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Abstract

Drift bursts are short-lived locally explosive trends in the price paths of financial

assets (Christensen et al., 2020), resulting in extreme price movements and encom-

passing events such as Flash Crashes and sudden price surges. We propose a novel

semi-parametric model to capture the price dynamics during drift burst episodes and

to characterize drift burst events based on measurable characteristics, such as jump

in efficient price and the overshooting. We provide a theoretical framework and prove

consistency of our estimates. We show high accuracy of the estimation procedure with

a Monte Carlo experiment across different settings. Empirically, we study the Sterling

appreciation of December 12th, 2019 in foreign exchange markets. The results demon-

strate that our model is able to capture price dynamics for several commonly observed

drift burst events in financial markets.

Keywords: drift burst, pure-jump, flash crash, efficient price, foreign exchange, high-frequency data
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1 Motivation

Explosive (often unpredictable) price movements over extremely short horizons have become a

more common feature of financial markets during the last decade. Events similar to the widely

discussed flash crash in May 2010 in the E-mini futures (see Kirilenko et al., 2017) spread beyond

the equity markets. More recent events in foreign exchange (FX) markets, such as the British

Pound crash in 20161, laid bare the risks of fully automated electronic markets and put in the

spot light the potential need of further regulatory oversight to ensure market stability. One par-

ticular feature of the Sterling events is that the consensus exchange rates were clearly revised by

the market, but the revision happened with a substantial temporary overshooting, followed by a

recovery to a new level. However, such rapid price changes, when not accompanied with signifi-

cant overshooting, are welcomed by market participants as they manifest a greater information

efficiency of the modern electronic financial markets, with a faster incorporation of the new in-

formation about the fundamental values of the assets. One prominent example for a strong price

reaction due to fundamental information is the surge of the British Pound in December 2019,

after the Conservative party led by Boris Johnson secured the majority in the UK parliament as

a result of the general election.2

The above mentioned events share one common feature, which is the “short-lived locally explosive

trends in the price paths of financial assets” (Christensen et al., 2020), commonly known as “drift

bursts”. While previous literature is not able to capture the dynamics of this type of events with

only jump and volatility components,3 the price dynamics of these events can be best explained

by a directional explosion of the drift component. Initially postulated by Christensen et al. (2020),

the drift burst hypothesis refers to market episodes in which the drift component of a standard

Brownian motion process acts as a main driver of the underlying price dynamics. It explodes

faster than the volatility component, dominating the overall price process and ultimately yielding

1For further information on the Pound Crash, see “Citi trader deepened October’s pound flash crash” (Financial

Times, accessed: 2022-12-14).
2See further “Sterling surges as Conservative victory sends jolt through markets” (Financial Times, accessed:

2022-12-14).
3Christensen et al. (2014) show that the price variation attributed to the jump component over explosive events

may be overstated.
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explosive behavior in prices over short time intervals. Our paper contributes to the increasing

body of academic research focusing on detection and modelling of such events (Flora and Renò,

2022; Bellia et al., 2022; Hoffmann et al., 2018).

In this context, we contribute to existing work by developing a novel semi-parametric model for

drift bursts that allows us to characterize the type of event, and to estimate the economic impact

of such events with respect to market efficiency. To the best of our knowledge, our approach is the

first one that allows accurate estimation of the key characteristics of such episodes, including the

jump in the efficient price (the change in efficient prices before and after the episode), the level of

potential overshooting, duration, and the start time of the event, among others. These estimates

allow us to classify of the events and to quantify their economic impact, extending the previous

work of Flora and Renò (2022) that focuses primarily on the detection of the “V-shaped” drift

burst with reversals. We develop a more general methodology which can be applied to the analysis

of high-frequency price dynamics in any financial market.

Figure 1 illustrates the flexibility of our parametric model and presents several examples of the

possible shapes of the price dynamics that can be generated and captured in the data. It includes

cases with the pure jump in the efficient price without overshooting (sub-plot (i)), cases in which

the jump in the efficient price is accompanied by a temporarily overshooting that rapidly reverts

(sub-plot (ii)), and cases of so-called flash crashes, in which jump in the efficient price is completely

compensated by the following reversal and no changes in the efficient price can be detected (sub-

plot (iii)). Figure 2 depicts an intuitive illustration of the main economic components of these

episodes that our model is able to capture. By providing estimates on the magnitude of the drift

burst episode from the left (Jl) and from the right(Jr), our model can deliver an estimation of

the jump in efficient price (Jep). In addition, our framework allows definitions on the overshooting

(O) component and for the duration (D) based on existing parameters.

The second contribution of our paper lies in the empirical domain. While the majority of previous

works focus on equity and bond markets (Golub et al., 2017; Colliard, 2017; Christensen et al.,

2020, among others), we apply our methodology to the FX market–one of the largest global

OTC markets with the daily turnover reaching USD 7.5 trillion in April 2022 according to the

Bank of International Settlements (BIS, 2022)). To assess the power of our econometric tool, we
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(i): Positive change in efficient price without overshooting
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(ii): Negative change in efficient price with overshooting
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(iii): Flash crash

Figure 1: Examples for types of drift bursts produced by our semiparametric model. The peak of the event is found at τ = 0.5. Paths

are simulated from a driftless Heston-type model on a grid of n = 23400 observations. Details on the parameters are given in section

2.1
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Figure 2: Type of drift-burst events produced from equation (4). We set τ = 0.5 and [τl, τr] = [0.4, 0.6] for ease of visualization.

Moreover, αl = 2, αr = 1, βl = βr = 0.55 and Jl = 2.5%, Jr = −1.25%

implement our methodology on the Sterling appreciation episode on December 12th, 2019, when

the Conservative Party in the UK won the general election.

Despite the high level of liquidity, drift burst events in FX markets are not rare. Using twelve

currency pairs traded on the EBS platform between 2019 and 2020, we find that drift bursts

occur, on average, almost once every week, with Chinese Renminbi and Japanese Yen against

the US Dollar being the most vulnerable currency pair. However, most drift bursts exhibit an

overreaction pattern which suggests that information is not perfectly incorporated in prices right

away. In contrast, pure flash crashes occur much less frequently in FX markets.

Our results and proposed methodology are particularly relevant for practitioners, market opera-

tors, and regulators, as they provide important insights into the efficiency and stability of price

dynamics. Assuring both market efficiency and stability is one of the top priorities of market reg-

ulators. A fast incorporation of new information into the prices is desired by market participants,

while an excessive temporarily overshooting of market prices relative to the new fundamental value

is a concern for regulators, with flash crashes being an extreme example of such an overshooting

and a reversal to the (often unchanged) fundamental value. The methodology developed in our

paper can serve as a framework to characterize extreme price movements, and thus aid decision

making by policy makers and market operators.
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The rest of the document is structured as follows. Section 2 provides the theoretical framework of

our model and present definitions of the main components of economic interest in our setup. Section

3 discusses the statistical power of our estimation procedure. Section 4 applies our methodology

to the Sterling appreciation of December 12th, 2019. Finally, Section 5 concludes and proposes

guidelines for future related research.

2 Econometric theory

2.1 A semi-parametric model for drift bursts

Based on the non-parametric model proposed by Christensen et al. (2020), we propose a semi-

parametric model of drift bursts to characterize their shape and economic significance. We consider

a filtered probability space
(
Ω,F , (Ft)t≥0 ,P

)
satisfying the usual conditions which supports a log-

price process X = (Xt)t≥0 specified by the assumption below.

