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1 Introduction

The question how relevant the information contained in various parts of the return distri-

bution is for an investor has received considerable attention in the recent empirical asset

pricing literature (Ang et al., 2006; Van Oordt and Zhou, 2016; Chabi-Yo et al., 2018;

Lu and Murray, 2019) with few studies focusing on commonalities in tails or extremes

in the cross-section of returns (Kelly and Jiang, 2014; Chabi-Yo et al., 2022). The goal

of this paper is to explore the common, possibly non-linear movements in the panel of

firm’s idiosyncratic quantiles and investigate the effects of such time-varying quantile risk

in asset markets. The major barrier to the investigation is that such common factors

shifting relevant parts of return distributions are hard to be observed from data. The

further we aim to explore the information in distribution away from the mean, the more

infeasible the risk estimates are because of the infrequent nature of the events.

To estimate risks stemming from commonalities in the panel of return quantiles, we

propose to use an approximate factor model being able to extract unobservable factors

in different parts of observable panel of stock returns. In the spirit of popular princi-

pal component analysis that recovers the conditional mean, we work with more general

quantile factor models (QFM) being flexible enough to capture quantile-dependent ob-

jects that standard tools are unable to retrieve. In contrast to the standard principal

component analysis, the quantile factor models are able to capture hidden factors that

shift characteristics of the distribution such as moments or quantiles. Moreover, these

factors can vary across the distribution of each unit in the panel and allow to infer the

factors properly when distributions of the idiosyncratic errors exhibit heavy tails.

Our main contribution is to investigate the pricing implications of the common non-

linear factors, which are quantile specific, for the predictability of aggregate market

return and the cross-section of stock returns. We are interested in factors for the whole

distribution to identify the risk premium associated with both downside (or tail) risk

and upside potential. To this end, we employ the quantile factor model of Chen et al.

(2021) and investigate the pricing implications of quantile-dependent factors while, at

the same time, controlling for various linear factors and exposures to them. Our goal

is also motivated by the increasing evidence of the non-linearities present in the stock

markets.1 We aim to show that the common quantile risk present in the stock return

data is not spanned by the common volatility risk and posses strong information for both

cross-section of asset returns and time-series predictability of the equity premium.

1E.g., Amengual and Sentana (2020) report nonlinear dependence structure in short-term reversal
and momentum. Ma et al. (2021) show that many firm-level characteristics posses complex relation to
the returns with respect to quantiles.
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We start by showing an extraordinary degree of comovement among idiosyncratic

quantiles in the Center for Research in Security Prices (CRSP) stocks over a long sample

spanning 1926 - 2015. A single factor explains up to 17% of the time variation in firm-

level idiosyncratic quantile risk that is unrelated to common volatility structure. Further,

we show that quantile factors have predictive power for aggregate market returns. Pre-

dictive regressions show that a one-standard-deviation increase in quantile risk predicts

a statistically significant increase in annualized excess market returns of up to 7.676%

in case of left tail. We also document predictive power of upper tail factor with smaller

effect up to 3.985% increase in annualized returns hence the effect is asymmetric. These

results hold out-of-sample, they are stronger for the left tail, and are robust to controlling

for a broad set of popular predictors surveyed by Welch and Goyal (2007) as well as tail

risk (Kelly and Jiang, 2014), common volatility risk (Herskovic et al., 2016) as well as

variance risk premium (Bollerslev et al., 2009).

Further, we find that idiosyncratic quantile risk has substantial predictive power for

the cross-section of average returns. We show that stocks with high loadings on past

quantile risk in the left tail earn up to an annual five-factor alpha 7.405% higher than

stocks with low tail risk loadings for 0.2 quantile. This risk premium is not subsumed

by other common priced factors such as common volatility, tail, downside risk, as well as

other popular risk factors. Investors thus possess a strong tail-risk aversion concerning

the common movements of the idiosyncratic returns. On the other hand, the absence of

the risk premium related to the factors for the upper quantiles suggests that investors

are not upside-potential seekers. Both these results are consistent with the literature

investigating the effect of asymmetric dependencies on asset prices.

Our work is connected to several strands of the literature. The first relates to the

factor-based asset pricing models that are highly popular in the empirical asset pricing

literature. In these models, only common return factors are valid candidate pricing fac-

tors, and sensitivities to those factors determine the risk premium associated with an

asset (Ross, 1976). This strand of literature yields highly successful and popular results

focusing on the parsimonious models (Fama and French, 1993), as well as exploration of

statistically motivated latent factors.2 Recently, Kelly et al. (2019) introduced instru-

mented principal component analysis, which enables to flexibly model the latent factors

with time-varying loadings using the observable characteristics.3

2This approach dates back to Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986).
For a comprehensive overview of machine learning methods applied to asset pricing problems such
as measuring expected returns, estimating factors, risk premia, or stochastic discount factor, model
selection, and corresponding asymptotic theory, see Giglio et al. (2022).

3Other notable recent contributions to the factor literature are, e.g., Kozak et al. (2018) and Giglio
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Our research agenda spans the non-linear factor models. Recently, Ma et al. (2021)

introduced a semi-parametric quantile factor panel model that considers stock-specific

characteristics, which may non-linearly affect stock returns in a time-varying manner.

They find that many characteristics possess a non-linear effect on stock returns. In

contrast to these authors, the approach used in our paper is more general since it allows

not only loadings but also factors to be quantile-dependent. Moreover, our approach

does not require the loadings to depend on observables and has direct relation of the

approximate factor models that are ubiquitous in the finance literature.

The second strand of literature we contribute to is exploring the idiosyncratic risk

and its pricing implications for the cross-section of asset returns. More specifically, we

contribute to the literature interested in idiosyncratic risk that co-moves across assets and

hence explores common trends not contained in the first-moment type factors. The bulk

of this research is motivated by introducing the idiosyncratic volatility puzzle proposed

by Ang et al. (2006). Unfortunately, all existing explanations of the anomaly via lottery

preference-based, market frictions-based, or others account4 only for 29-54% of the puzzle

using individual stocks (Hou and Loh, 2016).

The third line of thought that we take into account deals with asymmetric properties

of the systematic risk and how they are incorporated into asset prices. Interest in those

kinds of models was reignited by Ang et al. (2006) and their introduction of downside

beta, which captures covariance between asset and market return conditional on the

market being below some threshold value. Bollerslev et al. (2021) further disentangle

traditional market beta into semibetas characterized by the signed covariation between

the market and asset return. They show that only the semibetas associated with the

negative market and negative asset return predict significantly higher future returns.

Bali et al. (2007) showed a significant cross-sectional relationship between hedge fund

returns and value at risk. Similarly, Huang et al. (2012) discovered the cross-sectional

effect of extreme downside risk, estimated using extreme value theory, on the returns of

single stocks. Instead of using conditional mean linear models for predicting the equity

premium, Meligkotsidou et al. (2014) embraced the quantile regression approach and,

et al. (2021). The recent availability of high-frequency return data also motivated the development of
continuous-time factor models.Aı̈t-Sahalia et al. (2020) proposed a generalization of the classical two-
pass Fama-MacBeth regression from the classical discrete-time factor setting to a continuous-time factor
model and enables uncovering complex dynamics such as jump risk and its role in the expected returns.

4For comprehensive list of references belonging to each of the category, see Hou and Loh (2016). The
only exception to this observation is the lottery-based explanation using highest realized return from
the previous month proposed by Bali et al. (2011) and confirmed in the European markets by Annaert
et al. (2013). But Hou and Loh (2016) argue that this explanation is not valid, as it is an almost perfect
collinear range-based measure of idiosyncratic volatility.
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using predictions of the whole distribution of the equity premium, robustly estimated

the equity premium using the forecast combination methodology.

From a theoretical standpoint, there are many justifications for the deviation from

the classical common factor pricing theory to the asymmetric forms of the utility func-

tion. Probably the most relevant to our work is the dynamic quantile decision maker

of de Castro and Galvao (2019) who decides based on quantile dependent preferences.

Barro (2006), building on Rietz (1988), introduced the rare disaster model and showed

that tail events may possess significant ability to explain various asset pricing puzzles,

such as the equity premium puzzle. The other prevalent model that considers asymmet-

ric features of the risk is the generalized disappointment aversion model of Routledge

and Zin (2010), which inherently assumes downside aversion of the investors. Based on

these preferences, Farago and Tédongap (2018) introduced an intertemporal equilibrium

asset pricing model and showed that the disappointment-related factors should be priced

in the cross-section. Moreover, they prove that their model performs well empirically

by jointly pricing various asset classes with significant prices of risk associated with the

disappointment-related factors.

There are also attempts to combine the two or three of these research agendas. Her-

skovic et al. (2016) introduced a risk factor based on the common volatility of the id-

iosyncratic firm-level returns and showcased its pricing abilities for the cross-section of

various asset classes. Kelly and Jiang (2014) show that a zero-cost portfolio sorted on

exposure to the tail risk, which is built from the dynamic power law structure, earns sig-

nificant 5.4% three-factor alpha. Similarly, Allen et al. (2012) proposed an aggregate tail

risk measure constructed from the returns of financial sector firms capturing catastrophic

risk exposure. Based on the conditional ICAPM framework, they argue that it should

be priced and estimate a significantly positive market price of this systemic risk measure

for both financial and non-financial firms. Bali et al. (2008) discovered time-series pre-

dictability of stock market returns using non-linear mean reversion using extreme daily

returns. Jondeau et al. (2019) presented significant time-series predictability of average

skewness for the market return. Finally, Renault et al. (2019) extended the arbitrage

pricing theory (APT) to the case of pricing of squared returns.

Many research efforts that investigate common tail risk and its asset pricing implica-

tions rely on option data. They argue that the tail factor identifies additional information

over the volatility factor. Andersen et al. (2020) show strong predictive power for future

equity risk premiums in the U.S. and European equity-index derivatives. Bollerslev and

Todorov (2011) combine high-frequency data and option data and use non-parametric

approach to conclude that a large portion of the equity and variance risk premia is linked
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to the jump tail risk.

