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1 Introduction

The question how relevant the information contained in various parts of the return distri-
bution is for an investor has received considerable attention in the recent empirical asset
pricing literature (Ang et al., 2006; Van Oordt and Zhou, 2016; Chabi-Yo et al., 2018;
Lu and Murray, 2019) with few studies focusing on commonalities in tails or extremes
in the cross-section of returns (Kelly and Jiang, 2014; Chabi-Yo et al., 2022). The goal
of this paper is to explore the common, possibly non-linear movements in the panel of
firm’s idiosyncratic quantiles and investigate the effects of such time-varying quantile risk
in asset markets. The major barrier to the investigation is that such common factors
shifting relevant parts of return distributions are hard to be observed from data. The
further we aim to explore the information in distribution away from the mean, the more
infeasible the risk estimates are because of the infrequent nature of the events.

To estimate risks stemming from commonalities in the panel of return quantiles, we
propose to use an approximate factor model being able to extract unobservable factors
in different parts of observable panel of stock returns. In the spirit of popular princi-
pal component analysis that recovers the conditional mean, we work with more general
quantile factor models (QFM) being flexible enough to capture quantile-dependent ob-
jects that standard tools are unable to retrieve. In contrast to the standard principal
component analysis, the quantile factor models are able to capture hidden factors that
shift characteristics of the distribution such as moments or quantiles. Moreover, these
factors can vary across the distribution of each unit in the panel and allow to infer the
factors properly when distributions of the idiosyncratic errors exhibit heavy tails.

Our main contribution is to investigate the pricing implications of the common non-
linear factors, which are quantile specific, for the predictability of aggregate market
return and the cross-section of stock returns. We are interested in factors for the whole
distribution to identify the risk premium associated with both downside (or tail) risk
and upside potential. To this end, we employ the quantile factor model of Chen et al.
(2021) and investigate the pricing implications of quantile-dependent factors while, at
the same time, controlling for various linear factors and exposures to them. Our goal
is also motivated by the increasing evidence of the non-linearities present in the stock
markets.! We aim to show that the common quantile risk present in the stock return
data is not spanned by the common volatility risk and posses strong information for both

cross-section of asset returns and time-series predictability of the equity premium.

'E.g., Amengual and Sentana (2020) report nonlinear dependence structure in short-term reversal
and momentum. Ma et al. (2021) show that many firm-level characteristics posses complex relation to
the returns with respect to quantiles.



We start by showing an extraordinary degree of comovement among idiosyncratic
quantiles in the Center for Research in Security Prices (CRSP) stocks over a long sample
spanning 1926 - 2015. A single factor explains up to 17% of the time variation in firm-
level idiosyncratic quantile risk that is unrelated to common volatility structure. Further,
we show that quantile factors have predictive power for aggregate market returns. Pre-
dictive regressions show that a one-standard-deviation increase in quantile risk predicts
a statistically significant increase in annualized excess market returns of up to 7.676%
in case of left tail. We also document predictive power of upper tail factor with smaller
effect up to 3.985% increase in annualized returns hence the effect is asymmetric. These
results hold out-of-sample, they are stronger for the left tail, and are robust to controlling
for a broad set of popular predictors surveyed by Welch and Goyal (2007) as well as tail
risk (Kelly and Jiang, 2014), common volatility risk (Herskovic et al., 2016) as well as
variance risk premium (Bollerslev et al., 2009).

Further, we find that idiosyncratic quantile risk has substantial predictive power for
the cross-section of average returns. We show that stocks with high loadings on past
quantile risk in the left tail earn up to an annual five-factor alpha 7.405% higher than
stocks with low tail risk loadings for 0.2 quantile. This risk premium is not subsumed
by other common priced factors such as common volatility, tail, downside risk, as well as
other popular risk factors. Investors thus possess a strong tail-risk aversion concerning
the common movements of the idiosyncratic returns. On the other hand, the absence of
the risk premium related to the factors for the upper quantiles suggests that investors
are not upside-potential seekers. Both these results are consistent with the literature
investigating the effect of asymmetric dependencies on asset prices.

Our work is connected to several strands of the literature. The first relates to the
factor-based asset pricing models that are highly popular in the empirical asset pricing
literature. In these models, only common return factors are valid candidate pricing fac-
tors, and sensitivities to those factors determine the risk premium associated with an
asset (Ross, 1976). This strand of literature yields highly successful and popular results
focusing on the parsimonious models (Fama and French, 1993), as well as exploration of
statistically motivated latent factors.? Recently, Kelly et al. (2019) introduced instru-
mented principal component analysis, which enables to flexibly model the latent factors

with time-varying loadings using the observable characteristics.?

2This approach dates back to Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986).
For a comprehensive overview of machine learning methods applied to asset pricing problems such
as measuring expected returns, estimating factors, risk premia, or stochastic discount factor, model
selection, and corresponding asymptotic theory, see Giglio et al. (2022).

30ther notable recent contributions to the factor literature are, e.g., Kozak et al. (2018) and Giglio



Our research agenda spans the non-linear factor models. Recently, Ma et al. (2021)
introduced a semi-parametric quantile factor panel model that considers stock-specific
characteristics, which may non-linearly affect stock returns in a time-varying manner.
They find that many characteristics possess a non-linear effect on stock returns. In
contrast to these authors, the approach used in our paper is more general since it allows
not only loadings but also factors to be quantile-dependent. Moreover, our approach
does not require the loadings to depend on observables and has direct relation of the
approximate factor models that are ubiquitous in the finance literature.

The second strand of literature we contribute to is exploring the idiosyncratic risk
and its pricing implications for the cross-section of asset returns. More specifically, we
contribute to the literature interested in idiosyncratic risk that co-moves across assets and
hence explores common trends not contained in the first-moment type factors. The bulk
of this research is motivated by introducing the idiosyncratic volatility puzzle proposed
by Ang et al. (2006). Unfortunately, all existing explanations of the anomaly via lottery
preference-based, market frictions-based, or others account?® only for 29-54% of the puzzle
using individual stocks (Hou and Loh, 2016).

The third line of thought that we take into account deals with asymmetric properties
of the systematic risk and how they are incorporated into asset prices. Interest in those
kinds of models was reignited by Ang et al. (2006) and their introduction of downside
beta, which captures covariance between asset and market return conditional on the
market being below some threshold value. Bollerslev et al. (2021) further disentangle
traditional market beta into semibetas characterized by the signed covariation between
the market and asset return. They show that only the semibetas associated with the
negative market and negative asset return predict significantly higher future returns.
Bali et al. (2007) showed a significant cross-sectional relationship between hedge fund
returns and value at risk. Similarly, Huang et al. (2012) discovered the cross-sectional
effect of extreme downside risk, estimated using extreme value theory, on the returns of
single stocks. Instead of using conditional mean linear models for predicting the equity

premium, Meligkotsidou et al. (2014) embraced the quantile regression approach and,

et al. (2021). The recent availability of high-frequency return data also motivated the development of
continuous-time factor models.Ait-Sahalia et al. (2020) proposed a generalization of the classical two-
pass Fama-MacBeth regression from the classical discrete-time factor setting to a continuous-time factor
model and enables uncovering complex dynamics such as jump risk and its role in the expected returns.

4For comprehensive list of references belonging to each of the category, see Hou and Loh (2016). The
only exception to this observation is the lottery-based explanation using highest realized return from
the previous month proposed by Bali et al. (2011) and confirmed in the European markets by Annaert
et al. (2013). But Hou and Loh (2016) argue that this explanation is not valid, as it is an almost perfect
collinear range-based measure of idiosyncratic volatility.



using predictions of the whole distribution of the equity premium, robustly estimated
the equity premium using the forecast combination methodology.

From a theoretical standpoint, there are many justifications for the deviation from
the classical common factor pricing theory to the asymmetric forms of the utility func-
tion. Probably the most relevant to our work is the dynamic quantile decision maker
of de Castro and Galvao (2019) who decides based on quantile dependent preferences.
Barro (2006), building on Rietz (1988), introduced the rare disaster model and showed
that tail events may possess significant ability to explain various asset pricing puzzles,
such as the equity premium puzzle. The other prevalent model that considers asymmet-
ric features of the risk is the generalized disappointment aversion model of Routledge
and Zin (2010), which inherently assumes downside aversion of the investors. Based on
these preferences, Farago and Tédongap (2018) introduced an intertemporal equilibrium
asset pricing model and showed that the disappointment-related factors should be priced
in the cross-section. Moreover, they prove that their model performs well empirically
by jointly pricing various asset classes with significant prices of risk associated with the
disappointment-related factors.

There are also attempts to combine the two or three of these research agendas. Her-
skovic et al. (2016) introduced a risk factor based on the common volatility of the id-
iosyncratic firm-level returns and showcased its pricing abilities for the cross-section of
various asset classes. Kelly and Jiang (2014) show that a zero-cost portfolio sorted on
exposure to the tail risk, which is built from the dynamic power law structure, earns sig-
nificant 5.4% three-factor alpha. Similarly, Allen et al. (2012) proposed an aggregate tail
risk measure constructed from the returns of financial sector firms capturing catastrophic
risk exposure. Based on the conditional ICAPM framework, they argue that it should
be priced and estimate a significantly positive market price of this systemic risk measure
for both financial and non-financial firms. Bali et al. (2008) discovered time-series pre-
dictability of stock market returns using non-linear mean reversion using extreme daily
returns. Jondeau et al. (2019) presented significant time-series predictability of average
skewness for the market return. Finally, Renault et al. (2019) extended the arbitrage
pricing theory (APT) to the case of pricing of squared returns.

