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Abstract

This paper proposes a calibration and combination model that combines and dynamically calibrates

predictive densities. While the weights are statically estimated the time-varying calibration is

introduced giving an observation driven dynamics to the parameters of the calibrating function

which is driven by the score of the assumed conditional likelihood of the data generating process.

The model is very flexible and can handle different shapes, instability and model uncertainty in data

generating process density. We show its effectiveness on various simulated datasets. Two empirical

applications are also introduced, one on financial index density forecasts and one on short-term

wind speed predictions. Both the simulations and the empirical applications documents the large

instability of individual model performance in comparison to the properties of the combined and

calibrated forecasts, favouring our model in terms of predictive accuracy.
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1. Introduction

Forecasting is a crucial task in time series, which becomes harder as the degree of uncertainty

around the forecasted quantity increases. In certain contexts, such as risk management and finance,

the selection a priori of the relevant information necessary to produce forecasts is not an easy

task and, as a consequence, often several models with different assumptions are used to predict

the same quantity. The recent challenges brought by more frequently occurring financial crisis,

the appearance of more risky and unregulated assets, climate change have increased the level of

uncertainty in financial and environmental variables while, on the other hand, have increased the

demand for accuracy from practitioners, scientists and policy makers.

As showed by several authors, when multiple forecasts are available, it is possible to combine

them to benefit simultaneously from the different approaches of processing the relevant information

from the observations with the purpose of improving the prediction.

This paper builds up on this literature and proposes a dynamic model for the case when the

optimal level of calibration, and the combination structure, varies across the time period forecasted.

The model is then applied to produce accurate predictions of financial and climate variables.

Early papers on forecasting with models combinations are Barnard (1963), who considered

airline passenger data, and Roberts (1965) who introduced a distribution which includes the pre-

dictions from two experts (or models). The combined distribution is a weighted average of the

posterior distributions of two models and is similar to the result of a Bayesian Model Averaging

(BMA) procedure, see Raftery et al. (1997). Raftery et al. (2005) extend the BMA framework by

introducing a method for obtaining probabilistic forecasts from ensembles in the form of predictive

densities and McAlinn and West (2018) extend it to Bayesian predictive synthesis.

Bates and Granger (1969) propose combination of predictions from different forecasting models

using descriptive regression. Granger and Ramanathan (1984) extend this to combine forecasts with

unrestricted regression coefficients as weights. Terui and van Dijk (2002) generalize the problem to

a state space with weights that are assumed to follow a random walk process. Hoogerheide et al.

(2010) propose robust time-varying weights and account for both model and parameter uncertainty

in model averaging. Raftery et al. (2010) derive time-varying weights in dynamic model averaging,

and speed up computations by applying forgetting factors in the recursive Kalman filter updating.

Combination weights that depend on (optimal) score functions have also been studied. Hall

and Mitchell (2007) introduce the Kullback-Leibler divergence as a unified measure for the eval-

uation and suggest weights that maximize such a distance, see also Geweke and Amisano (2011)

for a comprehensive discussion on how such weights are robust to model incompleteness, that is
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the true model is not included in the model set. Gneiting and Raftery (2007) recommend strictly

proper scoring rules. Billio et al. (2013) develops a general method that can deal with most of

issues discussed above, including time-variation in combination weights, learning from past perfor-

mance, model incompleteness, correlations among weights and joint combined predictions of several

variables.

Finally, the last aspect relates to calibration and combinations. Ranjan and Gneiting (2010) and

Gneiting and Ranjan (2013) introduces the idea of recalibration density forecasts when the density

is not well-calibrated. They introduce a monotone non-decreasing map via a Beta distribution to

achieve it. Bassetti et al. (2018) generalize to infinite Beta mixtures, allowing for more flexibility

in calibrating and combinations in presence of fat tails, skewness and multiple-modes.

This paper extends the density calibration literature and proposes to apply combination with

dynamic calibration models. We extend the static model in Ranjan and Gneiting (2010) to a score-

driven dynamic model. The time varying calibration is obtaining giving dynamics to the parameters

of the beta calibrating function with dynamics driven by the score of the conditional likelihood of

the calibration-combination, see Creal et al. (2013) and Harvey (2013). Score-driven models for

beta distribution have been already proposed by Gorgi and Koopman (2021), while in our case the

beta distribution is used as a calibrating function. As we show in simulations, the model is very

flexible and can handle different shapes, instability and model uncertainty. The parameters of the

model are estimated through a Bayesian inference procedure and an efficient Monte Carlo Markov

Chain sampler for posterior approximation as described by  Latuszyński et al. (2013).

Through a simulation results is possible to appreciate the flexibility of the model in recovering

the dynamically the true density of the data generating process. The model is tested in four different

and heterogeneous settings for potential time variation in the true density of the data generating

process which include smooth transition in the mean, structural breaks and transition towards

heavy tails. The model is parsimonious in the sense that each of the individual beta parameters

tends to stretch or down-weight either the upper or lower quantiles of the naive static combination

of predictive densities.