The rest of the paper is structured as follows. Section 2 motivates the study of

the pricing implications of the common movements in idiosyncratic distribution of stock

returns. Section 3 proposes the quantile factor model for asset returns, discusses the

methodology of the estimation of quantile-specific factors, and data that we use. Section

4 presents the results regarding the time-series predictability of the aggregate market

return using the common idiosyncratic quantile factors. Section 5 investigates the cross-

sectional asset pricing implications of the proposed factors. Section 6 concludes.

2 The factor structure in the cross-section of return

distributions

Researchers usually assume that time variation in equity returns can be captured by

relatively small number of common factors with following structure5

ri,t = αi + β>
i Ft + εi,t (1)

where ri,t is excess return of an asset i = 1, . . . , N at time t = 1, . . . , T , Ft is a k×1 vector

of common factors and βi is a k×1 vector of the asset’s i exposures to the common factors.

Such cross-sectional regressions as the one in (1) yielding high R2 are used to identify

factors serving as good proxies for aggregate risks present in the economy. Exposures to

the relevant factors captured by βi coefficients should be compensated in the equilibrium

and explain the risk premium of the assets

Et[ri,t+1] = β>
i λt (2)

where the λt is a k × 1 vector of prices of risk associated with factor exposures. Im-

portantly, while the arbitrage pricing theory (APT) of Ross (1976) suggests that any

common return factors Ft are valid candidate asset pricing factors, the idiosyncratic

return residuals εi,t are assumed not to be priced. This implication is due to many sim-

plifying assumptions, such that an average investor can perfectly diversify her portfolio

or that the linear model (1) is correctly specified.

While large literature have focused mainly on the diversification assumption, we aim

to question linear nature of the factor model, and our focus is on exposure to parts of

5Recently, Lettau and Pelger (2020) introduce Risk-Premium Principal Component Analysis that
allows for systematic time-series factors incorporating information from the first and second moment.
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idiosyncratic return’s distribution instead. Recently, Herskovic et al. (2016) documents

strong comovement in idiosyncratic volatility that does not arise from omitted factors,

and even after saturating the factor regression with up to ten principal components,

residuals that are virtually uncorrelated display same co-movement seen in raw returns.

While the exposure to common movements in volatility seem to carry strong pricing

implications, we ask if there exist additional structure insufficiently captured by volatil-

ities especially in a non-linear and heavy tailed financial data. In other words, we ask

if various parts of the return distributions may have pricing implications for the cross-

section of stock returns.6

To motivate the discussion, we first look at the τth quantile of the US public firms’

returns ri,t represented by its inverse probability distribution function

Qτ (ri,t+1) = inf{ri : P (ri,t+1 < ri) ≥ τ}]. (3)

We first estimate 0.1 quantile of firm-level monthly returns using data from CRSP from

1926 to 2015 as sample cross-sectional quantile Q̂τ (ri,t+1). Specifically, we compute the

sample 0.1 return quantile for each stock i in the sample within the calendar year. The

average of the cross-sectional quantiles is depicted by black line in Figure 1. Next, we

also compute average idiosyncratic return quantiles that are calculated as average of the

sample quantiles of εi,t from the Equation 1 (we use the three factor model7 of Fama and

French (1993)) and are depicted in the Figure 1 by dashed line. Here we note that it is

remarkable how close the sample average quantile of the returns and its idiosyncratic part

are. As argued by Herskovic et al. (2016) in case of common volatility, the similarity could

be attributed to some important factors being omitted in the regression. We argue that

this is likely not the case since removing the factors almost perfectly eliminates all the

linear dependencies between the assets. This is clear from the Figure 6 in the Appendix

A, where we plot average yearly pairwise correlations for the raw and idiosyncratic returns

and observe that there is essentially no linear dependence left after removing the factors.8

This suggests that the common linear factors do not explain the extreme events.

It is important to realize that this phenomenon may simply be driven by the common

movements in volatility, especially if the first two moments satisfactorily describe the

return distributions. Hence, we regress the time series of average idiosyncratic quantiles

6Ando and Bai (2020) document that the common factor structures explaining the upper and lower
tails of the asset return distributions in global financial markets have become different since the subprime
crisis.

7Robustness tests using purely statistical model based on principal components produce qualitatively
similar results.

8For more details on this observation, see discussion in Herskovic et al. (2016)
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Figure 1: Average 0.1 sample quantile of stock returns. The figure shows average 0.1 sample quantile
obtained from the monthly data of returns of CRSP stocks during calendar year in black, average
idiosyncratic 0.1 quantile obtained from the residuals of three factor Fama and French (1993) model as
dashed line and average 0.1 idiosyncratic quantile orthogonalized by common volatility component in
dotted line. The time span covers the period between January 1926 and December 2015.
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on the average volatility and plot the residuals by the dotted line in Figure 1. Although

the common volatility captures substantial variation in the average idiosyncratic quantile,

there is still some non-trivial variation left that we aim to explore.

We next estimate factor regression models for firm-level quantiles as well as volatility

to see how strong the factor structure in the quantiles is, especially in comparison to

factor structure in volatility. Figure 2 shows the average R2 of time-series regressions

of individual stock-level quantiles (volatilities) on its averaged value and Figure 7 in the

Appendix A shows average coefficients from the predictive regressions.

High R2 values of factor models on idiosyncratic returns show that removing the

common linear factors does not erase factor structure. Consistent with Herskovic et al.

(2016) we find close to 30% explanatory power of common volatility9 while we report even

higher explanatory power of common quantiles, especially in the left tail. Importantly,

when we orthogonalize the average idiosyncratic quantiles by the average idiosyncratic

volatility, more than half of the factor structure in both tails remains present. The

strength of the quantile factor structure is comparable to the strength of the idiosyncratic

volatility structure, which suggests that the idiosyncratic quantiles are not subsumed by

9The slight difference can be attributed to different sample span.
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Figure 2: Factor structure in quantiles. The figure depicts average R2 from time-series regression of
CRSP stock-level quantiles (volatilities) on the averaged value of quantile (volatility) across all stocks.
The quantile (or volatility) factor is defined as the equal-weighted cross-sectional average of firm quan-
tiles (volatilities) within a year computed on monthly data. The estimated factor models take form:
qτi,t = αi(τ) + βi(τ)q̄τt (x) + vτi,t and σ2

i,t = αi + βiσ̄t(x) + vi,t. We report R2 for a factor model of
(i) raw return quantile on average return quantile in black line (ii) idiosyncratic quantiles on average
idiosyncratic quantiles in black dashed line (iii) idiosyncratic quantiles on average idiosyncratic quantiles
orthogonalized by average volatility in black dotted line across all τ ∈ (0, 1) quantile levels. In addition,
a factor model of (iv) raw volatility on average volatility in gray line, (v) idiosyncratic volatility on
average idiosyncratic volatility in gray dashed line. Note that results for factor model on volatilities are
constant across quantiles.
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the common volatility a provide potentially valuable information for the asset prices.

The main observation from this illustratory exercise is that there is a strong structure

present across the distributions of idiosyncratic returns that carries different information

to structure in the volatility. This means that there is a common structure in tails that

may be valuable for investors. In the rest of the paper, we will investigate the implications

of the common idiosyncratic quantile factors for both predictability of the equity premia

and the cross-section of stock returns.

3 Common Idiosyncratic Quantile Factors

The evidence presented in Section 2 indicates that firm-level idiosyncratic quantiles share

high degree of comovement that can be described by a factor model. The preliminary

discussion relies on the sample quantile estimates that suffer from small sample bias and

are not flexible enough to investigate pricing implications due to lack of data to be able
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to characterize required parts of the distribution precisely.

Instead of the average sample quantiles of the panel returns, we propose an approxi-

mate factor model similar to principal component in means being able to extract unob-

servable factors that shift relevant parts of the distributions of observable returns. That

is, in parallel to genuine factor structure in idiosyncratic volatility of a panel of returns

recovered by cross-sectional averages (or PCA) once mean factors have been removed,

we aim to recover genuine unobserved structure in idiosyncratic quantiles.

3.1 Quantile Factor Model

To formalize the discussion, we assume the returns from the time-series regression elimi-

nating common factors

ri,t = αi + β>
i Ft + εi,t (4)

to have τ -dependent structure ft(τ) in idiosyncratic errors that we coin a common id-

iosyncratic quantile – CIQ(τ) – factors, ft(τ)

Qεi,t

[
τ |ft(τ)

]
= γ>i (τ)ft(τ), (5)

that implies

εi,t = γ>i (τ)ft(τ) + ui,t(τ), (6)

where ft(τ) is an r(τ)× 1 vector of random common factors, and γi(τ) is r(τ)× 1 vector

of non-random factor loadings with r(τ)� N and the quantile-dependent idiosyncratic

error ui,t(τ) satisfies the quantile restriction P [ui,t(τ) < 0|ft(τ)] = τ almost surely for all

τ ∈ (0, 1).

To estimate the common factors that capture co-movement of quantile-specific fea-

tures of distributions of the idiosyncratic parts of the stock returns, we use Quantile

Factor Analysis (QFA) introduced by Chen et al. (2021). In contrast to PCA, QFA

allows to capture hidden factors that may shift more general characteristics such as mo-

ments or quantiles, of the distribution of returns other than mean. The methodology is

also suitable for large panels.

The quantile-dependent factors and its loadings can be estimated as

argmin
(γ1,...,γN ,ft,...,fT )

1

NT

N∑
i=1

T∑
t=1

ρτ
(
εit − γ>i ft

)
(7)
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where ρτ (u) = (τ − 1{u ≤ 0})u is the check function while imposing the following nor-

malizations 1
T

∑T
t=1 ftf

>
t = Ir, and 1

N

∑N
i=1 γiγ

>
i is diagonal with non-increasing diagonal

elements.

