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Abstract

A semiparametric method for forecasting time series based on the s-vine copula approach for

stationary time series developed in Bladt and McNeil (2022) is proposed. By combining a para-

metric s-vine process to describe serial dependence with a nonparametric model of the marginal

distribution, the method offers improved modelling and forecasting for time series that have a

non-Gaussian distribution and a nonlinear dependence on past values. The methodologogy gives

a clear meaning to the concept of a non-Gaussian ARMA model in which a parametric object

known as the Kendall partial autocorrelation function plays the central role. To demonstrate

the potential forecasting gains that can be obtained by using non-Gaussian models, an approach

to comparing distributional forecasts proposed by Gneiting and Ranjan (2011) is applied. The

methodology is illustrated with an application to forecasting the force of inflation in the US.

Keywords: Time series; vine copulas; Gaussian processes; ARMA processes; ARFIMA processes.

1 Introduction

In this paper we propose a semiparametric method for modelling and forecasting time series based on

a stationary vine-copula (or s-vine) approach in which we combine ARMA partial rank correlation

functions with non-Gaussian copulas. Our approach builds on a recent paper by Bladt and McNeil

(2022) which shows how any classical stationary Gaussian process (such as ARMA, ARFIMA and

fractional Gaussian noise) may be made non-Gaussian, both in terms of its marginal and its serial
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dependence behaviour. In this paper we concentrate on the ARMA case (including the ARMA

models implied by differenced seasonal ARIMA models); the further extension to long-memory

ARFIMA models with fractional integration is straightforward. Because the s-vine models extend

the class of Gaussian ARMA models, they have the potential to provide superior inference and

prediction in any of the settings where these classical models are used but where non-Gaussian and

non-linear behaviour may be present.

Yan and Genton (2019) group the most common approaches to non-Gaussian ARMA modelling

into three categories: approaches in which Box-Cox and related transformations are used to make the

modelled variable more normal; approaches based on ARMA models with non-Gaussian innovations

(e.g. Li and McLeod (1988)); approaches which apply a GLM approach to time series (e.g. Benjamin

et al. (2003)). All of these approaches impose limitations: Nelson and Granger (1979) report

that the Box-Cox transformation is seldom successful in inducing normality in data; maximum

likelihood inference in models with non-Gaussian innovations is challenging to implement and details

of algorithms and estimator properties have generally only been established for special cases; the

GLM approach of Benjamin et al. (2003) is designed for exponential families.

The approach that we take is extremely flexible and allows non-Gaussianity in two senses. On

the one hand, by adopting the copula approach, we can decouple the marginal distribution from

the serial dependence model and apply any form of marginal distribution to the Gaussian copula

structure implied by a seasonal ARMA model; this preserves the linear structure of the ARMA

process under a transformation of the data. On the other hand by considering s-vine decompositions

of the multivariate copulas of a stationary Gaussian process, we can systematically replace Gaussian

pair copulas with non-Gaussian pair copulas to obtain non-linear ARMA models with non-Gaussian

serial dependence structure. In the latter case, the link between a classical ARMA model and our

generalized ARMA model of the same order is no longer through a shared linear equation system but

rather through a shared parametric object that we call the Kendall partial autocorrelation function

(kpacf). The kpacf of a strictly stationary time series (Xt)t∈Z at lag k is the Kendall rank correlation

of the conditional distribution of the pair (Xt, Xt+k) given any variables Xt+1, . . . , Xt+k−1 lying in

between (Bladt and McNeil, 2022).

The main contribution of this paper is to show how the s-vine approach of Bladt and Mc-

Neil (2022) may be adapted to yield a semiparametric estimation and forecasting procedure. Let

{Xt−n+1, . . . , Xt} denote a finite segment from (Xt)t∈Z and let FX be the marginal distribution

function. We estimate the latter non parametrically to obtain an estimator F̂X with values in
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(0, 1) and then fit fully parametric s-vine copula models to the data {Ût−n+1, . . . , Ût} given by

Ût = F̂X(Xs) for s ∈ {t− n+ 1, . . . , t}. The objective is then to derive estimates of the conditional

distribution of Xt+1 given k previous values Xt−k+1, . . . , Xt where 1 ⩽ k ⩽ n.

