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Abstract
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1 Introduction

The volatility in financial markets observed during distressed conditions, such as flash crashes,

drift bursts, or gradual jumps, typically coincide with abnormal increases in trading activity. For

example, in Panel A of Figure 1 we plot a short-lived rally in the delivery price of the most active

Crude Oil futures contract (settlement in May 2012) on March 23, 2012 from 9:30am to 10:30am

Chicago time. The price of oil accelerated to about 108$/barrel after a report showed that Iranian

oil exports had tumbled about 300,000 barrels per day during the month. Christensen, Oomen,

and Renò (2022) propose a drift burst model to explain such rapid and sustained price movements.

In their model, the spot drift of a log-price process is allowed to explode, but the log-price itself

remains finite. They also develop an econometric approach for detecting such events from noisy

high-frequency data. As illustrated in the figure, this event is detected from the transaction price

series using their drift burst test statistic, which is highly significant.

Figure 1: Example of an intensity burst in Crude Oil.

Panel A: Futures price. Panel B: Transaction count.
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Note. This figure shows the Crude Oil futures contract (May 2012 expiration) over a joint drift and intensity burst on March 23, 2012.
In the left panel, we plot the futures price from 9:30am to 10:30am Chicago time along with the drift burst test statistic proposed in
Christensen, Oomen, and Renò (2022). In the right panel, we plot a nonparametric estimator of the time-varying trading intensity
(measured by the average number of transactions per second) along with the intensity burst test statistic developed in this paper.

In this paper, we extend the concept of bursts to the intensity of a point process. We propose

an intensity burst model, which describes an explosion in the intensity of the process. We interpret

our model in the context of a financial market, where the flow of market events (e.g., trade arrivals)

is modeled by a doubly stochastic Poisson process (i.e. a Poisson process with stochastic intensity

of the Cox form) with two independent components: a base intensity describing the “normal” times

and an exploding intensity describing “distress”. In the normal times, the events are allowed to

be inhomogeneous and cluster or exhibit serial correlation. However, since the base intensity of

the process is locally bounded, it implies that none of the point clusters observed in a fixed time
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interval (interpreted as, e.g., a trading day) is substantially larger than the others. The intensity

burst component is, in contrast, unbounded in a vicinity of a stopping time producing a pronounced

cluster of events in a neighbourhood of that instant.

A realization of a point process observed over a trading day is a configuration of ordered points

in a fixed time interval. We propose a nonparametric estimation for intensity burst detection within

such data. We study both pointwise identification, that is testing for the presence of an intensity

burst in the vicinity of a single candidate time instance, and a uniform identification, that is testing

for the presence of at least one intensity burst in a fixed time interval. The inference is done with

the help of a novel heavy traffic condition (e.g. Kingman, 1961), where independent copies of an

underlying Cox process are stacked.

Our framework allows to independently screen financial high-frequency data for large and unex-

pected increases in trading activity that may or may not be associated with unusual price volatility.

In contrast to Christensen, Oomen, and Renò (2022), our approach is based directly on the arrival

times of trades, and it does not require a “mark” in the form of an associated transaction price

(or other relevant information). In Panel B of Figure 1, we report a nonparametric estimator of

the time-varying trade intensity (measured by the average number of transaction count per one

minute) during the above hour. It shows that trading activity increases sharply during the oil

price appreciation and then reverts back to its original level soon after. The figure also reports

real-time estimates of the intensity burst test statistis developed in this paper. As evident, our new

econometric approach also identifies this event as a significant intensity burst.

Our paper is related to a recent strand of papers that study clustering of events for point

processes. In the parametric setting, Engle and Russell (1998) propose an autoregressive conditional

duration (ACD) model for irregularly spaced transaction data that accommodates persistence in

the interarrival times. Clinet and Potiron (2018) propose an inference procedure for the doubly

stochastic self-exciting point processes, whereas Potiron and Mykland (2020) study local parametric

estimation of high-frequency data. Rambaldi, Pennesi, and Lillo (2015) and Rambaldi, Filimonov,

and Lillo (2018) propose a parametric self-exciting process, where an “intensity burst” is associated

with an underlying Hawkes process that is perturbed by an exogenous (potentially random) number

of points at a (potentially random) time point. While their model is also targeted for capturing

sharp accelerations in trading activity, the intensity stays bounded. In contrast, our approach is

nonparametric, and we allow the intensity to explode under the burst alternative. Moreover, in our

setting the number of burst points can be endogenous and depend on underlying state variables

(such as liquidity and volatility), which we describe by an adapted stochastic process in the burst

intensity.

The heavy traffic condition is a natural precursor for the infill theory employed in nonparametric

estimation of volatility, see, e.g., Jacod and Protter (2012). In that setting, the number of observa-

tions of an arbitrage-free price process over a, fixed or shrinking, time interval goes to infinity with

the mesh going to zero. Indeed, a realization of our point process falls in the class of stochastic

3



sampling schemes adopted by Hayashi, Jacod, and Yoshida (2011). A common problem with ultra

high-frequency data is market microstructure noise, which tends to distort such estimates. In fact, a

branch of that literature advocates to estimate volatility via duration-based measures (e.g., Ander-

sen, Dobrev, and Schaumburg, 2008; Hong, Nolte, Taylor, and Zhao, 2021). Apart from developing

a statistical test for an intensity burst, we contribute to this field by extending the observed asymp-

totic variance of Mykland and Zhang (2017) to local estimation (see also Christensen, Podolskij,

Thamrongrat, and Veliyev, 2017).

The roadmap of the paper is as follows. Section 2 introduces the unbounded intensity model for

point processes and describes the theoretical foundation of an intensity burst. Section 3 develops

an identification strategy to conduct inference both for a pointwise test statistic and a maximal test

statistic. We also propose a estimator of the asymptotic variance. Section 4 includes an extensive

simulation study that demonstrates the finite sample properties of our test. An empirical application

is conducted in Section 5, while we conclude the paper in Section 6. The proofs are deferred to the

Appendix, where we also present some supplemental empirical results.

2 Intensity burst of a point process

We suppose a random scattering of ordered points is observed on the interval [0, T ]. It is assumed

to be the realization of an underlying point process N = (Nt)t≥0, which is defined on a filtered

probability space (Ω,F , (Ft)t≥0,P) and adapted to the filtration. In this paper, we assume N to be

a doubly stochastic Poisson—or Cox—process with associated random intensity—or rate—process

λ = (λt)t≥0, where λ is an adapted and strictly positive real-valued stochastic process. That is,

conditional on λ, N is an inhomogeneous Poisson process with rate function λ, i.e. the conditional

characteristic function of the increment Nt+∆ −Nt is given by

φNt+∆−Nt(u) = E
(
eiu(Nt+∆−Nt) | Fλ

t

)
= exp

(
(eiu − 1)

∫ t+∆

t

λsds

)
, (1)

where Fλ
t = σ({λs; s ≤ t}).

λt can be thought of as the expected number of points arriving over the next short time interval

[t, t+∆], based on historical information about the rate process, since

λt = lim
∆→0

E
[
Nt+∆ −Nt | Fλ

t

]
∆

. (2)

Hence, when λt is locally bounded, the instantaneous expectation of the number of points is finite.

In order to define intensity bursts, we therefore suppose that λt is locally unbounded in the vicinity

of a particular time instant, such that the expectation of the number of points in the vicinity of

that time point is locally infinite.

Assumption 1. λt can be decomposed as follows:

λt = µt + βt, (3)
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where µ = (µt)t≥0 is a locally bounded and strictly positive real-valued stochastic process, and

βt =
σt

|τib − t|α
, (4)

for a stopping time τib, where σ = (σt)t≥0 is a non-negative locally bounded stochastic process and

0 < α < 1 is a constant.

In the context of an financial market, N may describe the number of order submissions or trade

executions in a security over the course of a trading session. With this interpretation, Assumption 1

extends the notion of a drift burst in the asset log-price from Christensen, Oomen, and Renò (2022)

to the intensity generating the log-price. µ is the arrival rate of trades during “normal” market

conditions, whereas β represents the arrival rate of trades during “distressed” market conditions.

The stopping time τib is called the intensity burst time.

If σt = 0, almost surely for all t, the explosive term βt is absent and Nt again evolves as a Cox

process. If σt > 0, almost surely in a neighbourhood of τib,∫ τib+∆

τib−∆

µsds = Op(∆) and

∫ τib+∆

τib−∆

βsds = Op

(
∆1−α

)
, (5)

as ∆ → 0.

Consequently, the expected number of points explodes in a neighborhood of τib. However, due

to the integrability condition on βt in Assumption 1,
∫ T

0
λsds < ∞, so N itself is non-explosive and

well-defined.

It is well-known that one cannot consistently estimate the intensity of a point process over a

finite time interval, not even in the homogenous case. Hence, inference of point processes usually

proceeds under long-span asymptotics (T → ∞). However, as we are interested in identifying

intensity bursts over small time intervals, we follow the convention in the high-frequency literature

and assume T is fixed. Instead, we impose an alternative “heavy traffic” assumption, in which the

intensity of the underlying point process diverges (e.g., Kingman, 1961). To formalize this idea, we

introduce an auxiliary parameter n and consider a sequence of Cox processes Nn = (Nn
t )t≥0, for

n = 1, 2, . . . . For a fixed n, the rate function of Nn
t is equal to nλt, and the observed configuration

of points is then a realization of Nn. The asymptotic theory is then developed by supposing that

n → ∞.