As discussed in Chen et al. (2021), this estimator is related to the principal compo-

nent analysis (PCA) estimator studied in Bai and Ng (2002) and Bai (2003) similarly as

quantile regression is related to classical least-square regression. Unlike the PCA esti-

mator of Bai (2003), the estimator does not yield an analytical closed form solution. To

solve for the stationary points of the objective function, Chen et al. (2021) proposed a

computational algorithm called iterative quantile regression. Moreover, they show that

the estimator possess same convergence rate as the PCA estimators for AFM. We follow

their approach when estimating the quantile factors.10

3.2 Common Idiosyncratic Quantile Factor and the US firms

To estimate the CIQ(τ) factors, we use returns on common stocks from the Center

for Research in Securities Prices (CRSP) database sampled between January 1963 and

December 2015. We include all stocks with codes 10 and 11 in estimating the CIQ(τ)

factors. When forming the portfolios, we follow the standard practice in the literature

and exclude all “penny stocks” with prices less than one dollar to avoid biases related to

these stocks.11 We performed the analysis using all the stocks, and the results did not

qualitatively change. When not stated otherwise, we use monthly data for both factor

estimation and beta calculations.

In the process of the factor estimation, we proceed in a few steps. First, we use a

moving window of 60 months of monthly sampled observations. We select the stocks

that have all the observations in this window. For all these stocks, we run time-series

regression to eliminate the influence of the common (linear) factors

∀i : ri,t = αi + β>
i Ft + ei,t, t = 1, . . . , T (8)

and save the residuals ei,t. For the common factors Ft, which we eliminate from the stock

returns, we resort to the three factors of Fama and French (1993).12 Second, we use the

residuals from the first step and, for every τ , estimate common idiosyncratic quantile

10We employ the authors’ Matlab codes provided on the Econometrica webpage.
11See, e.g., Amihud (2002).
12As discussed in Herskovic et al. (2016), there is a little difference between the results obtained using

factors of Fama and French (1993) and purely statistically motivated ones estimated using the PCA
framework.
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Figure 3: CIQ(0.1) factor The figure depicts 0.1 common idiosyncratic quantile – CIQ(τ) – factor
estimated from the 60-month rolling window using CRSP stocks in black line. Gray boxplots show
cross-sectional distributions of CRSP stock returns. Note the returns are standardized.

factors, ft(τ)

∀τ : ei,t = γi(τ)ft(τ) + ui,t(τ) (9)

where the quantile-dependent idiosyncratic error ui,t(τ) satisfies the quantile restriction

following the methodology discussed in the previous subsection. We use only the first –

the most informative – estimated factor for our purposes. In the overwhelming majority

of the cases, the algorithms proposed in Chen et al. (2021) select exactly one factor to

be the correct number of factors that explain the panels of idiosyncratic returns.13

Third, consistent with common volatility factor literature, we focus on the changes in

the CIQ(τ), and we work with ∆CIQ(τ) factors.14 In the case of the aggregate market

prediction, we use the last estimated value from a given window to predict market return

at time T + 1. Fourth, to assess the pricing implications of the exposures to the CIQ(τ)

factors in the cross-section, for every stock, we estimate their betas with respect to the

13Robustness tests using more factors produce qualitatively similar results.
14If not stated otherwise, in the rest of the paper, we perform all the analyses using ∆CIQ(τ) factors.
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changes in CIQ(τ) factors

ri,t = αi + β∆
i (τ)∆ft(τ) + vi,t (10)

by employing classical linear regression based on the least-square estimator. And finally,

we use these betas to infer the predictive implications regarding the next period returns

ri,t+1, which are either subsequent month or year returns.

Figure 3 illustrates estimated levels of the CIQ(τ) factor. We chose CIQ(0.1) level es-

timated using a 60-month rolling window, and the last estimated value from each window

is plotted in black line. In addition, whole cross-sectional distribution of CRSP stock

returns is depicted in gray boxplots. We can see that CIQ(0.1) recovers the unobservable

quantile factor well.

Having variety of quantile factors at hand, it is tempting to explore pricing implica-

tions of common quantiles with different levels and shift focus of the analysis from tails

to other parts of distribution. Table 6 provides correlations between CIQ(τ) factors at

different quantiles. Correlation between CIQ(τ) in levels for the upper and lower part of

the distribution are far from perfect, e.g., the correlation between the lower tail factor

CIQ(0.1) and upper tail CIQ(0.9) is -0.554. This observation suggests that the factors

do not simply duplicate information and are hence not likely to be rescaled information

contained in common volatility factor. Moreover, this dependence almost perfectly dis-

appears if we look at the increments of the CIQ(τ) factors – dependence between lower

and upper tail factors reduces to -0.053. These results suggest that there is a potential for

different pricing information across quantiles and that this information does not simply

mirror information contained in the common volatility.

4 Time-series Predictability of Market Return

We start examining the information content of CIQ(τ) factors for subsequent short-term

market returns. Here we aim to predict monthly excess return on the market that we

approximate by the value-weighted return of all CRSP firms. In the regressions, we

also control for popular predictive variables used in Welch and Goyal (2007) as well as

three closely related factors – the tail risk (TR) factor of Kelly and Jiang (2014), the

innovations of common idiosyncratic volatility (∆CIV) factor of Herskovic et al. (2016),

and the variance risk premium (VRP) factor of Bollerslev et al. (2009).15 Because the

15We replicated tail risk factor construction of Kelly and Jiang (2014) by ourself; we acquired data
of Herskovic et al. (2016) from Bernard Herskovic’s webpage and data of Bollerslev et al. (2009) from
Hao Zhou’s webpage.
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Table 1: Predictive power of the ∆CIQ(τ) factors. The table reports results from the univariate
predictive regressions of the value-weighted return of all CRSP firms on ∆CIQ(τ) factors for various
τ ∈ (0, 1). Coefficients are scaled to capture the effect of one standard deviation increase in the factor
on the annualized market return in percent. The corresponding t-statistics are computed using the
Newey-West robust standard errors using six lags. We report both in-sample (IS) and out-of-sample
(OOS) R2s. We also truncate the predictions at zero following Campbell and Thompson (2007) (CT)
and report corresponding IS and OOS R2s.

τ Coeff. t-stat R2 IS R2 OOS R2 IS CT R2 OOS CT
0.1 -7.332 -2.881 1.789 1.334 1.360 1.747
0.15 -7.676 -2.934 1.961 1.461 1.588 1.856
0.2 -7.572 -2.896 1.908 1.383 1.421 1.533
0.3 -7.567 -2.969 1.906 1.109 1.090 1.083
0.4 -7.019 -2.980 1.640 0.496 0.876 0.748
0.5 -3.401 -1.604 0.385 -0.057 0.381 0.173
0.6 -0.983 -0.420 0.032 -0.392 0.032 -0.303
0.7 -0.908 -0.466 0.027 -0.604 0.027 -0.471
0.8 1.388 0.763 0.064 -0.434 0.006 -0.354
0.85 2.429 1.404 0.196 -0.264 0.081 -0.151
0.9 3.985 2.067 0.529 0.044 0.264 -0.030

CIQ(τ) factors are estimated using a rolling window, we use the last value of the factors

estimated from each rolling window to construct a single series of the CIQ(τ) factors.

First, we report the results from the univariate regressions of the market return on

the differences of the CIQ(τ) factors at various τ quantile levels in Table 1. We report

estimated scaled coefficients to capture the effect of one standard deviation increase of the

independent variable on the subsequent annualized market return. The corresponding

t-statistics are computed using Newey-West robust standard errors using six lags.

The results in Table 1 document strong predictive power using the ∆CIQ(τ) factors

for the left part of the distribution, with the peak for τ being between 0.15 and 0.2,

where the increase (decrease) of one standard deviation in the factors predict subsequent

decrease (increase) of 7.676 and 7.572 percents in annualized market return.16 There is

also some predictive power for the upper tail factor when CIQ(0.9), but the effect is much

smaller with only 3.985 percent increase in annualized market return accompanied with

only one-fourth of the R2 from the lower tail. From a perspective of an investor, in times

of high risk – captured by large negative increments of the left-tail CIQ(τ) factor, she

requires a premium for investing. And thus, these risky periods correlate with the high

marginal utility states of the investors.

Together with in-sample (IS) R2, we also report the out-of-sample (OOS) R2 from

expanding window scheme. We use data up to time t to estimate the prediction model and

then forecast the t + 1 return (the first window contains 120 monthly periods to obtain

16Note that the lower tail factors are on average negative. Increase (decrease) of these factors cor-
responds to the decrease (increase) of risk, which leads to a decrease (increase) of the required risk
premium.
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sufficiently reasonable estimates). Then, the window is extended by one observation,

the prediction model is re-estimated and a new forecast is obtained. We repeat this

procedure until the whole sample is exhausted. The corresponding R2 is computed by

comparing conditional forecast and historical mean computed using the available data up

to time t, i.e., 1−
∑

t(rm,t+1− r̂m,t+1|t)
2/
∑

t(rm,t+1− r̄m,t)2 where r̂m,t+1|t is out-of-sample

forecast of the t + 1 return using data up to time t, and r̄m,t is the historical mean of

the market return computed up to date t. Unlike the case of the IS R2, the OOS R2 can

attain negative values if the conditional forecasts perform worse than the historical mean

forecast. The positive values of the OOS R2 for τ between 0.1 and 0.3 provide strong

evidence for the benefits of the ∆CIQ(τ) factors for predicting the market return in the

real-world setting. On the other hand, the predictability vanishes for the higher values

of τ .

