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Abstract

We show that improved hedging of bond portfolios can be achieved by matching gener-
alized durations that are parametrized according to a parsimonious yield curve shape
which is dynamically consistent with a new term structure model with stochastic level,
slope, and curvature factors. Performance deteriorates if matching basic durations, or
generalized durations based on unrestricted factor models or dynamically inconsis-
tent curve shapes. The dynamic consistency approach accommodates standard affine
models as the special case in which locally deterministic factors are constant through
time, corresponding to the intercept in the affine yield, but hedging performance
deteriorates under this restriction.

Keywords: Hedging; generalized duration; bond portfolio; dynamic consistency; parsimo-
nious yield curve
JEL Classification: C32, C38, E43, G11, G12

This version: January 12, 2023

*We are grateful to Martin Mgller Andreasen, Christian M. Dahl, Francis X. Diebold, Damir Filipovi¢,
Esben Hgg, Bob Jarrow, Frank de Jong, Andreas Schrimpf, Peter Spencer, seminar participants at University
of Pennsylvania (2018) and Aarhus University (2021), and participants at the Sixth Annual Conference of
the International Association for Applied Econometrics at University of Cyprus (2019), the Annual Joint
European Economic Association and Econometric Society European Meetings at University of Copenhagen
(2021), the 14" Annual Meeting of The Risk, Banking and Finance Society at University of Cagliari (2021),
the 15" International Conference on Computational and Financial Econometrics at University of London
(2021), and the Conference in Memory of Tomas Bjork at the Swedish House of Finance (2022) for useful
comments, and to Center for Research in Econometric Analysis of Time Series (CREATES, funded by the
Danish National Research Foundation, DNRF78), the Dale T. Mortensen Centre, Aarhus University, and
the Danish Social Science Research Council (grant number 2033-00137B) for research support. Support
from the Danish Finance Institute (DFI) is gratefully acknowledged by Bent Jesper Christensen and Jorge
Wolfgang Hansen.

TAarhus University and CREATES. Email: dborup@econ.au.dk.

**Corresponding author. Aarhus University, CREATES, the Dale T. Mortensen Centre, and the Dan-
ish Finance Institute. Address: Fuglesangs Allé 4, DK-8210 Aarhus V, Denmark. Email: bjchris-
tensen@econ.au.dk, Phone: +4587165571.

T Aarhus University, CREATES, and the Danish Finance Institute. Email: jh@econ.au.dk.


mailto:dborup@econ.au.dk
mailto:bjchristensen@econ.au.dk
mailto:bjchristensen@econ.au.dk
mailto:jh@econ.au.dk

1. Introduction

The management of interest rate risk is of crucial importance in the financial sector, and
the success and failure of strategies have ramifications throughout the economy. Common
fixed income hedging approaches are largely cross-sectional in nature, e.g., combining
instruments of different maturities to match target durations, as in classical immuniza-
tion. However, hedging performance depends on properties of returns, suggesting that
dynamics should be accounted for. The term structure depends on multiple factors, and
annihilating exposure to these simultaneously requires a generalized duration matching
approach, involving the estimation of a host of parameters. Performance can potentially
be enhanced by exploiting parsimony, simplifying the specification of loadings by rely-
ing on the level, slope, and curvature structure of yield curves noted by Litterman and
Scheinkman (1991). However, such reduced parametrization of curve shapes is at risk
of being at odds with dynamic term structure theory, according to which the yield curve
simply cannot take on the restricted shape period after period. This calls the estimation
of parsimoniously specified loadings and the resulting trading strategies into question.
In this paper, we embed the cross-sectional portfolio construction within a dynamically
consistent modeling framework, and show that this leads to improved hedging perfor-
mance, based on weekly yield data from the Federal Reserve (FED) over the period 1983
through 2019 for model estimation, CRSP data for returns to the hedging target, and a
monthly rebalancing horizon. We build on the concept from Bjork and Christensen (1999)
of dynamic consistency between the shape of the yield curve and the stochastic process
or dynamic term structure model (DTSM) driving it. According to this notion, a curve
shape (a class of curves) is dynamically consistent with a DTSM if future yield curves
belong to the class, given that the current curve does, and that dynamics are governed
by the DTSM. In contrast, if a curve shape and a DTSM are dynamically inconsistent,
then the dynamics will instantaneously drive the yield curve away from the class, even
if it is currently of the given shape. The importance of dynamic consistency in hedging
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information that is not relevant for future yield curves, and hence returns. Removal of
such extraneous information facilitates parsimony and leads to forward-looking models
that are more likely to apply out-of-sample.

The conditions for dynamic consistency between a curve shape and a DTSM are that
the loadings from the curve shape, viewed as functions of maturity, span the yield drifts
and volatilities from the DTSM. These conditions are distinct from the requirement of
absence of arbitrage opportunities, which may therefore be imposed as an additional
condition. The joint hypothesis of dynamic consistency and no arbitrage is equivalent to
the condition that the loadings, besides yield volatilities, also span convexity and slope
adjustments, i.e., average slope (yield spread, or carry) and local slope (or roll-down).
In this case, the spanning coefficients in the yield volatility condition are given by the
volatilities of the state variables, and those in the condition on slope adjustments and
convexity by the state variable drifts. Inserting the first condition in the second produces
a condition resembling the fundamental term structure partial differential equation
(PDE), when viewed as an equation with the curve shape (loadings) as unknown, for
given state drifts and volatilities. Our viewpoint is dual to this, i.e., for given curve shape,
such as level, slope, and curvature, we look for spanning coefficients, taking instead
the state drifts and volatilities as the unknowns when seeking a dynamically consistent
DTSM. From this viewpoint, the relevant condition is an ordinary equation in spanning
coefficients, rather than a PDE.

A prominent theory based on the PDE viewpoint is that of Duffie and Kan (1996)
on affine term structure models (ATSMs). Here, by suitable affine specifications of the
assumed state drifts and volatilities (local variances), the relevant PDE is reduced to an
ordinary differential equation (ODE). Taking the short rate to be affine in the stochastic
state variables generates an initial condition that leaves all yields affine throughout. In
contrast, in the dynamic consistency approach, there is no requirement that the yield
curve satisfies the given curve shape at all times. Once it does, it will continue to do
so, i.e., the class of curves of the given shape is absorbing. Some of the state variables
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remain there, and the yield curve assumes standard affine shape, depending on calendar
time only through the stochastic state variables. For other values of the deterministic
state variables, their associated loading functions enter the yield curve with time-varying
coefficients, hence representing a generalization of the maturity-specific intercept in the
ATSMs. Furthermore, the dynamic consistency approach applies more generally, without
affine restrictions on state drifts and volatilities, outside the factor model case, and for
specifications not imposing the absence of arbitrage opportunities. We highlight all these
cases, and show the incremental economic value of the dynamic consistency approach,
without imposing the restrictions to the standard affine case.

For the hedging analysis, our starting point is a factor model for yields, governing
both the hedging instruments, which we take to be a set of zero-coupon bonds of dif-
ferent maturities, and the target to be hedged. We derive the optimal portfolio that
minimizes conditional hedging return error variance under generalized duration match-
ing. We investigate the possibility that performance can be enhanced by adopting a
parsimoniously parametrized curve shape that is dynamically consistent with a suitable
arbitrage-free DTSM, i.e., with loadings spanning convexity and slope adjustments, as
well as yield volatilities. Convexity can present a problem, because it involves maturity
times a quadratic in volatility, and therefore in loadings. Spanning this through loadings
can require augmenting the set of loading functions, and hence factors. Since volatility is
already spanned, convexity is unaltered by such augmentation. However, slope adjust-
ments change, and dynamic consistency requires that the new adjustments are spanned
by the augmented loadings.

We exploit dynamic consistency by imposing increasing structure in the estimation
of loadings over three stages. In the first, loadings are augmented as indicated, to span
volatility and convexity corresponding to a suitable DTSM, as well as slope adjustments,
and the factor model is estimated with the augmented loadings. This way, the dynamics
are indirectly brought to bear on the estimation, via the shape of the loading functions.
In the second stage, we model the dynamics directly. Based on the DTSM identified
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(fixed-maturity yield changes less slope adjustments). As excess returns are negative
slope-adjusted yield changes times maturities, modeling the latter brings in the dynamics
directly, and allows testing the no-arbitrage condition, following Christensen and van der
Wel (2019).! The reduction in the factor model stems from the fact that not all factors in
the dynamically consistent DTSM need be stochastic. Since the yield curve may not yet
have assumed the dynamically consistent shape, neither the current yield curve nor the
slope adjustments are restricted by this shape in the second-stage approach. Instead, in
the spirit of the general Heath, Jarrow, and Morton (1992) (henceforth HIM) approach of
conditioning on an arbitrary initial (current) yield curve, the latter is taken directly from
the data when computing the slope adjustments. In the third stage, if the current yield
curve indeed assumes the dynamically consistent shape, then slope adjustments take on
suitably restricted forms, too, and information is potentially lost by ignoring this. Jointly
imposing the restrictions from the DTSM on the dynamics and from the dynamically
consistent augmented curve shape on the current yield curve and the cross section of
slope adjustments leads to a filtering approach based on consecutive yield curves along
the dynamically consistent curve family.

Our reasons for requiring the absence of arbitrage opportunities, alongside dynamic
consistency, are that it serves as a criterion for correct model specification and provides
additional parsimony, as a limited number of market prices of risk are estimated, in
place of unrestricted mean parameters. While Joslin, Singleton, and Zhu (2011) find that
forecasts of factors are invariant to no-arbitrage restrictions in Gaussian DTSMs, our
hedged positions do not depend on factor forecasts, as generalized duration matching
removes factor exposure, so the gains in performance stem from reductions in model and
parameter uncertainty.

The popular Nelson and Siegel (1987) (henceforth NS) curve shape is used extensively
in the bond yield literature, and can be motivated by its level, slope, and curvature features.
We consider this as our leading case of a curve shape imposed for parsimony. The NS

factor loadings involve but a single parameter, which enters nonlinearly. We provide an

1Goliniski and Spencer (2017) similarly consider excess returns rather than yields for model estimation.



example of a DTSM that is dynamically consistent with the NS curve shape and features
time variation in both the three (linear) factors and the additional nonlinear parameter.
However, we also show that the NS curve shape is dynamically inconsistent with all non-
degenerate arbitrage-free DTSMs. Therefore, we augment the NS curve shape and show
that the resulting augmented NS (henceforth ANS) curve shape is dynamically consistent
with a certain arbitrage-free DTSM, which we label the ANS-extended Vasicek (1977)
model. The dynamically consistent DT'SM involves both a stochastic factor, associated
with slope, and two locally deterministic factors (or state variables). When freezing the
latter at their long-run levels, the DTSM reduces to standard affine (ATSM) form. We
investigate the value of ANS in hedging, using the three-stage approach.

The ANS-extended Vasicek model involves but a single driving Wiener process. As it
is widely believed that at least three stochastic factors govern term structure movements,
we introduce a DTSM with three driving processes. Motivated by the observed level, slope,
and curvature structure of yield curves, we set the volatility functions to be proportional
to the three NS loading functions. We label this the stochastic level, slope, and curvature
or SLSC model, and show that it is dynamically consistent with a curve shape involving
seven loading functions and seven factors, of which four are locally deterministic. Again,
when freezing the latter at their long-run levels, a standard ATSM emerges, in this
case corresponding to the so-called arbitrage-free NS or AFNS model considered by
Christensen, Diebold, and Rudebusch (2011) and Krippner (2015). This is a three-factor
affine model, an Ay(3) model in the Dai and Singleton (2000) classification.

In our empirical work, the target for assessing immunization performance is taken to
be a portfolio consisting of two-year, five-year, and ten-year coupon bonds with positive and
negative weights, based on CRSP data. Portfolios of zero-coupon bonds are constructed
on a monthly basis to minimize conditional hedging error variance while matching
generalized durations based on estimated loadings and idiosyncratic error variances,
and the resulting ability to hedge one-month target returns is recorded. Estimation
is performed based on weekly FED yield data using each of the methods outlined, i.e.,

unrestricted factor models for yields, parsimoniously restricted versions, augmented



versions requiring dynamic consistency with suitable DTSMs, reduced factor models
for slope-adjusted yield changes based on the same DTSMs, and state space models
fully exploiting both the relevant DTSMs and the dynamically consistent curve shapes
(loadings). We present results both for full-period estimation and for rolling estimation
using a four-year window of observations immediately preceding formation of the hedge.
The rolling estimation mimics a feasible out-of-sample strategy.

As a simple benchmark, we consider traditional immunization by duration matching.
All other methods involve estimation of loadings and idiosyncratic variances. We find
that generalized duration matching based on an unrestricted three-factor model for
yields offers only a modest gain over basic duration matching, in terms of root mean
squared error (RMSE). Further, for a parsimoniously restricted version based on the
NS curve shape, hedging performance deteriorates. Given that the NS curve shape is
dynamically inconsistent with all non-degenerate arbitrage-free DTSMs, this suggests
that the quest for gains from parsimony should proceed on a principled basis, exploiting
dynamic consistency.

For our first-stage approach to dynamic consistency, imposing the parsimonious ANS
curve shape leads to a gain in hedging performance relative to both NS and the correspond-
ing unrestricted factor model. These results are broadly supportive of the importance of
dynamic consistency. In the second stage, using a factor model for slope-adjusted yield
changes, as opposed to yields, performance deteriorates when based on an unrestricted
model, but improves when imposing the ANS-extended Vasicek model, hence reinforcing
the importance of the dynamics. In the third stage, performance deteriorates, relative
to the second-stage results. One possibility is that the DTSM (ANS-extended Vasicek)
is correctly specified, but that the yield curve has not yet reached the dynamically con-
sistent shape (ANS). In this case, the HJM approach of conditioning on an arbitrary
initial (current) curve proves its value, with better results in the second stage than in the
third. Another possibility is that the curve shape and DTSM are too restrictive, hence
calling for a more flexible curve shape, dynamically consistent with a more general DTSM.

Evidence pointing to the latter possibility is that the no-arbitrage condition is rejected



in the ANS-extended Vasicek model, which is particularly damaging, because it is the
arbitrage-free version of this model that is dynamically consistent with ANS. Thus, for a
more general specification, we consider the new SLSC model.

In the feasible rolling estimation case, hedging performance based on the SLSC model
is stronger than that based on the other approaches considered, and the no-arbitrage
condition is not rejected. Constructing standard pairwise model comparison ¢-statistics,
following Diebold and Mariano (1995) and Giacomini and White (2006), we find that
the improvement compared to our benchmark is significant. Moreover, using the Model
Confidence Set (MCS) of Hansen, Lunde, and Nason (2011) to compare performance across
all approaches considered, we find that the MCS includes both the second and third stage
SLSC approaches, along with the second stage ANS-extended Vasicek approach. For the
SLSC approaches, performance in the third stage is at least as strong as in the second.
The results suggest that the more flexible SLSC curve shape better accommodates the
current yield curve, and hence the cross section of slope adjustments, compared to ANS,
and that the SLSC model with three stochastic factors generates value, relative to the
ANS-extended Vasicek model with but one. Performance deteriorates when freezing the
locally deterministic state variables at their long-run levels, thus reducing the model
to the standard affine case (AFNS). Finally, instead of removing factor risk exposure
completely from the hedged position, we consider an alternative approach that relaxes
the generalized duration matching constraint and targets RMSE directly, thus trading
off conditional expected hedging error (bias) against conditional variance, rather than
minimizing the latter. However, the evidence favors the generalized duration approach.
Parsimony is again the likely reason. The generalized duration matching strategies
involve only estimated loadings and idiosyncratic variances, whereas those targeting
RMSE involve all model parameters, including state transition coefficients, thus adding
to estimation uncertainty.

Overall, the empirical results show that generalized duration matching by itself
does not suffice for improving hedging performance, relative to traditional immunization.

Neither does the combination with a flexible, parsimonious curve shape, motivated by prior



knowledge about relevant level, slope, and curvature yield curve shapes, and imposed
on factor loadings in the estimation of generalized durations. Instead, performance
is improved by requiring that the curve shape imposed on loadings be dynamically
consistent with a suitable DTSM. The latter can involve further parsimony and lead to
improved performance by allowing for arbitrary initial curve shape, in agreement with the
general HJM approach. In our analysis, adopting a sufficiently rich DTSM such that the
dynamically consistent curve shape is flexible enough to capture the current yield curve
and imposing this shape throughout generates at least as strong performance. The results
suggest that the shape of the yield curve is dynamically consistent with the stochastic
process driving it, but is not at the long-run equilibrium, where it reduces to standard
affine form. This indicates that the loadings associated with deterministic state variables
do not enter yield curves in fixed proportions over time, and this insight can be exploited
for immunization purposes.

Our work relates to a long tradition in finance. Redington (1952) introduced the
traditional technique of matching the basic bond duration measure of Macaulay (1938)
across assets and liabilities and coined the term immunization for this operation. This is
an entirely cross-sectional and essentially single-factor strategy, with duration capturing
the return sensitivity with respect to the target yield. Fisher and Weil (1971) documented
the relatively strong empirical performance of this approach. Nelson and Schaefer (1983)
acknowledge the possibility of a multivariate factor structure underlying market yields.
Return sensitivities with respect to individual factors are calculated as negative yield
sensitivities times maturity. The relevant immunization strategy matches the return
sensitivity with respect to each factor of the hedging portfolio to that of the target and
is fully invested, i.e., a value matching condition. This is achieved by considering £ + 1
hedging instruments in case of k£ factors, so there is no optimization. With more than
k + 1 instruments, Ingersoll (1983) seeks diversification by minimizing the sum of squared
hedging weights, subject to the return sensitivity and value matching constraints. This
approach only minimizes conditional hedging error variance if idiosyncratic return errors

are homoskedastic, corresponding to idiosyncratic yield variances declining quadratically



in maturity, whereas we allow for an arbitrary term structure of idiosyncratic variances.

Litterman and Scheinkman (1991) is a leading example of a cross-sectional approach
using the classical statistical factor analysis as the first stage in term structure hedging.
They find that three factors, labeled level, steepness (or slope), and curvature, adequately
describe the term structure. NS interpret their parsimoniously parametrized yield curve
shapes with monotonic and hump components in terms of short-, medium-, and long-term
factors, corresponding to the Litterman and Scheinkman (1991) slope, curvature, and
level factors, respectively. This motivates imposing the NS curve shape on loadings in the
factor analysis, for a reduction in complexity through savings in degrees of freedom, and
potentially improved hedging performance. Willner (1996) calculates the functional form
of the return sensitivities corresponding to the NS curve shape, labeling them level, slope,
and curvature durations. Diebold, Ji, and Li (2006) refer to these as generalized durations
and use them in an empirical hedging application based on the Ingersoll (1983) approach.
Other applications of the Ingersoll (1983) approach include Chambers, Carleton, and
McEnally (1988), Nawalkha, Soto, and Zhang (2003), Soto (2004), and Bravo and Silva
(2006), who consider different restrictions on loadings.? Carcano and Dall’O (2011) extend
the approach to allow for model error.

Some studies on hedging in other markets have instead used the full variance-
covariance matrix. Campbell, Serfaty-De Medeiros, and Viceira (2010) and Opie and
Riddiough (2020) use foreign currencies to hedge the exchange rate exposure in a given
portfolio of stocks and bonds. However, adoption of a common factor structure is natural
in fixed income markets. Some studies rely on closely related alternative specifications.
Agca (2005) calculates sample standard deviations at different maturities and fits one-
factor HJM volatility functions to these using cross-sectional regression. Galluccio and
Roncoroni (2006) advocate targeting cross-shape risk, or factor volatilities, rather than

cross-yield risk, or HJM volatilities, in hedging. Still, all these studies are cross-sectional

2While Macaulay (1938) duration is a weighted sum of raw terms to payments, the Chambers, Carleton,
and McEnally (1988) loading functions involve powers, corresponding to polynomial loadings for zero coupon
bonds. Nawalkha, Soto, and Zhang (2003) use powers in the differences between terms to payments and the
planning horizon (term to target payment to be immunized). The NS loadings are exponential-polynomial
functions.



in nature. The implications of dynamics for the curve shape are not exploited.?

The concept of dynamic consistency was introduced by Bjork and Christensen (1999),
and studied further by Filipovic (1999), but has never been exploited in hedging. The
analysis in Bjork and Christensen (1999) was cast in terms of forward rates, and relied
on the Stratonovich rather than the more familiar It6 stochastic calculus. We conduct our
analysis at the level of yields to maturity because this allows easier interpretation and
corresponds to how market prices are quoted, and we rely exclusively on the It6 calculus.
We introduce and explain the dynamic consistency concept in detail, and provide the first
complete proof from first principles of the fundamental result that the NS curve shape
is dynamically inconsistent with all non-degenerate arbitrage-free DTSMs. The result
was alluded to in Bjork and Christensen (1999) and Filipovié¢ (1999), but never proved
in detail.* The idea of incorporating a suitably augmented NS curve shape within an
arbitrage-free DTSM is pursued by Christensen, Diebold, and Rudebusch (2011) in their
AFNS model, and a related five-factor model is used by Quaedvlieg and Schotman (2020)
in a hedging application, still imposing standard affine form. The dynamic consistency
approach accommodates the generalization of the maturity-dependent intercept to a
time-varying mixture of the four linearly independent loading functions associated with
deterministic state variables in the SLSC model. We show empirically that this greatly
enhances hedging performance.

The paper proceeds as follows. The basic hedging framework is presented in Section 2,
and the optimal generalized duration matching portfolio is derived. Section 3 considers
parsimonious curve shapes and dynamic consistency. The empirical strategy is introduced
in Section 4. Section 5 presents the data, and Section 6 the empirical results. Section 7
concludes. The Appendix contains all proofs, as well as further details on implementation

and additional empirical results.

3Diaz et al. (2009) consider a stop loss strategy, replacing passive generalized duration matching by
active management for as long as interest rate forecasts are successful.

4The same is true for the textbook treatments, Christensen and Kiefer (2009), Filipovié (2009), and
Diebold and Rudebusch (2013).

10



2. The Hedging Framework

We consider the problem of hedging the return to some target asset, using m zero-coupon

*

;.1 for the next period target

bonds as the available hedging instruments.® Writing r
return, 741 = (F¢41.1q5---,7t+1,1,,) for the m-vector of returns to the zero-coupon bonds,
with terms to maturity 71 <... < 1,,, and w for the m-vector of hedging portfolio weights

to be chosen at time ¢, the problem is of the type
mu%nvart (rioi—w'ri), (1)

minimization of conditional hedging error variance as of time . We focus on the case that

the target is a bond portfolio, so (1) is a version of the classical immunization problem.
To relate returns to yields, write zero-coupon prices as p;; = exp(—Ty; ), with y; ;

the continuously compounded yield at time ¢, for term to maturity 7. The log return

rt+1, = 10gpt+1,r - 10gpt,1+1 is then given by
rivlr = _TAyt+1,r > (2)

with Ay;117 = ¥t+1,1 — ¥t the constant maturity yield change, for purposes of conditional
variance minimization, cf. (1). More precisely, the excess return above the risk-free rate

(short yield) y; 1 is

Te+lr —Yt,1= —TYt+1,7» 3)

with ;.1 the slope-adjusted yield change,

Yer+1 — V1 Yo+l ~ Yt
T T+ -7

; 4)

Y+l = Ayt+1,r -

namely, the raw yield change adjusted for average slope (yield spread, or carry), as
well as local slope (or roll-down) at 7.5 From (3)-(4), as the short rate and both slope

adjustments are read off the yield curve at ¢, only terms in the information set and thus

5The extension to coupon-bearing instruments is considered in Appendix A.3.

6Christensen and van der Wel (2019) derive (3)-(4) as an approximate excess return relation. Proof of
the exact relation is given in Appendix A.1. The denominator in the local slope (last term in (4)) can differ
from unity if time steps in calendar and maturity dimensions differ.
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of zero conditional variance are suppressed in (2), which therefore suffices for conditional
variance minimization.

Traditional immunization amounts to combining the hedging instruments in a portfolio
with weighted average duration matching that of the target. Because the duration of a
zero-coupon bond is maturity, application of (2) to w'r;,1 shows that duration matching
neutralizes returns if yields are common across maturities. As they are not, we consider a
generalized duration matching strategy that minimizes residual or idiosyncratic risk (1)
after removing exposure to common term structure factors by matching suitably defined
generalized durations. To this end, we consider a factor model for yields.

Writing y: = (¥t.1y5.--,¥1,1,,) for the yields at time ¢ to the zero-coupon bonds, the

classical factor analysis structure is

Yi=u+Bfi+éeg, (5)

with u the m-vector of mean yields, f; a k-vector of common, covariance-generating
factors, £ < m, with k& x k variance-covariance matrix var(f;) = Z, B an m x k matrix of
factor loadings of rank %, and €; an m-vector of error terms, assumed independent of f;
and idiosyncratic, i.e., ¥ = var(&;) is diagonal.

Combining (2) and (5), returns are given by
res1 = —TBAfrs1+Aes11), (6)

with 7 = diag(ry,...,7,;) the m x m diagonal matrix with the maturities along the di-
agonal. Thus, the m x £ matrix 7 B, maturities times loadings, represents the return
sensitivities or generalized durations of instruments with respect to factors. In particular,
the generalized durations of the i*" zero-coupon bond are given by 7,b;, maturity times

b;, the i*" row of B. The return to the hedge portfolio is then
w'rie1 =—w'T (BAfis1+A€41), (7)

i.e., w'T B is the 1 x k row vector of generalized durations for the portfolio.