To guarantee the existence of the required sequence of Cox processes, Nn
t can conveniently be

constructed as follows:

Nn
t =

n∑
i=1

Nt,i, (6)

where (Nt,i)
n
i=1 are independent copies of Nt.

The above assumption can be motivated by a financial market populated with n economic agents,

each trading independently according to their optimal strategy, i.e. an adapted stochastic process

represented by (λt)t≥0. Our asymptotic theory should then be understood as letting the number of
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agents increase without bound (n → ∞).

The heavy traffic condition is intimately connected with the literature on high-frequency es-

timation of volatility. Inference on realized variance typically proceeds under infill asymptotics

(Andersen and Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2002). In that setting, we sup-

pose a log-price process is observed at m = m(n) discrete time points t0, t1, . . . , tm that partition

the time interval [0, T ], where m
p−→ ∞ such that supi |ti− ti−1|

p−→ 0 as m → ∞. Thus, the point

process Nn together with the heavy traffic assumption is a standard model for generating stochastic

sampling times satisfying the usual conditions solicited in financial econometrics. In fact, a real-

ization of Nn falls within the class of stochastic sampling schemes studied by Hayashi, Jacod, and

Yoshida (2011). Hence, heavy traffic is a natural precursor for analysis of volatility from financial

high-frequency data.

The detection of intensity bursts amounts to the following hypothesis:

H0 : N
n
t (ω) ∈ Ω0 and H1 : N

n
t (ω) ∈ Ω1, (7)

where Ω0 and Ω1 are complementary subsets of Ω:

Ω0 =

{
ω ∈ Ω :

∫ T

0

β2
t dt = 0

}
and Ω1 =

{
ω ∈ Ω :

∫ T

0

β2
t dt > 0

}
. (8)

We propose a testing procedure to figure out which subset the realization of Nn
t belongs to, i.e.

whether it has an intensity burst component (Nn
t (ω) ∈ Ω1) or not (N

n
t (ω) ∈ Ω0).

3 Identification

In this section, we now develop a nonparametric approach to detect intensity bursts. First, we

propose a pointwise test statistic that conducts a statistical test for the presence of an intensity

burst at a single candidate time instance. Second, we refine this to a uniform test statistic that

conducts a test for the presence of at least one intensity burst in [0, T ].

3.1 Pointwise test

The identification of intensity bursts is based on a backward-looking estimator of the local intensity,

to allow for online detection, which is defined as:

λ̂t =
Nn(t− δn, t)

nδn
, (9)

where Nn(a, b) = Nn
b − Nn

a is the number of points of the counting process on (a, b], and δn is a

bandwidth parameter. λ̂t is the “realized intensity,” or average number of counts per time unit

over an interval of length δn. In a setup with no heavy traffic (i.e. n fixed), it follows that λ̂t
p→ 0.

However, heavy traffic changes the stochastic limit of λ̂t.
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Lemma 1. Suppose that Assumption 1 holds. Then, under H0, as n → ∞ and δn → 0 such that

nδn → ∞, it holds for all fixed t ∈ [0, T ] that

λ̂t
p−→ λt. (10)

Moreover, under H1,

λ̂τib = Op

(
δ−α
n

)
. (11)

Lemma 1 shows that, under the null hypothesis and very general assumptions about the intensity

process, the intensity estimator measures the local intensity at time t. The result is rather intuitive.

To generate a sufficient number of observations inside the estimation window [t − δn, t], we need

δnn → ∞. As n → ∞, the summation of independent copies of the Cox process in the heavy traffic

limit ensures that, on average, the accumulation of points close to t correspond approximately to

the instantaneous arrival rate. A law of large numbers then shows that λ̂t converges in probability

and, as δn → 0, the limit is λt. On the other hand, under the alternative, the abnormal arrival rate

of the bursting process causes the estimator to explode around τib.

The lemma highlights an important difference between the estimation of the local intensity of

point processes and the estimation of the local drift of Brownian semimartingales. In the latter,

the drift estimator is asymptotically unbiased but inconsistent (Kristensen, 2010), because the

increments of a Brownian motion, although mean zero, exhibit so much variation over short time

intervals that any information about the drift is lost. This is exploited by Christensen, Oomen, and

Renò (2022) to construct a drift burst test statistic, which relies on the different rates of divergence

of the drift estimator under the null and alternative. By contrast, under heavy traffic λ̂t is consistent

for the local intensity of the point process under the null hypothesis. Hence, for intensity burst

detection we propose a slightly different test statistic compared to Christensen, Oomen, and Renò

(2022). In particular, we compare two local intensity estimators calculated from the nearest lagged

block of observations. That is, our test is based on the difference

∇λ̂t = λ̂t − λ̂t−δn . (12)

Under H0, ∇λ̂t converges in probability to zero, but it is unbounded in probability under H1, as

we prove below. Hence, one can derive an asymptotic confidence interval for ∇λ̂t under H0 and

reject H0 if ∇λ̂t is outside of it. This suggests a standard test statistic of the form:

ϕib
t =

∇λ̂t

ŝtd(∇λ̂t)
, (13)

where ŝtd(∇λ̂t) is an estimator of std(∇λ̂t).

It turns out, however, that the asymptotic variance of λ̂t depends crucially on the interplay

between δn and n, which follows from a central limit theorem (CLT) under H0. To derive this CLT,

we need a regularity condition on the baseline intensity µ of N .
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Assumption 2. µ is a continuous Itô semimartingale:

µt = µ0 +

∫ t

0

asds+

∫ t

0

νsdWs, (14)

where µ0 is F0-measurable, a = (at)t≥0 and ν = (νt)t≥0 are adapted, càdlàg stochastic processes,

and W is a standard Brownian motion.

Assumption 2 is common in the high-frequency literature (e.g. Jacod and Protter, 2012). It

allows to apply standard estimates for semimartingales to control the discretization error in the

proofs. In particular, for a constant C > 0, it follows that:

|E[µt − µt+∆ | Ft]| ≤ C∆ and E[|µt − µt+∆|r | Ft] ≤ C∆r/2, (15)

for some r > 0. This assumption can be replaced, for example, by an appropriate smoothness

conditions, such as assuming the paths of µ are Hölder continuous up to some order.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then, under H0, as n → ∞ and δn → 0

such that nδn → ∞, it holds for all fixed t ∈ [0, T ] that

(i) if δn
√
n → 0, √

nδn

(
λ̂t − µt

)
Ds−→ √

µtZ, (16)

and √
nδn∇λ̂t

Ds−→
√

2µtZ, (17)

(ii) if δn
√
n → θ > 0,

1√
δn

(
λ̂t − µt

)
Ds−→
√

1

θ2
µt +

1

3
ν2
t Z, (18)

and

1√
δn

∇λ̂t
Ds−→
√

2

θ2
µt +

8

3
ν2
t Z, (19)

(iii) if δn
√
n → ∞,

1√
δn

(
λ̂t − µt

)
Ds−→
√

1

3
ν2
t Z, (20)

and

1√
δn

∇λ̂t
Ds−→
√

8

3
ν2
t Z, (21)

where Z is a standard normal random variable, which is defined on an extension of (Ω,F , (Ft)t≥0,P)
and independent of Ft, and

Ds−→ is stable convergence in law (see, e.g., Jacod and Protter, 2012).

Theorem 1 shows that the asymptotic distribution of our estimator is always mixed normal, but

the convergence rate and limiting variance depends on the order of δn and n. On the one hand, if
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δn
√
n → 0, the localization dominates and the variation of the intensity parameter along its sample

path is immaterial. Hence, the variance is the mean. On the other hand, if δn
√
n → ∞, the roles

are reversed, and heavy traffic dominates. In that case, the variation of the stochastic intensity

parameter controls the asymptotic variance. In both cases, the rate of convergence can be rather

slow. The optimal convergence rate, n−1/4, is achieved with δn ≍ n−1/2, where the opposing forces

are balanced.

Note that the standard errors of ∇λ̂t appearing in the second part of (ii) and (iii) are larger

than one would expect when comparing with (i). The explanation is that in the latter settings,

n diverges sufficiently fast compared to the vanishing of δn, so the lagged estimator λ̂t−δn is much

more imprecise compared to λ̂t. This effect is not present in part (i) of the theorem.

3.2 Observed asymptotic local variance

In practice, the choice of bandwidth—and picking the correct estimator of the asymptotic variance—

is made difficult, because n is not observed. To construct a feasible test statistic, we follow Mykland

and Zhang (2017) by alluding to the notion of the observed asymptotic variance.1 We set δn = ℓn∆n,

where ℓn is a deterministic sequence of natural numbers and ∆n > 0 represents a small time interval.

