portfolios to have the same annual volatility of 10%

and present the cumulative returns of those normalized portfolio returns. We see from

Panel D2 of Figure 4 that our deep tangency portfolio, benefiting from its low volatility,

has much higher cumulative returns in the out-of-sample period.

While we have just used one deep factor in our previous analysis, our method-

ology is flexible enough to introduce multiple deep factors if necessary. This can be

done by simply iterating the algorithm by taking the deep factor extracted as another

benchmark, together with the market factor. Table 4 presents the performance of deep

tangency portfolios constructed from the benchmark market factor and 1-3 deep fac-

tors. In-sample training suggests using more deep factors; however, the out-of-sample

evidence shows that the first deep factor extracted from the one-layer neural network

performs already well as the Sharpe ratio improves from using 2 or 3 deep factors is

negligible and statistically insignificant. Therefore, we focus on the first deep factor

from the 1-layer neural network in what follows.

4.3 Factor Spanning Regressions

The key findings up to now are that our deep factor constructed from a nonlinear

combination of firm characteristics captures missing risks other than the market factor

and plays a role as a hedge portfolio to market downturns. It seems that commonly

used observable factors do not contain extra pricing information regarding Sharpe

ratio improvement combined with the deep factor. In this part, we further examine

these issues by implementing the simple factor-spanning regressions of the form,

Rd,t = α + β′ft + ϵt, (22)
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Table 4: Multiple Deep Factors

This table presents the selection of the number of factors by the Sharpe ratios test of the MVE portfolio
following Barillas and Shanken (2017). We take the sample from Jul 2004 to Jun 2014 for model training
and validation, and from Jul 2014 to Dec 2020 for out-of-sample tests. We first sequentially add the
number of deep portfolios in our model with three choices of the number of layers. We compare the out-
of-sample Sharpe Ratio increment within the same layer (L1,L2 and L3) across the different numbers
of the deep portfolio (D1,D2 and D3). The deep portfolio will be taken into the model only if it has
significant improvement on the mean-variance portfolio’s Sharpe Ratio compared to the formal one.
∗ ∗ ∗, ∗∗, and ∗ denote the level of significance of 1%, 5%, and 10%, respectively.

MKTC D1 D2 D3

Panel A. In Sample Period (2004.7–2014.6)

L1 0.81 11.65*** 12.28*** 12.49**
L2 0.81 10.39*** 12.73*** 13.65***
L3 0.81 10.39*** 14.31*** 15.17***

Panel B. Out of Sample Period (2014.7–2020.12)

L1 0.86 2.90*** 2.96* 2.99
L2 0.86 1.78*** 1.68 1.75**
L3 0.86 2.38*** 2.32 2.31

where ft is a set of observable factors (e.g., BBW factors), and Rd,t is our deep factor.

Given that the 1-layer neural network performs the best in terms of maximum Sharpe

ratios, we focus on the 1-layer deep factor. We also run a regression of

Ropt
t = α + β′ft + ϵt, (23)

where Ropt
t represents the deep tangency portfolio constructed from the bond mar-

ket factor and the 1-layer deep factor. Such a regression provides further evidence of

whether the small number of observable factors can span the optimal portfolio.

Table 5 presents the spanning regression results for the out-of-sample period. Panel

A reports alphas and betas from the spanning regressions of the deep factor and the

deep tangency portfolio on the BBW four factors, respectively. We see that the BBW

four factors are incapable of explaining excess returns on both the deep factor and the

deep tangency portfolio: the alpha estimate is about 0.30% in the regression of the

deep factor, and it is 0.24% in the regression of the deep tangency portfolio; both alpha
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Table 5: Spanning Regressions

This table reports the monthly alphas in basis points and statistical significance based on Newey West
standard error (Newey and West, 1994) for the bond factor spanning test. Specifically, we regress the
factor and trading strategies (portfolios) in the rows against the factor models (BBW4, and FF5) in the
column. Ropt

1 is the mean-variance portfolio constructed by the bond market and the deep portfolio R1
d.

For t-statistics ∗, ∗∗, and ∗ ∗ ∗ indicate significance at the 10%, 5%, and 1% levels, respectively.

