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Abstract

Drift bursts are short-lived locally explosive trends in the price paths of financial
assets (Christensen et al., 2020), resulting in extreme price movements and encom-
passing events such as Flash Crashes and sudden price surges. We propose a novel
semi-parametric model to capture the price dynamics during drift burst episodes and
to characterize drift burst events based on measurable characteristics, such as jump
in efficient price and the overshooting. We provide a theoretical framework and prove
consistency of our estimates. We show high accuracy of the estimation procedure with
a Monte Carlo experiment across different settings. Empirically, we study the Sterling
appreciation of December 12th, 2019 in foreign exchange markets. The results demon-
strate that our model is able to capture price dynamics for several commonly observed

drift burst events in financial markets.
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1 Motivation

Explosive (often unpredictable) price movements over extremely short horizons have become a
more common feature of financial markets during the last decade. Events similar to the widely
discussed flash crash in May 2010 in the E-mini futures (see Kirilenko et al., 2017) spread beyond
the equity markets. More recent events in foreign exchange (FX) markets, such as the British
Pound crash in 2016', laid bare the risks of fully automated electronic markets and put in the
spot light the potential need of further regulatory oversight to ensure market stability. One par-
ticular feature of the Sterling events is that the consensus exchange rates were clearly revised by
the market, but the revision happened with a substantial temporary overshooting, followed by a
recovery to a new level. However, such rapid price changes, when not accompanied with signifi-
cant overshooting, are welcomed by market participants as they manifest a greater information
efficiency of the modern electronic financial markets, with a faster incorporation of the new in-
formation about the fundamental values of the assets. One prominent example for a strong price
reaction due to fundamental information is the surge of the British Pound in December 2019,
after the Conservative party led by Boris Johnson secured the majority in the UK parliament as

a result of the general election.?

The above mentioned events share one common feature, which is the “short-lived locally explosive
trends in the price paths of financial assets” (Christensen et al., 2020), commonly known as “drift
bursts”. While previous literature is not able to capture the dynamics of this type of events with
only jump and volatility components,® the price dynamics of these events can be best explained
by a directional explosion of the drift component. Initially postulated by Christensen et al. (2020),
the drift burst hypothesis refers to market episodes in which the drift component of a standard
Brownian motion process acts as a main driver of the underlying price dynamics. It explodes

faster than the volatility component, dominating the overall price process and ultimately yielding

IFor further information on the Pound Crash, see “Citi trader deepened October’s pound flash crash” (Financial

Times, accessed: 2022-12-14).
2See further “Sterling surges as Conservative victory sends jolt through markets” (Financial Times, accessed:

2022-12-14).
3Christensen et al. (2014) show that the price variation attributed to the jump component over explosive events

may be overstated.


https://www.ft.com/content/4089c7d0-bba4-11e6-8b45-b8b81dd5d080
https://www.ft.com/content/7333b8a2-1d22-11ea-97df-cc63de1d73f4

explosive behavior in prices over short time intervals. Our paper contributes to the increasing
body of academic research focusing on detection and modelling of such events (Flora and Reno,

2022; Bellia et al., 2022; Hoffmann et al., 2018).

In this context, we contribute to existing work by developing a novel semi-parametric model for
drift bursts that allows us to characterize the type of event, and to estimate the economic impact
of such events with respect to market efficiency. To the best of our knowledge, our approach is the
first one that allows accurate estimation of the key characteristics of such episodes, including the
jump in the efficient price (the change in efficient prices before and after the episode), the level of
potential overshooting, duration, and the start time of the event, among others. These estimates
allow us to classify of the events and to quantify their economic impact, extending the previous
work of Flora and Reno (2022) that focuses primarily on the detection of the “V-shaped” drift
burst with reversals. We develop a more general methodology which can be applied to the analysis

of high-frequency price dynamics in any financial market.

Figure 1 illustrates the flexibility of our parametric model and presents several examples of the
possible shapes of the price dynamics that can be generated and captured in the data. It includes
cases with the pure jump in the efficient price without overshooting (sub-plot (i)), cases in which
the jump in the efficient price is accompanied by a temporarily overshooting that rapidly reverts
(sub-plot (ii)), and cases of so-called flash crashes, in which jump in the efficient price is completely
compensated by the following reversal and no changes in the efficient price can be detected (sub-
plot (iii)). Figure 2 depicts an intuitive illustration of the main economic components of these
episodes that our model is able to capture. By providing estimates on the magnitude of the drift
burst episode from the left (J;) and from the right(J,), our model can deliver an estimation of
the jump in efficient price (7). In addition, our framework allows definitions on the overshooting

(O) component and for the duration (D) based on existing parameters.

The second contribution of our paper lies in the empirical domain. While the majority of previous
works focus on equity and bond markets (Golub et al., 2017; Colliard, 2017; Christensen et al.,
2020, among others), we apply our methodology to the FX market—one of the largest global
OTC markets with the daily turnover reaching USD 7.5 trillion in April 2022 according to the

Bank of International Settlements (BIS, 2022)). To assess the power of our econometric tool, we
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Figure 1: Examples for types of drift bursts produced by our semiparametric model. The peak of the event is found at 7 = 0.5. Paths
are simulated from a driftless Heston-type model on a grid of n = 23400 observations. Details on the parameters are given in section
2.1
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Figure 2: Type of drift-burst events produced from equation (4). We set 7 = 0.5 and [7;, 7] = [0.4,0.6] for ease of visualization.
Moreover, oy = 2, = 1, 8 = B = 0.55 and J; = 2.5%, J, = —1.25%

implement our methodology on the Sterling appreciation episode on December 12th, 2019, when

the Conservative Party in the UK won the general election.

Despite the high level of liquidity, drift burst events in FX markets are not rare. Using twelve
currency pairs traded on the EBS platform between 2019 and 2020, we find that drift bursts
occur, on average, almost once every week, with Chinese Renminbi and Japanese Yen against
the US Dollar being the most vulnerable currency pair. However, most drift bursts exhibit an
overreaction pattern which suggests that information is not perfectly incorporated in prices right

away. In contrast, pure flash crashes occur much less frequently in FX markets.

