An unbounded intensity model for point processes*

Kim Christensen' Aleksey Kolokolov?
June, 2022

Please do not circulate without permission.

Abstract

In this paper, we develop a model for point processes in which the arrival rate is allowed
to explode without inducing an explosion in the point process itself (an intensity burst). In
contrast to the standard Poisson postulates, where the probability of more than one event over
a short time interval is negligible, the unbounded intensity causes an extreme concentration
of points around a particular time instance (an intensity burst time). We derive a novel
nonparametric inference for detecting intensity bursts. The asymptotic theory relies on a so-
called heavy traffic condition from queueing theory. With Monte Carlo evidence, we show
that our testing procedure exhibits size control under the null hypothesis, whereas it has high
rejection rates under the alternative. We interpret the model in the context of a financial
market and implement it on high-frequency data from leading futures contracts, where our
test statistic captures abnormal surges in trading activity, e.g. the level of order submissions
and trade executions, which are often observed during times of elevated stress. We detect a
nontrivial amount of intensity bursts across asset classes and over time.
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1 Introduction

The volatility in financial markets observed during distressed conditions, such as flash crashes,
drift bursts, or gradual jumps, typically coincide with abnormal increases in trading activity. For
example, in Panel A of Figure 1 we plot a short-lived rally in the delivery price of the most active
Crude Oil futures contract (settlement in May 2012) on March 23, 2012 from 9:30am to 10:30am
Chicago time. The price of oil accelerated to about 108%/barrel after a report showed that Iranian
oil exports had tumbled about 300,000 barrels per day during the month. Christensen, Oomen,
and Reno (2022) propose a drift burst model to explain such rapid and sustained price movements.
In their model, the spot drift of a log-price process is allowed to explode, but the log-price itself
remains finite. They also develop an econometric approach for detecting such events from noisy
high-frequency data. As illustrated in the figure, this event is detected from the transaction price

series using their drift burst test statistic, which is highly significant.

Figure 1: Example of an intensity burst in Crude Oil.

Panel A: Futures price. Panel B: Transaction count.
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Note. This figure shows the Crude Oil futures contract (May 2012 expiration) over a joint drift and intensity burst on March 23, 2012.
In the left panel, we plot the futures price from 9:30am to 10:30am Chicago time along with the drift burst test statistic proposed in
Christensen, Oomen, and Rend (2022). In the right panel, we plot a nonparametric estimator of the time-varying trading intensity
(measured by the average number of transactions per second) along with the intensity burst test statistic developed in this paper.

In this paper, we extend the concept of bursts to the intensity of a point process. We propose
an intensity burst model, which describes an explosion in the intensity of the process. We interpret
our model in the context of a financial market, where the flow of market events (e.g., trade arrivals)
is modeled by a doubly stochastic Poisson process (i.e. a Poisson process with stochastic intensity
of the Cox form) with two independent components: a base intensity describing the “normal” times
and an exploding intensity describing “distress”. In the normal times, the events are allowed to
be inhomogeneous and cluster or exhibit serial correlation. However, since the base intensity of

the process is locally bounded, it implies that none of the point clusters observed in a fixed time



interval (interpreted as, e.g., a trading day) is substantially larger than the others. The intensity
burst component is, in contrast, unbounded in a vicinity of a stopping time producing a pronounced
cluster of events in a neighbourhood of that instant.

A realization of a point process observed over a trading day is a configuration of ordered points
in a fixed time interval. We propose a nonparametric estimation for intensity burst detection within
such data. We study both pointwise identification, that is testing for the presence of an intensity
burst in the vicinity of a single candidate time instance, and a uniform identification, that is testing
for the presence of at least one intensity burst in a fixed time interval. The inference is done with
the help of a novel heavy traffic condition (e.g. Kingman, 1961), where independent copies of an
underlying Cox process are stacked.

Our framework allows to independently screen financial high-frequency data for large and unex-
pected increases in trading activity that may or may not be associated with unusual price volatility.
In contrast to Christensen, Oomen, and Reno (2022), our approach is based directly on the arrival
times of trades, and it does not require a “mark” in the form of an associated transaction price
(or other relevant information). In Panel B of Figure 1, we report a nonparametric estimator of
the time-varying trade intensity (measured by the average number of transaction count per one
minute) during the above hour. It shows that trading activity increases sharply during the oil
price appreciation and then reverts back to its original level soon after. The figure also reports
real-time estimates of the intensity burst test statistis developed in this paper. As evident, our new
econometric approach also identifies this event as a significant intensity burst.

Our paper is related to a recent strand of papers that study clustering of events for point
processes. In the parametric setting, Engle and Russell (1998) propose an autoregressive conditional
duration (ACD) model for irregularly spaced transaction data that accommodates persistence in
the interarrival times. Clinet and Potiron (2018) propose an inference procedure for the doubly
stochastic self-exciting point processes, whereas Potiron and Mykland (2020) study local parametric
estimation of high-frequency data. Rambaldi, Pennesi, and Lillo (2015) and Rambaldi, Filimonov,
and Lillo (2018) propose a parametric self-exciting process, where an “intensity burst” is associated
with an underlying Hawkes process that is perturbed by an exogenous (potentially random) number
of points at a (potentially random) time point. While their model is also targeted for capturing
sharp accelerations in trading activity, the intensity stays bounded. In contrast, our approach is
nonparametric, and we allow the intensity to explode under the burst alternative. Moreover, in our
setting the number of burst points can be endogenous and depend on underlying state variables
(such as liquidity and volatility), which we describe by an adapted stochastic process in the burst
intensity.

The heavy traffic condition is a natural precursor for the infill theory employed in nonparametric
estimation of volatility, see, e.g., Jacod and Protter (2012). In that setting, the number of observa-
tions of an arbitrage-free price process over a, fixed or shrinking, time interval goes to infinity with

the mesh going to zero. Indeed, a realization of our point process falls in the class of stochastic



sampling schemes adopted by Hayashi, Jacod, and Yoshida (2011). A common problem with ultra
high-frequency data is market microstructure noise, which tends to distort such estimates. In fact, a
branch of that literature advocates to estimate volatility via duration-based measures (e.g., Ander-
sen, Dobrev, and Schaumburg, 2008; Hong, Nolte, Taylor, and Zhao, 2021). Apart from developing
a statistical test for an intensity burst, we contribute to this field by extending the observed asymp-
totic variance of Mykland and Zhang (2017) to local estimation (see also Christensen, Podolskij,
Thamrongrat, and Veliyev, 2017).

The roadmap of the paper is as follows. Section 2 introduces the unbounded intensity model for
point processes and describes the theoretical foundation of an intensity burst. Section 3 develops
an identification strategy to conduct inference both for a pointwise test statistic and a maximal test
statistic. We also propose a estimator of the asymptotic variance. Section 4 includes an extensive
simulation study that demonstrates the finite sample properties of our test. An empirical application
is conducted in Section 5, while we conclude the paper in Section 6. The proofs are deferred to the

Appendix, where we also present some supplemental empirical results.

2 Intensity burst of a point process

We suppose a random scattering of ordered points is observed on the interval [0, T]. It is assumed
to be the realization of an underlying point process N = (NVy):>o, which is defined on a filtered
probability space (2, F, (F¢)i>0, P) and adapted to the filtration. In this paper, we assume N to be
a doubly stochastic Poisson—or Cox—process with associated random intensity—or rate—process
A = (Mt)i>0, where X is an adapted and strictly positive real-valued stochastic process. That is,
conditional on A\, NV is an inhomogeneous Poisson process with rate function A, i.e. the conditional

characteristic function of the increment N;; A — IV; is given by

) ) t+A
SONHA—Nt(U) = E(elu(Nt+A—Nt) | ffx) = exp ((ezu . 1)/ )\sds> : (1>
t

where F} = o({\s; s < t}).
A¢ can be thought of as the expected number of points arriving over the next short time interval

[t,t + A], based on historical information about the rate process, since

E[NHA — Ny | .7-"2;\]

Hence, when ); is locally bounded, the instantaneous expectation of the number of points is finite.