Many research efforts that investigate common tail risk and its asset pricing implica-
tions rely on option data. They argue that the tail factor identifies additional information
over the volatility factor. Andersen et al. (2020) show strong predictive power for future
equity risk premiums in the U.S. and European equity-index derivatives. Bollerslev and
Todorov (2011) combine high-frequency data and option data and use non-parametric

approach to conclude that a large portion of the equity and variance risk premia is linked



to the jump tail risk.

The rest of the paper is structured as follows. Section 2 motivates the study of
the pricing implications of the common movements in idiosyncratic distribution of stock
returns. Section 3 proposes the quantile factor model for asset returns, discusses the
methodology of the estimation of quantile-specific factors, and data that we use. Section
4 presents the results regarding the time-series predictability of the aggregate market
return using the common idiosyncratic quantile factors. Section 5 investigates the cross-

sectional asset pricing implications of the proposed factors. Section 6 concludes.

2 The factor structure in the cross-section of return

distributions

Researchers usually assume that time variation in equity returns can be captured by

relatively small number of common factors with following structure®
rig =i+ B Fy + €y (1)

where r;; is excess return of an asset i = 1,..., N at timet = 1,...,T, F} is a k x 1 vector
of common factors and f; is a k x 1 vector of the asset’s ¢ exposures to the common factors.
Such cross-sectional regressions as the one in (1) yielding high R? are used to identify
factors serving as good proxies for aggregate risks present in the economy. Exposures to
the relevant factors captured by f; coefficients should be compensated in the equilibrium

and explain the risk premium of the assets

Et[ﬁ',tﬂ] = @T)\t (2)

where the A\; is a k x 1 vector of prices of risk associated with factor exposures. Im-
portantly, while the arbitrage pricing theory (APT) of Ross (1976) suggests that any
common return factors F; are valid candidate asset pricing factors, the idiosyncratic
return residuals €;; are assumed not to be priced. This implication is due to many sim-
plifying assumptions, such that an average investor can perfectly diversify her portfolio
or that the linear model (1) is correctly specified.

While large literature have focused mainly on the diversification assumption, we aim

to question linear nature of the factor model, and our focus is on exposure to parts of

SRecently, Lettau and Pelger (2020) introduce Risk-Premium Principal Component Analysis that
allows for systematic time-series factors incorporating information from the first and second moment.



idiosyncratic return’s distribution instead. Recently, Herskovic et al. (2016) documents
strong comovement in idiosyncratic volatility that does not arise from omitted factors,
and even after saturating the factor regression with up to ten principal components,
residuals that are virtually uncorrelated display same co-movement seen in raw returns.
While the exposure to common movements in volatility seem to carry strong pricing
implications, we ask if there exist additional structure insufficiently captured by volatil-
ities especially in a non-linear and heavy tailed financial data. In other words, we ask
if various parts of the return distributions may have pricing implications for the cross-
section of stock returns.®
To motivate the discussion, we first look at the 7th quantile of the US public firms’

returns r;, represented by its inverse probability distribution function
Qr (rigr) = inf{ri : P(rigpn <ri) = 7] (3)

We first estimate 0.1 quantile of firm-level monthly returns using data from CRSP from
1926 to 2015 as sample cross-sectional quantile @T (ri++1). Specifically, we compute the
sample 0.1 return quantile for each stock ¢ in the sample within the calendar year. The
average of the cross-sectional quantiles is depicted by black line in Figure 1. Next, we
also compute average idiosyncratic return quantiles that are calculated as average of the
sample quantiles of €;; from the Equation 1 (we use the three factor model” of Fama and
French (1993)) and are depicted in the Figure 1 by dashed line. Here we note that it is
remarkable how close the sample average quantile of the returns and its idiosyncratic part
are. As argued by Herskovic et al. (2016) in case of common volatility, the similarity could
be attributed to some important factors being omitted in the regression. We argue that
this is likely not the case since removing the factors almost perfectly eliminates all the
linear dependencies between the assets. This is clear from the Figure 6 in the Appendix
A, where we plot average yearly pairwise correlations for the raw and idiosyncratic returns
and observe that there is essentially no linear dependence left after removing the factors.®
This suggests that the common linear factors do not explain the extreme events.

It is important to realize that this phenomenon may simply be driven by the common
movements in volatility, especially if the first two moments satisfactorily describe the

return distributions. Hence, we regress the time series of average idiosyncratic quantiles

6Ando and Bai (2020) document that the common factor structures explaining the upper and lower
tails of the asset return distributions in global financial markets have become different since the subprime
crisis.

"Robustness tests using purely statistical model based on principal components produce qualitatively
similar results.

8For more details on this observation, see discussion in Herskovic et al. (2016)



Figure 1: Awverage 0.1 sample quantile of stock returns. The figure shows average 0.1 sample quantile
obtained from the monthly data of returns of CRSP stocks during calendar year in black, average
idiosyncratic 0.1 quantile obtained from the residuals of three factor Fama and French (1993) model as
dashed line and average 0.1 idiosyncratic quantile orthogonalized by common volatility component in
dotted line. The time span covers the period between January 1926 and December 2015.
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on the average volatility and plot the residuals by the dotted line in Figure 1. Although
the common volatility captures substantial variation in the average idiosyncratic quantile,
there is still some non-trivial variation left that we aim to explore.

We next estimate factor regression models for firm-level quantiles as well as volatility
to see how strong the factor structure in the quantiles is, especially in comparison to
factor structure in volatility. Figure 2 shows the average R? of time-series regressions
of individual stock-level quantiles (volatilities) on its averaged value and Figure 7 in the
Appendix A shows average coefficients from the predictive regressions.

High R? values of factor models on idiosyncratic returns show that removing the
common linear factors does not erase factor structure. Consistent with Herskovic et al.
(2016) we find close to 30% explanatory power of common volatility? while we report even
higher explanatory power of common quantiles, especially in the left tail. Importantly,
when we orthogonalize the average idiosyncratic quantiles by the average idiosyncratic
volatility, more than half of the factor structure in both tails remains present. The
strength of the quantile factor structure is comparable to the strength of the idiosyncratic

volatility structure, which suggests that the idiosyncratic quantiles are not subsumed by

9The slight difference can be attributed to different sample span.



Figure 2: Factor structure in quantiles. The figure depicts average R? from time-series regression of
CRSP stock-level quantiles (volatilities) on the averaged value of quantile (volatility) across all stocks.
The quantile (or volatility) factor is defined as the equal-weighted cross-sectional average of firm quan-
tiles (volatilities) within a year computed on monthly data. The estimated factor models take form:
qi, = (1) + Bi(1)g (z) + v], and 0, = o + Bio¢(x) + viy. We report R? for a factor model of
(i) raw return quantile on average return quantile in black line (ii) idiosyncratic quantiles on average
idiosyncratic quantiles in black dashed line (iii) idiosyncratic quantiles on average idiosyncratic quantiles
orthogonalized by average volatility in black dotted line across all 7 € (0,1) quantile levels. In addition,
a factor model of (iv) raw volatility on average volatility in gray line, (v) idiosyncratic volatility on
average idiosyncratic volatility in gray dashed line. Note that results for factor model on volatilities are
constant across quantiles.
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the common volatility a provide potentially valuable information for the asset prices.
The main observation from this illustratory exercise is that there is a strong structure
present across the distributions of idiosyncratic returns that carries different information
to structure in the volatility. This means that there is a common structure in tails that
may be valuable for investors. In the rest of the paper, we will investigate the implications
of the common idiosyncratic quantile factors for both predictability of the equity premia

and the cross-section of stock returns.

3 Common Idiosyncratic Quantile Factors

The evidence presented in Section 2 indicates that firm-level idiosyncratic quantiles share
high degree of comovement that can be described by a factor model. The preliminary
discussion relies on the sample quantile estimates that suffer from small sample bias and

are not flexible enough to investigate pricing implications due to lack of data to be able



to characterize required parts of the distribution precisely.

Instead of the average sample quantiles of the panel returns, we propose an approxi-
mate factor model similar to principal component in means being able to extract unob-
servable factors that shift relevant parts of the distributions of observable returns. That
is, in parallel to genuine factor structure in idiosyncratic volatility of a panel of returns
recovered by cross-sectional averages (or PCA) once mean factors have been removed,

we aim to recover genuine unobserved structure in idiosyncratic quantiles.

3.1 Quantile Factor Model

To formalize the discussion, we assume the returns from the time-series regression elimi-

nating common factors
rig =i+ B Fy + ey (4)

to have T-dependent structure f;(7) in idiosyncratic errors that we coin a common id-

iosyncratic quantile — CIQ(7) — factors, f;(7)

Q.. [TIA(7)| =T (1) £ul), (5)

that implies

€ie =" (T)fulT) +uin(7), (6)

where fi(7) is an r(7) X 1 vector of random common factors, and ~;(7) is r(7) x 1 vector
of non-random factor loadings with r(7) << N and the quantile-dependent idiosyncratic
error u;+(7) satisfies the quantile restriction Plu;(7) < 0| f;(7)] = 7 almost surely for all
7€ (0,1).

To estimate the common factors that capture co-movement of quantile-specific fea-
tures of distributions of the idiosyncratic parts of the stock returns, we use Quantile
Factor Analysis (QFA) introduced by Chen et al. (2021). In contrast to PCA, QFA
allows to capture hidden factors that may shift more general characteristics such as mo-
ments or quantiles, of the distribution of returns other than mean. The methodology is
also suitable for large panels.

The quantile-dependent factors and its loadings can be estimated as

N T
. 1
argmin < > > pe (e = ) (7)
i=1 t=1

(Y150 YN Ftrees fT)

10



where p,(u) = (7 — 1{u < 0})u is the check function while imposing the following nor-
malizations % Zthl fif, =1, and % Zf;l 7y, is diagonal with non-increasing diagonal
elements.