Our results and proposed methodology are particularly relevant for practitioners, market opera-
tors, and regulators, as they provide important insights into the efficiency and stability of price
dynamics. Assuring both market efficiency and stability is one of the top priorities of market reg-
ulators. A fast incorporation of new information into the prices is desired by market participants,
while an excessive temporarily overshooting of market prices relative to the new fundamental value
is a concern for regulators, with flash crashes being an extreme example of such an overshooting
and a reversal to the (often unchanged) fundamental value. The methodology developed in our
paper can serve as a framework to characterize extreme price movements, and thus aid decision

making by policy makers and market operators.



The rest of the document is structured as follows. Section 2 provides the theoretical framework of
our model and present definitions of the main components of economic interest in our setup. Section
3 discusses the statistical power of our estimation procedure. Section 4 applies our methodology
to the Sterling appreciation of December 12th, 2019. Finally, Section 5 concludes and proposes

guidelines for future related research.

2 Econometric theory

2.1 A semi-parametric model for drift bursts

Based on the non-parametric model proposed by Christensen et al. (2020), we propose a semi-
parametric model of drift bursts to characterize their shape and economic significance. We consider
a filtered probability space (Q, F, (]-"t)tzo ,77) satisfying the usual conditions which supports a log-

price process X = (X;),, specified by the assumption below.

Assumption 1. X is a continuous-time stochastic process, evolving as

t t
Xy =X+ / s ds + / osdWs + Fy(0), (1)
0 0

where W is a standard Brownian motion, = (), s a locally bounded drift process, o = (01),
is an adapted, cddldg, locally bounded stochastic volatility and Fy(0) is a parametric drift burst
component. That is, F(0) is a known function of time depending on an unknown d-dimensional
parameter § € ©, where © is a compact subspace of R, and there exists an F;-stopping time T,
such that, as A — 0,

Frea(8) = Fi_a(6) = Oy(A"), @)

for some 0 < v < 1/2.

Assumption 1 implies that the log-price is a sum of the two components: X; = X] + Fi(6).
X] is a standard non-parametric continuous-time stochastic volatility model, representing the
arbitrage-free price processes during “normal” market conditions without explosive behavior in

prices. Fy(0) is a parametric model of the explosive drift leading the price dynamics during flash
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crashes and general episodes where prices explode with or without overshooting. It represents
a parametric specification of the drift burst model introduced by Christensen et al. (2020). We
consider particular specifications of Fi() with economically appealing properties as discussed

below.

Our proposed parametric model of the drift burst component has the following form:

t— T a\ Bi T, — t ary\ Br
Ft(e> - Jl (]. - <]. - (T — Tl) ) 1{756[7'177'}} - Jr ]_ - ]_ - T —T 1{te(7-77—7,}} (3)
t—7 a\ B — ar\ Br
= (Jep +O) (1= (1 - (T_n) ) Litemay — O (1= (1 - (ﬁ) ) Lty (4)

where 7 is an J;-stopping time,7; < 7 and 7 < 7, are some J;-adapted random variables, the 14,

denotes the indicator function and 0 = (J;, oy, By, 71, Jr, i, By, i) are the unknown parameters.
The stopping time 7 determines the peak of the drift burst and it is assumed to be known.
This flexible form allows for different shapes of the initial drift burst and subsequent recovery,
and allows for a flexible estimation of the jump in efficient price and overshooting. Thus, our
parameterization is able to capture a wide range of different types of drift bursts. As illustrated
in Figure 2, the jump in the efficient price (J.,) refers to the change in log-prices before and
after the drift burst episode which sets a new structural level. The overshooting (O) stands for
the overreaction observed during the episode and the duration (D) of the episode is, as the name

suggests, the length of time we are able to observe the event for.

Figure 3 provides an overview of the major types of events that our model in Equation (4) is
capable of capturing. The first row shows a drift burst episode without overshooting, where we
can observe a jump in the efficient price without the existence of overreaction, suggesting that
agents in markets correctly price-in new information as arrives. The second row shows events that
we define as drift bursts with overshooting, where we can observe a jump in the efficient price and
an overreaction (i.e. overshooting) around the peak of the episode with a partial reversal of the
price. Finally, the bottom row shows a flash crash episode, where there is no jump in the efficient

price but only overshooting with a subsequent full reversal of the price.

In standard stochastic volatility models (i.e., when F;(0) is absent), the normal-time drift cannot

be consistently estimated from high-frequency data recorded over a fixed interval (Bandi, 2002;
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Kristensen, 2010). In contrast, Condition (2) implies that the drift burst component F;(6) can be
estimated from high-frequency observations. Condition (2) guarantees that F(f) dominates the

stochastic volatility component in a vicinity of a stopping time 7. Indeed, since p and o are locally

bounded, as A — 0,

T+A T+A
/ py dt = Op(A) and / o dW, = O,(AY?). (5)
T—A T—A

Since 7 < 1/2 due to equation (2), over short time intervals the contribution of the normal-times
drift and stochastic volatility to the variation of X is negligible relative to the contribution of
F,(0). The constant v can be specified as a function of the unknown parameters in 6 and can be

directly estimated from the data.

Also, the condition 7 < 1/2 is the main motivation of the drift burst hypothesis presented by
Christensen et al. (2020). Given that the non-parametric part of model (1), X], is not able to
capture explosive price dynamics observed in financial markets, they provide an alternative model
where the drift component (F;(f) in our case) is allowed to explode around the peak of a crash

episode T4, dominating price innovations and resulting in:

Tdb+A
[ mas=oyam (6)

ab—A
for any 0 <, < 1/2. Under this framework, they present a non-parametric procedure to detect
these events from data with high statistical accuracy.* We differentiate from their work as our

main focus in on estimating the economic impact of drift burst events rather than detection.

2.2 Drift Burst Profiling and Sensitivity Analysis

As illustrated in Equation 2, our objective is to characterize the economic components around
drift burst episodes, such as the jump in the efficient price (7e,), the amount of overshooting (O)
or overreaction, and the duration of the burst episode (D). Given equations (3) and (4), we define
the components which were introduced in Figure 2 in a straightforward manner. First, changes in

the efficient price can be defined as:

jep = Jr + Jl (7)

4The technical details on the test are presented in the Appendix A.2
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which is directly derived from our current parametrization. Overshooting can be defined as the
difference between the peak of the drift burst episode and the new price level afterwards, which

in our framework is:
O=-J (8>

One important contribution of our parametrization is the ability to estimate the duration of the
drift burst episode. Given Equation (4), we are able to define the duration of the drift burst

episode by estimating the enclosing interval |7, 7;.], this is:

D=71.—m7 9)

The model in equation (3) finds its motivation in the cumulative distribution function of the Beta
distribution, thus a similar intuition for our parameters can be applied in modelling drift burst
episodes. First, parameters J;, J,. work as scaling factors and control the size of the change in prices
on each side. The parameters that define the enclosing interval of the drift burst episode |7, 7]
allow us to explore short-lived episodes but also events with longer durations® oy and a, control
the speed of explosion from the right near 7 and 7,, respectively, where lower (higher) values
capture a slower (faster) explosion around these points. Similarly, 5, and (3, control the speed of
explosion from the left (i.e. near 7; and 7, respectively), where lower (higher) values imply slower

(faster) explosion around these points.

