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Abstract

Estimating parameter inputs for portfolio optimization has been shown to
be notoriously difficult and gets further complicated by structural breaks and
regime shifts in financial data. We argue that these structural breaks ultimately
result in parameter uncertainty, to which investors are averse. On an aggregate
market level, this ambiguity-aversion gives rise to a premium for parameter un-
certainty as stocks with high (low) parameter uncertainty are avoided/sold (more
attractive/bought). We propose a novel measure called break-(adjusted stock-)
age that proxies for parameter uncertainty and is based on detecting structural
breaks in stock returns using unsupervised machine learning techniques. Our
measure reveals (i) that break-age is priced significantly in the cross-section of
stock returns and (ii) that break-age is a powerful proxy for parameter uncer-
tainty.
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1 Introduction

Most financial models that deal with portfolio allocation require some form of parame-
ter input like expectations about an asset’s future performance and risk (i.e. expected
return, variances and covariances) in order to derive optimal portfolio weights. While
this task seems straightforward, empirical evidence suggests otherwise. ? for example,
demonstrate that estimating reliable parameter inputs for portfolio optimization re-
quires vast amounts of historical data and is notoriously difficult as the required length
of historical observations is non-existent. Consequently, investors are required to esti-
mate future returns, variances and covariances of assets with less data which increases
estimation errors. Adding to that, portfolio selection models typically treat parameter
inputs with absolute certainty, resulting in well-known issues related to mean-variance
optimization such as poor out-of-sample performance, lacklustre diversification as well
as unintuitive allocations (?).

While there are approaches that try to mitigate or circumvent these issues, such as,
for example, ? or ?, research shows that financial data is affected by outliers (i.e. ?).
Furthermore, ? argue that the behaviour of financial markets can change abruptly and
frequently which in turn dramatically alters the “mean, volatility and correlation pat-
terns in stock returns” and increases the uncertainty of parameter estimates (p. 1057).
Typically, such abrupt changes are caused by changes of technological, legislative or
institutional nature as well as economic shocks or policy shifts (?). The presence
of time-series breaks and regime shifts in financial data further complicates estimat-
ing/forecasting parameters and gives rise to two problems: First, using estimates based
on long historical samples is no longer appropriate since these estimates are likely bi-
ased. Second, estimating input parameters with only few historical observations after
a break has been detected is also highly problematic due to estimation errors (?).
Consequently, it is reasonable to state that financial data is of a time-varying nature
and in the presence of breaks, not all historical observations are suitable for estimation
and prediction tasks (i.e. ?).

These findings suggest that parameter uncertainty is inherent to both, long- and short-
term estimates and amplified by structural breaks. From the perspective of an investor,
these regime shifts are not desirable as they further diminish the reliability of avail-
able data and ultimately increase parameter uncertainty. ? set out to investigate
how investors react to parameter uncertainty and, according to ?, discover that in-
vestors allocate less wealth to stocks with high parameter uncertainty. Based on this
observation, they further deduce that investors are averse to parameter uncertainty
which in turn renders stocks with high parameter uncertainty less attractive for in-
vestors relative to stocks with a lower degree of parameter uncertainty. This implies
that investors with an aversion to parameter uncertainty (i.e. “ambiguity-aversion”)
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withdraw their capital from stocks with high or increasing parameter uncertainty and
re-allocate it to stocks with low or decreasing parameter uncertainty. On an ag-
gregate market level, this ambiguity-aversion gives rise to a premium for parameter
uncertainty as stocks with high (low) parameter uncertainty are avoided/sold (more
attractive/bought).