Semiparametric methods have been widely applied to copula inference since the seminal paper

of Genest et al. (1995), which proposed the two-stage pseudo-maximum-likelihood method. It

has been observed that the use of a non-parametric estimator for marginal distributions can lead to

better inferences about the dependence structure than are obtained by imposing parametric models,

which are often an imperfect fit to data (Shih and Louis, 1995). The semiparametric estimation

approach was extended to time series by Chen and Fan (2006) who investigated first-order Markov

copula models and proposed a semiparametric forecasting procedure for the quantile function of the

conditional distribution of Xt+1 given Xt. Our methodology can be viewed as generalizing their

methodology to allow forecasts that depend explicitly on an arbitrarily large number of past values.

Further contributions of this paper relate to the practical implementation of the s-vine method-

ology for real data. These include: the use of the kpacf as primary parametric tool for specifying

models; the construction of models using sequences of pair copulas that have an arbitrary but finite

number of non-Gaussian terms; the extension of the notion of seasonal ARMA dependence to the

non-Gaussian case; the development of an evaluation strategy for distributional forecasts in s-vine

models using ideas based on Gneiting and Ranjan (2011).

The paper is structured as follows. Section 2 sets out the theory of s-vine processes and explains

their relationship to s-vine copulas. Section 3 presents the forecasting methodology and this is then

critically evaluated in a simulation study in Section 4. An application of the forecasting methodology

to US inflation data is provided in Section 5 while Section 6 concludes.

2 S-vine processes

Notation. Vectors are written x = (x1, . . . , xd)
⊤ and sequences are denoted (xt)t∈T where T is

an index set T , typically the non-zero natural numbers N or the integers Z. We write x[t:s] =

(xt, . . . , xs)
⊤ to refer to a sub-vector of x or a finite section of the sequence (xt)t∈Z; note that

we permit t > s, in which case the variables are taken in reverse order to their natural ordering.

Random variables and sequences of random variables are denoted by capital letters.
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2.1 From s-vine copulas to s-vine processes

Let (Ck)k∈N be a sequence of bivariate copulas satisfying the following assumption.

Assumption 1. Ck belongs to the class C∞ of smooth functions on [0, 1]2 with continuous partial

derivatives of all orders and densities that are strictly positive on (0, 1)2.

This assumption applies to all the standard pair copulas that are used in vine copula models

(e.g. Gauss, Clayton1, Gumbel, Frank, Joe and t), as well as non-exchangeable copulas following

the extension of Liebscher (2008) or mixtures of the kind considered by Loaiza-Maya et al. (2018).

An s-vine copula density in dimension d ⩾ 2 takes the form

c(d)(u1, . . . , ud) =
d−1∏
k=1

d∏
j=k+1

ck

(
R∗

k−1(uj−k;u[j−k+1:j−1]), Rk−1(uj ;u[j−1:j−k+1])
)

(1)

where (ck)k∈N are the densities of the bivariate copulas in the sequence (Ck)k∈N and where Rk :

(0, 1) × (0, 1)k → (0, 1) and R∗
k : (0, 1) × (0, 1)k → (0, 1) are families of functions defined from

(Ck)k∈N in a recursive, interlacing fashion by R1(x;u) = h
(1)
1 (u, x), R∗

1(x;u) = h
(2)
1 (x, u) and

Rk(x;u) = h
(1)
k

(
R∗

k−1(uk;u[k−1:1]), Rk−1(x;u[1:k−1])
)

R∗
k(x;u) = h

(2)
k

(
R∗

k−1(x;u[1,k−1]), Rk−1(uk;u[k−1:1])
) (2)

for k ⩾ 2, where h(i)k (u1, u2) =
∂

∂ui
Ck(u1, u2). Note that, by slight abuse of notation, R0 and R∗

0 in

formula (1) should be interpreted as the identity functions R0(x, ·) = R∗
0(x, ·) = x for all x.

S-vine copulas are d-vine copulas that are subject to additional translation-invariance restrictions

which render them suitable to serve as higher-dimensional marginal distributions of stationary

processes (Nagler et al., 2022).

Definition 1 (S-vine process). A strictly stationary time series (Xt)t∈Z is an s-vine process if for

every t ∈ Z and d ⩾ 2 the distribution of the vector (Xt, . . . , Xt+d−1) is absolutely continuous and

admits a unique copula C(d) with a joint density c(d) of the form (1). An s-vine process (Ut)t∈Z is

an s-vine copula process if its univariate marginal distribution is standard uniform.