The empirical performance of the proposed model is then assessed on two different datasets.

The first is a datasets of density forecars based on an S&P 500 Index returns already used in

Amisano and Geweke (2010), Geweke and Amisano (2011), Kapetanios et al. (2015). The forecasts

are obtained by standard GARCH models already used in Bassetti et al. (2018). The second dataset

is of half hourly wind speed forecasts produced by various statistical state-of-the-art models on a

dataset from a wind farm in Cairns Australia. In both the cases it is shown that the combined
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dynamic Calibration and Combination approach provides superior density forecasts, both in terms

of Log score and CRPS criteria.

The structure of the paper is organized as follows. Section Section 2 presents the novel dynamic

calibration and combination model framework. Section Section 3 describes the Bayesian estimation

and introduces model selection strategies to identify the presence of dynamics in the calibration part

of the model. Section ?? presents four simulation studies. Section Section 5 shows two empirical

applications while Section Section 6 sets up the conclusion.

2. Statistical Framework: Combination and Dynamic Calibration

Let F1t, ..., FMt be a sequence of predictive cumulative distribution functions (cdfs), for a real-

valued variable of interest, yt available at time t. Following the forecast combination and calibration

literature, we assume the cdfs are externally provided. We consider a combination function which

combines the sequence of cdfs into an aggregated predictive cdf, F (·|γ) = Gγ (·|F1t, . . . , FMt). Given

a sequence of observations, y1, ..., yT , the cdf evaluated on one observation F (yt|γ), is referred as

probability integral transform (PIT). Following Ranjan and Gneiting (2010) and Gneiting and

Ranjan (2013), we say that the PITs, F (y1|γ) , ..., F (yT |γ), are well calibrated (or probabilistically

calibrated) if their distribution is uniform. The uniformity of the PITs are essential for density

forecast evaluation.

Following the literature we consider a beta calibration function

Ft (y|γ) = Bα,β

(
M∑
i=1

ωiFit (y)

)
= Bα,β (Ht (y|ω)) , y ∈ Y ⊂ R (1)

where Bα,β (·) is the cdf of a Beta distribution. The parameter vector is composed by γ = (α, β,ω),

where ω = (ω1, . . . , ωM ). If the Fit admit probability density function (pdf) fit then the pdf of the

model in Equation (1) is

ft (y|γ) = bα,β (Ht (y|ω))ht (y|ω) , (2)

where bα,β (·) is the pdf of the Beta distribution and linear combination density and distribution

functions

ht (y|ω) =

M∑
i=1

ωifit(y) Ht (y|ω) =

M∑
i=1

ωiFit(y) (3)

We propose a score-driven dynamic model for calibration and combination of predictive dis-

tributions. Dynamic Calibration in the model can be introduced giving dynamics to individual

parameters of the calibration function α and β. The time-varying parameters can be fitted by an
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observation driven model with dynamics driven by the score of the assumed conditional likelihood

of the data generating process yt (Creal et al. (2013), Harvey (2013)).

These class of models are called score-driven models, or otherwise called dynamic conditional

score (DCS) models. This is a specific class of observation-driven models which assume that the

variable yt, conditionally on all the past observations up to t− 1, is distributed with a distribution

G as follows

yt | Ft−1 ∼ G(yt|θt|t−1,ϕ), t = 1, . . . , T

where θt|t−1 is a sequence of dynamic parameters and the dynamics of each θt|t−1 at time t is

conditional on the information at time t− 1

θt+1|t = g(θt|t−1,ut;ϕ)

where ϕ is a time-invariant parameter and ut is defined as the conditional score vector with respect

to the dynamic parameters evaluated at yt, that is

ut = ∇θ ln ft(yt|θ, ϕ), t = 1, . . . , T

The important feature of this framework is that it not only allows us to construct the likelihood

for any form of the distribution F and it is robust even if the moments of the distributions don’t

exists. Moreover, it also allows us to model the dynamics of different parameters of the conditional

distribution at the same time. At last, since the score is robust to the presence of outliers, it is

capable in case of heavy-tailed observations to efficiently identify residual dynamics in the ACF of

the fitted scores.

The parameters θ = {α, β} belong to a subspace Θ = R2
+, while the time invariant parameters

ϕ = ω belong to Φ = SM−1 where SM−1 = {ω ∈ RM , s.t.ω′ι = 1} and in order to allows for an

unrestricted DCS dynamics. Under this assumption the score vector is

ut =

 [
ln
(
Ht|t−1

(
yt|ωt|t−1

))
− ψ

(
αt|t−1

)
+ ψ

(
αt|t−1 + βt|t−1

)]
αt|t−1[

ln
(
1−Ht|t−1

(
yt|ωt|t−1

))
− ψ

(
βt|t−1

)
+ ψ

(
αt|t−1 + βt|t−1

)]
βt|t−1

 (4)

where ψ(·) is the digamma function.