To assess the economic usefulness for the investors, we further follow suggestions from

Campbell and Thompson (2007) (hence CT). They propose to truncate the predictions

from the estimated model at 0, as the investor would not have used a model to predict a

negative premium. This non-linear modification of the model should introduce caution

into the models. Based on this modification, we report both IS and OOS R2s. Naturally,

using this transformation, the IS R2 does not improve for any of the models, but the

performance rises for the OOS analysis. Results suggest that the common fluctuations in

the lower part of the excess returns distributions robustly predict the subsequent market

movement.

Next, we run bivariate regressions to assess whether the proposed quantile factors

contain additional information not included in the relevant previously proposed variables.

We separately control for variables that may contain duplicate information. First, in

Table 2, we report coefficients and their t-statistics while controlling for the TR factor

of Kelly and Jiang (2014), the ∆CIV of Herskovic et al. (2016), and the VRP factor

of Bollerslev et al. (2009), respectively. In the first case, ∆CIQ(τ) factors mirror the

results from the univariate regressions in terms of coefficients and their significance. TR

factor is significant across all the specifications, although its effect is smaller and less

significant than in the case of ∆CIQ(τ) for the lower tail values of τ . In the second case,

while controlling for the ∆CIV, the results regarding the ∆CIQ(τ) factors remain the

same, and ∆CIV proves not to predict future market returns. In the third case, the VRP

factor appears to be the most closely related in terms of predictability to the ∆CIQ(τ)

factors. The VRP is highly significant, and at the same time, it diminishes the effect

of the ∆CIQ(τ) factors – the scaled coefficients decreases around 1.5 percentage points,

and the corresponding t-statistics are now approximately 1.6.
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Table 2: Bivariate predictive regressions. The table reports results from the bivariate predictive regres-
sions of the value-weighted return of all CRSP firms on ∆CIQ(τ) factors for various τ ∈ (0, 1) and other
control variables. We employ the TR factor of Kelly and Jiang (2014), the ∆CIV of Herskovic et al.
(2016), and the VRP factor of Bollerslev et al. (2009), respectively. Coefficients are scaled to capture the
effect of one standard deviation increase in the factor on the annualized market return in percent. The
corresponding t-statistics are computed using the Newey-West robust standard errors using six lags.

τ 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

Kelly and Jiang (2014)

∆CIQ(τ) -7.296 -7.617 -7.568 -7.497 -6.961 -3.171 -0.771 -0.751 1.519 2.500 4.064
t-stat -2.875 -2.922 -2.909 -2.944 -2.960 -1.502 -0.329 -0.386 0.836 1.449 2.112
TR 4.982 4.943 5.027 4.928 4.954 4.885 5.002 5.011 5.074 5.070 5.098
t-stat 2.254 2.247 2.301 2.220 2.250 2.174 2.245 2.255 2.276 2.279 2.290

Herskovic et al. (2016)

∆CIQ(τ) -7.863 -8.126 -7.918 -7.831 -7.204 -3.470 -1.003 -0.902 1.420 2.464 3.995
t-stat -3.042 -3.063 -2.987 -3.022 -2.961 -1.630 -0.426 -0.461 0.771 1.393 2.046
∆CIV -2.454 -2.325 -2.074 -1.865 -1.594 -0.995 -0.781 -0.748 -0.811 -0.855 -0.806
t-stat -0.718 -0.683 -0.607 -0.541 -0.452 -0.273 -0.210 -0.201 -0.217 -0.228 -0.216

Bollerslev et al. (2009)

∆CIQ(τ) -5.649 -6.019 -5.774 -5.513 -5.114 -2.271 1.814 -0.749 1.002 1.658 2.910
t-stat -1.494 -1.573 -1.604 -1.606 -1.562 -0.747 0.516 -0.290 0.389 0.716 1.235
VRP 12.643 12.621 12.403 12.348 12.308 12.311 12.536 12.399 12.518 12.566 12.616
t-stat 5.580 5.500 5.281 5.208 5.214 5.229 5.466 5.322 5.420 5.487 5.567

Second, we control for variables discussed in Welch and Goyal (2007).17 Instead of

large Table through all variables and quantiles, we summarize the results in the Figure

4, in which we plot the coefficients of the ∆CIQ(τ) factors while controlling for said vari-

ables. We observe that none of the variables drives out the significance of the ∆CIQ(τ)

factors. Moreover, the magnitude of the effect remains very close to the ones from the

univariate regressions.

5 Pricing the CIQ(τ) Risks in the Cross-Section

In this section, we investigate the pricing implications of the presented common id-

iosyncratic quantile factors for the cross-section of stock returns. We hypothesize that

the stochastic discount factor increases in the CIQ(τ) risk, as the risk-averse investor’s

marginal utility is high in the states of high CIQ(τ) risk. Based on that hypothesis, we

assume that the assets that perform poorly in the states of high CIQ(τ) risk will re-

quire a higher risk premium for holding by the investors. On the other hand, assets that

perform well during these states serve as a hedging tool and will be traded with higher

prices and thus lower expected returns. The stocks sensitivities to the factors capture

betas estimated by the linear regression of stocks returns on the factors. The betas are

calculated following the notion discussed in Subsection 3.2, i.e., using a 60-month rolling

window of monthly data up to time t, and are used to predict return at time t + 1. If

not explicitly stated otherwise, we use as our predicted variable monthly out-of-sample

returns following the estimation window. We also try to predict one-year returns using

17For the information regarding the specification of the variables, see Welch and Goyal (2007). We
obtained the data from the Iwo Welch’s webpage.
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Figure 4: Predictive power of the ∆CIQ(τ) factors with Welch and Goyal (2007) variables. The figure
depicts coefficients and corresponding t-statistics associated with the ∆CIQ(τ) factors from bivariate
regressions when controlling for variables discussed in Welch and Goyal (2007). The dependent variable
is the value-weighted return of all CRSP firms. Coefficients are scaled to capture the effect of one
standard deviation increase in the factor on the annualized market return in percent. The t-statistics
are computed using the Newey-West robust standard errors using six lags.
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portfolios to assess the persistence of the CIQ(τ) betas and thus indirectly investigate

the transaction costs related to the trading of these factors. The betas for the control

variables that we employ in various parts of the following analysis are estimated similarly

to the CIQ(τ) betas, i.e., using a 60-month rolling window for the monthly data up to

time t to forecast the returns at time t+ 1.

5.1 Portfolio Sorts

Here we look at performance of the portfolios sorted on the CIQ(τ) betas. Every month,

we estimate CIQ(τ) betas for all stocks that possess all the observations during the

last 60 months using data up to time t. We sort the stocks into ten portfolios based

on their betas for every τ separately. We then record the portfolios’ performances at

time t + 1 using either an equal-weighted or value-weighted scheme. Then we move one

month ahead, re-estimate all the betas, and create new portfolios. We expect that, for

τ < 0.5, there will be an increasing pattern of returns from the low exposure to the

high exposure portfolios, and vice versa for τ > 0.5. The results for sorts based on

ten portfolios summarizes Panel A of Table 3. We observe an increasing return pattern

for the portfolios with τ up to 0.4 for both equal-weighted and value-weighted schemes.
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This pattern practically disappears when we look at the portfolios formed on higher τ

CIQ(τ) betas. This observation suggests that only the exposure to the lower tail common

movements is priced in the cross-section.

Table 3: Ten univariate sorted portfolios using monthly data. The table contains annualized out-of-
sample excess returns of ten portfolios sorted on the exposure to the ∆CIQ(τ) factors computed from the
monthly data. Panel A reports results based on the one-month returns following the formation period,
Panel B results for the twelve-month period. We use all the CRSP stocks that have all 60 monthly
observations in each window. We exclude penny stocks with prices less than 1$. We report returns of
the high minus low (H - L) portfolios, their t-statistics, and annualized 5-factor alphas with respect to
the four factors of Carhart (1997) and CIV shocks of Herskovic et al. (2016). We also report t-statistics
for these alphas. Data contain the period between January 1963 and December 2015.

τ Low 2 3 4 5 6 7 8 9 High H - L t-stat α t-stat

Panel A: One-month returns

Equal-weighted
0.1 7.300 8.732 9.304 9.630 9.747 9.599 9.295 10.180 11.414 11.835 4.535 2.555 6.164 4.054
0.15 6.810 9.127 9.238 9.801 9.574 9.551 9.965 10.512 10.749 11.705 4.895 2.800 6.791 4.552
0.2 6.623 9.366 9.241 9.729 9.830 9.973 9.586 10.250 10.474 11.958 5.335 3.052 7.405 4.949
0.3 7.206 8.560 9.547 10.239 9.638 9.916 9.512 10.136 10.469 11.815 4.609 2.915 6.344 4.524
0.4 7.275 8.999 10.078 9.609 9.684 9.659 9.462 10.263 10.122 11.873 4.599 2.973 5.866 3.973
0.5 7.079 9.615 9.739 9.347 9.383 9.944 9.945 10.689 10.289 10.962 3.882 1.698 3.950 1.653
0.6 8.169 9.351 9.929 9.731 9.225 9.846 9.876 10.000 10.471 10.384 2.214 1.081 1.205 0.633
0.7 8.295 9.948 9.197 9.048 9.937 9.742 9.340 9.400 10.838 11.233 2.937 1.500 1.609 0.926
0.8 9.247 9.892 9.109 8.632 9.873 9.579 9.340 10.426 9.917 10.957 1.710 0.727 0.044 0.023
0.85 9.492 9.437 9.299 9.180 9.384 9.513 10.054 9.887 10.265 10.452 0.961 0.381 -0.945 -0.471
0.9 9.531 9.459 9.337 9.356 9.543 9.942 9.407 10.407 9.943 10.035 0.504 0.190 -1.371 -0.677