We refer to the sequences of functions Rk and R∗
k for k ⩾ 1 as forward and backward Rosenblatt

functions. If the copulas Ck are exchangeable for k = 1, . . . , d and d ⩾ 1, then a simple inductive
1We exclude the case where the Clayton copula has parameter less than zero.
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argument shows that R∗
k(x;u) = Rk(x;u) for k = 1, . . . , d. In this case we can drop the forward

and backward qualification and the recursions in (2) simplify to

Rk(x;u) = h
(1)
k

(
Rk−1(uk;u[k−1:1]), Rk−1(x;u[1:k−1])

)
. (3)

The Rosenblatt functions have important roles in prediction and forecasting. If we take an s-

vine process (Xt)t∈Z with continuous marginal distribution FX and transform it to an s-vine copula

process (Ut)t∈Z by means of the componentwise transformation Ut = FX(Xt) then

Rk(x;u) = P(Ut ⩽ x | Ut−1 = u1, . . . , Ut−k = uk)

R∗
k(x;u) = P(Ut ⩽ x | Ut+1 = u1, . . . , Ut+k = uk) .

(4)

In particular, the forward functions are the conditional distribution functions of terms in the process

(Ut)t∈Z given previous values. The set of functions R0, . . . , Rk are precisely the functions required

to map the vector (Ut−k, . . . , Ut)
⊤ into a vector of independent uniform random variables via the

Rosenblatt transformation (Rosenblatt, 1952), hence their name.

The derivatives of the Rosenbaltt forward functions rk(x;u) = ∂
∂xRk(x;u) are conditional den-

sities and satisfy

rk(x;u) =
c(k+1)(uk, . . . , u1, x)

c(k)(uk, . . . , u1)
= c1(u1, x)

k∏
j=2

cj
(
R∗

j−1(uj ;u[j−1:1]), Rj−1(x;u[1:j−1])
)
. (5)

Under Assumption 1 the conditional distribution functions represented by the Rosenblatt forward

functions have unique inverses Qk(z;u) satisfying Rk(Qk(z;u);u) = z for all (z,u) ∈ (0, 1) ×

(0, 1)k; these inverses, which we refer to as Rosenblatt quantile functions, are used in the sequential

generation of realisations from an s-vine process.

As explained in Bladt and McNeil (2022), s-vine processes can be thought of as extending the

class of causal stationary Gaussian processes. Every such Gaussian process (such as an ARMA

or ARFIMA model) can be represented an an s-vine process consisting of a sequence of bivariate

Gaussian copulas (Ck)k∈N and a Gaussian marginal distrbution function FX ; the sequence of copulas

can be finite or infinite depending on the particular Gaussian process. In the more general family

of s-vine processes we can replace the Gaussian marginal distribution by an arbitrary continuous

distribution and we can replace the sequence of Gaussian copulas by a sequence of arbitrary bivariate

copulas satisfying Assumption 1.

5



The copula sequence (Ck)k∈N determines the serial dependence properties of the process and

we refer to it as the partial copula sequence of the process. This is in analogy to the concept of

partial correlation since the kth partial copula describes the dependence structure of the conditional

distribution of two variables Xt and Xt+k conditional on the variables Xt+1, . . . , Xt+k−1 in between;

in fact, when the s-vine process is a Gaussian process, the parameter of the kth Gaussian copula in

the partial copula sequence is precisely the kth partial correlation coefficient αk.

A useful function for describing the serial dependence of an s-vine process is the Kendall partial

autocorrelation function or kpacf (τk)k∈N. This is simply the sequence of Kendall partial correlation

coefficients τk = τ(Ck) of the partial copula sequence. If (Xt)t∈Z is a Gaussian process and (Ut)t∈Z

the associated Gaussian copula process, given by Ut = FX(Xt) for all t, then the kpacf completely

characterizes (Ut)t∈Z. This follows from the fact that there is a bijective mapping from the kpacf to

the partial correlation function (pacf) (αk)k∈N (via the transformation αk = sin(πτk/2)) and hence

to the autocorrelation function (acf) of (Xt)t∈Z. Since Gaussian processes are characterized by

their first two moments, this implies that the kpacf (τk)k∈N of a Gaussian copula process identifies

a unique process.