In the score-driven models literature, the function ut is scaled by a weighting factor St which if

often considered as the inverse of the information matrix of the time varying parameters It (θ)−1,

see Creal et al. (2013) and Harvey (2013).
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In a parsimonious specification of the DCS model the conditional dynamics of the parameter

considered is modelled by a first order Quasi-ARMA specification that can be represented as

ξt+1|t = (I − Φ)ν + Φξt|t−1 +Kut, t = 1, . . . , T

where Φ = diagrv(φ1, φ2), ν = (ν1, ν2)′, and K = diagrv(κ1, κ2) are constant parameters to be

estimated. Then ϕ = (diag(Φ)′,ν ′,diag(K)′,ω′)′

2.1. Time-Varying Calibration Parameters

Giving the calibrating function in Equation (1), we can introduce dynamic calibration assuming

that ξt|t−1 =
(
αt|t−1, βt|t−1

)′
while we have static combination, therefore ω ∈ ϕ. The two shape

parameters of the beta function will be allowed to vary over time and correct the quantiles of the

combinated forecasted CDF Ht|t−1 (yt|ω). The dynamics of the parameters will be driven by the

score of the conditional distribution. Differently from the approach of Gorgi and Koopman (2021)

we leave the general parameterisation of the Beta distribution setting a dynamics for each of the

parameter independently.

Harvey and Luati (2014) and Harvey (2013) have showed that models with conditional dis-

tribution with heavier tails results in score-driven filters more robust to the impact of outliers.

Score drive models applied to generalisation of the beta distribution have been used by Harvey

and Palumbo (2022) for modelling realized volatility and Harvey (2013) for modelling range1. The

dynamics of the parameters is driven by the conditional scores of the density in Equation (2).

ut =
∂ ln ft (yt|θ)

∂
(
αt|t−1, βt|t−1

)′ =

ln
(
Ht|t−1 (yt|ω)

)
− ψ

(
αt|t−1

)
+ ψ

(
αt|t−1 + βt|t−1

)
ln
(
1−Ht|t−1 (yt|ω)

)
− ψ

(
βt|t−1

)
+ ψ

(
αt|t−1 + βt|t−1

) ,

where ψ (·) is a digamma function.

Given that perfect calibration is achieved when α = β = 1, as we can see from Section 2.1 while

Ht|t−1

(
yt|ωt|t−1

)
approaches 0 uαt pushes alpha down β is pushed up so that the left quantiles

gets more calibrated, while the opposite happens as Ht|t−1

(
yt|ωt|t−1

)
approaches 1. The amount

of calibration provided by the beta distribution is dictated by the magnitude of the two parameters

thus, while the parameters are closer to 0 the response of the score is the largest, while it decreases

as the value of the parameters approaches 1. When the parameters are larger than 1 the score

curve flattens providing almost an identical response for each of the values of α and β.

1For a complete treatment of score-driven models applied to strictly positive location-scale distributions and gener-
alised Beta distributions see Harvey (2013).
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Figure 1: Value of the two scores, red line for the score wrt α and blue line for the score wrt β, for
different values of Ht|t−1 (yt|ω). In the left plot α, β ∈ {0.1, . . . , 1}. In the right plot α ∈ {0.1, . . . , 1} while
β ∈ {0.1, . . . , 0.5}

After imposing an exponential link function to constrain the parameters to be strictly positive

the score becomes as in Equation (4).

3. Estimation and Model Selection

On the same line as Harvey et al. (2007), we propose a Bayesian approach to inference for our

Calibration model which allows us to include extra-sample information about the model and the

parameter through the prior choice.

3.1. Prior Distributions

For the vast majority of the parameters included in the full parameter vectorϕ = (φ1, φ2, ν1, ν2, κ1,

, κ2, ω1, . . . , ωN−1)′2 of the model we use a flat prior which for the parameters (φ1, . . . , φN ) ∈ ϕ is

truncated for values greater than 1 and lower than −1. This is to guarantee stationarity of the filter

following Harvey (2013). In addition, for the parameters (ν3, . . . , νN ) ∈ ϕ we propose a normal

distribution prior, with density function

π(x) =
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

(5)

2In the case of the combination we estimate N − 1 weights in the interval (0, 1) while ωN =
∑N−1

i=1 ωi.
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where the hyper-parameters are µ = 2 and σ2 = 1, while for (κ3, . . . , κN ) ∈ ϕ we propose a Normal

distribution prior with density function

π(x) =
1

b
√

2π
exp

(
−1

2

(
x− a
b

)2
)

(6)

with hyper-parameters a = −1 and b = 2.5, which are the intercepts and scales for the dynamic

parameters driving the dynamics of the combination weights.