Assumption 1. X is a continuous-time stochastic process, evolving as

Xt = X0 +

∫ t

0

µs ds+

∫ t

0

σsdWs + Ft(θ), (1)

where W is a standard Brownian motion, µ = (µt)t≥0 is a locally bounded drift process, σ = (σt)t≥0

is an adapted, cádlág, locally bounded stochastic volatility and Ft(θ) is a parametric drift burst

component. That is, Ft(θ) is a known function of time depending on an unknown d-dimensional

parameter θ ∈ Θ, where Θ is a compact subspace of Rd, and there exists an Ft-stopping time τ ,

such that, as ∆ → 0,

Fτ+∆(θ)− Fτ−∆(θ) = Op(∆
γ), (2)

for some 0 < γ < 1/2.

Assumption 1 implies that the log-price is a sum of the two components: Xt = X ′
t + Ft(θ).

X ′
t is a standard non-parametric continuous-time stochastic volatility model, representing the

arbitrage-free price processes during “normal” market conditions without explosive behavior in

prices. Ft(θ) is a parametric model of the explosive drift leading the price dynamics during flash
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crashes and general episodes where prices explode with or without overshooting. It represents

a parametric specification of the drift burst model introduced by Christensen et al. (2020). We

consider particular specifications of Ft(θ) with economically appealing properties as discussed

below.

Our proposed parametric model of the drift burst component has the following form:

Ft(θ) = Jl

(
1−

(
1−

(
t− τl
τ − τl

)αl
)βl
)
1{t∈[τl,τ ]} − Jr

(
1−

(
1−

(
τr − t

τr − τ

)αr
)βr
)
1{t∈(τ,τr]} (3)

= (Jep +O)

(
1−

(
1−

(
t−τl
τ−τl

)αl
)βl
)
1{t∈[τl,τ ]} −O

(
1−

(
1−

(
τr−t
τr−τ

)αr
)βr
)
1{t∈(τ,τr]} (4)

where τ is an Ft-stopping time,τl < τ and τ < τr are some Ft-adapted random variables, the 1{·}

denotes the indicator function and θ = (Jl, αl, βl, τl, Jr, αr, βr, τr) are the unknown parameters.

The stopping time τ determines the peak of the drift burst and it is assumed to be known.

This flexible form allows for different shapes of the initial drift burst and subsequent recovery,

and allows for a flexible estimation of the jump in efficient price and overshooting. Thus, our

parameterization is able to capture a wide range of different types of drift bursts. As illustrated

in Figure 2, the jump in the efficient price (Jep) refers to the change in log-prices before and

after the drift burst episode which sets a new structural level. The overshooting (O) stands for

the overreaction observed during the episode and the duration (D) of the episode is, as the name

suggests, the length of time we are able to observe the event for.

Figure 3 provides an overview of the major types of events that our model in Equation (4) is

capable of capturing. The first row shows a drift burst episode without overshooting, where we

can observe a jump in the efficient price without the existence of overreaction, suggesting that

agents in markets correctly price-in new information as arrives. The second row shows events that

we define as drift bursts with overshooting, where we can observe a jump in the efficient price and

an overreaction (i.e. overshooting) around the peak of the episode with a partial reversal of the

price. Finally, the bottom row shows a flash crash episode, where there is no jump in the efficient

price but only overshooting with a subsequent full reversal of the price.

In standard stochastic volatility models (i.e., when Ft(θ) is absent), the normal-time drift cannot

be consistently estimated from high-frequency data recorded over a fixed interval (Bandi, 2002;
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(ii)
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(iii)
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(iv)
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(vi)

Figure 3: Type of drift-burst events produced from equation (4). We set τ = 0.5 and [τl, τr] = [0.45, 0.55] for ease of visualization.

Moreover, αl = αr = 1, βl = βr = 0.55

.
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Kristensen, 2010). In contrast, Condition (2) implies that the drift burst component Ft(θ) can be

estimated from high-frequency observations. Condition (2) guarantees that Ft(θ) dominates the

stochastic volatility component in a vicinity of a stopping time τ . Indeed, since µ and σ are locally

bounded, as ∆ → 0, ∫ τ+∆

τ−∆

µt dt = Op(∆) and

∫ τ+∆

τ−∆

σt dWt = Op(∆
1/2). (5)

Since γ < 1/2 due to equation (2), over short time intervals the contribution of the normal-times

drift and stochastic volatility to the variation of X is negligible relative to the contribution of

Ft(θ). The constant γ can be specified as a function of the unknown parameters in θ and can be

directly estimated from the data.

Also, the condition γ < 1/2 is the main motivation of the drift burst hypothesis presented by

Christensen et al. (2020). Given that the non-parametric part of model (1), X ′
t, is not able to

capture explosive price dynamics observed in financial markets, they provide an alternative model

where the drift component (Ft(θ) in our case) is allowed to explode around the peak of a crash

episode τdb, dominating price innovations and resulting in:∫ τdb+∆

τdb−∆

µsds = Op(∆
γµ) (6)

for any 0 < γµ < 1/2. Under this framework, they present a non-parametric procedure to detect

these events from data with high statistical accuracy.4 We differentiate from their work as our

main focus in on estimating the economic impact of drift burst events rather than detection.

2.2 Drift Burst Profiling and Sensitivity Analysis

As illustrated in Equation 2, our objective is to characterize the economic components around

drift burst episodes, such as the jump in the efficient price (Jep), the amount of overshooting (O)

or overreaction, and the duration of the burst episode (D). Given equations (3) and (4), we define

the components which were introduced in Figure 2 in a straightforward manner. First, changes in

the efficient price can be defined as:

Jep = Jr + Jl (7)

4The technical details on the test are presented in the Appendix A.2
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which is directly derived from our current parametrization. Overshooting can be defined as the

difference between the peak of the drift burst episode and the new price level afterwards, which

in our framework is:

O = −Jr (8)

One important contribution of our parametrization is the ability to estimate the duration of the

drift burst episode. Given Equation (4), we are able to define the duration of the drift burst

episode by estimating the enclosing interval [τl, τr], this is:

D = τr − τl (9)

The model in equation (3) finds its motivation in the cumulative distribution function of the Beta

distribution, thus a similar intuition for our parameters can be applied in modelling drift burst

episodes. First, parameters Jl, Jr work as scaling factors and control the size of the change in prices

on each side. The parameters that define the enclosing interval of the drift burst episode [τl, τr]

allow us to explore short-lived episodes but also events with longer durations5 αl and αr control

the speed of explosion from the right near τ and τr, respectively, where lower (higher) values

capture a slower (faster) explosion around these points. Similarly, βl and βr control the speed of

explosion from the left (i.e. near τl and τ , respectively), where lower (higher) values imply slower

(faster) explosion around these points.

Figures 4 and 5 visualize the flexibility of our model, with different combinations of αl,r and βl,r

delivering different drift burst shapes which can be observed in markets. From the left hand side

version of equation 4, the intuition on parameters is reflected on the right column of Figure 4. For

lower values of α, beta controls how the explosive behavior near τl (i.e. beginning of the episode).

High values of beta increase the initial explosion around τl and vice-versa. This can be reflected

on the black line as we move down from (i) to (iv) on Figure 4. For high values of α, explosiveness

is high around τ (e.g. (ii) from Figure 4). This is reflected on the turquoise line as we move down

from (i) to (iv) on Figure 4. The explanation for the right hand side (i.e. Figure 5) is analogue.