2.2 Stability of s-vine processes

S-vine processes are strictly stationary by design since they exploit the translation-invariance of

s-vine copulas. A finite sequence U1, . . . , Un of any length n from an s-vine copula process (Ut)t∈Z

process with copula sequence (Ck)k∈N can be constructed from a sequence of iid uniform variates

(Zt)t∈N by setting U1 = Z1 and Uk = Qk−1(Zk;U[k−1:1]) for k = 2, . . . , n. The random vector

U = (U1, . . . , Un)
⊤ will have the joint density c(n) of an s-vine copula in (1).

The question of ergodicity is more complicated than that of stationarity. We distinguish between

s-vine processes of finite and infinite order. The former case describes models where the copula

sequence (Ck)k∈N satisfies Cp ̸= C⊥ and Ck = C⊥ for k > p for some p ⩾ 1, where C⊥ denotes

the bivariate independence copula. Finite-order s-vine processes are ergodic Markov processes on a

p-dimensional state space and can be thought of as extensions of the Gaussian AR(p) process. A

number of authors have explored mixing and ergodic convergence rates in the case where p = 1 (Chen

and Fan, 2006; Beare, 2010; Chen et al., 2009; Longla and Peligrad, 2012); it is known that first-

order Markov models based on Gaussian, Student t, Frank, Clayton and Gumbel copulas are all

geometrically β-mixing or, equivalently for Markov chains, geometrically ergodic. For p ⩾ 1, Zhao

et al. (2022) use a small set approach for Markov chains to give conditions under which an s-vine is
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geometrically ergodic. However, the conditions are difficult to verify for an arbitrary set of copulas

C1, . . . , Cp with p > 1.

An s-vine process of infinite order is one in which, for every p ⩾ 1 there exists a k ⩾ p such that

Ck ̸= C⊥. Any Gaussian ARMA(p, q) process with q > 0 provides an example of an infinite-order

s-vine process. To formulate a stability condition, let the functions Sk : (0, 1) × (0, 1)k → (0, 1),

k ∈ N, be defined from the Rosenblatt quantile functions by S1(x; z) = Q1(x; z) and

Sk(x; z) = Qk

(
x;
(
Sk−1(z1; z[2:k]), . . . , S1(zk−1; zk), zk

)⊤)
, k ⩾ 2.

If we set S0(x; ·) = x then the functions S0, . . . , Sn−1 describe the mapping by which independent

uniform innovations Z1, . . . , Zn are transformed into process values U1, . . . , Un via the transforma-

tions Uk = Sk−1(Zk;Z[k−1:1]) for k = 1, . . . , n, a transformation also known as the multivariate

quantile transform (Rüschendorf, 2009).

Assumption 2. For a sequence (Zt)t∈N of iid uniform innovations the limit

S∞(x; (Zt)t∈N) = lim
k→∞

Sk(x;Z[1:k]) (6)

exists almost surely for all x ∈ (0, 1) and, for any sample path (Zt(ω))t∈N, is a continuous and

increasing function such that limx→0 S∞(x; (Zt(ω))t∈N) = 0 and limx→1 S∞(x; (Zt(ω))t∈N) = 1.

Under Assumption 2 the mapping S∞ describes a convergent non-linear filter of noise of the kind

discussed by Wu (2005). This makes it possible to define a causal, stationary and ergodic process

(Ut)t∈Z of the form

Ut = S∞(Zt; (Zt−1, Zt−2, . . .)
⊤)

for which the copula sequence (Ck)k∈N describes the partial dependencies. However, the existence

of the limit (6) is hard to verify analytically for non-Gaussian copulas sequences. It is certainly

necessary that Ck → C⊥ as k → ∞, but a counterexample in (Bladt and McNeil, 2022) shows that

this is not sufficient; assumptions on the speed of covergence to independence are required. In the

practical application of these models in this paper, we truncate all copula sequences so that we

remain within the realm of finite-order processes.
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2.3 S-vine processes with ARMA dependence structure

In this section we explain how to construct s-vine processes which have the serial dependence

structure of ARMA processes. We use a generalized definition of an ARMA process that allows the

kind of seasonal features implied by seasonal ARIMA models. These seem particularly useful for

many modelling problems in economics and finance.