We further impose that ∆n = n−1, but this is merely done for notational convenience. Nothing

changes if ∆n = O(n−1), except we introduce an additional tuning parameter.

λ̂t can then be rewritten:

λ̂t =
1

ℓn

∑
i∈Dn

t−

∆iN
n, (22)

where ∆iN
n = Nn(i∆n, (i − 1)∆n) is the increment of Nn

t over a short time interval and Dn
t− =

{tn − ℓn + 1, tn − ℓn + 2, . . . , tn} is a set of time indexes. Equation (22) shows that the intensity

estimator can be expressed as a local average of increments of the discretized point process Nn
t ,

which is a more convenient formulation for developing our asymptotic variance estimator.2 With

this notation, Theorem 1 can be reformulated as follows.

Corollary 1. Suppose that Assumptions 1 and 2 hold. Then, under H0, as n → ∞ and ℓn → ∞
such that ℓn∆n → 0, it holds for all fixed t ∈ [0, T ] that

√
ρn∇λ̂t

Ds−→
√
avar(∇λ̂t)Z, (23)

1Our automatic inference procedure can also exploit the subsampling approach of Politis, Romano, and Wolf
(1999), which was adapted to the high-frequency setting in Kalnina (2011) and extended in Christensen, Podolskij,
Thamrongrat, and Veliyev (2017).

2In our framework, Nn is observed in continuous-time. However, many existing datasets do not reveal the exact
location of all points of Nn within [0, T ], but only report discrete observations. For example, the number of trades
in every 10-second interval may be available. In such cases, the data is structured in the form of a discretized version
of Nn used in equation (22). Thus, Corollary 1 and subsequent theorems remains applicable to such data.
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where (
ρn, avar

(
∇λ̂t

))
=


(ℓn, 2µt) , if ℓn

√
∆n → 0,(

(ℓn∆n)
−1, 2

θ2
µt +

8
3
ν2
t

)
, if ℓn

√
∆n → θ > 0,(

(ℓn∆n)
−1, 8

3
ν2
t

)
, if ℓn

√
∆n → ∞.

(24)

The observed asymptotic local variance of ∇λ̂t is then defined as:

ãvar
(
∇λ̂t

)
=

ρn
Kn

Kn−1∑
j=0

(
λ̂t−2jℓn∆n − λ̂t−(ℓn+2jℓn)∆n

)2
, (25)

where Kn is another sequence of natural numbers.

ãvar
(
∇λ̂t

)
is the sample variance of Kn estimates computed over non-overlapping blocks con-

sisting of 2ℓn observations. When Kn is sufficiently large and the observation blocks are not too

distant from t, ãvar
(
∇λ̂t

)
is consistent for the asymptotic local variance avar

(
∇λ̂t

)
.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then, under H0, as n → ∞, ℓn → ∞,

Kn → ∞ such that ℓn∆n → 0 and ℓnKn∆n → 0, it holds for all fixed t ∈ [0, T ] that

ãvar
(
∇λ̂t

) p−→ avar
(
∇λ̂t

)
. (26)

That is, ãvar
(
∇λ̂t

)
converges in probability to avar

(
∇λ̂t

)
for any limiting behaviour of ρn allowed

in Corollary 1.

The condition Knℓn∆n → 0 in Theorem 2 is somewhat restrictive. However, it can be loosened

with overlapping blocks in the definition of the observed asymptotic local variance. Hence, an

alternative version of the estimator is the following:

âvar
(
∇λ̂t

)
=

ρn
Kn

Kn−1∑
j=0

(
λ̂t−j∆n − λ̂t−(ℓn+j)∆n

)2
. (27)

Theorem 3. Suppose that Assumptions 1 and 2 hold. Then, under H0, as n → ∞, ℓn → ∞,

Kn → ∞ such that ℓn∆n → 0, Kn∆n → 0 and ℓn/Kn → 0, it holds for all fixed t ∈ [0, T ] that

âvar
(
∇λ̂t

) p−→ avar
(
∇λ̂t

)
. (28)

The condition ℓn/Kn → 0 in Theorem 3 indicates that the number of differences used to estimate

the local asymptotic variance of ∇λ̂t should increase faster than the number of observations used

to compute the local intensity estimate. The conditions Kn∆n → 0 and ℓn∆n → 0 ensure that all

observations remain close to t. Thus, the test statistic in (13) is computed as:

ϕib
t =

√
ρn∇λ̂t√

âvar
(
∇λ̂t

) . (29)

Theorem 4. Suppose that the conditions of Theorems 1 and 3 hold. Then,{
ϕib
t

D−→ N(0, 1), conditional on H0,

ϕib
τib

p−→ ∞, conditional on H1.
(30)
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Hence, we reject H0 if ϕib
t exceeds a quantile in the right-hand tail of the standard normal

distribution corresponding to a given significance level α. This ensures the test has size control

under H0. On the other hand, under H1, ϕ
ib
t is unbounded in probability as t → τib, so the test is

also consistent.3

It is important to emphasize that we do not need to choose ρn for computing ϕib
t . This follows

by direct insertion, showing the test statistic can be reexpressed as:

ϕib
t =

Nn(t− δn, t)−Nn(t− 2δn, t− δn)√√√√ 1

Kn

Kn−1∑
j=0

(
Nn(t− j∆n − δn, t− j∆n)−Nn(t− j∆n − 2δn, t− j∆n − δn)

)2 . (31)

In practice, we take ∆n to be one second by convention, although this is immaterial. The choice of

Kn and ℓn are studied in the Monte Carlo analysis presented in Section 4.

3.3 Maximum test

The pointwise test statistic explodes when the test time approaches an intensity burst. In practice,

this suggests that identification of intensity bursts consists of computing ϕib
t over a grid of points

0 ≤ t∗1 < t∗2 < · · · < t∗m ≤ T , where m eventually diverges (at a slow enough rate) such that

max1≤i≤m t∗i − t∗i−1 → 0. However, this has an important drawback, because the multiple testing

leads to size distortions if {ϕib
t∗i
}mi=1 are evaluated against the critical values from the standard normal

distribution.

Set against this backdrop, as in Christensen, Oomen, and Renò (2022) we propose to look at a

single statistic from the sequence {ϕib
t∗i
}mi=1. In particular, we follow Lee and Mykland (2008) and

extract the maximum ϕib,⋆ = max1≤i≤m ϕib
t∗i
. Observe that in the absence of an intensity burst,

{ϕib
t∗i
}mi=1 is asymptotically a centered, unit variance Gaussian process with unknown correlation

structure. However, the serial dependence of the intensity burst test statistic is complicated, even

if the underlying point process is a homogeneous Poisson process. As as remedy, we estimate the

sample autocovariance function of {ϕib
t∗i
}mi=1 up to lag 2ℓn and then simulate a Gaussian process

with the estimated covariance structure by circulant embedding. In each simulation, we record the

maximum value of the process. Repeating this procedure a large number of times, we calculate the

critical value for our test statistic based on the distribution of the simulated maxima.

4 Simulation study

In this section, we investigate the small sample size and power of our intensity burst test statistic

by a Monte Carlo approach. On the interval [0, 1], we simulate a continuous-time realization of

a convolution of independent counting processes representing the “normal” and “burst” intensity,

3Theorem 4 continues to hold if âvar
(
∇λ̂t

)
is replaced with ãvar

(
∇λ̂t

)
in the definition of ϕib

t , provided the
conditions of Theorem 2 hold.
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Nt = Nnormal
t +Nburst

t . We interpret the unit interval as a standard 6.5 hour trading day on a U.S.

stock exchange, which we partition with a discretization step of dt = 1/(23,400×100), corresponding

to one-hundredth of a second.

To generate a challenging data-generating process under the null, we assume the intensity of

Nnormal
t is an exponential Hawkes process:

µt = λ0 +

∫ t

−∞
θe−κ(t−s)dNnormal

s , (32)

where λ0, θ and κ are parameters. λ0 is called the background intensity, which is a lower bound

on µt, while f(τ) = θe−κτ is the excitation function. Our choice of exponential kernel follows the

original article by Hawkes (1971).4

A Hawkes process is self-exiting and capable of generating event clusters. That is, after the

arrival of an event the intensity of Nnormal
t inclines by θ. Hence, the probability of an increment

in the next time interval t + dt increases. Tempering by the excitation function helps to pull the

intensity back toward its baseline level λ0, until further events occur. κ controls the rate of memory

decay. If θ/κ < 1 the self-excitation is held in check by the mean reversion, and the Hawkes process

is non-explosive and stationary with unconditional mean:

E(µt) =
λ0

1− θ/κ
. (33)

Meanwhile, none of the clusters from the Hawkes process are as large as one expects during an

intensity burst. In the latter setting, the intensity diverges, whereas it remains bounded, almost

surely, in a Hawkes process. However, the point clusters generated by Nnormal
t may nevertheless be

confused by our test statistic as an intensity burst. The purpose is to see if this distorts our test

statistic in finite samples.

In our simulations, we set λ0 = 1/3, θ = 3/10 and κ = 9/10, so that on average there is one

event every second. This is broadly representative of the daily transaction count observed in our

empirical high-frequency data.