Value-weighted
0.1 5.031 5.357 6.086 6.722 6.546 6.282 5.977 6.694 9.139 8.329 3.298 1.263 2.686 1.223
0.15 4.607 5.309 6.775 6.852 6.345 6.617 6.451 6.380 8.468 8.400 3.793 1.505 3.689 1.805
0.2 4.114 6.110 6.817 6.884 6.443 5.649 7.329 6.698 7.766 8.918 4.804 1.957 4.905 2.543
0.3 4.737 6.356 6.177 6.859 5.983 6.716 6.535 6.509 5.874 9.419 4.682 1.970 5.267 2.593
0.4 5.116 5.775 6.639 6.081 7.470 6.244 6.203 5.972 4.886 10.012 4.896 1.914 6.329 2.497
0.5 5.062 6.233 5.604 5.664 5.802 6.610 6.187 7.293 5.297 7.855 2.793 0.999 3.105 1.097
0.6 5.099 6.521 6.098 5.917 6.061 5.825 6.708 6.413 5.530 6.857 1.758 0.658 1.838 0.719
0.7 5.756 6.656 5.952 6.767 6.394 5.776 6.228 5.277 6.328 8.184 2.428 0.957 1.803 0.760
0.8 5.430 6.464 5.941 6.008 6.659 6.398 5.638 6.937 4.361 8.848 3.418 1.197 2.892 1.164
0.85 5.149 6.412 5.302 6.275 6.524 6.660 6.596 5.654 6.699 6.872 1.723 0.577 1.061 0.437
0.9 4.711 5.961 6.109 6.053 6.733 6.509 7.003 6.472 5.960 6.283 1.572 0.502 0.509 0.214

Panel B: Twelve-month returns

Equal-weighted
.1 10.191 10.722 11.122 10.925 11.134 11.030 10.997 11.501 12.421 14.352 4.161 3.394 5.672 4.671

0.15 10.051 11.081 11.056 11.245 10.942 10.963 11.008 11.476 12.128 14.446 4.396 3.666 5.809 4.921
0.2 10.221 11.099 10.974 11.281 10.997 10.769 11.334 11.243 11.861 14.610 4.389 3.772 5.548 4.703
0.3 10.702 10.861 10.902 11.277 10.890 11.036 11.156 11.056 11.928 14.577 3.875 3.681 4.589 3.833
0.4 11.004 11.039 11.132 10.703 10.745 11.023 10.793 11.289 12.219 14.432 3.428 3.561 3.730 2.920
0.5 10.264 11.028 10.961 10.916 10.969 10.777 11.170 11.713 12.723 13.856 3.592 3.162 4.118 3.436
0.6 10.154 10.850 11.319 10.906 10.649 11.006 11.094 11.788 12.550 14.060 3.906 3.443 2.921 1.954
0.7 11.277 11.451 11.059 10.792 10.783 10.905 10.865 11.098 12.149 13.995 2.717 2.130 0.289 0.193
0.8 11.911 11.513 10.549 10.657 10.761 11.224 10.946 11.319 12.025 13.470 1.558 1.001 -1.385 -0.768
0.85 12.125 11.120 10.646 10.615 10.897 11.197 11.095 11.477 12.028 13.175 1.050 0.623 -2.186 -1.095
0.9 11.867 11.040 10.741 10.813 10.976 11.158 11.031 11.744 12.132 12.877 1.010 0.564 -1.444 -0.729

Value-weighted
0.1 6.286 6.355 7.356 6.976 6.873 6.641 6.544 7.667 9.138 9.083 2.797 1.670 3.022 1.914
0.15 6.293 6.620 7.627 7.372 6.897 6.642 6.578 7.255 8.653 8.910 2.617 1.598 3.308 2.080
0.2 6.244 7.112 7.365 7.446 6.983 6.598 6.994 6.874 8.049 9.019 2.775 1.718 3.166 1.974
0.3 6.543 7.162 7.571 7.220 6.670 6.809 7.229 6.788 6.616 9.289 2.746 1.838 3.045 1.884
0.4 7.033 7.091 7.283 7.036 6.737 7.051 6.961 6.328 6.097 9.557 2.524 1.793 3.335 1.874
0.5 5.681 6.418 7.007 6.411 6.436 7.002 7.265 6.999 6.628 8.444 2.763 1.790 4.196 2.824
0.6 5.126 5.988 6.641 6.233 6.575 7.155 7.209 6.997 6.639 8.883 3.757 2.543 4.933 3.388
0.7 6.415 6.874 6.107 6.834 7.327 7.059 6.564 6.851 6.718 8.830 2.415 1.461 1.016 0.633
0.8 7.152 6.374 6.447 6.879 6.930 7.234 7.037 6.466 6.866 8.191 1.038 0.526 -0.434 -0.202
0.85 6.735 6.323 6.480 6.403 7.084 7.709 7.014 6.307 7.223 7.532 0.797 0.392 -1.043 -0.484
0.9 6.606 6.369 6.273 6.794 7.076 7.580 7.206 6.612 7.020 7.393 0.787 0.378 -1.585 -0.757
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Moreover, to formally assess whether there is a compensation for bearing a risk of

high exposure to the common movements in various parts of distributions of idiosyncratic

returns, we present returns of high minus low portfolios. We obtain these returns as a

difference between returns of portfolios with the highest CIQ(τ) betas and portfolios with

the lowest CIQ(τ) betas. These portfolios are zero-cost portfolios and capture the risk

premium associated with specific τ joint movements of idiosyncratic returns. Results of

this analysis are also summarized in Panel A of Figure 7. As expected, we observe a

significant positive premium for the difference portfolios only for τ being less or equal to

0.4. These premiums are both economically and statistically significant. In the case of

the equal-weighted portfolios, the premium for CIQ(0.2) factors is 5.335% on the annual

basis with a t-statistic of 3.052. The premiums are slightly lower in the case of the value-

weighted portfolios – e.g., for τ = 0.2 the premium is 4.804 with t-statistic of 1.957. This

lower significance may be partially caused by the fact that the value-weighted portfolios

possess a higher concentration, which leads to more volatile returns.

To make sure that the estimated premiums cannot be explained by exposure to other

risks previously proposed in the literature, we regress the returns of the high minus low

portfolios on four factors of Carhart (1997) and CIV shocks of Herskovic et al. (2016)

and report corresponding annualized 5-factor alphas. From the results, we can see that

the proposed factors do not capture the positive premium associated with both zero-cost

portfolios. For the equal-weighted portfolio with τ = 0.2, the estimated annualized alpha

is 7.405% with t-statistic of 4.949, for value-weighted portfolios it is 4.904% premium

with t-statistics being equal to 2.543.

Next, in Panel B of Table 3, we look at the performance of the CIQ(τ) sorted portfolios

captured by the following twelve-month returns. Each month, we construct portfolios

as in the previous case. Instead of saving the one-month return of the sorted portfolios,

we record a twelve-month return, which follows after the formation period. We observe

slightly smaller returns but still consistent with the results obtained using one-month

returns. The high minus low portfolios with τ = 0.2 yield 4.389% (t = 3.772) and

2.775% (t = 1.718) for the equal- and value-weighted schemes, respectively. The other

risk factors cannot explain these premiums as the 5-factor alphas stay economically and

statistically significant.

Due to the fact that only the exposures to the lower tail common movements are

priced, the previous results suggest that the CIQ(τ) risks are not driven by the effect of

the common volatility. If it were the case that the volatility is the main driver of the

obtained results, we would observe that both exposures to the lower and upper parts

of the joint movements are priced, which is not the case. But to explicitly control for
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Figure 5: Cross-sectional results of the monthly data ∆CIQ(τ) factors. The figure summarizes the
cross-sectional asset pricing results of the ∆CIQ(τ) factors using monthly data. Panel (a) captures
annualized returns of ten high minus low portfolios based on sorting stocks into ten portfolios. Panel
(b) presents coefficients corresponding to the ∆CIQ(τ) betas from the Fama-MacBeth regressions while
controlling for various competing risk measures. The results are based on data sampled between January
1963 and December 2015.
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the effect of the common idiosyncratic volatility, we perform dependent bivariate sorts

by double sorting on betas for increments of CIV factor and betas for increments of the

CIQ(τ) factors. Every month, we first sort the stocks into ten portfolios based on their

CIV betas. Then, within each of the CIV-sorted portfolios, we sort the stocks into ten

portfolios based on their CIQ(τ) betas. Finally, for each CIQ(τ) portfolio, we collapse

all the corresponding CIV portfolios into one CIQ(τ) portfolio. This procedure yields

single-sorted portfolios which vary in their CIQ(τ) betas but possess approximately equal

CIV betas. The obtained results summarizes Table 4. For the equal-weighted portfolios,

we see that the risk premium captured by the returns of the high minus low portfolios
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Table 4: Ten bivariate sorted portfolios. The table contains annualized out-of-sample excess returns of
ten portfolios double sorted on the exposure to the ∆CIQ(τ) factors and ∆CIV. First, we perform sorts
based on the ∆CIV betas, then, within each ∆CIV portfolio, we sort on the ∆CIQ betas, and then we
collapse all the ∆CIV portfolios for a given ∆CIQ(τ) portfolio into one. The obtained portfolios vary
in their ∆CIQ(τ) betas but not in their ∆CIV betas. We report returns of the high minus low (H-L)
portfolios, their t-statistics, and annualized 5-factor alphas with respect to the four factors of Carhart
(1997) and CIV shocks of Herskovic et al. (2016). We also report t-statistics for these alphas. Data
contain the period between January 1963 and December 2015.