Given these observations, we propose a novel measure called break-(adjusted stock-)
age that proxies for parameter uncertainty and is based on detecting structural breaks
in stock returns using unsupervised machine learning techniques. Although change
point detection models are typically very technical in nature, associating breaks in
stock returns with periods of elevated parameter uncertainty seems to be straightfor-
ward. This is especially true since breaks can hint at a change in the underlying return
generating process which, in the worst case, implies that previous return observations
are no longer reliable when it comes to analysing the risk-return dynamics of a stock,
thereby increasing the uncertainty with which parameters have to be estimated. Over
time, more and more post-break returns can be observed, increasing the reliability
of estimated parameters from an investor’s perspective. Based on this notion, the
objective of our paper is to demonstrate (i) that there is a premium for parameter
uncertainty in the cross-section and (ii) that the proposed measure which calculates
stock-age on the basis of structural breaks (i.e. break-age) is a suitable proxy for
parameter uncertainty as it captures the premium associated with it.

Our results indicate that there is a substantial premium for assets with recent breaks
in their time-series regardless of the statistical test used to identify such breaks. Fur-
thermore, we discover that this premium, which we link to parameter uncertainty,
is strongest for breaks in variance and for breaks in the mean-variance relationship.
Moreover, breaks that have been detected by parametric test statistics that assume
Gaussian-distributed returns carry a higher premium than their non-Gaussian coun-
terparts which indicates that investors implicitly assume that returns are normally
distributed. Finally, the premium for break-age and, by extension, the premium for
parameter uncertainty is more pronounced for smaller stocks. We argue that this is
the case because smaller stocks are less well researched and have less media and ana-
lyst coverage thereby prolonging the resolution of parameter uncertainty following a
structural break.

The remainder of this paper is structured as follows. Section 2 briefly reviews the most
important findings related to parameter uncertainty, structural breaks in financial data
and firm-age. Thereafter, Section 3 outlines the dataset and methodology we use to
investigate whether or not break-age is an appropriate proxy for parameter uncertainty
and how this is priced in the cross-section of stock returns. In Section 4 we present and
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discuss our most important results. Finally, Section 5 concludes and outlines possible
future research.

2 Literature Review

Our research is located at the intersection of breakpoint detection models, firm-age
and financial performance literature as well as research dedicated to the consequences
of parameter uncertainty in financial markets. As breakpoint detection models are
typically very technical in nature, most of the significant advances in this field can be
found in literature on signal processing, statistical quality control and unsupervised
machine learning which is why we skip illuminating developments from that area and
rather focus on their importance for the field of Finance. Financial applications of
breakpoint detection models have been considered only recently by, for example, ?
who document structural breaks in the equity risk premium ranging from four to
six percent. Moreover, ? detect switching regimes in financial markets and thereby
capture financial markets’ tendency to abruptly change their behaviour. Furthermore,
they document a link between regime switches and periods with different regulations
and economic policies. Finally, ? as well as ? investigate the role of structural breaks
in the cross-section when it comes to forecasting and the detection of market-wide
breaks.

Moving on from the literature on structural breaks in the equity premium, research
on the link between firm-age and financial performance (i.e. stock returns) is scarce
and mainly focuses on performance in the context of IPOs. Here, the most significant
findings indicate that stocks tend to outperform on their day of initial public offering
(IPO) due to underpricing, followed by a long-run underperformance starting on the
post-IPO day and lasting up to 60 months thereafter (i.e. ??). Furthermore, the
findings of ? indicate that mature firms (i.e. companies aged 12 to 35 years) tend to
outperform both, young and old firms (i.e. companies that are younger than 12 years or
older than 35 years respectively) in terms of stock returns. Furthermore, ? investigate
the role of ambiguity in the context of IPOs and find that, on a theoretical basis, the
IPO puzzle can be explained if the underwriter prices systematic and idiosyncratic
ambiguity while diversified investors only price systematic ambiguity. More recently,
? proposed a novel measure for parameter uncertainty based on financial turbulence as
defined by ? and discovers that parameter uncertainty can be used to predict aggregate
stock returns. Apart from that, there is no research that links stock-age and parameter
uncertainty despite the recent increase in academic interest (?). Furthermore, stock- or
firm-age related research and investment strategies typically focus on IPOs as starting
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points and do not consider structural breaks. Finally, the literature does – so far - not
relate parameter uncertainty to structural breaks in time-series (relationships).