3.2. Posterior Approximation

Let y = (y1, . . . , yT )′ be the collection of observations and ϕ is the parameter vector associated

to the full model, the likelihood associated to the model is

L(y|ϕ) =
T∏
t=1

bαt|t,βt|t

(
M∑
i=1

ωiFit(yt)

)
M∑
i=1

ωifit(yt) (7)

Let π(ϕ) be the joint prior distribution defined in the previous section, the joint posterior distri-

bution π(ϕ,y) ∝ f(y|ϕ)π(ϕ) is not tractable, however we can apply efficient Monte Carlo Markov

Chain (MCMC) approximation methods. The estimation approach proposed is the adaptive ran-

dom scan adaptive Metropolis-within-Gibbs discussed in  Latuszyński et al. (2013). Let (Ψ,B(Ψ)) be

a d-dimensional space, such that Ψ = Ψ1 × . . .×Ψd and write ϕ(n) ∈ Ψ as ϕ(n) = (ϕ
(n)
1 , . . . ,ϕ

(n)
d ).

Let ϕ
(n)
−i = (ϕ

(n)
1 , . . . ,ϕ

(n)
i−1,ϕ

(n)
i+1, . . . ,ϕ

(n)
d ) be the parameter vector obtained dropping the i-th

component from ϕ(n) with values in Ψ−i = Ψ1× . . .×Ψi−1×Ψi+1× . . .×Ψd and with π(·|ϕ−i) the

conditional distribution of ϕi given ϕ−i. The adaptive random scan adaptive Metropolis within

Gibbs, draws ϕ(n) given ϕ(n−1) performing a Metropolis Hastings step, by first choosing coordi-

nates at random according to some selection probabilities α = (α1, . . . , αd). Therefore, given ϕ
(n−1)
−i

the i-th coordinate is selected with probability αi and ϕ
(n−1)
i is updated by drawing ϕ∗ from the

proposal distribution Q
ϕ

(n−1)
−i ,v

(n−1)
i

(ϕ
(n−1)
i , ·). The proposal is then chosen adaptively from the

distribution family QΨ−1,v by setting the parameters to γ
(n)
i . The sampler iterates the following

steps

1. Set α(n) = Rn(α(0), . . . , α(n−1),ϕ(n−1), . . . ,ϕ(0), v(n−1), . . . , v(0)) ∈ A.

2. Set v(n) = R′n(α(0), . . . , α(n−1),ϕ(n−1), . . . ,ψ(0), v(n−1), . . . , v(0)) ∈ G1 × · · · ×Gn.

3. Choose coordinate i ∈ 1, . . . , d according to selection probabilities αn

4. Draw ϕ∗i ∼ Qϕ(n−1)
−i ,v

(n−1)
i

(ϕ
(n−1)
i , ·).
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5. With probability

ρ
(n)
i = min

1,
π(ϕ∗i |ϕ

(n−1)
−i )q

ϕ
(n−1)
−i ,v

(n−1)
i

(ϕ∗|ϕ(n−1)
i )

π(ϕ(n−1)|ϕ(n−1)
−i )q

ϕ
(n−1)
−i ,v

(n−1)
i

(ϕ
(n−1)
i ,ϕ∗)

 (8)

accept the proposal and set X(n) = (ϕ
(n−1)
1 , . . . ,ϕ

(n−1)
i−1 ,ϕ∗,ϕ

(n−1)
i+1 , . . . ,ϕ

(n−1)
d ) otherwise

reject and set ϕ(n) = ϕ(n−1).

The adaptive proposal distribution is chosen following Andrieu and Thoms (2008). We assume

the distribution Qϕ−i,vi(ϕi, ·) has parameters vi = {gi, li,mi, Si} which update as follows:

log(l
(n+1)
i ) = log(l

(n)
i ) + g

(n+1)
i (ρ

(n+1)
i − ρ̄) (9)

m
(n+1)
i = m

(n)
i + g

(n+1)
i (ψ

(n+1)
i −m

(n)
i ) (10)

S
(n+1)
i = S

(n)
i + g

(n+1)
i ((ψ

(n+1)
i −m

(n)
i )(ψ

(n+1)
i −m

(n)
i )′ − S(n)

i ), (11)

where g
(n+1)
i = (n + 1)−ai is the adaptive scale for the i-th parameter, ρ̄ is the expected

acceptance probability. Following the suggestions in Roberts et al. (1997) and Andrieu and Thoms

(2008) we choose ρ̄ = 0.42.

3.3. Model Selection and Diagnostics

Another advantage of the score-driven structure is that we can use the fitted scores of the

dynamic parameters to test for the presence of dynamics. As discussed by Harvey (2013), residual

correlation in fitted scores under the null of no dynamics can be used to detect the presence of

dynamics in time-varying parameters of score-driven models.