We recall that a stochastic process (Yt)t∈Z is referred to as a SARIMA(p, d, q)(P,D,Q)s process

if it satisfies equations

(
1−

p∑
i=1

ϕiB
i

)1−
P∑

j=1

ΦjB
js

 (1−B)d(1−Bs)DYt =

(
1 +

q∑
k=1

ψkB
k

)(
1 +

Q∑
l=1

ΨlB
ls

)
ϵt

where B is the usual backshift operator, (ϕi), (Φj), (ψk) and (Ψl) are the AR, seasonal AR, MA and

seasonal MA coefficients and where s is the periodicity or number of seasons per cycle. For example,

for macroeconomic data showing an annual cycle we would typically set s = 4 for quarterly data

and s = 12 for monthly data. The SARIMA process obviously constitutes a generalization of the

usual ARIMA(p, d, q) process for which P = D = Q = 0.

If we define Xt = (1−B)d(1−Bs)DYt then (Xt)t∈Z is the stationary process that results from

taking the dth ordinary difference (by iterated application of ∆Yt = Yt−Yt−1) together with the Dth

seasonal difference (by iterated application of ∆∗Yt = Yt − Yt−s). The differenced process (Xt)t∈Z

will be said to follow an ARMA model of order (p, q)(P,Q)s. This is effectively an ARMA process

of order (p + sP, q + sQ) in the usual notation, but one in which the parameters are subject to a

set of constraints that must be observed when estimating the model; there are only p+ P + q +Q

free parameters.

Since every Gaussian copula process can be characterized by its kpacf, it follows that there is

a one-to-one mapping from the set of causal stationary and invertible Gaussian ARMA processes

with fixed mean and variance to the set of Kendall partial autocorrelation functions of Gaussian

ARMA processes; eack kpacf indentifies a unique ARMA process (up to location and scaling) and

it makes sense to talk, for example, of the kpacf of an ARMA(1,1) process. We note, however, that

there is some ambiguity in referring to the kpacf of an ARMA(p, q)(P,Q)s process; for example,

an ARMA(1, 1)(1, 1)4 shares its kpacf with an ARMA(5, 1)(0, 1)4 model and an ARMA(1, 5)(1, 0)4

model. With this minor caveat we will use the following terminology.

Definition 2. Any s-vine process whose kpacf is identical to the kpacf of a causal stationary and
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invertible Gaussian ARMA(p, q)(P,Q)s process is said to be an ARMA(p, q)(P,Q)s s-vine process.

In Bladt and McNeil (2022) a parsimonious method of parameterizing s-vine processes via their

kpacf is proposed and this method may be applied to an s-vine process with ARMA (p, q)(P,Q)s

Kendall partial autocorrelation structure. Suppose the periodicity s and order (p, q, P,Q) of the

copula process are fixed and let θ represent a vector of feasible parameters for a causal stationary

Gaussian ARMA(p, q)(P,Q)s process. The kpacf of the Gaussian process is given by (τk(θ))k∈N

where τk(θ) = 2
π arcsinαk(θ) and (αk(θ))k∈N is the pacf, which can be readily calculated for any

Gaussian ARMA process. The idea is that we consider s-vine models with sequences (Ck)k∈N such

that the Kendall rank correlations satisfy τ(Ck) =
2
π arcsinαk(θ) for all k ∈ N but where the copulas

in the sequence may be taken from non-Gaussian copula families.

For non-Gaussian copulas it is convenient if there is an explicit relationship between the pa-

rameter(s) of the copula and Kendall’s tau, as is the case for the Frank, Clayton, Gumbel, Joe

and t copulas. If the copulas have more than one parameter a set of additional parameters ϕ is

introduced into the model. To fit such a model to data, the parameters θ are optimized over the

set of feasible parameters for a causal stationary Gaussian ARMA (p, q)(P,Q)s process and any

additional parameters ϕ are either fixed or optimized over their feasible domain.

While we have a lot of flexibility in our choice of copula sequence, in this paper we will consider

Gaussian copula sequences with finitely many non-Gaussian copula substitutions. Our intuition

is that the largest benefits of including non-Gaussian copulas are likely to be seem at lower lags.

As the partial copula sequence tends to the independence copula and partial dependencies become

weaker, the differences between Gaussian and non-Gaussian copulas will become less pronounced.