Parameter uncertainty and the consequences thereof have also been subject to re-
search. Starting with ? who first distinguished between uncertainty and risk in an
economic framework by defining a situation with risk as one in which outcomes are
unknown but following a known probability distribution. In contrast to that, an
uncertain situation is characterized by unknown outcomes and unknown probability
distributions (i.e. so-called “Knightian Uncertainty”; ?). Furthermore, since the for-
mulation of the so-called “Ellsberg Paradox” it is known that agents prefer risk (i.e.
“probabilized” situation) over uncertainty (i.e. “non-probabilized” situation; ?).

More recently, ? set out to investigate how investors react to parameter uncertainty
and thereby provided support for a theory of “ambiguity-aversion”. ? later pick up
on the notion of parameter uncertainty and describe its implications on an aggregate
market level. Apart from that, ? examine the consequences of uncertainty for financial
markets and argue that the trading behaviour of investors changes as trading happens
less frequently and there are larger no-trade intervals. Furthermore, ? find that in
an attempt to avoid uncertainty in stock markets, traders limit their stock market
participation. In addition to that, ? discover that the level of various risk premia is
influenced by uncertainty. More precisely, they argue that risk premia tend to increase
alongside the number of investors that are averse to uncertainty. Several researchers
have explored how the presence and level of uncertainty influences the risk-taking
preferences of investors. According to ?, ?, as well as ? allocations to risky assets
decrease with increasing levels of parameter uncertainty representing an increasing
preference for safe assets. Finally, ? observe that investors avoid unfamiliar securities
especially in periods with elevated levels of parameter uncertainty.

3 Data & Methodology

In the following section we describe the dataset and methodology used to investigate
how well break-age proxies for parameter uncertainty and whether or not there is a
significant premium in the cross-section for stocks with recent breaks. Therefore, the
first subsection briefly outlines the dataset underlying our examination. After that,
subsection two describes the actual methodology we use in more detail.

3.1 Data

To evaluate how well break-age proxies for parameter uncertainty and how breaks are
priced in the cross-section of stock returns, we use the following datasets: We focus
on the US-stock market and use monthly delisting-adjusted stock returns from CRSP
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beginning in 1925. Based on this dataset we have 33’460 individual PERMNO’s
resulting in a total of 4.4 million observations. Furthermore, we download factor
returns and risk-free rates from Kenneth French’s website1.

3.2 Methodology

Before digging deeper into which breakpoint detection methods we use, we first want
to clarify some terminology related to breakpoint detection in general. According to
?, breakpoint detection methods are defined as machine learning techniques that aim
at identifying sudden changes in a given time-series (Yt)t=1,... as represented by the
dataset y1:T := {y1, ...yT}. In this context, a breakpoint at time τ is identified “if the
statistical properties of the sub-sequences {y1, y2, ..., yτ} and {yτ+1, yτ+2, ..., yT} differ”
(?, p. 9). In the case of multiple breakpoints, a partition ρ1:T of the set {1, 2, ..., T}
needs to be identified such that the time-series’ statistical properties within each of the
sub-sequences remain the same while they change from one sub-sequence to another
(?).

Apart from defining what we mean with structural break and breakpoints in gen-
eral, it is also necessary to further specify the amount of data we use for detecting
breakpoints. In general, there are two possible methods regarding the timing of de-
tecting breakpoints: First of all, there are so-called offline detection methods that
use the entire available dataset y1:T to check for potential breakpoints. Alternatively,
this type of method is also known as “batch change detection” or “phase I change
detection”. From a Finance perspective, such break detection methods are similar to
in-sample test. Although we use a setting that is closer to out-of-sample tests for our
actual investigation, a sound understanding of how offline methods work is essential for
our paper. Thus, we further explore and illustrate the mechanics of offline detection
methods using the following example: Assume that the exemplary time-series under
investigation has at most one breakpoint. If there are no breakpoints, our time-series
is independently and identically distributed according to F0. In contrast to that, if
our time-series does indeed have a breakpoint at any time τ , then the series follows
the distribution F0 prior to τ and thereafter follows the distribution F1. Note that
F0 ̸= F1 (?). If we now want to test whether or not a break occurs at time τ , we can
do so by testing the following hypotheses:

H0 : Yi ∼ F0(y; θ0), i = 1, ..., T

H1 : Yi ∼

F0(y; θ0) i = 1, 2, ..., τ

F1(y; θ1) i = τ + 1, τ + 2, ..., T

(1)

1See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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where θi refers to the parameters of the distribution that might be unknown. According
to ? such a problem can easily be solved with a two-sample hypothesis test. Of course,
which test statistic should be used is determined by the assumptions that are made
with respect to the distribution of the time-series and which parameter is expected to
experience breaks. In the case of Gaussian distributed data and expected breaks in the
mean a suitable test statistic is given by the Student-t test. Once an appropriate test
statistic Dτ,T has been chosen, we can determine its value and, given that Dτ,T exceeds
a threshold value hτ,T , we can reject the null hypothesis of identical distributions and
therefore conclude that a breakpoint has occurred at time τ (?).

In reality however, we cannot know in advance when a breakpoint occurs (i.e. τ is
unknown to us). Hence, we have to compute Dτ,T for every point in time between
1 < τ ≤ T and chose the maximum value from there. This basically means that our
time-series is split up into every possible combination of two sub-sequences and the
two-sample test statistic is calculated for every possible splitting point. Following ?
the test statistic then becomes:

DT = max
τ=2,...T−1

Dτ,T = max
τ=2,...,T−1

∣∣∣∣∣D̃τ,T − µD̃τ,T

σD̃τ,T

∣∣∣∣∣ (2)

Consequently, we can reject the null hypothesis of no breakpoints if DT > hT for an
appropriately chosen threshold hT that is determined by an acceptable probability for
Type I errors α (i.e. the probability of falsely detecting a breakpoint although there
is none). In terms of locating a breakpoint, the best estimate is given by τ , i.e. the
value that maximizes DT (?):

τ̂ = argmax
τ

Dτ,T . (3)

The second type of detection method is referred to as online detection methods, “se-
quential change detection” or “phase II detection methods”. In contrast to offline
methods, online methods try to detect breakpoints at time τ , using only the data y1:t

that is available up to t, where t is 0 < τ ≤ t ≤ T (?). Drawing parallels to Finance
terminology, online detection methods correspond to out-of-sample tests. So when-
ever a novel observation yt is added to the time-series, DT is calculated again using
the aforementioned offline methodology. In line with offline methods, a breakpoint is
detected if DT > hT which implies rejecting the null hypothesis of no breakpoints as
long as the threshold value is chosen appropriately. If the threshold is not exceeded,
another observation yT+1 is added and the procedure is repeated.
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According to ?, the online setting allows the threshold value hT to be chosen such
that the probability of false positives (i.e. Type I error α) remains constant over time.
Under the null hypothesis this implies that:

P (D1 > h1) = α

P (DT > hT |DT−1 ≤ hT−1, ..., D1 ≤ h1) = α, T > 1
(4)

After briefly describing the logic behind breakpoint detection models, we use the re-
mainder of this section to further outline the methodology used to illustrate how
break-age (i.e. the time since the last breakpoint has been detected) captures pa-
rameter uncertainty and how increased levels of parameter uncertainty are priced in
the cross-section of stock returns. We therefore opted for a case-study-like setting.
The reasoning behind this choice is that our measure for parameter uncertainty is
dependent on long time-horizons as new (post-break) observations are only added on
a monthly basis. While such an approach is perfectly suited for capturing how param-
eter uncertainty is slowly resolved over time, it is less suitable for building the typical
long-short portfolios that are used to illustrate how statistically and economically sig-
nificant a newly discovered premium is. Furthermore, building long-short portfolios
first requires building quantile portfolios of equal size. Breakpoints are however highly
individual and do not allow for such an equal allocation to different portfolios which
further supports our choice. Thus, as a first step, we compute abnormal returns using
the Fama-French-Carhart four-factor model based on 12-month rolling regressions:

ARi,t =Ri,t − βMKT,i,t ·RMKT,t − βSMB,i,t ·RSMB,t − βHML,i,t ·RHML,t

− βMOM,i,t ·RMOM,t

(5)

where Ri,t is the return of stock i at time t, RMKT,t, RSMB,t, RHML,t, RMOM,t denote
market and factor-mimicking returns at time t and the various βi,t refer to the regres-
sion coefficients obtained from regressing these factor returns onto individual stock
returns.

These abnormal returns from (5) are then used to check, whether structural breaks in
the mean and/or variance can be detected. For this purpose, we use multiple different
online breakpoint detection methods. More precisely, we apply the CPM framework of
? which provides standard (non-)parametric tests for single and multiple breakpoint
detection. In total, we consider five separate parametric tests: three are based on the
assumption of Gaussian distributed returns and two are tests that do not require this
assumption. In detail, the tests we consider are the following:

• Gaussian:

– Student-t test statistic for break in mean returns
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– Bartlett test statistic for break in variance of returns

– Generalized likelihood ratio test statistic for breaks in mean and variance
of returns

• Non-Gaussian:

– Mann-Whitney test statistic for break in location of a series

– Mood test statistic for break in scale of a series

All of these different tests are designed to detect single and multiple breakpoints and
are implemented using the R-package cpm.

Once the breaks in each individual time-series of abnormal returns are detected with
the help of the aforementioned tests, we calculate the break-age of each stock and based
upon this measure continue with computing equally- and value-weighted cumulative
abnormal returns for each month after break detection and benchmark them against
returns of IPO stocks following equations (6) and (7):

ARt =
N∑
i=1

wi,tARi,t (6)

CARt =
t∏

k=0

(1 + (ARBP
t − ARIPO

t ))− 1 (7)

Our choice of IPO stocks as a benchmark for our stocks with recent breaks is motivated
by the fact that the IPO date of stock is typically used when referring to the age of
a stock and therefore serves as a natural alternative to our break-age. Furthermore,
and in contrast to stocks with recent breaks, IPO stocks are very well researched upon
their IPO and are therefore less exposed to parameter uncertainty than conventional
stocks.

4 Results

In the following we present and discuss our results. Thus, the first sub-section explores
breakpoint statistics. Thereafter, sub-section two dives into the break-age premium we
discovered based on equally-weighted cumulative abnormal returns while the results
presented in sub-section three also focus on the break-age premium but are based on
value-weighted cumulative abnormal returns.

4.1 Breakpoint statistics

Table 1 displays breakpoint detection statistics. In particular, we present the percent-
age of stocks for which we have detected at least one breakpoint alongside the median
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number of breakpoints per stocks, the median time to detect a breakpoint in months
as well as the median time between breakpoints also measured in months.

[PLACE TABLE 1 HERE.]