Figures 4 and 5 visualize the flexibility of our model, with different combinations of ¢y, and 3,
delivering different drift burst shapes which can be observed in markets. From the left hand side
version of equation 4, the intuition on parameters is reflected on the right column of Figure 4. For
lower values of a, beta controls how the explosive behavior near 7; (i.e. beginning of the episode).
High values of beta increase the initial explosion around 7; and vice-versa. This can be reflected
on the black line as we move down from (i) to (iv) on Figure 4. For high values of «, explosiveness
is high around 7 (e.g. (ii) from Figure 4). This is reflected on the turquoise line as we move down

from (i) to (iv) on Figure 4. The explanation for the right hand side (i.e. Figure 5) is analogue.

°For example, Flora and Reno (2022) study short lived events that last only a few seconds but also analyze

long-duration events such as bond auctions.
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2.3 Estimation

In this section, we propose a nonlinear least squares estimator for the parameters of the semi-
parametric price model given by Assumption 1 and prove the consistency of the estimator under
the general assumptions on the parametric form of the drift burst component F;(#). In what

follows, we always denote the true parameter vector to be estimated by 6° € ©.

Estimation of F}(6°) is based on a discretized path of X. We assume that X is recorded over a
fixed interval [0, 7] (e.g., one trading day) at times 0 = tg < t; < --- < t,, = T, where the time
increments A;, = t; — t;_1 eventually converge to zero. The sampling times are allowed to be
non-equispaced, however a certain degree of regularity is required: we assume that for all 7 and a

sufficiently large n, there exist constants 0 < ¢ < (', such that
cA, <A;, <CA,, (10)

where A,, = T'/n. In what follows, we set T' = 1 without loss of generality. The high-frequency
increments of X over [t;_1,t;] are denoted by A; X = X;, — X;,_,. We also set:

f(tic1,ti;0) = F,,(0) — Fy,_,(0), fori=1,2,...,n. (11)

Definition 1. The least squares estimator of 6° is the value é\n in the parameter space ©, which

minimizes the objective function Q,(0), defined by:
Qn(0) =D 1AX — f(tio, 1::0)*. (12)
i=1

Remark 1. Our drift estimation problem is similar to a classical problem of estimating a nonlinear
time-series regression of the form y, = f(t; 0)+u,, where y, is an observed response variable, f(t;0)
is a known function of time depending on unknown parameters 6 and u; i a zero-mean regression

error. Indeed, in our setting the high-frequency returns can be expressed as

The main difference from the classical setting is that in our case regression errors, N;X'’s, are
non-zero mean increments of a semimartingale and the inference is carried out under the infill

asymptotics, so both f(t;_1,t;;0) and A; X' converge in probability (with possibly different rates)

13



to zero as the number of observation increases. Despite these differences, the common intuition
regarding the nonlinear least squares estimation can be useful for interpreting the estimation pro-

cedure 1n our case.

Assumption 2. For each 0,0° € ©, there exists a real function T : R — R such that:
|f<tz'—1>ti; 0) — f(ti—1,t:;60%)| < h(]|60 — ‘90||)T(ti —ti_1) (14)

where h(zx) is a bounded function such that h(x) — h(0) = 0 as © — 0, and there exists an

increasing sequence k, > 0 such that

n

t=1

In addition, for any 0 < n <1 and 6 # 6y, where 6,60y € O, Anyg > 0, My > 0 such that:

P <i(f(ti1ati:9) — ftic1,ti,600))° > fﬁi/M1> >1-—n V' n >ng (16)

i=1
Theorem 2.1. Assume that X is a process defined by Assumption 1, and that Assumption 2 is
fulfilled. As n — oo, it holds:

0, 2 6°, (17)

where 9\,1 is the non-linear least squares estimator of 8° from Definition 1 and “ -2 denotes the

convergence in probability.

The proof of Theorem 2.1 can be found in Appendix A

3 Simulation study

3.1 Simulation setup

In this section, we assess the statistical power of our estimator through Monte Carlo simulations.

We explore the accuracy of our estimator applied to equation (4) using a standard setup in high

14



frequency finance as shown in Christensen et al. (2020). The baseline model is a driftless Heston

type stochastic volatility model (see (Heston, 1993)), defined as follows:

dXt = O'tth
do? = k(og — o?)dt + £dB, t €[0,1] (18)

where W;, B, are standard Brownian motions with E(dW;,dB;) = pdt. Moreover, we follow the
guidelines from Ait-Sahalia and Kimmel (2007) and use the following annualized set parameters
(00, K, &, p) = {0.0225, 5, 0.40, —\/(0.50)}. We perform 500 repetitions via an Euler discretization
scheme, using a grid with sample size of n = 1140, which corresponds to a minute by minute
sample of a 24 hour trading session, which is common in FX markets. The initial values for
oy are drawn randomly from a Gamma distribution, where 0?7 ~ Gamma(2k0o€ 2, 26E72) (e.g.

Christensen et al. (2020)).