The substituted non-Gaussian copulas may be required to attain any Kendall rank correlation in

the interval (−1, 1); copulas with this property are called comprehensive. The t and Frank copulas

are comprehensive but the Gumbel and Joe copulas (and their corresponding survival copulas)

can only model positive dependence and attain rank correlations in [0, 1). The Clayton family

is comprehensive but when the Kendall rank correlation is negative the copula does not have a

strictly positive density on (0, 1)2 and violates Assumption 1; we thus restrict attention to Clayton

copulas (and survival copulas) with positive dependence. When positive-dependence copulas are

substituted we allow the option of rotating these through 90 degrees (clockwise or anticlockwise) to

obtain negative partial dependence.

A proof of ergodicity for ARMA s-vine processes based on infinite Gaussian copula sequences

with finitely-many non-Gaussian substitutions has not yet been given. To avoid this theoretical
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issue, and to increase the speed of estimation algorithms, we work in practice with finite-order

models by truncating copula sequences at some high order (e.g. 50 or 100) where the addition of

further terms leads to a negligible improvement in fit.

3 Forecasting methodology

3.1 Forecasting formulas

Given an s-vine process (Xt)t∈Z, suppose we want to forecast Xt+1 conditional on the previous k

values, i.e. conditional on the event {X[t−k+1:t] = x[t−k+1:t]}. We denote the predictive distribution

function by Ft+1|k(x), suppressing the explicit dependence on x[t−k+1:t] for notational convenience.

The predictive distribution function and its density and quantile function are given by

Ft+1|k(x) = Rk

(
FX(x);FX(x[t:t−k+1])

)
ft+1|k(x) = rk

(
FX(x);FX(x[t:t−k+1])

)
fX(x)

F−1
t+1|k(u) = F−1

X

(
Qk(u;FX(x[t:t−k+1]))

) (7)

where FX and fX are the common marginal distribution function and density of the s-vine process

and Rk and rk are as in (2) and (5).

3.2 The semiparametric method

Let us suppose we want to estimate the functions in (7) using the last n observations of the process

xt−n+1, . . . , xt. Semiparametric estimates may be obtained when FX is estimated by a version of

the empirical distribution function (edf) of the data, denoted F̂
(n)
X . Similarly, fX can be replaced

by a kernel estimate f̂ (n)X derived from these data and F−1
X (α) can be estimated by calculating an

empirical α-quantile, either by inverting F̂ (n)
X or by using an alternative definition of an empirical

quantile as in Hyndman and Fan (1996).

Suppose that we know the structure of the s-vine copula process (Ut)t∈Z of (Xt)t∈Z, and therefore

the form of the Rosenblatt function Rn, but the marginal distribution FX is unknown and needs

to be estimated. Consider the estimator of the distribution function of the predictive distribution

given by

F̂
(n)
t+1|k(x) = Rk

(
F̂

(n)
X (x); F̂

(n)
X (x[t:t−k+1])

)
. (8)

Provided (Xt)t∈Z is an ergodic process, then for any x in the interior of the support of FX , we have
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F̂
(n)
X (x) → FX(x) ∈ (0, 1) as n → ∞, almost surely. Assumption 1 implies that Rk is a continuous

function on (0, 1) × (0, 1)k. Provided we use a version of the empirical distribution function such

that F̂ (n)
X (x[t:t−k+1]) ∈ (0, 1)k for any k ⩽ n we can conclude that F̂ (n)

t+1|k(x) → Ft+1|k(x) as n→ ∞.

One possibility is to use F̂ (n)
X (x) = 1

n+1

∑n
i=1 I{xt−n+i⩽x} but kernel estimators are also possible. In

practice we don’t know Rk and this will be estimated parametrically by a function R̂k using the

fitted s-vine.

3.3 Evaluating distributional forecasts

In this section we consider a sequence of estimates F̂t+i|k, i = 1, . . . ,m of the one-step predictive

distributions Ft+i|k of the values Xt+i, in each case conditioning on the last k values. One method

of evaluating these distributional forecasts is based on the probability-integral transform using the

so-called PIT values {ut+1, . . . , ut+m} given by ut+i = F̂t+i|k(xt+i) for i = 1, . . . ,m, where xt+i

is the realized value of Xt+i. Under perfect estimation these should form an iid uniform sample

and this can be easily tested, for example by using Kolmogorov-Smirnov goodness-of-fit tests and

Ljung-Box tests of serial dependence. However, when m is small, these tests turn out to be quite

weak tests of the quality of the forecast distributions. The null hypothesis of independence and

uniformity may fail to be rejected for a number of competing forecast models including some in

which the serial dependence structure may be misspecified.