As discussed in Chen et al. (2021), this estimator is related to the principal compo-
nent analysis (PCA) estimator studied in Bai and Ng (2002) and Bai (2003) similarly as
quantile regression is related to classical least-square regression. Unlike the PCA esti-
mator of Bai (2003), the estimator does not yield an analytical closed form solution. To
solve for the stationary points of the objective function, Chen et al. (2021) proposed a
computational algorithm called iterative quantile regression. Moreover, they show that
the estimator possess same convergence rate as the PCA estimators for AFM. We follow

their approach when estimating the quantile factors.!°

3.2 Common Idiosyncratic Quantile Factor and the US firms

To estimate the CIQ(7) factors, we use returns on common stocks from the Center
for Research in Securities Prices (CRSP) database sampled between January 1963 and
December 2015. We include all stocks with codes 10 and 11 in estimating the CIQ(7)
factors. When forming the portfolios, we follow the standard practice in the literature
and exclude all “penny stocks” with prices less than one dollar to avoid biases related to
these stocks.!! We performed the analysis using all the stocks, and the results did not
qualitatively change. When not stated otherwise, we use monthly data for both factor
estimation and beta calculations.

In the process of the factor estimation, we proceed in a few steps. First, we use a
moving window of 60 months of monthly sampled observations. We select the stocks
that have all the observations in this window. For all these stocks, we run time-series

regression to eliminate the influence of the common (linear) factors
Vi:n,t:oai—i—ﬂiTFt—Fei’t, t:L,T (8)

and save the residuals e, ;. For the common factors F}, which we eliminate from the stock
returns, we resort to the three factors of Fama and French (1993).'2 Second, we use the

residuals from the first step and, for every 7, estimate common idiosyncratic quantile

10We employ the authors’ Matlab codes provided on the Econometrica webpage.

H1See, e.g., Amihud (2002).

12 As discussed in Herskovic et al. (2016), there is a little difference between the results obtained using
factors of Fama and French (1993) and purely statistically motivated ones estimated using the PCA
framework.

11



Figure 3: CIQ(0.1) factor The figure depicts 0.1 common idiosyncratic quantile — CIQ(7) — factor
estimated from the 60-month rolling window using CRSP stocks in black line. Gray boxplots show
cross-sectional distributions of CRSP stock returns. Note the returns are standardized.
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VT ey = %i(T) fi(T) + wie(7) 9)

where the quantile-dependent idiosyncratic error u;,(7) satisfies the quantile restriction
following the methodology discussed in the previous subsection. We use only the first —
the most informative — estimated factor for our purposes. In the overwhelming majority
of the cases, the algorithms proposed in Chen et al. (2021) select exactly one factor to
be the correct number of factors that explain the panels of idiosyncratic returns.'?
Third, consistent with common volatility factor literature, we focus on the changes in
the CIQ(7), and we work with ACIQ(7) factors.!* In the case of the aggregate market
prediction, we use the last estimated value from a given window to predict market return
at time T 4 1. Fourth, to assess the pricing implications of the exposures to the CIQ(7)

factors in the cross-section, for every stock, we estimate their betas with respect to the

I3Robustness tests using more factors produce qualitatively similar results.
141f not stated otherwise, in the rest of the paper, we perform all the analyses using ACIQ(7) factors.

12



changes in CIQ(7) factors
Tit = oy + @-A(T)Aft(T) + Vit (10)

by employing classical linear regression based on the least-square estimator. And finally,
we use these betas to infer the predictive implications regarding the next period returns
Tit+1, which are either subsequent month or year returns.

Figure 3 illustrates estimated levels of the CIQ(7) factor. We chose CIQ(0.1) level es-
timated using a 60-month rolling window, and the last estimated value from each window
is plotted in black line. In addition, whole cross-sectional distribution of CRSP stock
returns is depicted in gray boxplots. We can see that CIQ(0.1) recovers the unobservable
quantile factor well.

Having variety of quantile factors at hand, it is tempting to explore pricing implica-
tions of common quantiles with different levels and shift focus of the analysis from tails
to other parts of distribution. Table 6 provides correlations between CIQ(7) factors at
different quantiles. Correlation between CIQ(7) in levels for the upper and lower part of
the distribution are far from perfect, e.g., the correlation between the lower tail factor
CIQ(0.1) and upper tail CIQ(0.9) is -0.554. This observation suggests that the factors
do not simply duplicate information and are hence not likely to be rescaled information
contained in common volatility factor. Moreover, this dependence almost perfectly dis-
appears if we look at the increments of the CIQ(7) factors — dependence between lower
and upper tail factors reduces to -0.053. These results suggest that there is a potential for
different pricing information across quantiles and that this information does not simply

mirror information contained in the common volatility.

4 Time-series Predictability of Market Return

We start examining the information content of CIQ(7) factors for subsequent short-term
market returns. Here we aim to predict monthly excess return on the market that we
approximate by the value-weighted return of all CRSP firms. In the regressions, we
also control for popular predictive variables used in Welch and Goyal (2007) as well as
three closely related factors — the tail risk (TR) factor of Kelly and Jiang (2014), the
innovations of common idiosyncratic volatility (ACIV) factor of Herskovic et al. (2016),

and the variance risk premium (VRP) factor of Bollerslev et al. (2009).'> Because the

15We replicated tail risk factor construction of Kelly and Jiang (2014) by ourself; we acquired data
of Herskovic et al. (2016) from Bernard Herskovic’s webpage and data of Bollerslev et al. (2009) from
Hao Zhou’s webpage.

13



Table 1: Predictive power of the ACIQ(T) factors. The table reports results from the univariate
predictive regressions of the value-weighted return of all CRSP firms on ACIQ(7) factors for various
T € (0,1). Coeflicients are scaled to capture the effect of one standard deviation increase in the factor
on the annualized market return in percent. The corresponding t-statistics are computed using the
Newey-West robust standard errors using six lags. We report both in-sample (IS) and out-of-sample
(O0S) R?*s. We also truncate the predictions at zero following Campbell and Thompson (2007) (CT)
and report corresponding IS and OOS R2s.

T Coeff.  t-stat R21IS R200S R2ISCT R2?00SCT

0.1 -7.332 -2.881 1.789 1.334 1.360 1.747
0.15 -7.676 -2.934 1.961 1.461 1.588 1.856
0.2 -7.572 -2.896 1.908 1.383 1.421 1.533
0.3 -7.567 -2.969 1.906 1.109 1.090 1.083
04 -7.019 -2980 1.640 0.496 0.876 0.748
0.5 -3.401 -1.604 0.385 -0.057 0.381 0.173
0.6 -0.983 -0.420 0.032 -0.392 0.032 -0.303
0.7 -0.908 -0.466 0.027 -0.604 0.027 -0.471
0.8 1.388 0.763 0.064 -0.434 0.006 -0.354
0.85  2.429 1.404  0.196 -0.264 0.081 -0.151
0.9 3.985 2.067  0.529 0.044 0.264 -0.030

CIQ(7) factors are estimated using a rolling window, we use the last value of the factors
estimated from each rolling window to construct a single series of the CIQ(7) factors.

First, we report the results from the univariate regressions of the market return on
the differences of the CIQ(7) factors at various 7 quantile levels in Table 1. We report
estimated scaled coefficients to capture the effect of one standard deviation increase of the
independent variable on the subsequent annualized market return. The corresponding
t-statistics are computed using Newey-West robust standard errors using six lags.

The results in Table 1 document strong predictive power using the ACIQ(7) factors
for the left part of the distribution, with the peak for 7 being between 0.15 and 0.2,
where the increase (decrease) of one standard deviation in the factors predict subsequent
decrease (increase) of 7.676 and 7.572 percents in annualized market return.'® There is
also some predictive power for the upper tail factor when CIQ(0.9), but the effect is much
smaller with only 3.985 percent increase in annualized market return accompanied with
only one-fourth of the R? from the lower tail. From a perspective of an investor, in times
of high risk — captured by large negative increments of the left-tail CIQ(7) factor, she
requires a premium for investing. And thus, these risky periods correlate with the high
marginal utility states of the investors.

Together with in-sample (IS) R?, we also report the out-of-sample (OOS) R? from
expanding window scheme. We use data up to time ¢ to estimate the prediction model and

then forecast the ¢ + 1 return (the first window contains 120 monthly periods to obtain

16Note that the lower tail factors are on average negative. Increase (decrease) of these factors cor-
responds to the decrease (increase) of risk, which leads to a decrease (increase) of the required risk
premium.
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sufficiently reasonable estimates). Then, the window is extended by one observation,
the prediction model is re-estimated and a new forecast is obtained. We repeat this
procedure until the whole sample is exhausted. The corresponding R? is computed by
comparing conditional forecast and historical mean computed using the available data up
to time ¢, i.e., 1 =3 (Fimas1 — Prngs1je)?/ Doy (Pmgtt1 — Fmye)® where 7, 14112 is out-of-sample
forecast of the ¢ + 1 return using data up to time ¢, and #,,, is the historical mean of
the market return computed up to date ¢. Unlike the case of the IS R?, the OOS R? can
attain negative values if the conditional forecasts perform worse than the historical mean
forecast. The positive values of the OOS R? for 7 between 0.1 and 0.3 provide strong
evidence for the benefits of the ACIQ(7) factors for predicting the market return in the
real-world setting. On the other hand, the predictability vanishes for the higher values
of 7.

To assess the economic usefulness for the investors, we further follow suggestions from
Campbell and Thompson (2007) (hence CT). They propose to truncate the predictions
from the estimated model at 0, as the investor would not have used a model to predict a
negative premium. This non-linear modification of the model should introduce caution
into the models. Based on this modification, we report both IS and OOS R?s. Naturally,
using this transformation, the IS R? does not improve for any of the models, but the
performance rises for the OOS analysis. Results suggest that the common fluctuations in
the lower part of the excess returns distributions robustly predict the subsequent market
movement.