Calvori et al. (2017) sets up a general testing framework based on ? which exploits residual

correlation in fitted scores, while Harvey and Thiele (2016) and Palumbo (2021) sets up formal

Lagrange Multiplier (LM) tests in score-driven models for testing the dynamics of correlation and

tail index parameters. In the context of mixture models, ? sets out tests for Markov switching

models while ? finds the Lagrange multiplier (LM) test statistic to have the best size and power

properties. Harvey and Palumbo (2022) used the LM approach for detecting dynamics in the

weights of DAMM model.

In this paper we extend to DCS score residuals the testing procedure developed by Zellner (1975)

for linear regression residuals in Bayesian estimation. When a static mixture and calibration has

been fitted, in the DCS framework LM tests can be approximated with the portmanteau tests and

they enable the researcher to separate out transition dynamics from location and/or scale dynamics
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CRPS LS W
Sim (i) (ii) (iii) (iv) (i) (ii) (iii) (iv) (i) (ii) (iii) (iv)

CalibrComb 1.4814 1.7063 1.5156 1.4788 2.4455 2.6088 2.4411 2.4446 0.6898 0.8367 0.7438 0.6837
Comb 2.0844 2.4247 3.1413 2.2847 2.8452 2.9867 3.0931 2.8743 2.6738 2.8029 4.0000 3.0210

Model 1 3.3666 3.4695 4.0146 3.5257 4.0418 4.2668 4.8957 4.2518 4.0020 4.0050 4.0000 4.0000
Model 2 3.3646 3.4302 4.0148 3.5275 4.0390 3.5025 4.8956 4.2540 3.9980 3.9989 4.0000 4.0000

Table 1: Average values for the CRPS, LS and W metrics in all the four scenarios for each of the models
across all the simulations. Here LS is reported as the negative Logarithmic Score.

and concentration. The pattern of the correlograms may be informative as to possible models and

so this initial step has the potential for playing an important role in model specification for the

dynamic weights of the combination and the parameters of the beta for the calibration.

When the test is against dynamics in the i − th location only, and µj , j 6= i is fixed, the LM

statistic is equivalent to the Q-statistic formed from sample autocorrelations, ri(τ) = ci(τ)/ci(0),

where ci(τ) =
∑T

t=τ+1 ui,tui,t−τ/T, and ui,t are the fitted scores with respect to the time varying

parameters for i = 1, ...K and for lags τ = 1, ..., P,, that is

Qi(P ) = T
P∑
τ=1

r2
i (τ), i = 1, 2, .. (12)

As noted by Harvey and Thiele (2016), estimation of fixed parameters makes no difference to the

distribution of Qi(P ), which is asymptotically distributed as χ2
P under the null hypothesis.

4. Simulation Study

In this section we investigate the performance of our combination with dynamic calibration

model in finite samples. In order to so we present the following four simulation studies.

(i) In the first study the data generating process is a Gaussian distribution with time varying

location between µ0 = −4 to µT = 4, where

yt = µt + εt, εt ∼ N (0, 2)

µt = µt−1 + 8/T, t = 1, . . . , T.

(ii) in the second study the data generating process is a Gaussian distribution with time varying
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(i) (ii) (iii) (iv)
Avg Par 95% Est Int Avg Par 95% Est Int Avg Par 95% Est Int Avg Par 95% Est Int

ν1
0.086

(0.070, 0.100)
0.199

(0.169, 0.228)
0.307

(0.281, 0.332)
0.243

(0.219, 0.267)(0.030) (0.058) (0.050) (0.049)

φ1
0.995

(0.991, 0.999)
0.964

(0.952, 0.975)
0.992

(0.990, 0.993)
0.998

(0.997, 0.999)
(0.007) (0.022) (0.003) (0.003)

κ1
0.019

(0.018, 0.019)
0.018

(0.017, 0.018)
0.049

(0.046, 0.050)
0.023

(0.022, 0.023)
(0.002) (0.001) (0.004) (0.001)

ν2
0.194

(0.173, 0.214)
0.668

(0.616, 0.718)
1.046

(0.999, 1.092)
0.271

(0.247, 0.293)
(0.041) (0.102) (0.093) (0.046)

φ2
0.999

(0.997, 1.000)
0.997

(0.994, 0.998)
0.990

(0.988, 0.991)
0.997

(0.993, 1.000)
(0.002) (0.004) (0.003) (0.007)

κ2
0.025

(0.024, 0.025)
0.030

(0.029, 0.031)
0.040

(0.038, 0.042)
0.020

(0.019, 0.020)
(0.001) (0.001) (0.003) (0.001)

ω1
0.511

(0.507, 0.515)
0.302

(0.292, 0.311)
0.540

(0.518, 0.561)
0.467

(0.459, 0.474)
(0.034) (0.092) (0.174) (0.060)

Table 2: Average of the plug-in estimators from each of the simulations in each of the scenarios. In parenthesis
we have the standard deviation of the estimated parameters and its 95% estimation interval across the
simulations.

location between µ0 = −4 to µT = 4, where

yt = µt + ηt, ηt ∼


N (0, 2) , t < T/2

T4 (0, 2) , t ≥ T/2

µt = µt−1 + 8/T, t = 1, . . . , T.