At = llm
A—0

In order to define intensity bursts, we therefore suppose that \; is locally unbounded in the vicinity
of a particular time instant, such that the expectation of the number of points in the vicinity of

that time point is locally infinite.
Assumption 1. \; can be decomposed as follows:
Ae = pg + B, (3)
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where @ = (fit)e>0 is a locally bounded and strictly positive real-valued stochastic process, and
Ot

= - 4
Bt |7-ib — t|om ( )

for a stopping time Ty, where o = (0¢)i>0 @S a non-negative locally bounded stochastic process and

0 < a<1i1isa constant.

In the context of an financial market, N may describe the number of order submissions or trade
executions in a security over the course of a trading session. With this interpretation, Assumption 1
extends the notion of a drift burst in the asset log-price from Christensen, Oomen, and Reno (2022)
to the intensity generating the log-price. g is the arrival rate of trades during “normal” market
conditions, whereas [ represents the arrival rate of trades during “distressed” market conditions.
The stopping time 7y, is called the intensity burst time.

If o, = 0, almost surely for all ¢, the explosive term f; is absent and N; again evolves as a Cox

process. If o; > 0, almost surely in a neighbourhood of 7y,

Tib+A Tib+A
/ psds = Op(A) and / Byds = O, (A, (5)

b—A —A
as A — 0.

Consequently, the expected number of points explodes in a neighborhood of 7;;,. However, due
to the integrability condition on (; in Assumption 1, fOT Asds < 00, so N itself is non-explosive and
well-defined.

It is well-known that one cannot consistently estimate the intensity of a point process over a
finite time interval, not even in the homogenous case. Hence, inference of point processes usually
proceeds under long-span asymptotics (7' — o0). However, as we are interested in identifying
intensity bursts over small time intervals, we follow the convention in the high-frequency literature
and assume T’ is fixed. Instead, we impose an alternative “heavy traffic” assumption, in which the
intensity of the underlying point process diverges (e.g., Kingman, 1961). To formalize this idea, we
introduce an auxiliary parameter n and consider a sequence of Cox processes N = (N}')i>o, for
n=1,2,.... For a fixed n, the rate function of N;* is equal to n);, and the observed configuration
of points is then a realization of N". The asymptotic theory is then developed by supposing that
n — o0o.

To guarantee the existence of the required sequence of Cox processes, N;* can conveniently be

constructed as follows:
N =Y N (6)
i=1

where (IV;;)I, are independent copies of V.
The above assumption can be motivated by a financial market populated with n economic agents,
each trading independently according to their optimal strategy, i.e. an adapted stochastic process

represented by (A\;)¢>o. Our asymptotic theory should then be understood as letting the number of



agents increase without bound (n — o00).

The heavy traffic condition is intimately connected with the literature on high-frequency es-
timation of volatility. Inference on realized variance typically proceeds under infill asymptotics
(Andersen and Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2002). In that setting, we sup-
pose a log-price process is observed at m = m(n) discrete time points tg, ¢1,. .., %, that partition
the time interval [0, T, where m — oo such that sup; |t; — t;_1| —= 0 as m — co. Thus, the point
process N" together with the heavy traffic assumption is a standard model for generating stochastic
sampling times satisfying the usual conditions solicited in financial econometrics. In fact, a real-
ization of N falls within the class of stochastic sampling schemes studied by Hayashi, Jacod, and
Yoshida (2011). Hence, heavy traffic is a natural precursor for analysis of volatility from financial
high-frequency data.

The detection of intensity bursts amounts to the following hypothesis:
A N (w) € Qo and  JA : Nl'(w) € O, (7)

where €}y and €2y are complementary subsets of (:

T T
Qoz{wegz/ﬁfdtzo} and le{wEQ:/det>O}. (8)
0 0

We propose a testing procedure to figure out which subset the realization of N;* belongs to, i.e.
whether it has an intensity burst component (N/*(w) € Q) or not (N/*(w) € Qo).

3 Identification

In this section, we now develop a nonparametric approach to detect intensity bursts. First, we
propose a pointwise test statistic that conducts a statistical test for the presence of an intensity
burst at a single candidate time instance. Second, we refine this to a uniform test statistic that

conducts a test for the presence of at least one intensity burst in [0, 7.

3.1 Pointwise test

The identification of intensity bursts is based on a backward-looking estimator of the local intensity,

to allow for online detection, which is defined as:

~ Nt —6,.t

5 = Ul O
where N™(a,b) = Ny* — NI is the number of points of the counting process on (a,b], and 6, is a
bandwidth parameter. /):t is the “realized intensity,” or average number of counts per time unit
over an interval of length ¢,. In a setup with no heavy traffic (i.e. n fixed), it follows that X 50

However, heavy traffic changes the stochastic limit of /):t.



Lemma 1. Suppose that Assumption 1 holds. Then, under 4, as n — oo and 9§, — 0 such that
nd, — 0o, it holds for all fized t € [0,T) that

PRI (10)

Moreover, under ¢,

Ay = 0,(579). (11)

n

Lemma 1 shows that, under the null hypothesis and very general assumptions about the intensity
process, the intensity estimator measures the local intensity at time ¢. The result is rather intuitive.
To generate a sufficient number of observations inside the estimation window [t — ¢, t], we need
0,n — 00. As n — 00, the summation of independent copies of the Cox process in the heavy traffic
limit ensures that, on average, the accumulation of points close to ¢ correspond approximately to
the instantaneous arrival rate. A law of large numbers then shows that /)\\t converges in probability
and, as 9, — 0, the limit is A\;. On the other hand, under the alternative, the abnormal arrival rate
of the bursting process causes the estimator to explode around 7,.

The lemma highlights an important difference between the estimation of the local intensity of
point processes and the estimation of the local drift of Brownian semimartingales. In the latter,
the drift estimator is asymptotically unbiased but inconsistent (Kristensen, 2010), because the
increments of a Brownian motion, although mean zero, exhibit so much variation over short time
intervals that any information about the drift is lost. This is exploited by Christensen, Oomen, and
Reno (2022) to construct a drift burst test statistic, which relies on the different rates of divergence
of the drift estimator under the null and alternative. By contrast, under heavy traffic /):t is consistent
for the local intensity of the point process under the null hypothesis. Hence, for intensity burst
detection we propose a slightly different test statistic compared to Christensen, Oomen, and Reno
(2022). In particular, we compare two local intensity estimators calculated from the nearest lagged

block of observations. That is, our test is based on the difference
V/A\t - /):t - //{t_gn. (12)

Under 74, th converges in probability to zero, but it is unbounded in probability under 77, as
we prove below. Hence, one can derive an asymptotic confidence interval for th under 57 and
reject 74 if th is outside of it. This suggests a standard test statistic of the form:
i v/)\\t
P == (13)
Std(V)\t)
where s/t?i(VXt) is an estimator of std(VA,).
It turns out, however, that the asymptotic variance of Xt depends crucially on the interplay
between 6,, and n, which follows from a central limit theorem (CLT) under %). To derive this CLT,

we need a regularity condition on the baseline intensity u of N.