The intensity of Nburst
t is defined as:

βt =
σ

|τib − t|α
, for t ∈ [0.475, 0.525], (34)

and βt = 0 otherwise. Here, σ and α are constant. We position τib = 0.5 at the center of the interval

[0, 1] and make the duration of the intensity burst cover a 10-minute window. To generate intensity

bursts of varying magnitude, we take α ∈ {0.25, 0.50, 0.75} and calibrate σ such thatNburst
t generates

on average a fraction c of the points produced by Nnormal
t , where c = 0.000, 0.025, 0.050, 0.100.5 We

refer to this as no, small, medium, or large intensity burst.

4The intensity of the Hawkes process in (32) does not fulfill the definition in (1). It is also not continuous and falls
outside Assumption 2. Hence, the simulations are also meant to illustrate the robustness of our testing procedure.

5Solving for σ in c
∫ 1

0
µtdt =

∫ τib+∆

τib−∆
βtdt, where ∆ is the duration of the intensity burst and βt =

σ
|τib−t|α as in

(34), we get σ = c 1+α
2∆1+α

∫ 1

0
µtdt, such that c = 0 corresponds to no burst in the intensity.
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Figure 2: Example of a simulated intensity burst.

Panel A: Intensity process. Panel B: Intensity estimate
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Note. This figure shows the true (in Panel A) and estimated (in Panel B) intensity of the simulated counting process Nt with no burst,
and a small, medium and large intensity burst.

We compute ϕib
t at a one-second grid with ℓn ∈ {60, 300, 600} seconds for the calculation of

λ̂t (corresponding to a 1, 5, and 10-minute block) and Kn = 5ℓn (corresponding to a 5, 25, and

50-minute block) for the asymptotic variance estimation.

In Panel A of Figure 2, we illustrate the simulated intensity of the underlying Hawkes process

of Nnormal
t (no burst, or c = 0.000) together with a small (c = 0.025), medium (c = 0.050) and large

(c = 0.100) intensity burst of Nburst
t with α = 0.50. In Panel B, we show the associated intensity

estimate for ℓn = 300. Across the burst states, the maximal local intensity estimate is roughly 3,

4, and 7 times larger than the average rate of the Hawkes process. The intensity burst displayed

in Figure 1 is much larger, hence our simulated intensity bursts are conservative relative to those

observed in empirical data.

In Table 1, we collect the results of the Monte Carlo analysis. The left-hand side reports the

rejection rates for the pointwise test applied at t = 0.5, which also corresponds to the explosion

point τib under the alternative. Here, the test statistic is evaluated against the usual critical values

from the standard normal distribution zp, i.e. the pth percentile. The right-hand side shows the

associated rejection rates of the maximum test evaluated against the simulated critical values qp,

as explained in Section 3.3.

Looking at Panel A (c = 0.000), the finite sample sizes of both tests are close to the theoretical

nominal levels. A mild inflation is observed for the pointwise test and also for the maximum test

with the shortest bandwidth. As noted above, this is due to the self-excitation of the Hawkes

intensity under H0. However, the effect diminishes once we smooth the intensity estimate over a

slightly longer window. The power of the local test in Panel B – D (c = 0.025 – 0.100) is nearly

perfect. This is not surprising, since the test statistic is calculated at the peak of the intensity

13



burst under H1, although detection of small bursts remains challenging. The rejection rate of the

maximum test is smaller. However, it suffices to detect the majority of medium and large intensity

bursts, whereas small intensity bursts with a slow rate of divergence may go unnoticed. This is not

a cause of concern in practice, since we are primarily interested in the behavior of large surges in

trading activity.
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5 Empirical application

We examine a continuous record of high-frequency data for futures contracts traded on the Chicago

Mercantile Exchange (CME) electronic Globex system, namely CL (crude oil), EC (foreign ex-

change), ED (short-term interest rates), ES (equities), GC (gold), and TY (long-term interest

rates), thus covering all major financial asset classes. The instruments are very liquid and generally

trade around the clock five days a week with only a short daily maintenance break. The data

were acquired from Tick Data (tickdata.com) for the sample period January 4, 2010 to October

14, 2021; or about 3,000 days in total. Timestamps are in milliseconds. A summary of the data

is presented in Table 2. We follow Christensen, Oomen, and Renò (2022) and restrict attention to

the most active trading hours from 1:00am to 3:15pm Chicago time, covering the main European

and American sessions. As readily seen, this removes only a small fraction of observations.

Table 2: CME futures data.

Contract Market Venue # days # trades Retained Duration

CL Crude Oil NYMEX 3,041 493,879,290 94.36% 0.45
EC Euro FX CME 3,045 310,413,762 90.02% 0.85
ED Eurodollar CME 3,044 25,754,111 94.88% 15.42
ES E-mini S&P 500 CME 3,045 1,006,304,505 93.43% 0.28
GC Gold COMEX 3,041 284,900,979 87.02% 0.85
TY 10-Year T-Note CME 3,044 268,045,084 92.81% 1.05

Note. The table reports for each futures contract, its ticker symbol (or contract name), the underlying asset, the trading venue, the
number of days in the sample, the total number of transactions and the average trade duration (in seconds). The sample period is
January 2010–October 2021. We restrict attention to the most active trading hours from 1:00am–3:15pm Chicago time. The fraction
of volume retained after removing the most illiquid parts of the day is reported in the penultimate column.

To avoid identifying spurious bursts in liquidity associated with inflated trading volume around

pre-scheduled releases of key market information, such as the macroeconomic news announcements,

we compute an asset-specific nonparametric estimator of the pointwise time-of-the-day mean in-

tensity. This is calculated as the sample average of the number of transactions in each 15-second

bucket over the whole day, where the average is taken over the days in the sample. We compute

such a curve separately for FOMC announcement days, since they feature a highly unusual trading

pattern compared to the rest of the sample. The associated diurnal curves are reported in Figure

B.1 in the appendix. We correct the estimated local intensity in (9) by the diurnal pattern before

computing the intensity burst test statistic, which we calculate on a one-second grid throughout

the retained part of the trading session.

In Table 3, we report the number of identified events at various critical values of the maximum

intensity burst test statistic. The critical values are intentionally set so high that the expected

number of false positives is close to zero. Judging by the middle column ϕib,⋆ > 7, we see that

intensity bursts happen frequently, averaging about one event every five–ten days depending on the

market. A couple of intensity burst examples are plotted in Figure 3. The events are associated with

large increases in the trading intensity over short time intervals leading to a significant intensity burst
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test statistic. Howeever, they are not necessarily associated with a big change in the transaction

price. Hence, only the Treasury futures event is also flagged as a significant drift burst by the test

statistic of Christensen, Oomen, and Renò (2022).

Table 3: Intensity burst summary statistics.

contract market ϕib,⋆ > 6.0 ϕib,⋆ > 7.0 ϕib,⋆ > 8.0
# % # % # %

CL Crude Oil 1407 46.27% 680 22.36% 349 11.48%
EC Euro FX 1194 39.21% 615 20.20% 342 11.23%
ED Eurodollar 560 18.40% 335 11.01% 222 7.29%
ES E-mini S&P 500 786 25.81% 279 9.16% 128 4.20%
GC Gold 1446 47.55% 799 26.27% 442 14.53%
TY 10-Year T-Note 576 18.92% 258 8.48% 133 4.37%

Note. We report for each futures contract the number of days with intensity bursts identified for critical values ranging between 6 and
8 (percentage of total sample in parenthesis). The number of false positives we expect, which can be computed using the technique
described in Section 3.3, is virtually zero.

6 Conclusion

In this paper, we propose a model with unbounded intensity for point processes. We allow the

spot intensity to explode such that the integrated intensity is finite, ensuring the point process

is non-explosive. The model is capable of generating extreme clusters of observations over small

time intervals that are far more concentrated than what a standard doubly stochastic Poisson or

self-exciting Hawkes processes with bounded intensity can produce.

We develop an inference strategy for detecting an intensity burst. In its absence (null hypoth-

esis), the asymptotic distribution of our test statistic is standard normal. The theory relies on

a novel heavy traffic assumption, which allows to consistently estimate and draw inference about

the spot intensity of a point process over a finite time interval. It resembles the standard in-fill

condition for asymptotic theory of realized variance. The rate of convergence depends on the speed

with which we accumulate points induced by the heavy traffic condition, so we base the feasible

implementation of our test statistic on an automatic inference procedure. In particular, we adapt

the observed asymptotic variance of Mykland and Zhang (2017) to spot estimation. Conditional on

an intensity burst (alternative hypothesis), our test statistic diverges. Hence, the testing procedure

has power converging to one.

A simulation study shows that the test statistic has good finite sample properties, even in a

more general setting than the theoretical framework permits. We implement the statistic on high-

frequency data from several liquid futures contracts. We detect a nontrivial amount of intensity

bursts in the data and describe some of their basic properties.
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Figure 3: Further examples of intensity bursts in various markets.