First of all, we focus on the percentage of stocks for which the methods we use has
identified at least one breakpoint. Depending on the used test statistic approximately
30% to 73% of the time-series under investigation have experienced a break in mean
returns or variance. Consequently, we can conclude that a fairly large number of stocks
experiences at least one breakpoint which further implies that our results are not driven
by extremely rare events. In addition to that, we notice that the test statistics which
assume that observations are Gaussian-distributed discover breaks for more stocks
compared to their non-Gaussian counterparts. If we compare the frequency of breaks
in mean with the frequency of breaks in variance we can also state that stocks more
often experience breaks in variance compared to breaks in mean (i.e. percentages for
Mann-Whitney and Student-t test statistics are smaller than percentages for Mood
and Bartlett). Moving on to the second column of Table 1, we can see that the median
number of breakpoints per stock is two respectively three. Again this suggests that
the return and risk dynamics of stocks abruptly change much more frequently than
assumed. Finally, the last two columns of Table 1 highlight the timing of breakpoints.
According to our results, the median time to detect a breakpoint in months ranges
from 24 months for the Bartlett test statistic up to 36 months for the test statistic
of Mood. Interestingly, the median time between breakpoints also denoted in months
is just slightly shorter than the time to detect a breakpoint, regardless of which test
statistic is being used. This measure ranges from 20 months to 33 months. Based on
this observation, we conclude that, in some cases a breakpoint might be detected only
after a second breakpoint is already in the data (but not yet detected). All in all, we
want to stress once more that our breakpoint statistics suggest that breakpoints occur
for a broad range of stocks, more frequently than assumed and are more often related
to breaks in variance.

4.2 Equally-weighted break-age premium

Our main results are summarized in Figure 1, which depicts cumulative abnormal
returns benchmarked against the returns of IPO stocks over the full sample period.
Furthermore, breakpoints are only included here if their break-date was larger than
1, meaning that the first month after a IPO has not been considered to be a break-
point.

[PLACE FIGURE 1 HERE.]
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At a first glance, we see that regardless of which test statistic is being used, cumula-
tive abnormal returns are positive and increasing from the detection month up until
approximately 25 months. Thereafter, the cumulative abnormal returns begin to de-
crease for the next 50 to 75 months. We take this observation as a confirmation of
our hypothesis that break-age is a suitable proxy for parameter uncertainty and that
parameter uncertainty is priced in the cross-section of stock returns. Furthermore, the
observed pattern confirms that the expected abnormal returns associated with param-
eter uncertainty slowly build up over time as uncertainty resolves. From an economic
perspective, we interpret the depicted hump shape as evidence that investors can re-
alize abnormal returns only slowly after a breakpoint has been detected as parameter
uncertainty unwinds step-by-step with the release of new information.

Next, we want to focus on the differences between breaks in mean returns and breaks in
variance. If we therefore focus on the Gaussian test statistics, we can see that changes
in the variance of a time-series come with a higher premium than changes in the mean
of a time-series (i.e. the CARs for Bartlett are higher than the CARs for Student-t).
The same observation can be made for non-Gaussian test statistics as the CARs for
Mood (i.e. break in scale) are also higher than the CARs for Mann-Whitney (i.e.
break in location). Based on these observations, we argue that breaks in the variance
of a variable increase parameter uncertainty more strongly compared to breaks in the
mean of a variable and therefore are associated with a higher premium.

Now, we focus on the differences between Gaussian and non-Gaussian test statistics.
Therefore, we directly compare the CARs of the Gaussian test statistics (i.e. Bartlett
and Student-t) with their non-Gaussian counterparts (i.e. Mood and Mann-Whitney).
As can be seen in Figure 1, the CARs of breaks detected by the Bartlett test statistics
come with a higher premium than the breaks detected by the Mood test statistics.
The same can be said if we compare the CARs of breaks detected by the Student-t test
statistics with the CARs based on Mann-Whitney test statistics. Admittedly, it seems
easier to detect breaks if assumptions are made about the distribution of a variable.
Nonetheless, on the basis of this observation we argue that investors either care for
normally distributed returns or simply assume that returns are normally distributed
and therefore require higher compensation for increasing uncertainty due to abrupt
breaks in the first two distributional moments.

Finally, we investigate how changes in the mean and variance of a time-series are
priced. For this purpose, we focus on the CARs of the generalized likelihood ratio
model (i.e. the blue line in Figure 1). The pattern of the GLR test statistic is very
similar to that of the Bartlett test statistic. According to our interpretation, break-
points detected by the GLR test statistic basically indicate breaks in the Sharpe ratio
of returns. Given this interpretation, it is not surprising that GLR-breaks are associ-
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ated with a very high premium as investors are certainly concerned about changes in
the risk-return structure of their investments.