We include a drift burst into the baseline model of equation (18) using equation (4), which is
centered at 7 = 0.5 and contained in the enclosing interval (7, 7,) = [0.475,5.25]. We assess the
estimation procedure for different combinations of (o, o, 5, ;) and (J,., J;) parameters, with the
intention of covering all potential drift burst shapes observed in markets (e.g. Figure 3). Without
loss of generality, we set oy = o, and 3; = ,. In addition, we include market microstructure noise
into our simulation setup to capture market frictions observed at tick level (see Stoll (1999), Black

(1986)). Hence, the noisy observed log-price in a n point grid can be defined as follows:
Yi/n: i/n+ei/n7 1=0,1,...,n (19)

where €/, ~ N (0,%.2/”) and wi;, = ¢ % such that the simulated noise is conditionally het-
eroscedastic, serially dependent and positively related to the riskiness of the efficient log-price
(Christensen et al. (2020), Bandi and Russell (2008),0omen (2006)). Moreover, we set the noise-
to-volatility ratio ¢ = 0.5 for medium contamination level as in Christensen et al. (2014). To
overcome the use of noisy observations in our simulation exercise, we pre-average returns locally
to smooth-out the return series and improve the power of our estimation procedure as shown in

Jacod et al. (2009):

kn—1

Ai,nY = Z gjm,AH-j,nY (20)
j=1

15



where k,, is the bandwidth (i.e. number of observations in the grid) used for the local pre-averaging,
A; Y are the noisy returns in the discrete grid and g;,, = ¢g(1/k,) is a weighting function. Similarly
to Christensen et al. (2020), we set g(x) = min(z,1 — z) and k, = 3. The use of pre-averaged
returns is popular in the finance literature when dealing with high frequency datasets. It deals
with the bid-ask bounce observed at high-frequency intervals, provides closer approximations to
efficient prices, and improves the statistical power of detection tools under these settings (Jacod

et al. (2009), Podolskij et al. (2007)).

3.2 Simulation results

Simulation results are reported in Table 1. The first two columns show different combinations of
(cv, B) used to generate different shapes. Columns (2)-(6) show the economic components of each
drift burst episode as defined in Section 2.2, where the first row of each panel contains the true
parameters as a benchmark. The final column shows the Root Mean Squared Error as a measure of
goodness of fit, defined as RMSE = w, where y; is the i-th observation and g; is our i-th
estimation. The choice of parameters (a, 8) in our simulation study aims to cover how our model
estimates behave for (i) lower values (i.e. a,, f < 0.5), (ii) mid-range values (i.e. a = 1,8 < .5)

and (iii) higher values (i.e. @ > 1,8 > 0.5). Moreover, combinations with @ = 1 are comparable

to the simulation setup presented in Andersen et al. (2021).

Finally, Table 1 contains three panels related to the three general event types presented in Figure
3 that are observed in financial markets. We set (.J;, J,.) = (0.0250,0.0000) for Panel A; (J;, J,) =
(—0.0250, 0.0125) for Panel B and (J;, J,.) = (—0.0250, 0.0250) for Panel C.

First, for the case of drift bursts without overshooting (Panel A), the results show that our model
is able to correctly estimate the jump in efficient price (J.,) and the overshooting (O) for different
values of «, 3, where accuracy improves as a, # > 0.25. The beginning of the episode (7;) and the
duration are also correctly estimated, as 7 (i.e. the peak of the drift burst event) is known. The

best results (that are closest to the true parameters) are obtained for the case (a, §) = (0.75,1.00).

Second, for drift bursts with overshooting (Panel B), results suggest that the change in the efficient

price (J.,) is slightly overestimated, also affecting the estimation of overshooting (O). Neverthe-
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less, both estimates are close to true parameters. The beginning of the episode (7;) is somewhat
underestimated, which ultimately affects the estimates of the duration (D) of the event. Simi-

larly to Panel A, accuracy improves as «a, 8 > 0.25, where the best results are obtained again for

(a, B) = (0.75,1.00).

Finally, for flash crashes (Panel C), the jump in the efficient price (J.,) is correctly estimated
for most parameter combinations. The estimation of overshooting (O), which is the most relevant
component in this case, is close to the true value in most cases. Similarly, estimates for the
beginning of the episode (7;) are close to the true parameter. Estimations for duration (D) are
somewhat affected by the estimates of the end of the drift burst episode (i.e. 7). Similarly to Panels
A and B, the procedure’s accuracy improves as «, § > 0.25, and the best results are obtained for

(ov, B) = (0.75,1.00).

Overall, the simulation results suggest that our model is able to successfully estimate 7., and O
for different event types, where the accuracy of the estimates improves for large values of («, /3).
Furthermore, the best accuracy for our procedure is achieved for (o, 5) = (0.75,1.00) across
different types of events. Estimates of 7; are close true parameters and estimates of duration D

are within an acceptable range.

4 Empirical Application

In the empirical application, we focus on the characterization of recent drift burst events in foreign
exchange markets, in particular the Sterling appreciation after the general election in December
12, 2019. For this episode, we implement our model to assess the economic impact on currency

prices.

4.1 Data Sample

We use data from Electronic Broking Services (EBS), a leading FX interdealer electronic market
platform, from January 1st, 2019 to December 31st, 2020. Similar data sets have been used by
Mancini et al. (2013) and Karnaukh et al. (2015), among others. The dataset consists of tick-
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o B Tep @ T D RMSE
Panel A: Drift burst without overshooting
True Values (Jep, O, 7, D) = 0.0250  0.0000 0.4750 0.0250

0.25 0.25 0.0225 0.0001 0.4715 0.0285 0.02516
0.50 0.50 0.0245 0.0002 0.4738 0.0262 0.02677
0.75 1.00 0.0250 -0.0002 0.4750 0.0250 0.02724
1.00 0.35 0.0227  0.0001 0.4764 0.0236 0.02519
1.00 0.45 0.0243 -0.0001 0.4751 0.0249 0.02631
2.00 0.75 0.0246 -0.0001 0.4748 0.0252 0.02652
2.00 1.25 0.0246 -0.0001 0.4741 0.0259 0.02667

Panel B: Drift burst with overshooting
True Values (Jep, O, 7, D) = -0.0125 -0.0125 0.4750 0.0500

0.25 0.25 -0.0098 -0.0146 0.4645 0.1838 0.00270
0.50 0.50 -0.0115 -0.0136 0.4729 0.0950 0.00079
0.75 1.00 -0.0122  -0.0128 0.4749 0.0557 0.00023
1.00 0.35 -0.0118 -0.0133 0.4698 0.1064 0.00217
1.00 0.45 -0.0120 -0.0131 0.4728 0.0944 0.00107
2.00 0.75 -0.0123 -0.0128 0.4731 0.0783 0.00019
2.00 1.25 -0.0122  -0.0128 0.4744 0.0646 0.00019

Panel C: Flash crash
True Values (Jep, O, 7, D) = 0.0000 -0.0250 0.4750 0.0500

0.25 0.25 0.0028 -0.0271 0.4671 0.1588 0.01018
0.50 0.50 0.0010 -0.0261 0.4736 0.0748 0.00921
0.75 1.00 0.0001 -0.0251 0.4748 0.0503 0.00876
1.00 0.35 0.0003 -0.0254 0.4718 0.0728 0.00886
1.00 0.45 0.0003 -0.0253 0.4732 0.0618 0.00888
2.00 0.75 0.0001 -0.0252 0.4733 0.0560 0.00884
2.00 1.25 0.0002 -0.0252 0.4744 0.0518 0.00884