TY, 02/05/2020
Panel A: Futures price. Panel B: Transaction count.
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GC, 04/28/2015
Panel C: Futures price. Panel D: Transaction count.
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ES, 01/30/2014
Panel E: Futures price. Panel F: Transaction count.
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Note. In the left-hand side of the figure, we plot the futures price along with the drift burst test statistic of Christensen, Oomen, and
Renò (2022) for the selected days of the futures contracts (name of contract and MM/DD/YYYY date appears in caption). In the
right-hand side, we plot the associated one-minute transaction count along with the intensity burst test statistic.
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A Proofs

We here derive the theoretical results listed in the main text. We note that under Assumption 1 –

2, we can appeal to the localization procedure described in Jacod and Protter (2012, Section 4.4.1)

to bound various processes.

To establish stable convergence of the local intensity estimator in (9), we need an auxiliary

result, which is a reproduction of Alvarez, Panloup, Pontier, and Savy (2012, Lemma 8).

Lemma 2. Let (Ω,F ,P) denote a probability space. For each n ≥ 1, suppose ζn2 , ζ
n
3 , . . . , ζ

n
kn

are

martingale increments with respect to the sub-σ-fields of F : Fn,1 ⊆ Fn,2 ⊆ · · · ⊆ Fn,kn. Set

Sn =
∑kn

i=2 ζ
n
i and G = ∩n≥1Fn,1. Assume that n 7→ Fn,kn is a non-increasing sequence of σ-fields

such that ∩n≥1Fn,kn = G. Then, if the following conditions hold:

(i) There exists a G-measurable random variable η such that, as n → ∞,

kn∑
i=2

E
[
(ζni )

2 | Fn,i−1

]
p−→ η,

(ii) For every ϵ > 0,
kn∑
i=2

E
[
(ζni )

21{(ζni )2≥ϵ} | Fn,i−1

]
p−→ 0,

then Sn
Ds−→ S, defined on an extension of (Ω,F ,P), such that conditionally on F , the distri-

bution of S is a centered Gaussian with variance η.

A.1 Proof of Lemma 1

Theorem 1 implies that, under H0,

λ̂t − λt = op(1), (35)

which shows the first statement.

Next, under H1, we notice that the observed process can be decomposed as

Nn
t = Nn,µ

t +Nn,β
t ,

where Nn,µ
t and Nn,β

t are inhomogeneous Poisson processes with rates µt and βt.

Therefore, at time τ ,

λ̂τ =
Nn,µ(τ − δn, τ)

nδn
+

Nn,β(τ − δn, τ)

nδn
= µ̂τ + β̂τ .

It follows from (35) that

µ̂τ = µτ + op(1),
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so it is enough to look at β̂τ . To prove that β̂τ = Op(δ
−α
n ), by the definition of stochastic orders in

probability, it suffices to show that for every ϵ > 0 there exists a 0 < ∆ϵ < ∞ and Nϵ ∈ N such

that for all n ≥ Nϵ : P
(
δαn β̂τ > ∆ϵ

)
< ϵ.

By Markov’s inequality:

P
(
β̂τ > δ−α

n ∆ϵ

)
≤ δαnE(β̂τ )

∆ϵ

.

Next, conditioning on σ and employing the law of iterated expectations:

E
(
β̂τ

)
= E

[
Nn,β(τ − δn, τ)

nδn

]
= E

[
E
(
Nn,β(τ − δn, τ)

nδn
| Fσ

)]
= E

[
1

δn

∫ τ

τ−δn

σu|τ − u|−αdu

]
≤ C

δn

∫ τ

τ−δn

|τ − u|−αdu =
C

1− α
δ−α
n ,

where Fσ is the σ-algebra generated by σ and C > 0 is a constant that bounds the process from

above in light of the localization procedure. Thus,

P
(
β̂τ > δ−α

n ∆ϵ

)
≤ C

∆ϵ(1− α)
.

Thus, for every ϵ > 0, we can choose ∆ε >

(
C

ϵ(1− α)

)
to make P

(
δαn β̂τ > ∆ϵ

)
< ϵ. ■

A.2 Proof of Theorem 1

We show the univariate statement in (i), (ii), and (iii). The second half follows from the calculations

in the proof of Theorem 2.

To this end, we define the sequence ρn as follows:

ρn =

{
δnn, if δn

√
n → 0,

δ−1
n , if δn

√
n → θ or δn

√
n → ∞,

and study the difference
√
ρn(λ̂t − λt).

We assume δn can be expressed as δn = ℓn∆n, where ∆n = 1
n
and ℓn is a deterministic sequence

of positive integers. Then, λ̂t can be expressed as

λ̂t =
1

ℓn

∑
i∈Dn

t−

∆iN
n,

where ∆iN
n = Nn(0, i∆n)−Nn(0, (i− 1)∆n) are the increments of the process Nn over the short

time intervals of length ∆n, and

Dn
t− = {tn− ℓn + 1, tn− ℓn + 2, . . . , tn}.

We approximate ∆iN
n by the increments of an inhomogeneous Poisson process Ñn with piecewise

constant intensity, ∆iÑ
n. This is done as follows. By the random time-change theorem for point

processes (see, e.g., Daley and Vere-Jones, 2003, Theorem 7.4.I), there exists a homogeneous unit
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intensity Poisson process N (⋆),(i), such that

∆iN
n = N (⋆),(i)

(
n

∫ i∆n

(i−1)∆n

µsds

)
.

We set ∆iÑ
n = N (⋆),(i)

(
n
∫ i∆n

(i−1)∆n
µ(i−1)∆nds

)
. Hence, Ñn(k∆n) =

∑
i≤k ∆iÑ

n is an inhomogeneous

Poisson process with piecewise constant intensity, such that

E
[
∆iÑ

n | F(i−1)∆n

]
= n

∫ i∆n

(i−1)∆n

µ(i−1)∆nds = µ(i−1)∆n .

Moreover, the absolute value of the approximation error |∆iN
n − ∆iÑ

n| can be expressed as an

increment of the process N (⋆),(i):

|∆iN
n −∆iÑ

n| = N (⋆),(i)(t, t),

where

t = n

(∫ i∆n

(i−1)∆n

µsds ∧
∫ i∆n

(i−1)∆n

µ(i−1)∆nds

)
and t = n

(∫ i∆n

(i−1)∆n

µsds ∨
∫ i∆n

(i−1)∆n

µ(i−1)∆nds

)
.

Then, we can write

λ̂t − µt =
1

ℓn

∑
i∈Dn

t−

(
∆iN

n −∆iÑ
n
)

︸ ︷︷ ︸
(I)

+
1

ℓn

∑
i∈Dn

t−

(
∆iÑ

n − µ(i−1)∆n

)
︸ ︷︷ ︸

(II)

+
1

ℓn

∑
i∈Dn

t−

(
µ(i−1)∆n − µt

)
︸ ︷︷ ︸

(III)

.

(I) arises by approximating the observed process with a point process that has a locally constant

intensity, (II) is the deviation of the approximating process from its conditional expectation, and

(III) denotes the error due to the variation in the rate process.

(I) can be further decomposed as follows:

(I) =
1

ℓn

∑
i∈Dn

t−

(
∆iN

n −∆iÑ
n − E

[
∆iN

n −∆iÑ
n | F(i−1)∆n

])
+

1

ℓn

∑
i∈Dn

t−

E
[
∆iN

n −∆iÑ
n | F(i−1)∆n

]
.

Moreover, due to Assumption 2, (III) can be split into a drift and volatility part:

(III) =
1

ℓn

∑
i∈Dn

t−

(tn− ℓn − i)(Ai∆n − A(i−1)∆n) +
1

ℓn

∑
i∈Dn

t−

(tn− ℓn − i)(Mi∆n −M(i−1)∆n),

where At =
∫ t

0
asds and Mt =

∫ t

0
νsdWs.

Consequently,
√
ρn(λ̂t − µt) = Λn

1 (t) + Λn
2 (t) + Λn

3 (t) + Λn
4 (t) + Λn

5 (t),
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where

Λn
1 (t) =

√
ρn

ℓn

∑
i∈Dn

t−

(
∆iN

n −∆iÑ
n − E

[
∆iN

n −∆iÑ
n | F(i−1)∆n

])
,

Λn
2 (t) =

√
ρn

ℓn

∑
i∈Dn

t−

E
[
∆iN

n −∆iÑ
n | F(i−1)∆n

]
,

Λn
3 (t) =

√
ρn

ℓn

∑
i∈Dn

t−

(
∆iÑ

n − µ(i−1)∆n

)
,

Λn
4 (t) =

√
ρn

ℓn

∑
i∈Dn

t−

(tn− ℓn − i)(Ai∆n − A(i−1)∆n).

Λn
5 (t) =

√
ρn

ℓn

∑
i∈Dn

t−

(tn− ℓn − i)(Mi∆n −M(i−1)∆n),

Now, we show that the sum Λn
3 (t) + Λn

5 (t) converges stably in law, while the other terms (Λn
1 (t),

Λn
2 (t), and Λn

4 (t)) are asymptotically negligible.