Panel A. BBW Four Factors

α βMKTC
βDRF βCRF βLRF R2

R1
d 0.30 −0.17 −0.00 0.06 0.02 36.05

(8.86) (−3.01) (−0.10) (2.06) (0.28)

Ropt
1 0.24 0.06 −0.00 0.05 0.02 22.82

(8.86) (1.29) (−0.10) (2.06) (0.28)

Panel B. FF Five Factors
α βMKTE

βSMB βHML βTRM βDEF R2

R1
d 0.26 0.03 −0.04 −0.02 −0.11 −0.17 50.80

(8.62) (1.81) (−2.16) (−1.40) (−5.22) (−3.87)

Ropt
1 0.22 0.05 −0.03 −0.01 −0.00 −0.01 29.42

(7.20) (2.76) (−2.04) (−0.83) (−0.14) (−0.32)

estimates are highly statistically significant. The loading of the deep factor on the

bond market factor is negative and is highly statistically significant, -0.17 (t = −3.01),

whereas the loading of the deep tangency portfolio on the bond market factor is almost

zero, both further suggesting that the deep factor acts as a market-hedge portfolio.

Similar results in the spanning regressions on the Fama-French five factors (Panel

B). The alpha estimate is about 0.26% (t = 8.62) in the regression of the deep factor

and is about 0.22% (t = 7.20) in the regression of the deep tangency portfolio. Interest-

ingly, we find that both the deep factor and the deep tangency portfolio load positively

(though small) on the equity market factor, but negatively on the SMB (size) factor; we

also find that the deep factor negatively loads on both the term and default factors,

and the deep tangency portfolio does not expose to those two factors, both further

suggesting that the deep factor is a bond market hedge portfolio.
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4.4 Interpreting Deep Characteristics

By combining an economically well-motivated loss function with deep learning

and constructing the deep factor as long-short portfolio returns, we aim to improve the

transparency and interpretability of our methodology. Therefore, a natural next step

is to understand how different types of characteristics contribute to the deep factor.

The nonlinear activation of neural networks in our methodology transforms char-

acteristics into the deep one, which is a highly nonlinear combination of raw charac-

teristics, whose exact functional form is unknown to us in principle. We first evaluate

the linear contribution of each characteristic to the deep characteristic by running the

Fama-MacBeth cross-sectional regressions (Fama and MacBeth, 1973) of the deep char-

acteristic Z
(L)
i,t on raw characteristics zk,i,t as Feng et al. (2022),

Z
(L)
i,t = at + b1,tz1,i,t + · · ·+ bk,tzk,i,t + · · ·+ bK,tzK,i,t + ϵi,t, (24)

for i = 1, . . . , N . Given that all characteristics are cross-sectionally normalized, we

then evaluate each characteristic’s contribution by the explained variation using the

time-series average of b̂k,t, for k = 1, . . . , K.

Figure 5 presents the top 30 most important characteristics. The bond, equity, and

option characteristics are classified by the blue, yellow, and red bars, respectively.

We report both the coefficient signs in brackets and significance levels. We find that

the top 10 most important variables include four bond characteristics, namely, time

to maturity (T2M), age (AGE), daily high-minus-low (LIQ RANGE), and illiquidity

(LIQ BPW, Bao, Pan, and Wang, 2011), five equity characteristics, namely, return on

equity (ROE, Hou, Xue, and Zhang, 2015), return on asset (ROA, Balakrishnan, Bartov,

and Faurel, 2010), operating accruals (PCTACC and ACC), and one-month momentum

(MOM1M), and one option characteristic, namely, put-call ratio (PCRATIO).

To further examine the importance of different types of characteristics, we recon-

struct the deep tangency portfolios using bond characteristics alone or using equity

and bond characteristics with option-related variables removed. Table 6 presents Sharpe
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Figure 5: Variable Importance: Linear Contributions

This figure presents the variable importance via the Fama-MacBeth cross-sectional regressions
of deep characteristics Z(L)

i,t on raw characteristics zk,i,t in the in-sample period. We report the
normalized averaged coefficient β̂k,t in different colors, representing the types of characteris-
tics.
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ratios obtained from different types of characteristics. Even though the in-sample

training results are more or less similar, their out-of-sample performance is differ-

ent. When we use all characteristics, as we have before, the one-layer neural network
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Table 6: Importance of Characteristics

This table presents the affection of characteristic selection by the out-of-sample Sharpe ratios
comparison of the mean-variance portfolio following Barillas and Shanken (2017). We take
the sample from Jul 2004 to Jun 2014 for model training and validation, and from Jul 2014 to
Dec 2020 for out-of-sample tests. We compare the one factor added mean-variance portfolio’s
Sharpe Ratio of neural network with different layers (L1,L2, and L3) when we have three sets
of characteristics: Bond+Equity+Option, Bond+Equity, and Bond only.