Next, we run bivariate regressions to assess whether the proposed quantile factors
contain additional information not included in the relevant previously proposed variables.
We separately control for variables that may contain duplicate information. First, in
Table 2, we report coefficients and their t-statistics while controlling for the TR factor
of Kelly and Jiang (2014), the ACIV of Herskovic et al. (2016), and the VRP factor
of Bollerslev et al. (2009), respectively. In the first case, ACIQ(7) factors mirror the
results from the univariate regressions in terms of coefficients and their significance. TR
factor is significant across all the specifications, although its effect is smaller and less
significant than in the case of ACIQ(7) for the lower tail values of 7. In the second case,
while controlling for the ACIV, the results regarding the ACIQ(7) factors remain the
same, and ACIV proves not to predict future market returns. In the third case, the VRP
factor appears to be the most closely related in terms of predictability to the ACIQ(7)
factors. The VRP is highly significant, and at the same time, it diminishes the effect
of the ACIQ(7) factors — the scaled coefficients decreases around 1.5 percentage points,

and the corresponding ¢-statistics are now approximately 1.6.
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Table 2: Bivariate predictive regressions. The table reports results from the bivariate predictive regres-
sions of the value-weighted return of all CRSP firms on ACIQ(7) factors for various 7 € (0, 1) and other
control variables. We employ the TR factor of Kelly and Jiang (2014), the ACIV of Herskovic et al.
(2016), and the VRP factor of Bollerslev et al. (2009), respectively. Coefficients are scaled to capture the
effect of one standard deviation increase in the factor on the annualized market return in percent. The
corresponding ¢-statistics are computed using the Newey-West robust standard errors using six lags.

T 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9
ACIQ(T) -7.296 -7.617 -7.568 -7.497 -6.961 -3.171 -0.771 -0.751 1.519 2.500 4.064
Kelly and Jiang (2014) t-stat -2.875  -2.922 -2909 -2.944 -2.960 -1.502 -0.329 -0.386 0.836 1.449 2.112
TR 4.982 4.943 5.027 4.928 4.954 4.885 5.002 5.011 5.074 5.070 5.098

t-stat 2.254 2.247 2.301 2.220 2.250 2.174 2.245 2.255 2.276 2.279 2.290

ACIQ(r) -7.863 -8.126 -7.918 -7.831 -7.204 -3.470 -1.003  -0.902 1.420 2.464 3.995

Herskovic et al. (2016) t-stat -3.042  -3.063 -2.987 -3.022 -2.961 -1.630 -0.426 -0.461 0.771 1.393 2.046
: ACIV -2.454  -2.325 -2.074 -1.865 -1.594 -0.995 -0.781 -0.748 -0.811 -0.855 -0.806
t-stat -0.718  -0.683 -0.607 -0.541 -0.452 -0.273 -0.210 -0.201 -0.217 -0.228  -0.216

ACIQ(r) -5.649 -6.019 -5.774 -5513 -5.114 -2.271 1.814 -0.749 1.002 1.658 2.910
t-stat -1.494  -1.573 -1.604 -1.606 -1.562  -0.747 0.516 -0.290 0.389 0.716 1.235
VRP 12.643 12.621 12403 12.348 12.308 12.311 12,536 12.399 12.518 12.566 12.616
t-stat 5.580 5.500 5.281 5.208 5.214 5.229 5.466 5.322 5.420 5.487 5.567

Bollerslev et al. (2009)

Second, we control for variables discussed in Welch and Goyal (2007).!" Instead of
large Table through all variables and quantiles, we summarize the results in the Figure
4, in which we plot the coefficients of the ACIQ(7) factors while controlling for said vari-
ables. We observe that none of the variables drives out the significance of the ACIQ(7)
factors. Moreover, the magnitude of the effect remains very close to the ones from the

univariate regressions.

5 Pricing the CIQ(7) Risks in the Cross-Section

In this section, we investigate the pricing implications of the presented common id-
iosyncratic quantile factors for the cross-section of stock returns. We hypothesize that
the stochastic discount factor increases in the CIQ(7) risk, as the risk-averse investor’s
marginal utility is high in the states of high CIQ(7) risk. Based on that hypothesis, we
assume that the assets that perform poorly in the states of high CIQ(7) risk will re-
quire a higher risk premium for holding by the investors. On the other hand, assets that
perform well during these states serve as a hedging tool and will be traded with higher
prices and thus lower expected returns. The stocks sensitivities to the factors capture
betas estimated by the linear regression of stocks returns on the factors. The betas are
calculated following the notion discussed in Subsection 3.2, i.e., using a 60-month rolling
window of monthly data up to time ¢, and are used to predict return at time ¢ + 1. If
not explicitly stated otherwise, we use as our predicted variable monthly out-of-sample

returns following the estimation window. We also try to predict one-year returns using

"For the information regarding the specification of the variables, see Welch and Goyal (2007). We
obtained the data from the Iwo Welch’s webpage.
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Figure 4: Predictive power of the ACIQ(7) factors with Welch and Goyal (2007) variables. The figure
depicts coeflicients and corresponding t-statistics associated with the ACIQ(7) factors from bivariate
regressions when controlling for variables discussed in Welch and Goyal (2007). The dependent variable
is the value-weighted return of all CRSP firms. Coefficients are scaled to capture the effect of one
standard deviation increase in the factor on the annualized market return in percent. The t-statistics
are computed using the Newey-West robust standard errors using six lags.
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portfolios to assess the persistence of the CIQ(7) betas and thus indirectly investigate
the transaction costs related to the trading of these factors. The betas for the control
variables that we employ in various parts of the following analysis are estimated similarly
to the CIQ(7) betas, i.e., using a 60-month rolling window for the monthly data up to

time t to forecast the returns at time ¢ + 1.

5.1 Portfolio Sorts

Here we look at performance of the portfolios sorted on the CIQ(7) betas. Every month,
we estimate CIQ(7) betas for all stocks that possess all the observations during the
last 60 months using data up to time . We sort the stocks into ten portfolios based
on their betas for every 7 separately. We then record the portfolios’ performances at
time t 4+ 1 using either an equal-weighted or value-weighted scheme. Then we move one
month ahead, re-estimate all the betas, and create new portfolios. We expect that, for
7 < 0.5, there will be an increasing pattern of returns from the low exposure to the
high exposure portfolios, and vice versa for 7 > 0.5. The results for sorts based on
ten portfolios summarizes Panel A of Table 3. We observe an increasing return pattern

for the portfolios with 7 up to 0.4 for both equal-weighted and value-weighted schemes.
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This pattern practically disappears when we look at the portfolios formed on higher 7
CIQ(7) betas. This observation suggests that only the exposure to the lower tail common

movements is priced in the cross-section.

Table 3: Ten univariate sorted portfolios using monthly data. The table contains annualized out-of-
sample excess returns of ten portfolios sorted on the exposure to the ACIQ(7) factors computed from the
monthly data. Panel A reports results based on the one-month returns following the formation period,
Panel B results for the twelve-month period. We use all the CRSP stocks that have all 60 monthly
observations in each window. We exclude penny stocks with prices less than 1$. We report returns of
the high minus low (H - L) portfolios, their ¢-statistics, and annualized 5-factor alphas with respect to
the four factors of Carhart (1997) and CIV shocks of Herskovic et al. (2016). We also report ¢-statistics
for these alphas. Data contain the period between January 1963 and December 2015.

T Low 2 3 4 5 6 7 8 9 High H-L t-stat « t-stat

Panel A: One-month returns

Equal-weighted
0.1 7.300 8.732 9.304 9.630 9.747 9.599 9.295 10.180 11.414 11.835 4.535 2.555  6.164  4.054
0.15  6.810 9.127 9.238 9.801 9.574 9.551 9.965 10.512 10.749 11.705 4.895 2.800 6.791 4.552
0.2 6.623 9.366 9.241 9.729 9.830 9.973 9.586  10.250 10.474 11.958 5.335 3.052  7.405 4.949
0.3 7.206 8.560 9.547  10.239  9.638 9.916 9.512  10.136  10.469 11.815 4.609 2915 6.344  4.524
0.4 7.275 8.999  10.078  9.609 9.684 9.659 9.462  10.263  10.122 11.873 4.599 2973  5.866 3.973
0.5 7.079 9.615 9.739 9.347 9.383 9.944 9.945 10.689 10.289 10.962 3.882 1.698  3.950 1.653
0.6 8.169 9.351 9.929 9.731 9.225 9.846 9.876 ~ 10.000 10.471 10.384 2.214 1.081  1.205 0.633
0.7 8.295 9.948 9.197 9.048 9.937 9.742 9.340 9.400 10.838 11.233 2937 1.500 1.609 0.926
0.8 9.247 9.892 9.109 8.632 9.873 9.579 9.340  10.426  9.917  10.957 1.710 0.727  0.044 0.023
0.85  9.492 9.437 9.299 9.180 9.384 9.513  10.054  9.887  10.265 10.452 0.961 0.381 -0.945 -0.471
0.9 9.531 9.459 9.337 9.356 9.543 9.942 9.407  10.407  9.943 10.035 0.504 0.190 -1.371 -0.677