Table 1: Simulation results for equation (4) under different setups. Number of simulations is set to ngim = 500 for each combination
of (o, B). Each trading session is sampled on 1 minute intervals using n = 1440 minutes for a 24-hour trading session to mimic the

behavior of FX markets. Each panel presents different types of events observed in financial markets as shown in Figure 3.
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by-tick quote and trade information, including quote prices and order volume, the depth of the
market at the best (10) levels of the order book, and trade prices and direction, with a precision
of 100 milliseconds. The quality and depth of the dataset allows us to analyze the volume and
liquidity effects around drift burst events. We focus on sixteen exchange rates®: CHFJPY, CN-
HJPY, EURCHF, EURCNH, EURJPY, EURNZD, EURUSD, NZDJPY, NZDUSD, USDCHF,
USDCNH, USDJPY, GBPUSD, GBPJPY, GBPCHF and EURGBP. We sample mid prices every

one second from tick data using bid and ask prices and last tick interpolation.

4.2 Sterling Appreciation on December 12, 2019

The Sterling appreciation on December 12th, 2019 is one of the biggest gains of Pound Sterling
on record.” On Thursday December 12th, 2019 at 10 pm, an exit poll showed a landslide victory
of the Conservative Party under Boris Johnson in the 2019 UK general election. This caused the
Sterling appreciation of approximately 2% relative to the USD and to EUR. The event had a
direct impact on all GBP linked currencies. In our sample, a drift burst event is observed for (i)
GBPUSD, (ii) GBPJPY, (iii) GBPCHF and (iv) EURGBP. The effect is less strong on not directly
linked currencies, such as EURUSD, NZDUSD and USDJPY. Figures (6) - (8) illustrate the shape
and magnitude of the episode for (i) high-liquidity currencies directly linked to GBP (Figure 6),
low-liquidity currencies directly linked to GBP (Figure 7) and (iii) currencies not directly linked
to GBP (Figure 8). We show that direct effects on cross-currency pairs that include a directly
affected currency are generally stronger than indirect effects on cross-currency pairs indirectly

affected through triangular arbitrage strategies.

Figure 6 shows that the impact of the drift burst episode is slightly stronger on GBPUSD than
EURGBP. Using EURUSD as a reference, the indirect effect of GBP over EURUSD is less severe

6These are: US dollars (USD), New Zealand dollars (NZD), Swiss francs (CHF), Chinese renmibi (offshore)
(CNH), Japanese yen (JPY), British pound (GBP) and Euro (EUR). Following the definition from EBS, currency
pairs are read as (foreign currency )/(local currency). For example, EURUSD reflects the prices of Euros (foreign

currency) in US dollars (local currency)
"See further “Sterling surges as Conservative victory sends jolt through markets” (Financial Times, accessed:

2022-12-14).
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than the direct effect observed on GBPUSD and EURGBP. Also, we observe selling flows at the
new price level, which are common around these significant increases where traders are expecting

a short term reversion pushing prices downward minutes before 6.00 pm.

Figure 7 shows that the appreciation effect is 1 % stronger for GBPJPY relative to GBPUSD
(approximately 3%) with low trading activity. Moreover, GBPNZD and GBPCHF show an ap-

preciation of the same level of magnitude with low trading activity.

Figure 8 illustrates how the indirect channel of information transmission works for USDJPY,
EURCHF, and NZDUSD. The indirect effect is present on these currencies, but the impact is less
than 1%. Furthermore, there is a noticeable trading activity around the event, but within average
levels for the trading session. Trading activity around the event signals how new information
(i.e. political events) are priced into financial markets. Most of episodes do not show significant
overshooting after the peak, which suggests that information is efficiently incorporated into market

prices.

4.2.1 Implementation of parametric drift burst model

We implement our semi-parametric model to assess the economic impact of political news arriving
into markets. Given that the event was observed in between trading sessions (i.e. Thursday 12th,
2019 at 10 pm), we use the information from December 12th and December 13th 2019 to fit our
model as shown in equation (3). We use one second mid prices sampled from tick quote data using
last tick interpolation to deal with missing values. Similarly to our simulation study, we pre-average
returns as shown in equation (20) using k, = 3. We identify the peak of the burst event to be
located on December 12th, 2019 at 5:05:26 NY time (GMT-5). For estimation, we set the peak at
the center (i.e. 7 = 0.5) and use different windows around the peak, ranging from one hour up to
four hours, to estimate our model. Parameters are initialized at (J;, oy, 5y, 1) = (0.035,1.5,0.6,0.4)

on the left and (J,, o, 5,,7.) = (—0.03,1.5,0.45,0.6) on the right.

Table 2 shows parameter estimations for GBPUSD based on equation (4). Following the event
classification in Figure 6, this episode can be classified as a drift burst without overshooting

(Figure 6 (i) and Panel A from Table 1). Results suggest that the jump efficient price (J,) is
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consistently estimated around 0.017, except for the first case. Moreover, estimates of O are close
to 0, which indicates that market agents are able to correctly internalize new information into
prices. Estimations on duration suggest that the episode lasted between five to eleven minutes.
These results are in line with what we observe on sub-plot (i) of Figure 6, reflecting the ability of

our model to capture the new price price after the event
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Figure 6: Sterling appreciation of December 12th, 2019 for high-liquidity currencies. (Left column) Cumulative log-returns for (i)
GBPUSD, (ii) EURGBP and (iii) EURUSD. (Right column) Traded volume (money) every 10 minutes as a percentage of total traded
volume for buy trades (green bars) and sell trades (red bars). Data shows trading sessions from December 12th to December 13th,

given different sessions by currency. Times are shown in NY time (GMT-5). Returns are computed using 1 second mid prices.
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Figure 7: Sterling appreciation of December 12th, 2019 for high-liquidity currencies. (Left column) Cumulative log-returns for (i)
GBPJPY, (ii) GBPNZD and (iii) GBPCHF. (Right column) Traded volume (money) every 10 minutes as a percentage of total traded
volume for buy trades (green bars) and sell trades (red bars). Data shows trading sessions from December 12th to December 13th,

given different sessions by currency. Times are shown in NY time (GMT-5). Returns are computed using 1 second mid prices.
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Figure 8: Sterling appreciation of December 12th, 2019 for high-liquidity currencies. (Left column) Cumulative log-returns for (i)
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5 Conclusion

We propose a semi-parametric model for drift burst episodes to classify different types of events
with explosive price movements in foreign exchange markets and interpret their economic impact.
Our model is able to capture the dynamics of several drift burst episodes observed in financial
markets. We assess the statistical accuracy of our procedure with Monte Carlo simulations and
apply different parameter configurations to generate different types of events. Based on our model,
we provide formal definitions of relevant economic components related to drift burst episodes, such

as change in efficient price 7, overshooting O and duration D of such events.