MKTC Bond+Equity+Option Bond+Equity Bond

Panel A. In Sample Period (2004.7–2014.6)

L1 0.81 11.65*** 11.48*** 10.83***
L2 0.81 10.39*** 10.27*** 11.52***
L3 0.81 10.39*** 10.76*** 11.86***

Panel B. Out of Sample Period (2014.6–2020.12)

L1 0.86 2.90*** 1.71*** -0.38
L2 0.86 1.78*** 1.39*** 1.46***
L3 0.86 2.38*** 1.91*** 1.14***

works quite well, and the deep tangency portfolio earns an out-of-sample annualized

Sharpe ratio of 2.90. However, when we exclude the option-related variables, we find

that the deep tangency portfolio’s out-of-sample Sharpe ratio reaches the largest value

from the 3-layer neural network, but it is only 1.91. What is even worse is that when

we use bond characteristics alone, the performance of the deep tangency portfolio fur-

ther deteriorates, and its best out-of-sample Sharpe ratio is only about 1.46, from the

2-layer neural network.

To sum up, we find that all three types of characteristics are importantly weighted

in deep characteristics and therefore are necessary for constructing the deep tangency

portfolio. This finding is, in fact, in stark contrast to previous studies that argue those

characteristics that predict equity returns do not necessarily forecast corporate bond

returns (see, e.g., Chordia et al., 2017; Bali et al., 2021). But it provides further empiri-

cal evidence in support of integration between the bond and equity markets (Schaefer

and Strebulaev, 2008; Kelly, Palhares, and Pruitt, 2022).
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4.5 Additional Analyses

4.5.1 Latent Factors and Deep Factors

A recent paper by Kelly, Palhares, and Pruitt (2022) shows that a five-factor model

based on the instrumental principle component analysis (IPCA, Kelly, Pruitt, and

Su, 2019) outperforms commonly used observable factor models in pricing corporate

bonds. They find that a tangency portfolio constructed from their five IPCA factors us-

ing the ICE corporate bond return data can earn an annualized out-of-sample Sharpe

ratio of as large as 6.23. We note that in another paper, Kelly and Pruitt (2022) shows

that the core analysis of Kelly, Palhares, and Pruitt (2022) is robust to using the TRACE

data. We follow their IPCA approach and construct five corporate bond factors us-

ing our TRACE data and all three types of characteristics. To be consistent with our

primary empirical analysis, we use the same in-sample and out-of-sample split as be-

fore and extract the out-of-sample IPCA factors by fixing model parameters at the

in-sample estimates.

Panel A of Table 7 presents a summary of in-sample and out-of-sample Sharpe

ratios of the optimal portfolio constructed from the IPCA factors. While both Kelly,

Palhares, and Pruitt (2022) and Kelly and Pruitt (2022) find that an optimal portfo-

lio constructed using the five IPCA factors can earn an out-of-sample Sharpe ratio of

larger than 6 in using both ICE and TRACE corporate bond data, we find that such a

portfolio can only earn an in-sample Sharpe ratio of 3.19 and an out-of-sample Sharpe

ratio of 2.32, both of which are smaller than the corresponding values of our deep

tangency portfolio (see Table 3). There are two reasons why we find such a weaker

out-of-sample Sharpe ratio. First, the sample size in our paper is much larger than

that in Kelly and Pruitt (2022): the total number of bond-month observations in our

paper is 633,600, whereas it is only 144,933 in Kelly and Pruitt (2022). Second, both

Kelly, Palhares, and Pruitt (2022) and Kelly and Pruitt (2022) adopt an expanding win-

dow procedure to construct the out-of-sample IPCA factors, whereas we extract out-

of-sample IPCA factors by fixing model parameters at the in-sample estimates to make
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Table 7: Latent Factors and Deep Factors

This table’s Panel A compares the Sharpe Ratio of the MVE portfolio between the competing
factors and one factor(from 1- to 3-layer models) added competing factors. Panel B reports the
factor-spanning regression similar to Table 5.