Value-weighted
0.1 5.031 5.357 6.086 6.722 6.546 6.282 5.977 6.694 9.139 8.329  3.298 1.263 2.686  1.223
0.15  4.607 5.309 6.775 6.852 6.345 6.617 6.451 6.380 8.468 8.400  3.793 1.505 3.689  1.805
0.2 4.114 6.110 6.817 6.884 6.443 5.649 7.329 6.698 7.766 8.918  4.804 1.957 4.905  2.543
0.3 4.737 6.356 6.177 6.859 5.983 6.716 6.535 6.509 5.874 9.419  4.682 1.970 5.267  2.593
0.4 5.116 5.775 6.639 6.081 7.470 6.244 6.203 5.972 4.886  10.012 4.896 1914 6.329  2.497
0.5 5.062 6.233 5.604 5.664 5.802 6.610 6.187 7.293 5.297 7.855 2793 0.999  3.105 1.097
0.6 5.099 6.521 6.098 5.917 6.061 5.825 6.708 6.413 5.530 6.857  1.758 0.658  1.838  0.719
0.7 5.756 6.656 5.952 6.767 6.394 5.776 6.228 5.277 6.328 8.184 2428 0.957 1.803  0.760
0.8 5.430 6.464 5.941 6.008 6.659 6.398 5.638 6.937 4.361 8.848  3.418 1.197  2.892 1.164
0.85  5.149 6.412 5.302 6.275 6.524 6.660 6.596 5.654 6.699 6.872  1.723 0.577 1.061  0.437
0.9 4.711 5.961 6.109 6.053 6.733 6.509 7.003 6.472 5.960 6.283  1.572 0.502 0.509 0.214

Panel B: Twelve-month returns

Equal-weighted

1 10.191  10.722 11.122 10.925 11.134 11.030 10.997 11.501 12.421 14.352 4.161 3.394 5.672 4.671
0.15 10.051 11.081 11.056  11.245 10.942 10.963 11.008 11.476 12.128 14.446  4.396 3.666 5.809 4.921
0.2 10.221 11.099 10.974 11.281 10.997 10.769 11.334 11.243 11.861 14.610 4.389 3.772  5.548  4.703
0.3 10.702 10.861 10.902 11.277  10.890 11.036 11.156 11.056 11.928 14.577  3.875 3.681 4.589 3.833
0.4 11.004 11.039 11.132 10.703 10.745 11.023 10.793 11.289 12.219 14.432  3.428 3.561 3.730 2.920
0.5 10.264 11.028 10.961 10.916 10.969 10.777 11.170 11.713 12723 13.856 3.592 3.162 4.118 3.436
0.6 10.154  10.850 11.319  10.906 10.649 11.006 11.094 11.788 12.550 14.060  3.906 3.443 2.921 1.954
0.7 11.277 11.451 11.059 10.792 10.783 10.905 10.865 11.098 12.149 13.995 2.717 2.130  0.289 0.193
0.8 11.911 11.513 10.549 10.657 10.761 11.224 10.946 11.319 12.025 13.470 1.558 1.001 -1.385 -0.768
0.85 12.125 11.120 10.646  10.615 10.897 11.197 11.095 11.477  12.028 13.175 1.050 0.623 -2.186 -1.095
0.9 11.867 11.040 10.741 10.813 10.976 11.158 11.031 11.744  12.132 12.877 1.010 0.564 -1.444 -0.729

Value-weighted
0.1 6.286 6.355 7.356 6.976 6.873 6.641 6.544 7.667 9.138 9.083 2797 1.670  3.022 1.914
0.15  6.293 6.620 7.627 7.372 6.897 6.642 6.578 7.255 8.653 8.910 2.617 1.598  3.308 2.080
0.2 6.244 7.112 7.365 7.446 6.983 6.598 6.994 6.874 8.049 9.019 2775 1.718  3.166 1.974
0.3 6.543 7.162 7.571 7.220 6.670 6.809 7.229 6.788 6.616 9.289 2746 1.838  3.045 1.884
0.4 7.033 7.091 7.283 7.036 6.737 7.051 6.961 6.328 6.097 9.557 2524 1.793  3.335 1.874
0.5 5.681 6.418 7.007 6.411 6.436 7.002 7.265 6.999 6.628 8.444  2.763  1.790  4.196 2.824
0.6 5.126 5.988 6.641 6.233 6.575 7.155 7.209 6.997 6.639 8.883  3.757 2543  4.933 3.388
0.7 6.415 6.874 6.107 6.834 7.327 7.059 6.564 6.851 6.718 8.830 2415 1.461 1.016 0.633
0.8 7.152 6.374 6.447 6.879 6.930 7.234 7.037 6.466 6.866 8.191 1.038  0.526 -0.434 -0.202
0.85  6.735 6.323 6.480 6.403 7.084 7.709 7.014 6.307 7.223 7.532  0.797 0.392 -1.043 -0.484
0.9 6.606 6.369 6.273 6.794 7.076 7.580 7.206 6.612 7.020 7.393  0.787 0.378 -1.585 -0.757
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Moreover, to formally assess whether there is a compensation for bearing a risk of
high exposure to the common movements in various parts of distributions of idiosyncratic
returns, we present returns of high minus low portfolios. We obtain these returns as a
difference between returns of portfolios with the highest CIQ(7) betas and portfolios with
the lowest CIQ(7) betas. These portfolios are zero-cost portfolios and capture the risk
premium associated with specific 7 joint movements of idiosyncratic returns. Results of
this analysis are also summarized in Panel A of Figure 7. As expected, we observe a
significant positive premium for the difference portfolios only for 7 being less or equal to
0.4. These premiums are both economically and statistically significant. In the case of
the equal-weighted portfolios, the premium for CIQ(0.2) factors is 5.335% on the annual
basis with a t-statistic of 3.052. The premiums are slightly lower in the case of the value-
weighted portfolios — e.g., for 7 = 0.2 the premium is 4.804 with t-statistic of 1.957. This
lower significance may be partially caused by the fact that the value-weighted portfolios
possess a higher concentration, which leads to more volatile returns.

To make sure that the estimated premiums cannot be explained by exposure to other
risks previously proposed in the literature, we regress the returns of the high minus low
portfolios on four factors of Carhart (1997) and CIV shocks of Herskovic et al. (2016)
and report corresponding annualized 5-factor alphas. From the results, we can see that
the proposed factors do not capture the positive premium associated with both zero-cost
portfolios. For the equal-weighted portfolio with 7 = 0.2, the estimated annualized alpha
is 7.405% with t-statistic of 4.949, for value-weighted portfolios it is 4.904% premium
with t-statistics being equal to 2.543.

Next, in Panel B of Table 3, we look at the performance of the CIQ(7) sorted portfolios
captured by the following twelve-month returns. Each month, we construct portfolios
as in the previous case. Instead of saving the one-month return of the sorted portfolios,
we record a twelve-month return, which follows after the formation period. We observe
slightly smaller returns but still consistent with the results obtained using one-month
returns. The high minus low portfolios with 7 = 0.2 yield 4.389% (¢t = 3.772) and
2.775% (t = 1.718) for the equal- and value-weighted schemes, respectively. The other
risk factors cannot explain these premiums as the 5-factor alphas stay economically and
statistically significant.

Due to the fact that only the exposures to the lower tail common movements are
priced, the previous results suggest that the CIQ(7) risks are not driven by the effect of
the common volatility. If it were the case that the volatility is the main driver of the
obtained results, we would observe that both exposures to the lower and upper parts

of the joint movements are priced, which is not the case. But to explicitly control for
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Figure 5: Cross-sectional results of the monthly data ACIQ(T) factors. The figure summarizes the
cross-sectional asset pricing results of the ACIQ(7) factors using monthly data. Panel (a) captures
annualized returns of ten high minus low portfolios based on sorting stocks into ten portfolios. Panel
(b) presents coefficients corresponding to the ACIQ(7) betas from the Fama-MacBeth regressions while
controlling for various competing risk measures. The results are based on data sampled between January
1963 and December 2015.
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(b)

the effect of the common idiosyncratic volatility, we perform dependent bivariate sorts
by double sorting on betas for increments of CIV factor and betas for increments of the
CIQ(7) factors. Every month, we first sort the stocks into ten portfolios based on their
CIV betas. Then, within each of the CIV-sorted portfolios, we sort the stocks into ten
portfolios based on their CIQ(7) betas. Finally, for each CIQ(7) portfolio, we collapse
all the corresponding CIV portfolios into one CIQ(7) portfolio. This procedure yields
single-sorted portfolios which vary in their CIQ(7) betas but possess approximately equal
CIV betas. The obtained results summarizes Table 4. For the equal-weighted portfolios,

we see that the risk premium captured by the returns of the high minus low portfolios
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Table 4: Ten bivariate sorted portfolios. The table contains annualized out-of-sample excess returns of
ten portfolios double sorted on the exposure to the ACIQ(7) factors and ACIV. First, we perform sorts
based on the ACIV betas, then, within each ACIV portfolio, we sort on the ACIQ betas, and then we
collapse all the ACIV portfolios for a given ACIQ(7) portfolio into one. The obtained portfolios vary
in their ACIQ(7) betas but not in their ACIV betas. We report returns of the high minus low (H-L)
portfolios, their t-statistics, and annualized 5-factor alphas with respect to the four factors of Carhart
(1997) and CIV shocks of Herskovic et al. (2016). We also report t-statistics for these alphas. Data
contain the period between January 1963 and December 2015.