5For example, Flora and Renò (2022) study short lived events that last only a few seconds but also analyze

long-duration events such as bond auctions.
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(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

Figure 4: Sensitivity analysis for Ft(θ) as defined in equation (4) for the left-hand side of the model (i.e. Jr = 0). We set τl = 0.2 and

τ = 0.7 for ease of visualization. Moreover, αl, βl ∈ {0.25, 1, 1.75, 3} and Jl = 5%. Left column shows potential baseline shapes. Right

column shows shapes including an underlying Heston model.
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(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

Figure 5: Sensitivity analysis for Ft(θ) as defined in equation (4) for the right-hand side the model (i.e. Jl = 0). We set τl = 0.2 and

τ = 0.7 for ease of visualization. Moreover, αl, βl ∈ {0.25, 1, 1.75, 3} and Jr = −5%. Left column shows potential baseline shapes. Right

column shows shapes including an underlying Heston model.
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2.3 Estimation

In this section, we propose a nonlinear least squares estimator for the parameters of the semi-

parametric price model given by Assumption 1 and prove the consistency of the estimator under

the general assumptions on the parametric form of the drift burst component Ft(θ). In what

follows, we always denote the true parameter vector to be estimated by θ0 ∈ Θ.

Estimation of Ft(θ
0) is based on a discretized path of X. We assume that X is recorded over a

fixed interval [0, T ] (e.g., one trading day) at times 0 = t0 < t1 < · · · < tn = T , where the time

increments ∆i,n = ti − ti−1 eventually converge to zero. The sampling times are allowed to be

non-equispaced, however a certain degree of regularity is required: we assume that for all i and a

sufficiently large n, there exist constants 0 < c < C, such that

c∆n ≤ ∆i,n ≤ C∆n, (10)

where ∆n = T/n. In what follows, we set T = 1 without loss of generality. The high-frequency

increments of X over [ti−1, ti] are denoted by ∆iX = Xti −Xti−1
. We also set:

f(ti−1, ti; θ) = Fti(θ)− Fti−1
(θ), for i = 1, 2, . . . , n. (11)

Definition 1. The least squares estimator of θ0 is the value θ̂n in the parameter space Θ, which

minimizes the objective function Qn(θ), defined by:

Qn(θ) =
n∑

i=1

|∆iX − f(ti−1, ti; θ)|2 . (12)

Remark 1. Our drift estimation problem is similar to a classical problem of estimating a nonlinear

time-series regression of the form yt = f(t; θ)+ut, where yt is an observed response variable, f(t; θ)

is a known function of time depending on unknown parameters θ and ut is a zero-mean regression

error. Indeed, in our setting the high-frequency returns can be expressed as

∆iX = f(ti−1, ti; θ) + ∆iX
′. (13)

The main difference from the classical setting is that in our case regression errors, ∆iX
′’s, are

non-zero mean increments of a semimartingale and the inference is carried out under the infill

asymptotics, so both f(ti−1, ti; θ) and ∆iX
′ converge in probability (with possibly different rates)
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to zero as the number of observation increases. Despite these differences, the common intuition

regarding the nonlinear least squares estimation can be useful for interpreting the estimation pro-

cedure in our case.

Assumption 2. For each θ, θ0 ∈ Θ, there exists a real function T : R → R such that:

∣∣f(ti−1, ti; θ)− f(ti−1, ti; θ
0)
∣∣ ≤ h(

∥∥θ − θ0
∥∥)T (ti − ti−1) (14)

where h(x) is a bounded function such that h(x) → h(0) = 0 as x → 0, and there exists an

increasing sequence κn > 0 such that

κ−2
n

n∑
t=1

[T (ti − ti−1) + T 2(ti − ti−1)] = O(1). (15)

In addition, for any 0 < η < 1 and θ ̸= θ0, where θ, θ0 ∈ Θ, ∃ n0 > 0,M1 > 0 such that:

P

(
n∑

i=1

(f(ti−1, ti, θ)− f(ti−1, ti, θ0))
2 ≥ κ2

n/M1

)
≥ 1− η ∀ n > n0 (16)

Theorem 2.1. Assume that X is a process defined by Assumption 1, and that Assumption 2 is

fulfilled. As n → ∞, it holds:

θ̂n
p−→ θ0, (17)

where θ̂n is the non-linear least squares estimator of θ0 from Definition 1 and “
p−→ ” denotes the

convergence in probability.

The proof of Theorem 2.1 can be found in Appendix A

3 Simulation study

3.1 Simulation setup

In this section, we assess the statistical power of our estimator through Monte Carlo simulations.

We explore the accuracy of our estimator applied to equation (4) using a standard setup in high

14



frequency finance as shown in Christensen et al. (2020). The baseline model is a driftless Heston

type stochastic volatility model (see (Heston, 1993)), defined as follows:

dXt = σtdWt

dσ2
t = κ(σ0 − σ2

t )dt+ ξdBt, t ∈ [0, 1] (18)

where Wt, Bt are standard Brownian motions with E(dWt, dBt) = ρdt. Moreover, we follow the

guidelines from Aı̈t-Sahalia and Kimmel (2007) and use the following annualized set parameters

(σ0, κ, ξ, ρ) = {0.0225, 5, 0.40,−
√

(0.50)}. We perform 500 repetitions via an Euler discretization

scheme, using a grid with sample size of n = 1140, which corresponds to a minute by minute

sample of a 24 hour trading session, which is common in FX markets. The initial values for

σt are drawn randomly from a Gamma distribution, where σ2
t ∼ Gamma(2κσ0ξ

−2, 2κξ−2) (e.g.

Christensen et al. (2020)).

We include a drift burst into the baseline model of equation (18) using equation (4), which is

centered at τ = 0.5 and contained in the enclosing interval (τl, τr) = [0.475, 5.25]. We assess the

estimation procedure for different combinations of (αl, αr, βl, βr) and (Jr, Jl) parameters, with the

intention of covering all potential drift burst shapes observed in markets (e.g. Figure 3). Without

loss of generality, we set αl = αr and βl = βr. In addition, we include market microstructure noise

into our simulation setup to capture market frictions observed at tick level (see Stoll (1999), Black

(1986)). Hence, the noisy observed log-price in a n point grid can be defined as follows:

Yi/n = Xi/n + ϵi/n, i = 0, 1, . . . , n (19)

where ϵi/n ∼ N
(
0, ω2

i/n

)
and ωi/n = ζ

σi/n√
n

such that the simulated noise is conditionally het-

eroscedastic, serially dependent and positively related to the riskiness of the efficient log-price

(Christensen et al. (2020), Bandi and Russell (2008),Oomen (2006)). Moreover, we set the noise-

to-volatility ratio ζ = 0.5 for medium contamination level as in Christensen et al. (2014). To

overcome the use of noisy observations in our simulation exercise, we pre-average returns locally

to smooth-out the return series and improve the power of our estimation procedure as shown in

Jacod et al. (2009):

∆i,nȲ =
kn−1∑
j=1

gj,n∆i+j,nY (20)

15



where kn is the bandwidth (i.e. number of observations in the grid) used for the local pre-averaging,

∆i,nY are the noisy returns in the discrete grid and gj,n = g(1/kn) is a weighting function. Similarly

to Christensen et al. (2020), we set g(x) = min(x, 1 − x) and kn = 3. The use of pre-averaged

returns is popular in the finance literature when dealing with high frequency datasets. It deals

with the bid-ask bounce observed at high-frequency intervals, provides closer approximations to

efficient prices, and improves the statistical power of detection tools under these settings (Jacod

et al. (2009), Podolskij et al. (2007)).