On simulations, our model is able to successfully estimate such components for drift burst episodes
with and without overshooting, as well as for flash crashes. In addition, we apply our estimation
procedure to an empirical study to understand the economic impact over prices observed during
the British Pound appreciation in December 12th 2019. In this case, our model provides consistent
estimates around 1.7% jump in the efficient price, which is the behavior observed after the drift
burst episode. The estimates on overshooting are close to zero and consistent with our definition

of a drift burst episode without overshooting.

Our model provides a framework for understanding and dissecting extreme market events with
explosive price episodes, by providing estimates on relevant economic components related to dif-
ferent types of drift burst episodes. Future work is required to expand the baseline theoretical

framework and to further explore the economic implications of different types of events.
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A Mathematical appendix

Below C' > 0 denotes a generic positive constant which changes from line to line.

A.1 Proofs of the main results

Lemma 1. Let Assumptions 1 and 2 hold. Let N3(6°) = {0 : ||0 — 6°|] < &}, where 8° € © s

fixed. Then, as n — oo first and then 6 — 0,

n

sup K, Z |:‘f(ti—17 ti;0) — f(tioa, ti; 0°)| + | f(tioa, t;0) — f(tioa, t; ‘90)|2] — 0. (21)
N N——

In addition,

n

’%22 Z [f(tifh tz, 00) — f(tifl, t“ 7T0)] AlX/ £> 0 (22)

t=1

for any 6°,7° € ©. Finally,

sup H;Z Z |f<t1,1,tz, 6) — f(tlfl,t“ 90>‘ ‘AZX/| & 0 (23)
0eN5(69) =1

as n — oo first and then 6 — 0.

Proof of Lemma 1. First, we prove equation (21). From assumption 2 and since h(z) is bounded,
we have the following:
| f(ti1,t5,0) — f(tio1,t:,0°) ] < R(||0 — 6°||) T(t; — tim1) = CT(t; — ti1) (24)
| F(tiasti, 0) = f(tia, £, 09| < h(]|0 — 0°)))2 T2(t; — ti 1) = C2T2(t; — t; 1) (25)

Adding both equations, taking sum and multiplying by #,? on boths sides yields:
Ko Z | f(tioa,ti,0) = f(tioa, £, 0°)| + [ f(ior, i, 0) — f(tioa, b, 90)’2
t=1

< sup ky” Z ‘f(ti—la ti,0) — f(tio1, ti, 90)} + ‘f(ti—la ti,0) — f(tio1, ti, 90)}2
0eN5(0) i—1

n

< CRY Tt — tioy) + T (t — )] = O(1) (26)

t=1
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We can impose the bounds defined in equations (24) and (25) because they work for any 0 € ©
(including the supremum of the expression). Then, if we let n — oo first, the bound from the
equation in the last line above kicks in. Finally we obtain the result that we are looking for when

0 — 0 afterwards, so the whole difference goes to zero.

Second, we prove equation (22). Recalling the definition of the error term:

t; t;
u =N X = / fisds —I—/ o dW, (27)
ti—1 ti—1

We can re-write equation (22) as

n

iy Z [f(tica, t:,0°) — ftiza, b, 7°)] AX
1=1

t; t;
= I{T_LZ Z [f(ti—l, ti, 80) — f(ti—b ti, WO)] </ /,LSdS + / O'SdWS) (28)
=1 ti—1 ti_1

= 1,23 [Ftia, 10,6°) = Fltios,ti, 7)) /t " uds (20)

=1 i—1

J/

A

t;
2 Z z 1 tm 90 f(ti—la ti; WO)} / Jdes (30)
ti—1

J/

B
Now, we need to prove that A — 0 and B — 0 to prove the main result. For A, we have the
following. Let ¢; = w2 [f(ti_1,t:,0°) — f(ti_1,ts, 7°) ft sds. Following equation (2.2.35) from
Jacod and Protter (2012), we need to show that >°7 , E[|¢i|]] & 0 to prove the result. Then, we

|

can re-write the expression as follows:

>ElG = 3 E ||

K2 [f(tica, 6, 0°) — f(tioa, ti, 7°)] /ti E[us]ds

t;
fltioa, ti,0°) = ftioa, ti, 7°)] / isds
ti—1

< OA K, Z ’f(ti—latu 0°) — f(ti-1, tz‘ﬂTO)}

=1

< OAK? Z ‘f(ti—lu ti,0°) — f(tioa, ti77T0)| (31)
i—1
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< CAk, h(][0° = 7)Y Tt — tia) — 0 (32)

The last result comes from the fact that x,%> "  T(t; — t;-1) — 0 since Y o T(t; — ti-1) +
T%(t; — t;-1 = O(k2) from equation (15) and h(zx) is a bounded function.

For B, let ¢; = k2 [f(tie1,t:,0°) — f(tioq, t;, 7°) ft osdW;. Following equation (2.2.35) from
Jacod and Protter (2012), we need to show that E (21:1[’@"2]) 2 0 and E(G|Fi 1) = 0 Vi, n.

Then, we can re-write the expression as follows:

(Z Gi ) ZE 1Gi1%]
:;E

= > Ima? [, 1,8%) = f(ti, 11, 7")] [
=1

t;
. [f(ti—17 tia 00) - f(ti—h tia 7T0>i| / UdeS
ti—1

]
(| wwﬂ

E

:zn:{mf [f(tica, 6, 0°) — f(tioa, t;,7°) \ ‘/ 02| Fii] (33)

< CAjnk; Z|f ity 0°) = fltia,t, 70|

< CAuRy? K;QZh(HGO—7TOH)T2(tZ-—ti_1)] (34)
im1

< OAK2 nﬁiﬁ(ti—t“) —0 (35)

which proves the result given that h(z) is a bounded function and ;2> " | T?(t; — ti—1) = O(1)
as n — 00. Equation (33) can be written by the martingale property of the Ito’s integral, which
also implies E((;|F;,—1) = 0. Moreover, it’s bounded by assumption 1. In this case, the difference
[f(tiiq,t:,0%) — f(ti1,t;,m°)] won’t converge to zero as § — 0, so we rely on the increasing

sequence k, to dominate the sum.