T Low 2 3 4 5 6 7 8 9 High H-L t-stat « t-stat

Equal-weighted
0.1 7.264 8.944 9.942 9.540 9.699 9.699  10.310 10.174 10.438 11.046  3.782 2.301 4.588 3.571
0.15 7.099 8.875 9.726  10.286  9.762 9.674 10.434 10.045 10.457 10.718  3.619 2.178 4.693 3.657
0.2 6.822 9.241 9.887 9.867  10.408  9.780 9.870  10.306 10.093 10.810  3.988 2.452 5.199 3.953
0.3 7.125 9.105 9.726 9.906  10.036 10.317 10.123  9.972 10.157  10.593  3.468 2.353 4.592 3.658
0.4 7.700  9.488 9.981 9.928 9.750  10.542  9.513 9.398  10.134 10.581  2.881 2.145 4.094 3.419
0.5 8283 10.246 9.693 10.345 9.924 10.323 10.292  9.368 9.482 9.075 0.787  0.441 0.967 0.564
0.6  8.282 9.491 10.112  10.672  9.657 9.814  10.380 10.139  9.084 9.365 1.083 0.643 0.754 0.488
0.7 8574 10.115  9.470 9.613 9.450  10.198  9.875 9.166  10.021  10.489  1.914 1.128 1.089 0.733
0.8 9.462  9.518 9.855 9.577 9.698 9.921 9.680 8.946  10.494  9.777 0.315 0.155  -0.783  -0.480
0.85 9.639 9.373 10.280  9.611 9.554 9.718 9.699 9.626  10.161  9.301  -0.339 -0.151 -1.598 -0.901
0.9 9.743  9.725 9.743  10.103  9.913 9.479 9.581 9.590  10.013  9.100 -0.643 -0.279 -1.924 -1.032

Value-weighted
0.1  5.646  5.925 7.337 7.587 7.920 8.382 8.202 7.360 7.804 8.884 3.238 1.359 2.388 1.453
0.15 5.579  5.992 7.343 8.036 8.326 7.903 8.120 7.830 7.628 8.644 3.065 1.352 2.847 1.764
0.2 5.395 6.293 8.066 7.861 8.202 8.138 7.946 8.900 7.039 8.768 3.373 1.515 3.319 1.957
0.3 5.825  6.455 7.074 8.304 8.098 8.239 8.777 7.239 7.390 7.775 1.950 0.953 2.439 1.538
0.4 5984  6.937 8.634 8.248 7.154 9.210 7.521 5.922 7.280 7.933 1.949 1.015 3.212 1.836
0.5 5.693  7.552 6.719 7.706 7.825 8.531 7.263 8.062 7.119 5.984 0.291 0.126 0.730 0.316
0.6  5.358  7.278 7.434 7.359 8.010 8.618 8.256 7.927 6.593 5.924 0.566 0.254 0.441 0.213
0.7 6.281 7.595 8.176 7.137 7.429 8.611 7.173 7.527 7.595 8.298 2.018 0.942 1.268 0.631
0.8 6.110 7.064 7.408 7.963 8.139 7.410 7.350 6.675 8.098 7.844 1.734  0.689 1.054 0.504
0.85 5.863  7.445 7.483 7.584 7.843 7.693 7.345 7.679 7.043 7.390 1.527  0.532 0.750 0.319
0.9 6.509  7.363 7.426 8.327 7.858 7.738 6.832 7.626 7.407 7.363 0.855 0.293 0.025 0.011

for 7 < 0.4 remains significant with an annualized return of 3.988% (t = 2.452). In case
of the value-weighted portfolios, the return decreases to 3.373% for 7 = 0.2 (¢t = 1.515).
This observation suggests that the CIQ(7) risk premium partly captures the interaction
between size and CIV premium.

In Appendix A in Tables 7 and 8, we provide results of the same analysis using five
portfolios instead of ten. The results are qualitatively very similar to the results from
the above, confirming the robustness of our claim that the exposure to the common left

tail events is priced in the cross-section of returns.

5.2 Pricing CIQ(7) risk

Next, we perform a two-stage Fama and MacBeth predictive cross-sectional regressions
to explore the ability of CIQ(7) factors to explain the abnormal returns associated with
CIQ(7)-beta sorted portfolios. This type of asset pricing test moreover conveniently
allows for simultaneous estimation of many risk premiums associated with various risk
measures. That means that we can estimate the risk premium associated with the CIQ(7)

risks while controlling for other risk measures previously proposed in the literature. More
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specifically, for each time t = 1,...,T — 1 using all of the stocks + = 1,..., N available
at time ¢ and t + 1,'® we cross-sectionally regress all the returns at time ¢ 4 1 on the
betas estimated using only the information available up to time t. This procedure yields
estimates of prices of risk A;1(7) while controlling for the most widely used competing

measure of risk

— CI1Q(r) CIQ(T) TControl y Control
Tigy1 = a5 (M)A (1) + By M i (11)
where B! is vector of control betas and A% is vector of corresponding prices of

risk. Using T" — 1 cross-sectional estimates of the prices of risk, we compute the average
price of risk associated with each A\“/%(7) as
. Z

)\CIQ(T) (7_) _ " )\tCIQ(T) (7_) (12)
t=2

and report their annualized values along with their t-statistics based on the Newey-
West robust standard errors using 6 lags. For better comparability, each time ¢ that we
estimate the price of risk for time ¢ + 1, we multiply the estimated coefficient by the
cross-sectional standard deviation of the corresponding betas from time t. We follow the
same logic when reporting results for the control variables. Doing that enables us to
compare the effect on the expected returns across 7 and various controls. We report the
results from these regressions in Table 5 and Panel (b) of Figure 7.

First, we report results from the univariate regressions on CIQ(7) betas. We observe
very similar results to those obtained from the portfolio sorts — the exposure to the
common idiosyncratic left tail events is significantly compensated in the cross-section of
stock returns. For example, ACIQ(7) for 7 = 0.2 posses a coefficient of 1.315 (t-stat =
2.543), on the other hand, for 7 = 0.8, the estimated coefficient is equal to 0.458 (¢-stat
= 0.632).

Second, we report results from the multivariate regressions in which we include as a
control volatility betas computed on shocks to the CIV factor. We see that the results
regarding CIQ(7) betas still hold both qualitatively and quantitatively similar to the
case of univariate regressions. Moreover, CIV risk is priced as well; especially strong
is the relationship when we control for CIQ(7) betas with 7 from the right part of
the distribution. These results suggest that both common idiosyncratic volatility and

quantile risk are priced and do not convey the same pricing information.

18 A stock is identified as available, if it posses all the return observations during the last 60-month
window up to time ¢ and also an observation at time ¢ + 1.
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Table 5: Fama-MacBeth regressions using monthly CIQ(7) factors. The table contains estimated prices
of risk and t-statistics from the Fama-MacBeth predictive regressions. Each segment contains prices of
risk of ACIQ(7) betas while controlling for various risk measures. The coefficients are standardized by
the cross-sectional standard deviations of the corresponding betas and annualized. Data contain the
period between January 1963 and December 2015. In each window, we use all the CRSP stocks that
have all 60 monthly observations, and we exclude penny stocks with prices less than 1$.

T 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9
BCIQ (1) 1.327 1.318 1.315 1.204 1.056 0.993 0.585 0.729 0.458 0.354 0.180
2.527 2.534 2.543 2.556 2.336 1.538 0.977 1.203 0.632 0.450 0.216

BCIR (1) 1.219 1.168 1.169 1.074 0.773 0.352 0.337 0.370 0.063  -0.073  -0.238
2.248 2.172 2.194 2.238 1.763 0.604 0.597  0.650 0.091  -0.097  -0.296

geIv -1.208 -1.276  -1.343  -1.390 -1.512 -1.697 -1.778 -1.565 -1.530 -1.561 -1.578
-1.953  -2.075  -2.194 -2.296 -2.556  -3.006 -3.192  -2.824  -2.822 -2.887 -2.888

BCIR (1) 1.327 1.411 1.341 1.259 1.052 1.157 0.739 0.848 0.700 0.465 0.168
2.693 3.060 2.958 2.946 2.554 2.058 1.454 1.886 1.380 0.777 0.247

gMean—5Q g 97 0.118 0.020 -0.118 -0.364 -0.472 -0.430 -0.556 -0.571  -0.382  -0.187
0.102 0.129 0.023  -0.135 -0.428 -0.579 -0.515 -0.674 -0.703  -0.477  -0.236

BCIQ (1) 1.352 1.311 1.286 1.162 0.926 0.766 0.272 0.548 0.307 0.143 0.041
2.574 2.537 2.510 2.523 2.227 1.269 0.493 0.960 0.437 0.186 0.049

gFce—s@ 0.039 0.018 0.003 0.015  -0.050  0.086 0.311  -0.013  -0.065  0.030 0.026
0.102 0.048 0.008 0.039  -0.137  0.248 0.809  -0.038  -0.205  0.095 0.084

BCIQ (1) 0.862 0.941 0.899 0.857 0.677 0.818 0.593 0.616 0.429 0.210  -0.008
1.871 2.052 1.973 1.973 1.709 1.752 1.339 1.719 1.153 0.535  -0.018

gMET 0.056 0.109 0.102 0.095 0.022  -0.044 -0.059 -0.121 -0.139  -0.085  -0.061
0.064 0.125 0.118 0.111 0.026  -0.055 -0.074 -0.147 -0.167 -0.100  -0.071

gSMB 0.424 0.493 0.506 0.499 0.424 0.536 0.479 0.315 0.276 0.332 0.443
0.451 0.524 0.540 0.536 0.467 0.601 0.534 0.354 0.312 0.373 0.491

gHML 1.510 1.503 1.479 1.457 1.513 1.471 1.556 1.570 1.649 1.722 1.792
1.856 1.855 1.837 1.819 1.928 1.954 2.064 2.094 2.231 2.341 2.415

BCIQ (1) 0.984 0.974 0.968 0.905 0.817 0.708 0.327 0.648 0.432 0.357 0.192
2.083 2.076 2.082 2.081 1.996 1.216 0.603 1.196 0.672 0.512 0.258

gTR 0.437 0.453 0.483 0.507 0.551 0.368 0.388 0.539 0.565 0.575 0.602
0.633 0.652 0.691 0.709 0.762 0.520 0.547 0.765 0.831 0.865 0.921