3.2 Simulation results

Simulation results are reported in Table 1. The first two columns show different combinations of

(α, β) used to generate different shapes. Columns (2)-(6) show the economic components of each

drift burst episode as defined in Section 2.2, where the first row of each panel contains the true

parameters as a benchmark. The final column shows the Root Mean Squared Error as a measure of

goodness of fit, defined as RMSE =
√∑n

i (yi−ŷi)2

n
, where yi is the i-th observation and ŷi is our i-th

estimation. The choice of parameters (α, β) in our simulation study aims to cover how our model

estimates behave for (i) lower values (i.e. α, β < 0.5), (ii) mid-range values (i.e. α = 1, β < .5)

and (iii) higher values (i.e. α > 1, β > 0.5). Moreover, combinations with α = 1 are comparable

to the simulation setup presented in Andersen et al. (2021).

Finally, Table 1 contains three panels related to the three general event types presented in Figure

3 that are observed in financial markets. We set (Jl, Jr) = (0.0250, 0.0000) for Panel A; (Jl, Jr) =

(−0.0250, 0.0125) for Panel B and (Jl, Jr) = (−0.0250, 0.0250) for Panel C.

First, for the case of drift bursts without overshooting (Panel A), the results show that our model

is able to correctly estimate the jump in efficient price (Jep) and the overshooting (O) for different

values of α, β, where accuracy improves as α, β > 0.25. The beginning of the episode (τl) and the

duration are also correctly estimated, as τ (i.e. the peak of the drift burst event) is known. The

best results (that are closest to the true parameters) are obtained for the case (α, β) = (0.75, 1.00).

Second, for drift bursts with overshooting (Panel B), results suggest that the change in the efficient

price (Jep) is slightly overestimated, also affecting the estimation of overshooting (O). Neverthe-
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less, both estimates are close to true parameters. The beginning of the episode (τl) is somewhat

underestimated, which ultimately affects the estimates of the duration (D) of the event. Simi-

larly to Panel A, accuracy improves as α, β > 0.25, where the best results are obtained again for

(α, β) = (0.75, 1.00).

Finally, for flash crashes (Panel C), the jump in the efficient price (Jep) is correctly estimated

for most parameter combinations. The estimation of overshooting (O), which is the most relevant

component in this case, is close to the true value in most cases. Similarly, estimates for the

beginning of the episode (τl) are close to the true parameter. Estimations for duration (D) are

somewhat affected by the estimates of the end of the drift burst episode (i.e. τr). Similarly to Panels

A and B, the procedure’s accuracy improves as α, β > 0.25, and the best results are obtained for

(α, β) = (0.75, 1.00).

Overall, the simulation results suggest that our model is able to successfully estimate Jep and O

for different event types, where the accuracy of the estimates improves for large values of (α, β).

Furthermore, the best accuracy for our procedure is achieved for (α, β) = (0.75, 1.00) across

different types of events. Estimates of τl are close true parameters and estimates of duration D

are within an acceptable range.

4 Empirical Application

In the empirical application, we focus on the characterization of recent drift burst events in foreign

exchange markets, in particular the Sterling appreciation after the general election in December

12, 2019. For this episode, we implement our model to assess the economic impact on currency

prices.

4.1 Data Sample

We use data from Electronic Broking Services (EBS), a leading FX interdealer electronic market

platform, from January 1st, 2019 to December 31st, 2020. Similar data sets have been used by

Mancini et al. (2013) and Karnaukh et al. (2015), among others. The dataset consists of tick-
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α β Jep O τl D RMSE

Panel A: Drift burst without overshooting

True Values (Jep,O, τl,D) = 0.0250 0.0000 0.4750 0.0250

0.25 0.25 0.0225 0.0001 0.4715 0.0285 0.02516

0.50 0.50 0.0245 0.0002 0.4738 0.0262 0.02677

0.75 1.00 0.0250 -0.0002 0.4750 0.0250 0.02724

1.00 0.35 0.0227 0.0001 0.4764 0.0236 0.02519

1.00 0.45 0.0243 -0.0001 0.4751 0.0249 0.02631

2.00 0.75 0.0246 -0.0001 0.4748 0.0252 0.02652

2.00 1.25 0.0246 -0.0001 0.4741 0.0259 0.02667

Panel B: Drift burst with overshooting

True Values (Jep,O, τl,D) = -0.0125 -0.0125 0.4750 0.0500

0.25 0.25 -0.0098 -0.0146 0.4645 0.1838 0.00270

0.50 0.50 -0.0115 -0.0136 0.4729 0.0950 0.00079

0.75 1.00 -0.0122 -0.0128 0.4749 0.0557 0.00023

1.00 0.35 -0.0118 -0.0133 0.4698 0.1064 0.00217

1.00 0.45 -0.0120 -0.0131 0.4728 0.0944 0.00107

2.00 0.75 -0.0123 -0.0128 0.4731 0.0783 0.00019

2.00 1.25 -0.0122 -0.0128 0.4744 0.0646 0.00019

Panel C: Flash crash

True Values (Jep,O, τl,D) = 0.0000 -0.0250 0.4750 0.0500

0.25 0.25 0.0028 -0.0271 0.4671 0.1588 0.01018

0.50 0.50 0.0010 -0.0261 0.4736 0.0748 0.00921

0.75 1.00 0.0001 -0.0251 0.4748 0.0503 0.00876

1.00 0.35 0.0003 -0.0254 0.4718 0.0728 0.00886

1.00 0.45 0.0003 -0.0253 0.4732 0.0618 0.00888

2.00 0.75 0.0001 -0.0252 0.4733 0.0560 0.00884

2.00 1.25 0.0002 -0.0252 0.4744 0.0518 0.00884

Table 1: Simulation results for equation (4) under different setups. Number of simulations is set to nsim = 500 for each combination

of (α, β). Each trading session is sampled on 1 minute intervals using n = 1440 minutes for a 24-hour trading session to mimic the

behavior of FX markets. Each panel presents different types of events observed in financial markets as shown in Figure 3.
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by-tick quote and trade information, including quote prices and order volume, the depth of the

market at the best (10) levels of the order book, and trade prices and direction, with a precision

of 100 milliseconds. The quality and depth of the dataset allows us to analyze the volume and

liquidity effects around drift burst events. We focus on sixteen exchange rates6: CHFJPY, CN-

HJPY, EURCHF, EURCNH, EURJPY, EURNZD, EURUSD, NZDJPY, NZDUSD, USDCHF,

USDCNH, USDJPY, GBPUSD, GBPJPY, GBPCHF and EURGBP. We sample mid prices every

one second from tick data using bid and ask prices and last tick interpolation.

4.2 Sterling Appreciation on December 12, 2019

The Sterling appreciation on December 12th, 2019 is one of the biggest gains of Pound Sterling

on record.7 On Thursday December 12th, 2019 at 10 pm, an exit poll showed a landslide victory

of the Conservative Party under Boris Johnson in the 2019 UK general election. This caused the

Sterling appreciation of approximately 2% relative to the USD and to EUR. The event had a

direct impact on all GBP linked currencies. In our sample, a drift burst event is observed for (i)

GBPUSD, (ii) GBPJPY, (iii) GBPCHF and (iv) EURGBP. The effect is less strong on not directly

linked currencies, such as EURUSD, NZDUSD and USDJPY. Figures (6) - (8) illustrate the shape

and magnitude of the episode for (i) high-liquidity currencies directly linked to GBP (Figure 6),

low-liquidity currencies directly linked to GBP (Figure 7) and (iii) currencies not directly linked

to GBP (Figure 8). We show that direct effects on cross-currency pairs that include a directly

affected currency are generally stronger than indirect effects on cross-currency pairs indirectly

affected through triangular arbitrage strategies.