*

The target return, r;, ,,

is assumed to obey the factor model, too, with generalized

durations given by the 1 x k& vector (7b).. Analogously to (6), r;, ; = —(7d). Afi+1 +Agj, 4,

12



where Ag;, ; is an idiosyncratic target return error, with variance ¥*, a scalar, and

uncorrelated with Af;,1 and Ags1. Combining with (7), the hedging error is
rig—wren=(WTB-@b).)Afis1+Ae; 1 +w'TAgiq. (8)

Generalized duration matching amounts to imposing w’7 B = (b). on the portfolio selec-
tion problem (1), thus removing all factor exposure from the hedged position. In this case,

by (8), the conditional hedging error variance is
var, (r;—w're) =Y +w'TYTw. 9)

In a complete market with only factor risk, generalized duration matching would identify
a perfect hedge. In practice, in the incomplete market case, (9) applies. Since the first
term on the right side is outside the portfolio manager’s control, we consider minimization
of the second term. The approach of Ingersoll (1983) is instead to minimize w'w. Evidently,
this approach is only variance minimizing if idiosyncratic yield variances ¥ are declining
quadratically in maturities 7, whereas our approach applies for arbitrary ¥ > 0.

The following theorem provides the optimal portfolio, subject to generalized duration
matching, both with and without the additional value matching (or full investment)

constraint that weights sum to one, w't =1, with 1 =(1,...,1).7

Theorem 1. The immunization portfolio w that minimizes conditional hedging error

variance subject to generalized duration matching,
mu%n var (r;, —w'rer1) s.t. w'TB=(b)., (10)
is given by
o =T"¥'B(B'Y1B) " (rb).. (11)

The immunization portfolio w* that minimizes conditional hedging error variance subject

to both generalized duration and value matching,

min var; (r;f+1 - w'rt+1) s.t. wWTB=(@1b), and whi=1,
w

TAll proofs are in Appendix A.
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is given by
(12)
with w from (11), and

A=T(¥'-¥'B(B'Y'B)'BY")T "

Since generalized duration matching removes all factor exposure, the weights in Theo-
rem 1 do not depend on X.® Value matching requires adjustment of the portfolio @ from
(11), and hence (12). Simple scaling by (&0't) " would violate generalized duration matching,
thus reintroducing factor exposure. Further, by the Theorem, the hedging portfolio only
depends on the target through the generalized target durations (7b).. If the target takes
the form of a single, known payment 7. periods hence, then (7b). = 7.b., with b, the 1 xk
vector of factor loadings of the yield to the hypothetical 7.-period bond. More generally, if
the target is a certain payment stream, then each payment has generalized durations of
this form, and the stream has generalized durations given by the value-weighted average
of these. Theorem 1 applies to such streams, too. In the applications, we fit the factor
model only to the hedging instruments, then interpolate generalized durations of the
target, thus accommodating situations without time series observations on target returns,

e.g., company liability streams.’

3. Parsimonious Curve Shape and Dynamic Consistency

The unrestricted factor model (5) involves the estimation of a host of parameters, thus
opening the door to possibly large estimation error. Writing var(y;) =Y =BXB'+ ¥, the
classical factor analysis takes X = I, and B'Y~1B diagonal for identification, so there
are mk — k(k —1)/2 parameters in B, and m in V. In a typical yield panel covering m =8
maturities as in our application and with 2 = 3 factors, this amounts to 29 parameters in

Y, against m(m +1)/2 = 36 in the unrestricted variance-covariance matrix, i.e., not a great

8Replacing B, b by B2, b312 leaves (11)-(12) unaltered as Z'/2 cancels.
9Appendix A.3 provides details on interpolation and hedging in case the target and/or the instruments
are general streams, e.g., coupon bonds.
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reduction. We propose a number of increasingly structured approaches to incorporating

restrictions from the shape of the yield curve on the loadings B.

3.1. Flexible parsimonious forms

In (5), the j* column of B holds the sensitivities of yields to the j% factor. It can be
natural to model these by a known function of maturity and a small number of parameters,
say, T— Bj(t;y), where B;( - ;y) takes a simple form, and y is estimated. In this case, the
parsimoniously parametrized shape of the yield curve 7 — y(¢,7) at ¢ is represented as

k
y(t,1)= ) Bi(t;V)f1j = BT;V)fe, (13)
=1

where the functions Bj( - ;y) are linearly independent, and B(7;y) is 1 x k. Imposing this
structure on (5), we have y; ;, = y(¢,7;), B;j = Bj(7;;Y), and & ; is the measurement error.

Consider, for example, the NS curve shape given by

1-e9° 1-e97 _
=t [ e () ”
at at

for some parameter a. Thus, £ = 3, and in the representation (13), the loading functions

are

_,—aT _,—aT
l1-e l1-e —e‘“’) (15)

e e
on the level, slope, and curvature factors, respectively, using tildes to indicate the spe-
cific as opposed to generic loading functions.'® The generalized durations obtained by
multiplying maturity 7 on each loading function in (15) generates the level, slope, and
curvature durations proposed by Willner (1996).

With a curve shape, such as that of NS, imposed on the loadings in (5), (1, 7,2, V) is
estimated, rather than (u,B, V). In particular, £ must be estimated if B(-) determines

scaling and rotation, such as in the NS case. Still, with g = dimYy, only g + £ parameters

are estimated in (B(y),X) with uncorrelated factors, and g+ k(k + 1)/2 with correlated,

0The NS curve is frequently seen in the forward rate representation, which has different loading
functions, with clear interpretation in terms of level, slope, and curvature. We show in Appendix A.4 that
the yield representation (14) is equivalent to the well known forward rate representation, and that the
level, slope, and curvature interpretation carries over to the yield case.
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instead of the mk — k(k — 1)/2 free parameters in B in the classical factor analysis. In the
NS case, B(y) = B(a), where B(a) has columns determined by (15), i.e., Y=a,and g =1.
This implies only 4+ m variance-covariance parameters (a, X, ¥) with uncorrelated factors,
and 7+ m with correlated. For m = 8 maturities, this corresponds to 12 or 15 parameters,
compared to 29 in the general factor model, (B, ¥), and 36 in the unrestricted case, hence

providing considerable parsimony.

3.2. Intra-period yield curve movements and dynamic consistency

An important issue when restricting the yield curve to a parsimoniously parametrized
shape, which we will elaborate on in this section, is that the restricted curve shape can
lead to dynamic inconsistency. Assume that intra-period movements in yields between
the discrete rebalancing dates ¢ and ¢ + 1 are governed by a continuous-time DTSM. We

consider a general HJM specification,
dy(t,7)=a(t,7)dt+o(t,7) dW(2), (16)

since this is explicitly a framework for the dynamics of the entire curve 7 — y(¢,7), and
thus well suited for the study of curve shapes. In (16), a(¢,7) is the instantaneous drift of
y(t,1), o(t,T) a d-vector of volatilities, and W(¢) a d-vector of standard Wiener processes,
with a, o adapted to {W(¢)};. For each 7, (16) specifies the stochastic differential of
the real-valued process {y(¢,7)};, the constant-maturity yield. Alternatively, (16) can be
viewed as a single equation of infinite dimension across 7, giving the differential of the
process {y(¢, -)}; on the space of curves 7 — ¢(7).!! In this framework, a particular DTSM
is identified with the choice of (a,0).

Although there is some resemblance between (16) and the yield factor model (5), the
one-period factor loadings B, which by Theorem 1 are needed for hedging in discrete time,

cannot be identified with the continuous-time volatilities o(:). At each instant, increments

HThis notion can be formalized as in Bjork and Christensen (1999) and Da Prato and Zabczyk (2014) by
considering the curve space as a suitable Hilbert space, e.g., the space of differentiable curves equipped
with the inner product < c1,c2 >= [ c1(t)ca(1)d, for 7 the longest maturity (10 years in our empirical
work), and imposing sufficient conditions on a and ¢ (local boundedness and Lipschitz continuity in ¢) to
guarantee a solution. The specific models we work out satisfy these conditions.
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to the function (yield curve) y(t,-) are added in the directions given by the two functions
a(t,-) and o(¢,-) in (16), and B in (5) must account for the cumulated impact over discrete
intervals (between £ and £ + 1) of both of these effects. As we show, this implies that there
are at least as many factors in the discrete-time f; as in the continuous-time W(%), i.e.,
k = d, but there are typically more, £ > d. Thus, restricting B to be dynamically consistent
with a particular DTSM can save not only on parameters, but also on number of driving
processes. Conversely, for a given DTSM with d-dimensional W(¢), it may be necessary to
consider more factors for dynamically consistent discrete-time hedging, i.e., hedging uses
certain extended loadings B, of dimension m x k, with 2 = d. The exact relation between
the DTSM (in particular, o(-)) and B is subtle, and is the topic of the following dynamic
consistency theory.

Consider a class of potential yield curves Y (r,x), parametrized by x € X < R*, a
suitable parameter (or state) space, i.e., the classis JV ={Y (-,x)|x € X'}. Let Ty =inf;{¢:

dx € X's.t.y(¢,-) =Y (-,x)} be the first hitting time for ) under (16).

Definition 1. (a) Dynamic consistency between a DTSM (a,0) and a class ) of yield
curves means that if the yield curve dynamics are governed by (16), then y(t,-) € ), for

tZTy.

(b) Strong dynamic consistency between (a,0) and ) means that if the yield curve dynam-

ics are governed by (16), then y(t,7) =Y (1,x(t)), for t = Ty, with
dx(t) = p(t)dt +w(t) dW(t), (17)

for suitable ¢, v such that (17) has a strong solution.

Thus, Ty represents the first time the yield curve y(¢,-) assumes a shape within the curve
family ). By Definition 1.(a), under dynamic consistency, the curve remains in the family,
once there, if movements in interest rates are described by (16). The class ) is invariant
under the action (16). The yield curve for ¢ = Ty is T — Y (7,x(%)), for suitable x(¢) € X,
which therefore serves as the relevant state variable. This obeys dynamics of the type
(17) under mild regularity conditions that we henceforth assume (full rank of Y /0x’ and

invertibility of x — Y (-,x) on ) suffice). Moreover, if (17) has a solution, so does (16), so
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we henceforth use dynamic consistency and strong dynamic consistency interchangeably.
The initial condition for (17) is x(T'y) = xy, where xy, satisfies y(T'y,7) =Y (7,xy). Further,
given y(¢,7) =Y (1,x) in ), for suitable x, we assume that the volatility o(¢, 1) takes the
form o(7,x), for t = Ty, depending on time ¢ only through the state variable x = x(¢), and
similarly for the drift, a(r,x). In this case, imposing the same (Markov) condition on
the coefficients in (17), ¢(x) and y(x), is without loss of generality, hence leading to the

following technical assumption.
Assumption 1. The SDE

dac(t) = p(oc(2))de + w(x(2)) dW(2) (18)
with initial condition x(Ty) = xy has a strong solution.

In the HJM representation, a, 0 must be adapted to {W(¢)};. Under Assumption 1, they
are.

If the curve shape ) is linear in x, i.e., Y (7,x) = B(1)x, with B(r) a 1 x k& vector not
depending on x, then we have the case (13), a factor model, and we write B for ). In case

of the NS curve shape,

1—eaT 1—e-aT
Y (1,x) =x1 +x9 ( © ) +x3 ( c __ e_‘”) , (19)
at ar

with fixed a, we obtain a factor model, Y (7,x) = B1.3(r)x, with x = (x1,x2,x3)’, loading
functions from (15), and dY/0x’ = B1.3(7) not depending on x. In contrast, if a is considered

part of the state variable x, i.e., x = (x1,x9,x3,a)’, then

oY i
a_x,(T,x):( B13(t;0) % ) (20)
with
oY 1(l-e@ 1.
—:——( © —e_‘”)(xg +x3)+7e a3 = ——Bs(1,a)(xg +x3)+Te Tag.  (21)
Oa a at a

Since 0Y/0a depends on x, (19) is not a factor model for time-varying a. Thus, whether or
not NS is a factor model depends on whether a is fixed or allowed to vary over time.

For smooth movements in x(¢), t = Ty, dynamic consistency between (a,0) and the
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yield curve family )) would be equivalent to the conditions that a(r,x) and the d coordinate
functions of o(r,x) all be spanned by the parameter derivatives 0Y (-, x;)/0x of the yield
curve function. But smooth movements do not accommodate the Wiener processes in (16)

and (18). Instead, we have the following.

Proposition 1. Dynamic consistency between the DTSM (a,0) and the yield curve family

Y is equivalent to the existence of suitable ¢, v satisfying Assumption 1 and the conditions
2

O0x0x’

oYy 1
a(r,x) = a—x,(r,x)cl)(x)+ P (T, 0)p (@) px)|, (22)

oY
o(t,x) = @(T,x)w(x)’, (23)
for all (t,x), where tr(-) is the matrix trace.

Thus, the dynamic consistency conditions involve a drift condition and a volatility condi-
tion. Inclusion of the trace term in the former circumvents a switch from the It6 to the
Stratonovich stochastic calculus invoked in Bjork and Christensen (1999). It enters non-
trivially for nonlinear curve shapes. Corollary A.5.1 provides an example of a DTSM (a, o)
that generates NS curves with time-varying coefficient a(¢) in the exponent. Thus, this
is not a factor model, and the trace term is non-zero. This shows that neither nonlinear
dependence on state variables nor NS curve shape precludes dynamic consistency.
Dynamic consistency is a property tying the cross-sectional curve shape to the dynam-
ics and is distinct from the absence of arbitrage opportunities. To state the dynamic con-
sistency condition under the additional no-arbitrage condition, we show in Appendix A.5

that the relevant arbitrage restriction on yield drifts is
1 )4 T , ,
a(r,x)=— [Y(T,x) —Y(O,x)] + a—(r,x) + éa(r,x) o(t,x)+0(1,x) Ax). (24)
T T

The last two terms are convexity and risk compensation, based on suitable market prices
of risk A(x). In addition, the no-arbitrage condition involves adjustments for average slope
or yield spread (first term in (24)), as well as local slope of the yield curve (second term),

like the slope-adjusted yield changes (4).12 By (24), an arbitrage-free DTSM is identified

12HJM consider forward rates with maturity date T, f(¢,T), and derive the no-arbitrage condition
ap(t,T)=o0y(t, T) LT o¢(t,u)du under the risk-neutral measure, subscripts f indicating forward rates. In
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with (A,0). The conditions for dynamic consistency between an arbitrage-free DTSM and
a yield curve family include the original volatility condition (23) and a condition equating
the right sides of (22) and (24) (see Proposition A.7.1 in Appendix A.7).

If a curve family ) and a DTSM are not dynamically consistent, we say that they
are dynamically inconsistent. In this case, even if the yield curve at some point in time
belongs to ), it will deviate from this shape at some later point in time, i.e., it will leave
Y if dynamics are governed by the given DTSM. The no-arbitrage condition (24) renders

NS dynamically inconsistent with all non-degenerate DTSMs, i.e., models with o(z,x) # 0.

Corollary 1. The NS curve shape is dynamically inconsistent with all non-degenerate

arbitrage-free DTSMs, whether a is fixed or not.

The corollary calls any procedure relying on NS into question, including using NS curve

shape for parsimony in hedging. It is in conflict with yield dynamics, and hence returns.

3.2.1. Factor models

It is useful to write out the previous conditions in the special case of a factor model B, i.e.,

the curve shape is Y (1, x) = B(7)x, for given loadings B(-).

Corollary 2. Dynamic consistency between the arbitrage-free DTSM (A,0) and the factor

model B is equivalent to the existence of suitable ¢, v satisfying Assumption 1 and

% [B(1)—B(0)]x+ % (T)x + %a(r,x)'a(r,x) +0(1,x) Ux) = B(1)p(x), (25)

o(7,x) = B(n)y(x), (26)

for all (t,x).

Thus, for given curve shape Bx and DTSM (A,0), dynamic consistency investigations
involve determining coefficients (¢, ), i.e., the drift and volatility of the state process (18),

solving (25)-(26). If a solution exists, then B and (1,0) are dynamically consistent.'3

(24), risk compensation appears because we consider the physical measure, convexity (in place of the term
involving an integral in HJM) and yield spread because we consider yields, rather than forward rates, and
local slope because our fixed term to maturity analysis avoids the bond aging effect noted by Litterman and
Scheinkman (1991) (details are given in Appendix A.6).

13The corresponding conditions for an arbitrary (not necessarily arbitrage-free) DTSM (a, o) take the
form a = By, ¢' = By’ (see Corollary A.7.1).
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Inserting (26) into (25) produces
1 0B T , , ,
- [B(1)-B(0)]x+ 5 (T)x+ §B(T)1//(X) w(x)B(1) = B(1)(¢p(x) — p(x) Ux)). (27)

This resembles the fundamental term structure PDE characterizing bond prices (here, the
yield curve) for given (¢, ). However, as we solve for (¢, %), our viewpoint is dual to that
in the PDE-based theories that assume a particular form of the state variable process
(18), thus taking (¢, y) as the starting point. A prominent theory in the latter category is
that on affine term structure models (ATSMs), in which the yield typically is written in
the form Y (7,%(¢)) = A(1) + B(1)x(¢), where B(7) satisfies a Riccatti ODE. This is clearly
the special case of the general form Y (7,x) = B(7)x in which one of the state variables
is constant, i.e., x(¢t) = (%(¢),1), B(r) = (B(1),A(1)), £ =d + 1. The dynamic consistency
approach accommodates the more general structure Y (7, x(t)) = B(1)x(t) +]§(T)a:c(t), say,
where x(t) is a vector of locally deterministic but potentially time-varying state variables,
with loadings B(). Thus, the time-invariant ATSM intercept A(7) is generalized to the
time-varying form B(7)%(¢) under dynamic consistency, x = (&', %), ¢ =(p, ¢, say, and
v’ =(,0) is k x d, where ¢, ¥ are the d x 1 state drift and d x d state volatility in the
ATSM, and % =d + 1 — indeed, typically 2 > d + 1, as we demonstrate.'*

If ¢ is affine, ¢p(x) = D(0 — x), where the constant k£ x k£ matrix ® satisfies stationarity
conditions, then 0 comprises the long-run means. Further, if the lower left (¢ —d) x d
block of ® vanishes, then % remains at 0, once there, #(t) = §, where 6 = (8',0'), because
neither the drift nor the stochastic shocks to the locally stochastic state variables move
x(t). We provide examples in which standard affine models are obtained in the special
case in which (i) the dynamically consistent curve shape is attained, and (ii) the locally
deterministic state variables happen to be at their long-run levels, so that the affine
model intercept is realized as A(7) = B()0. However, the generalization of A(7) to the
time-varying E(T)ozc(t) preserves dynamic consistency, and we show in the empirical section
that allowance for this feature greatly enhances hedging performance.

In ATSM theory, the affine curve shape applies throughout. This is due to the condition

14See Appendix A.8 for details on the ATSM case.
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that the short rate be affine, y(¢,0) =6y + 6'156(75), say, depending on time ¢ only through the
stochastic state variables x(¢). This generates an initial condition on the Riccatti ODE,
and the resulting solution for B = (B, A) leaves all yields affine in x(¢). In contrast, in the
dynamic consistency approach, there is no condition that any yield need satisfy the curve
shape condition y(¢,7) = B(1)x(t) at all times.

Thus, though the equations are formally similar, they are used differently in the
dynamic consistency and affine term structure theories.!® The former is more general and
applies to factor models with time-varying deterministic yield components, factor models
with non-affine state variable process (¢, ¥y, 'A non-affine in (25)-(26)), models outside
the factor model case (Propositions 1 and A.7.1, Corollaries 1 and A.5.1), and specifications
not imposing the absence of arbitrage opportunities (Proposition 1, Corollary A.7.1). Of
course, a given affine model, with specified ¢, ¥, A, and B = (B, A) solving the resulting
Riccatti equation, is dynamically consistent with the DTSM with HIM volatility o’ = By’
and drift (25), but more general curve shapes B = (B ,]§) can be dynamically consistent
with the same (1,0).

Consider a given volatility function, o. By (26), dynamic consistency with the factor
model 3 requires that functions of 7 in o(7,x)’ should be included among the curve shapes
represented by B(r). By (27), under the additional no-arbitrage condition, more functions
may be needed in B(7). The original curve shapes in B(1) on the right side of (27) must
include all the derived curve shapes arising on the left side. This is because curve shapes,
beside volatility itself, must account for the convexity this gives rise to, as well as slope
adjustments. To see how these requirements can lead to dynamic inconsistency, consider
again the NS case, with loadings (15). Depending on v, convexity in (27) can involve the

terms (1/2)B1(1)? = 1/2,

. 1 . .
5Ba(0? = = (Bo(r) - By(), (28)

15Given B(1), o(1,x), and Alx), equations (25)-(26) (and hence (27)) form an ordinary linear-quadratic
system in the (unknown) constants ¢(x), w(x), while for given functions ¢(-), w(-), A(:) satisfying the ATSM
conditions (see Appendix A.8), (27) is a system of linear-quadratic ODEs in the (unknown) functions B(-).
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with

_ A~ 2at
Bumy=1"%", (29)
2at1
and
Ts o 1.5 > T _92qr1 > >
533(T) = 5(32(1')_34(7))4'59 +7(Ba(1)— 2B4(1)) (30)

(the detailed derivations are in (A.7.7), (A.7.8) and (A.7.11)). If volatility (26) involves the
second NS loading, Bs(7), then convexity involves (28), and hence (29). As a function of 7,
the latter is linearly independent of the NS loadings (15), and of the slope adjustments
and remaining convexity terms based on these. Ultimately, this leads to violation of (27),
and hence dynamic inconsistency, cf. Corollary 1 (the proof in Appendix A.7 covers all

possible combinations of NS loadings in volatility (26)).

3.2.2. Dynamic consistency

Consider again the case that volatility is proportional to the second NS loading, B (7), i.e.,

1 _ e—ar)

o(1,x)= 1,U2(x)( (31)

with 19(x) # 0. By (28), convexity is spanned by Ba(7) itself and B4(t) from (29). This
suggests augmenting the set of NS loadings with B4(7), to meet condition (25). Since
volatility is already spanned, cf. (31), convexity is unaltered by this augmentation. Fur-
thermore, in this case, the augmented slope adjustments are spanned by the augmented

loadings, too, hence implying dynamic consistency under the no-arbitrage condition.

Proposition 2. The augmented NS (ANS) curve shape given by loading functions

31;4(T):( | e 1e 1) )

at at 2at

with fixed a is dynamically consistent with the arbitrage-free DTSM with drift

2 1—e 07
a(t,x) = (@ + Ax)pa(x) —alxe — x3)) °

e (W2(x)2
at a

1-— e—2a1 (33)
+ 2ax4) 2—
atT

—axg(
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and volatility (31), provided ¢(x) = ®(0 — x) given by

00 0 O 0 x1
2
0 a —-a O wig) +Mx)g2(x) X9
P(x) = - (34)
00 a O 0 x3
00 0 2a _ya@)? x4
2a2

and y(x) = (0,92(x),0,0) satisfy Assumption 1.

If wg(x)2 and A(x)wa(x) are affine in x, so is ¢p(x) in (34). In our empirical work, we take v,
A constant, so 6 represents the long-run means. By (33)-(34), the reduced ANS (RANS)
curve shape with loadings Bs.4(7), i.e., dropping the level B1(r), suffices for dynamic
consistency.'®

Once the curve shape y(¢,7) = B(1)x(t) is attained, the short rate takes the form
y(¢,0) = B(0)x(¢t). By I’'Hépital’s rule, B2(0) = B4(0) = 1 (see the proof of Corollary 1),
and B3(0) = 0, so in the RANS case, y(t,0) = xo(¢) + x4(t). Thus, the RANS yield curve

Bo.4(1)x9.4(2) is

y(¢,7) = Ba(1)y(¢,0) + B3(T)x3(t) + (B4() — B2(T)) x4(2)

1—e @7 1— -2at 1—e 07
( © - e-‘”) x3(t) + ( © 27 lx@®. (35)
2at at

—at

)y(t,O) + (

The augmenting loading, B4(7), enters with non-zero coefficient unless x4 = 0, a level it
will instantaneously leave due to non-zero drift, —o(x)%/a <0, cf. (34).

Besides xg, the stochastic state variable, x3 and x4 serve as additional state variables.
Although locally deterministic, 3 = ¢4 = 0, they are time-varying. Thus, writing out (18)
in the case from Proposition 2, we have dxs(t) = —ax3(f)d¢, dxs(t) = 2a(—w2(x)2/(2a2) -

x4(2))dt, and

Palx)? Ya(x)

dxo(t) =a 2 + /l(x)T —x2() +x3(2) | dt + wa(x)dWa(t). (36)

16As for arbitrary (not necessarily arbitrage-free) DTSMs, ANS is dynamically consistent with the
specification in Proposition A.9.1.
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The short rate dynamics are given by adding dxo(#) and dx4(2),

Walx)

a

dy(¢,0) =a | A(x)

—y(2,0) + x3(2) — x4(2) | dt + pa(x)dWa(?). 37)

From (37), the rate of mean reversion, a, in the short rate coincides with the rate of
decline of the volatility function (31). Inspection of the spanning condition reveals that
this relation is due to the slope adjustment.!” Further, in (37), the target for mean
reversion in the short rate is moving with the additional locally deterministic state
variables x(¢) = (x3(2),x4(t)) .