Panel A. Sharpe Ratios

In Sample Period (2004.7–2014.6) Out of Sample Period (2014.7–2020.12)
TP L1 L2 L3 TP L1 L2 L3

IPCA5 3.19 11.74*** 10.51*** 10.82*** 2.32 2.86*** 1.75 2.29
RP-PCA5 1.23 12.09*** 10.90*** 11.67*** 0.91 2.97*** 1.91*** 2.59***

Panel B. Spanning Regressions

α β1 β2 β3 β4 β5 R2

B.1. IPCA Five Factors
R1

d 0.15 0.01 −0.01 0.07 0.08 0.23 60.17

(4.57) (0.12) (−0.32) (2.25) (2.74) (9.39)

Ropt
1 0.11 0.05 0.08 0.05 0.12 0.15 54.85

(4.18) (1.09) (2.73) (2.10) (4.96) (7.77)

B.2. RP-PCA Five Factors
R1

d 0.31 −0.01 −0.03 −0.02 0.02 −0.01 38.18

(9.59) (−0.53) (−0.68) (−0.46) (0.42) (−0.37)

Ropt
1 0.24 0.02 −0.01 −0.01 0.01 −0.00 25.07

(8.95) (1.14) (−0.47) (−0.23) (0.22) (−0.14)

it comparable with our methodology. We further find that including the deep factor

in the IPCA five factors improves the out-of-sample Sharpe ratio of the optimal port-

folio to 2.86, which is similar to that of our deep tangency portfolio; such Sharpe ratio

improvement over the IPCA optimal portfolio is statistically significant.

Given that the IPCA factors are also estimated by taking into account all firm char-

acteristics (in a linear form), and that Kelly, Palhares, and Pruitt (2022) and Kelly and

Pruitt (2022) show that the IPCA factors extremely outperform popular observable

factors, we examine whether they can span our deep factor and deep tangency port-

folio. Panel B presents the spanning regression results, which show that the five IPCA

factors cannot explain excess returns on both the deep factor and the deep tangency

portfolio, as the alpha estimates are about 0.15% and 0.11%, respectively, which are
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highly statistically significant in both regressions.

In addition, a recent paper by Lettau and Pelger (2020) proposes a risk-premium

principal component analysis (RP-PCA) model for estimating latent asset pricing fac-

tors. Lettau and Pelger (2020) show that the RP-PCA performs much better than the

PCA method, in particular, in identifying the weak factors. Table 7 also examines how

the five RP-PCA factors perform compared to our deep factor. Again, we find that

the out-of-Sharpe ratio of the RP-PCA tangency portfolio is much smaller than that of

the deep tangency portfolio (0.91 vs. 2.90), and the five RP-PCA factors are unable to

explain excess returns on both the deep factor and the deep tangency portfolio.

4.5.2 Importance of Nonlinearity

There are two places in our deep learning model where nonlinearity plays impor-

tant roles: one is that we use a nonlinear ranking scheme to construct weights of the

deep factor, and the other is that we apply a nonlinear activation function to transform

raw characteristics to a deep characteristic. In what follows, we examine how impor-

tant those two types of nonlinearity are in constructing the deep tangency portfolio.

Instead of relying on the softmax nonlinear ranking scheme, when constructing the

deep factor, we simply follow the standard sorting approach that longs top 30% cor-

porate bonds and shorts bottom 30% corporate bonds on the basis of individual deep

characteristics. Based on such a deep factor, we construct the deep tangency portfolio

as before. Panel A of Table 8 presents summary statistics of the deep factor and the

deep tangency portfolio. We see that the annualized out-of-sample Sharpe ratios are

1.04 and 2.54, respectively, for the deep factor and the deep tangency portfolios, which

are smaller than those obtained from using the softmax nonlinear ranking scheme (see

Table 2 and Table 3).

Moreover, we examine what would happen if we remove the nonlinear tanh activa-

tion function and simply use a linear combination of raw characteristics in deep learn-

ing. We see from Panel B of Table 8 that without the nonlinear activation function, we

need a deeper neural network and more deep factors to complement the benchmark
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Table 8: Importance of Nonlinearity

This table reports the model performance of two linear models. Panel A reports the descriptive
statistics similar to Table 2. Panel B presents the affection of removing nonlinear activation
function by the in-sample and out-of-sample Sharpe ratios comparison of the mean-variance
portfolio following Barillas and Shanken (2017). The training and validation process is the
same as described in Table 4.