Similarly to the proof above for equation (22), we can re-write equation (23) as

n

sup f,” Z [f(tin,ti,0) = f(tioa, i, 6°)] |AX|

0ENs(00) —
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n

t; t;
= Ssup KZ;Z Z [f(tifl, ti, 0) — f(tifl, ti, 60):| ’ (/ ,LLSdS + / O'SdWs> (36)
0eNs(0°) i=1 ti—1 ti—1
t; t;
< sup kK, - Z 2 latzv 9 f( i—1, tia 90)] ( / ,ust + / Udes ) (37)
0eN5(6°) ti—1 ti—1
n t;
= sup K’ Z [f(tic1,t5,0) — f(tim1,t:,6°)] / psds (38)
0eNs(0°) i1 ti—1
A
t;
-2 0
sup kK, tio1,ti, 0) — f(tio1,t;,0 / osdW 39
o Z | (ti-1,:,60%)] - (39)
B

where the last inequality comes from the triangle inequality. Now, we can split the sum and repeat

the steps from the proof of equation (22). For A’ let ¢; = k2 [f(ti_1,t:,0) — f(t;i_1,t;,0°)] ft ;Lsds‘.

Following equation (2.2.35) from Jacod and Protter (2012), we need to show that S°7 | E[|¢;|] 2 0
to prove the result. Then, we can re-write the expression as follows
n n t;
> ElG] = 3B [|x? [ s
=1 i=1 ti—1

= Z ”‘0;2 [f(tz'—h ti, 0) — f(tio1, i, ‘90)} ‘ / i E[ps)ds
i=1 ti—1

t;
/ E[ps]ds
ti—1

Fltio1,ti,0) — f(ti1, t;,60°)]

n

< 2 f(tia,ti, 0) — f(tiy, ti, 0°
_9;21(300)21:"% [l )t )”

S sup CYAzn"§ Z’f i— 1’t“9> f<1 17ti’60)}

9€N5(90) i=1
< sup CAuk, Z\f i-1,ti0) = f(tio1,t:,0%))| (40)
9€N5(90) i=1
< Dk 2H(]|0 = 0°) D T(ti — tig) — 0 (41)
=1

The last result, comes from the fact that x, 2> | T'(t;—t;_1) — 0 from equation (15) as n — 0o
because of equation (15), and h(x) is a bounded function. Additionally, we can impose bound from

equation (41) because it applies to any 6,0 € ©, which also includes the supremum.

For B/, let CZ = KJ;Q [f( i— 17tl,9) f i— 17t1,90 L Og
Jacod and Protter (2012), we need to show that E (21:1[|Q|2]) 2 0 and E(G|Fi 1) = 0 Vi, n.

s|. Following equation (2.2.35) from

32



Then, we can re-write the expression as follows:
E <Z[|<i|2]) = E[lGI]
i=1 i=1
- Z E
i=1

= Z |k [ f (tica, 16, 0) — f(tio, £, 0%)] }2
i—1

n

< —2 ti—1,t:,0) — tz‘—7tz”90 ?
_QG%%O);M [f(tima, 1, 0) = f(tioa, 13, 6%)]]

fo? [f(tior i, 0) = f(tima, ti,0%)]

t; 2
/ osdW,
ti—1

t; 2
(/ O'SdW3>

ti—1

ti 2
(/ O'SdWS>

ti—1

E

E

n 123
= sup Z |k [ (tioa, 0, 0) = fltin, 1, 6°)] |2 / E [03|Fi1] ds (42)
0eN;(0°) s ti—1
< sup CAj k" Z | ftiz1, 1, 0) — f(tia, ti, 90)|2
9€N5(00) i=1
< CDuiy? | K2 Y h(]|0 = 0°)T2(t: — ti_l)] (43)
L =l
< CAuk,? K2 TP (ti—tia)| — 0 (44)
L =l

Here, we obtain our result as n — oo and then § — 0 given that h(z) is a bounded function
and k2> " T?(t; — t;—1) = O(1). Interestingly, the increasing sequence k,, it is not required to
conclude in this case because the result is already obtained through n and 4. Finally, equation (42)
can be written by the martingale property of the Ito’s integral, which is bounded by assumption

1 and also implies E(¢;|F,—1) = 0. O
Lemma 2. Let D,(0,0°) = Q,,(0) — Q.(6°). Suppose that for any & > 0:
lim inf inf (Qn(0) — @n(6°)) >0 (in probability) (45)

n—0o0 [0—0°|>§

then 0, 2 6° as n — oo

Proof of Lemma 2 (From Wu (1981)). Tf 6, 25 6° is not true, then there exists some § > 0 such
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that P (lim SUP,,— o0

6, — 00) > 5) > 0. Therefore, by the definition of 6, this implies that:
. . . _ 0 <
P (1 inf | inf (Qu(6) - Q%) £0)) >0 (10

which contradicts equation (45). O

Theorem A.1l. Proof of Theorem 2.1 The proof is similar to Chan and Wang (2015). Let N be
any open subset of © containing 0y. Given that 0, is a minimizer of Q,(0) over 6 € ©, by Lemma
2, proving consistency of the estimator is equivalent to solv that, for any 0 < n < 1/3 and 6 # 0y,
where 0,0y € ©, Ang > 0, My > 0 such that:

. 2 .
P (96(131}15\/6 D, (0,6y) > Hn/M1> >1-3n  Vn>mng (47)

First, denote Ns(mg) = {0 : ||0 — mo|| < 6}. Since © N N is a compact set, by the finite covering
property, equation (47) will hold if we prove that, for any fived 7o € © N N©:
L,(6,m) = sup &, 2 |Dn(0,00) — Dy(mo, 6)] 2 0 (48)
0eNs(mo)
as n — oo first and 6 — 0 after. Moreover, ¥Vn > 0,4 My > 0,ny9 > 0 such that Yn > ng, M >
My:
P (Dn(mo,0) > w7 /M) > 1 =21 (49)