Set

Λn
3 (t) + Λn

5 (t) =
∑
i∈Dn

t−

ζni (3) + ζni (5),

where

ζni (3) =

√
ρn

ℓn

(
∆iÑ

n − µ(i−1)∆n

)
and ζni (5) =

√
ρn

ℓn
(tn− ℓn − i)(Mi∆n −M(i−1)∆n).

By construction, ζni (3) and ζni (5) are uncorrelated F(i−1)∆n-martingale differences:

E
[
ζni (3) | F(i−1)∆n

]
= E

[
ζni (5) | F(i−1)∆n

]
= E

[
ζni (3)ζ

n
i (5) | F(i−1)∆n

]
= 0.

As a result,∑
i∈Dn

t−

E
[(
ζni (3) + ζni (5)

)2 | F(i−1)∆n

]
=
∑
i∈Dn

t−

E
[(
ζni (3)

)2 | F(i−1)∆n

]
+
∑
i∈Dn

t−

E
[(
ζni (5)

)2 | F(i−1)∆n

]
.

Since ∆iÑ
n is Poisson distributed, we deduce that:

E
[(
ζni (3)

)2 | F(i−1)∆n

]
=

ρn
ℓ2n

µ(i−1)∆n ,

and because µ is continuous, as δn → 0,

1

ℓn

∑
i∈Dn

t−

µ(i−1)∆n

a.s−→ µt.
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From the definition of ρn:

ρn
ℓn

→


1, if δn

√
n → 0,

1

θ2
, if δn

√
n → θ,

0, if δn
√
n → ∞.

Therefore,

∑
i∈Dn

t−

E
[(
ζni (3)

)2 | F(i−1)∆n

]
p−→


µt, if δn

√
n → 0,

1

θ2
µt, if δn

√
n → θ,

0, if δn
√
n → ∞.

Next,

E
[(
ζni (5)

)2 | F(i−1)∆n

]
=

ρn
ℓ2n

(tn− ℓn − i)2
∫ i∆n

(i−1)∆n

E
[
ν2
s | F(i−1)∆n

]
ds.

Assumption 2 implies that, as n → ∞,

E
[

sup
s∈[t−δn,t]

|ν2
s − ν2

t |
]
→ 0,

which further means that∑
i∈Dn

t−

(
E
[(
ζni (5)

)2 | F(i−1)∆n

]
− ρn

ℓ2n
(tn− ℓn − i)2∆nν

2
t

)
p−→ 0.

On the other hand, multiplying and dividing by δn,∑
i∈Dn

t−

ρn
ℓ2n

(tn− ℓn − i)2∆nν
2
t = ρnδnν

2
t

1

ℓ3n

∑
i∈Dn

t−

(tn− ℓn − i)2.

The last part is convergent with limit

1

ℓ3n

∑
i∈Dn

t−

(tn− ℓn − i)2 =
1

ℓ3n

ℓn∑
j=1

j2 =
1

ℓ3n

[
ℓn(ℓn + 1)(2ℓn + 1)

6

]
→ 1

3
.

Moreover,

ρnδn =

{
δ2nn → 0, if δn

√
n → 0,

1, if δn
√
n → θ or δn

√
n → ∞.

Putting it together,

∑
i∈Dn

t−

E
[(
ζni (5)

)2 | F(i−1)∆n

]
p−→

0, if δn
√
n → 0,

1

3
ν2
t if δn

√
n → θ or δn

√
n → ∞,
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which implies that

∑
i∈Dn

t−

E
[(
ζni (3)

)2
+
(
ζni (5)

)2 | F(i−1)∆n

]
p−→


µt, if δn

√
n → 0,

1

θ2
µt +

1

3
ν2
t if δn

√
n → θ,

1

3
ν2
t if δn

√
n → ∞.

To establish the asymptotic distribution, we prove a Lindeberg condition of the form:∑
i∈Dn

t−

E
[(
ζni (3) + ζni (5)

)2
1{

(ζin(3)+ζni (5))
2≥ϵ
} | F(i−1)∆n

]
a.s.−→ 0, ∀ϵ > 0.

By the Cauchy-Schwarz and Chebyshev inequalities,

E
[(
ζni (3) + ζni (5)

)2
1{

(ζni (3)+ζni (5))
2≥ϵ
} | F(i−1)∆n

]
≤
√

E
[(
ζni (3) + ζni (5)

)4 | F(i−1)∆n

]
E
[
1{

(ζni (3)+ζni (5))
4≥ϵ
} | F(i−1)∆n

]
=

√
E
[(
ζni (3) + ζni (5)

)4 | F(i−1)∆n

]
P
((

ζni (3) + ζni (5)
)2 ≥ ϵ | F(i−1)∆n

)
≤ 1

ϵ

(
E
[(
ζni (3)

)4 | F(i−1)∆n

]
+ E

[(
ζni (5)

)4 | F(i−1)∆n

])
.

Since ∆iÑ
n follows a Poisson distribution with bounded intensity:∑

i∈Dn
t−

E
[(
ζni (3)

)4 | F(i−1)∆n

]
=
∑
i∈Dn

t−

ρ2n
ℓ4n

E
[
∆iÑ

n − µ4
(i−1)∆n

| F(i−1)∆n

]

=
∑
i∈Dn

t−

ρ2n
ℓ4n

µ(i−1)∆n(1 + 3µ(i−1)∆n)

≤ C
ρ2n
ℓ3n

−→ 0,

for both choices of ρn.

On the other hand, using the boundedness of ν,∑
i∈Dn

t−

E
[(
ζni (4)

)4 | F(i−1)∆n

]
=
∑
i∈Dn

t−

ρ2n
ℓ4n

(tn− ℓn − i)4 E
[(
Mi∆n −M(i−1)∆n

)4 | F(i−1)∆n

]

= 3
ρ2n
ℓ4n

∑
i∈Dn

t−

(tn− ℓn − i)4 E

[(∫ i∆n

(i−1)∆n

ν2
sds

)2

| F(i−1)∆n

]

≤ C
ρ2n∆

2
n

ℓ4n

∑
i∈Dn

t−

(tn− ℓn − i)4 = C
ρ2n∆

2
n

ℓ4n

6ℓ5n + 15ℓ4n + 10ℓ3n − ℓn
30

→ 0,

again for both choices of ρn. Hence, the Lindeberg condition holds.
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By Lemma 2, we therefore conclude that

Λn
3 (t) + Λn

5 (t)
Ds−→



√
µtZ, if δn

√
n → 0,√

1

θ2
µt +

1

3
ν2
t Z, if δn

√
n → θ,√

1

3
ν2
t Z, if δn

√
n → ∞,

where Z ∼ N(0, 1) independent of F .

To end the proof, we next demonstrate asymptotic negligibility of the remaining terms. We

start with Λn
1 (t), which we express as follows:

Λn
1 (t) =

∑
i∈Dn

t−

ζni (1),

where

ζni (1) =

√
ρn

ℓn

(
∆iN

n −∆iÑ
n − E

[
∆iN

n −∆iÑ
n | F(i−1)∆n

])
is an F(i−1)∆n-martingale difference sequence by design. Hence,

E
[
|Λn

1 (t)|2
]
=

ρn
ℓ2n

∑
i∈Dn

t−

E
[(

∆iN
n −∆iÑ

n − E
[
∆iN

n −∆iÑ
n | F(i−1)∆n

])2]

=
ρn
ℓ2n

∑
i∈Dn

t−

E
[
n

∫ i∆n

(i−1)∆n

µs − µ(i−1)∆nds

]

≤ ρnn

ℓ2n

∑
i∈Dn

t−

∫ i∆n

(i−1)∆n

E
[
|µs − µ(i−1)∆n|

]
ds,

where the tower property of conditional expectation was used. Now, Assumption 2 and standard

estimates for semimartingales imply the existence of a constant C > 0, such that

E
[
|µs − µ(i−1)∆n|

]
≤ C

√
∆n. (36)

Thus, for any definition of ρn,

E
[
|Λn

1 (t)|2
]
≤ ρnC

√
∆n

ℓn
−→ 0,

which implies the asymptotic negligibility of Λn
1 (t).

Next,

Λn
2 (t) =

∑
i∈Dn

t−

ζni (2),

where

ζni (2) =

√
ρn

ℓn
E
[
∆iN

n −∆iÑ
n | F(i−1)∆n

]
.
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Employing the estimate in (36),

E
[
|Λn

2 (t)|
]
≤

√
ρn

ℓn

∑
i∈Dn

t−

E
[
|n
∫ i∆n

(i−1)∆n

µs − µ(i−1)∆nds| | F(i−1)∆n

]
≤ C

√
ρn∆n −→ 0,

so Λn
2 (t) also vanishes.

Λn
4 (t) is asymptotically negligible following the proof from Alvarez, Panloup, Pontier, and Savy

(2012) for the local volatility estimator. We omit the details for brevity. ■

A.3 Proof of Theorem 2

The observed asymptotic local variance can be expressed as

ãvar(∇λ̂t) =
ρn
Kn

Kn−1∑
j=0

(
λ̂tj − λ̂tj−ℓn∆n

)2
.

where tj = t− 2jℓn∆n.