τ Low 2 3 4 5 6 7 8 9 High H - L t-stat α t-stat

Equal-weighted
0.1 7.264 8.944 9.942 9.540 9.699 9.699 10.310 10.174 10.438 11.046 3.782 2.301 4.588 3.571
0.15 7.099 8.875 9.726 10.286 9.762 9.674 10.434 10.045 10.457 10.718 3.619 2.178 4.693 3.657
0.2 6.822 9.241 9.887 9.867 10.408 9.780 9.870 10.306 10.093 10.810 3.988 2.452 5.199 3.953
0.3 7.125 9.105 9.726 9.906 10.036 10.317 10.123 9.972 10.157 10.593 3.468 2.353 4.592 3.658
0.4 7.700 9.488 9.981 9.928 9.750 10.542 9.513 9.398 10.134 10.581 2.881 2.145 4.094 3.419
0.5 8.288 10.246 9.693 10.345 9.924 10.323 10.292 9.368 9.482 9.075 0.787 0.441 0.967 0.564
0.6 8.282 9.491 10.112 10.672 9.657 9.814 10.380 10.139 9.084 9.365 1.083 0.643 0.754 0.488
0.7 8.574 10.115 9.470 9.613 9.450 10.198 9.875 9.166 10.021 10.489 1.914 1.128 1.089 0.733
0.8 9.462 9.518 9.855 9.577 9.698 9.921 9.680 8.946 10.494 9.777 0.315 0.155 -0.783 -0.480
0.85 9.639 9.373 10.280 9.611 9.554 9.718 9.699 9.626 10.161 9.301 -0.339 -0.151 -1.598 -0.901
0.9 9.743 9.725 9.743 10.103 9.913 9.479 9.581 9.590 10.013 9.100 -0.643 -0.279 -1.924 -1.032

Value-weighted
0.1 5.646 5.925 7.337 7.587 7.920 8.382 8.202 7.360 7.804 8.884 3.238 1.359 2.388 1.453
0.15 5.579 5.992 7.343 8.036 8.326 7.903 8.120 7.830 7.628 8.644 3.065 1.352 2.847 1.764
0.2 5.395 6.293 8.066 7.861 8.202 8.138 7.946 8.900 7.039 8.768 3.373 1.515 3.319 1.957
0.3 5.825 6.455 7.074 8.304 8.098 8.239 8.777 7.239 7.390 7.775 1.950 0.953 2.439 1.538
0.4 5.984 6.937 8.634 8.248 7.154 9.210 7.521 5.922 7.280 7.933 1.949 1.015 3.212 1.836
0.5 5.693 7.552 6.719 7.706 7.825 8.531 7.263 8.062 7.119 5.984 0.291 0.126 0.730 0.316
0.6 5.358 7.278 7.434 7.359 8.010 8.618 8.256 7.927 6.593 5.924 0.566 0.254 0.441 0.213
0.7 6.281 7.595 8.176 7.137 7.429 8.611 7.173 7.527 7.595 8.298 2.018 0.942 1.268 0.631
0.8 6.110 7.064 7.408 7.963 8.139 7.410 7.350 6.675 8.098 7.844 1.734 0.689 1.054 0.504
0.85 5.863 7.445 7.483 7.584 7.843 7.693 7.345 7.679 7.043 7.390 1.527 0.532 0.750 0.319
0.9 6.509 7.363 7.426 8.327 7.858 7.738 6.832 7.626 7.407 7.363 0.855 0.293 0.025 0.011

for τ ≤ 0.4 remains significant with an annualized return of 3.988% (t = 2.452). In case

of the value-weighted portfolios, the return decreases to 3.373% for τ = 0.2 (t = 1.515).

This observation suggests that the CIQ(τ) risk premium partly captures the interaction

between size and CIV premium.

In Appendix A in Tables 7 and 8, we provide results of the same analysis using five

portfolios instead of ten. The results are qualitatively very similar to the results from

the above, confirming the robustness of our claim that the exposure to the common left

tail events is priced in the cross-section of returns.

5.2 Pricing CIQ(τ) risk

Next, we perform a two-stage Fama and MacBeth predictive cross-sectional regressions

to explore the ability of CIQ(τ) factors to explain the abnormal returns associated with

CIQ(τ)-beta sorted portfolios. This type of asset pricing test moreover conveniently

allows for simultaneous estimation of many risk premiums associated with various risk

measures. That means that we can estimate the risk premium associated with the CIQ(τ)

risks while controlling for other risk measures previously proposed in the literature. More

21



specifically, for each time t = 1, . . . , T − 1 using all of the stocks i = 1, . . . , N available

at time t and t + 1,18 we cross-sectionally regress all the returns at time t + 1 on the

betas estimated using only the information available up to time t. This procedure yields

estimates of prices of risk λt+1(τ) while controlling for the most widely used competing

measure of risk

ri,t+1 = α+β
CIQ(τ)
i,t (τ)λ

CIQ(τ)
t+1 (τ) + β>Control

i,t λControlt+1 + ei,t+1 (11)

where βControli,t is vector of control betas and λControlt+1 is vector of corresponding prices of

risk. Using T − 1 cross-sectional estimates of the prices of risk, we compute the average

price of risk associated with each λCIQ(τ) as

λ̂CIQ(τ)(τ) =
1

T − 1

T∑
t=2

λ̂
CIQ(τ)
t (τ) (12)

and report their annualized values along with their t-statistics based on the Newey-

West robust standard errors using 6 lags. For better comparability, each time t that we

estimate the price of risk for time t + 1, we multiply the estimated coefficient by the

cross-sectional standard deviation of the corresponding betas from time t. We follow the

same logic when reporting results for the control variables. Doing that enables us to

compare the effect on the expected returns across τ and various controls. We report the

results from these regressions in Table 5 and Panel (b) of Figure 7.

First, we report results from the univariate regressions on CIQ(τ) betas. We observe

very similar results to those obtained from the portfolio sorts – the exposure to the

common idiosyncratic left tail events is significantly compensated in the cross-section of

stock returns. For example, ∆CIQ(τ) for τ = 0.2 posses a coefficient of 1.315 (t-stat =

2.543), on the other hand, for τ = 0.8, the estimated coefficient is equal to 0.458 (t-stat

= 0.632).

Second, we report results from the multivariate regressions in which we include as a

control volatility betas computed on shocks to the CIV factor. We see that the results

regarding CIQ(τ) betas still hold both qualitatively and quantitatively similar to the

case of univariate regressions. Moreover, CIV risk is priced as well; especially strong

is the relationship when we control for CIQ(τ) betas with τ from the right part of

the distribution. These results suggest that both common idiosyncratic volatility and

quantile risk are priced and do not convey the same pricing information.

18A stock is identified as available, if it posses all the return observations during the last 60-month
window up to time t and also an observation at time t+ 1.
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Table 5: Fama-MacBeth regressions using monthly CIQ(τ) factors. The table contains estimated prices
of risk and t-statistics from the Fama-MacBeth predictive regressions. Each segment contains prices of
risk of ∆CIQ(τ) betas while controlling for various risk measures. The coefficients are standardized by
the cross-sectional standard deviations of the corresponding betas and annualized. Data contain the
period between January 1963 and December 2015. In each window, we use all the CRSP stocks that
have all 60 monthly observations, and we exclude penny stocks with prices less than 1$.

τ 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

βCIQ(τ) 1.327 1.318 1.315 1.204 1.056 0.993 0.585 0.729 0.458 0.354 0.180
2.527 2.534 2.543 2.556 2.336 1.538 0.977 1.203 0.632 0.450 0.216

βCIQ(τ) 1.219 1.168 1.169 1.074 0.773 0.352 0.337 0.370 0.063 -0.073 -0.238
2.248 2.172 2.194 2.238 1.763 0.604 0.597 0.650 0.091 -0.097 -0.296

βCIV -1.208 -1.276 -1.343 -1.390 -1.512 -1.697 -1.778 -1.565 -1.530 -1.561 -1.578
-1.953 -2.075 -2.194 -2.296 -2.556 -3.006 -3.192 -2.824 -2.822 -2.887 -2.888

βCIQ(τ) 1.327 1.411 1.341 1.259 1.052 1.157 0.739 0.848 0.700 0.465 0.168
2.693 3.060 2.958 2.946 2.554 2.058 1.454 1.886 1.380 0.777 0.247

βMean−SQ 0.097 0.118 0.020 -0.118 -0.364 -0.472 -0.430 -0.556 -0.571 -0.382 -0.187
0.102 0.129 0.023 -0.135 -0.428 -0.579 -0.515 -0.674 -0.703 -0.477 -0.236

βCIQ(τ) 1.352 1.311 1.286 1.162 0.926 0.766 0.272 0.548 0.307 0.143 0.041
2.574 2.537 2.510 2.523 2.227 1.269 0.493 0.960 0.437 0.186 0.049

βPC−SQ 0.039 0.018 0.003 0.015 -0.050 0.086 0.311 -0.013 -0.065 0.030 0.026
0.102 0.048 0.008 0.039 -0.137 0.248 0.809 -0.038 -0.205 0.095 0.084

βCIQ(τ) 0.862 0.941 0.899 0.857 0.677 0.818 0.593 0.616 0.429 0.210 -0.008
1.871 2.052 1.973 1.973 1.709 1.752 1.339 1.719 1.153 0.535 -0.018

βMKT 0.056 0.109 0.102 0.095 0.022 -0.044 -0.059 -0.121 -0.139 -0.085 -0.061
0.064 0.125 0.118 0.111 0.026 -0.055 -0.074 -0.147 -0.167 -0.100 -0.071

βSMB 0.424 0.493 0.506 0.499 0.424 0.536 0.479 0.315 0.276 0.332 0.443
0.451 0.524 0.540 0.536 0.467 0.601 0.534 0.354 0.312 0.373 0.491

βHML 1.510 1.503 1.479 1.457 1.513 1.471 1.556 1.570 1.649 1.722 1.792
1.856 1.855 1.837 1.819 1.928 1.954 2.064 2.094 2.231 2.341 2.415

βCIQ(τ) 0.984 0.974 0.968 0.905 0.817 0.708 0.327 0.648 0.432 0.357 0.192
2.083 2.076 2.082 2.081 1.996 1.216 0.603 1.196 0.672 0.512 0.258

βTR 0.437 0.453 0.483 0.507 0.551 0.368 0.388 0.539 0.565 0.575 0.602
0.633 0.652 0.691 0.709 0.762 0.520 0.547 0.765 0.831 0.865 0.921