First, we prove equation (47). Due to equation (48), for any 0 < n < 1/3 and M; > 0, Ing >
0,60 > 0 such that:

P (1%%%0 1,(00, 75) > 1/2M1> <7
where mo and w;, 1 < j < myg are chosen so that © N N°¢ C U;n:(’l N, (7). Consequently, by taking
My > My/(2my), it follows from (49):

fcONNe 1<j<mo

T 1<<mo

>1-3n

To prove equation (48), we use Lemma 1. For each my € © U N*:

n

In(é, 7'('0) S sup K;2Z(f(ti_1,ti,9> — f(ti_l,ti,ﬂ'()))g

0eN;(mo) i=1
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+ sup K,” Z |f(timas ti,0) — f(tioa, i, mo)| [ A X]
0eN; (o) i=1

The two components on the right hand side converge to zero as n — oo first, and then § — 0

afterwards. This yields I,,(5, ) 2 0. Finally, for equation (49), we notice that:

n

Da(m0,00) = > (f(ti1,ti,m0) = f (i1, i, 00))
=1

" (fltimrstiomo) = (b1, £, 60)) A X!

i=1
Then, for the first component of the right hand side of the equation above and due to equation
(16), we have that for any n > 0,3ng > 0, My > 0 such that:

P <Z<f(ti—latia770) — ftio1,ti,60))* > /ﬁi/M1> >1—-n  Yn>ng,M> M,

i=1
In addition, for the second component of the right hand side, we know that due to equation (22):

n

Ko Z [f(ticy, ti,mo) — ftica, ti, 00)] A X' 5 0

n
i=1

Finally, we can conclude by noticing that:

P (Dn<7'l'0,60> > Iii/M) > P <Z (f(tl‘_l,ti,ﬂ'O) — f(ti—l;ti,eo))Q > f{i/<2M1)) —n >1-— n

=1

>1-2n
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A.2 The drift burst hypothesis

Our work builds upon and extends the drift burst literature, which focuses on understanding
and modelling drift burst episodes when the drift component of a price process explodes faster
than the volatility component. Under the standard formulation for continuous-time arbitrage-free
price processes, the log-price of a traded asset dX; follows the following dynamic: where p; is
the drift, o; is the volatility, and W; a Brownian motion. Previous literature has neglected the
drift component p; as in a convential setup with locally bounded coefficients, the drift is O,(A)
and swamped by the diffusive component O,(v/A) for vanishing time interval A—0. In other
words, the volatility component ultimately dominates the drift component p; asymptotically, as
A > +/A. A major limitations of these conventional models is that it cannot capture explosive
price movements observed in markets, such as flash crashes and sudden price surges. Therefore,

Christensen et al. (2020) present an alternative model:

dX; = pddt + oc®dW, (50)
where the drift component is allowed to explode around 74, resulting in:
Tdb+A
/ s = O,(A) (51)
Tap—A

for any 0 < v, < 1/2 8. In this case, we have that u/c® — oo as t — 4. Thus, to detect such

episodes, the authors define the drift-burst t-statistic with as:
T = Vha et 4 N(0,1), (52)
Oy

where the local estimator of the drift is defined as:

1 "&d t
Am i—1 n o
He =3~ E K ( h ) ALY (53)

=1

and the local estimator of the variance is:

1 [t t t 2
_n i—1 — noo
oy = h_’[ Z (K ( W ) Ai_lY)

n i=1 n
Ly, L n—knp—L+2 + " " " (54)
i-1— i+L—1 — n o TrAn Y
+2) w (L—) Y K ( - ) K (h—> AilYAiHLY}
L=1 n i=1 n n

8Under a similar framework, our paper attempts to extend these parametrizations with more flexible forms.

Details are shown in section 2.1
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In the expressions presented above, h,, corresponds to the bandwidth (i.e. estimation window) for
the local drift estimation and A/, is the bandwidth for the local variance estimation. Moreover, equa-
tion (54) is a HAC-type estimator that includes cross-lagged terms in the second component of the
sum given by L. K stands for a left-sided exponential kernel defined as K (x) = exp(—|z|) for z < 0

and w is a Parzen-kernel defined as:
1— 622 +6|z)®, if 0<|z|<1/2,
w(r) = € 2(1 — |z])3, it 1/2 < |z <1, (55)
0, otherwise

The drift burst hypothesis framework allows us to identify with high statistical accuracy when

drift burst episodes occur?.

A.3 Parametric Drift burst in the literature

Related literature has used similar parametrizations to equation (3) mainly as a tool for simulation
experiments. For example, Christensen et al. (2020) present the following form in their simulation
study:

a(r—t)7, if t<T,
(T —t) (56)

He

ag(t — )=, if t>r,
which is able to produce flash crash type of figures as shown in the bottom row of Figure 3. The
o parameter controls the explosive behavior of the burst and a; o is a scaling factor. However, the
separation of the effects that can be attributed to changes in the efficient price is not straightfor-
ward. Andersen et al. (2021) also present a parametrization for their simulation study defined as

follows:

—T Qg
ggj(t) = Cq {1 - <f—_7—ll> } 1{t€[n,ﬂ}
o ar
gfc(t) =q {]- - (Z:;l) } 1{tE[Tl,T]} + ¢ {]- - (:T_,T.,-> } ]'tE[’T,Tr]

9The authors provide several robustness checks to assess the predictive power of their test, including robustness

(57)

to market microstructure noise. See Christensen et al. (2020) for more technical details
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where g,; is the function for gradual jumps (so-called drift bursts in our context as shown in the

first row of Figure 3) and gy, is the figure for flash crash episodes (i.e. last row of Figure 3). In

our setup, Equation (4) provides a more general version that allows for flexibility not only at the

beginning but also at the end of the drift-burst episode. The parametrization of Andersen et al.

(2021) can be considered a special case of our model if we set o = 1.

B Empirical application tables

w Jp J, Tep O T D
3600 0.012 0.003 0.014 -0.003 0.418 0.082
7200 0.014 0.004 0.017 -0.004 0.396 0.104
9000 0.014 0.003 0.017 -0.003 0.436 0.064

10800 0.014 0.003 0.016 -0.003 0.437 0.063

Table 2: Estimation results of equation (4) for different estimation windows (w) around the peak of the crash episode observed in

GBPUSD on December 12th, 2019. Estimation windows are measured in seconds. Columns Jj, Ji, Jep, O are shown in log-returns.

Columns 7;, D are shown in time for ¢t € [0, 1].
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