In the square-root case, wa(x) = 0/x2, as in the Cox, Ingersoll, and Ross (1985) (CIR)
model, x4 is stochastic, as xo enters its dynamics, dx4(¢) = 2a(—02x9(t)/(2a2) — x4(2))dt.
In the homoskedastic case, wa(x) = 0, the yield volatility function (31) is that from the

Vasicek (1977) model. In this case, the solution for x4(¢) is

~2a(t-Ty) o ~2a(t-Ty)
£a(t) = xg(Ty)e 2C) - 25 (1720 710)) (38)

and x3(¢) = x3(Ty)e_“(t_Ty ), for ¢t > Ty, with T'y the first hitting time when the yield curve
assumes RANS shape. Inserting these in (35) shows the evolution of the yield curve
explicitly. Its variation via x3, x4 only ceases when these are at their long-run levels of 0
and —02/2a2. In this case, the yield curve takes on standard affine shape,

-at 1—e™ 97 1-— e—2ar 0.2

)y(t,O) . ( - (39)

at 2at ) 2a2’

]__
y(t,1)= (

depending on time ¢ only through y(¢,0). This is now the sole state variable, and stochastic,
i.e., Z(t) can be taken as the short rate, and y(¢,7) = A(t) + Ba(7)y(t,0), with A(7) the last
term in (39), convexity divided by speed of mean reversion. The dynamic consistency
approach accommodates the more general yield curve shape (35), with additional time-
dependence through x(¢) = (x5(¢), x4(¢))’. Thus, A(7) is generalized to the time-varying
mixture of loadings B(@)x(t) given by the last two terms in (35). The DTSM with d =1
Wiener process drives the yield curve within the arbitrage-free dynamically consistent
curve family with &£ = 3 state variables, only reducing to the standard affine case with

k =1 state variable (the short rate) when the locally deterministic state variables are at

1From (A.9.9), the term —a(xg —x3) in (36) is required in ¢ to span the slope adjustment.
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their long-run levels.

It is worth noting that our ANS extension of the Vasicek (1977) model is different from
the extension by Hull and White (1990). The latter replaced the long-run level for the
short rate with a function of time, calibrated to fit the current yield curve. Such calibration
would typically be non-parametric (e.g., a spline), and so not parsimonious. In contrast,
our extension accommodates a fit to the current yield curve using the parsimonious ANS

curve shape with loadings (32), and secures dynamic consistency with this shape.

3.3. A stochastic level, slope and curvature model

The arbitrage-free DTSM from Proposition 2, which is dynamically consistent with ANS
curve shape, involves but a single Wiener process, Wo, driving the state variable xo
according to (36). Motivated by the observed level, slope, and curvature structure of
yield curves, we specify a DTSM with three driving Wiener processes and volatility
functions proportional to the three NS loading functions (15). From (30), with Bs(r)

-2at and

included in the volatility function, convexity involves the functions B5(7) = (1/2)e
Be(n)=1 (234(1) —Bg(r)). Therefore, these should be included as additional loadings for
dynamic consistency under the no-arbitrage condition, cf. (27). Also, as noted already,
the level factor loading B1(7) generates convexity 7/2. Spanning this requires a linear
(in maturity) loading function, i.e., diverging for long maturities, which is not realistic,
hence calling reliance on B;(7) into question.'® Further, B1(7) is the limit of Bo(r) as a | 0,
and as a reflects the rate of mean reversion for the associated state variable, cf. (36),
the state variable (level factor) associated with B1(7) would exhibit a unit root, which is
empirically unwarranted. Therefore, we henceforth (by slight abuse of notation) employ
the modified loading function B1(t) = (1-e~°7)/(b7) with small 5 >0, and 0 < b < a, in
place of the constant specification. As B1(7) takes the same form as Ba(7), with b replacing
a, Proposition 2 and the related discussion shows that an additional loading function
Bq(1) = (1-e72°7) /(2b7) (corresponding to (29)) is required, too.

Of the resulting seven state variables, three are associated with the driving Wiener pro-

18Note also that B;(r) dropped out of the reduced ANS curve shape in relation to Proposition 2.
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cesses, and four are locally deterministic. The model accommodates correlation between

the second and third state variables, i.e.,

v 0 0 0000
w(x) = 0  woalx) wasx) O 0 O O |- (40)

0  wsax) wssx) 0 0 0 O

The DTSM volatility function o(7,x) = B(1)w(x)' from (26) in this case takes the form

U(T”C)IZ( v11B1(1)  waeBa(t) +w32Bs(t) wasBa(r) +ys3Bs(1) ) (41)
= (1//11 (1_5;%) Va2 (l_f;m) + 3o (l_f;m ) + 133 (l_f;m —e_‘”) )

suppressing x in . Since for b small the first volatility function is associated with

—at

-at 1-e
—e ) W23( ar

an approximate level factor, this is a stochastic level, slope, and curvature or SLSC
specification.

For a more compact statement of the drift of the state variables x under the no-
arbitrage condition in the following theorem, write w(x) = ¥(x) w(x) = diag(w11(x), @(x), 04x4)

for their 7 x 7 block-diagonal local variance matrix. By (40), w11(x) = w%l(x), and @(x) is

given by
wo2(x) wa3(x) ~ w%z(x) + wgz(x) Wo2(x) oz (x) + W3a(x)yss(x)
w2s(x) wss(x) Ya2()W23(x) + Waa(x)yss(x) Y2 (x) + Y2 (x)

(42)

Theorem 2. The SLSC curve shape given by loading functions

~ _a—bt _a—ar _a—art _ _a—2at
Bl:7(T): 1-e 1-e 1-e —e 7 1-e

7,.-2at 1(,—ar _ ,—2ar 1—e~27
bt art art 2at 2€ a (e € ) 2bt (43)

with fixed a, b is dynamically consistent with the arbitrage-free DTSM with drift a(t,x) =

B1.7(1)¢p(x) and volatility function (41), provided w(x) from (40) and ¢(x) = (0 — x) with
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®=10 0 0 2¢ 0 -2 0 (44)

and

b—ﬂwfl +E My
ﬁ (4woz + Tw3zs + 10w23) + % (Aewag + (A2 + A3)Was + A3wss)
o7 (033 +2w23) + + (Agyag + Agy3s)
0= — 7 (2was + 5wss + 6wg3) (45)
w33

— 4 (333 +2093)

—g ¥
satisfy Assumption 1.

Of course, loadings can be combined differently, provided the span is maintained, e.g.,
Bg(1) can be replaced by exp(—2a7) in (43), because exp(—at) is spanned by other loadings,
exp(—at) = Ba(1) — B3(1). An alternative, more elaborate expression for the drift of the
state variables under the arbitrage condition, ¢(x), can be obtained by substituting (42)
in (45) (see (A.9.23)).1?

For state-independent volatilities, i.e., w;;(x) = w;j, i,/ = 1,2,3, the drifts of x(¢) =
(x4(2),...,x7(¢)) are deterministic. Thus, the locally deterministic state variables are, in-
deed, deterministic, although in general time-varying, with long run levels 0= (O4,...,07)
given by the last four entries in (45). In this case, if the yield curve y(¢,7) = B1.7(t)x1.7(¢) at
any point in time assumes the special shape y(¢,7) = 31;3(T)x1;3(t)+34;7(r)5, then it retains

this shape, since the drifts and volatilities of the deterministic state variables vanish.

19Regarding arbitrary (not necessarily arbitrage-free) DTSMs, the SLSC curve shape given by (43) is
dynamically consistent with the specification in Proposition A.9.2.
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This restricted version of the SLSC model, with curve shape y(¢,7) = A(7) + B1.5(7)x1.:3(2),
where A(1) = 34;7(1)5, corresponds closely to the AFNS model considered by Christensen,
Diebold, and Rudebusch (2011) (see Appendix A.10).2°

To summarize, the results from the present section suggest that if a parametrized
curve shape is adopted for parsimony in hedging, then it should be dynamically consis-
tent with a suitable DTSM. Otherwise, the optimal portfolio from Theorem 1 relies on

information that is in conflict with interest rate dynamics, and hence returns.

4. Empirical Strategy

We exploit dynamic consistency in hedging by imposing increasing structure in the
estimation of (B,Y¥) (required in Theorem 1) over three stages. Assume that initial
estimates have been obtained from the unrestricted yield factor model (5), as well as
from a restricted version imposing a parametric curve shape on B for parsimony. In
the first stage, if the given curve shape is dynamically inconsistent, we use the results
from Section 3 to augment it to achieve dynamic consistency with a suitable DTSM and
impose the augmented curve shape on B instead. In the second stage, we exploit the
consistent dynamics of the DTSM identified in the first stage using a reduced factor model
for slope-adjusted yield changes involving only the stochastic factors, and accommodating
the possibility that the current yield curve does not assume the dynamically consistent
shape. Finally, if it does, then so do future yield curves under the given DTSM, and
information is potentially lost by ignoring this. In the third stage, we fully exploit the
dynamics by jointly imposing the DTSM and the restrictions on the curve shape, leading
to a filtering approach along the dynamically consistent curve family. The second and

third stage approaches are presented in more detail in the following.

20The independent factor AFNS model is obtained by restricting the correlation between the slope and
curvature factors to zero, i.e., Wo3 = w32 = 0 in (40). Further, AFNS restricts b =0, so B1(1) =1, convexity
diverges in maturity, the first factor is an exact level factor exhibiting a unit root, i.e., there is no mean
reversion or stable long-run level 61, and in fact no affine representation.
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4.1. Reduced factor model for slope-adjusted yield changes

For the second stage, the model for the slope-adjusted yield changes (4) is obtained from an
Euler approximation to (16), using the arbitrage condition (24) for a(¢,7), and subtracting

the slope adjustments on both sides, producing
T
Vel = 50(xt, ) 0 (x4, ) + 0 (2, T) Moxy) + 0 (04, 7) w1 +Ur + €417, (46)

where w; 1 = tHleds, v; are maturity-specific pricing errors, and ;.1 are zero-mean
measurement errors. For a time-invariant volatility function o(x;, ) = 0(7), specification
(46) corresponds to that in Christensen and van der Wel (2019). This suggests that we
can use a reduced factor analysis (or the Kalman filter, in case of dynamics in 1; = A(x;)),
with the d < k factors given by w1, to estimate o(r). The analysis in Christensen and
van der Wel (2019) did not use parsimonious parametrization or curve shapes, but instead
focused on estimation with and without the no-arbitrage restriction v; =0, and the test of
this. Here, we impose the parametric restrictions from the curve shape B on the loadings
in the reduced factor analysis.

Consider a curve shape (factor model) 5 and a DTSM (A, 0) dynamically consistent with
B, with & factors in 3, d < £ Wiener processes in the DT'SM, and coefficents (¢, ) in the
state process (18). In (27), split ¢(x) into the coefficients for spanning slope adjustments,

and those for spanning convexity and risk compensation,

1 0B
;[B(r)—B(O)]x+a—T(T)x:B(rkpsa(x), 47)

%B(T)w(x)'u/(x)B (1) + B(Dy(x) Mx) = B(1)pr(x), (48)

with ¢(x) = ¢ (x) + Per(x). From (47), it is clear that ¢4, (x) is linear in x, ¢gq(x) = —Dgqx,
say. From (48), if w(x)'w(x) and yw(x)' M(x) are affine in x (see Section 3.2.1), S0 is ¢¢,(x) =
¢Gcr — Derx, say. In this case, Pp(x) = DO — x), with OO = ¢, P = Dy + D, If wilx) =y
(Gaussian state variables), then ®.,. purely reflects state-dependence in A(x). Under
the martingale measure (A(x) = 0), or just constant market prices of risk (A(x) = 1), we
have ® = @y, i.e., mean reversion corresponds to slope adjustment. Long-run levels 6 in

addition reflect convexity and risk compensation, whether or not ¥, A depend on x. The
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cross-sectional curve shape Y (17,x) = B(1)x only involves the parameters in B, so these are
parameters under the martingale measure. The market prices of risk under the physical
measure enter with the dynamics via ¢.,(x). In our empirical work, we focus on the case
without state dependence in ¥ and A, so @, =0, i.e., market prices of risk enter 6, not
.21

Inserting (26) and (48) in (46), with ¢,(x) = @0, it follows that
Fir1,0 =B@) (PO +y'wis1) +Ur + €417 - (49)

The resulting model can be estimated with and without the no-arbitrage restriction v; =0
imposed. Thus, shifting the factor analysis from the level of yields to slope-adjusted yield
changes allows reducing the number of factors from & in (5) to d (note that ' in (49) is
k x d, with k£ = d), and testing the no-arbitrage condition.??

For the ANS-extended Vasicek model, using B, ®, 0, and y from Proposition 2 in (49)

produces
2 2
- vy 5 Vs = 5
Yre1r=|"~ + w2l |Ba(r) - 734(T) +YoBo(T)wis1 +Ur +E4417, (50)

a single-factor representation with loadings restricted to WQBz(T), and means in addition
to loadings (volatilities) times market price of risk involving restricted convexity.?? The
specification (50) does not involve the term ¢4, (x) = —D;,x associated with parametrized
slope adjustments, cf. (47), since the slope-adjusted yield changes J;.1; from (4) are
modeled, i.e., the current yield curve and the cross section of slope adjustments are taken
from the data. The estimated a is used to construct the remaining loadings Bs(t) not
present in (50), but needed in Theorem 1. Similarly, for the SLSC model, B is given by
(43), ® by (44), 6 by (45), and ¥ by (40), so (49) is estimated with these specifications and
d = 3 factors in w¢+1. We set b = 0.02 to avoid problems with diverging convexity and

non-stationary factor dynamics. For this value, the first loading on the 10-year yield,

21Tn the ANS-extended Vasicek and SLSC models, @ in (34) and (44) represent @, in the general case,
also corresponding to ® = @, + @, under the stated conditions, because the last term vanishes.

22From the discussion, with affine state dependence in v/ or y’'A, the term ®6 in (49) is expanded to
@O — O, x;, and estimation relies on the Kalman filter (extended, if 1 depends on x) rather than factor
analysis.

23Tn our empirical work, we use the exact discrete-time version of (50) (see Appendix F.2 for the derivation
in the third-stage filtering case).
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the longest in our data, is B1(10) = 0.91, so the first factor loads nearly evenly over the

relevant range.

4.2. Filtering along the dynamically consistent curve family

The measurement equation in the third-stage filtering approach in the factor model case

is given by
y(t,7) = B(1)x(t) +&(t, 1), (561)

for the available maturities 7. The state transition equation is a discretized version of
(18). For dynamic consistency between the curve shape B(1) and a suitable DTSM (A, 0),
the coefficients (¢, ) in (18) are determined by (25)-(26).24 The resulting state space
model can be estimated by maximum likelihood based on the (extended) Kalman filter. In
case of affine state drift ¢(x) = P(0 —x) (e.g., if (1,0) do not depend on x, or if (¢, ) satisfy

ATSM restrictions), a simple Euler discretization of the transition equation is
x(t+1)= D0 + (I, — D)x(t) +y'w(t +1), (52)

which allows running the linear Kalman filter.?

The state space model (B, ¢, ) is a realization of the DTSM (A, 0), with measurement
equation (51) resembling the factor model (5), but now with serially dependent x(¢), which
is required for dynamic consistency. Nevertheless, Theorem 1 continues to apply, because
generalized duration matching removes all exposure to x(¢), so there are no gains to
exploiting the dynamics to forecast x(¢).26 The potential gain in hedging performance
stems from more appropriate model specification and thus improved estimation of the
parsimonious B.

In this third-stage approach, the shape B is imposed on the curve throughout (up to

24Without the no-arbitrage condition, (¢, ) instead satisfy (A.7.37) and (26). Outside the factor model
case, the measurement equation is y(¢,7) = Y (7,x(¢)) + £(¢,7), and (¢, y) satisfy (A.7.1) and (23) (or (22)-(23),
without the no-arbitrage condition).

25Tn our empirical work, we base the Kalman filter recursions on the exact discrete-time transition
equation (derived in Appendix F.2), using the Koopman, Shephard, and Doornik (1999) low storage
algorithm, with the updating step inserted in the prediction step to save on calculations, and modified to
the square-root case (see Appendix F.3).

26See also Appendix D.2 on this point.
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measurement error, cf. (51)), and the consistent (¢, ) are imposed on the state dynamics.
For comparison, in the first stage, the curve shape B is imposed, but not the dynamics
(¢,v). In the second stage, involving the switch from yields y;.1; to the slope-adjusted
yield changes j;,1 . from (4), the state dynamics are exploited via (P8, y) in (49), and B is
imposed on the factor loadings, but not on the full yield curve, as the current (time ¢) yield
curve and slope adjustments on the left side of (49) are taken directly from the data. This
is in the spirit of the HJM approach of conditioning on the initial (current) yield curve.
The third-stage approach combines the first and second stages by jointly imposing the
curve shape and the consistent dynamics.?’

In the ANS-extended Vasicek case, it follows from Proposition 2 that the RANS

loadings Bg.4 suffice for dynamic consistency. Thus, the measurement equation (51) takes

the form
y(t,7) = Bo(1)x2(t) + B3(1)x3(t) + B4(1)x4(t) + £(t, 7). (53)

While the second-stage model (50) includes B4(7), to span convexity based on yield volatil-
ity proportional to Ba(7), the third-stage model (53) accommodates B3(t), as well, in the
dynamically consistent curve shape. With ¢(x) given by the last three coordinates of (34),

and ¥ = (y2,0,0), the transition equation (52) is

2
xo(t+1) %t e l1-a a 0 xo(2) wows(t+1)
x3(t+1) | = 0 + 0 1l-a 0 x3(t) |+ 0 . (54)
2
x4(t +1) L 0 0 1-2a || x4® 0

a

If the first hitting time, Ty, when the yield curve assumed the dynamically consistent
ANS shape and the associated values xy of the state variables at that time were all
known with certainty, they could be used to initialize the filter. Because they are in fact
uncertain, we use an uninformed prior on x(0), and allow a transition shock of small but

fixed size. Similarly, filtering along the SLSC curve family (43), which is dynamically

27Relative to the second-stage approach, the third stage restricts the current curve and the slope ad-
justments according to the dynamically consistent shape, cf. (25) and (A.7.1). Typically, the second
stage involves as many parameters as the third, because B(1)(®6,v’) in (49) generically includes all the
parameters from (B, A, o) that enter (B, ®,0,1’), and this is the case in the models we implement.
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consistent with the arbitrage-free DTSM with volatility function (41), is carried out based
on the linear filter (51)-(52), with @, 6, and v from (44), (45), and (40), respectively, and

k =7 state variables, of which four deterministic and d = 3 stochastic.

5. Data

We use data from the Federal Reserve Board’s (FED’s) database of constant maturity zero-
coupon yields on U.S. Treasury bills, notes, and bonds. The terms to maturity considered
are 0.25, 0.5, 1, 2, 3, 5, 7, and 10 years. A weekly frequency data set is constructed by
extracting Wednesday observations drawn from the FED’s daily database, rather than
using their weekly database, which consists of weekly averages of daily data. Our sample
period runs from the first week of 1983 through the last week of 2019, for a total of 1,930
observations in the time series dimension. Starting in 1983 avoids the FED money supply
targeting experiment from 1979 to 1982 (see Sanders and Unal (1988)).

Table 1 shows means and standard deviations of the weekly data on the continuously
compounded annualized yields corresponding to the eight maturities. The term structure
of interest rates is upward sloping on average, with means monotonically increasing from
3.71% to 5.48%. The term structure of volatilities or standard deviations exhibits a hump
shape, with a maximum of 3.10% at two years, and a low of 2.77% at ten years. Figure 1
presents a three-dimensional view of the evolution of yield curves through calendar time,
revealing upward sloping, downward sloping, and hump shapes.

Table 1: Summary statistics

Mean and standard deviation for each of the eight weekly constant maturity zero-coupon yield series from
January, 1983, through December, 2019.

3mos. 6mos. 12mos. 2yrs. 3yrs. S5yrs. 7yrs. 10 yrs.

Mean (%) 3.71 3.87 4.04 439 4.61 498 527 548
Std. Dev. (%) 2.90  2.97 3.02 3.10 3.07 296 2.88 2.77

We consider a one-month hedging period, from month-end to month-end. The weekly
yield data are used to estimate model parameters, and the eight associated zero-coupon

bonds are used as hedging instruments on the last trading day of each month. As this is
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Figure 1: Yield curves
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This figure provides a three-dimensional view of the weekly yield data from January, 1983, through

December, 2019, at maturities 0.25, 0.5, 1, 2, 3, 5, 7, and 10 years.

not necessarily a Wednesday, the daily files are used again to get the correct zero-coupon

bond prices when constructing the hedge portfolio.

As target asset for assessing hedging performance, we consider a portfolio consisting
of a long position in a five-year coupon bond and short positions in two-year and ten-year
coupon bonds. This specification with short positions in the long and short ends follows
Litterman and Scheinkman (1991).2% The monthly return series is constructed by drawing
information on prices and contractual terms from the CRSP Monthly Treasury files. On
the last trading day of each month, we select among all non-callable and non-flower bonds
the issues with maturities closest to two, five, and ten years.?? Portfolio weights (—1,3,-1)
are then assigned to construct the target asset. As our hedging portfolios are always
based on an estimation period of at least four years, the hedging period starts four years

later than the yield data, and our monthly target data span the period from January, 1987,

through December, 2019. Properties of the resulting 7' = 395 monthly target returns are

28We also considered a single (five-year) coupon bond target, as in Diebold, Ji, and Li (2006). Overall
conclusions were similar.

29Treasuries are non-convertible. Flower bonds were issued until 1965, with the last outstanding issues
maturing in 1998. Callable bonds and notes were issued until 1985, but many of these subsequently
repurchased by the Treasury and reissued as non-callable, although on a discretionary basis, without
sinking fund provision. We remove all flower and convertible issues and apply a liquidity requirement of
at least $10 million in par value publicly outstanding. Figure B.1 shows the evolution over time in the
resulting number of Treasuries we consider.
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shown in the first row of Table 2. The average return is 49bp, or 0.49%, and the standard

deviation 149bp.3°

6. Empirical Results

We first present the results on empirical hedging performance. This is followed by a

discussion of statistical fit and test of the no-arbitrage condition.

6.1. Hedging Performance

Results appear in Table 2. Line 1 reports statistics for the unhedged target return. Each
subsequent line reports bias (mean hedging error), standard deviation, root mean squared
error (RMSE), and mean absolute error (MAE) for a given strategy. Following Chambers,
Carleton, and McEnally (1988), Diebold, Ji, and Li (2006), and others, we will mainly
focus on RMSE in the exposition.

The immunization performance of the traditional duration matching strategy is sum-
marized in line 2.3! It yields a bias (average return to hedged position) of 2.84bp. RMSE is
large relative to unhedged variation, more than one third, indicating that immunization
by simple duration matching is too simplistic.

All other strategies in Table 2 involve generalized duration matching based on esti-
mation of B and ¥, cf. Theorem 1. Results are shown both for full-period estimation and
for an out-of-sample (OoS) experiment with rolling estimation over the four-year period
prior to forming the hedge. While full period calculations provide the artificial investor
with the benefit of hindsight, the OoS analysis mimics a feasible strategy, in line with
basic duration matching. Although the models involve constant parameters, updating
these is in the spirit of the HJM approach of conditioning on current information (see also
Buraschi and Corielli (2005)). Restricting the estimation window to four years is done in

order to reduce conditioning on obsolete information.

30This is the unhedged return. The column is labeled ‘Bias’ because average hedging errors are reported
in the remainder of the table. More details on the construction and properties of the target asset are
provided in Appendix B.

31Details on basic and generalized duration matching portfolio construction are given in Appendix C.
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Table 2: Hedging performance

The target is a portfolio of (2,5,10)-year coupon bonds in the proportions (—1,3,—-1). Statistics in line 1
are for the unhedged target return, and in the remainder of the table for hedging errors from each of the
methods considered for construction of the hedge portfolio with value matching from Theorem 1. The
columns report the average (or bias), standard deviation, root mean squared error, and mean absolute error.
Results are in basis points (0.01%) per month. An S indicates that a given method provides a statistically
significant improvement over traditional duration matching at the 5% level, and MCS that a method is
included in the Model Confidence Set at 5% (only conducted for the rolling strategies).