βCIQ(τ) 1.421 1.449 1.453 1.375 1.159 0.926 0.686 0.774 0.571 0.433 0.205
2.894 2.958 2.944 2.984 2.504 1.489 1.157 1.324 0.843 0.594 0.265

βLIQ 0.118 0.145 0.143 0.169 0.083 0.075 0.115 0.102 0.243 0.291 0.417
0.195 0.240 0.233 0.268 0.128 0.123 0.189 0.168 0.427 0.532 0.789

βCIQ(τ) 1.295 1.315 1.332 1.261 1.190 1.220 0.899 1.013 0.692 0.561 0.340
2.404 2.479 2.537 2.653 2.637 1.945 1.504 1.606 0.920 0.691 0.399

βSkew -1.362 -1.336 -1.374 -1.381 -1.382 -1.452 -1.462 -1.391 -1.372 -1.384 -1.372
-2.946 -2.901 -3.014 -3.046 -3.054 -3.373 -3.415 -2.865 -2.803 -2.869 -2.847

βCIQ(τ) 1.132 1.165 1.176 1.096 1.018 0.978 0.645 0.843 0.595 0.497 0.317
2.098 2.186 2.216 2.268 2.250 1.567 1.090 1.386 0.813 0.625 0.378

βKurt -0.077 -0.030 -0.037 -0.064 -0.093 -0.236 -0.222 -0.207 -0.197 -0.196 -0.201
-0.155 -0.060 -0.073 -0.126 -0.187 -0.510 -0.486 -0.415 -0.395 -0.395 -0.406

βCIQ(τ) 1.498 1.511 1.524 1.402 1.227 1.110 0.798 0.783 0.488 0.348 0.137
3.110 3.144 3.178 3.193 2.926 1.890 1.431 1.402 0.735 0.478 0.177

βDR1 0.516 0.536 0.559 0.535 0.479 0.612 0.673 0.393 0.428 0.460 0.499
0.880 0.903 0.938 0.883 0.787 1.071 1.184 0.682 0.792 0.879 0.982

βCIQ(τ) 1.329 1.370 1.410 1.342 1.200 0.954 0.707 0.816 0.593 0.430 0.225
2.914 2.968 3.040 3.100 2.818 1.592 1.294 1.466 0.945 0.631 0.312

βDR2 0.746 0.789 0.829 0.810 0.738 0.615 0.624 0.537 0.549 0.585 0.592
0.929 0.971 1.014 0.975 0.878 0.757 0.777 0.657 0.715 0.784 0.816

Third, to investigate whether the quantile factors provide different priced information

beyond conventional approximate factor models, we construct and control for two related

factors. In both cases, we proceed similarly as in the construction of the quantile factors –
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using the 60-month moving window, we extract the idiosyncratic returns and then square

them. We use a simple cross-sectional average of the squared residuals in the first case

and denote it as Mean-SQ. In the second case, we perform principal component analysis

on those squared residuals and take the first principal component that explains the most

common time variation across the squared residuals, and we denote it as PC-SQ. In both

cases, we then difference the factors and use their increments as control factors. From

the results, we can conclude that the quantile factors extract very different information

regarding the expected returns, as both specifications based on the factors extracted from

the squared residuals turn out not to be significant predictors in the cross-section of stock

returns. One has to look deeper into the common distribution if he wants to identify

priced information regarding the common distributional movements.

Next, we focus on various less related risk measures previously proposed in the lit-

erature. We control for the three factors of Fama and French (1993). This specification

decreases the effect and significance of the CIQ(τ) betas the most among all the discussed

specifications. Still, the CIQ(τ) betas for the lower tail (τ ≤ 0.3) possess t-statistics above

1.8. The other significant predictor from these regressions is the HML factor which per-

forms well, especially when we include CIQ(τ) betas for higher τ .

As another related control, we use the tail risk factor of Kelly and Jiang (2014). As

we can see, TR betas do not drive out the CIQ(τ) betas’ effect, which remains significant,

similarly to the univariate specification. We also control for the impact of liquidity betas

of Pastor and Stambaugh (2003),19 which do not alter the results regarding the CIQ(τ)

betas, neither.

Finally, we control for another related group of risk measures, which consider the non-

linear relationship between asset and market returns. By following the specifications of

Harvey and Siddique (2000) and Ang et al. (2006), respectively, we control for coskewness

and cokurtosis defined as

CSKt,i =
1
60

∑60
k=1(rt,k,i, − r̄t,i)(ft,k − f̄t)2√

1
60

∑60
k=1(rt,k,i, − r̄t,i)2 1

60

∑60
j=1(ft,j − f̄t)2

(13)

CKTt,i =
1
60

∑60
k=1(rt,k,i, − r̄t,i)(ft,k − f̄t)3√

1
60

∑60
k=1(rt,k,i, − r̄t,i)2 1

60

(∑60
j=1(ft,j − f̄t)2

)3/2
(14)

where ft,j is a return of the market factor with time average f̄t, and r̄t,i denotes the

time average of the asset return. Although the coskewness is highly significant with

the expected sign, it does not drive out the significance of the CIQ(τ) betas, and both

19We obtained the liquidity factor data from the Lubos Pastor’s personal website.
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measures simultaneously predict stock returns. On the other hand, the cokurtosis does

not exhibit any predictive power, and the CIQ(τ) betas remain significant.

Another approach to capturing non-linear dependence is via downside risk (DR) be-

tas, which describe conditional covariance below some threshold level. We entertain two

specifications of the DR betas, which differ in the threshold value. We use the speci-

fication of Lettau et al. (2014) – DR1, which uses as a threshold value average market

return minus standard deviation of the market return, and the specification of Ang et al.

(2006) – DR2, which sets the threshold value equal to the average market return. More

specifically, DR betas are estimated using

βDR1
i =

Cov(ri, f |f < µf − σf )
Var(f |f < µf − σf )

, (15)

βDR2
i =

Cov(ri, f |f < µf )

Var(f |f < µf )
. (16)

In application, we employ the empirical counterparts of the measures. As we can see,

neither of the specifications turns out to drive out or even be a significant predictor of

future returns.

To summarize this subsection, we have shown that the CIQ(τ) results from the Fama-

MacBeth regressions support the results obtained from the portfolio sorts. Namely, the

exposure to the idiosyncratic left tail common events is priced in the cross-section of

stock returns, and that none of the discussed risks drives out the significance of these

results.

6 Conclusion

We investigate the pricing implications of the exposures to the common idiosyncratic

quantile factors. These factors capture non-linear common movements in various parts

of the distributions across a large panel of stocks. Similarly, as the quantile regression

extends the classical linear regression, our quantile factor model of asset returns extends

the approximate factor models used in empirical asset pricing literature. We observe

that the expected returns are associated with the exposures to the common movements

in various parts of the left tail of the distributions in contrast to the right tail. We

perform various robustness checks to show that these results are not attributable to

other previously proposed risk factors.
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A Appendix

Figure 6: Average pairwise correlations. The figure captures yearly average pairwise time-series corre-
lations between monthly excess returns or FF3 residuals of the CRSP stocks. Figures partially replicate
results of Herskovic et al. (2016).
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Table 6: Correlations between the monthly data CIQ(τ) factors. We present the results of the uncondi-
tional correlations between estimated monthly data CIQ(τ) factors. We estimate the factors using FF3
residuals of the CRSP stocks’ returns. Data contain the period between January 1963 and December
2015.

τ 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.9

Level

0.1 1.000 0.981 0.951 0.853 0.640 0.165 0.041 -0.196 -0.426 -0.503 -0.554
0.15 0.981 1.000 0.984 0.912 0.725 0.229 0.106 -0.110 -0.354 -0.441 -0.504
0.2 0.951 0.984 1.000 0.955 0.799 0.278 0.160 -0.014 -0.265 -0.357 -0.430
0.3 0.853 0.912 0.955 1.000 0.921 0.391 0.284 0.206 -0.049 -0.150 -0.240
0.4 0.640 0.725 0.799 0.921 1.000 0.533 0.458 0.489 0.266 0.171 0.075
0.5 0.165 0.229 0.278 0.391 0.533 1.000 0.860 0.558 0.443 0.403 0.346
0.6 0.041 0.106 0.160 0.284 0.458 0.860 1.000 0.616 0.522 0.494 0.442
0.7 -0.196 -0.110 -0.014 0.206 0.489 0.558 0.616 1.000 0.940 0.891 0.824
0.8 -0.426 -0.354 -0.265 -0.049 0.266 0.443 0.522 0.940 1.000 0.983 0.948
0.85 -0.503 -0.441 -0.357 -0.150 0.171 0.403 0.494 0.891 0.983 1.000 0.980
0.9 -0.554 -0.504 -0.430 -0.240 0.075 0.346 0.442 0.824 0.948 0.980 1.000