Panel A. Standard Sorting

In Sample Period (2004.7–2014.6) Out of Sample Period (2014.7–2020.12)
Mean tstat Std SR Max DD Mean tstat Std SR Max DD

Rls 0.32 (3.73) 0.91 1.24 7.59 0.19 (3.09) 0.62 1.04 1.98
Ropt

ls 0.40 (12.98) 0.21 6.63 0.21 0.24 (5.33) 0.33 2.54 0.54

Panel B. Linear Activation

In Sample Period (2004.7–2014.6) Out of Sample Period (2004.7–2014.6)
MKTC D1 D2 D3 MKTC D1 D2 D3

L1 0.81 0.88** 9.76*** 9.76 0.86 0.97** 1.32*** 1.32
L2 0.81 0.96*** 9.44*** 13.01*** 0.86 1.08*** 1.10 1.15
L3 0.81 8.98*** 10.38*** 10.45 0.86 1.10*** 1.04 1.03

factor and that the out-of-sample performance of the deep tangency portfolio becomes

much worse, compared to the case with the nonlinear activation function.

To sum up, both types of nonlinearity in deep learning play important roles in

constructing the deep tangency portfolio. Such a finding is largely consistent with

what the literature has found on nonlinear effects of characteristics on expected returns

(see, e.g., Freyberger et al., 2020; Gu et al., 2020; Cong et al., 2022).

5 Conclusion

The problem of constructing the optimal portfolio has economic importance: the

stochastic discount factor is equivalent to the mean-variance efficient portfolio. While

70 years ago, Markowitz (1952) provides a simple solution to the optimal portfolio, it is

almost practically useless in real-world situations, particularly when there are many

assets. A common practice is to proxy the SDF as a function of a small number of

characteristic-managed factors. However, the most commonly used factors can hardly
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span the mean-variance efficient portfolio of the economy, and leave many “anoma-

lies” unexplained, leading to an issue of “factor zoo”.

In this paper, we propose a parametric approach for directly estimating the optimal

portfolio weights, thus sidestepping the estimation of mean returns and covariance by

employing deep learning techniques. The deep tangency portfolio is a combination of

the market portfolio and a zero-cost deep long-short factor constructed using a large

number of characteristics. The deep factor constructed in this way plays two funda-

mental roles: (i) it has a low or even negative correlation with the market portfolio,

thus providing us with a potential hedge portfolio; and (ii) it spans to a large extent

any missing risk factors that should enter the pricing kernel.

To demonstrate our methodology, we apply it to the corporate bond market, given

that relative to the equity market, studies on the cross-sectional pricing of corporate

bonds remain limited. We find that the deep tangency portfolio earns an out-of-sample

annualized Sharpe ratio of 2.90, outperforming those portfolios constructed from com-

monly used observable factors. We further show that the recently developed latent-

factor models, such as RP-PCA and IPCA, cannot span the deep factor and the deep

tangency portfolio.

We further show that it is crucial to consider various types of characteristics in con-

structing the deep tangency portfolio. Excluding any type of characteristics would

worsen the performance of the deep tangency portfolio. This evidence is in stark con-

trast to previous studies that argue those characteristics that predict equity returns do

not necessarily forecast corporate bond returns (see, e.g., Chordia et al., 2017; Bali

et al., 2021). Still, it provides further empirical evidence in support of integration be-

tween the bond and equity markets (see, e.g., Schaefer and Strebulaev, 2008; Kelly,

Palhares, and Pruitt, 2022).
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Appendices

A Characteristics

Table A1: Bond Characteristics

Characteristics Description

AGE Time since issuance in years
RATING Rating
T2M Time to maturity
SIZE Amount outstanding
DUR Duration
VAR5 Value-at-risk 5% over past 3 years
VAR10 Value-at-risk 10% over past 3 years
LIQ BPW Liquidity measure of Bao, Pan, and Wang (2011)
LIQ ROLL Roll’s liquidity
LIQ P HL Liquidity, high-low spread estimator
LIQ P FHT Modified illiquidity measure based on zero returns
LIQ AMIHUD Amihud liqudity
LIQ STD AMIHUD Standard devidation of Amihud daily liquidity
LIQ TC IQR Interquartile range
MKT BETA Market beta
DEF BETA DEF factor beta
TERM BETA TERM factor beta
LIQ BETA Liquidity beta of Lin Wang Wu (2011)
DRF BETA Downside risk beta controlling bond market factor
CRF BETA Credit risk beta controlling bond market factor
LRF BETA Liquidity risk beta controlling bond market factor
VIX BETA VIX index beta
UNC BETA Macroeconomic Uncertainty Beta
STR Short-term reversal t-1
VARIANCE Variance
SKEW Skewness
KURT Kurtosis
COSKEW Systematic skewness
ISKEW Idiosyncratic skewness
LIQ RANGE Simple high-low spread
LIQ TRADE Number of trades
MKT RVAR Market residual variance
TERM DEF RVAR TERM DEF residual variance
TURN Turnover
YTM Yield-to-maturity
MOM6 Momentum from t-2 to t-6
MOM12 Momentum from t-7 to t-12
LTR Long-term reversal from t-13 to t-48
barQ average daily dollar volume in the 1-month period
std barQ 1mom standard deviation of dollar volume in the 1-month period
LIQ RANGE M Simple high-low spread
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Table A2: Equity Characteristics