Model Bias Std. dev. RMSE MAE
1 Target movement 49.20 149.44 157.33 122.63
2 Duration matching 2.84 65.90 65.96 48.72
3 Unrestricted 3-factor -0.94 56.39 56.40 41.04
Full period
4 Unrestricted 3-factor -1.23 54.56 54.57 39.55
Rolling 4-year (S, S,
5 Nelson-Siegel -1.34 57.07 57.08 41.36
Full period
6 Nelson-Siegel -0.79 58.63 58.63 41.93
Rolling 4-year S &)
7 Unrestricted 4-factor -0.68 41.34 41.34 31.61
Full period
8 Unrestricted 4-factor -2.11 47.54 47.58 34.75
Rolling 4-year (S, S,
9 Augmented NS -1.58 44.56 44.58 33.62
Full period
10 Augmented NS -2.93 39.39 39.50 28.21
Rolling 4-year 8- (8.MCS)
11 Unrestricted 1-factor, j 0.80 64.71 64.71 47.15
Full period
12 Unrestricted 1-factor, j 1.14 60.96 60.97 44.27
Rolling 4-year S &)
13 ANS-extended Vasicek, ¥ -3.69 33.27 33.47 24.75
Full period
14 ANS-extended Vasicek, ¥ -4.77 36.80 37.11 27.95
Rolling 4-year (S MCS) (SMSC)
15 ANS-extended Vasicek, filter -3.26 66.49 66.57 48.84
Full period
16 ANS-extended Vasicek, filter -3.08 64.59 64.66 48.22

Rolling 4-year
17 ANS-extended Vasicek, restricted -3.49 62.84 62.94 46.02
Full period

18 ANS-extended Vasicek, restricted -2.88 67.46 67.52 51.00
Rolling 4-year

19 Unrestricted 3-factor, ¥ -2.43 55.10 55.16  39.10
Full period
20 Unrestricted 3-factor, j -2.52 58.59 58.64 41.48
Rolling 4-year ) &
21 SLSC, y -4.61 34.07 34.38 24.78
Full period
22 SLSC, 7 -4.58 34.00 3431 2466
Rolling 4-year (S MCS) (S,MCS)
23 SLSC, filter -4.59 34.06 34.36 24.86
Full period
24 SLSC, filter -4.46 33.46 33.75 24.33
Rolling 4-year (5,MCS) (5,MCS)
25 SLSC, restricted -1.62 54.13 54.16 39.53
Full period
26 SLSC, restricted -1.06 55.60 5561  41.08
Rolling 4-year ) &)
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From the results in lines 3-4, generalized duration matching based on the unrestricted
three-factor model (5) offers only a modest gain, relative to basic duration matching. From
lines 5-6, the parsimony achieved by imposing the NS curve shape (15) on B comes at
the expense of deteriorating hedging performance, relative to the unrestricted case. This
suggests that the search for gains from parsimony should proceed on a principled basis,
requiring dynamic consistency of the curve shape imposed. Indeed, by Corollary 1, the NS
curve shape is dynamically inconsistent with all non-degenerate arbitrage-free DTSMs.

We exploit dynamic consistency in the three stages outlined in Section 4. Results from
the first stage appear in lines 7-10. Generalized duration matching using four factors
instead of three improves performance. Moreover, the results are broadly supportive of
the importance of dynamic consistency, as imposing the parsimonious ANS curve shape
(32) improves performance relative to NS and, at least in the feasible (rolling estimation)
case, also relative to the unrestricted four-factor factor model.

Results from the second stage (Section 4.1) appear in lines 11-14. First, yields y are
replaced by slope-adjusted yield changes 7 from (4) in an unrestricted reduced (single-
factor) version of (5). Lines 11-12 show that performance deteriorates in this case.
However, imposing the ANS-extended Vasicek structure and the no-arbitrage condition,
leading to specification (50), generates the best performance so far, lines 13-14. Here,
dynamic consistency provides parsimony in terms of both parameters and number of
factors, and the second-stage approach dominates the first stage in this case.

In the third stage (Section 4.2), the dynamically consistent shape is imposed on
the current curve and the slope adjustments, as well, leading to the filter (53)-(54).%2
Lines 15-16 show that hedging results deteriorate, to the level of basic duration matching,
indicating that the yield curve is not of ANS shape at the time of portfolio formation.
Restricting the curve shape further to the standard affine case (39) by freezing the
deterministic state variables at their long-run levels 6 = (0, —1//%/2(12)’ does not alter this
conclusion, lines 17-18. One possibility is that the DTSM (ANS-extended Vasicek) is

correctly specified, but that the yield curve has not yet reached the dynamically consistent

32We use the exact discrete-time version, see Appendices F.2-F.3.
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shape (ANS), so results are better in the second stage (lines 13-14) than in the third
(lines 15-18). Another possibility is that ANS is too restrictive, hence calling for a more
flexible curve shape that is dynamically consistent with a more general DTSM.

For a more general specification, we turn to the new SLSC model from Section 3.3.
Results for three-factor models for slope-adjusted yield changes appear in lines 19-22.
Imposing the SLSC DTSM structure from (49), lines 21-22, improves performance relative
to the unrestricted three-factor model for 7, lines 19-20, thus mirroring the improvement
from imposing ANS-extended Vasicek in the one-factor case, lines 11-14. Results from
third stage filtering based on (51)-(52) (imposing the SLSC curve shape on the current
yield curve and slope adjustments, too) appear in lines 23-24. In contrast to the ANS-
extended Vasicek case, lines 13-16, performance in the third stage in the SLSC case,
lines 23-24, is at least as strong as in the second stage, lines 21-22. This is consistent
with the notion that the SLSC curve shape (43) from Theorem 2 better accommodates
the current yield curve, and hence the slope adjustments, compared to ANS from (32).
Indeed, for feasible (OoS rolling) estimations, the third stage SLSC model proves to be
the strongest performing model. Thus, the SLSC model with three stochastic factors
generates value relative to extended Vasicek with but one. Further, from lines 25-26,
performance deteriorates when freezing the deterministic state variables at their long-run
levels 5, thus restricting the model to the standard affine case (here, AFNS). The latter
does not offer any improvement over the classical three-factor yield model, lines 3-4.

For the SLSC model, rolling estimation generates better variation measures than
full-period estimation in both the second and third stages. Since rolling involves an
OoS element, it is not given in advance that it should dominate full-period estimation in
these performance metrics. Thus, the results indicate the importance of conditioning on
non-obsolete information.

As a robustness check, we present in Appendix D.1 the hedging results when using
the FED yields to set the prices of the bonds entering the target assets, rather than using
the CRSP recorded prices directly (bid-ask midpoints plus accrued interest). While the

approach is not applicable in practice, it allows us to evaluate the hedging performance
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in the absence of frictions, microstructure noise, and other features present in the raw
CRSP prices. The results show that the performance of all models improves, compared to
that based on raw target returns in Table 2, with the largest improvement seen in the
SLSC models, which clearly dominate all other approaches. Also, for all second and third
stage models, the hedging biases present for the raw target returns are reduced when
using the cleaned returns.

As a further robustness check, presented in Appendix D.2, we consider again the CRSP
data for the target asset, but replace conditional hedging error variance minimization by
an RMSE criterion. In addition, we relax the generalized duration matching constraint.
This allows trading off hedging error bias and variance, as well as admitting some factor
exposure, if this reduces the criterion. From the results, both ANS-extended Vasicek
and SLSC specifications produce higher RMSE than the third stage SLSC filtering spec-
ification in Table 2, lines 23-24, even though the alternative strategies target RMSE,
rather than conditional hedging error variance. Thus, the evidence is that it pays off to
remove factor exposure, i.e., perform generalized duration matching, and target remaining
idiosyncratic variance, rather than trading this off against average hedging error. Parsi-
mony is again the likely reason. The strategies from Theorem 1 (used in Table 2) involve
only estimated B and ¥, whereas those in the generalized case depend on parameters
from the factor dynamics, hence increasing exposure to estimation uncertainty.

Overall, the empirical results show that generalized as opposed to traditional duration
matching does not by itself secure a noteworthy improvement in immunization perfor-
mance. Improvements can be achieved through parsimonious restrictions according to a
parametrized yield curve shape, but this must be dynamically consistent with a suitable
DTSM. Based on the latter, strong hedges are obtained for both one- and three-factor
models, by allowing for an arbitrary initial curve. However, the best feasible OoS hedge
is obtained by imposing the SLSC curve shape on current yields, and the consistent
SLSC dynamics on the factors. If affine curve shape is imposed, hedging performance
deteriorates. This is evidence that the deterministic factors move through time and, hence,

the associated loading functions (Bs.4(7) and B4.7(7) in the one- and three-factor cases,
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respectively) do not enter yield curves in fixed proportions over time.

6.2. Statistical comparison of hedging performance

For a statistical assessment of the improvements in performance, we construct a standard
t-statistic based on loss differentials, following Diebold and Mariano (1995) and Giacomini
and White (2006), with basic duration matching as benchmark. In addition, we implement
the Model Confidence Set (MCS) procedure of Hansen, Lunde, and Nason (2011) to
compare performance across all approaches considered. Given a significance level, a, the
MCS identifies the subset of approaches containing the best approaches with probability
1 - a.?2 The comparisons are conducted for the feasible (OoS) strategies, using a = 5%.
In Table 2, an S below a performance measure (RMSE or MAE) indicates that the
approach improves significantly over duration matching, and MCS that it is included
in the Model Confidence Set. The improvements in performance relative to duration
matching are statistically significant throughout, except for the ANS-extended Vasicek
third stage filtering approaches. The best approaches (the MCS) are the second-stage
specifications, both the ANS-extended Vasicek and SLSC based, along with the third-stage
SLSC specification. This is consistent with the notion that if the dynamically consistent

curve shape is imposed on the slope-adjustments, it must be sufficiently flexible.?*

6.3. Statistical Fit

Here, we consider the fit of the various models behind the strategies in Table 2. Table 3
reports the estimated (full-period) idiosyncratic standard deviations \/VL -1000 for each
model, along with the maximized log-likelihood value, number of parameters, and stan-
dard information criteria, AIC and BIC.?® For comparison, results for simple one- and
two-factor versions of (5) are reported in lines 1-2. For the yield factor models (5) in
lines 1-6, besides the parameters in the variance-covariance structure Y = BB’ + ¥ (with

2 =1} in the unrestricted cases, lines 1-3 and 5), estimates of the means u are required,

33More details on the ¢-test and the MCS procedure are provided in Appendix E.
34Based on the MAE criterion, the four-factor yield model with ANS loadings imposed is in the MCS, too.
35More details on estimation methods are provided in Appendix F.
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and these are given by the average yields from Table 1. In the remaining models, the
no-arbitrage condition is imposed on the means. The table shows that unexplained
variation is generally largest at the shortest and longest maturities. To avoid Heywood
cases (factors explaining more than total variation for a given maturity, see Appendix F.1),
a lower bound of 10419? is imposed on ¥;, for each maturity, in all models, with 19? the
total variance at maturity 7;.3¢ The six months, three years, and seven years idiosyncratic
variances hit this lower bound in the three- and four-factor yield models, lines 3-6.

From Table 3, lines 2-3, the LR test of two against three factors in the unrestricted
yield factor model takes the value 2(75,873 —71,351) = 9,044, for a p-value of 0.00 in the
asymptotic y2-distribution on 37 — 31 = 6 degrees of freedom. This indicates that three
factors are required, which is consistent with the information criteria. From lines 3-4, the
NS restriction on the three-factor model is rejected on all criteria. From line 5, the
unrestricted four-factor model is preferred over the previous models. The ANS-restricted
version, line 6, is preferred over both NS, line 4, and the unrestricted three-factor model,
line 3. This is consistent with the hedging results in Table 2, lines 3-6 and 9-10. In
contrast, while the ANS-restricted factor model also provides a gain in OoS hedging
performance relative to the unrestricted four-factor model (Table 2, line 10 against 8), it
is statistically rejected in favor of the latter (Table 3, lines 5-6).37

The fact that economic and statistical criteria do not necessarily coincide is not
confined to the first-stage approach, i.e., imposing ANS on the yield factor model. In the
second stage (Section 4.1), while the unrestricted single-factor model for slope-adjusted
yield changes y;.1 is preferred over the parsimoniously restricted ANS-extended Vasicek
version (50) with factor w; 1 on statistical grounds (Table 3, lines 7-8), the restricted model
provides a gain in hedging performance (Table 2, lines 11-14). Line 12 in Table 3 shows
that the SLSC three-factor model for ¥ produces lower idiosyncratic standard deviations
and better information criteria than the ANS-extended Vasicek and unrestricted single-

factor models, lines 7-8, and the LR test rejects ANS-extended Vasicek in favor of SLSC

36For the yield models, 9; are the standard deviations given in Table 1.

37Idiosyncratic standard deviations are slightly larger for the restricted models in lines 4 and 6 than for
the corresponding unrestricted models in lines 3 and 5, and smaller with four factors (lines 5-6) than with
three (lines 3-4), consistent with the LR tests.
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(line 8 against 12). Still, the discrepancy between economic and statistical criteria carries
over. The SLSC structure (line 12) is rejected in favor of the unrestricted three-factor
model for y (line 11), but hedging performance is far stronger under the SLSC restrictions
(Table 2, lines 19-22). Thus, parametrizing loadings in accordance with the empirically
well established parsimonious level-slope-curvature pattern pays off in financial terms,
in spite of statistical rejection, provided dynamic consistency of the curve shape (ANS or
SLSC) is respected in the implementation.

The remaining results in Table 3 relate to third-stage filtering (Section 4.2). In the
ANS-extended Vasicek case, line 9, the idiosyncratic standard deviations are high, relative
to those in other models. Hedging performance deteriorates, too (Table 2, lines 15-16),
so second-stage results dominate third-stage results in terms of both statistical fit and
hedging performance. Imposing ATSM restrictions leads to further deterioration in
statistical terms (Table 3, line 10).

For the SLSC model, filtering (Table 3, line 13) generates idiosyncratic standard
deviations that are smaller than those for ANS-extended Vasicek filtering (line 9) and
comparable to those based on three- and four-factor analysis of yields (lines 3-6). However,
information criteria are far better, reinforcing the importance of the dynamics. The
LR test rejects the reduction to ANS-extended Vasicek (line 9 against 13), and hedging
performance is strongest in the SLSC case, too (Table 2, lines 23-24 against 15-16). Thus,
SLSC is preferred according to both economic and statistical criteria. Further, both fit and
hedging performance deteriorate when ATSM restrictions are imposed (Table 3, line 14;
Table 2, lines 25-26).

Estimates of the curve shape parameter ¢ and market prices of risk A for models
with parsimoniously parametrized loadings appear in Table 4. From line 1, the NS
estimate of a for the full period is 0.679, and quite precise, with a standard error of 0.005.
When inserted in B = B;.5(a) from (15), the estimated a generates the three NS loading
functions shown in the right exhibit of Figure F.1 in Appendix F.1. Although capturing a
level-slope-curvature pattern similar to that of the unrestricted three-factor model in the

left exhibit (up to scale) in a parsimonious fashion, the NS restrictions do not improve

44



Table 4: Estimates of ¢ and market prices of risk
This table shows full-period estimates of @ and market prices of risk, with standard errors below estimates,
as well as time-series averages of four-year rolling estimates, for NS and generalizations. Models for
slope-adjusted yield changes are indicated with a ¥y, and the remaining models are for yield levels y.

Line Model a M A2 A3
1 Nelson-Siegel 0.679
Full period 0.005
2 Nelson-Siegel 0.838
Rolling 4-year
3 Augmented NS 0.686
Full period 0.006
4 Augmented NS 0.612
Rolling 4-year
5 ANS-extended Vasicek, y -0.033 -0.623
Full period 0.002 0.165
6 ANS-extended Vasicek, ¥ -0.070 -0.780
Rolling 4-year
7 ANS-extended Vasicek, filter 0.034 -0.073
Full period 0.001 0.002
8 ANS-extended Vasicek, filter 0.214 -0.047
Rolling 4-year
9 ANS-extended Vasicek, restr. 0.033 -0.070
Full period 0.001 0.002
10 ANS-extended Vasicek, restr. 0.201 -0.029
Rolling 4-year
11 SLSC, y 0.773 -0.327 -0.369 -0.314
Full period 0.015 0.167 0.167 0.178
12 SLSC, y 0.737 -0.308 -0.331 -0.294
Rolling 4-year
13 SLSC, filter 0.656 -0.410 -0.540 -0.205
Full period 0.005 0.162 0.165 0.159
14 SLSC, filter 0.758 -0.373 -0.647 -0.007
Rolling 4-year
15 SLSC, restricted 0.669 -0.389 -0.732 -0.151
Full period 0.005 0.158 0.157 0.156
16 SLSC, restricted 0.791 -0.425 -0.761 -0.112

Rolling 4-year

hedging performance (Table 2, lines 5-6), and are rejected statistically (Table 3, line 4).
This factor model approach to NS is an alternative to the cross-sectional regressions
of Diebold, Ji, and Li (2006), who fit the NS curve (14) each month by OLS, treating
the factors f; ; as regression coefficients, and fixing a throughout at a value 0.0609 to
position the maximum (or hump) in the third loading function at the 30 months maturity
around which the yield curve hump is commonly observed.?® Setting a at an externally

prespecified value implies that B is not estimated from data at all. Further, as Diebold,

38The value 0.0609 is for T measured in months and corresponds to a = 0.731 in our case, with 7 in annual
terms, i.e., outside the confidence band around our estimate of 0.679 at conventional levels. We find that
a =0.731 generates a maximum at 29.4 months, whereas a maximum at 30 months would require a =0.717
(or 0.0598 in monthly terms). At the empirical estimate, a = 0.679, the hump is at T = 31.8 months.

45



Ji, and Li (2006) do not minimize hedging error variance, w'7 W7 w, cf. (9), but instead
follow Ingersoll (1983) and minimize w’w, the sum of squared hedging weights, ¥ is not
needed, either, and the resulting hedge does not utilize any information from empirical
(regression or factor) analysis of the data.

From Table 4, line 2, rolling estimation produces an average a of 0.838. Figure G.1
(Appendix G) shows that there is considerable variation in estimated a over time. One
possibility is to consider NS with time-varying a, which is dynamically consistent with a
DTSM of the type in Corollary A.5.1 (Appendix A). However, by Corollary 1, NS curve
shape implies arbitrage opportunities, whether a is constant or time-varying.

Estimates of a from the first-stage approach to dynamic consistency, imposing ANS
curve shape on loadings, rather than NS, are shown in lines 3-4. The full-period ANS and
NS estimates are similar, and the rolling ANS estimate is closer to these than to rolling
NS, consistent with ANS being less misspecified than NS. The loading functions in the
unrestricted four-factor and ANS analyses are shown in Figure G.2 (Appendix G). The
fourth unrestricted loading has two small humps, whereas the fourth restricted loading
(the augmentation (29)) corresponds to a second (steeper) slope factor.

For the second-stage approach, results from (50) are reported in lines 5-6. Estimated
a in the ANS-extended Vasicek for § is now very close to zero.?? The factor is associated
with the slope loading Bs (7;a), but for a close to zero, it is nearly flat, so the stochastic
factor is essentially a level factor. The loadings in the unrestricted single-factor model
for ¥ exhibit an initial slope, then a flat structure for maturities three years and longer
(see Table G.1 in Appendix G). Thus, the discrepancy between economic and statistical
criteria, with the ANS restrictions formally rejected (Table 3, lines 7-8), but improving
hedging performance (Table 2, lines 11-14), is seen to be related to the importance of the
level factor in hedging. This explains why the discrepancy disappears in the SLSC model,
with both level and slope stochastic. Further, the estimated market price of risk A in (50)

is negative, at —0.62 over the full period, corresponding to the negative relation between

391n the reported results, we relax the stationarity condition @ > 0 to highlight the information about
the specification available in the data. The stationarity condition is satisfied in the SLSC model and in all
models for yields y.
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yields and bond prices, and significant, with a ¢-statistic of —3.78.

Results of third-stage filtering for the ANS-extended Vasicek model appear in lines 7-
10. Although estimates of a are between those from cross-sectional curve fitting or factor
analysis, lines 1-4, and those based on slope-adjusted yield changes, lines 5-6, consistent
with the notion that the Kalman filter combines cross-sectional and intertemporal infor-
mation, they remain small in magnitude, at 0.22 or less. In contrast, for the SLSC model,
estimates of a based on both slope-adjusted yields, lines 11-12, and filtering, lines 13-16,
are large in magnitude, at 0.65 or higher. The results confirm the need for three stochastic
factors. With only one included, it is fit to level in the second and third stages (a = 0).

Figure 2 shows the evolution through time of the filtered stochastic factors. Level is
the smoothest, and curvature the most volatile, changing sign most frequently. Thus, the
NS interpretation of level, slope, and curvature as long-, short-, and medium-term factors
is replaced by a long-, medium-, and short-term understanding of the three.*

Correspondingly, from the upper exhibit of Figure 3, the rolling estimates of the
volatilities 1 of level and slope are similar period by period and relatively stable over
time, whereas the volatility of curvature is higher and more variable, with peaks around
2005 and 2011. Nevertheless, on average, curvature risk is unpriced, as seen from the last
column of Table 4. Slope gets the largest market price, A2, and both level and slope are
significantly priced over the full period. Finally, the lower exhibit of Figure 3 shows that
the risk prices switch signs over time. In particular, medium-term or slope risk switches
from a regime of large negative prices before the financial crisis to one of predominantly
positive prices after the crisis.

Figure 4 offers a visualization of the decomposition of the fitted yield curve into its
separate stochastic and deterministic components, y(¢,7) = y,(t,7) + y4(¢,7), say, and the
evolution of this through calendar time in the rolling estimation case. The upper left
exhibit shows the stochastic portion, y,(¢,7) = B1.3(t)x1.3(¢), of the general SLSC model,
and the upper right exhibit the associated deterministic component, y;(¢, T) = B4.7(7)x4.7(2).

The lower exhibits show the corresponding terms for the restricted (AFNS) version, where

40The correlation between slope and curvature is negligible, estimated at 0.0128 over the full period by
filtering, and 0.0124 in the slope-adjusted yield change analysis.
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Figure 2: SLSC factors filtered along dynamically consistent curve family
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This figure shows the time series evolution of fitted factors (state variables) from filtering along the
dynamically consistent curve family in the SLSC model, calculated using the full sample and the Kalman
smoother, E(x(¢) | y1,...,yr), with the level, slope, and curvature factor in the upper, middle, and lower

exhibit, respectively.

there is no factor dependence in the deterministic part, i.e., time-variation in yq4(t,7) = A(1)
is solely due to changing parameter estimates. For example, a dip in the stochastic part
of the curve between 2009 and 2015 is countered by a raised A(r) function. In the SLSC
model (top exhibits), the stochastic and deterministic components of the curve move more
freely, separately from each other, due to the presence of factors in y;(¢,7). The results
on statistical fit and hedging performance suggest that this added flexibility matters for

yield curves, and that this can be exploited by investors.

6.4. The No-Arbitrage Condition

The reported second- and third-stage results are obtained with the no-arbitrage condition
imposed. We also consider testing this condition. Results of second-stage estimation with

and without v; = 0 imposed on (49) are shown in Table 5. The first two columns refer to
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Figure 3: Estimated volatilities and market prices of risk in SLSC model
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The upper exhibit shows the rolling estimates of the volatility parameters (¥11,%22,1¥33) from filtering in
the SLSC model. The lower exhibit shows the rolling estimates of the market prices of risk (11,12,13). In
each exhibit, the parameter indexed by 1, 2, and 3 is represented by the solid, dashed, and dotted line,
respectively.

the ANS-extended Vasicek model. In the first column, the mean of j, denoted f, is
restricted to (wg/a + WQ/UBQ(T;G) - (wg/a)lh(r;a), cf. (50). The second column leaves i
free, hence introducing eight mean parameters in place of A, so the difference in degrees
of freedom is seven.*!’ While a is similar in the two estimations, fi is upward-sloping
when unrestricted, but nearly flat under no arbitrage, because a = 0, and the condition
is rejected (the LR test takes the value 50.1, compared to a critical value of 14.1 at the
5% level in the X%—distribution). This confirms the need for further specification searches,
and hence the SLSC approach.

The last two columns of Table 5 show results of estimation of the SLSC model with and
without the no-arbitrage condition imposed, implying ji = B1.7(r)®6 in the former case, cf.
(49). The two resulting fi vectors are similar, i.e., the slope is now accommodated. The LR
test gets a p-value of 21% in the asymptotic )(g-distribution (the restriction introduces

three market prices of risk and drops eight parameters in fi). Thus, the test fails to reject

41Under the alternative, a is identified from the volatility structure, only, so this is a straight Vasicek
(1977) specification, without extension.
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Figure 4: Decomposition of fitted yield curves in the unrestricted and restricted SLSC model
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This figure provides three-dimensional views of the stochastic, y,(¢,7), and deterministic parts, yq(¢,7),
from filtering along the dynamically consistent yield curve families, y(¢,7) = ys(¢,7) + y4(¢, 7), in the rolling
(unrestricted) SLSC model and the rolling restricted SLSC model, respectively. The stochastic part in the
SLSC model is given by y,(£,7) = B1.3(t)x1.3(t) (upper left exhibit), and the deterministic part is given by
va(t,7) = B47(1)x4.7(t) (upper right exhibit). The stochastic part in the restricted SLSC model is given by
ys(¢,7) = B1.3(1)x1.3(¢) (lower left exhibit), and the deterministic part is given by v4(¢,7) = A(t) (lower right
exhibit). The fitted factors used to compute y,(¢,7) and y4(¢,7) are the final fitted values, x(¢) = x(T), from

each four-year rolling estimation window, [1,T'].

at all conventional levels for the SLSC model.

7. Conclusion

We consider generalized duration matching, i.e., removal of factor exposure, as an alterna-
tive to traditional immunization. Optimal hedging weights depend on factor loadings and
idiosyncratic variances. However, the empirical results indicate that generalized duration
matching by itself does not generate a noteworthy improvement in hedging performance,
not even when imposing a flexible, parsimonious yield curve shape on loadings. Instead,
performance can be enhanced by exploiting dynamic consistency, thus preventing that
the hedging strategy relies on information that is in conflict with interest rate dynamics,
and hence returns.