Assumption 2. p is a continuous It6 semimartingale:

t t
e = fio +/ asds +/ v, dWy, (14)
0 0

where o is Fo-measurable, a = (at)i>0 and v = ()0 are adapted, cadlag stochastic processes,

and W is a standard Brownian motion.

Assumption 2 is common in the high-frequency literature (e.g. Jacod and Protter, 2012). It
allows to apply standard estimates for semimartingales to control the discretization error in the

proofs. In particular, for a constant C' > 0, it follows that:
B[t — pesn | F) < CA - and  Ellps — psal” | Fi] < CA™2, (15)

for some r > 0. This assumption can be replaced, for example, by an appropriate smoothness

conditions, such as assuming the paths of y are Holder continuous up to some order.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then, under ¢, as n — oo and o, — 0
such that no, — oo, it holds for all fized t € [0,T) that

(i) if b/ — 0,
/no, (Xt _ ut) RINNTA (16)
and

\V ndnv/):t &) ZMtZ, (17)

1~ 11
\/(5_ <At - /“’Lt> ©—> @:u’t + §V15227 (18)

1 _~ o [2 8
\/5_V)\t i) ﬁﬂt + gl/EZ, (19)

(ii) if 6/ — 0 >0,

and

(iii) if 6u/T — 00,

1 ~ 1
(At—m)& 2. (20)

V/\t LN \/Tt (21)

where Z is a standard normal random variable, which is defined on an extension of (2, F, (Fi)i>o0, P)

and

and independent of F;, and 2 s stable convergence in law (see, e.g., Jacod and Protter, 2012).

Theorem 1 shows that the asymptotic distribution of our estimator is always mixed normal, but

the convergence rate and limiting variance depends on the order of §,, and n. On the one hand, if



dny/n — 0, the localization dominates and the variation of the intensity parameter along its sample
path is immaterial. Hence, the variance is the mean. On the other hand, if 6,/n — oo, the roles
are reversed, and heavy traffic dominates. In that case, the variation of the stochastic intensity
parameter controls the asymptotic variance. In both cases, the rate of convergence can be rather

1/4 is achieved with 8, = n~'/2, where the opposing forces

slow. The optimal convergence rate, n~
are balanced.

Note that the standard errors of V/):t appearing in the second part of (i) and (iii) are larger
than one would expect when comparing with (i). The explanation is that in the latter settings,
n diverges sufficiently fast compared to the vanishing of 9,,, so the lagged estimator Xt_(;n is much

more imprecise compared to . This effect is not present in part (i) of the theorem.

3.2 Observed asymptotic local variance

In practice, the choice of bandwidth—and picking the correct estimator of the asymptotic variance—
is made difficult, because n is not observed. To construct a feasible test statistic, we follow Mykland
and Zhang (2017) by alluding to the notion of the observed asymptotic variance.! We set 6, = £,A,,,
where /,, is a deterministic sequence of natural numbers and A,, > 0 represents a small time interval.
We further impose that A, = n~!, but this is merely done for notational convenience. Nothing
changes if A,, = O(n™1), except we introduce an additional tuning parameter.
/):t can then be rewritten:
A= > AN", (22)
" ieDpr

where A;N" = N"(iA,, (i — 1)A,) is the increment of NJ* over a short time interval and D} =
{tn — €, + 1,tn — £, + 2,...,tn} is a set of time indexes. Equation (22) shows that the intensity
estimator can be expressed as a local average of increments of the discretized point process N/,
which is a more convenient formulation for developing our asymptotic variance estimator.?2 With

this notation, Theorem 1 can be reformulated as follows.

Corollary 1. Suppose that Assumptions 1 and 2 hold. Then, under 7€, as n — oo and £, — o0
such that €, — 0, it holds for all fized t € [0,T) that

\/vat N avar(VXt)Z, (23)

'Our automatic inference procedure can also exploit the subsampling approach of Politis, Romano, and Wolf
(1999), which was adapted to the high-frequency setting in Kalnina (2011) and extended in Christensen, Podolskij,
Thamrongrat, and Veliyev (2017).

2In our framework, N is observed in continuous-time. However, many existing datasets do not reveal the exact
location of all points of N™ within [0, 7], but only report discrete observations. For example, the number of trades
in every 10-second interval may be available. In such cases, the data is structured in the form of a discretized version
of N™ used in equation (22). Thus, Corollary 1 and subsequent theorems remains applicable to such data.



where

(lry 201t) if b/ A, — 0,
<pn, avar(VX)) =9 ((€.A0)71 Zpe+ 502), if bo/A, — 6 >0, (24)
((EnAn)_l, gl/f) , if Lo/ A, — 0.
The observed asymptotic local variance of th is then defined as:
~ Enl ~ 2
a’vvar(V/\t) = % Z (At—sznAn — /\t—(€n+2j€n)An> ) (25)
n 5

where K, is another sequence of natural numbers.
a/\Ta/r(VXt) is the sample variance of K, estimates computed over non-overlapping blocks con-
sisting of 2¢,, observations. When K, is sufficiently large and the observation blocks are not too

distant from ¢, eWeTr(V/)\\t) is consistent for the asymptotic local variance avar(V/):t).

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then, under 4, as n — oo, £, — 00,
K, — oo such that {, A, — 0 and ¢, K, A, — 0, it holds for all fized t € [0,T)] that

a/\ETr(VXt) R avar(VXt) : (26)

That is, zWaTr(VXt) converges in probability to avar(VXt) for any limiting behaviour of p,, allowed
in Corollary 1.

The condition K,¢,A, — 0 in Theorem 2 is somewhat restrictive. However, it can be loosened
with overlapping blocks in the definition of the observed asymptotic local variance. Hence, an
alternative version of the estimator is the following:

K,—1

~ ~ ~ 2
avar (VA) = 2 37 (Meesa, = Me-iaa, ) (27)

Theorem 3. Suppose that Assumptions 1 and 2 hold. Then, under 74, as n — oo, £, — o0,
K, — oo such that 0, A, — 0, K,A, — 0 and {,,/ K, — 0, it holds for all fixed t € [0,T] that

zﬁ(vxt) R avar(VXt) : (28)

The condition ¢,/ K,, — 0 in Theorem 3 indicates that the number of differences used to estimate
the local asymptotic variance of th should increase faster than the number of observations used
to compute the local intensity estimate. The conditions K,A, — 0 and ¢,A,, — 0 ensure that all

observations remain close to t. Thus, the test statistic in (13) is computed as:

R/ ALY

SN (29)
\avar(V,)
Theorem 4. Suppose that the conditions of Theorems 1 and 3 hold. Then,
b 2y N(0,1), conditional on (30)
b Ly 0o, conditional on 4.
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Hence, we reject 4 if ¢P exceeds a quantile in the right-hand tail of the standard normal
distribution corresponding to a given significance level . This ensures the test has size control
under 4. On the other hand, under 7, ¢* is unbounded in probability as ¢t — 7y, so the test is
also consistent.?

It is important to emphasize that we do not need to choose p, for computing ¢*. This follows

by direct insertion, showing the test statistic can be reexpressed as:

. N™(t — 0,,t) — N*(t — 20,,,t — On,
1 el 2
A > (NPt = §Ay = Gnst — jAL) = N (t = jA, = 20,1 — jA, = 5,))
j=0

In practice, we take A,, to be one second by convention, although this is immaterial. The choice of

K, and /,, are studied in the Monte Carlo analysis presented in Section 4.

3.3 Maximum test

The pointwise test statistic explodes when the test time approaches an intensity burst. In practice,
this suggests that identification of intensity bursts consists of computing ¢ over a grid of points
0 <t <ty <--- <ty <T, where m eventually diverges (at a slow enough rate) such that
maxj<;<mt; —t;_; — 0. However, this has an important drawback, because the multiple testing
leads to size distortions if {@b ", are evaluated against the critical values from the standard normal
distribution.