BCIR () 1.421 1.449 1.453 1.375 1.159  0.926  0.686  0.774  0.571 0.433  0.205
2.894 2.958 2.944 2.984 2.504 1.489 1.157 1.324 0.843 0.594 0.265

gLiQ 0.118 0.145 0.143 0.169 0.083 0.075 0.115 0.102 0.243 0.291 0.417
0.195 0.240 0.233 0.268 0.128 0.123 0.189 0.168 0.427 0.532 0.789

BCIR () 1.295 1.315 1.332 1.261 1.190 1.220 0.899 1.013 0.692 0.561 0.340
2.404 2.479 2.537 2.653 2.637 1.945 1.504 1.606 0.920 0.691 0.399

BSkew -1.362 -1.336 -1.374 -1.381 -1.382 -1.452 -1.462 -1.391 -1.372 -1.384 -1.372
-2.946  -2.901  -3.014 -3.046 -3.054 -3.373  -3.415 -2.865 -2.803 -2.869  -2.847

BCIQ (1) 1.132 1.165 1.176 1.096 1.018 0.978 0.645 0.843 0.595 0.497 0.317
2.098 2.186 2.216 2.268 2.250 1.567 1.090 1.386 0.813 0.625 0.378

g urt -0.077  -0.030  -0.037 -0.064 -0.093 -0.236 -0.222  -0.207 -0.197 -0.196  -0.201
-0.155  -0.060 -0.073  -0.126 -0.187 -0.510 -0.486 -0.415 -0.395 -0.395  -0.406

BCIQ (1) 1.498 1.511 1.524 1.402 1.227 1.110 0.798 0.783 0.488 0.348 0.137
3.110 3.144 3.178 3.193 2.926 1.890 1.431 1.402 0.735 0.478 0.177

gPE1 0.516 0.536 0.559 0.535 0.479 0.612 0.673 0.393 0.428 0.460 0.499
0.880 0.903 0.938 0.883 0.787 1.071 1.184 0.682 0.792 0.879 0.982

BCIQ (1) 1.329 1.370 1.410 1.342 1.200 0.954 0.707  0.816 0.593 0.430 0.225
2.914 2.968 3.040 3.100 2.818 1.592 1.294 1.466 0.945 0.631 0.312

pPR2 0.746 0.789 0.829 0.810 0.738 0.615 0.624 0.537 0.549 0.585 0.592

0.929 0.971 1.014 0.975 0.878 0.757 0.777 0.657 0.715 0.784 0.816

Third, to investigate whether the quantile factors provide different priced information
beyond conventional approximate factor models, we construct and control for two related

factors. In both cases, we proceed similarly as in the construction of the quantile factors —
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using the 60-month moving window, we extract the idiosyncratic returns and then square
them. We use a simple cross-sectional average of the squared residuals in the first case
and denote it as Mean-SQ. In the second case, we perform principal component analysis
on those squared residuals and take the first principal component that explains the most
common time variation across the squared residuals, and we denote it as PC-SQ. In both
cases, we then difference the factors and use their increments as control factors. From
the results, we can conclude that the quantile factors extract very different information
regarding the expected returns, as both specifications based on the factors extracted from
the squared residuals turn out not to be significant predictors in the cross-section of stock
returns. One has to look deeper into the common distribution if he wants to identify
priced information regarding the common distributional movements.

Next, we focus on various less related risk measures previously proposed in the lit-
erature. We control for the three factors of Fama and French (1993). This specification
decreases the effect and significance of the CIQ(7) betas the most among all the discussed
specifications. Still, the CIQ(7) betas for the lower tail (7 < 0.3) possess t-statistics above
1.8. The other significant predictor from these regressions is the H M L factor which per-
forms well, especially when we include CIQ(7) betas for higher .

As another related control, we use the tail risk factor of Kelly and Jiang (2014). As
we can see, TR betas do not drive out the CIQ(7) betas’ effect, which remains significant,
similarly to the univariate specification. We also control for the impact of liquidity betas
of Pastor and Stambaugh (2003),' which do not alter the results regarding the CIQ(1)
betas, neither.

Finally, we control for another related group of risk measures, which consider the non-
linear relationship between asset and market returns. By following the specifications of
Harvey and Siddique (2000) and Ang et al. (2006), respectively, we control for coskewness
and cokurtosis defined as

CSK,,; = & 20:1 (Pei, — Tea) (fere — f2)° (13)
% 220:10"&1@@, - ft,iﬁ% Z?il(ft,j — J1)?
S (P, — Tea) (fur — fo)?

60 _ 60 oy 3/2
6_10 > e (T, — Tt,i)2$(2j:1<ft7j - ft)Q)

CKT,; = (14)

where f;; is a return of the market factor with time average fi, and 7;; denotes the
time average of the asset return. Although the coskewness is highly significant with

the expected sign, it does not drive out the significance of the CIQ(7) betas, and both

19We obtained the liquidity factor data from the Lubos Pastor’s personal website.

24



measures simultaneously predict stock returns. On the other hand, the cokurtosis does
not exhibit any predictive power, and the CIQ(7) betas remain significant.

Another approach to capturing non-linear dependence is via downside risk (DR) be-
tas, which describe conditional covariance below some threshold level. We entertain two
specifications of the DR betas, which differ in the threshold value. We use the speci-
fication of Lettau et al. (2014) — DR1, which uses as a threshold value average market
return minus standard deviation of the market return, and the specification of Ang et al.
(2006) — DR2, which sets the threshold value equal to the average market return. More

specifically, DR betas are estimated using

BRI _ Cov(ry, fIf < py —ay)
! Var(f|f < py—oy)
pro _ Cov(ry, fIf < py)

T Ve (17 <) )

(15)

In application, we employ the empirical counterparts of the measures. As we can see,
neither of the specifications turns out to drive out or even be a significant predictor of
future returns.

To summarize this subsection, we have shown that the CIQ(7) results from the Fama-
MacBeth regressions support the results obtained from the portfolio sorts. Namely, the
exposure to the idiosyncratic left tail common events is priced in the cross-section of
stock returns, and that none of the discussed risks drives out the significance of these

results.

6 Conclusion

We investigate the pricing implications of the exposures to the common idiosyncratic
quantile factors. These factors capture non-linear common movements in various parts
of the distributions across a large panel of stocks. Similarly, as the quantile regression
extends the classical linear regression, our quantile factor model of asset returns extends
the approximate factor models used in empirical asset pricing literature. We observe
that the expected returns are associated with the exposures to the common movements
in various parts of the left tail of the distributions in contrast to the right tail. We
perform various robustness checks to show that these results are not attributable to

other previously proposed risk factors.
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A Appendix

Figure 6: Average pairwise correlations. The figure captures yearly average pairwise time-series corre-
lations between monthly excess returns or FF3 residuals of the CRSP stocks. Figures partially replicate
results of Herskovic et al. (2016).

+ —e- Excess retums
—=— FF3residuals

Correlation
0.

1927 1932 1937 1942 1947 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 2012

Table 6: Correlations between the monthly data CIQ(7) factors. We present the results of the uncondi-
tional correlations between estimated monthly data CIQ(7) factors. We estimate the factors using FF3
residuals of the CRSP stocks’ returns. Data contain the period between January 1963 and December
2015.

T 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9
0.1 1.000 0.981 0.951 0.853  0.640 0.165 0.041 -0.196 -0.426 -0.503 -0.554
0.15  0.981 1.000 0.984 0.912 0.725 0.229 0.106 -0.110 -0.354 -0.441 -0.504
0.2 0.951 0.984 1.000 0.955 0.799 0.278 0.160 -0.014 -0.265 -0.357 -0.430
0.3 0.853 0.912 0.955 1.000 0921 0.391 0.284 0.206 -0.049 -0.150 -0.240
0.4 0.640 0.725 0.799 0.921  1.000 0.533 0.458  0.489 0.266 0.171 0.075

Level 0.5 0.165 0.229 0.278 0.391  0.533 1.000 0.860  0.558 0.443 0.403 0.346
0.6 0.041 0.106 0.160 0.284 0.458 0.860 1.000 0.616 0.522 0.494 0.442
0.7 -0.196 -0.110 -0.014 0.206 0.489 0.558 0.616  1.000 0.940 0.891 0.824
0.8 -0.426 -0.354 -0.265 -0.049 0.266 0.443 0.522  0.940 1.000 0.983 0.948
0.85 -0.503 -0.441 -0.357 -0.150 0.171 0.403 0.494 0.891 0.983 1.000 0.980
09 -0.554 -0.504 -0.430 -0.240 0.075 0.346 0.442 0.824 0.948 0.980 1.000