(iii) in the second study the data generating process is a Gaussian distribution with time varying

location between µ0 = −4 to µT = 4, where

yt = µt + εt, εt ∼ N (0, 2)

µt =


−4, t ∈ (− inf, T/4] ∪ (T/2, T3/4]

4, t ∈ (T/4, T/2] ∪ (T3/4, T ] .

(iv) in the second study the data generating process is a Gaussian distribution with time varying

location between µ0 = 0 to µT = 2π, where

yt = 4 sin (µt) + εt, εt ∼ N (0, 2)

µt = µt−1 + 2π/T, t = 1, . . . , T.
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Figure 2: The figure displays a representative series generated in the simulation setting (i) (Top Left), the
resulting estimated average combination weights with credible intervals (Top Right), the average dynamics of
the time varying parameters with their credible intervals (Bottom Left) and the resulting average estimated
PITs for all the models (Bottom Right).

The samples generated are of size T = 1, 000 while the two models combined are a N(−4, 2) and

N(4, 2). The number of simulations in all the studies is M = 1, 000. These heterogeneous examples

capture time-varying location, structural breaks and smooth transition towards heavy tails.

In all the settings we evaluate in-sample the goodness of fit measure of the combined and

calibrated predictive densities with the average Logarithmic Score (LS)3, the average continuous

ranked probability score (CRPS) and the average Wasserstein Distance (W) which, given two cdf

functions at t one obtained from the true data generating process, Ft(x), and one for model k,

3Here for consistency across the measures we have reported the negative of the logarithmic score. Therefore a smaller
values would imply a better fit of the data generating process density.
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CRPS Logscore

CalibrComb 0.6762 1.1653
Comb 0.6764 1.2216

GARCH 0.6836 1.2522
GARCH-t 0.6763 1.2002

Table 3: Average values for the CRPS, LS across all the iterations for each of the models. Here LS is reported
as the negative Logarithmic Score.

η1 φ1 κ1 η2 φ2 κ2 ω1

Avg Par 0.424 (0.003) 0.182 (0.012) 0.089 (0.002) 0.415 (0.003) 0.357 (0.033) 0.022 (0.002) 0.506 (0.029)
95% Cred Int (0.422, 0.425) (0.175, 0.187) (0.088, 0.089) (0.412, 0.416) (0.341, 0.373) (0.021, 0.023) (0.505, 0.505)

Table 4: The table reports the average plug-ins estimator across the iterations, their standard deviation in
parenthesis and their 95% credible intervals.

Ftk(x), can be obtained as4

Wk =
1

T

T∑
t=1

∫
R
|Ft(x)− Ftk(x)| dx

In Table 1 and Table 2 is possible to see the results from the simulations. In all the cases the

calibration provides a significant improvement over the static combination across all the metrics. As

it is possible to see in Figure 2 as well as and in Figure 9, Figure 10 and Figure 11 in the Appendix,

in all the cases the average PIT of the combined and calibrated model across the simulations is the

closest to the 45 degree line, which represents the PIT plot for the unknown true/ideal model. Given

that in all the cases the shift between the two distribution has been time varying, the inclusion of

a dynamic calibration giver a strong advantage to the model. Looking at the filtered dynamics of

the two parameters αt|t−1 and βt|t−1 they tend to compensate for the shift in the location giving

different weights to either upper or lower quantiles of the combined distribution. Higher αt|t−1

implies that the calibration function weights more the left tail quantiles making them heavier,

while βt|t−1 affect in the same way the right tail. This feature is quite clear in Figure 2 where

the combined distribution almost equally weights the predictive densities from the two models,

resulting in a location close to 0. Is also worth noticing that almost in all the cases the static

combination tends to equally weight the predictive distributions from the models, a part from (ii)

as can be seen in Figure 9. This suggests that the combination part plays a very marginal role

in obtaining the resulting combines and calibrated distribution. It is possible to show that similar

results can be obtained also from statically fix the combination weighting parameters across the

models5.

4Computationally the integral in the measures is discretised and the cdfs are computed at every t over a finite grid.
5Further results upon request.

13



-10

-5

0

5

10

Calibration Parameters

0.5

1

1.5

2

0
9
-0

8
-2

0
0
0

0
5
-0

1
-2

0
0
1

1
2
-2

3
-2

0
0
1

0
8
-1

6
-2

0
0
2

0
4
-0

9
-2

0
0
3

1
1
-3

0
-2

0
0
3

0
7
-2

3
-2

0
0
4

0
3
-1

6
-2

0
0
5

1
1
-0

7
-2

0
0
5

0
6
-3

0
-2

0
0
6

0
2
-2

1
-2

0
0
7

1
0
-1

5
-2

0
0
7

0
6
-0

7
-2

0
0
8

0
1
-2

8
-2

0
0
9

0
9
-2

1
-2

0
0
9

0
5
-1

5
-2

0
1
0

0
1
-0

6
-2

0
1
1

0
8
-2

9
-2

0
1
1

0
4
-2

1
-2

0
1
2

1
2
-1

3
-2

0
1
2

0
8
-0

6
-2

0
1
3

1

1.2

1.4

1.6

Figure 3: Data series (Top), estimated time varying αt|t−1 with credible intervals (Mid), estimated time
varying βt|t−1 with credible intervals (Bottom).