Set against this backdrop, as in Christensen, Oomen, and Reno (2022) we propose to look at a
single statistic from the sequence {qﬁﬂf ™ .. In particular, we follow Lee and Mykland (2008) and
extract the maximum ¢P* = maxj<i<m qb;b Observe that in the absence of an intensity burst,
{(bgﬁ ™, is asymptotically a centered, unit variance Gaussian process with unknown correlation
structure. However, the serial dependence of the intensity burst test statistic is complicated, even
if the underlying point process is a homogeneous Poisson process. As as remedy, we estimate the
sample autocovariance function of {qb;b}:il up to lag 2¢,, and then simulate a Gaussian process
with the estimated covariance structure by circulant embedding. In each simulation, we record the
maximum value of the process. Repeating this procedure a large number of times, we calculate the

critical value for our test statistic based on the distribution of the simulated maxima.

4 Simulation study

In this section, we investigate the small sample size and power of our intensity burst test statistic
by a Monte Carlo approach. On the interval [0, 1], we simulate a continuous-time realization of

a convolution of independent counting processes representing the “normal” and “burst” intensity,

3Theorem 4 continues to hold if a/v\ar(VXt) is replaced with afv\:i'(vxt) in the definition of ¢, provided the
conditions of Theorem 2 hold.
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N; = Npormal o Nburst W interpret the unit interval as a standard 6.5 hour trading day on a U.S.
stock exchange, which we partition with a discretization step of dt = 1/(23,400x 100), corresponding
to one-hundredth of a second.

To generate a challenging data-generating process under the null, we assume the intensity of

Npermal i an exponential Hawkes process:
t
e = Ao + / Qe*”(t*s)d]\f;“’rmal, (32)

where )\g, 0 and k are parameters. \g is called the background intensity, which is a lower bound
on pg, while f(7) = e is the excitation function. Our choice of exponential kernel follows the
original article by Hawkes (1971).*

A Hawkes process is self-exiting and capable of generating event clusters. That is, after the
arrival of an event the intensity of NP™al inclines by 6. Hence, the probability of an increment
in the next time interval ¢ + dt increases. Tempering by the excitation function helps to pull the
intensity back toward its baseline level )y, until further events occur. x controls the rate of memory
decay. If 0/k < 1 the self-excitation is held in check by the mean reversion, and the Hawkes process
is non-explosive and stationary with unconditional mean:

Ao
1-0/k

Meanwhile, none of the clusters from the Hawkes process are as large as one expects during an

E(u:) = (33)

intensity burst. In the latter setting, the intensity diverges, whereas it remains bounded, almost
surely, in a Hawkes process. However, the point clusters generated by Nf°'™al may nevertheless be
confused by our test statistic as an intensity burst. The purpose is to see if this distorts our test
statistic in finite samples.

In our simulations, we set A\g = 1/3, § = 3/10 and x = 9/10, so that on average there is one
event every second. This is broadly representative of the daily transaction count observed in our
empirical high-frequency data.

The intensity of NP"st is defined as:

B

= 7 . forte0.475,0.525], (34)
|7 — ]

and f3; = 0 otherwise. Here, 0 and « are constant. We position 73, = 0.5 at the center of the interval

[0, 1] and make the duration of the intensity burst cover a 10-minute window. To generate intensity

bursts of varying magnitude, we take o € {0.25,0.50,0.75} and calibrate o such that NP%s* generates

on average a fraction ¢ of the points produced by Npomal where ¢ = 0.000, 0.025, 0.050, 0.100.5 We

refer to this as no, small, medium, or large intensity burst.

4The intensity of the Hawkes process in (32) does not fulfill the definition in (1). It is also not continuous and falls

outside Assumption 2. Hence, the simulations are also meant to illustrate the robustness of our testing procedure.

5Solving for o in ¢ f01 ppdt = f:bbjAA Bedt, where A is the duration of the intensity burst and §; = %= as in

(34), we get 0 = c% fol puedt, such that ¢ = 0 corresponds to no burst in the intensity.
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Figure 2: Example of a simulated intensity burst.

Panel A: Intensity process. Panel B: Intensity estimate
15 = 7 ‘
.Z no burst il no burst
E = = =c=0.025 —= = =c=0025
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o 10T Q !-
[%2] “Es’ ::
S )
Z > :
2 23r 1
2 ] -,\ :
£ 51 | £ )
2t £ '¢\ .
do * . “M ! }k ! W”“’{" M A “5 M"‘VN\ Ao
Mk i
QLAY | LY
0.475 T 0.525 0.30 T 0.70
time time

Note. This figure shows the true (in Panel A) and estimated (in Panel B) intensity of the simulated counting process N; with no burst,
and a small, medium and large intensity burst.

We compute ¢ at a one-second grid with £, € {60,300,600} seconds for the calculation of
Xt (corresponding to a 1, 5, and 10-minute block) and K, = 5¢, (corresponding to a 5, 25, and
50-minute block) for the asymptotic variance estimation.

In Panel A of Figure 2, we illustrate the simulated intensity of the underlying Hawkes process
of Npermal (ng hurst, or ¢ = 0.000) together with a small (¢ = 0.025), medium (¢ = 0.050) and large
(c = 0.100) intensity burst of NP"st with o = 0.50. In Panel B, we show the associated intensity
estimate for ¢,, = 300. Across the burst states, the maximal local intensity estimate is roughly 3,
4, and 7 times larger than the average rate of the Hawkes process. The intensity burst displayed
in Figure 1 is much larger, hence our simulated intensity bursts are conservative relative to those
observed in empirical data.

In Table 1, we collect the results of the Monte Carlo analysis. The left-hand side reports the
rejection rates for the pointwise test applied at ¢ = 0.5, which also corresponds to the explosion
point 73, under the alternative. Here, the test statistic is evaluated against the usual critical values
from the standard normal distribution z,, i.e. the pth percentile. The right-hand side shows the
associated rejection rates of the maximum test evaluated against the simulated critical values g,
as explained in Section 3.3.

Looking at Panel A (¢ = 0.000), the finite sample sizes of both tests are close to the theoretical
nominal levels. A mild inflation is observed for the pointwise test and also for the maximum test
with the shortest bandwidth. As noted above, this is due to the self-excitation of the Hawkes
intensity under 7). However, the effect diminishes once we smooth the intensity estimate over a
slightly longer window. The power of the local test in Panel B — D (¢ = 0.025 — 0.100) is nearly

perfect. This is not surprising, since the test statistic is calculated at the peak of the intensity

13



burst under 747, although detection of small bursts remains challenging. The rejection rate of the
maximum test is smaller. However, it suffices to detect the majority of medium and large intensity
bursts, whereas small intensity bursts with a slow rate of divergence may go unnoticed. This is not
a cause of concern in practice, since we are primarily interested in the behavior of large surges in

trading activity.
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5 Empirical application

We examine a continuous record of high-frequency data for futures contracts traded on the Chicago
Mercantile Exchange (CME) electronic Globex system, namely CL (crude oil), EC (foreign ex-
change), ED (short-term interest rates), ES (equities), GC (gold), and TY (long-term interest
rates), thus covering all major financial asset classes. The instruments are very liquid and generally
trade around the clock five days a week with only a short daily maintenance break. The data
were acquired from Tick Data (tickdata.com) for the sample period January 4, 2010 to October
14, 2021; or about 3,000 days in total. Timestamps are in milliseconds. A summary of the data
is presented in Table 2. We follow Christensen, Oomen, and Reno (2022) and restrict attention to
the most active trading hours from 1:00am to 3:15pm Chicago time, covering the main European

and American sessions. As readily seen, this removes only a small fraction of observations.