Our first empirical approach is to restrict the loadings in a factor model for yields
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Table 5: Test of no-arbitrage condition
This table reports results from estimation of the ANS-extended Vasicek and SLSC models for slope-
adjusted yield changes, with and without the no-arbitrage condition, v; = 0 in (46), imposed. Reported
means [i are in basis points, estimated freely in the unrestricted case, and as functions of the parameters
a, ¥, and A under no arbitrage. The bottom portion of the table shows the value of the maximized log
likelihood function, number of parameters, information criteria, and the LR test of the restrictions implied
by the no-arbitrage condition.

ANS-extended Vasicek, ¥ Vasicek, ¥ SLSC, ¥ SLSC, y
No arbitrage Unrestricted No arbitrage Unrestricted

a -0.033 -0.035 0.773 0.751
A1 -0.327
Ao -0.623 -0.369
As -0.314
i1 -1.070 -1.720 -1.754 -1.720
fio -1.072 -1.651 -1.757 -1.651
fis -1.077 -1.694 -1.728 -1.694
o -1.087 -1.481 -1.603 -1.481
fis -1.097 -1.355 -1.457 -1.355
fg -1.116 -1.204 -1.210 -1.204
7 -1.134 -1.005 -1.039 -1.005
fis -1.159 -0.780 -0.870 -0.780
logL 90539 90564 95306 95309
# params. 11 18 15 20
AIC -181056 -181092 -190582 -190579
BIC -180972 -180954 -190467 -190426
LR 50.088 7.193
Xa 95 14.067 11.070
p-value 0.000 0.207

according to a parsimonious curve shape that is dynamically consistent with a suitable
dynamic term structure model. The second is to estimate the same restricted loadings in
a factor model for returns (or slope-adjusted yield changes), rather than yields, without
imposing that the yield curve satisfies a particular shape (e.g., affine, or Nelson-Siegel)
at all times. The third approach combines the first two. Thus, the restrictions from the
curve shape are imposed on both the cross section and the dynamics, leading to a filtering
approach for consecutive yield curves along the dynamically consistent curve family. In
our application, the second approach generates stronger hedging performance gains than
the first. At least as strong performance is achieved in the third approach by adopting a
sufficiently rich dynamic term structure model, in particular, the new SLSC model, such
that the dynamically consistent curve shape is flexible enough to capture the current yield

curve and associated slope adjustments. This indicates that the yield curve is dynamically
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consistent with the stochastic process driving it. The SLSC model generates the strongest
hedging performance of all specifications considered, and passes the test of absence of
arbitrage opportunities. The results show the importance for practical immunization
purposes of an approach that is both dynamically consistent and parsimonious, yet
sufficiently general to accommodate the level, slope, and curvature structure of the
market. On the other hand, performance deteriorates when the restrictions reducing the
general specifications to standard affine form are imposed, or when trading off bias and
variance and admitting factor exposure.

Our work paves the way to a number of natural future extensions. One is state-
dependent market prices of risk. In this case, our second-stage factor analysis of the slope-
adjusted yield changes is replaced by a Kalman filter approach, following Christensen
and van der Wel (2019). Second, some of the driving latent processes can be replaced
by observable macro series, as in the latter study, but now imposing restrictions on
loadings, for parsimony and dynamic consistency. A further generalization would be to
allow for state-dependence in the volatilities in the transition equation, hence requiring
an extended filter in both the second and third stages. Our theory covers these cases.

Far from mundane, the traditional topic of fixed income immunization has proved
related to advanced geometry. It is somewhat eerie that Nelson and Siegel without any
particular justification wrote down a curve shape including some of the essential features
required for consistency with dynamic term structure models. Thus, the same coefficient
—a on maturity was used in both exponents in the proposed functional form. Without
this common coefficient restriction, there would be no hope for dynamic consistency with
the mean-reverting homoskedastic model. With the restriction, dynamic consistency is
achieved by adding one more term to the curve shape, with double coefficient —2a in the
exponent. This corresponds to the loading on a new deterministic state variable. The
approach is general, and extends to models with multiple deterministic and stochastic
state variables. The evidence indicates that the loadings on deterministic state variables
do not enter yield curves in fixed proportions over time, hence reinforcing the value of the

dynamic consistency approach.
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A. Proofs

This Appendix provides the proofs of propositions, theorems, and related results in the

paper.

A.1. Proof of (3)-(4) as an exact relation

The log excess return is given by

rt+lr — Vi1 = —TYVt+1,75

with ¥;,1 . the slope-adjusted yield change from (4).

Proof of (3).
reslr—Yi,1 =1ogpir1r —1ogps i1 —yi1
=—Ty10+ T+ Dy 41— Ve
= —T (Y10 —Ytr) — Ty + T+ Dyire1—ye1
= —TAypr17+T (Veos1 = Ver) ¥ Yere1— Vel
=T (Ayt+1,r - M - (yt,r+1 - yt,r))
=—T¥t+1,75
which is (3). O

A.2. Proof of Theorem 1

Proof of Theorem 1. By (9) and (10), under generalized duration matching, the optimal

portfolio solves
mu%n wTYTw st. wTB=(1b),. (A.2.1)

This is equivalent to the problem (A.2.2) in Lemma A.2.1 below, with A =TW¥YT, g =0,
D =B'T, and ¢ = (1b),. Further, in the Lemma, w, = A~!g = 0 because g = 0. Thus, by

(A.2.3), the solution to (A.2.1) is

@=(TYT) ' TB(B'T(TYT) TB) " (b), =T "¥"B(B'Y"'B) " xb),,



which is (11) in the Theorem. When the value matching constraint w’t = 1 is added to the

minimization problem (A.2.1), the corrected weights are found from (A.2.4) in Lemma

A21,
w'=w+(1-w L)LIAL,
with
A=(TYT) ' ~(TYT) ' TBB'T(TYT)'TB) ' BT(TYT)™
=7 (¥"'-¥'B(B'Y'B)'BY) T,
thus confirming (12). O

Lemma A.2.1. For a symmetric, positive definite matrix A, and a conformable vector g,
let w, = A™1g be the solution to the unconstrained problem min,, (1/2)w'Aw —w'g. If D

has linearly independent rows, then the solution to the constrained problem

1
min §w'Aw -w'g s.t. Dw=c (A.2.2)
w
is given by
we=w, +A"D'(DA”'D") ' (c-Dw,). (A.2.3)

When further adding the scaling constraint w't =1 to the problem (A.2.2), then the solution
is

Au
VAL

w'=w.+(1-wi)

(A.2.4)
with A=A"'-A"D'(DA™'D') 'DA™".
Proof of Lemma A.2.1. The Lagrangian for (A.2.2) is
1 ! !/ /
L= gwAw—wg—C Dw-c),

where { contains the Lagrange multipliers. The first order conditions are Aw.—g—D'{ =0,

such that
w.=A"(g+D'{)=w,+A7'D(. (A.2.5)
Substituting w, for w in the constraint Dw = ¢ yields Dw,+DA™D'{ = ¢,s0{ = (DA™'D’)™
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(¢ —Dwy). Substitution in (A.2.5) gives the solution
we=w, +A"D' (DA™D') " (c-Dw,), (A.2.6)

which is (A.2.3). When the constraint w’: = 1 is added to (A.2.2), the new solution can be

found by substituting (D’,1)’ for D and (c¢’,1)’ for ¢ in the solution (A.2.6), yielding

-1
DA'D' DA™Y ¢—Duw,
) (A.2.7)

-1 -1
'A"D" /AT 1-/w,

w* :wu+A_l( D' )(
By the formula for the inverse of a partitioned matrix,

_1_

( DAD' DA™Y

-1
(DA™D") ' +Fu'F'/VAr ~Ful/ At
/ATD' /AT B

—'F'I' A 1/ A\

for F = (DA™'D') 'DA™, where the Schur complement of DA~!D’ in S is /A™1—/A™'D’

(DA™'D')'DA™ = /A Using that w, —w, = F'(c - Dw,), we get

g1 -Duw, (DA™D") (¢ —Dwy)+Fu'(we —w )/ Av—Fu(1— 1wy, )1 A
1-dw, = (we—w )W A+ (1= wy )1 A .

Multiplication from the left by ( ATD" ATY ) produces the last term in (A.2.7), such that

w* =wy, +F'(c—Dw,)+ (A"D'F - A7)/ (we —wy) /' At

+(AT=ATD'F)i(1-tw, )/ A

Substituting in A =A™ — A"'D'F, the solution is obtained,

. A, A ,
w —wu+(wc—wu)—mt (wc—wu)+L,—At(1—L wu)
At
=W, + AL (1 - L,LUC) ,
which is (A.2.4). O

A.3. Interpolation and hedging for general payment streams

First, consider the case that the claim to be hedged is a future payment 7, periods hence,
and no zero-coupon bond with term to maturity 7. (the ideal hedging instrument) is
available. The factor loadings b, (a 1 x &k vector) of the target claim (precisely, of the yield

to the missing ideal hedge) may be obtained by interpolation between the maturities of



the hedging instruments,

5. = Tiv1-T)b; +(T—7;)bi11 = s(1,)B, (A.3.1)
Ti+1—T;

with 7; <7, <7;41, i.e., s(74) is 1 x m, selecting and weighting the appropriate loadings
corresponding to maturities adjacent to 7.. If the future payment occurs before the
shortest maturity, 7. < 71, we set b. = b1, the loadings for the shortest instrument.
Similarly, if 7,, < 7., we set b, = b, (other extrapolation schemes could be used). Target
generalized durations are now set to (70), =7.b..

Suppose next that the target to be hedged at time ¢ is a stream of payments cj at
future dates 7j periods hence, 2 = 1,...,H. Then the value of the claim is v, = Zle Dt1,Ch)
with p;; = exp(—7y; ;) the discount function, obtained by interpolation between observed
yields, y:; = s(1)y;. By Theorem 1, payment cj is hedged by allocating the amount
D¢, ch across the m hedging instruments in the proportions indicated by (11), i.e., Wy, =
T 'v-1B (B’ ‘I’_lB)_lrhb' , with the k-vector of loadings b obtained by interpolation
as in (A.3.1), bj = s(1y)B. The overall strategy is to allocate the amount v, across the
instruments according to w = Zle D¢, ChWR/V+. This is equivalent to applying the rule

(11) directly to the target payment stream, assessing its generalized duration vector as

a pt,‘rhch a
CINEDY Thbh =) U«nThbn, (A3.2)
h=1 U= h=1

the value-weighted average of the generalized duration vectors 75, b of the individual
payments, each of dimension 1 x &, with value weights v., = p;, cx/v+. This is a portfolio-
of-portfolios argument. Thus, Theorem 1 applies directly to general target payment
streams. If value matching is desired, (12) is applied to w.

Finally, the expression (A.3.2) for the generalized duration vector of a payment stream
facilitates not only the hedging of such a stream, but also the use of streams as hedging
instruments. This includes hedging with coupon bonds. If there are M coupon-bearing
hedging instruments, we use expression (A.3.2) to calculate the generalized duration

vectors (tb). and (1b)s, ¢ =1,...,M of both the target and each of these instrument



streams. Thus,

H H
(tb)e =) venThbn =Y venths(ty)B = BS(1)B, (A.3.3)
h=1 h=1

where vy contains the value weights for instrument ¢, S(r) is H x m with typical row
s(tp), and the vector By = {vs,Th}s of value weights times maturities is 1 x H. Suppose
the preceding yield factor analysis for estimation of B and VYV is still applied to a balanced
panel of m zero-coupon bonds. The main difference is that the hedging instruments are
now different, and may vary from period to period as bonds age, mature, etc. Thus, the
relevant M x k matrix of generalized durations = has typical row (7b), from (A.3.3). This
= is the matrix that specializes to 7 B in the zero-coupon instrument case. Further, from
the construction (see (6)), the M x M idiosyncratic (non-factor related) error variance
matrix for the coupon bond returns is ® = [I¥YII', where II is M x m with typical row
B¢S(7). With B and WV estimated in the zero-coupon yield factor analysis, applied to data
from the preceding periods, and all other required variables given by contractual terms
and interpolation, hedging is based on a direct generalization of Theorem 1. The hedging

portfolio for general instruments is given by
w=0"EZ(E'07Z)(1b),.
Again, (12) is used to obtain value matching (full investment), now with
A — ®—1 _ (_)—1 —_ (:./@—1 :) -1 =/ ®—1
In case of more hedging instruments than zero-coupon bonds, M > m, ©~" is understood
as a (Moore-Penrose) generalized inverse.
A.4. The NS yield curve representation

The NS yield curve parametrization takes the form (14), i.e., the loading functions B (),
J=1,2,3, are those given in (15). Throughout, we focus on the case a > 0, since (15) is
undefined for a = 0, and for a < 0 diverges for large maturities. By direct differentiation,

we have the following results.

Lemma A.4.1. For a,t > 0, the slopes of the NS loading functions (15) in the maturity



direction are

i1§1(T) =0, (A4.1)
ot

0 - 1~

—Ba(1) = ——B3(7), (A4.2)
ot T

i13"3(1) = —133(1) +ae 7. (A.4.3)
ot T

It is noted that the slope (A.4.3) of the third loading function is unambiguously greater
than that of the second, in (A.4.2).

The loading functions B j(1) are associated with the fixed term yield parametrization
of the term structure, y(¢,7). Alternative parametrizations include those by the fixed
maturity date spot yields s(¢,T'), with T the maturity date, the instantaneous forward
rates f(¢,T), or the fixed term to maturity forward rates F(¢,7) = f(¢,¢t + 7). The relations
between these follow from writing the price at ¢ of the zero-coupon bond maturing at 7' > ¢

as

T T-t
p(t,T) — e—(T—t)y(t,T—t) — e—(T—t)s(t,T) — e—ft f(t,u)du — e—fo F(t,v)dv ) (A44)

In the latter parametrization, by fixed term forward rates, the NS curve is the well known
F,1)=fi1+fi2e” " +fr3ate ", (A.4.5)

Itis evident that f; 1, f+ 2, and f; 3 are level, slope, and curvature factors in this parametriza-
tion, since the respective loadings are constant, exponentially declining for a > 0, and
hump shaped, i.e., the linear component dominates the third loading function for short
maturities 7, and the exponential for long. It is less obvious that f; ; are level, slope, and
curvature factors in the yield parametrization (14), too. To be sure, we first clarify that

the representations are equivalent.

Corollary A.4.1. The NS yield curve (14) and forward rate curve (A.4.5) are equivalent

representations of the term structure.

Proof of Corollary A.4.1. By (A.4.4), with term to maturity T = T'—¢, we have ty(¢,7) =

fOT F(t,v)dv. Differentiation with respect to T produces

oy(t,1)

F(t,v)=yt,1)+71
ot

(A.4.6)



In the NS case, inserting y(¢,7) = B1.3(1)f%,

F(t,7)= BI:S(T)"'T(:)B;—:_?(T) fi. (A4.7)

The right side is evaluated separately for each of the three loading functions B1.3(r) from
(15). For the second, By(7), using (A.4.2), the component multiplying ft2 on the right side
of (A.4.7) is

. 1. - -
By(r)+71 (—;33(T)) =Ba(1)-B3(r)=e ",

confirming that the second loading function in the (fixed term) yield parametrization,
By(1), transforms to the second loading in the (fixed term) forward rate parametrization

(A.4.5). Similarly, for Bs(t), and using (A.4.3),

at

- 1.
Bs3(1)+1|--B3(t)+ae *"|=ate 7, (A.4.8)
T

i.e., the third loading function in the yield and forward rate parametrizations correspond,

too. Finally, the first (level) loading is flat, cf. (A.4.1), hence common. O

The qualitative interpretation of the factors in the NS yield parametrization in terms of
level, slope, and curvature corresponds to that in the equivalent forward rate represen-
tation, as we show in the next corollary, where we further collect some results from the

analysis.

Corollary A.4.2. For a,7 >0, the factors f;1, fi2, and f;3 in the NS yield curve (14) are
level, slope, and curvature factors, i.e., the respective loading functions are flat, downward
sloping, and hump shaped. All three loading functions are positive. The third loading

function is smaller than the second, but has greater slope.

Proof of Corollary A.4.2. The first is obvious, f; 1 is a level factor, since the associated
loading function is flat, cf. (A.4.1). Next, write the third loading function as

Ba(r) = 1-e™* et _ 1-(1+ar)e ™" .
at at

(A.4.9)

Recall that the exponential function x — e” is strictly convex, so its graph lies above its
tangent at x = 0, given by the first order Taylor approximation, which is 1+x. Thus,

e*>1+x for x>0, so (1+x)e ™ < 1. Using this with x = a7 in (A.4.9) shows that Bs(r) > 0.

8



From (14), Ba(7) = B3(1)+e~%" > B3(1) > 0, so all three loading functions are positive. From
(A.4.2), since B3(1) > 0, Bo(1) is downward sloping, so ft.2 is a slope factor. Comparing
(A.4.2) and (A.4.3), the slope of B3(1) exceeds that of Bo(1) by ae™®* > 0. It remains to
show that f; 3 is a curvature factor. Use (A.4.3) and (A.4.9) to write the derivative of the
third loading function as

0 ~ 1{1-(1+at)e™ @ (Q+at+a?7t2)e 9" -1
—B3(1)=—— + = .

ot T at at?

—at

(A.4.10)

Signing this involves comparing e?? to 1+ a7 +a?72, rather than to 1+at, as in (A.4.9),
so convexity no longer suffices. For large 7, the exponential does dominate, so (A.4.10)
is negative. On the other hand, for 7 > 0 sufficiently near 0, the quadratic dominates,
and (A.4.10) is strictly positive. This is seen by applying I’'Hopital’s rule twice to (A.4.10),

producing a ratio a/2 > 0 at T = 0. Thus, B3(r) has an interior maximum, or a hump. [

By the corollary, f; 1 is a level factor, and changes in this induces parallel shifts in the NS
yield curve. Movement in f; 2 changes the slope, and f; 3 governs curvature, just as in the

forward rate parametrization.

A.5. Proofs of Proposition 1, Corollary A.5.1, and (24)

Proof of Proposition 1. Under the stated assumptions, dynamic consistency implies
that if the evolution of y(¢,7) is governed by (a,0), as in (16), then y(¢,7) =Y (1, x(¢)), for
t = Ty, with x(¢) governed by (18), and the latter has a strong solution. Applying It&’s
lemma to y(¢,7) = Y (7,x(¢)) produces (22)-(23). Conversely, given ¢, v such that (22)-(23)
hold, and (18) has a strong solution, consider y(¢,7) governed by (a,0), as in (16), for

t=Ty. By (22), (23) and (18), y(¢,7) is represented in the form Y (7,x(¢)). O

Corollary A.5.1. Let ¢p(x(t),a(t)), a 3 x 1 vector, ¢p4(x(t),a(t)), a scalar, and y(x(t),a(t)), a
d x 3 matrix, rank(y) = d = dim(W(¢)), be such that (18) along with da(t) = ¢p4(x(¢),a(t))dt

has a solution (x(t),a(t)), but otherwise arbitrary. Then the NS curve shape (19) is dynami-



cally consistent with the DTSM (16) with

1 .
a(z,x(2),a(t)) = pa(x(t),a(t)) | e ¥ DT x3(2) — %Bs(f,a(t))(xz(t) +x3(1))

+B(1,a(t))p(x(2),a(t)), (A.5.1)
o(t,x(t),a(t)) = B(t,a®)w(x(t),a(t)).

The corollary provides a non-trivial example of a DTSM (a, o) that generates NS curves.
In the special case ¢4 =0 and ¢, 1 constant, the discrete time version is the DNS model
considered by Diebold and Li (2006), who emphasize the constant a(f) = a. The model in
Corollary A.5.1 is more general, and for non-zero ¢4, the coefficient a(¢) in the exponent

in NS is not constant. Thus, this is not a factor model.

Proof of Corollary A.5.1. For the coefficients ¢, ¥ in Proposition 1, consider those from
the corollary, namely, (¢, ¢4)" and (y,0), appending a fourth column of zeroes to the latter.
In this case, the trace term vanishes in (22), since nonlinearity of Y (7,x) only enters via
the locally deterministic a(t), not x;, i = 1,2,3. Inserting (20)-(21) for Y /dx’ in (22)-(23)

produces the drift and volatility in (A.5.1). The result follows from Proposition 1. O

Proof of (24). Writing the price of the zero-coupon bond trading at ¢ and maturing at T
as p(t,T)=G(t,y(t,T—t)), with G(¢,y) = exp(—(T —t)y), we have 0G/0t = yp, 0G/0y = —(T —
t)p, and 82G/dy? = (T — t)p. By the chain rule, dG(¢, y(¢t, T — t))/d¢ = 0G/dt — dG/dy - dy/oT,

with 7 =T —¢. Combining, we have dG(¢,y(t,T —t))/dt = yp + Tpdy/0t. By 1td’s lemma,
dy L ,
dp(t,T)=|y(t,1)+ ra—(t,r) —Tta(t,7)+ Ea(t,r) o(t,t)| pt,T)dt—tp(t,T)o(t,T) dW;
T
=pt,T)a,(t, T)dt+ p(¢, Top(t,T) AW, (A.5.2)

where a,(¢,T) and 0,(¢,T) are the expected return and return volatility of the bond. By

no arbitrage, we have
ap(t,T)=y(t,0)+0,t,T) A, (A.5.3)

for suitable market prices of risk ;. Inserting the expressions for a,(¢,T) and 0,(¢,T)

from (A.5.2) in (A.5.3) and solving, the no-arbitrage condition on the yield drift is
1 oy T , ,
a(t,7)==[y(t,1)—y(t,0)]+ a—(t,r) + Ea(t,r) ot,7)+0(t,1) . (A.5.4)
T T

10



For y(¢,7) =Y (1,x) and A; = A(x), this is (24). O

A.6. Fixed term to maturity yields

We verify the claims in footnote 12 in the main text, namely, that (a) the yield spread
enters (24) because we consider yields, as opposed to forward rates (as in HJM), (b) for
the same reason, convexity in (24) replaces the term involving an integral in HJM, (c) the
local slope enters (24) because our fixed term to maturity analysis avoids the bond aging
effect, and (d) our no-arbitrage condition (24) is consistent with that in HJM, with risk
compensation appearing under the physical measure. To this end, we derive the relations
between drifts and volatilities of fixed term to maturity yields, y(¢, 1), fixed maturity date
spot yields, s(¢,T), and instantaneous forward rates, f(¢,T). In the main text, we consider
an HJM framework for the fixed term to maturity yields. Available panel data sets are of

the fixed term to maturity type. Equation (16) is restated as
dy(t,1)=ay(t,1)dt + 0, (¢, 1) dW;, (A.6.1)

with subscript y on the drift and volatility functions highlighting that these are for the
fixed term to maturity yield specification.
From (A.4.4), we have (T —t)y(t, T —t)=(T - t)s(t,T) = ftT f(t,u)du. Differentiating

with respect to T, we have in analogy with (A.4.6) that
oy 0s
f@&,T)=yt,T-t)+(T-1t) O_(t’ T-t)=sT)+(T-1t) ﬁ(t’ T). (A.6.2)
T
The analysis in HJM is cast in terms of forward rates,
df ¢, T)=ar(t,T)dt+0r (¢, T) dW;. (A.6.3)

Clearly, a, and o, in (A.6.1) differ from a; and o in (A.6.3), both because the former
coefficients are for yields, as opposed to forward rates, and because we consider fixed
terms to maturity 7 in (A.6.1), but fixed maturity dates T in (A.6.3), i.e., T — ¢ shrinks as
t increases in the latter case. The first of these two differences arises for fixed maturity

date spot yields, too. To isolate this effect, use (A.4.4) to write
1 T
s(t,T)= —f f(t,u)du. (A.6.4)
T-tJ;

11



By letting T' | t, we have s(¢,t) = f(¢,t), the short spot and forward rates coincide. Since ¢
enters in three places on the right side of (A.6.4), there are three terms in the stochastic
differential. Using Leibniz’ rule for the second term, we get

1
(T —1t)?
1
CT—¢

T 1 1 T
ds(¢,T) = ftf(t,u)dudt—T—_tf(t,t)dt+T—_tft df(¢t,u)du

1 T 1 T
(s(t, T)—s(t,t)) dt+—f af(t,u)dudt+—f or(t,u)dudWy,
T-tJ; T-tJ;

where the second equality follows from (A.6.4), (A.6.3), s(t,t) = f(t,t), and Fubini. Thus,

in the representation
ds@t,T)=as(t,T)dt+o0(t,T) dW,,

the spot and forward drifts and volatilities are related as

s(t,T)—s(t,t) 1 T
ast,T) = ——F— +T_tft ar(t,u)du,

B (A.6.5)
as(t,T):T—_tft opt,u)du.

By (A.6.4), moving from forward rates to spot yields clearly involves an integration, and
by (A.6.5), the drift is in addition adjusted for the average slope, or yield spread. This
verifies (a).