Figure 6 shows that the impact of the drift burst episode is slightly stronger on GBPUSD than

EURGBP. Using EURUSD as a reference, the indirect effect of GBP over EURUSD is less severe

6These are: US dollars (USD), New Zealand dollars (NZD), Swiss francs (CHF), Chinese renmibi (offshore)

(CNH), Japanese yen (JPY), British pound (GBP) and Euro (EUR). Following the definition from EBS, currency

pairs are read as 〈foreign currency 〉/〈local currency〉. For example, EURUSD reflects the prices of Euros (foreign

currency) in US dollars (local currency)
7See further “Sterling surges as Conservative victory sends jolt through markets” (Financial Times, accessed:

2022-12-14).
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than the direct effect observed on GBPUSD and EURGBP. Also, we observe selling flows at the

new price level, which are common around these significant increases where traders are expecting

a short term reversion pushing prices downward minutes before 6.00 pm.

Figure 7 shows that the appreciation effect is 1 % stronger for GBPJPY relative to GBPUSD

(approximately 3%) with low trading activity. Moreover, GBPNZD and GBPCHF show an ap-

preciation of the same level of magnitude with low trading activity.

Figure 8 illustrates how the indirect channel of information transmission works for USDJPY,

EURCHF, and NZDUSD. The indirect effect is present on these currencies, but the impact is less

than 1%. Furthermore, there is a noticeable trading activity around the event, but within average

levels for the trading session. Trading activity around the event signals how new information

(i.e. political events) are priced into financial markets. Most of episodes do not show significant

overshooting after the peak, which suggests that information is efficiently incorporated into market

prices.

4.2.1 Implementation of parametric drift burst model

We implement our semi-parametric model to assess the economic impact of political news arriving

into markets. Given that the event was observed in between trading sessions (i.e. Thursday 12th,

2019 at 10 pm), we use the information from December 12th and December 13th 2019 to fit our

model as shown in equation (3). We use one second mid prices sampled from tick quote data using

last tick interpolation to deal with missing values. Similarly to our simulation study, we pre-average

returns as shown in equation (20) using kn = 3. We identify the peak of the burst event to be

located on December 12th, 2019 at 5:05:26 NY time (GMT-5). For estimation, we set the peak at

the center (i.e. τ = 0.5) and use different windows around the peak, ranging from one hour up to

four hours, to estimate our model. Parameters are initialized at (Jl, αl, βl, τl) = (0.035, 1.5, 0.6, 0.4)

on the left and (Jr, αr, βr, τr) = (−0.03, 1.5, 0.45, 0.6) on the right.

Table 2 shows parameter estimations for GBPUSD based on equation (4). Following the event

classification in Figure 6, this episode can be classified as a drift burst without overshooting

(Figure 6 (i) and Panel A from Table 1). Results suggest that the jump efficient price (Jep) is
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consistently estimated around 0.017, except for the first case. Moreover, estimates of O are close

to 0, which indicates that market agents are able to correctly internalize new information into

prices. Estimations on duration suggest that the episode lasted between five to eleven minutes.

These results are in line with what we observe on sub-plot (i) of Figure 6, reflecting the ability of

our model to capture the new price price after the event
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Figure 6: Sterling appreciation of December 12th, 2019 for high-liquidity currencies. (Left column) Cumulative log-returns for (i)

GBPUSD, (ii) EURGBP and (iii) EURUSD. (Right column) Traded volume (money) every 10 minutes as a percentage of total traded

volume for buy trades (green bars) and sell trades (red bars). Data shows trading sessions from December 12th to December 13th,

given different sessions by currency. Times are shown in NY time (GMT-5). Returns are computed using 1 second mid prices.
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Figure 7: Sterling appreciation of December 12th, 2019 for high-liquidity currencies. (Left column) Cumulative log-returns for (i)

GBPJPY, (ii) GBPNZD and (iii) GBPCHF. (Right column) Traded volume (money) every 10 minutes as a percentage of total traded

volume for buy trades (green bars) and sell trades (red bars). Data shows trading sessions from December 12th to December 13th,

given different sessions by currency. Times are shown in NY time (GMT-5). Returns are computed using 1 second mid prices.
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Figure 8: Sterling appreciation of December 12th, 2019 for high-liquidity currencies. (Left column) Cumulative log-returns for (i)

USDJPY, (ii) EURCHF and (iii) NZDUSD. (Right column) Traded volume (money) every 10 minutes as a percentage of total traded

volume for buy trades (green bars) and sell trades (red bars). Data shows trading sessions from December 12th to December 13th,

given different sessions by currency. Times are shown in NY time (GMT-5). Returns are computed using 1 second mid prices.
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5 Conclusion

We propose a semi-parametric model for drift burst episodes to classify different types of events

with explosive price movements in foreign exchange markets and interpret their economic impact.

Our model is able to capture the dynamics of several drift burst episodes observed in financial

markets. We assess the statistical accuracy of our procedure with Monte Carlo simulations and

apply different parameter configurations to generate different types of events. Based on our model,

we provide formal definitions of relevant economic components related to drift burst episodes, such

as change in efficient price Jep, overshooting O and duration D of such events.

On simulations, our model is able to successfully estimate such components for drift burst episodes

with and without overshooting, as well as for flash crashes. In addition, we apply our estimation

procedure to an empirical study to understand the economic impact over prices observed during

the British Pound appreciation in December 12th 2019. In this case, our model provides consistent

estimates around 1.7% jump in the efficient price, which is the behavior observed after the drift

burst episode. The estimates on overshooting are close to zero and consistent with our definition

of a drift burst episode without overshooting.

Our model provides a framework for understanding and dissecting extreme market events with

explosive price episodes, by providing estimates on relevant economic components related to dif-

ferent types of drift burst episodes. Future work is required to expand the baseline theoretical

framework and to further explore the economic implications of different types of events.
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A Mathematical appendix

Below C > 0 denotes a generic positive constant which changes from line to line.

A.1 Proofs of the main results

Lemma 1. Let Assumptions 1 and 2 hold. Let Nδ(θ
0) = {θ : ||θ − θ0|| < δ}, where θ0 ∈ Θ is

fixed. Then, as n → ∞ first and then δ → 0,

sup
θ∈Nδ(θ0)

κ−2
n

n∑
t=1

[∣∣f(ti−1, ti; θ)− f(ti−1, ti; θ
0)
∣∣+ ∣∣f(ti−1, ti; θ)− f(ti−1, ti; θ

0)
∣∣2] −→ 0. (21)

In addition,

κ−2
n

n∑
t=1

[
f(ti−1, ti; θ

0)− f(ti−1, ti; π
0)
]
∆iX

′ p−→ 0. (22)

for any θ0, π0 ∈ Θ. Finally,

sup
θ∈Nδ(θ0)

κ−2
n

n∑
t=1

∣∣f(ti−1, ti; θ)− f(ti−1, ti; θ
0)
∣∣ |∆iX

′| p−→ 0 (23)

as n → ∞ first and then δ → 0.