Table 2: CME futures data.

Contract  Market Venue # days # trades  Retained  Duration
CL Crude Oil NYMEX 3,041 493,879,290 94.36% 0.45
EC Euro FX CME 3,045 310,413,762 90.02% 0.85
ED Eurodollar CME 3,044 25,754,111 94.88% 15.42
ES E-mini S&P 500 CME 3,045  1,006,304,505 93.43% 0.28
GC Gold COMEX 3,041 284,900,979 87.02% 0.85
TY 10-Year T-Note CME 3,044 268,045,084 92.81% 1.05

Note. The table reports for each futures contract, its ticker symbol (or contract name), the underlying asset, the trading venue, the
number of days in the sample, the total number of transactions and the average trade duration (in seconds). The sample period is
January 2010-October 2021. We restrict attention to the most active trading hours from 1:00am-3:15pm Chicago time. The fraction
of volume retained after removing the most illiquid parts of the day is reported in the penultimate column.

To avoid identifying spurious bursts in liquidity associated with inflated trading volume around
pre-scheduled releases of key market information, such as the macroeconomic news announcements,
we compute an asset-specific nonparametric estimator of the pointwise time-of-the-day mean in-
tensity. This is calculated as the sample average of the number of transactions in each 15-second
bucket over the whole day, where the average is taken over the days in the sample. We compute
such a curve separately for FOMC announcement days, since they feature a highly unusual trading
pattern compared to the rest of the sample. The associated diurnal curves are reported in Figure
B.1 in the appendix. We correct the estimated local intensity in (9) by the diurnal pattern before
computing the intensity burst test statistic, which we calculate on a one-second grid throughout
the retained part of the trading session.

In Table 3, we report the number of identified events at various critical values of the maximum
intensity burst test statistic. The critical values are intentionally set so high that the expected
number of false positives is close to zero. Judging by the middle column ¢* > 7, we see that
intensity bursts happen frequently, averaging about one event every five-ten days depending on the
market. A couple of intensity burst examples are plotted in Figure 3. The events are associated with

large increases in the trading intensity over short time intervals leading to a significant intensity burst
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test statistic. Howeever, they are not necessarily associated with a big change in the transaction
price. Hence, only the Treasury futures event is also flagged as a significant drift burst by the test
statistic of Christensen, Oomen, and Reno (2022).

Table 3: Intensity burst summary statistics.

contract  market &P* > 6.0 HP* > 7.0 &P* > 8.0
# % # % # %
CL Crude Oil 1407  46.27% 680  22.36% 349  11.48%
EC Euro FX 1194 39.21% 615  20.20% 342 11.23%
ED Eurodollar 560  18.40% 335  11.01% 222 7.29%
ES E-mini S&P 500 786  25.81% 279 9.16% 128 4.20%
GC Gold 1446  47.55% 799 26.27% 442 14.53%
TY 10-Year T-Note 576  18.92% 258 8.48% 133 4.37%

Note. We report for each futures contract the number of days with intensity bursts identified for critical values ranging between 6 and
8 (percentage of total sample in parenthesis). The number of false positives we expect, which can be computed using the technique
described in Section 3.3, is virtually zero.

6 Conclusion

In this paper, we propose a model with unbounded intensity for point processes. We allow the
spot intensity to explode such that the integrated intensity is finite, ensuring the point process
is non-explosive. The model is capable of generating extreme clusters of observations over small
time intervals that are far more concentrated than what a standard doubly stochastic Poisson or
self-exciting Hawkes processes with bounded intensity can produce.

We develop an inference strategy for detecting an intensity burst. In its absence (null hypoth-
esis), the asymptotic distribution of our test statistic is standard normal. The theory relies on
a novel heavy traffic assumption, which allows to consistently estimate and draw inference about
the spot intensity of a point process over a finite time interval. It resembles the standard in-fill
condition for asymptotic theory of realized variance. The rate of convergence depends on the speed
with which we accumulate points induced by the heavy traffic condition, so we base the feasible
implementation of our test statistic on an automatic inference procedure. In particular, we adapt
the observed asymptotic variance of Mykland and Zhang (2017) to spot estimation. Conditional on
an intensity burst (alternative hypothesis), our test statistic diverges. Hence, the testing procedure
has power converging to one.

A simulation study shows that the test statistic has good finite sample properties, even in a
more general setting than the theoretical framework permits. We implement the statistic on high-
frequency data from several liquid futures contracts. We detect a nontrivial amount of intensity

bursts in the data and describe some of their basic properties.
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Figure 3: Further examples of intensity bursts in various markets.
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Panel A: Futures price. Panel B: Transaction count.

3 T 131.1 6 " T 30
' I test statistic
5 +  transaction count
131 25
4 -
L 5
o @ S
kA 130.9 = 3 20 £
s o B 2
® L ? ©
% s 22 §
2 - 1308 @ B 15§
g 5 31 °
3- 2 2 s
= ‘D £
= 130.7 c 0 10 €
o - o T
£ o
= o
130.6 5
-2
-7 : : : 130.5 -3 0
02:15 02:30 02:45 03:00 03:15 02:15 02:30 02:45 : 03:15
GC, 04/28/2015
Panel C: Futures price. Panel D: Transaction count.
3 T T 1215 12 T T 25
est statistic I test statistic
futures price 10 . transaction count
1214.5
20
g 8 5
L k%)
k7] 1214 5 e
3 g 2 ° 15 2
2] L 17 o
% 5 2 8
2 12135 ¢ B 4 &
g z 3 °
3 2 =, 10 5
= 7} £
= 1213 S €
= 2
0 5
. 5
12125 .
-2 }q{
3 ¥ e
» | | | | | s AN |
13:00 13:10 13:20 13:30 13:40 13:50 14:00 13:00 13:10 13:20 13:30 13:40 13:50 14:00
ES, 01/30/2014
Panel E: Futures price. Panel F: Transaction count.
4 T T T T T 1779 12 T T T T T 40
st statistic .!‘ I test statistic
tures price | 7| 1778.5 . transaction count | | 35
3 .
11778 -
L IS
© 11777.5 k7] 8
B 2 = c
s 173 i=]
P 1777 § “ ‘g
@ o 2 @»
3 4 117765 & B s
B z 3 °
3 11776 2 > %
£ 4 B £
= =
S  1775.5 8 £
£ =
S}
11775
-1
417745 ﬁ . » N
: . : 1774 MW

2 I I 0
05:00 05:10 05:20 05:30 05:40 05:50 06:00 05:00 05:10 05:20 05:30 05:40 05:50 06:00

Note. In the left-hand side of the figure, we plot the futures price along with the drift burst test statistic of Christensen, Oomen, and
Rend (2022) for the selected days of the futures contracts (name of contract and MM/DD/YYYY date appears in caption). In the
right-hand side, we plot the associated one-minute transaction count along with the intensity burst test statistic.
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A  Proofs

We here derive the theoretical results listed in the main text. We note that under Assumption 1 —
2, we can appeal to the localization procedure described in Jacod and Protter (2012, Section 4.4.1)
to bound various processes.

To establish stable convergence of the local intensity estimator in (9), we need an auxiliary

result, which is a reproduction of Alvarez, Panloup, Pontier, and Savy (2012, Lemma 8).