Increments

0.1 1.000 0.972 0.944 0.875 0.757 0.411 0.321 0.327 0.140 0.037 -0.053
0.15 0.972 1.000 0.980 0.931 0.831 0.473 0.376 0.417 0.225 0.116 0.017
0.2 0.944 0.980 1.000 0.965 0.881 0.509 0.421 0.491 0.302 0.192 0.091
0.3 0.875 0.931 0.965 1.000 0.953 0.582 0.498 0.618 0.440 0.331 0.224
0.4 0.757 0.831 0.881 0.953 1.000 0.683 0.596 0.754 0.610 0.515 0.413
0.5 0.411 0.473 0.509 0.582 0.683 1.000 0.894 0.664 0.579 0.542 0.482
0.6 0.321 0.376 0.421 0.498 0.596 0.894 1.000 0.655 0.574 0.544 0.492
0.7 0.327 0.417 0.491 0.618 0.754 0.664 0.655 1.000 0.943 0.888 0.810
0.8 0.140 0.225 0.302 0.440 0.610 0.579 0.574 0.943 1.000 0.975 0.924
0.85 0.037 0.116 0.192 0.331 0.515 0.542 0.544 0.888 0.975 1.000 0.970
0.9 -0.053 0.017 0.091 0.224 0.413 0.482 0.492 0.810 0.924 0.970 1.000
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Figure 7: Factor structure in quantiles. The figure depicts average αi(τ) and βi(τ) from time-series
regression of CRSP stock-level quantiles (volatilities) on the averaged value of quantile (volatility) across
all stocks. The quantile (or volatility) factor is defined as the equal-weighted cross-sectional average of
firm quantiles (volatilities) within a year computed on monthly data. The estimated factor models take
form: qτi,t = αi(τ)+βi(τ)q̄τt (x)+vτi,t and σ2

i,t = αi+βiσ̄t(x)+vi,t. We report αi(τ) and βi(τ) for a factor
model of (i) raw return quantile on average return quantile in black line (ii) idiosyncratic quantiles on
average idiosyncratic quantiles in black dashed line (iii) idiosyncratic quantiles on average idiosyncratic
quantiles orthogonalized by average volatility in black dotted line across all τ ∈ (0, 1) quantile levels. In
addition, a factor model of (iv) raw volatility on average volatility in gray line, (v) idiosyncratic volatility
on average idiosyncratic volatility in gray dashed line. Note that results for factor model on volatilities
are constant across quantiles.
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Table 7: Five univariate sorted portfolios using monthly data. The table contains annualized out-of-
sample excess returns of five portfolios sorted on the exposure to the ∆CIQ(τ) factors computed from the
monthly data. Panel A reports results based on the one-month returns following the formation period,
Panel B results for the twelve-month period. We use all the CRSP stocks that have all 60 monthly
observations in each window. We exclude penny stocks with prices less than 1$. We report returns of
the high minus low (H - L) portfolios, their t-statistics, and annualized 5-factor alphas with respect to
the four factors of Carhart (1997) and CIV shocks of Herskovic et al. (2016). We also report t-statistics
for these alphas. Data contain the period between January 1963 and December 2015.

τ Low 2 3 4 High H - L t-stat α t-stat

Panel A: One-month returns

Equal-weighted
0.1 8.020 9.467 9.672 9.737 11.629 3.608 2.442 5.066 3.922
0.15 7.971 9.519 9.563 10.238 11.232 3.261 2.210 5.051 4.049
0.2 7.999 9.484 9.902 9.918 11.221 3.222 2.244 5.039 4.166
0.3 7.884 9.893 9.778 9.824 11.147 3.263 2.529 5.101 4.483
0.4 8.138 9.845 9.670 9.861 11.008 2.870 2.310 4.321 3.704
0.5 8.344 9.542 9.661 10.317 10.630 2.286 1.361 2.569 1.481
0.6 8.760 9.827 9.537 9.939 10.434 1.674 1.094 1.090 0.755
0.7 9.122 9.123 9.841 9.368 11.045 1.923 1.206 1.027 0.738
0.8 9.567 8.872 9.726 9.883 10.442 0.875 0.457 -0.405 -0.269
0.85 9.463 9.241 9.448 9.968 10.364 0.901 0.429 -0.586 -0.369
0.9 9.495 9.345 9.742 9.906 9.996 0.501 0.227 -1.225 -0.771

Value-weighted
0.1 5.309 6.422 6.348 6.193 8.905 3.597 1.700 3.482 2.197
0.15 4.842 6.707 6.469 6.302 8.345 3.503 1.650 4.396 2.874
0.2 5.259 6.794 6.009 6.850 7.660 2.400 1.147 3.745 2.521
0.3 5.673 6.447 6.312 6.351 6.582 0.908 0.501 2.871 1.999
0.4 5.492 6.390 6.733 6.080 6.156 0.664 0.358 2.995 1.619
0.5 5.494 5.639 6.101 6.590 5.878 0.384 0.194 0.851 0.406
0.6 5.621 5.967 5.823 6.601 5.860 0.239 0.117 0.721 0.345
0.7 6.185 6.294 6.064 5.899 7.232 1.047 0.538 0.837 0.429
0.8 6.043 5.934 6.452 6.296 6.266 0.223 0.097 -0.243 -0.122
0.85 5.984 5.625 6.588 6.201 6.948 0.964 0.402 0.093 0.047
0.9 5.631 5.975 6.629 6.695 6.214 0.583 0.231 -0.601 -0.327

Panel B: Twelve-month returns

Equal-weighted
0.1 10.456 11.023 11.082 11.250 13.384 2.929 2.905 3.726 3.550
0.15 10.565 11.150 10.952 11.242 13.285 2.720 2.732 3.463 3.344
0.2 10.659 11.128 10.883 11.289 13.235 2.575 2.638 3.079 2.936
0.3 10.782 11.090 10.963 11.106 13.252 2.471 2.723 2.895 2.540
0.4 11.021 10.917 10.884 11.041 13.326 2.305 2.887 2.545 2.188
0.5 10.645 10.938 10.873 11.442 13.289 2.643 2.945 2.534 2.412
0.6 10.501 11.113 10.827 11.442 13.303 2.803 3.068 1.436 1.174
0.7 11.364 10.925 10.845 10.982 13.073 1.709 1.555 -0.444 -0.334
0.8 11.712 10.603 10.992 11.133 12.748 1.035 0.758 -1.752 -1.089
0.85 11.622 10.631 11.046 11.286 12.602 0.980 0.670 -1.832 -1.123
0.9 11.453 10.776 11.067 11.387 12.505 1.052 0.699 -1.437 -0.904

Value-weighted
0.1 6.174 7.127 6.648 6.954 8.986 2.812 2.068 3.214 2.597
0.15 6.369 7.411 6.672 6.840 8.482 2.113 1.577 2.712 2.254
0.2 6.724 7.336 6.702 6.872 8.052 1.329 1.023 1.953 1.630
0.3 6.860 7.370 6.684 6.935 7.060 0.200 0.178 1.205 0.941
0.4 7.019 7.151 6.787 6.563 6.823 -0.196 -0.183 0.763 0.535
0.5 6.006 6.599 6.644 6.998 7.005 0.999 0.894 0.725 0.693
0.6 5.561 6.346 6.799 7.060 7.228 1.668 1.492 1.242 1.111
0.7 6.732 6.400 7.112 6.606 7.438 0.707 0.547 -0.843 -0.743
0.8 6.579 6.604 6.960 6.739 7.317 0.737 0.494 -1.013 -0.759
0.85 6.393 6.391 7.363 6.619 7.376 0.983 0.608 -0.955 -0.701
0.9 6.373 6.504 7.297 6.858 7.128 0.755 0.450 -1.438 -1.002
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Table 8: Five bivariate sorted portfolios. The table contains annualized out-of-sample excess returns of
ten portfolios double sorted on the exposure to the ∆CIQ(τ) factors and ∆CIV. First, we perform sorts
based on the ∆CIV betas, then, within each ∆CIV portfolio, we sort on the ∆CIQ(τ) betas, and then
we collapse all the ∆CIV portfolios for a given ∆CIQ(τ) portfolio into one. The obtained portfolios vary
in their ∆CIQ(τ) betas but not in their ∆CIV betas. We report returns of the high minus low (H-L)
portfolios, their t-statistics, and annualized 5-factor alphas with respect to the four factors of Carhart
(1997) and CIV shocks of Herskovic et al. (2016). We also report t-statistics for these alphas. Data
contain the period between January 1963 and December 2015.

τ Low 2 3 4 High H - L t-stat α t-stat

Equal-weighted
0.1 8.250 9.507 9.656 10.331 10.761 2.511 1.898 3.565 3.380
0.15 8.068 9.751 9.932 10.162 10.586 2.518 1.883 3.837 3.712
0.2 8.048 9.702 10.132 10.097 10.523 2.475 1.901 3.835 3.772
0.3 8.064 9.891 10.020 10.044 10.487 2.423 2.017 3.806 3.785
0.4 8.468 10.113 9.877 9.725 10.313 1.845 1.728 3.117 3.161
0.5 9.122 10.141 10.087 9.730 9.403 0.282 0.208 0.538 0.408
0.6 8.938 10.117 10.171 9.890 9.365 0.427 0.328 0.374 0.319
0.7 9.331 9.556 9.749 9.753 10.093 0.762 0.545 -0.041 -0.034
0.8 9.546 9.729 9.667 9.493 10.037 0.491 0.291 -0.554 -0.431
0.85 9.632 9.819 9.531 9.717 9.769 0.137 0.073 -1.002 -0.729
0.9 9.758 9.830 9.541 9.749 9.597 -0.161 -0.083 -1.389 -0.954

Value-weighted
0.1 5.647 7.704 7.826 7.466 8.090 2.443 1.321 2.618 2.027
0.15 5.975 7.311 8.273 7.662 7.396 1.421 0.799 1.951 1.693
0.2 5.876 7.564 7.967 7.968 6.999 1.123 0.648 1.741 1.495
0.3 6.121 7.684 7.827 7.908 6.554 0.433 0.261 1.433 1.139
0.4 6.169 7.940 7.688 7.038 6.659 0.490 0.322 1.762 1.234
0.5 6.411 7.439 7.574 7.432 6.419 0.008 0.004 0.422 0.225
0.6 6.158 7.433 7.470 7.499 6.686 0.528 0.294 0.610 0.342
0.7 6.187 7.738 7.760 6.990 7.380 1.193 0.694 0.551 0.342
0.8 6.298 7.900 7.310 6.903 7.418 1.120 0.567 0.608 0.360
0.85 6.527 7.680 7.477 7.131 6.960 0.433 0.199 -0.217 -0.123
0.9 7.124 7.462 7.582 7.388 6.797 -0.327 -0.143 -0.903 -0.541
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