Proof of Lemma 1. First, we prove equation (21). From assumption 2 and since h(x) is bounded,

we have the following:∣∣f(ti−1, ti, θ)− f(ti−1, ti, θ
0)
∣∣ ≤ h(

∥∥θ − θ0
∥∥)T (ti − ti−1) = C T (ti − ti−1) (24)∣∣f(ti−1, ti, θ)− f(ti−1, ti, θ

0)
∣∣2 ≤ h(

∥∥θ − θ0
∥∥)2 T 2(ti − ti−1) = C2 T 2(ti − ti−1) (25)

Adding both equations, taking sum and multiplying by κ−2
n on boths sides yields:

κ−2
n

n∑
t=1

∣∣f(ti−1, ti, θ)− f(ti−1, ti, θ
0)
∣∣+ ∣∣f(ti−1, ti, θ)− f(ti−1, ti, θ

0)
∣∣2

≤ sup
θ∈Nδ(Θ)

κ−2
n

n∑
t=1

∣∣f(ti−1, ti, θ)− f(ti−1, ti, θ
0)
∣∣+ ∣∣f(ti−1, ti, θ)− f(ti−1, ti, θ

0)
∣∣2

≤ Cκ−2
n

n∑
t=1

[
T (ti − ti−1) + T 2(ti − ti−1)

]
= O(1) (26)
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We can impose the bounds defined in equations (24) and (25) because they work for any θ ∈ Θ

(including the supremum of the expression). Then, if we let n → ∞ first, the bound from the

equation in the last line above kicks in. Finally we obtain the result that we are looking for when

δ → 0 afterwards, so the whole difference goes to zero.

Second, we prove equation (22). Recalling the definition of the error term:

ut = ∆iX
′ =

∫ ti

ti−1

µsds+

∫ ti

ti−1

σsdWs (27)

We can re-write equation (22) as:

κ−2
n

n∑
i=1

[
f(ti−1, ti, θ

0)− f(ti−1, ti, π
0)
]
∆iX

′

= κ−2
n

n∑
i=1

[
f(ti−1, ti, θ

0)− f(ti−1, ti, π
0)
](∫ ti

ti−1

µsds+

∫ ti

ti−1

σsdWs

)
(28)

= κ−2
n

n∑
i=1

[
f(ti−1, ti, θ

0)− f(ti−1, ti, π
0)
] ∫ ti

ti−1

µsds︸ ︷︷ ︸
A

(29)

+ κ−2
n

n∑
i=1

[
f(ti−1, ti, θ

0)− f(ti−1, ti, π
0)
] ∫ ti

ti−1

σsdWs︸ ︷︷ ︸
B

(30)

Now, we need to prove that A −→ 0 and B −→ 0 to prove the main result. For A, we have the

following. Let ζi = κ−2
n [f(ti−1, ti, θ

0)− f(ti−1, ti, π
0)]
∫ ti
ti−1

µsds. Following equation (2.2.35) from

Jacod and Protter (2012), we need to show that
∑n

i=1 E[|ζi|]
p−→ 0 to prove the result. Then, we

can re-write the expression as follows:

n∑
i=1

E[|ζi|] =
n∑

i=1

E
[∣∣∣∣κ−2

n

[
f(ti−1, ti, θ

0)− f(ti−1, ti, π
0)
] ∫ ti

ti−1

µsds

∣∣∣∣]
=

n∑
i=1

∣∣∣∣κ−2
n

[
f(ti−1, ti, θ

0)− f(ti−1, ti, π
0)
] ∫ ti

ti−1

E[µs]ds

∣∣∣∣
≤ C∆i,nκ

−2
n

n∑
i=1

∣∣f(ti−1, ti, θ
0)− f(ti−1, ti, π

0)
∣∣

≤ C∆nκ
−2
n

n∑
i=1

∣∣f(ti−1, ti, θ
0)− f(ti−1, ti, π

0)
∣∣ (31)
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≤ C∆nκ
−2
n h(

∥∥θ0 − π0
∥∥) n∑

i=1

T (ti − ti−1) −→ 0 (32)

The last result comes from the fact that κ−2
n

∑n
i=1 T (ti − ti−1) −→ 0 since

∑n
i=1 T (ti − ti−1) +

T 2(ti − ti−1 = O(κ2
n) from equation (15) and h(x) is a bounded function.

For B, let ζi = κ−2
n [f(ti−1, ti, θ

0)− f(ti−1, ti, π
0)]
∫ ti
ti−1

σsdWs. Following equation (2.2.35) from

Jacod and Protter (2012), we need to show that E
(∑n

i=1[|ζi|
2]
) p−→ 0 and E(ζi|Fti−1) = 0 ∀i, n.

Then, we can re-write the expression as follows:

E

(
n∑

i=1

[|ζi|2]

)
=

n∑
i=1

E
[
|ζi|2

]
=

n∑
i=1

E

[∣∣∣∣κ−2
n

[
f(ti−1, ti, θ

0)− f(ti−1, ti, π
0)
] ∫ ti

ti−1

σsdWs

∣∣∣∣2
]

=
n∑

i=1

∣∣κ−2
n

[
f(ti−1, ti, θ

0)− f(ti−1, ti, π
0)
]∣∣2 ∣∣∣∣∣E

[(∫ ti

ti−1

σsdWs

)2
]∣∣∣∣∣

=
n∑

i=1

∣∣κ−2
n

[
f(ti−1, ti, θ

0)− f(ti−1, ti, π
0)
]∣∣2 ∣∣∣∣∫ ti

ti−1

E
[
σ2
s

∣∣Ft−1

]
ds

∣∣∣∣ (33)

≤ C∆i,nκ
−4
n

n∑
i=1

∣∣f(ti−1, ti, θ
0)− f(ti−1, ti, π

0)
∣∣2

≤ C∆nκ
−2
n

[
κ−2
n

n∑
i=1

h(
∥∥θ0 − π0

∥∥)T 2(ti − ti−1)

]
(34)

≤ C∆nκ
−2
n

[
κ−2
n

n∑
i=1

T 2(ti − ti−1)

]
−→ 0 (35)

which proves the result given that h(x) is a bounded function and κ−2
n

∑n
i=1 T

2(ti − ti−1) = O(1)

as n −→ ∞. Equation (33) can be written by the martingale property of the Ito’s integral, which

also implies E(ζi|Fti−1) = 0. Moreover, it’s bounded by assumption 1. In this case, the difference

[f(ti−1, ti, θ
0)− f(ti−1, ti, π

0)] won’t converge to zero as δ −→ 0, so we rely on the increasing

sequence κn to dominate the sum.

Similarly to the proof above for equation (22), we can re-write equation (23) as:

sup
θ∈Nδ(θ0)

κ−2
n

n∑
i=1

[
f(ti−1, ti, θ)− f(ti−1, ti, θ

0)
]
|∆iX

′|
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= sup
θ∈Nδ(θ0)

κ−2
n

n∑
i=1

[
f(ti−1, ti, θ)− f(ti−1, ti, θ

0)
] ∣∣∣∣(∫ ti

ti−1

µsds+

∫ ti

ti−1

σsdWs

)∣∣∣∣ (36)

≤ sup
θ∈Nδ(θ0)

κ−2
n

n∑
i=1

[
f(ti−1, ti, θ)− f(ti−1, ti, θ

0)
](∣∣∣∣∫ ti

ti−1

µsds

∣∣∣∣+ ∣∣∣∣∫ ti

ti−1

σsdWs

∣∣∣∣) (37)

= sup
θ∈Nδ(θ0)

κ−2
n

n∑
i=1

[
f(ti−1, ti, θ)− f(ti−1, ti, θ

0)
] ∣∣∣∣∫ ti

ti−1

µsds

∣∣∣∣︸ ︷︷ ︸
A′

(38)

+ sup
θ∈Nδ(θ0)