[PLACE FIGURE 2 HERE.]

Moving on, Figure 2 also depicts cumulative abnormal benchmarked returns. This
time however, the CARs are put into perspective and compared with alternative CARs.
More precisely, the dashed lines are CARs that include IPOs for breakpoint detection.
As already mentioned, IPO stocks are typically very well researched which is part of the
whole procedure leading up to the IPO and therefore are exposed to less parameter
uncertainty compared to stocks that recently experienced a break. Comparing the
dashed lines with the solid lines (i.e. the base case which does not include IPO stocks)
certainly confirms this notion as the dashed CARs are considerably lower than the
solid CARs. Furthermore, the dotted lines represent CARs that start immediately
after the break date and therefore ignore the time it takes to detect that a break has
occurred. Again these lines are considerably lower than their base-case counterparts
which we attribute to the fact that a change in return and/or risk dynamic takes time
to manifest itself. Therefore, immediately after the break date, investors cannot know
that a break occurred which is why CARs stay muted. Additionally, the dashed and
dotted lines further indicate that breakpoints in the mean detected by Gaussian test
statistics gain importance. Finally, the dashed and dotted CARs are flatter compared
to the solid lines and start decreasing earlier.

[PLACE FIGURE 3 HERE.]

[PLACE FIGURE 4 HERE.]

Figure 3 and Figure 4 depcit the same results as Figure 1 and Figure 2 but based on a
shorter time-period starting in January 1980. From our perspective, the interpretation
of these results remains mostly unchanged. Again, breaks in variance come with
a higher premium than breaks in mean returns and breaks based on test statistics
that assume Gaussian-distributed returns again deliver higher CARs than their non-
Gaussian counterparts. Overall, the main differences to the results based on the full
sample are that the premium for the short sample seems to be higher and deteriorate
less quickly.

4.3 Value-weighted break-age premium

In addition to discussing the results for the equally-weighted break-age premium,
we now consider the break-age premium on the basis of value-weighted cumulative
abnormal returns. For this purpose Figure 5 depicts the same results as Figure 2
but for value-weighted CARs. What is striking, is the fact that overall, the CARs
in Figure 5 are much lower compared to their equally-weighted counterparts. Our
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interpretation is that of course size is a major contributor when it comes to parameter
uncertainty. The reason behind that is the fact that the stocks of smaller (and probably
less known) companies are less well researched and less prominent in indices resulting
in an overall higher level of parameter uncertainty compared to large-cap stocks that
often end up dominating indices as well as media and analyst coverage.

[PLACE FIGURE 5 HERE.]

By and large, the patterns discovered for the importance of breaks in variance versus
breaks in means as well as the importance of Gaussian versus non-Gaussian test statis-
tics remain unchanged. The premium for GLR-based breaks, essentially representing
breaks in Share ratios has, however, diminished on a relative basis.

[PLACE FIGURE 6 HERE.]

Finally, as depicted in Figure 6, the value-weighted CARs based on the shorter time-
frame only confirm the observations made for the entire sample.

5 Conclusion

Estimating parameter inputs for portfolio optimization has been shown to be noto-
riously difficult resulting in disappointing out-of-sample performance (??). The pro-
cedure of estimating parameters is further complicated by breaks and regime shifts
in financial data caused by, for example, corporate actions and events such as merg-
ers, acquisitions or earnings announcements (???). These abrupt changes in time-
series ultimately result in parameter uncertainty, to which investors are averse (i.e.
“ambiguity-aversion”; ?). On an aggregate market level, this ambiguity-aversion gives
rise to a premium for parameter uncertainty as stocks with high parameter uncer-
tainty are avoided and sold while stocks with low parameter uncertainty become more
attractive and are therefore bought.