5. Empirical application

We investigate the relative predictability accuracy of the novel approach on a well-studied

datasets from finance (Amisano and Geweke (2010), Geweke and Amisano (2011), Kapetanios et al.

(2015) already used in Bassetti et al. (2018) and a novel dataset from meteorology.We evaluate the

predictive densities using the average Logarithmic Score (LS) and the continuous ranked probability

score (CRPS) conditional to the information available up to time t− 1.

5.1. Forecasting Financial Returns

The first application considers S&P 500 daily percent log returns data from the 3rd of January

1972 to the 6th of August 2013. We used the forecasts from Bassetti et al. (2018) which are from

a Normal GARCH(1,1) model and a GARCH-t(1,1) obtained through maximum likelihood (ML)

using rolling samples of 1250 trading days (about five years) and produce one day ahead density

forecasts for the period from the 8th of September 2000 to the 6th of August 2013. The predictive

densities are formed by substituting the ML estimates for the unknown parameters. Then the novel

combination-calibration model is applied on the resulting predictive cdfs and pdfs.
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Figure 5: Estimated quantile weights on the beta
calibrating function.

The parameter estimation results and model performance are summarised in Table 3 and Ta-

ble 4. As can be seen the dynamics of the two calibration parameters is not too persistent while

the weights are estimated around 0.5 having very little effect at improving the performance of the

combined forecasts. However, as can be seen in Figure 4, the PIT of the combined and calibrated

model is the closer to the 45 degree line, which also in this case represents the PIT plot for the

unknown true/ideal model. This 45 degree line always belongs to the confidence interval of the

Combined and Calibrated model, while is not the case for the PIT of the GARCH and occasionally

not even for the GARCH-t model. This results is confirmed from the LS and CRPS results in

Table 3. The t-model provides better scores than the Gaussian one. The accuracy of the Gaussian

GARCH model is very low during the selected period, in particular due to the extreme events

provided by the uncertainty in the 2008 period.

The impact of the dynamic calibration can be seen in Figure 5 and Figure 3 where we can

see that both α and βt|t−1 tend to stay away from 1, the perfect calibrated values, particularly in

periods of highest volatility.

5.2. Forecasting Wind Speed

Here we present the results for the Cairns wind wind speed half-hourly dataset from the Aus-

tralian Bureau of Meteorology. The dataset includes data of wind direction and velocity over a

period of 2 month (60 days, for a total of 2880 observations), recorded at a wind farm in Cairns,

Australia. Some of the wind speed observations were missing and, according to the Bureau, this is

because there was no wind at these hours. These missing observations accounted for roughly 7%

of the data.

We have produced forecasts on a rolling window basis using half of the dataset for estimation
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CRPS Logscore

CalibrComb 2.7438 0.7960
Comb 3.8626 1.7182

ARMA 3.2791 1.0660
ARMA-GARCH 4.2753 2.3220

ARFIMA 3.0451 0.8379
GAR-GARCH 7.0129 2.9701

Table 5: Average values for the CRPS, LS across all the iterations for each of the models. Here LS is reported
as the negative Logarithmic Score.

η1 φ1 κ1 η2 φ2 κ2 ω1 ω2 ω3

Est Par 1.285 (1.728) 1.000 (0.000) 0.026 (0.019) 2.250 (0.961) 0.986 (0.033) 0.014 (0.008) 0.065 (1.736) 0.694 (0.289) 0.034 (0.606)
95% Cred Int (1.214, 1.356) (0.999, 0.999) (0.025, 0.026) (2.210, 2.289) (0.984, 0.987) (0.013, 0.013) (0.061, 0.069) (0.694, 0.692) (0.034, 0.034)

Table 6: The table reports the average plug-ins estimator across the iterations, their standard deviation in
parenthesis and their 95% credible intervals.

(1440 observations) producing a dataset of 1440 forecasts. The model tested were an ARMA, an

ARMA-GARCH, an ARFIMA and the GAR-GARCH of Caporin and Preś (2012)

The parameter estimation results and model performance can be seen in Table 5 and Table 6.

As can be seen the dynamics of the two calibration parameters this time is much more persistent.