0.1 1.000 0.972 0.944 0.875 0.757 0.411 0.321  0.327 0.140 0.037  -0.053
0.15  0.972 1.000 0.980 0.931 0.831 0473 0.376 0417 0.225 0.116 0.017
0.2 0.944 0.980 1.000 0.965 0.881 0.509 0.421 0.491 0.302 0.192 0.091
0.3 0.875 0.931 0.965 1.000 0.953 0.582 0.498 0.618 0.440 0.331 0.224
0.4 0.757 0.831 0.881 0.953 1.000 0.683 0.596 0.754 0.610 0.515 0.413
Increments 0.5 0.411 0.473 0.509 0.582  0.683 1.000 0.894 0.664 0.579 0.542 0.482
0.6 0.321 0.376 0.421 0.498 0.596 0.894 1.000 0.655 0.574 0.544 0.492
0.7 0.327 0.417 0.491 0.618 0.754 0.664 0.655  1.000 0.943 0.888 0.810
0.8 0.140 0.225 0.302 0.440 0.610 0.579 0.574  0.943 1.000 0.975 0.924
0.85  0.037 0.116 0.192 0.331  0.515 0.542 0.544 0.888 0.975 1.000 0.970
0.9 -0.053 0.017 0.091 0.224 0.413 0.482 0.492 0.810 0.924 0.970 1.000
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Figure 7: Factor structure in quantiles. The figure depicts average a;(7) and §;(7) from time-series
regression of CRSP stock-level quantiles (volatilities) on the averaged value of quantile (volatility) across
all stocks. The quantile (or volatility) factor is defined as the equal-weighted cross-sectional average of
firm quantiles (volatilities) within a year computed on monthly data. The estimated factor models take
form: g7, = ci(7)+ Bi(7)q] (z) +v], and 07, = a; + Bi5; () +v; 1. We report oy (1) and S;(7) for a factor
model of (i) raw return quantile on average return quantile in black line (ii) idiosyncratic quantiles on
average idiosyncratic quantiles in black dashed line (iii) idiosyncratic quantiles on average idiosyncratic
quantiles orthogonalized by average volatility in black dotted line across all 7 € (0,1) quantile levels. In
addition, a factor model of (iv) raw volatility on average volatility in gray line, (v) idiosyncratic volatility
on average idiosyncratic volatility in gray dashed line. Note that results for factor model on volatilities
are constant across quantiles.
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Table 7: Five univariate sorted portfolios using monthly data. The table contains annualized out-of-
sample excess returns of five portfolios sorted on the exposure to the ACIQ(7) factors computed from the
monthly data. Panel A reports results based on the one-month returns following the formation period,
Panel B results for the twelve-month period. We use all the CRSP stocks that have all 60 monthly
observations in each window. We exclude penny stocks with prices less than 1$. We report returns of
the high minus low (H - L) portfolios, their t-statistics, and annualized 5-factor alphas with respect to
the four factors of Carhart (1997) and CIV shocks of Herskovic et al. (2016). We also report ¢-statistics
for these alphas. Data contain the period between January 1963 and December 2015.

T Low 2 3 4 High H-L t-stat et t-stat

Panel A: One-month returns

FEqual-weighted
0.1 8.020 9.467 9.672 9.737 11.629  3.608 2.442 5.066 3.922
0.15 7.971 9.519 9.563 10.238 11.232  3.261 2.210 5.051 4.049
0.2 7.999 9.484 9.902 9.918 11.221  3.222 2.244 5.039 4.166
0.3 7.884 9.893 9.778 9.824 11.147  3.263 2.529 5.101 4.483
0.4 8.138 9.845 9.670 9.861 11.008  2.870 2.310 4.321 3.704
0.5 8.344 9.542 9.661 10.317 10.630  2.286 1.361 2.569 1.481
0.6 8.760 9.827 9.537 9.939 10.434  1.674 1.094 1.090 0.755
0.7 9.122 9.123 9.841 9.368 11.045  1.923 1.206 1.027 0.738
0.8 9.567 8.872 9.726 9.883 10.442  0.875 0.457  -0.405 -0.269
0.85 9.463 9.241 9.448 9.968 10.364  0.901 0.429  -0.586 -0.369
0.9 9.495 9.345 9.742 9.906 9.996 0.501 0.227 -1.225 -0.771

Value-weighted
0.1 5.309 6.422 6.348 6.193 8.905 3.597 1.700 3.482 2.197
0.15  4.842 6.707 6.469 6.302 8.345 3.503 1.650 4.396 2.874
0.2 5.259 6.794 6.009 6.850 7.660 2.400 1.147  3.745 2.521
0.3 5.673 6.447 6.312 6.351 6.582 0.908 0.501 2.871 1.999
0.4 5.492 6.390 6.733 6.080 6.156 0.664 0.358 2.995 1.619
0.5 5.494 5.639 6.101 6.590 5.878 0.384 0.194 0.851 0.406
0.6 5.621 5.967 5.823 6.601 5.860 0.239 0.117 0.721 0.345
0.7 6.185 6.294 6.064 5.899 7.232 1.047  0.538 0.837  0.429
0.8 6.043 5.934 6.452 6.296 6.266 0.223 0.097 -0.243 -0.122
0.85  5.984 5.625 6.588 6.201 6.948 0.964 0.402 0.093 0.047
0.9 5.631 5.975 6.629 6.695 6.214 0.583 0.231  -0.601 -0.327

Panel B: Twelve-month returns

Equal-weighted
0.1 10.456  11.023 11.082 11.250 13.384  2.929 2.905 3.726 3.550
0.15 10.565 11.150 10.952 11.242 13.285  2.720 2.732 3.463 3.344
0.2 10.659  11.128 10.883 11.289 13.235 2.575 2.638 3.079 2.936
0.3 10.782 11.090 10.963 11.106  13.252 2.471 2.723 2.895 2.540
0.4 11.021 10.917 10.884 11.041 13.326  2.305 2.887  2.545 2.188
0.5 10.645 10.938 10.873 11.442 13.289 2.643 2.945 2.534 2.412
0.6 10.501 11.113 10.827 11.442 13.303 2.803 3.068 1.436 1.174
0.7 11.364 10.925 10.845 10.982 13.073  1.709 1.555  -0.444 -0.334
0.8 11.712 10.603 10.992 11.133 12.748 1.035 0.758  -1.752  -1.089
0.85 11.622 10.631 11.046 11.286  12.602 0.980 0.670 -1.832  -1.123
0.9 11453 10.776 11.067 11.387 12.505  1.052 0.699  -1.437 -0.904

Value-weighted
0.1 6.174 7.127 6.648 6.954 8.986 2.812 2.068 3.214 2.597
0.15  6.369 7.411 6.672 6.840 8.482 2.113 1.577  2.712 2.254
0.2 6.724 7.336 6.702 6.872 8.052 1.329 1.023 1.953 1.630
0.3 6.860 7.370 6.684 6.935 7.060 0.200 0.178 1.205 0.941
0.4 7.019 7.151 6.787 6.563 6.823 -0.196  -0.183 0.763 0.535
0.5 6.006 6.599 6.644 6.998 7.005 0.999 0.894 0.725 0.693
0.6 5.561 6.346 6.799 7.060 7.228 1.668 1.492 1.242 1.111
0.7 6.732 6.400 7.112 6.606 7.438 0.707  0.547  -0.843 -0.743
0.8 6.579 6.604 6.960 6.739 7.317 0.737 0494 -1.013 -0.759
0.85  6.393 6.391 7.363 6.619 7.376 0.983 0.608 -0.955 -0.701
0.9 6.373 6.504 7.297 6.858 7.128 0.755 0.450 -1.438 -1.002
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Table 8: Five bivariate sorted portfolios. The table contains annualized out-of-sample excess returns of
ten portfolios double sorted on the exposure to the ACIQ(7) factors and ACIV. First, we perform sorts
based on the ACIV betas, then, within each ACIV portfolio, we sort on the ACIQ(7) betas, and then
we collapse all the ACIV portfolios for a given ACIQ(7) portfolio into one. The obtained portfolios vary
in their ACIQ(7) betas but not in their ACIV betas. We report returns of the high minus low (H-L)
portfolios, their t-statistics, and annualized 5-factor alphas with respect to the four factors of Carhart
(1997) and CIV shocks of Herskovic et al. (2016). We also report t-statistics for these alphas. Data
contain the period between January 1963 and December 2015.

T Low 2 3 4 High H-L tstat «a t-stat

FEqual-weighted
0.1 8250  9.507 9.656 10.331  10.761  2.511 1.898 3.565 3.380
0.15 8.068  9.751 9.932 10.162  10.586  2.518 1.883 3.837  3.712
0.2 8.048 9.702 10.132  10.097 10.523  2.475 1.901 3.835 3.772
0.3 8.064 9.891 10.020 10.044 10.487  2.423 2.017  3.806 3.785
0.4 8468 10.113  9.877 9.725  10.313  1.845 1.728 3.117  3.161
0.5 9.122 10.141 10.087  9.730 9.403 0.282 0.208 0.538 0.408
0.6 8938 10.117 10.171  9.890 9.365 0.427  0.328 0.374 0.319
0.7 9.331  9.556 9.749 9.753 10.093  0.762 0.545 -0.041 -0.034
0.8 9.546  9.729 9.667 9.493  10.037  0.491 0.291  -0.554 -0.431
0.85 9.632  9.819 9.531 9.717 9.769 0.137  0.073 -1.002 -0.729
0.9 9.758  9.830 9.541 9.749 9.597  -0.161 -0.083 -1.389 -0.954

Value-weighted
0.1  5.647 7.704 7.826 7.466 8.090 2.443 1.321 2.618 2.027
0.15 5975  7.311 8.273 7.662 7.396 1.421 0.799 1.951 1.693
0.2 5876  7.564 7.967 7.968 6.999 1.123 0.648 1.741 1.495
0.3 6.121 7.684 7.827 7.908 6.554 0.433 0.261 1.433 1.139
0.4 6.169  7.940 7.688 7.038 6.659 0.490 0.322 1.762 1.234
0.5 6.411 7.439 7.574 7.432 6.419 0.008 0.004 0.422 0.225
0.6 6.158  7.433 7.470 7.499 6.686 0.528 0.294 0.610 0.342
0.7 6.187  7.738 7.760 6.990 7.380 1.193 0.694 0.551 0.342
0.8 6.298  7.900 7.310 6.903 7.418 1.120 0.567  0.608 0.360
0.85 6.527  7.680 7.477 7.131 6.960 0.433 0.199 -0.217 -0.123
09 7124  7.462 7.582 7.388 6.797  -0.327 -0.143 -0.903 -0.541
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