Lemma 2. Let (Q, F,P) denote a probability space. For each n > 1, suppose (3, C3,...,(. are
martingale increments with respect to the sub-o-fields of F: Fp1 C Fpo C -+ C Fpp,. et
S, = 2?;2 ¢ and G = Np>1Fn1. Assume that n — F, 1, is a non-increasing sequence of o-fields
such that Np>1Fnk, = G. Then, if the following conditions hold:

(i) There exists a G-measurable random variable n such that, as n — oo,
kn
ZE[(Q‘H)Z | }“m»,l} 5,
=2
(i1) For every e > 0,
kn
ZE[(C?)Ql{Kf)zze} | fm—l} 50,
i=2

then S, N S, defined on an extension of (0, F,P), such that conditionally on F, the distri-

bution of S is a centered Gaussian with variance 1.

A.1 Proof of Lemma 1

Theorem 1 implies that, under 7,
Xt — AN = 0p<1>7 (35)

which shows the first statement.

Next, under 77, we notice that the observed process can be decomposed as
N = Ntn,u + Ntn’ﬂ,
where N/"* and N/* are inhomogeneous Poisson processes with rates i, and ;.

Therefore, at time 7,

< NW(r—8,7)  N(r—5,7) o~
A = (7 — 0, 7) + (7 — 0 7) = lr + .
noy, no,

It follows from (35) that

ﬁfr = Wr + Op(1)7
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so it is enough to look at BT. To prove that BT = 0,(9,,%), by the definition of stochastic orders in
probability, it suffices to show that for every e > 0 there exists a 0 < A, < oo and N, € N such
that for all n > N, : P(825, > A.) < e.

By Markov’s inequality:
I, E(5r)

]P’(BT > 6;“A6) <

Next, conditioning on ¢ and employing the law of iterated expectations:

~ N3 (7 — 6, 7) N"B (1T —6,,7) | 1 [ Y
1] ()] Al [ i

c [T C
< — |7 —u|"*du = ——6, 7,
(Sn T—6n 11—«
where F7 is the o-algebra generated by o and C' > 0 is a constant that bounds the process from
above in light of the localization procedure. Thus,

C

P(BT > 5;%6) < xi—a

C .
Thus, for every € > 0, we can choose A, > (ﬁ) to make IP’((%BT > Ae) < €. [ |
€l —«

A.2 Proof of Theorem 1

We show the univariate statement in (i), (ii), and (iii). The second half follows from the calculations
in the proof of Theorem 2.

To this end, we define the sequence p,, as follows:

Sun, if Gun/n — 0,
P = 51, if Gun/m — 0 o1 Guy/n — 00,

and study the difference /p, (Xt —A)-
We assume 6,, can be expressed as 6, = £,,A,,, where A,, = % and ¢, is a deterministic sequence

of positive integers. Then, /):t can be expressed as

At = f_ Z AZNTL,

" ieDp
where A;N™ = N™(0,iA,,) — N"(0, (i — 1)A,,) are the increments of the process N™ over the short

time intervals of length A,,, and
DY ={tn—4l,+1,tn— 0, +2,... tn}.

We approximate A; N™ by the increments of an inhomogeneous Poisson process N™ with piecewise
constant intensity, A;N". This is done as follows. By the random time-change theorem for point

processes (see, e.g., Daley and Vere-Jones, 2003, Theorem 7.4.1), there exists a homogeneous unit
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intensity Poisson process N such that

iAn
AN = N n/ psds | .
(i—1)An,
We set A; N = N0 (n e

(Z_’{)A ,u(i,l)AndS) Hence, N”(kAn) =D i<k Ai]v” is an inhomogeneous
Poisson process with piecewise constant intensity, such that
iAn

E[Azﬁn | Jr(ifl)An:| = n/ ,U(ifl)AndS = H(i—-1)An-
(i—1)An

Moreover, the absolute value of the approximation error |A;N™ — AZ-N "| can be expressed as an

increment of the process N®):():
IAN™ — A;NT| = NOO (¢ 7),

where

iAn il B iAn iAn
t=n / psds A / H(i—1)A, ds and t=n / psds V / Hii—1)a,ds |-
(i_l)An (i_l)An (i_l)An (i_l)An

Then, we can write

~ 1 ~ 1 ~ 1
At — g = 7 Z (AiN" - AiNn) + 7 Z (Az‘Nn - N(i—l)An) + 7 Z (M(z‘—l)An - Mt) .
" ieDr " ieDp " ieDr

N J/ J/ [\ J/
-~ -~ -~

@ (In) (111)

(I) arises by approximating the observed process with a point process that has a locally constant
intensity, (IT) is the deviation of the approximating process from its conditional expectation, and
(III) denotes the error due to the variation in the rate process.
(I) can be further decomposed as follows:
1 - -
M= > (AN" = AN —E[AN" = AN" | Fipa,] )

ly,
€Dy
1 n AT
+ g—; E[AN" — AN | Fsna,]-

Moreover, due to Assumption 2, (III) can be split into a drift and volatility part:

1 . 1 .
(IH) = f_ Z (tn — fn — Z)(AZA” - A(i—l)An) + E_ Z (tn - fn - Z)(MiAn — M(i—l)An)a

" ieDp_ " ieDp

where A, = f(f asds and M; = f(f v,dWs.
Consequently,

Vo — ) = AT(E) + A (8) + A5 () + AT () + AZ (),
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where

3

AN (t) = > (AN" = AN —E[AN" — AN | Fimiya,)),

€D

5 o
3

Ay(t) = 7 Z E[A;N" — AN™ | Fli—1)An]»

" ieDp
n Pn AT

A3 (t) = \é_ Z (AiN _M(i—l)An>7
" ieDp

A (t) = \ép_n Z (tn — £, —i)(Aia, — Ai-1)a,)-
" ieDp

Ag(t) = Vi Z (tn — £, — i) (Mia, — M(z’—l)An)a

ln

€Dy
Now, we show that the sum A%(¢) + AZ(¢) converges stably in law, while the other terms (A} (¢),
AL(t), and A} (t)) are asymptotically negligible.

Set
€D
where

ln ly

By construction, ¢/*(3) and ¢*(5) are uncorrelated F(;_1)a,-martingale differences:

E[¢'(3) | Fi-na.] =E[G05) | Fi-va.] =E[GB)G(5) | Fi-na,] = 0.

As a result,
Zn E[(Cin(?)) +¢5)° | ]:(i—l)An] = Zﬂ E{(C{L@)) } + Zn [ )| Fion ]

Since A;N™ is Poisson distributed, we deduce that:
n 2 Pn
E[(C@- (3)) |f(z‘—1)An} = MDA

and because p is continuous, as d,, — 0,

1 a.s
7 Z Hi—1)A, — Ht-

" ieDpr

22



From the definition of p,:
1, if 0,4/n — 0,

77 e 0/ =0,
0, if d,v/n — .
Therefore,
Lty if (Sn\/ﬁ — 0,
0 1
> ]E[(Ci 3)° | JT"(i—l)An:| — azhes if Gu/n — 0,
epi 0,  if §u/7 — oo.
Next,
Ay
E|(¢(5)" | Fu-va, | = Gtn—to —i)? /( o B [ FonaJds

Assumption 2 implies that, as n — oo,

E[ sup |2 — V752|:| — 0,
SE[t—0bn,t]
which further means that
n 2 Pn .
1€D}_
On the other hand, multiplying and dividing by 9,
Pn . 1 ;
Z é—2(tn — by — 1) A = pnénufﬁ Z (tn — £, —i)%
€Dy " n €D

The last part is convergent with limit

1 g 1 o 1 [l(0,+1)(20,+1) 1
€D} j=1
Moreover,
5 62n — 0, if §,4/n — 0,
PnOn =
1, if 8,4/ — 0 or d,/n — oc.
Putting it together,
0, if 0,4/n — 0,
/ey 2
S E[(G0) | Fova 241,
ieDn 3V if 0,4/n — 0 or 6,\/n — o0,
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which implies that
M, 1f 571\/5 — O7

1 1 )
> E[(GO) + (G0) | Faa| 2§ gae+ 570 i /= 6,
€D

%1/3 if 0,4/n — 0.