The estimated combination weights tend to down-weight the ARMA and ARFIMA model in favour

of the ARMA-GARCH and GAR-GARCH model. However the static combination improves only

little on the overall density forecasts. As can be seen in Figure 7 the PIT of the combined and

calibrated model is also in this case the closer to the 45 degree line and it lies in the credible

intervals while this time all the other model are much further away, with the exception for the

GAR-GARCH. This is consistent with the LS and CRPS results in Table 6. In this case from

Figure 8 we can see that the quantiles gets calibrated much more, in particular towards the end of

the sample when speed falls while α rises and βt|t−1 falls.

6. Conclusion

This paper extends the predictive density calibration literature and proposes to apply com-

bination with dynamic calibration. We extend the static model in Ranjan and Gneiting (2010)

to a score-driven dynamic model for calibration and combination of predictive distributions. The

predictive densities from various models are first collected and combined and a beta transforma-

tion is applied. As in Ranjan and Gneiting (2010) and Bassetti et al. (2018) the beta distribution

is used as a calibrating function which calibrates dynamically at every t the combined predictive

density. The weights of the combination are statically estimated while the time varying calibration

is obtaining giving a score-driven dynamics to the parameters of the beta calibrating function. We

provide a Bayesian inference procedure and an efficient Monte Carlo Markov Chain sampler for
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Figure 6: Data series (Top), estimated time varying αt|t−1 with credible intervals (Mid), estimated time
varying βt|t−1 with credible intervals (Bottom).

posterior approximation.

Through simulations, we show that the model is very flexible and can handle different shapes,

instability and model uncertainty. The simulations provides examples of data generating processes

with time varying location, structural breaks and smooth transition towards heavy tails. In all the

cases the model calibrates correctly the ensemble of predictive densities showing that the calibration

step is almost independent from the initial combination. This suggests that the model flexibility

could allow to rescale effectively the quantiles of the combined predictive density even under a fixed

naive selection of the weights.

The empirical performance of the proposed model is then assessed on two different datasets.

The first is a dataset of GARCH predictive densities based on S&P 500 Index returns which includes

the 2008 crisis, and the second is of half-hourly wind speed forecasts produced by various statistical

state-of-the-art models on a dataset from a wind farm in Cairns Australia. In both the cases
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Figure 8: Estimated quantile weights on the beta
calibrating function.

it is shown that the combined dynamic calibration and combination approach provides superior

density forecasts, both in terms of Log score and CRPS criteria. The application shows that as

the number of models increase the static combination down-weights the prediction from the worse

performing models, while the dynamic calibration adapts the quantiles of the combined density

to fit the observed data structure. Ultimately in both the applications the credible intervals of

the resulting combined and calibrated PITs from the model contain the 45 degree line of correctly

calibrated uniform quantiles.

The introduced model is a powerful tool in many fields that use predictive density to make

predictive risk assessments, such as finance or environmental studies. Can be essential to asset

manager to predict portfolios risk-metrics and expected losses in presence of total uncertainty over

the market condition. It can be also very useful for climate predictions where is essential to reconcile

physical predictive models with the statistical structure of the climate data observed, in particular

in presence of increasing uncertainty given by climate change.
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7. Appendix

7.1. Derivation of the Conditional Score for the Calibration Parameters

To obtain the result in Equation (4) we start from stating that the log likelihood function of a

single observation yt is

ln f (y|θ) = log bα,β (H (y|ω)) + log h (y|ω)

= (α− 1) ln (H (y|ω, )) + (β − 1) ln (1−H (y|ω))− logB (α, β) + log h (y|ω)

where B (α, β) is the Euler’s beta function. Under our assumptions on the link function

∇ξg(ξ) = diagrv(α, β) (13)

where diagrv denotes the diagonal matrix with on the main diagonal elements α and β. Moreover,

∇θ log f(yt|θ,ω) =

 ln (H (yt|ω))− ψ (α) + ψ (α+ β)

ln (1−H (yt|ω))− ψ (β) + ψ (α+ β)


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Then

ut = ∇ξ log f(yt|ξ,ω) = ∇θ log f(yt|θ,ω)∇ξg(ξ) (14)

7.2. Figures
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Figure 9: The figure displays a representative series generated in the simulation setting (ii) (Top Left), the
resulting estimated average combination weights with credible intervals (Top Right), the average dynamics of
the time varying parameters with their credible intervals (Bottom Left) and the resulting average estimated
PITs for all the models (Bottom Right).
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Figure 10: The figure displays a representative series generated in the simulation setting (iii) (Top Left), the
resulting estimated average combination weights with credible intervals (Top Right), the average dynamics of
the time varying parameters with their credible intervals (Bottom Left) and the resulting average estimated
PITs for all the models (Bottom Right).
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Figure 11: The figure displays a representative series generated in the simulation setting (iv) (Top Left), the
resulting estimated average combination weights with credible intervals (Top Right), the average dynamics of
the time varying parameters with their credible intervals (Bottom Left) and the resulting average estimated
PITs for all the models (Bottom Right).
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Figure 12: ACF of the MCMC iterations for each of the parameters in fitting the model on the predicted
densities of the S&P 500 dataset.
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