κ−2
n

n∑
i=1

[
f(ti−1, ti, θ)− f(ti−1, ti, θ

0)
] ∣∣∣∣∫ ti

ti−1

σsdWs

∣∣∣∣︸ ︷︷ ︸
B′

(39)

where the last inequality comes from the triangle inequality. Now, we can split the sum and repeat

the steps from the proof of equation (22). ForA′, let ζi = κ−2
n [f(ti−1, ti, θ)− f(ti−1, ti, θ

0)]
∣∣∣∫ ti

ti−1
µsds

∣∣∣.
Following equation (2.2.35) from Jacod and Protter (2012), we need to show that

∑n
i=1 E[|ζi|]

p−→ 0

to prove the result. Then, we can re-write the expression as follows

n∑
i=1

E[|ζi|] =
n∑

i=1

E
[∣∣∣∣κ−2

n

[
f(ti−1, ti, θ)− f(ti−1, ti, θ

0)
] ∣∣∣∣∫ ti

ti−1

µsds

∣∣∣∣∣∣∣∣]
=

n∑
i=1

∣∣κ−2
n

[
f(ti−1, ti, θ)− f(ti−1, ti, θ

0)
]∣∣ ∣∣∣∣∫ ti

ti−1

E[µs]ds

∣∣∣∣
≤ sup

θ∈Nδ(θ0)

n∑
i=1

∣∣κ−2
n

[
f(ti−1, ti, θ)− f(ti−1, ti, θ

0)
]∣∣ ∣∣∣∣∫ ti

ti−1

E[µs]ds

∣∣∣∣
≤ sup

θ∈Nδ(θ0)

C∆i,nκ
−2
n

n∑
i=1

∣∣f(ti−1, ti, θ)− f(ti−1, ti, θ
0)
∣∣

≤ sup
θ∈Nδ(θ0)

C∆nκ
−2
n

n∑
i=1

∣∣f(ti−1, ti, θ)− f(ti−1, ti, θ
0)
∣∣ (40)

≤ C∆nκ
−2
n h(

∥∥θ − θ0
∥∥) n∑

i=1

T (ti − ti−1) −→ 0 (41)

The last result, comes from the fact that κ−2
n

∑n
i=1 T (ti−ti−1) −→ 0 from equation (15) as n −→ ∞

because of equation (15), and h(x) is a bounded function. Additionally, we can impose bound from

equation (41) because it applies to any θ, θ0 ∈ Θ, which also includes the supremum.

For B′, let ζi = κ−2
n [f(ti−1, ti, θ)− f(ti−1, ti, θ

0)]
∣∣∣∫ ti

ti−1
σsdWs

∣∣∣. Following equation (2.2.35) from

Jacod and Protter (2012), we need to show that E
(∑n

i=1[|ζi|
2]
) p−→ 0 and E(ζi|Fti−1) = 0 ∀i, n.
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Then, we can re-write the expression as follows:

E

(
n∑

i=1

[|ζi|2]

)
=

n∑
i=1

E
[
|ζi|2

]
=

n∑
i=1

E

[∣∣∣∣κ−2
n

[
f(ti−1, ti, θ)− f(ti−1, ti, θ

0)
] ∣∣∣∣∫ ti

ti−1

σsdWs

∣∣∣∣∣∣∣∣2
]

=
n∑

i=1

∣∣κ−2
n

[
f(ti−1, ti, θ)− f(ti−1, ti, θ

0)
]∣∣2 ∣∣∣∣∣E

[(∫ ti

ti−1

σsdWs

)2
]∣∣∣∣∣

≤ sup
θ∈Nδ(θ0)

n∑
i=1

∣∣κ−2
n

[
f(ti−1, ti, θ)− f(ti−1, ti, θ

0)
]∣∣2 ∣∣∣∣∣E

[(∫ ti

ti−1

σsdWs

)2
]∣∣∣∣∣

= sup
θ∈Nδ(θ0)

n∑
i=1

∣∣κ−2
n

[
f(ti−1, ti, θ)− f(ti−1, ti, θ

0)
]∣∣2 ∣∣∣∣∫ ti

ti−1

E
[
σ2
s

∣∣Ft−1

]
ds

∣∣∣∣ (42)

≤ sup
θ∈Nδ(θ0)

C∆i,nκ
−4
n

n∑
i=1

∣∣f(ti−1, ti, θ)− f(ti−1, ti, θ
0)
∣∣2

≤ C∆nκ
−2
n

[
κ−2
n

n∑
i=1

h(
∥∥θ − θ0

∥∥)T 2(ti − ti−1)

]
(43)

≤ C∆nκ
−2
n

[
κ−2
n

n∑
i=1

T 2(ti − ti−1)

]
−→ 0 (44)

Here, we obtain our result as n −→ ∞ and then δ −→ 0 given that h(x) is a bounded function

and κ−2
n

∑n
i=1 T

2(ti − ti−1) = O(1). Interestingly, the increasing sequence κn it is not required to

conclude in this case because the result is already obtained through n and δ. Finally, equation (42)

can be written by the martingale property of the Ito’s integral, which is bounded by assumption

1 and also implies E(ζi|Fti−1) = 0.

Lemma 2. Let Dn(θ, θ
0) = Qn(θ)−Qn(θ

0). Suppose that for any δ > 0:

lim inf
n→∞

inf
|θ−θ0|≥δ

(Qn(θ)−Qn(θ
0)) > 0 (in probability) (45)

then θ̂n
p−→ θ0 as n −→ ∞

θ̂n
p−→ θ0

Proof of Lemma 2 (From Wu (1981)). If θ̂n
p−→ θ0 is not true, then there exists some δ > 0 such
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that P
(
lim supn−→∞

∣∣∣θ̂n − θ0
∣∣∣ ≥ δ

)
> 0. Therefore, by the definition of θ̂n, this implies that:

P
(
lim inf

n→∞
inf

|θ−θ0|≥δ
(Qn(θ)−Qn(θ

0)) ≤ 0)

)
> 0 (46)

which contradicts equation (45).

Theorem A.1. Proof of Theorem 2.1 The proof is similar to Chan and Wang (2015). Let N be

any open subset of Θ containing θ0. Given that θ̂n is a minimizer of Qn(θ) over θ ∈ Θ, by Lemma

2, proving consistency of the estimator is equivalent to solv that, for any 0 < η < 1/3 and θ ̸= θ0,

where θ, θ0 ∈ Θ, ∃n0 > 0,M1 > 0 such that:

P
(

inf
θ∈Θ∩N c

Dn(θ, θ0) ≥ κ2
n/M1

)
≥ 1− 3η ∀n > n0 (47)

First, denote Nδ(π0) = {θ : ||θ − π0|| < δ}. Since Θ ∩ N c is a compact set, by the finite covering

property, equation (47) will hold if we prove that, for any fixed π0 ∈ Θ ∩ N c:

In(δ, π0) = sup
θ∈Nδ(π0)

κ−2
n |Dn(θ, θ0)−Dn(π0, θ0)|

p−→ 0 (48)

as n −→ ∞ first and δ −→ 0 after. Moreover, ∀ η > 0,∃M0 > 0, n0 > 0 such that ∀n ≥ n0,M ≥

M0:

P
(
Dn(π0, θ) ≥ κ2

n/M
)
≥ 1− 2η (49)

First, we prove equation (47). Due to equation (48), for any 0 < η < 1/3 and M1 > 0, ∃n0 >

0, δ0 > 0 such that:

P
(

max
1≤j≤m0

In(δ0, πj) ≥ 1/2M1

)
≤ η

where m0 and πj, 1 ≤ j ≤ m0 are chosen so that Θ ∩ N c ⊂
⋃m0

j=1 Nδ0(πj). Consequently, by taking

M1 ≥ M0/(2m0), it follows from (49):

P
(

inf
θ∈Θ∩N c

Dn(θ, θ0) ≥ κ2
n/M1

)
≥ P

(
inf

1≤j≤m0

Dn(πj, θ0) ≥ κ2
n/(2M1)

)
− η

≥ inf
1≤j≤m0

P(Dn(πj, θ0) ≥ κ2
n/(2m0M1))− η ≥ 1− 2η

≥ 1− 3η

To prove equation (48), we use Lemma 1. For each π0 ∈ Θ ∪ N c:

In(δ, π0) ≤ sup
θ∈Nδ(π0)

κ−2
n

n∑
i=1

(f(ti−1, ti, θ)− f(ti−1, ti, π0))
2

34



+ sup
θ∈Nδ(π0)

κ−2
n

n∑
i=1

|f(ti−1, ti, θ)− f(ti−1, ti, π0)| |∆iX
′|

The two components on the right hand side converge to zero as n −→ ∞ first, and then δ −→ 0

afterwards. This yields In(δ, π0)
p−→ 0. Finally, for equation (49), we notice that:

Dn(π0, θ0) =
n∑

i=1

(f(ti−1, ti, π0)− f(ti−1, ti, θ0))
2

−
n∑

i=1

(f(ti−1, ti, π0)− f(ti−1, ti, θ0))∆iX
′

Then, for the first component of the right hand side of the equation above and due to equation

(16), we have that for any η > 0,∃n0 > 0,M0 > 0 such that:

P

(
n∑

i=1

(f(ti−1, ti, π0)− f(ti−1, ti, θ0))
2 ≥ κ2

n/M1

)
≥ 1− η ∀n > n0,M > M0

In addition, for the second component of the right hand side, we know that due to equation (22):

κ−2
n

n∑
i=1

[f(ti−1, ti, π0)− f(ti−1, ti, θ0)]∆iX
′ p−→ 0

Finally, we can conclude by noticing that:

P
(
Dn(π0, θ0) ≥ κ2

n/M
)
≥ P

(
n∑

i=1

(f(ti−1, ti, π0)− f(ti−1, ti, θ0))
2 ≥ κ2

n/(2M1)

)
− η ≥ 1− η

≥ 1− 2η
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A.2 The drift burst hypothesis

Our work builds upon and extends the drift burst literature, which focuses on understanding

and modelling drift burst episodes when the drift component of a price process explodes faster

than the volatility component. Under the standard formulation for continuous-time arbitrage-free

price processes, the log-price of a traded asset dXt follows the following dynamic: where µt is

the drift, σt is the volatility, and Wt a Brownian motion. Previous literature has neglected the

drift component µt as in a convential setup with locally bounded coefficients, the drift is Op(∆)

and swamped by the diffusive component Op(
√
∆) for vanishing time interval ∆−→0. In other

words, the volatility component ultimately dominates the drift component µt asymptotically, as

∆ ≫
√
∆. A major limitations of these conventional models is that it cannot capture explosive

price movements observed in markets, such as flash crashes and sudden price surges. Therefore,

Christensen et al. (2020) present an alternative model:

dXt = µdb
t dt+ σdb

t dWt (50)

where the drift component is allowed to explode around τdb, resulting in:∫ τdb+∆

τdb−∆

µsds = Op(∆
γµ) (51)

for any 0 < γµ < 1/2 8. In this case, we have that µdb
t /σdb

t −→ ∞ as t −→ τdb. Thus, to detect such

episodes, the authors define the drift-burst t-statistic with as:

T n
t =

√
hn

ˆ̄µn
t

ˆ̄σn
t

d−→ N (0, 1), (52)

where the local estimator of the drift is defined as:

ˆ̄µn
t =

1

hn

n−kn+2∑
i=1

K

(
ti−1 − t

hn

)
∆n

i−1Ȳ (53)

and the local estimator of the variance is:

σ̄n
t =

1

h′
n

[ n−kn+2∑
i=1

(
K

(
ti−1 − t

h′
n

)
∆n

i−1Ȳ

)2

+ 2
Ln∑
L=1

w

(
L

Ln

) n−kn−L+2∑
i=1

K

(
ti−1 − t

h′
n

)
K

(
ti+L−1 − t

h′
n

)
∆n

i−1Ȳ∆n
i−1+LȲ

] (54)

8Under a similar framework, our paper attempts to extend these parametrizations with more flexible forms.

Details are shown in section 2.1
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In the expressions presented above, hn corresponds to the bandwidth (i.e. estimation window) for

the local drift estimation and h′
n is the bandwidth for the local variance estimation. Moreover, equa-

tion (54) is a HAC-type estimator that includes cross-lagged terms in the second component of the

sum given by L.K stands for a left-sided exponential kernel defined asK(x) = exp(−|x|) for x ≤ 0

and w is a Parzen-kernel defined as:

w(x) =


1− 6x2 + 6|x|3, if 0 ≤ |x| ≤ 1/2,

2(1− |x|)3, if 1/2 < |x| ≤ 1,

0, otherwise

(55)

The drift burst hypothesis framework allows us to identify with high statistical accuracy when

drift burst episodes occur9.

A.3 Parametric Drift burst in the literature

Related literature has used similar parametrizations to equation (3) mainly as a tool for simulation

experiments. For example, Christensen et al. (2020) present the following form in their simulation

study:

µt =

a1(τ − t)−α, if t < τ,

a2(t− τ)−α, if t > τ,
(56)

which is able to produce flash crash type of figures as shown in the bottom row of Figure 3. The

α parameter controls the explosive behavior of the burst and a1,2 is a scaling factor. However, the

separation of the effects that can be attributed to changes in the efficient price is not straightfor-

ward. Andersen et al. (2021) also present a parametrization for their simulation study defined as

follows: ggj(t) = cg

{
1−

(
t−τl
τ−τl

)αg
}
1{t∈[τl,τ ]}

gfc(t) = cl

{
1−

(
τ−t
τ−τl

)αl
}
1{t∈[τl,τ ]} + cr

{
1−

(
t−τ
τr−τ

)αr
}
1t∈[τ,τr]

(57)

9The authors provide several robustness checks to assess the predictive power of their test, including robustness

to market microstructure noise. See Christensen et al. (2020) for more technical details
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where ggj is the function for gradual jumps (so-called drift bursts in our context as shown in the

first row of Figure 3) and gfc is the figure for flash crash episodes (i.e. last row of Figure 3). In

our setup, Equation (4) provides a more general version that allows for flexibility not only at the

beginning but also at the end of the drift-burst episode. The parametrization of Andersen et al.

(2021) can be considered a special case of our model if we set α = 1.

B Empirical application tables

w Jl Jr Jep O τl D
3600 0.012 0.003 0.014 -0.003 0.418 0.082

7200 0.014 0.004 0.017 -0.004 0.396 0.104

9000 0.014 0.003 0.017 -0.003 0.436 0.064

10800 0.014 0.003 0.016 -0.003 0.437 0.063

Table 2: Estimation results of equation (4) for different estimation windows (w) around the peak of the crash episode observed in

GBPUSD on December 12th, 2019. Estimation windows are measured in seconds. Columns Jl, Jr,Jep,O are shown in log-returns.

Columns τl,D are shown in time for t ∈ [0, 1].
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