To establish the asymptotic distribution, we prove a Lindeberg condition of the form

> E[(¢e)+¢e)M {enrcroyad | e ba,] E50, Ve >0,
ieDp

By the Cauchy-Schwarz and Chebyshev inequalities,

E[(8) + 0N L gypyscpenc) | Fionan]

= \/E[(Q?(3>+C?(5>)4 | F“‘l)A”}E[l{(c?(zncﬂ iz} | Fo-na ]

- \/E[(@”(?)) + ) | Fona,[P((G6) + G0)* > €| Fona,)

1 o\ 4 BN
<= (B[(¢'®)" | Fo-va,) +E|(€6)" | Finan ) -
Since AZ-N " follows a Poisson distribution with bounded intensity:

SE[CO)  Foua] = 2 ;’;;E[A N7 it s | Fona]

ieDp_ ieDp_
2

= Z E_ZU(i—l)An(l‘i‘?)M(i—l)An)
iepp ™

2
< CE — 0,

for both choices of p,.
On the other hand, using the boundedness of v,

S E[(@ @) | Funa,] =

2
N Onin—t, — i) E [(an ~ Mgna,)" | f(i—l)An}

04
€D 1€DP én
2 iAp 2

= ETIL (tn — gn — 2)4 E </ l/zdS) | ]:(i—l)An

n Zep? (’L*l)An

2 A2 2 A2 05 4 3

pa Az p A 64, + 15¢, + 106, — £,

<C /i Z(tn—ﬁn—z) =(C— 20

n ieDp

again for both choices of p,,. Hence, the Lindeberg condition holds.
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By Lemma 2, we therefore conclude that

W4 if 6,/n — 0,

T 1 |
AL (t) + AL (t) = WZ, if 5,0/n — 6,

/1
§I/?Z, if 5n\/ﬁ—> o0,
\

where Z ~ N(0,1) independent of F.
To end the proof, we next demonstrate asymptotic negligibility of the remaining terms. We

start with A7 (¢), which we express as follows:
=D G
€Dy
where

(1) = \2—’)_" (AiN” “ AN [AZN“ ~ AN f(,-_l)An])

n

is an JF(;_1)a,-martingale difference sequence by design. Hence,

E[JAT(1)] Pn "N E (AiN" — AN" —E[AN" — A;N™ | f(i—l)An})Q}

n ieDp -

) - i,
= Z E n/( s — M(i—l)And3:|

n iED?_ Z—I)An
Pn
Z |Ns (i— I)An”dS;
n ZED” ’L 1)An

where the tower property of conditional expectation was used. Now, Assumption 2 and standard

estimates for semimartingales imply the existence of a constant C' > 0, such that

EU/JJS— (i—1)An ] < CyvA (36)
Thus, for any definition of p,,

B[A7()7) < 2V

which implies the asymptotic negligibility of AT (¢).

Next,
=) q®

€Dl

where

() = \Q’T”E (AN = AN | Fina, -
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Employing the estimate in (36),

o] < VP o
E[A0)]] < ¥ 3 Elln / e — peands] | Ficna, | < Ov/pnB — 0,

€D} (i—1)An

so A5(t) also vanishes.
A’(t) is asymptotically negligible following the proof from Alvarez, Panloup, Pontier, and Savy
(2012) for the local volatility estimator. We omit the details for brevity. [

A.3 Proof of Theorem 2

The observed asymptotic local variance can be expressed as

K,—1

avar(VA) = 25 7 (3, = yo,a,)”

where t; =t — 25(,A,,.
We denote by ij the union of D?j _ and D?t]-—én An)— Then, for every t;, as in the proof of

Theorem 1 the local intensity estimator can be decomposed as:
Vo (Aty = Ajmran,) = AT () + A5 (t5) + A3 (1) + Aj(t;) + A3 (1)),

where

1 ~ ~
A?(t]) _ \ép_n Z (_1) {i<tj7£nAn} (Aan _ AZNn _ E[AZNn _ Aan | 'F(’ifl)An])7

n 1 i<t;— .
Ag(t;) = Vin > (-1 ltimimand (40— 20, — i) (Mia, — Mi-1)a,),

with Ny, M;, and A; defined as in Theorem 1.

Then,
avar(V ) = EX(t) + EX(t) + R™(b),
where
1 K,—1 )
EN(t) = T > (A5(t)7,
n =0



Kn—1
1

E(t)= 7= > (A1),

=0
R"(t) = avar(V,) — E(t) — EX(L).
What is left amounts to showing that £]'(¢) and £3(t) converge to the first and the second term in

the true asymptotic variance, whereas R™(t) = 0.

For the first term, we observe that

(M) = 3 (@@ +2 Y G- teesd e,

iED?j s,iG'Df} 18>1

where (['(3) = \ép_n(Ai]V” — Wi-1)a,) as above. Since (7*(3) is a Fja,-martingale and

E (Czn(3))2 | ~7:(1'71)An} = z—;u(H)A

it follows that

E (Ag(tj))z - 'Z—; Z ,u(i—l)An:| =0

n €Dy,
Then, we decompose £}'(t) into
Er(t) = & (1) + £(1),
where
| Knd p
m n 2 n
e = 1= 2 ((850)" = 2 3 v, ),

" j=0 ZED”

Knp—1

i L pn
g _KZQZZle

7=0 ZED"

So E [8{” (t)] = 0, and because the A}(¢;)’s are based on non-overlapping blocks of observations, the

variance of £/"(t) has the following form:

E[(e1(1)°] = ;2 Ki;E[(( B Z A ) } < %%ZIE[(Ag(tj))ﬂ.

Next,

E[(83)"] = Y E[(@e)]+4 X E[@e)@e)?].

iEij s,iED?j:s>i

Alluding to the boundedness of 1, we get the estimates:

E[(¢'3)°] < 02’; and E[(¢7(3))"] < ¢z
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Based on this, we deduce that:

E|(A5(1)] < (%0+42§:1 % C) a2 +4§%(2€"_1)).

i=1 s=i+1

Ergo,

2] < O N Ph(2bn + 4 (2 — 1) Ry

E|(E0)] < 7 = 05,1677,
so that £(t) -2 0.
The second term, £/™(t), can be represented as:
2K7LZ‘IL 1 2K, en
//TL
(‘: £2K Zut SATL_ 2K€ Z/’Lt SA

Since K,0,A, — 0, following the train of thought in the proof of Theorem 1 implies that

Uy, if Lo/, = 0,
n 2
Ept) — S i G/ — 6,

0,  if b4, — oo

Now, moving on to £}(t), we again observe that

A1)’ = S (@E)+2 S aE)EE)(=1) eummant Heymman)

iED?j s,iEij:s>i
where ("(5) = \ép_n(tjn — 20, — 1) (M;a, — Mi—1)a, ). Since (]'(5) is Fia,-martingale and
_ N iAn
E[(G16))" | Fina,| = G n = 260~y / O E[? | Fnads,
- (i—1)An
we have:
r iAn
E|(A2(t;))" - > ’g—g(tjn — 20, — 1)2/ E[v? | Fa-1ya,]ds| =0.
(i-1)An,

L iepy "
Then, we decompose &Y (t) as the sum of four terms:

E(1) = &"(t) + &" (1) + & (1) + & (1),

where
1 K,—-1 ; p iAp
&'(t) = ((A;L(m) — 5 D (tin =2 — i) / E[] |f<z_mn]ds),
" j=0 " €Dy (i-DHA
P K,—1 iAp
EMm(t) = B ]"( >0 (=26, — i) / E[v? — v} ya, | Fi-a,]ds,
nT =0 ieDyp (i-1)A
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Kn,—1

g (t) gQKn Z Z tin — 20, —1i) ( n—l/tg)An,

7=0 zED"
Kn—1
I///n _ 2 2
& 2 E E (tjn — 20, —i)“v; A,,.
i Kn
7=0 zED"

By construction, E[£)*(t)] = 0 and, as in the proof for £"(t),
2 ¢ & 4
Bl (o)) < & X El(sw)’]
=

where, since ("(5) in the definition of A}(¢;) is an F;a,-martingale,

E[(aw)'] = S E[@6)]+4 X E[(@e)E6)]

i€D}, s,0€D} 15>
From the proof of Theorem 1:
n 4 CpiAi . n 2 Cpnly, .
E[(¢r(6)"] < 2222 37 (tyn— 26, — ) and E[(7(5))°] < 220 S (1 — 26, — 0)*
n €Dy, n €D},

Standard formulas for calculating the sum of powers of integers yield

S (n — 26, — i) — 9603 4 1204 + 4003 — £,

€Dy 15 7
and
803 + 602 + ¢,
D (tn =26, — i)’ = n+3n+ ‘ (38)
i€D},
Hence,

and it follows that £"(t) = 0,(1).

For the second term,

Kn,—1
E[1€0 (1] Mp”K SN (tn 26, — i)
" =0 €Dy,

where M = E[Supse[t—KnénAn,t] V2 — l/t2|] Since v is cadlag and K,0,A, — 0, M = 0,(1). The sum
was computed in (38), so combining the terms shows that

K,—1

8
€2Kn Z Z (tjn — 20, —7, gpnﬁnAn—i—o(l),

7=0 zED”
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where

if 0,/ A, — 0,
if ,v/A,, — 0 >0or l,\/A, = .

8 0,
37

As such, E™(t) = o0,(1).
Following the above steps, we also deduce that
() 25 0,

The last term can be written as

Kn—1
"in pnAn .
EYm(t) = v} (62 E E (tjn — 24, — z)2> ,

7=0 iED?j

where the sum on the right-hand side is given by (38). As a consequence,

0, if 0,/ A, — 0,
&) 2 9 g
gl/f, if /A, —60>0o0rl,v/A, = 0,

which handles the analysis of £} (t).
To finalize the proof up, we notice that R"(t) is an average of terms that all converge in

probability to zero, and therefore it also converges in probability to zero. [

A.4 Proof of Theorem 3

We largely copy from the proof of Theorem 2. Therefore, many repeated details are omitted and
we concentrate on explaining the main differences.

The observed asymptotic local variance can again be expressed as follows:

K,—1
aVar(VA) = 25 (%, = Ay-e,a,)’

where t; =t — jA,.
This can further be split into

avar(V,) = E7(t) + E3(t) + R" (1),

where

£ = - > (N(1)"

n

—_

() = - 3 (Ax(r)

=

<

=0

R"(t) = avar(V) — E1(t) — EX(t).
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The only difference here compared to the proof of Theorem 2 is the definition of ¢;. It therefore
follows that R"(t) = o0,(1). So, to complete the proof it suffices to establish the convergence of
EN(t) and EX(t).

As above, we add and substract ji(;_1)a, terms to write

Ert) = &) + &),

with
1 Knp—1 p 1 Knp—1
n n 2 n .
e = 0 2 (W6 =% X v, ) = 7 2 el
C— " €Dy, " =0
1 p Kp—1 p 1 Kn,—1 24,
I _ n _ n
&) = K, e Z Z Hi-1)A, = 2Z2Kn€n ) 2 (i)
=0 i€D}. j=0 i=1

where €(t;) = ((A”( )) ) ZzGD" -1 An> As before, E[£"(t)] = 0, but now the variance of
E(t) has a more complicated structure due to the overlapping sampling:

Knp—1

slter )] = g7 3 B[]+ 57 2 3 letwte]

Notice that, for s > 2¢,j, Di (t) N Dy (¢

hand, for every j and s,

0, which implies that E[e(t;)e(t;)] = 0. On the other

) =
E[e(t;)e(ts)]]| < E[(e( )2], since the covariance is always smaller than

the variance in absolute value.

As a consequence,

sftere)] < 5 EEU%»Q} <O K."Z;lE[wm)“}

where the second inequality follows from the arguments of Theorem 2. Now, employing the estimate
n (37), we deduce that

E[(€(1)*] = 0K, 0, 62).

Now, by the assumptions made in the theorem, it follows that E[(é’{"(t))q = o(1). Hence, the
above inequality implies £/*(t) — 0.

In the £/™(t) term, since by assumption ¢, /K, — 0 and K, A, — 0, (K, + 2(,)A,, — 0. This
shows that t — (i + j)A, — t for every i and j in the sum. Since p is cadlag, as A, — 0,

2u, i pp/ly — 1,

n P 2 1
g{, (t) - ﬁ:uta if pn/f - 927
0, if pp/l, — 0.
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Thus, alluding to the definition of p,,, we see that

2/,Lt, if gn\/ An — O,

n 2
Er(t) = it /By = 6,

0, if £,/ — 00.

A.5 Proof of Theorem 4

The statement of the theorem under 7 follows immediately by combining Theorem 1 and Theorem
3 with Slutsky’s theorem.

To complete the proof, we next look at the test statistic under .7, and we use the version based
on the non-overlapping observed asymptotic local variance in (25), 5\7a/r(VXt). In that case, the

test statistic can be expressed as (writing 7y, as 7):

where

Zj Nn(T _ (1 + 2])5n77_ - 2j5n) - Nn(T B (2 + 2])5n77- - (1 + 2]>6n>
T — )

no,

fory=0,1,..., K, — 1.
As in the proof of Lemma 1, we derive the stochastic order of the numerator and denominator.

Note that it again suffices to explore the diverging part:

b= N = (L4 2)0n, 7 = 2j0n) = N™ (7 = (24 2)0, 7 = (1 + 2j)3n)

T?j

nd, ’
for which
NP (1 — (14 25)0p, T — 256,) + NP (1 — (24 25)0,,, 7 — (1 + 25),
£, <B [ =042 = 42— (1250
Bl : Py T—2§6n
=E {N (1= @+ 2))n7 235")} =E {l/ ou|T — u!adul
no, On T—(24+2)5,,

< Ty (U030 = (8)0) = 0,(5,),

by the proof of Lemma 1.
Regarding the denominator,

K,—1

1 ~ 2
w0, 2 D=0 (K77 () = (K =175, ) = 0,(62 K, ),
n =0
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where the last inequality follows, since

lim n

Kl—a _ (Kn _ 1)1—a _

K,—o0

for a constant C.

In conclusion,

T

¢ib ~0, (Kéw)’
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B Diurnal variation in trading intensity.
Figure B.1: Nonparametric estimate of periodicity in intraday trading activity.
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Note. We plot a nonparametric estimate of the pointwise time-of-day mean intensity of the transaction count process for each futures
contract included in our empirical application. First, we count the number of transactions in each 15-second bucket over a day. Second,
we average the transaction count across days in our sample. In doing so, we split the sample into days with and without FOMC
announcements. Third, we normalize the estimates so the curve integrates to one.
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