For fixed term yields y(¢,7), there is an additional adjustment. To see this, use (A.4.4)

for fixed term 7 =T — ¢ to write

t+1

y(t,7) = % f(t,u)du. (A.6.6)

t
Again, as in (A.6.4), t enters three times on the right side of (A.6.6). Differentiating first

in the upper limit of the integral, then the lower, and then the integrand, we have

t+7T

1 1 1
dy(t,D) = —f(t,t +Ddt = —f(t,dt + df(t,u)du
t
t+1

1 B 1 1
-2 y(t,T)+T—y(t,T)) dt— —y(t,00dt+= | df(t,u)du
T ot T TJ:
t+T

1 oy 1 rit7 1
=—(y(t,1t)—y(¢,0)) dt+—(t,T)dt+—f af(t,u)dudt+—f or(t,u)dudWy,
T o0t TJ: TJ:

where the second equality follows from (A.6.2). Thus, the fixed term yield and forward

12



drifts and volatilities are related as

t+1
ay(t,7)= 1(y(t,T) —y(¢,0))+ g—y(t,r) + 1] ar(t,u)du,
! ! He (A.6.7)

1 t+1
o,(t,1)= —f or(t,u)du.

TJt
In addition to the adjustment for the average slope or yield spread, shared with that
for fixed maturity date yields in (A.6.5), the move to fixed term yields involves a further
adjustment in the drift, by the local slope of the yield curve, 0y/0t. The reason that this is
not present in (A.6.5) is the bond aging effect noted by Litterman and Scheinkman (1991),
i.e., as t increases, the bond p(¢,T) becomes shorter (it ages). Hence, so does s(¢,T), but
not y(¢,7) in the fixed term to maturity panel. This verifies (c).

Next, we show that the no-arbitrage yield drift condition (24) is consistent with that

given in HJM for forward rates under the risk-neutral measure. Writing a(¢,7) = a, (¢, 1),

o(t,7) = 0,(¢,7) in the no-arbitrage condition (A.5.4) and comparing with (A.6.7), we have
1 [T T , ,
T—tf ar(t,u)du = 503’ (t, 1) 0y(t,T)+0,(,T) Ay, (A.6.8)
—tJt

with 7 =T — ¢t. Under the risk-neutral measure, 1; = 0. In this case, isolating the HJM

forward rate drift from (A.6.8),

o,t,T-t)o,tT- t))

d ((T—t)2
a7 2

d T
af(t,T):ﬁj; ar(t,u)du =
:(T—t)ay(t,T—t)’ay(t,T—t)+(T—t)zay(t,T—t)’diTay(t,T—t)
=(T-to,t,T-8)0yT-1)
+(T—t)20y(t,T—t)’i(LfTaf(t,u)du)
dT \T -t J;
=(T-to,t,T-8)0yT-1)

T
+(T—t)2ay(t,T—t)’(— f Uf(t,u)du+%af(t,T))
, _

(T -t)?
=(T-t)o,t,T-t)0,t,T-1t)

(1 1
+(T-t0,(t,T—1t) (—T—_tay(t, T—t)+ T—_taf(t,T))

=(T-t’0,t,T-t) (Ti_to—f(t, T))

T
:(T—t)f Gf(t,u)'du( or(t, T))
t

T-t

13



T
=0/, T) f op(t,u)du, (A.6.9)
t

using (A.6.7) in the third, fifth, and seventh equality. This reproduces the HJM no-
arbitrage forward rate drift condition under the risk-neutral measure, cf. Footnote 12,
which is therefore consistent with the no-arbitrage yield drift condition (A.5.4), and hence
(24). This verifies (d).

Finally, as noted in relation to (A.6.4), moving from forward rates to yields involves an
integration, and this is why both yield drifts (fixed maturity date, (A.6.5), and fixed term,
(A.6.7)) involve the integrated forward rate drift. From (A.6.9), under the risk-neutral
measure, the forward rate drift is exactly the term involving an integral in the HJM
forward rate condition, and from (A.6.8), upon integration in the yield case, this term is

simply convexity. This completes (b).

A.7. Proofs of Proposition A.7.1 and Corollaries 1, A.7.1, and 2

Proposition A.7.1. Dynamic consistency between the arbitrage-free DTSM (A,0) and the
yield curve family ) is equivalent to the existence of suitable ¢, v satisfying Assumption 1,

condition (23), and

1 [Y (7,0)-Y (0,%)] + (;—Y(T,x) + %U(T,x)'a(r,x) +0o(1,x) Ux)
! ’ ; (A.7.1)

Y !/
DY) Y|,

—g( )()+lt
= T,x)Pp(x 21‘

for all (t,x).

Proof of Proposition A.7.1. This follows from Proposition 1 by inserting the no-arbitrage

condition (24) for the drift in (22). O

Proof of Corollary 1. We first prove the result for NS with fixed a. Subsequently, we
extend the proof to include a among the time-varying state variables. Thus, suppose first
that an arbitrage-free DTSM (A, 0) is dynamically consistent with NS with fixed a. We
show that this leads to the condition o =0, hence implying that all arbitrage-free DTSMs

that are non-degenerate, i.e., with o # 0, are dynamically inconsistent with the NS curve

14



shape with fixed a.

For NS with fixed a, the state vector is x = (x1,x92,x3)’, and we have the factor model
Y (1,x) = B(r)x, with B(1) = B1.3(7;a) from (15). By Proposition A.7.1, dynamic consistency
under the no-arbitrage condition requires the conditions (23) and (A.7.1), with 0Y /dx’' = B.
In (A.7.1), the trace term vanishes due to the factor structure, 0°Y/0x0x’ = 0B/dx' = 0.

Condition (23) requires
o(t,x) = E’(T)t//(x)' , (A.7.2)

with y(x) d x 3. This implies that convexity takes the form B(t)y(x)'y(x)B(t). Inserting
this in (A.7.1), together with (A.7.2) for o(7,x), average yield spread %[Y(T) -Y(O)] =
%[E’ (1) —B(O)]x, local slope adjustment dY /0t = (dB/d7)x, and dropping the trace term,

(A.7.1) reduces to
1,4 . 0B T - S s = ,
- [B (t)—-B(0) ]x + P (t)x+ EB(T)’I,[/(:XZ) w(x)B(t) = B(1) ((,b(x) —y(x) /l(x)) , (A.7.3)

with ¢(x) a 3 x 1 vector and A(x) a d x 1 vector. Condition (A.7.3) requires that convexity,
when viewed as a function of maturity 7, be spanned by the loadings (15) and the functions
in the slope adjustments. To compute B(0) as a limit for 7 | 0, we apply 'Hépital’s rule to
Bo(1)=(1-e %) /at. Differentiating in numerator and denominator separately produces
e~ %", so B2 (0) = 1. Using this to find B3(0), too, we have B(0) =(1,1,0). Thus, in (A.7.3),

the contributions from B to the yield spreads are

1. 1, . ) )
;[B(r)—B(O)]:;(Bl(r)—l By -1 Ba(m)-0
(0 5t B ) (A7

The contributions from B to the local slope adjustments in (A.7.3) are obtained from (15)

and Lemma A 4.1,

0B i i
SM=(0 -1By@) -1Bs(m+ae"

_ ( 0 o7 1—e—aT e ar 1_6—2(177 +ae—a‘[ ) . (A.7.5)

T at? T at

Write y;(x) for the i*" column in w(x), a d x 1 vector, wij(x) = yi(x)y;(x), and w(x) =
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{w;j(x)}; ; for y(x)y(x), a 3 x 3 matrix. Convexity $B(1)y(x) y(x)B(r) in (A.7.3) is then

3 3
Y Y 0 j(x)Bi(1)B(1) = % (011(%) + wa2(x)B2(7)? + w33(x)B3(7)?)
i=1j=1

N~

(A.7.6)

+ T (012(x)Ba(T) + 013(x)B3(T) + w23(x)Ba(T)B3(1)) .

Because we will use the calculations repeatedly, we present them explicitly here. First, in

(A.7.6),
~ 1-e9\2 1-2e797 17207 2(1-e %) (1—e 207) - N
B 2 = = = = — B —B
2(7) ( o ) 0272 2272 o (B2(1)—Ba(1)),
(A.7.7)
hence introducing the function
B 1-— -2at
By = ——, (A7.8)
2at

which will play an important role in the analysis. Next, from (15) we clearly have
B3(1)=Ba(r)-e ™", (A.7.9)
so in (A.7.6) we will need the product

= = 2B4(1) - Bo(7).

Bo(1)e %" =
at 2at at

( 1— e—ar) . e a7 _ e—2ar 2 (1 _ e—ZaT) (1—e™97)
e T = -
aTt

(A.7.10)
Thus, using (A.7.9) and the calculations (A.7.7) and (A.7.10) for the next term in convexity

(A.7.6),

Bs(r)? = 2

— (Ba(1) - By(1)) + 72" — 2(2B4(7) - B2(7)) . (A.7.11)

Using (A.7.7) and (A.7.10), an alternate version of (A.7.11) is

2(1-e)—(1-e207) = 2(e79T-e7%7)
e —_—

Bs(r)? =
a?7? at

(A.7.12)

For the last term in (A.7.6), we need but a portion of (A.7.11) (or (A.7.12)), i.e., using

(A.7.7) and (A.7.10) again,
Bs(1)B3(1) = Bo(7) (Ba(t) —e7%7)

2 - . .
(B2(1) — B4(1)) — (2B4(1) - Ba(1))

at
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2(1-e™97)— (1—e7207T) @ 0T _g 201
_ X Lg ) _et-e . (A.7.13)
a““T atT

Combining (15), (A.7.6), (A.7.7), (A.7.12), and (A.7.13), convexity in (A.7.3) is

3 > 1—e @7 1-—e 201
SBOVE Y@BEY =on@; + wz2(x) ( e e )

a at 2at

1(1-e9" 1-e7297\ 71
+ - _ + —e 2aT _ -at _ —2at
w33(x) ( at 2at ) 2e a ( )]
_ a—art _ ,—art
+w19(x) +w13(x) ( - Te_ar)
2(1—e" 27 1— —-2at 1
+weg(x) [ — ( S 26 ) ——(e™"—e72T)|.  (A.7.14)
a at at a

For dynamic consistency, the spanning condition (A.7.3) requires that convexity (A.7.14),
as a function of maturity 7, be spanned by the loadings B(r) from (15) and the functions in
the slope adjustments (A.7.4)-(A.7.5). The spanning coefficents are x, the state variables,
on the slope adjustments, and ¢(x) — yw(x) A(x), risk-adjusted state drifts, on the loadings.

The first term in convexity (A.7.14), multiplying w11, is the linear, 7/2. Evidently,
this is linearly independent of the functions of 7 in the remaining convexity terms in
(A.7.14), in the loadings (15), and in the slope adjustments (A.7.4)-(A.7.5), since these are
all spanned by exponential functions, the reciprocal, 1/7, the constant function, products

—at

of these, and the linear-exponential functions 7e %" and 7e 2%7/2 appearing in (A.7.14)
(recall a > 0). This implies w11(x) =0, so ¥1(x) = 0. Thus, the first state variable is locally
deterministic, and w1 ;(x) = ¥1(x)'y ;(x) = 0, j = 2,3, too. Only the terms multiplying woa(x),

w33(x), and we3(x) remain in convexity (A.7.14), which therefore simplifies to

- ~ 1—e @7 1-— —-2at1
L By By = 229 ( ¢ == )
2 a at 2at
1(1-e9" 1-e7297\ 1 1
+ _ _ +_e 2aT _ -atr _ —2ar]
©s3(%) a ( at 2a1 ) 2° a (e e
92 (11— 07 1-— —-2at 1
+ wog(x) | — ( e _-T° ) el Chi e_2‘”)] .
a at 2at a

Using (A.7.7), this is equivalently expressed as

L Bl ) yoB(ry = L2 0D 208D (5 0 () + ggl) e
2 @ 2 (A.7.15)
w23(X)+w33(X) . _,7  _our o
- (e7" —e™2T),

a
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thus involving B4(7) from (A.7.8). As a function of 7, this is clearly linearly independent of
the NS loading functions (15). Because it is linearly independent of the slope adjustments
(A.7.4)-(A.7.5) and the remaining terms in convexity (A.7.15), too, (A.7.3) implies the

condition
wzg(x)+w33(x)+2w23(x) =0. (A.7.16)

Thus, convexity (A.7.15) reduces to

—9qr _ W33(x) + was(x) (677 — o-21)
a

(A.7.17)

gB(ww(x)’mx)B(r)' - wgg(x)ge

The functions Te 2%7/2 and e 247

are linearly independent of each other, and of those
in the loadings (15), the slope adjustments (A.7.4)-(A.7.5), and the remaining function
e %" in (A.7.17), so avoiding dependence on these requires the conditions ws3(x) = 0 and
w33(x) +wez(x) =0, and hence waz(x) =0, too. From (A.7.16), wos(x) = —w33(x) —2wez(x) = 0.
Because w;;(x) =y ;(x)'yj(x), we have y(x) = 0, j =2, 3, and we had y1(x) = 0 from earlier,
so w(x) = 0. By (A.7.2), dynamic consistency requires o(7,x) = B(1)y(x)’, so o(r,x) = 0.
If the arbitrage-free DTSM is dynamically consistent with NS with fixed a, then it
is degenerate. We conclude that NS with fixed a is dynamically inconsistent with all
non-degenerate arbitrage-free DTSMs.

Next, we show how how each of the steps in the preceding argument is extended in case
a is considered an additional state variable. By Proposition 1, dynamic consistency under
the no-arbitrage condition requires the conditions (23) and (A.7.1), with x = (x1,x2,x3)’
expanded to x, = (x,a)’. In this case, w(x,) is d x 4, and Y /0x], is no longer simply given
by B1.3(r) from (15), but is instead expanded to (20), including the additional component

0Y /0a from (21). Since this depends on x, we no longer have a factor model. First, write

the curve shape (19) as
Y (1,%q) = B1:3(1;0)x = x1 + Ba(7;0)x2 + Bs(1;a)x3, (A.7.18)

with B1.3(t;a) from (15) depending on a. The slope adjustments %[Y (1,x4)-Y (O,xa)] and

% (1,x4) in (A.7.1) are computed for given x,, and so are still obtained by multiplying
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each of (A.7.4) and (A.7.5) by x = (x1,x92,x3). For dY/da, we need the derivative

0Bs(t;0) 0 (1—e—<”) 1(1—e“"_e_m)

oa "~ da

= —lgg(T;a), (A.7.19)

at a at a

highlighting that the third NS loading function is (proportional to) the derivative of the

second with respect to a. Using (A.7.9) and (A.7.19), we immediately get

0B;(t; 0Bs(t; 1(l-e 1.
s(r;a) _ 0Ba(v;a) tre = —— ( S e |4+7e 9 =—ZBy(r;a)+Te .
Oa Oa a at a
(A.7.20)
Combination of (A.7.18)-(A.7.20) produces

oY 1
— = ——Bj3(1;a)(x2 +x3) + T “Tx3, (A.7.21)
da a

thereby verifying (21).
The trace term in (A.7.1) involves the second derivative of Y with respect to a. By

direct differentiation of (A.7.21), using (A.7.20),

—atT at

. 1( 1~
Bs(t;a)(x9 +x3)— —|——Bgs(1;a) + Te (x2+x3)—12e_ x3
al a

(2B3(1;0) —ate ") (xg +x3) — T2 T x3.

The trace term in (A.7.1) further involves the cross-derivatives with respect to ¢ and
either x5 or x3, and they are given by (A.7.19) and (A.7.20), respectively. Since 82Y /dx10a
and terms of the type 02Y /0x;0x ; vanish, there are no further terms in the trace in (A.7.1),

which therefore takes the form

1 %Y 1, -
=tr - (T,xa)w(xa)’w(xa)) = w4a(xs) | = (2B3(1;0) —ate ") (xg +x3) — T2 T3
2 \0x,0x), a?
2 N
_ 202a%a) 034 &aD) gy 9 ()Te T (A7.22)
a
Condition (23) requires
! ) / aY /
0(7,xq) =B1.3(T)y1:3(x4) +£(T,xa)1V4(xa) , (A.7.23)

with the d x 3 matrix ¥1.3(x) given by the first three columns of w(x,). Thus, convexity

in (A.7.1) is (A.7.14) plus the terms involving dY/0a. One term involves the square of
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(A.7.21),

oY )2 1 2
% (%) = % (—aBg(r;a)(xz +x3) + Te"”xg) : (A.7.24)

Using (A.7.11)-(A.7.12) allows writing (A.7.24) as
T (6Y)2 1
2\ 0a

1

2
_ (xz +x3)
a

5] _ R T —2a1_1 —at _ —2at
(Ba(1) —By(7)) + 5¢ - (e e ")

a2

(A.7.25)

T gar 2 Tos -

+ Ee asz - —B3(T)e aT(xz +OC3)OC3 .
a

Convexity further involves the three cross-products between (A.7.21) and the loadings in

(15), multiplied by T,

N )4 N
B3 = L Ba(r)(xg +x3) + 726 VTx, (A.7.26)
a a
5 0¥ T 5 25 —art
TBQ(‘L')a— = ——BQ(T)BS(T)(xz +x3)+T BQ(T)e X3, (A.7.27)
a a
> Y T 5 2 2D —-at
TBg(T)a— = ——Bg(‘r) (x2 + x3) +7T Bg(T)e X3 . (A728)
a a

Rewriting (A.7.27) using (A.7.13) yields

~ oY 2 . ~ - ~
By = 22 (Bo(n) - Ba) - (2Ba(r) - Ba(1)

= (x2+x3) + 72Bo(1)e % x3. (A.7.29)
alart

Similarly, rewriting (A.7.28) using (A.7.11) yields

- Y 2
TB3(1)— = i
oa

p a_r (xg + x3) + 1233(T)e_‘”x3 .

(B2(1) - B4(1)) + €727 - 2(2B4(1) - Ba(1))

(A.7.30)
Writing (A.7.14) in terms of the NS loadings, using (A.7.15), and extending with (A.7.25),

(A.7.26), (A.7.29) and (A.7.30) yields convexity

Ba(1) - By(1))

T 0Y oY T w22(x )+ w33(x )+ 2(023(.%‘ )

QEW(xa)'W(xa)a = w11(xa)§ + = " - =

w23(xq) + W33(xy) (e—ar _ e—2a1)
a

T . 3
+w33(xa)§e 24T 4 (919(x0)TBo(x) + w13(x4)TB3(x) —

1

111 x4 5] T _9q -a —2a
+w44(x0) — [—(32(T)—B4(T))+—e 24T _ ~ (797 —e7297) | (xg + x3)>
a‘|a 2 a
78 72
+w44(x4) 5 2aty2 333(T)e_“r(x2 +X3)x3

T ~
+ w14(x4) [— aBs(T)(xz +x3)+ Tze_‘”xs]

2 - - .
+ wa4(xq) {—— — (B2(1) = B4(1)) — (2B4(1) — Ba(1))
a|lat

~

(x9 +x3)+ ngg(r)e_‘”xg }

20



2 - . - -
(Ba(7) — B4(1)) +e 2" —2(2B4(1) - B2(7)) | (xg + x3).

T
- w34(xa)_ -
a|aT

+ w34(xq)T2B3(T)e Vx3. (A.7.31)

The steps analyzing (A.7.14) as convexity in (A.7.3) in the case of fixed a are now extended
to (A.7.31) as convexity in (A.7.1), thus accommodating time-varying a. For dynamic
consistency, (A.7.1) requires that convexity (A.7.31), as a function of maturity 7, be
spanned by the loadings (15), 0Y/0a from (A.7.21), the functions in the slope adjustments
(A.7.4)-(A.7.5), and the trace (A.7.22). The first term in (A.7.31), multiplying w11(x,),
is the linear, 7/2. This is linearly independent of the functions of 7 in the remaining
convexity terms in (A.7.31), and in (15), (A.7.21), (A.7.4)-(A.7.5), and (A.7.22), since these
are all spanned by functions involving exponentials, the reciprocal, 1/7, the constant

=97 and 1e72%7/2, and those involving 72

function, products of these, the functions re
and 73 in (A.7.31). To be sure, the argument has already been made for the case with
constant a, which has the same loadings (15) and slope adjustments, so attention can
be restricted to the new terms in the time-varying a case, i.e., 0Y/0a from (A.7.21), the
trace (A.7.22), and the terms in convexity (A.7.31) involving w;4(x,), j = 1,...,4. In two
cases, these new terms do involve T multiplied by B i(T;a), j =2, 3, 4, without involving

further exponentials, but never 7 alone (or multiplied by B1(7;a), the constant). Thus,

using (A.7.10), we have in (A.7.31) that

T B B e ar _ e—2ar
o (2B4(T;a) —Bz(r;a)) = 2 , (A.7.32)
whereas
_ 1—e @7
1B3(1;a0) = e
a

The constant function appears, but never the linear, 7/2 (recall that a > 0). This implies

that, again, w11(xg) =0, so y1(x,) = 0. The first state variable is locally deterministic, and
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w1(xg) = wl((xa))'wj((xa)) =0,j=1,...,4. Convexity (A.7.31) simplifies to

7 0Y wzz(xa) + w33(xq) + 2w23(x4)

——y(xg) w(xa) (

2 0x), a

-2a1 _ w23(x4) + w33(x4) (e—a-r _ e—2a‘r)
a

Bo(1) - B4(1))

+w33(xa)§e

11, ~ 1
+ w44(xq) = [— (Ba(r) - By() + =e 24T — = (79" — 727} | (g + x3)°
a“|a 2 a

3 2

5 _ T° ~ _
+0a4(xe) | e g — —By(1)e™ " (x +23)s

2 5] 53 5 ~ ~
+ w24(xq) { _2 [E (B2(1) = B4(1)) = (2B4(1) — Ba(1)) | (x2 + x3) + Tsz(T)e_‘”x3}

2 - - . N
- w34(xa)£ [a—T (B2(1) = B4(1)) + 7297 - 2(2B4(1) — Bo(1)) | (xg +x3)

+ w34(x)T2B3(T)e x5, (A.7.33)

The first function of 7 in convexity, Ba(7;a) — B4(7;a), especially the portion B4(t;a) from
(A.7.8), is not in any other term in (A.7.1), i.e., neither in remaining convexity (A.7.33),
nor in (15), (A.7.21), (A.7.4)-(A.7.5), (A.7.22), and it is linearly independent of all other
terms (B4 appears in the terms involving wa4(x,) and ws4(xg) in (A.7.33), too, but there,
it is multiplied by 7). It follows that the first term in convexity vanishes, yielding the
condition

w44(24 ) (%2 + x3)? + 2g3(s)— 2(w24(xq) + w34(x4)) (x2 + x3) ~0. (A.7.34)

a? a

w22(xq)+w33(x)+

Thus, convexity (A.7.33) reduces to

T _ wa3(xq) + w33(xg) , _ -
20 el , _w33(xa)§e 2a1 a . a (e a‘r_e ZaT)

T e—2a‘r _ 1 (e—ar _ e—2ar)

2 a

3 2
_ 72 _
20T 3 — ;Bs(r;a)e “T(x2 +x3)x3

2
(x2 +x3)

+ w44(xa)—2
a

T
+ waq(xg) | —

+ woa(xa) {2 (2B4(130) - Bo(r;)) (3 + x3) + 72 Ba(T300e "3} (A.7.35)
+ w34(xg) {2 [-e 2" +2(2B4(1;a) - Ba(1;a)) ] (x2 +x3) + 1233(T;a)e_”x3} )

The function 737297 in the term involving w44(x,) is not in any of the remaining terms in

(A.7.1), either, and it is linearly independent of these. It follows that either (i) w44(x,) =0,
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or (ii) x3 = 0. We consider these two cases separately.
In case (i), if w44(x4) = 0, then Y4(x,) =0, s0 wj4(xe) =0, j=1,...,4, because w; ;(x,) =

247 s not

¥ (x4)'y j(x4). Thus, convexity (A.7.35) reduces to (A.7.17), and as before, Te”
spanned, this time because it does not appear in the additional trace terms (A.7.22),
either. It follows that wss(x,) =0, so ¥3(x,) =0, and therefore wa3(x,) = 0. From (A.7.34),
waa(xg) =0, and w(x,) =0, because w;;(x,) =0, j=1,...,4.

In case (ii), x3 = 0, if Y3(x,) # 0, then x3 # 0 the next instant, and case (i) applies.
If y3(x4) = 0, then x3 is locally deterministic, so w;3(x,) =0, j =1,...,4, and convexity
(A.7.35) reduces to

Ie—2ar _ l (e—a‘r _ e—ZaT) x%

oY , 3Y ~ 1
a—,(T,xa)w(x)1//(96)a(7,xa)—cz)44(ﬂca)a2 2 .

r

20xq (A.7.36)
T ~ ~

+ w24(xa)5 (2B4(1) —Ba(1)) x2.

-2at

The function e is neither in remaining convexity, nor in (15), (A.7.21), (A.7.4)-(A.7.5),
(A.7.22), and it is linearly independent of these. It follows that either (a) w44(x,) =0, or
(b) x2 = 0. If (a) waa(x,) =0, then wj4(x,) =0, j=1,...,4. From (A.7.34), waa(x,) =0, and
w(x,) =0, because w;;(x,) =0, j=1,...,4. If (b) x2 = 0, then convexity (A.7.36) vanishes.
The trace term (A.7.22) in (A.7.1) involves the function w4472e~%. Since this is not in (15),
(A.7.21), (A.7.4)-(A.7.5), and it is linearly independent of these, it follows that w44(x,) = 0.
Again, this implies w;4(x,) =0, j =1,...,4, so from (A.7.34), wa2(x,) = 0, and w(x,) =0,
because w;;(x,) =0, j=1,...,4.