We denote by Dn
tj

the union of Dn
tj− and Dn

(tj−ℓn∆n)−. Then, for every tj, as in the proof of

Theorem 1 the local intensity estimator can be decomposed as:

√
ρn
(
λ̂tj − λ̂tj−ℓn∆n

)
= Λn

1 (tj) + Λn
2 (tj) + Λn

3 (tj) + Λn
4 (tj) + Λn

5 (tj),

where

Λn
1 (tj) =

√
ρn

ℓn

∑
i∈Dn

tj

(−1)
1{i<tj−ℓn∆n}(∆iN

n −∆iÑ
n − E

[
∆iN

n −∆iÑ
n | F(i−1)∆n

])
,

Λn
2 (tj) =

√
ρn

ℓn

∑
i∈Dn

tj

(−1)
1{i<tj−ℓn∆n}E

[
∆iN

n −∆iÑ
n | F(i−1)∆n

]
,

Λn
3 (tj) =

√
ρn

ℓn

∑
i∈Dn

tj

(−1)
1{i<tj−ℓn∆n}(∆iÑ

n − µ(i−1)∆n

)
,

Λn
4 (tj) =

√
ρn

ℓn

∑
i∈Dn

tj

(−1)
1{i<tj−ℓn∆n}(tjn− 2ℓn − i)(Ai∆n − A(i−1)∆n).

Λn
5 (tj) =

√
ρn

ℓn

∑
i∈Dn

tj

(−1)
1{i<tj−ℓn∆n}(tjn− 2ℓn − i)(Mi∆n −M(i−1)∆n),

with Nt, Mt, and At defined as in Theorem 1.

Then,

ãvar(∇λ̂t) = En
1 (t) + En

2 (t) +Rn(t),

where

En
1 (t) =

1

Kn

Kn−1∑
j=0

(
Λn

3 (tj)
)2
,
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En
2 (t) =

1

Kn

Kn−1∑
j=0

(
Λn

5 (tj)
)2
,

Rn(t) = ãvar(∇λ̂t)− En
1 (t)− En

2 (t).

What is left amounts to showing that En
1 (t) and En

2 (t) converge to the first and the second term in

the true asymptotic variance, whereas Rn(t)
p−→ 0.

For the first term, we observe that(
Λn

3 (tj)
)2

=
∑
i∈Dn

tj

(
ζni (3)

)2
+ 2

∑
s,i∈Dn

tj
:s>i

ζni (3)ζ
n
s (3)(−1)

1{i<tj−ℓn∆n}+1{s<tj−ℓn∆n} ,

where ζni (3) =

√
ρn

ℓn

(
∆iÑ

n − µ(i−1)∆n

)
as above. Since ζni (3) is a Fi∆n-martingale and

E
[(
ζni (3)

)2 | F(i−1)∆n

]
=

ρn
ℓ2n

µ(i−1)∆n ,

it follows that

E
[(
Λn

3 (tj)
)2 − ρn

ℓ2n

∑
i∈Dn

tj

µ(i−1)∆n

]
= 0.

Then, we decompose En
1 (t) into

En
1 (t) = E ′n

1 (t) + E ′′n
1 (t),

where

E ′n
1 (t) =

1

Kn

Kn−1∑
j=0

((
Λn

3 (tj)
)2 − ρn

ℓ2n

∑
i∈Dn

tj

µ(i−1)∆n

)
,

E ′′n
1 (t) =

1

Kn

ρn
ℓ2n

Kn−1∑
j=0

∑
i∈Dn

tj

µ(i−1)∆n .

So E
[
E ′n
1 (t)

]
= 0, and because the Λn

3 (tj)’s are based on non-overlapping blocks of observations, the

variance of E ′n
1 (t) has the following form:

E
[(
E ′n
1 (t)

)2]
=

1

K2
n

Kn−1∑
j=0

E
[((

Λn
3 (tj)

)2 − ρn
ℓ2n

∑
i∈Dn

tj

µ(i−1)∆n

)2]
≤ C

K2
n

Kn−1∑
j=0

E
[(
Λn

3 (tj)
)4]

.

Next,

E
[(
Λn

3 (tj)
)4]

=
∑
i∈Dn

tj

E
[(
ζni (3)

)4]
+ 4

∑
s,i∈Dn

tj
:s>i

E
[(
ζni (3)ζ

n
s (3)

)2]
.

Alluding to the boundedness of µ, we get the estimates:

E
[(
ζni (3)

)2] ≤ C
ρn
ℓ2n

and E
[(
ζni (3)

)4] ≤ C
ρ2n
ℓ4n

.
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Based on this, we deduce that:

E
[(
Λn

3 (tj)
)4] ≤ ρ2n

ℓ4n

( 2ℓn∑
i=1

C + 4
2ℓn−1∑
i=1

2ℓn∑
s=i+1

C

)
= C

ρ2n(2ℓn + 4ℓn(2ℓn − 1))

ℓ4n
. (37)

Ergo,

E
[(
E ′n
1 (t)

)2] ≤ C

K2
n

Kn−1∑
j=0

ρ2n(2ℓn + 4ℓn(2ℓn − 1))

ℓ4n
= O

(
K−1

n ℓ−2
n ρ2n

)
,

so that E ′n
1 (t)

p−→ 0.

The second term, E ′′n
1 (t), can be represented as:

E ′′n
1 (t) =

ρn
ℓ2nKn

2Knℓn∑
s=1

µt−s∆n = 2
ρn
ℓn

1

2Knℓn

2Knℓn∑
s=1

µt−s∆n .

Since Knℓn∆n → 0, following the train of thought in the proof of Theorem 1 implies that

En
1 (t)

p−→


2µt, if ℓn

√
∆n → 0,

2

θ2
µt, if ℓn

√
∆n → θ,

0, if ℓn
√
∆n → ∞.

Now, moving on to En
2 (t), we again observe that(

Λn
5 (tj)

)2
=
∑
i∈Dn

tj

(
ζni (5)

)2
+ 2

∑
s,i∈Dn

tj
:s>i

ζni (5)ζ
n
s (5)(−1)

1{i<tj−ℓn∆n}+1{s<tj−ℓn∆n} ,

where ζni (5) =

√
ρn

ℓn
(tjn− 2ℓn − i)(Mi∆n −M(i−1)∆n). Since ζni (5) is Fi∆n-martingale and

E
[(
ζni (5)

)2 | F(i−1)∆n

]
=

ρn
ℓ2n

(tjn− 2ℓn − i)2
∫ i∆n

(i−1)∆n

E
[
ν2
s | F(i−1)∆n

]
ds,

we have:

E
[(
Λn

5 (tj)
)2 − ∑

i∈Dn
tj

ρn
ℓ2n

(tjn− 2ℓn − i)2
∫ i∆n

(i−1)∆n

E
[
ν2
s | F(i−1)∆n

]
ds

]
= 0.

Then, we decompose En
2 (t) as the sum of four terms:

En
2 (t) = E ′n

2 (t) + E ′′n
2 (t) + E ′′′n

2 (t) + E ′′′′n
2 (t),

where

E ′n
2 (t) =

1

Kn

Kn−1∑
j=0

((
Λn

5 (tj)
)2 − ρn

ℓ2n

∑
i∈Dn

tj

(tjn− 2ℓn − i)2
∫ i∆n

(i−1)∆n

E
[
ν2
s | F(i−1)∆n

]
ds

)
,

E ′′n
2 (t) =

ρn
ℓ2nKn

Kn−1∑
j=0

∑
i∈Dn

tj

(tjn− 2ℓn − i)2
∫ i∆n

(i−1)∆n

E
[
ν2
s − ν2

(i−1)∆n
| F(i−1)∆n

]
ds,
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E ′′′n
2 (t) =

ρn
ℓ2nKn

Kn−1∑
j=0

∑
i∈Dn

tj

(tjn− 2ℓn − i)2
(
ν2
(i−1)∆n

− ν2
t

)
∆n,

E ′′′′n
2 (t) =

ρn
ℓ2nKn

Kn−1∑
j=0

∑
i∈Dn

tj

(tjn− 2ℓn − i)2ν2
t∆n.

By construction, E[E ′n
2 (t)] = 0 and, as in the proof for E ′n

1 (t),

E
[(
E ′n
2 (t)

)2] ≤ C

Kn

Kn−1∑
j=0

E
[(
Λn

5 (tj)
)4]

,

where, since ζni (5) in the definition of Λn
5 (tj) is an Fi∆n-martingale,

E
[(
Λn

5 (tj)
)4]

=
∑
i∈Dn

tj

E
[(
ζni (5)

)4]
+ 4

∑
s,i∈Dn

tj
:s>i

E
[(
ζni (5)ζ

n
s (5)

)2]
.

From the proof of Theorem 1:

E
[(
ζni (5)

)4] ≤ Cρ2n∆
2
n

ℓ4n

∑
i∈Dn

tj

(tjn− 2ℓn − i)4 and E
[(
ζni (5)

)2] ≤ Cρn∆n

ℓ2n

∑
i∈Dn

tj

(tjn− 2ℓn − i)2.