Against this backdrop, we propose a novel measure that proxies for parameter uncer-
tainty and is called break -(adjusted stock-)age. Our measure is based on detecting
structural breaks in stock returns using unsupervised machine learning techniques.
Despite the sophisticated models required to detect such breaks, we argue that asso-
ciating breaks in stock returns with periods of elevated parameter uncertainty is very
plausible from an economic perspective. Based on this notion, our paper demonstrates
(i) that there is a significant premium for parameter uncertainty in the cross-section
and (ii) that the proposed measure which calculates stock-age on the basis of struc-
tural breaks is a suitable proxy for parameter uncertainty. More precisely, we discover
that there is a substantial premium for assets with recent breaks in their time-series
regardless of the test statistic used to identify breakpoints. Furthermore, this pre-
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mium which we link to parameter uncertainty is strongest for breaks in variance and
for breaks in the mean-variance relationship. Additionally, breaks that have been de-
tected by parametric test statistics that assume Gaussian-distributed returns carry a
higher premium than their non-Gaussian counterparts which indicates that investors
implicitly assume that returns are normally distributed. Finally, the premium for
break-age and, by extension, the premium for parameter uncertainty is more pro-
nounced for smaller stocks. We argue that this is the case because smaller stocks are
less well researched and have less media and analyst coverage thereby prolonging the
resolution of uncertainty following a breakpoint. Altering the time-frame does not
substantially change our results.

Going forward, we suggest focusing on alternative breakpoint detection models that
are also capable of detecting breakpoints in regression coefficients. Such models would
increase our understanding of what specifically drives parameter uncertainty in stock
returns. Furthermore, we are currently working on defining a more suitable benchmark
that considers for example industry affiliation and the sensitivity to certain risk premia
instead of using stock-age as the only matching variable. Additionally, distinguishing
between market-wide and stock-specific breaks could shed more light on which events
actually create uncertainty for stocks. Moreover, the role of market capitalization in
connection to parameter uncertainty needs further investigation. Finally, we would like
to confirm our predictions related to parameter uncertainty and the trading behaviour
of investors by considering how trading volume changes following the detection of a
breakpoint.
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A Appendix

Figures

Figure 1: Cumulative abnormal benchmarked returns (vs. IPOs), equally-weighted, full sample,
only breakpoints (break-date >1).
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Figure 2: Cumulative abnormal benchmarked returns (vs. IPOs), equally-weighted, full sample
(solid line: only breakpoints, dashed line: including IPOs, dotted line: including breakpoints as of
break date).
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Figure 3: Cumulative abnormal benchmarked returns (vs. IPOs), equally-weighted, short sample,
only breakpoints (break-date >1).
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Figure 4: Cumulative abnormal benchmarked returns (vs. IPOs), equally-weighted, short sample
(solid line: only breakpoints, dashed line: including IPOs, dotted line: including breakpoints as of
break date).
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Figure 5: Cumulative abnormal benchmarked returns (vs. IPOs), value-weighted, full sample (solid
line: only breakpoints, dashed line: including IPOs, dotted line: including breakpoints as of break
date).
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Figure 6: Cumulative abnormal benchmarked returns (vs. IPOs), value-weighted, short sample
(solid line: only breakpoints, dashed line: including IPOs, dotted line: including breakpoints as of
break date).
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Tables

% of stocks Median no of Median time Median time
with BPs BPs per stock to detect BP between BPs

Mann-Whitney 30.28 2.00 33.00 32.00
Mood 53.32 2.00 36.00 33.00

Student-t 57.80 2.00 34.00 32.00
Bartlett 73.02 3.00 24.00 20.00

GLR 68.30 3.00 27.00 21.00

Table 1: breakpoint detection statistics depicting percentage of stocks with detected breakpoints,
the median number of breakpoints per stock, the median breakpoint detection time as well as the
median time between breakpoints.
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