Thus, we have have y(x,)y(x,) = w(x,) = 0, both in case (i) and (ii), and these
are exhaustive, so w(x,) = 0. By (A.7.23), dynamic consistency requires o(7,x,) =
(E’l;g(r;a),aY/aa) w(xg), s0 0(1,x4) = 0. If the arbitrage-free DTSM is dynamically consis-
tent with NS, then it is degenerate. We conclude that the NS curve shape is dynamically

inconsistent with all non-degenerate arbitrage-free DTSMs, whether a is fixed or time-

varying. O

Corollary A.7.1. Dynamic consistency between the DTSM (a,0) and the factor model B is

23



equivalent to the existence of suitable ¢, ¥ satisfying Assumption 1 and the conditions

a(t,x) = B(1)p(x), (A.7.37)
o(t,x) = B(t)y(x), (A.7.38)
for all (t,x).
Proof of Corollary A.7.1. This follows from Proposition 1 for Y (7,x) = B(7)x. O
Proof of Corollary 2. This follows from Proposition A.7.1 for Y (7,x) = B(7)x. O

A.8. Affine models

In affine term structure models (ATSMs), the yield is written in the form Y (7, x(¢)) = A(7)+
B(1)x(t), where B(7) satisfies a Riccatti ODE. This is clearly the special case of the general
form Y (7,x) = B(1)x in which one of the state variables is constant, i.e., x(¢) = (x(¢)’, 1),
B(t) = (B(1),A(1)), k =d + 1. In this case, (¢, %) pertain to the d non-constant state
variables, only, with ¥ d x d and invertible. Viewing (27) as an equation in the unknown
B(-), assuming elementwise affine forms (in x) for ¢ and ¥/, and setting A = 0 reduces
the equation to the linear-quadratic Riccatti ODE, which under an initial condition giving
the short rate as an affine function of & determines the solution B = (B, A).*? The state
drift is affine under both the physical and the martingale measure under the additional
assumption that A(x) = w(x)1o +(1/7(x)_1)’(/11 + A1x), where Ay, A1 ared x1 and A1 d xd, so
that ' is affine, see Cheridito, Filipovié¢, and Kimmel (2007).#® The dynamic consistency
approach accommodates the more general structure Y (z,x(t)) = B(1)%(¢) +]§(T)a:c(t), say,
where x(t) is a vector of locally deterministic but potentially time-varying state variables,
with loadings B(). Thus, the time-invariant ATSM intercept A(7) is generalized to the
time-varying form B(7)%(¢) under dynamic consistency, x = (&', '), ¢ =(',¢"), say, and

v' =(,0) is k x d, where k > d — indeed, typically 2 > d + 1, as we demonstrate.

42Since A =0, ¢ is the state drift under the martingale measure in this case, ¢ = ¢, say.
43With A non-zero, ¢ is the drift under the physical measure, so € = ¥ — ' A.
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A.9. Proofs of Propositions 2, A.9.1, A.9.2, and Theorem 2

Proof of Proposition 2. By Corollary 2, conditions (25)-(26) must be verified. Inserting
(31) for o(1,x), w(x) = (0,2(x),0,0), and B1.4(1) from (32) for B(7) in (26) verifies the
condition. Next, by (31), the volatility function takes the form o(7,x) = 2(x)B2(7), and

using (A.7.7), convexity in (25) is

%a(r,xyo(r,x) = ng(x)‘-"Bz(r)z
B w2(x)2 (1 _ e—ar ~ 1— e—2ar)
B a

_ pax)?
B a

at 2at1

(Ba2(r) - B4(1))

2 2\/
vy | W2l ) . (A.9.1)
a

)
a

=B1.4(1) (0,

This is spanned in (25) by the loadings from B(z) = B1.4(7) from (32). From (A.9.1), the

spanning coefficients are

2 24/
(0, Yooy e ) , (A.9.2)
a a
which are therefore part of ¢(x) in (25). Similarly, in (25), we have
o(1,x) Mx) = ya(x)Ba(1)Aa(x) = B1.4(1)(0,2(x)A2(x),0,0)’, (A.9.3)
S0
(0,p2(x)A2(x),0,0)’ (A.9.4)

is another term in ¢(x) in (25). It remains to check that the resulting slope adjustments
are spanned by the loadings in Bi.4 in (25). This is done easily, because the fourth
loading in (32) is of the same type as the second, with 2a replacing a. Thus, when (15) is

augmented to (32), then the average yield spreads (A.7.4) are expanded to

1. ) 1, . _ ) )
;[31:4(1')—31:4(0)]:;(Bl(T)—l Bo(t)—1 Bs(1)—-0 B4(T)—1)

_ 1% 1 1-e™ e 1-e27 1

=0 Bt Beosr i) @es)
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and the local slope adjustments in (A.7.5) are expanded to

0B1.4
ot

—-at _a—art -at _a—art _ —2at _a—2at
(T):(O eT _1a(-er2 er _1aerZ +ae " er _12?11'2 ) (A96)

The total slope adjustment in (25) is therefore

(% [B1.4(r) - B1.4(0)] + 0B1:4 ()| x=- 1-e ™ x9 +ae “Txg— 1_+_2Mx4
= —aBo(1)x9 +ae “Txg —2aB4(1)x4. (A.9.7)
Using the relation
e " = Bo(1) - Bs(1), (A.9.8)

total slope slope adjustment is written as

0B1. - - . N
U (1) |2 = —aBao(r)xs + a (Bo(1) - Bs(1)) a3 — 2aB4(1)x4

1.~ N
;[31:4(7)_31:4(0)]‘*‘ 3

=B1.4(1)(0,-a (xg — x3), —ax3, —2axs)’
This is spanned in (25), with coefficients
(0,—a(x9 —x3), —ax3, —2axs) . (A.9.9)

Total spanning coefficients on Bj.4 in (25) for convexity, risk compensation, and slope
adjustment are therefore obtained by adding (A.9.2), (A.9.4), and (A.9.9), i.e.,

Wa(x)?
a

P(x) = (0, 2ax4) . (A.9.10)

2
+Wa(x)Aa(x) — a(xg — x3), —axs, — WZ((:C) B

Given spanning, dynamic consistency of ANS with the arbitrage-free DTSM with market
prices of risk A(x) and volatility (31) follows from Corollary 2. The expression (33) for the

drift follows by inserting (A.9.10) in a(r,x) =B 1:4(7)p(x). O

Proposition A.9.1. The augmented NS (ANS) curve shape given by loading functions

31:4&):(1 e 1-e -ar ﬁ) (A.9.11)

at at 2at

with fixed a is dynamically consistent with the DTSM with drift

1—e 07
T

a

_ A 2at

1-e ™ _ e“”) o) (A9.12)
2at

at

a(t,x) = p1(x) + Pa(x) + ¢p3(x) (
and volatility function (31), provided ¢(x) = (p1(x),...,P4(x)) and w(x) = (0,p2(x),0,0)
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satisfy Assumption 1.

Proof of Proposition A.9.1. By Corollary A.7.1, conditions (A.7.37)-(A.7.38) must be
verified. Inserting (A.9.12) for a(z,x) and B1.4(7) from (A.9.11) for B(r) in (A.7.37) verifies
the condition. Inserting (31) for o(7,x), w(x) = (0,%2(x),0,0)’, and B1.4(7) from (32) for B(1)

in (A.7.38) verifies the condition. The conclusion follows. O

Proof of Theorem 2. By Corollary 2, conditions (25)-(26) must be verified for B(7) =
B1.7(7) from (43) and y(x) from (40). Inserting these in the condition on o(r,x) in (26)
produces (41). By slight abuse of notation, we write By = (1-e7°7)/(b7) for the first
loading function in B1.7. Using (A.7.7), (A.7.11), (A.7.13), and the definition of B7(7) from

(43), convexity in (25) is

%a(r,x)'a(r,x) = % (11 @2B1(0? + Y20 Ba()? + (0 By(1)? + 223 Bo(1)B(7))

~ W1(x)2 (1_e—br _ 1_e—2b1) . 1//2(96)2 (l_e—ar ~ 1_e—2a1)
b bt 2bT

+w3<x>2( (Ba(1) - By(1)) + ze‘2‘” (2E4(r)—Bg(r)))

a at 2at

1
+ 2(1)23 ( (Bz(‘l,’) B4(‘L’)) - = (234(‘[) Bz(‘[)))

0 2
1l/2(x) +3(x)* + 2093 (Ba(1) - B4(1))

- 9 (3,0)- Bato)) +

a

+w3(x)2§e_ 9T _ (y3(x)? + wa3) 7 (2B4(7) — Ba(1)) .

Using the definitions of B5(t) and Bg(r) from (43), we have that 7 (2B4(1) — Ba(1)) = Be(1),

by (A.7.10), and that convexity is written as

w1(x)? Wa(x)? +w3(x)? + 2093 (
b

a

%o(r,x)'a(r,x)— (Bl( )—Br(t )) By(1) - By(7))

+y3(x)*B5(1) - (w3(x) + wz3) Be(1).
This is spanned in (25) by the loadings from B(r) = B1.7(t) from (43). The spanning
coefficients are
V1@ ya rys 20 ya@ 1 ys@ om0 o ) ’

b "’ a T a b ’
(A.9.13)
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which are therefore part of ¢p(x) in (25). Similarly, in (25), we have

w11(x)A1(x)
N N A A
(1 2Y M) = Bra (@Y A) = Bra(t) Woa(x)A2(x) + wes(x)A3(x) ,
Wa3(x)Aa(x) + p33(x)A3(x)

04

with 04 a four-vector of zeroes, so
(W110)A1(x), Pa2(x)Aa(x) + Was(x)A3(x), Was(x)A2(x) + Was(x)As(x), 0})’ (A.9.14)

is another term in ¢(x) in (25). It remains to check that the resulting slope adjustments
are spanned in (25). The corresponding analysis for B1.4(7) from (32) was done in (A.9.5)-
(A.9.7). This is extended to B1.7(r) from (43), now using B1(7) = (1-e7°")/(b7) for the first
loading function, which is of the same type as the second, but with a replaced by b. Thus,
when (15) is augmented to (43), then the average yield spreads (A.7.4) are expanded to
(B1.7(z) - B1:7(0)) /7 given by the functions

1-e?" 1 1-e9 1 1-e 97 a7 J-e 207 1

) —H

b2 T’ ar? T at? T 2art? T

-2b
18_2(” , i (e—a‘r _ e—2ar) 1-e" 1

2 at *2br2 1
The corresponding local slope adjustments are given by the functions

e—br 1— e—bT e a7 1_e @7 g—ar ]_g-ar ar e—ZaT 1— e—2a1
- - - +ae , —

T bz 1 at? ' 1 at? T 2a12
1 _ B B e—2b‘r 1-— e—2b‘r
Ze 2ar_aTe 2ar7 —e 9T 4+ 9¢ 2ar’ _ >
2 T 2bt

The total slope adjustment in (25) is therefore

1, - ~ 0B 1-e707 1—-e 97 1—e 2ar
=[B(1)-B(0)] +a_(r))x: - tae Ty -y
T T 1 T T . Ly (A9.15)
—-e
+(e729 —are ) x5+ | — (7 —e 29T) + (e T + 2727 | xg — ————ux7.
at T

We must show that this is indeed spanned by the functions in B1.7(t). First off, the

functions of 7 multiplying x1, x9, x4, and x7 in (A.9.15) are proportional to B1(7), Bo(1),
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By4(1), and B7(1), respectively, so they are spanned, with coefficients read off directly as
(=bx1,—ax2,0,—2ax4,0,0,-2bx7), (A.9.16)

which is therefore another term in ¢(x) in (25). Next, by (A.9.8), we have e " = By(1) -
Bs(1), so the term involving x3 in (A.9.15) is a (Bg(r) —33(1)) x3, and hence spanned, with

coefficients
(0,ax3,—ax3,0,0,0,0), (A.9.17)
also a term in ¢(x) in (25). Further, we have
e 2" = —aBg(1) + e %" = —aBg(1) + Ba(1) — B3(1), (A.9.18)

using (A.9.8) in the second equality. Thus, the function involving x5 in (A.9.15) is (—aBg(7)

+By(1) — B3(1) — 2aB5(1))xs5, and hence spanned, with coefficients
(0,x5,—x5,0,—2axs, —axs,0), (A.9.19)

again a term in ¢(x) in (25). Finally, using (A.7.10), (A.9.8) and (A.9.18), the function
multiplying xg in (A.9.15) is

1 i i i _
— (67" —e7207) —e7%7 + 2¢ 727 = (2B4(1) — Ba(1)) — (B2(1) - B3(7))
+2(—aBg(1) + Ba(1) — B3(7))

= —B3(1) + 2B4(1) — 2aBg(7), (A.9.20)
so the term in (A.9.15) given by xg multiplied by (A.9.20) is spanned, with coefficients
(0,0, —xg,2x¢,0, —2axg,0)’ . (A.9.21)

The total spanning coefficients ¢(x) on B1.7(t) in (25) are given by the sum of the coeffi-
cients for convexity, (A.9.13), risk compensation, (A.9.14), and slope adjustments, (A.9.16),
(A.9.17), (A.9.19), and (A.9.21). Thus,
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31102 + Y1101 (x) — by
1 (a2(x) + w33(x) + 2023(x)) + Yoz () A2 (x) + Wag(x)A3(x) — axa + axs + x5
a3 (x)Aa(x) + w33 (x)A3(x) — ax3 — x5 — ¢
)= — 2 (w2a(x) + w33(x) + 2w23(x)) — 2ax4 + 26 ., (A.9.22)
w33(x) — 2axs

—w33(x) — w93 —aXs — 2ax6

—+y11(x)% - 2bx7

yielding the expression for ¢(x) in Theorem 2. The conclusion follows from Corollary 2. [J

To restate ¢(x) from (A.9.22) with the local variance matrix w(x) of the state variables
expressed in terms of the volatilities w(x), recall from the proof of Corollary 1 (in Appendix
A.7) that the notation is w(x) = w(x)'y(x), a 3 x 3 matrix, with w;;(x) = y;(x)'y;(x), and

yi(x) for the i*" column in (x). From (40),

p11(x) 0 0
'Wl(x) = 0 , 1//2(.76) = 1//22(36) , 1//3(9‘5) = 1//23(.76)
0 Y32(x) W33(x)

It follows that

Wa2(x) = Wag(x) + iy (x),
w33(x) = Wag(x) + Pis(x),

w23(x) = Yao(x)Was(x) + W3a(x)wss(x),

which is (42). Therefore,

W22(x) + 33(x) + 2093(%) = Yae(x) + Wig(X) + Yag(¥) + W35 (x) + 2y20(X)P23(x) + 2032(X)wss(x),

w33(x) + Wa3(x) = Y24(x) + Wg(x) + W (X)W23(x) + Waa(X)Ws3(x).
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Using these expressions (A.9.22) produces

Fy11(0)% + Y11 (01 (x) — by
al (w%z(x) + w%Q(x) + 111%3(36) + wgg(x) + 292(0)Was(x) + 2 32(x)ps3(x))
+Waa(x)Aa(x) + Yo3(x)A3(x) — axg + axs + x5
$x) = Wa3(x)Aa(x) + w33(x)A3(x) —axs — x5 — X6 (4.9.23)
— L (35 () + Y3, (x) + Y35 (%) + Y35 (%) + 222(0)23(x) + 2y32(x)y33(x)) — 2ax4 + 2206
wgS(x) + w%S(x) —2axs

—w§3(x) - w§3(x) —Wa2(x)wa3(x) — Waa(x)yss(x) —axs — 2axs

—%11111(96)2 —2bxq

as an alternative to the expression for ¢(x) in Theorem 2.

Proposition A.9.2. The SLSC curve shape given by loading functions

-2at

—e

> _[1-e?t" 1-eT 1-e@ —ar 1-e %07
Bl37(T) - bt at art 2at

(e—ar _ e—2ar) 1-e~ 27

1
a 2bt

T
5€

with fixed a, b is dynamically consistent with the DTSM with drift a(t,x) = 31;7(T)¢(x)
and volatility function (41), provided ¢(x) = (p1(x),...,d7(x)) and w(x) from (40) satisfy

Assumption 1.

Proof of Proposition A.9.2. By Corollary A.7.1, conditions (A.7.37)-(A.7.38) must be
verified for B(t) = B1.7(t) from (43) and y(x) from (40). Inserting B1.7(7) for B(1) in (A.7.37)
produces the condition a(r,x) = B 1:7()¢p(x) from the Proposition. Inserting Bi.7(1) and

w(x) from (40) in the condition on o(7,x) in (26) produces (41). The conclusion follows. [

A.10. Relation between SLSC and AFNS

The SLSC model has HJM volatility function (41) which by Theorem 2 is dynamically
consistent with the SLSC curve shape (43) under the no-arbitrage condition, with state

dynamics
dax(2) = DO — x(2))dt + w(x(2)) dW(2),

where ®,0, and y(x) are given by (44), (45), and (40), respectively. For state-independent
volatilities, i.e., ¥;;(x) = y;; (or w;;(x) = w;;), 1,7 = 1,2,3, the locally deterministic state
variables, x(¢) = x4.7(¢) = (x4(2),...,x7(¢t)), are deterministic, with long-run levels 0=047=

(04,...,07). Hence, if x4.7(t') at some point ¢’ takes the value 0, then it remains constant
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at this level. In this case, since the last four rows of (6 — x(¢)) vanish, the stochastic state
variables x1.3(f) have drift not depending on the deterministic state variables, so they

satisfy
dx1:3(t) = @1.5(01.3 — x1.3(£))dt + w'dW,,

with ®@1.3 the upper left 3 x 3 submatrix of ®. As in Christensen, Diebold, and Rudebusch
(2011), we translate to factors, &;, of zero mean under Q, i.e., ¥; = x1.3(f) — 61 .3» Where 6%3

is 1.3 with 11.3 = 0 imposed. Thus, using (45), we have
dfct = @1;3(9 - szt)dt + w/th ,

with
My
0=015- 383 =| I(Aawan+ A2+ A3)was + A3yss)
%(12%3 + A3¥s3)

For ¢t = ¢/, all subsequent yield curves assume the shape

=]
w

- - = - 0 _ .
y(t,7) = B1.3(7)x1:3(¢) + B4.7(7)0 = B1.:3(1)%; + B(1) ( ) =B1.3(1)x; — A(7),

i

with the function A(r) given by

~A(t)=B(1) wan 412(4w22+7w33+10w23) %(a}33+2w23)
!
— (2wg + 5w3ss + 6we3) iw33 —i(3w33 +2ws23) ——W%]
 4a? 2a 4a 2b2
g (1 1-e7?7 11-e@ 7 1-e™7 10 1-e™@
] e R - R P R P
+ s 1 1-e 1 e—”)+w23( 1 1-e 1 e—”)mm(—i e—2af)
403 71 4q2 203 1 2a2 4q3 T
RS ATIE R Sd Io
8a3 1 403 1 4a
-2bt
+ w3 % —2ar_4aze—ar)+w23 (z%ze_zm_letze_m)JFW%l (4_(1)31 eT )

ad T 4q3 T

(1 1-e " 1 1—e—2<”)
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This corresponds closely to the AFNS yield curve shape. More precisely, it corresponds to
the model that would result from carrying out the program from Footnote 6 of Christensen,
Diebold, and Rudebusch (2011), modifying the mean-reversion matrix K¢ (their notation)
to include a sufficiently small £ > 0 in the upper left corner. In any case, the general SLSC
specification accommodates time-varying deterministic state variables, x(¢) # 5, and thus
yield curves outside the AFNS class.

Finally, for uncorrelated state variables, as in the independent-factor AFNS model,
i.e., woe = 1//%2, w33 = 1//337 we3 = 0, the yield curve under the affine restriction (x(¢) = 5)

reduces to y(¢,7) = B1.3(1)%; — A(1) with

_A(T) 2 i 1-— e—b‘r ~ 1 1- e—2bT 9 i 1—e 0T ~ 1 1- e—QaT
Y1 b3 1 4b3 21g8 1 4a3 T
21-e 5 1-e7207 ] 1 3
2 —-at -2at -2at
+ — - -—e T+ —rte +—e .
V33 (a3 T 8a3 1 a? 4a 4a? )

A.11. Proof of Theorem D.1.1

The statement of Theorem D.1.1 is in Appendix D.2, on trading off hedging error bias and

variance.
Proof of Theorem D.1.1. Writing out the objective function from (D.2.2), we have

E; (r:+1—w'rt+1)2 =k (r;l)z +w'Es (res1ry, ) w—2w'E (resary, ) - (A.11.1)

*

The solution to the first order conditions with respect to w is the linear projection of r;_;

on ryv1,
w= [[Et (rt+1r;+1)]_1[Et (rt+1r:+1) . (A112)
The conditional expected returns of the hedging instruments (6) are

Et[res1]= =T B (tsr1ie — Heit) (A.11.3)
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when E;[Ag;4+1] = 0. Using (5) to rewrite (6) as

el = _T(Bft+1 tE+1 — (yt —N)) )
the conditional variance is given by
var[ry] =T (BZp1:B' +¥) T .
From (A.11.3) and (A.11.5), the second moment is
E¢ [resiry,q] = vare[recl + Ee[realEe[rea]

=T (BZs41:B' +¥) T + TB (wes1it — pere) (es11 — pet) BT

=T [B (Zt+1|t + (pes1)e — toge) (Res1re — ,utlt)l) B'+ ‘I’] T.

Similarly, the conditional expected target return is

Ee [ry1] == @), (Kesrie — pere)
when E; [Ae7, ;] = 0. Combining with (A.11.4), the conditional covariance is
covy [re41,7)1] = TBZi11¢(Th)s .
This implies that
Et [res1ryiq] = cove [reen, ryp ] 4 Eelren]Ee 7]

= TBZ1t (t0)s + TB (ter1ye — tae) (o211 — /Jtlt)l(Tb)*

=TB (Zt+1|t + (IJt+1|t - ﬂtlt) (IJt+1|t - ﬂtlt)l) (th)« .
Inserting (A.11.6) and (A.11.7) in (A.11.2),

-1
w=T" [B (Zt+llt + (per1ie = peeie) (11 = '“t't),) B+ \P]

x B (zt+1|t + (11 — paie) (o1 — Htlt)/) (td). .

From Woodbury’s lemma,

A+USV) 1 =AT AU (S +VATID) VA
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for conformable matrices such that A, S, and S~ + VA™IU are invertible. Thus,

(A+USV)1US=ATUS-AU(S1+VAU) ' vA lUS
=AW|I-(s'+vAalU) VAT U
=AU (SI+VATIU) T (STT+VATIU-VATIL) S
=AU(S+VATIU) .

Application of this to (A.11.8) with A =W, U =B, S = Z,1¢ + (s 11t — teie) (e 11 — Heiz)
and V = B’ yields

1

w=T"9'B i (1d), , (A.11.9)

-1
(Zt+1|t + (,Ut+1|t - ,Ut|t) (,Ut+1|t - ,Utlt)l) +B'Y'B

which is (D.2.3).

Imposing that weights sum to unity is done using Lemma 1. The original problem
(D.2.2) is unconstrained. From (A.11.1), in the notation of (A.2.2), A = 2E;[rs17),,],
g=2F; [rt+1r:‘ +1] ,and D =0, the latter due to relaxation of generalized duration matching.
By (A.2.4), the optimal portfolio under value matching is

Atl
!
At

with w from (A.11.9), and A; = A= [[Et (rt+1r't+1)] 1. Inserting the expression (A.11.6)

/

for [Et (rt+1rt+1

) produces A; from the Theorem. O

B. Target Asset

On the last trading day of each month, we select among all non-callable and non-flower
bonds the issues with maturities closest to two, five, and ten years. Figure B.1 shows the
evolution over time in the resulting number of Treasuries used in the construction of our
target asset.

Figure B.2 shows characteristics of the five-year coupon bonds. The upper left exhibit
shows the term to maturity for each selected bond in the time series. Since many bonds
are issued and mature close to the 15™ of the month, many maturities are a half month

above or below five years. The upper right exhibit shows that the received coupon rates
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Figure B.1: Number of Treasuries
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This figure shows the number of Treasuries considered in the empirical application in each month from
January, 1983, through December, 2019.
decrease over the sample period.

The lower left exhibit shows the resulting durations of the selected five-year coupon
bonds, which increase from below 4.0 to above 4.9 due to the drop in rates. The target
portfolio further includes the two-year and ten-year coupon bonds, and the corresponding

coupon rates are shown in Figure B.3, along with the resulting target durations.

C. Basic and Generalized Duration Matching

Basic duration matching (line 2 of Table 2) requires only two instruments in order to
simultaneously match duration and ensure that hedge portfolio weights sum to one. The
target portfolio usually has duration between three and five years, so we use the three-
and five-year zero-coupon bonds for immunization, except that we replace the five-year
with the two-year zero-coupon bond when portfolio duration falls short of three years,
cf. Figure B.3. Next, to match generalized rather than basic durations (lines 3 through
26 of Table 2), loadings B and idiosyncratic variances ¥ are estimated in the relevant
model. Based on B, the k-vector (7b). of target generalized durations is calculated by
interpolation (see Appendix A.3) and used in Theorem 1, together with estimated B and
Y, to construct the hedging weights. As discount functions, coupon rates, and target

durations (Figures B.2 and B.3) vary over time, so does (7b). (see (A.3.2)), and therefore
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Figure B.2: Characteristics of five-year coupon bond
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This figure shows characteristics of the five-year coupon bonds used in the hedging target. The upper
exhibits show time to maturity (left) and coupon rate (right), and the lower left exhibit shows duration.