This table lists the description for 61 equity characteristics.

Characteristics Description

ABR Abnormal returns around earnings announcement
ACC Operating Accruals
ADM Advertising Expense-to-market
AGR Asset growth
ALM Quarterly Asset Liquidity
ATO Asset Turnover
BASPREAD Bid-ask spread (3 months)
BETA Beta (3 months)
BM Book-to-market equity
BM IA Industry-adjusted book to market
CASH Cash holdings
CASHDEBT Cash to debt
CFP Cashflow-to-price
CHCSHO Change in shares outstanding
CHPM Industry-adjusted change in profit margin
CHTX Change in tax expense
CINVEST Corporate investment
DEPR Depreciation / PP&E
DOLVOL Dollar trading volume
DY Dividend yield
EP Earnings-to-price
GMA Gross profitability
GRLTNOA Growth in long-term net operating assets
HERF Industry sales concentration
HIRE Employee growth rate
ILL Illiquidity rolling (3 months)
LEV Leverage
LGR Growth in long-term debt
MAXRET Maximum daily returns (3 months)
ME Market equity
ME IA Industry-adjusted size
MOM12M Cumulative Returns in the past (2-12) months
MOM1M Previous month return
MOM36M Cumulative Returns in the past (13-35) months
MOM60M Cumulative Returns in the past (13-60) months
MOM6M Cumulative Returns in the past (2-6) months
NI Net Equity Issue
NINCR Number of earnings increases
NOA Net Operating Assets
OP Operating profitability
PCTACC Percent operating accruals
PM profit margin
PS Performance Score
RD SALE R&D to sales
RDM R&D Expense-to-market
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Continue: Equity Characteristics

Characteristics Description

RE Revisions in analysts’ earnings forecasts
RNA Return on Net Operating Assets
ROA Return on Assets
ROE Return on Equity
RSUP Revenue surprise
RVAR CAPM Residual variance - CAPM (3 months)
RVAR FF3 Res. var. - Fama-French 3 factors (3 months)
RVAR MEAN Return variance (3 months)
SEAS1A 1-Year Seasonality
SGR Sales growth
SP Sales-to-price
STD DOLVOL Std of dollar trading volume (3 months)
STD TURN Std. of Share turnover (3 months)
SUE Unexpected quarterly earnings
TURN Shares turnover
ZEROTRADE Number of zero-trading days (3 months)
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Table A3: Equity Option Characteristics

Characteristics Description

IVSLOPE Implied Volatility Slope
IVVOL Volatility of atm implied volatility
IVRV Implied and historical volatility spread
IVRV RATIO Ratio of implied to historical volatility
ATM CIVPIV Implied volatility spread
SKEWIV Implied volatility skew
IVD Implied volatility duration
DCIV Change of implied volatility of atm call
DPIV Change of implied volatility of atm put
ATM-DCIVPIV Change of implied volatility spread
NOPT Number of traded options
SO Stock-option volume ratio
DSO Stock-option dollar volume ratio
VOL Option Trading Volume
PCRATIO Put-call ratio
PBA Proportional bid-ask spread
TOI Total open interest
MFVU Option-implied upside semivariance
MFVD Option-implied downside semivariance
RNS1M 1-month risk-neutral skewness
RNK1M 1-month risk-neutral kurtosis
IVARUD30 Option-implied variance asymmetry
RNS3M 3-month risk-neutral skewness
RNK3M 3-month risk-neutral kurtosis
RNS6M 6-month risk-neutral skewness
RNK6M 6-month risk-neutral kurtosis
RNS9M 9-month risk-neutral skewness
RNK9M 9-month risk-neutral kurtosis
RNS12M 12-month risk-neutral skewness
RNK12M 12-month risk-neutral kurtosis
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