Standard formulas for calculating the sum of powers of integers yield∑
i∈Dn

tj

(tjn− 2ℓn − i)4 =
96ℓ5n + 120ℓ4n + 40ℓ3n − ℓn

15
,

and ∑
i∈Dn

tj

(tjn− 2ℓn − i)2 =
8ℓ3n + 6ℓ2n + ℓn

3
. (38)

Hence,

E
[(
ζni (5)

)4]
= O(ρ2n∆

2
nℓn),

and it follows that E ′n
2 (t) = op(1).

For the second term,

E
[
|E ′′n

2 (t)|
]
≤ M

ρn∆n

ℓ2nKn

Kn−1∑
j=0

∑
i∈Dn

tj

(tjn− 2ℓn − i)2,

where M = E
[
sups∈[t−Knℓn∆n,t] |ν2

s −ν2
t |
]
. Since ν is càdlàg and Knℓn∆n → 0, M = op(1). The sum

was computed in (38), so combining the terms shows that

ρn∆n

ℓ2nKn

Kn−1∑
j=0

∑
i∈Dn

tj

(tjn− 2ℓn − i)2 =
8

3
ρnℓn∆n + o(1),
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where

8

3
ρnℓn∆n →

0, if ℓn
√
∆n → 0,

8

3
, if ℓn

√
∆n → θ > 0 or ℓn

√
∆n → ∞.

As such, E ′′n
2 (t) = op(1).

Following the above steps, we also deduce that

E ′′′n
2 (t)

p−→ 0.

The last term can be written as

E ′′′′n
2 (t) = ν2

t

(
ρn∆n

ℓ2nKn

Kn−1∑
j=0

∑
i∈Dn

tj

(tjn− 2ℓn − i)2

)
,

where the sum on the right-hand side is given by (38). As a consequence,

E ′′′′n
2 (t)

p−→

0, if ℓn
√
∆n → 0,

8

3
ν2
t , if ℓn

√
∆n → θ > 0 or ℓn

√
∆n → ∞,

which handles the analysis of En
2 (t).

To finalize the proof up, we notice that Rn(t) is an average of terms that all converge in

probability to zero, and therefore it also converges in probability to zero. ■

A.4 Proof of Theorem 3

We largely copy from the proof of Theorem 2. Therefore, many repeated details are omitted and

we concentrate on explaining the main differences.

The observed asymptotic local variance can again be expressed as follows:

âvar(∇λ̂t) =
ρn
Kn

Kn−1∑
j=0

(
λ̂tj − λ̂tj−ℓn∆n

)2
,

where tj = t− j∆n.

This can further be split into

âvar(∇λ̂t) = En
1 (t) + En

2 (t) +Rn(t),

where

En
1 (t) =

1

Kn

Kn−1∑
j=0

(
Λn

3 (tj)
)2
,

En
2 (t) =

1

Kn

Kn−1∑
j=0

(
Λn

5 (tj)
)2
,

Rn(t) = âvar(∇λ̂t)− En
1 (t)− En

2 (t).
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The only difference here compared to the proof of Theorem 2 is the definition of tj. It therefore

follows that Rn(t) = op(1). So, to complete the proof it suffices to establish the convergence of

En
1 (t) and En

2 (t).

As above, we add and substract µ(i−1)∆n terms to write

En
1 (t) = E ′n

1 (t) + E ′′n
1 (t),

with

E ′n
1 (t) =

1

Kn

Kn−1∑
j=0

((
Λn

3 (tj)
)2 − ρn

ℓ2n

∑
i∈Dn

tj

µ(i−1)∆n

)
≡ 1

Kn

Kn−1∑
j=0

ϵ(tj),

E ′′n
1 (t) =

1

Kn

ρn
ℓ2n

Kn−1∑
j=0

∑
i∈Dn

tj

µ(i−1)∆n = 2
ρn
ℓn

1

2Knℓn

Kn−1∑
j=0

2ℓn∑
i=1

µt−(i+j)∆n .

where ϵ(tj) =
((

Λn
3 (tj)

)2 − ρn
ℓ2n

∑
i∈Dn

tj

µ(i−1)∆n

)
. As before, E

[
E ′n
1 (t)

]
= 0, but now the variance of

E ′n
1 (t) has a more complicated structure due to the overlapping sampling:

E
[(
E ′n
1 (t)

)2]
=

1

K2
n

Kn−1∑
j=0

E
[(
ϵ(tj)

)2]
+

2

K2
n

Kn−2∑
j=0

Kn−1∑
s=j+1

E
[
ϵ(tj)ϵ(ts)

]
.

Notice that, for s > 2ℓnj, Dn
tj
(t) ∩ Dn

ts(t) = ∅, which implies that E
[
ϵ(tj)ϵ(ts)

]
= 0. On the other

hand, for every j and s,
∣∣E[ϵ(tj)ϵ(ts)]∣∣ ≤ E

[(
ϵ(tj)

)2]
, since the covariance is always smaller than

the variance in absolute value.

As a consequence,

E
[(
E ′n
1 (t)

)2] ≤ 1 + 4ℓn
K2

n

Kn−1∑
j=0

E
[(
ϵ(tj)

)2] ≤ C
ℓn
K2

n

Kn−1∑
j=0

E
[(
Λn

3 (tj)
)4]

,

where the second inequality follows from the arguments of Theorem 2. Now, employing the estimate

in (37), we deduce that

E
[(
E ′n
1 (t)

)2]
= O(K−1

n ℓ−1
n ρ2n).

Now, by the assumptions made in the theorem, it follows that E
[(
E ′n
1 (t)

)2]
= o(1). Hence, the

above inequality implies E ′n
1 (t)

p−→ 0.

In the E ′′n
1 (t) term, since by assumption ℓn/Kn → 0 and Kn∆n → 0, (Kn + 2ℓn)∆n → 0. This

shows that t− (i+ j)∆n → t for every i and j in the sum. Since µ is càdlàg, as ∆n → 0,

E ′′n
1 (t)

p−→


2µt, if ρn/ℓn → 1,

2

θ2
µt, if ρn/ℓn → 1

θ2
,

0, if ρn/ℓn → 0.
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Thus, alluding to the definition of ρn, we see that

En
1 (t)

p−→


2µt, if ℓn

√
∆n → 0,

2

θ2
µt, if ℓn

√
∆n → θ,

0, if ℓn
√
∆n → ∞.

■

A.5 Proof of Theorem 4

The statement of the theorem under H0 follows immediately by combining Theorem 1 and Theorem

3 with Slutsky’s theorem.

To complete the proof, we next look at the test statistic under H1, and we use the version based

on the non-overlapping observed asymptotic local variance in (25), ãvar
(
∇λ̂t

)
. In that case, the

test statistic can be expressed as (writing τib as τ):

ϕib
τ =

D̃τ,0√√√√ 1

Kn

Kn−1∑
j=0

D̃2
τ,j

,

where

D̃τ,j =
Nn(τ − (1 + 2j)δn, τ − 2jδn)−Nn(τ − (2 + 2j)δn, τ − (1 + 2j)δn)

nδn
,

for j = 0, 1, . . . , Kn − 1.

As in the proof of Lemma 1, we derive the stochastic order of the numerator and denominator.

Note that it again suffices to explore the diverging part:

Dτ,j =
Nn,β(τ − (1 + 2j)δn, τ − 2jδn)−Nn,β(τ − (2 + 2j)δn, τ − (1 + 2j)δn)

nδn
,

for which

E
[
|Dτ,j|

]
≤ E

[
Nn,β(τ − (1 + 2j)δn, τ − 2jδn) +Nn,β(τ − (2 + 2j)δn, τ − (1 + 2j)δn)

nδn

]
= E

[
Nn,β(τ − (2 + 2j)δn, τ − 2jδn)

nδn

]
= E

[
1

δn

∫ τ−2jδn

τ−(2+2j)δn

σu|τ − u|−αdu

]
≤ C

(1− α)δn

(
((j + 1)δn)

(1−α) − (jδn)
(1−α)

)
= Op(δ

−α
n ),

by the proof of Lemma 1.

Regarding the denominator,

1

Kn

Kn−1∑
j=0

D̃2
τ,j = Op

(
K−1

n

((
(Kn)

1−α − (Kn − 1)1−α
)
δ−α
n

)2)
= Op(δ

2α
n K−2α−1

n ),
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where the last inequality follows, since

lim
Kn→∞

K1−α
n − (Kn − 1)1−α

K−α
n

= C,

for a constant C.

In conclusion,

ϕib
τ = Op

(
K

1
2
+α

n

)
,

■
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B Diurnal variation in trading intensity.

Figure B.1: Nonparametric estimate of periodicity in intraday trading activity.
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Panel C: ED Panel D: ES
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Panel E: GC Panel F: TY
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Note. We plot a nonparametric estimate of the pointwise time-of-day mean intensity of the transaction count process for each futures
contract included in our empirical application. First, we count the number of transactions in each 15-second bucket over a day. Second,
we average the transaction count across days in our sample. In doing so, we split the sample into days with and without FOMC
announcements. Third, we normalize the estimates so the curve integrates to one.
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