The characteristics were retrieved from the CRSP monthly Treasury files, each month selecting the coupon

bond with maturity closest to five years, given a liquidity condition. The lower right exhibit shows the
percentage excess of the price of the selected bond as implied by the FED yield curve above the CRSP
recorded price. The monthly data span the period from January, 1987, through December, 2019.

hedging weights. Further time-variation in weights is induced via estimated B and V¥ in

the rolling case.

D. Robustness Checks

D.1. Alternative Target Asset

In the main text, target asset prices are based on CRSP data. The issue arises that raw

CRSP prices (bid-ask midpoints plus accrued interest) might reflect frictions, microstruc-

ture noise, and other features not present in the FED yields used for model estimation.

For comparison, we also used the FED yields to set the prices of the bonds entering the

target asset, rather than using the CRSP recorded prices directly. That is, the contractual

terms are taken from CRSP, then priced using the eight zero-coupon yields on the last

trading day of the month and linear interpolation. This produces a monthly series that
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Figure B.3: Characteristics of portfolio target
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This figure shows the coupon rates of the two-year bonds (left exhibit) and the ten-year bonds (center
exhibit) in the target portfolio, which is the combination of the (2,5, 10)-year coupon bonds in proportions
(—1,3,—-1). The right exhibit shows the durations of the target portfolio. The characteristics were retrieved
from the CRSP monthly Treasury files, each month selecting the coupon bonds with maturities closest to
two, five, and ten years, given a liquidity condition. The monthly data span the period from January, 1987,
through December, 2019.

we use as an alternative target for one-month ahead hedging using the corresponding
eight zero-coupon bonds. The differences between raw CRSP prices and the FED valu-
ations fluctuate within a 1% band, shown in the lower right exhibit of Figure B.2. The
possibility exists that comparisons of methods depend on which are better at picking up
these discrepancies, likely stemming from different noise in CRSP prices and FED yields.
Results on hedging performance when pricing the target asset based on the FED yields,
to be compared with the results in Table 2, based on CRSP data for the target, are shown
in Table D.1. The performance of all models improves, compared to that based on raw

target returns, with the largest improvement seen in the SLSC models, which clearly

dominate all other approaches.

D.2. Trading Off Hedging Error Bias and Variance

Our focus has been on minimization of conditional hedging error variance (1). The
generalized duration matching approach immunizes factor exposure, and the portfolio in
Theorem 1 minimizes remaining hedging error variance (9). An alternative to (1) is the

minimization of conditional mean squared hedging error,

mink, |(rf,, —w're)?] (D.2.1)
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Table D.1: Hedging performance using FED yields to price target

The target is a portfolio of (2,5,10)-year coupon bonds in the proportions (-1,3,—1). The prices used to
compute the target return are set using the FED yields. Statistics in line 1 are for the unhedged target
return, and in the remainder of the table for hedging errors from each of the methods considered for
construction of the hedge portfolio with value matching from Theorem 1. The columns report the average
(or bias), standard deviation, root mean squared error, and mean absolute error. Results are in basis points
(0.01%) per month. An S indicates that a given method provides a statistically significant improvement over
traditional duration matching at the 5% level, and MCS that a method is included in the Model Confidence
Set at 5% (only conducted for the rolling strategies).

Model Bias Std. dev. RMSE MAE
1 Target movement 53.84 143.77 153.52 119.94
2 Duration matching 8.03 55.60 56.18 40.73
3 Unrestricted 3-factor 4.31 47.34 47.53 34.45
Full period
4 Unrestricted 3-factor 4.03 46.62 46.79 34.13
Rolling 4-year (S, ;)
5 Nelson-Siegel 3.91 48.13 48.29 34.86
Full period
6 Nelson-Siegel 4.42 49.74 4994  36.09
Rolling 4-year S 5
7 Unrestricted 4-factor 4.61 28.77 29.13 22.56
Full period
8 Unrestricted 4-factor 3.21 36.34 36.48 24.38
Rolling 4-year (S, S,
9 Augmented NS 3.69 29.94 30.17 22.67
Full period
10 Augmented NS 2.41 26.28 26.39 16.89
Rolling 4-year 6 S
11 Unrestricted 1-factor, j 6.07 55.18 55.52 39.27
Full period
12 Unrestricted 1-factor, j 6.38 51.90 52.29 37.16
Rolling 4-year )
13 ANS-extended Vasicek, ¥ 1.64 15.87 15.96 12.06
Full period
14 ANS-extended Vasicek, ¥ 0.56 22.38 22.39 15.28
Rolling 4-year &) 5
15 ANS-extended Vasicek, filter 2.06 62.62 62.65 45.06
Full period
16 ANS-extended Vasicek, filter 2.21 56.64 56.68 40.08

Rolling 4-year
17 ANS-extended Vasicek, restricted 1.79 56.59 56.62 40.54
Full period

18 ANS-extended Vasicek, restricted 2.41 58.76 58.81 42.21
Rolling 4-year

19 Unrestricted 3-factor, j 2.87 45.53 45.62 32.55
Full period
20 Unrestricted 3-factor, j 2.76 50.01 50.09 34.78
Rolling 4-year 5 )
21 SLSC, y 0.72 8.71 8.74 6.88
Full period
22 SLSC, y 0.74 9.08 9.11 7.12
Rolling 4-year (S,MCS) (S,MCS)
23 SLSC, filter 0.75 9.49 9.52 7.36
Full period
24 SLSC, filter 0.86 8.31 8.36 6.40
Rolling 4-year (8,MCS) (S,MCS)
25 SLSC, restricted 3.64 44.85 45.00 32.59
Full period
26 SLSC, restricted 4.18 45.72 4%55.)91 ?(>s3.)22

Rolling 4-year

39



thus trading off conditional hedging error bias and variance, corresponding to the RMSE
criterion from the performance evaluation. For zero conditional mean hedging errors, the
alternative objectives (1) and (D.2.1) coincide. From (8), under generalized duration match-
ing, w'T B = (tb)., the hedging errors are of conditional mean zero if the idiosyncratic

errors are, i.e., if E; (Aes41,) =0, for all 7, and E; (Ae}, ;) = 0. As a further generalization,

t+1
we relax the generalized duration matching constraint, thus admitting some factor risk
in the hedged position. Minimizing the objective (D.2.1) without the generalized duration
matching constraint, the optimal strategy strikes a balance between minimizing factor
and idiosyncratic variance (by relaxation of the constraint), while trading off the total
against resulting bias (by using the RMSE criterion for the optimization).

The following theorem, supplementing Theorem 1, provides the optimal strategy under
the zero conditional mean idiosyncratic error condition. It involves the conditional factor
prediction, py; = E;(f), based on yield data through ¢, the one step ahead prediction,

te+1)t = E¢(ft+1), and the conditional variance, X;,1; = var;(f;+1), all from the Kalman

filter,**

Theorem D.2.1. The immunization portfolio w that minimizes conditional mean squared

hedging error
min E, (rye1— w'rt+1)2 (D.2.2)
under the assumptions [E; (AEHLT) =0 and E; (Asfﬂ) =0 is given by
w=T '¥'B (Zt+1lt + (L1 = pere) (Resrie = Mtlt)/)_l +B'Y"'B h (TD)... (D.2.3)
Further imposing value matching, w't = 1, changes the optimal portfolio to
w* =+ (1- ') fo; , (D.2.4)

with w from (D.2.3), and

-1
A=T" [B (Zt+llt + (i1t = pere) (K1 = “”t)/)B, * \P] T

In general, if factors are predictable, then this can be exploited in hedging, as shown

in Theorem D.2.1. Predictable factors arise under dynamic consistency, leading to the

44The proofis in Appendix A.11.
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filtering approach from Section 4.2. In the special cases of either (i) no factor exposure
in hedging errors due to generalized duration matching, or (ii) excessive uncertainty
about future factors (Z;;1); tending to infinity, so no predictability after all), the prediction
components drop out, i.e., the strategy (D.2.3) reduces to (11), and (D.2.4) to (12).

The performance of the hedging approach from Theorem D.2.1 is documented in
Table D.2. All the previous (third stage) specifications estimated using the Kalman filter
are considered. Throughout, performance is poorer in Table D.2 than in the corresponding
cases in Table 2. This includes performance according to the RMSE criterion, although
the objective (D.2.2) is targeting this. Interestingly, within Table D.2, there is no penalty
to imposing the affine restriction. Still, the evidence is that it pays off to remove factor
exposure, i.e., perform generalized duration matching, and target remaining idiosyncratic
variance, Table 2, rather than trading this off against average hedging error. Parsimony
is again the likely reason. The strategies from Theorem 1 involve only estimated B and
¥, whereas those from Theorem D.2.1 involve all model parameters, via the output from

the Kalman filter.

E. Statistical Comparison of Hedging Performance

For the analysis in Section 6.2, the loss differentials from the i*" approach relative to the

benchmark (denoted by b) are

2 2
% / * U
dis= ("t _wi,t—lrt) - (rt _wb,t—lrt)

in the MSE case, with |- | replacing (-)? for MAE. Following Diebold and Mariano (1995)
and Giacomini and White (2006), the test of equal hedging performance is conducted
using S;p = T1/2&‘7—1/2’ where d =T71 Z;";l di:, and V is a HAC estimate of the long-run
variance, using the data-dependent bandwidth selection of Andrews (1991) based on an
AR(1) approximation and a Bartlett kernel.

For the Model Confidence Set (MCS) procedure of Hansen, Lunde, and Nason (2011),
denote by M the set of all competing approaches. The procedure is conducted recursively

based on an equivalence test for arbitrary M < M and an elimination rule which identifies
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and removes an approach from M in case the equivalence test rejects. The equivalence

test is based on pairwise comparisons using the ¢-statistic S; ;, for all ¢, j € M, and the

kth

range statistic Ty = max; jey {|S; ;I}. If the test rejects, the approach is eliminated

from M, where k = argmax;jssup e u1Si j}. Following Hansen, Lunde, and Nason (2011),
we implement the procedure using a block bootstrap and 10* replications.

Table D.2: Hedging performance under RMSE objective

The target is a portfolio of (2,5,10)-year coupon bonds in the proportions (-1,3,—1). The first line shows
statistics for the unhedged target return, and the remainder of the table for hedging errors from each of
the methods considered for construction of the hedge portfolio under the root mean squared error (RMSE)
objective with value matching from Theorem D.1.1. The columns report the average (or bias), standard
deviation, RMSE, and mean absolute error. Results are in basis points (0.01%) per month. An S indicates
that a given method provides a statistically significant improvement over traditional duration matching at
the 5% level.

Model Bias Std. dev. RMSE MAE
Target Movement 49.20 149.44 157.33 122.63
Duration matching 2.84 65.90 6596 48.72

ANS-extended Vasicek, filter 3.01 7298 73.05 53.43
Full period

ANS-extended Vasicek, filter 2.55 82.78 82.82 59.73
Rolling 4-year
ANS-extended Vasicek, restricted  2.59 65.79 65.84 48.32
Full period

ANS-extended Vasicek, restricted  1.80 83.32 83.34 60.49
Rolling 4-year

SLSC, filter -0.32 59.66 59.66 43.08
Full period
SLSC, filter -0.49 58.49 5850 41.88
Rolling 4-year ®
SLSC, restricted -0.03 59.63 59.63 43.10
Full period
SLSC, restricted 0.23 60.75 60.75 43.82

Rolling 4-year

F. Estimation

F. 1. Factor models

The implementation of each strategy considered in Table 2 involves some choices, and
except duration matching, each includes an estimation step. First, the classical factor
analysis is applied to (5). Maximization of the factor analysis log likelihood function

over the full period produces the idiosyncratic standard deviations y/¥; - 1000 shown in
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lines 1, 2, 3, and 5 of Table 3, along with the maximized log-likelihood value, number of
parameters, and standard information criteria, AIC and BIC. For the model with 2 =3
factors, the loadings B;; = B(7;) are given in percent in Table F.1, and a visualization
of the three loading functions B;(-), j =1, 2, 3 is given in the left exhibit of Figure F.1.
The level, slope, and curvature pattern highlighted by Litterman and Scheinkman (1991)
is evident. In the reported rotation, factor j explains the j™ highest proportion of total
variation. Specifically, with B?j/ﬁ? the proportion of the total variance 19? of y;, from
Table 1 explained by factor j, and % X lB?j/ﬁ? the average proportion across maturities,
the latter is ' highest for factor j. To avoid Heywood cases (factors explaining more
than total variation for a given maturity, i.e., communality Zf.:lB?j/ﬁ? exceeding unity),

a lower bound of 1048? is imposed on ¥;, for each maturity 7;, in all models.

Table F.1: Loading functions in unrestricted three-factor model
This table shows the loading functions B;(1), j = 1, 2, 3 given by the columns (in percent) of the loading
matrix B in the unrestricted three-factor model, and displayed graphically in Figure F.1, left exhibit.

T Bi(r) Ba(r) Bs(1)

3mos. 2.84 0.53 -0.14
6 mos. 2.93 0.49 -0.07
12mos. 3.00  0.37 0.02
2yrs. 3.10 0.12 0.10
3yrs. 3.06 -0.05 0.09
Syrs. 294 -031 0.01
Tyrs. 284 -045 -0.06
10yrs. 2.70 -0.56 -0.14

For the restricted models, corresponding to parsimonious yield curve shape, lines 4
and 6 of Table 3, the factor analysis log likelihood function is maximized subject to
the restriction that B takes NS or ANS form, depending only on a, and with 2 =3 and
4, respectively. Thus, the parameters estimated are (u,a,Z,¥V). Although Z does not
enter the hedging weights, cf. Section 3.1, estimation of the restricted models allows for
correlated factors. For NS, from the estimated X (not reported), the correlation between
the level and slope factors is —0.08, between level and curvature 0.61, and between slope
and curvature 0.49.

For the models for ¥, lines 7-8 and 11-12 of Table 3, yields are replaced by slope-
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Figure F.1: Loading functions in three-factor models
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The left exhibit shows the loadings B(7), j = 1, 2, 3, in the unrestricted three-factor model, as functions of
maturity, 7. Numerical values (in percent) are given in Table F.1. The right exhibit shows the NS loading
functions Bj(r), 7=1,2,3, from (15).
adjusted yield changes in the factor analysis log likelihood function. The second-stage
models (Section 4.1), i.e., lines 8 and 12 of Table 3, are restricted according to (49).

The remaining models in Table 3, lines 9-10 and 13-14, relate to third-stage Kalman
filtering (Section 4.2). In the estimations, rather than the Euler discretization of the
transition equation (18) (see (52) and (54)), we use the exact discretization derived in

Appendix F.2, and a low-storage square-root filter (see Appendix F.3).

F.2. Exact state transition for dynamically consistent specifications

Here, we derive the exact discrete-time state process for the third-stage approach from
Section 4.2. We focus on the case of affine drift and state-independent volatility in (18),

ie.,
dx(t) = DO — x(¢))dt +y'dW(2).
To solve the SDE, recall that for the ansatz e®* we have
d(e®x (1)) = P Ox (1) dt + P dx (¢) = e*' DOt + Py AW, .
Integrating from ¢ to ¢ + A produces

A A
e P“du - 06 + f e PUy/ AW (¢t +u). (F.2.1)

x(t+A) =e P2x() +f
0

0
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Define the function H (x) = e"®%, which has H' (u) = —H (z) ®. Then JH(u)du = —H(u)CD*l,

SO fOA e ®%du - ® = (I - H(A)). It follows that the exact discrete-time state process is
x(t+A)=HN)x(@)+T -H(A)O+v(t+A), (F.2.2)

with v(t+A) = fOAH (u)w'dW (¢ +u). For data with time increment A between observations,
the terms v(f + A) are based on increments to the driving Wiener processes over non-
overlapping intervals, so they are serially independent innovations. Further, by linearity
and the It6 isometry, v(t + A) ~ N1 (0,Q(A)), with Q(A) = fOAH(u)l//'u/H(u)’du.

The SLSC model has HJM volatility function (41), which by Theorem 2 is dynamically
consistent with the SLSC curve shape (43) under the no-arbitrage condition, with state
dynamics where @, 6, and y are given by (44), (45), and (40), respectively. To calculate
H (u) for @ from (44), let d (®) be the diagonal of ®, and ® = ®—d (P) the matrix containing
the off-diagonal elements. Then ® is nilpotent of degree four, and the only non-zero entry

in @3 is [53]2,5 = —a?. By the rules of matrix exponentials, we find that

Hu)=e ® =e d®ugPu = o=d@u (1 _ Gy 1 $242/2 - $3u3/6)

e’ 0 0 0 0 0 0
0 e %% que 0 (@®u3/6 —au?/2 + u)e 22 —_qu2e201/9 0
0 0 e v 0 (@u?/2 —u)e 2eu —ue 2eu 0
= 0 0 0 e2au —aque20u Que2au 0
0 0 0 0 e 2au 0 0
0 0 0 0 —aque 2% e 2au 0
0 0 0 0 0 0 e 2bu

This is used in (F.2.2). For Q2 = QQ(A), the innovation variance, note that the lower left
4 x 3 submatrix of H(u) is zero. For ¢/ from (40), the lower 4 x 4 submatrix of v/ is zero,
as well. It follows that the last four rows of H(u)y' are zero, and therefore only the
upper left 3 x 3 submatrix 21.3(A) of Q(A) is non-zero. This corresponds to the stochastic
state variables. Thus, the exact state transition in the SLSC model, which we use in our
empirical work, in place of the Euler discretization (52), is given by (F.2.2), with this Q(A)

as the variance-covariance matrix of the discrete-time transition shocks, and H(-) given
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above.

As an example, in case of uncorrelated state variables (slope and curvature), w3 =

W32 =0,
A
Q1:3(4) = fo H1.3(u)diag (W%1,W§2,‘V§3)H1:3(u)'du
A Y3 e 2bu 0 0
= 5 0 wg2e—2au +w§3a2u2e—2au u/§3aue—2au du
0 w§3aue—2au 1111336—2au
V’%% 0 0
= 0wk ud [ e et 2 g [ e 2 (A
0 vhs | S e 2 T
v2 B7 (D) 0 0
= 0 yZ3,Bi(A)+y2,[B4(A)/2-B5 (M) (/A+a)] w2y (B4(A)/2-Bs5(M)/A) |4,
0 ¥33(B4(A)/2 - B5(A)/A) ¥33Ba(D)

with H1.3(u) the upper left 3 x 3 submatrix of H(u). The remaining entries of Q(A) are
zero. Further, in (F.2.2), H(:) is unchanged, whereas long-run means simplify, because by

(42) we have w93 =0, i.e.,

1%21”%1 + My
oz (4wga + Twgz) + L (Agyas + A3yss)
3033+ 2 A3Vs3
0= — 7 (2was + 5w3s) (F.2.3)
=033

3
~2q W33

_ﬁwil
replaces (45) in the uncorrelated state variable case.
The exact discrete-time state process for the ANS-extended Vasicek model, which we
use in place of the Euler discretization (54) in our empirical work, is obtained by writing
Wo2 = W9, A3 = A, and setting all of x1, x5.7, A1, A3, b, and the remaining coefficients in the

w-matrix equal to zero. This leaves a transition equation of the same form as (F.2.2), but
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with

— V3 Ay 4
6= 0 S+ 0 =35 |
0 0 0 0
0 e %% que % 0
H(u)= ,
0 0 e 0
0 0 0 e 2au

and the only non-zero element of the innovation variance matrix 2(A) that corresponding

to slope, Qo9 (A) = w%(l —e 2¢8y/(2a).

F.3. A low-storage square-root filter

For the third-stage approach from Section 4.2, we base the Kalman filter recursions on
the exact discrete-time transition equation (derived in Appendix F.2), using the Koopman,
Shephard, and Doornik (1999) low storage algorithm, with the updating step inserted
in the prediction step to save on calculations, and modified to the square-root case. The
modified recursions generate a sequence of yield vector innovations or prediction errors
(¢ =y — E(y|Ys-1), with Y;_1 = (y1,...,y:-1), and associated prediction error variances
I'; =var({;]Y;-1). The parameters are estimated by maximizing the log-likelihood based

on {; i.i.d. N(0,T’;). The third-stage specifications can be written in the state space form

Y= ¢ + B x + &, e~N(,¥),

mx1 mx1 mxkpxl mx1

x;=Do+ DPixs_1+ vy, v, ~N(0,Q).
kx1 kxk kx1

For example, corresponding to (F.2.2), we have ®; = H(1), ®g = (I - H(1))0, and Q =
Q(1). The optimal portfolio from Theorem 1 depends on B and W. The observed yield
data are (y1,...,y7), and we write Y; = (v1,..., ;) for observations up to time ¢. Denote
the filtered state at ¢ by s = E(x;|Y;), and the one step ahead prediction by p;41r =
E(x:+11Y:). The associated conditional variance-covariance matrices are X;; = var(x;|Y;)
and X;,1); = var(x;+1|Y;). We start with an initial condition for the first factor vector given

by X1|0 ~ N(,LL1|0,21|0), where Hi0 = x and 21|0 solves Zl|0 = <I>121|0®’1 + Q. The innovation
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in the observation y; is the prediction error {; = y; — (c +B ,ut|t_1), with variance-covariance

matrix I'; = BX;;-1B’'+ V. The Kalman filter prediction step is

Mer1e = Do+ Prpge s

i1 = P1Z D) +Q,
and the update step is

Ut = Hejp—1+ Zt|t—1BTt—1(t ,

24t = Ze-1— ztlt—lB,F;Ithlt—l .

The low storage filter is implemented by substituting the update step in the prediction

step, and so iterates only on p;y1; and Z;.1); in

Mer1jt = Do+ Prpgz—1 + Ky, (F.3.1)

Zie1p = P1Zg-191 + Q- K LK, (F.3.2)

using the Kalman gain K; = ®1%,;_1B'T, 1. The contribution to log-likelihood from each

new observation is
m 1 1.,
logp (v1,1Y;-1) = =7 log(2m) = S logITy| - i1, ¢,

and the prediction-error decomposition of the log-likelihood function is therefore

T T

T 1
logL = Y logp (y:,1¥s-1) = —’%mg(zm -5 2 (log Tl +4,1 ') (F.3.3)
t=1 t=1

This is constructed recursively, with only p;;-1 and Z;;—; stored from the most recent
period, calculating (;, I't, and K; from these and the new observation y;, and then p, 1
and Z;.1 by (F.3.1) and (F.3.2). By minimizing storage need and circumventing the
update step, the algorithm speeds up the filter, which must be run many times in the
iterative maximization of (F.3.3) over parameters.

In the iterations towards the maximum of (F.3.3), the matrix X;;1); may fail to be

positive semi-definite. We solve this problem using a square-root filter, i.e., running the

/

low-storage filter for S; 1 satisfying X;,q; = St+1|tSt+1|t

instead, as done by Carraro

(1988) for the original Kalman filter. To this end, we rewrite the prediction step (F.3.2) in
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terms of S;.1;. First, write

21t = P12Zgp-1P1 +Q _KtBZtlt—lq)ll
=(®1-K;B)Z4;-1P1 +Q
= (01 —K;B)Zy;-1(®1 - K;B) +(®1 - K;B)X;;-1B'K, + Q
= (@1 - K;B)Zy;_1(P1 - K;B) + KT 'K, - K;(T'; - V) K + Q.

= (q)l —KtB)Zt|t_1(<D1 —KtB)/ +Kt\PK; +Q.

Then, defining ¥ = NN’ and Q = MM’', write

Sé|t_1(q)1 _KtB),
Zii1e = [(@1—K:B)Syi-1,K:N, M| NK, E§t+1|t§;+1|ta

M

where S, t+1)t 18 @ B x(2k + m) matrix. To construct a k£ x k£ matrix that has the same product
with its own transpose as S t+1)t, we use the QR decomposition, expressing a rectangular

matrix as the product of an orthogonal matrix @ and an upper triangular matrix R. Thus,

~ B
t+1t — Qt+1|th+1|t ’

so that

Q _U ! !
Zt+1|t = St+1|tSt+1|t = Rt+1|tQt+1|tQt+1|th+1|t = Rt+1|th+1|t-

Therefore, set S¢41: =R which is a lower triangular square matrix. Instead of X;, 1,

!
t+1(¢°

the filter uses S;+1)¢, and the resulting X;,1; is positive semi-definite by construction.

G. Additional Empirical Results

This appendix provides some additional empirical results supplementing those in Sec-

tion 6.
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Figure G.1: Time series evolution of estimated a in Nelson-Siegel
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This figure shows the rolling four-year NS estimates of a, with 95% confidence bands in red. The solid
horizontal line indicates the full period NS estimate, with 95% confidence band in red, and the dashed
black line the Diebold, Ji, and Li (2006) value.

Figure G.2: Loading functions in four-factor models
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The left exhibit shows the loadings B(7), j = 1,2, 3,4, in the unrestricted four factor model, as functions of
maturity, 7. The right exhibit shows the ANS loading functions B (1), j=1,2,3,4, from (32).

Table G.1: Loadings in unrestricted single-factor model for y
This table shows the loadings B(7) (in percent) as function of maturity 7 in the unrestricted single-factor

model for slope-adjusted yield changes 3.

T dmns. 6mns. 12mns. 2yrs. 3yrs. Syrs. 7yrs. 10yrs.

B(r) 0.062 0.081 0.097 0.124 0.136 0.144 0.141 0.132
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