To choose between models we can also apply a scoring approach following the methodology

proposed by Gneiting and Ranjan (2011). A commonly-used proper scoring function for comparing

distributional forecasts F̂t+i|k with realized values xt+i is the continuous ranked probability score

(CRPS) which takes the equivalent forms

CRPS
(
F̂t+i|k, xt+i

)
=

∫ ∞

−∞
SB
(
F̂t+i|k(y), I{xt+i⩽y}

)
dy (9)

= 2

∫ 1

0
SQα

(
F̂−1
t+i|k(α), xt+i

)
dα (10)

where SB(p, q) = (p− q)2 is the Brier score for a probabilistic forecast p of a binary outcome q and

where

SQα (y, x) =
(
I{x⩽y} − α

)
(y − x) (11)

is a consistent scoring function for evaluating a forecast y of the α-quantile when the realized value is

x. Gneiting and Ranjan (2011) suggest weighted versions of both (9) and (10) to emphasise different
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features of the forecast distribution (such as centre or tails) and we will adopt the approach based

on (10). That is, we consider scores which take the form
∫ 1
0 SQα

(
F̂−1
t+i|k(α), xt+i

)
dν(α) where ν

is a Lebesgue-Stieltjes measure which is designed to apply different weights to different quantiles.

In particular we will consider a discrete measure ν and a score that we call the average weighted

quantile score (AWQS) given by

AWQS
(
F̂t+i|k, xt+i

)
=

1

J − 1

J−1∑
j=1

SQαj

(
F̂−1
t+i|k(αj), xt+i

)
v(αj), αj =

j

J
. (12)

where v(α) is the weight function and J is some integer (e.g. J = 100) that determines the

granularity of the discrete measure. For uniform weighting we can set v(α) = 1 and in this case we

will simply refer to the AQS, or average quantile score.

For tail weighting Gneiting and Ranjan (2011) suggest the quadratic function v(α) = (2α− 1)2

but, in our view, this does not give enough weight to the more extreme quantiles that might be the

focus of interest in some applications. We suggest that v(α) should be chosen to be the reciprocal

of what we will call a template function, that is a function of the form

α→ E
(
SQ
α (F

−1(α), X
)

(13)

where F is a distribution function that roughly corresponds to the marginal distribution of the data

and X is a random variable with distribution function F . Thus the template function at α is the

expected quantile score for an ideal forecaster who forecasts the α-quantile of a random variable X

using the correct quantile function F−1. In some applications it may be appropriate to take the

reciprocal of the normal template function, i.e. v(α)−1 = E
(
SQ
α (Φ−1(α), X

)
where X ∼ N(0, 1).

For a copula process with uniform marginal distribution one might take the reciprocal of the uniform

template function which has a simple analytical form: v(α)−1 = E
(
SQ
α (α,U

)
= 1

2α(1 − α) where

U ∼ U(0, 1).

In the context of a one-step ahead backtesting experiment of length m we compare competing

forecasting models F̂ (1)
t+i|k and F̂ (2)

t+i|kby computing values for

AWQS
(l)
m =

1

m

m∑
i=1

AWQS
(
F̂

(l)
t+i|k, xt+i

)
, l = 1, 2.

To judge whether there is a significant different in forecast performance we can use the test of Diebold

12



and Mariano (1995) based on the statistic

Tm =
√
m
AWQS

(1)
m −AWQS

(2)
m

σ̂m

where

σ̂2m =
1

m

m∑
i=1

(
AWQS

(
F̂

(1)
t+i|k, xt+i

)
−AWQS

(
F̂

(2)
t+i|k, xt+i

))2
.

This statistic Tm is compared with a normal reference distribution and, in the case that the null

hypothesis of equal forecast performance is rejected, the model giving the smaller value of AWQS
(l)
m

should be preferred.

To understand the differences between models we also use a graphical exploration of the differ-

ences between the forecast models based on a suggestion by Laio and Tamea (2007). This is a plot

of the points (
αj ,

v(αj)

m

m∑
i=1

SQα

(
F̂

(l)−1
t+i|k (αj), xt+i

))
, αj =

j

J
, j = 1, . . . , J − 1. (14)

for each model l = 1, 2. We refer to this as a quantile score plot when we apply the uniform weight

function v(α) = 1 and a weighted quantile score plot otherwise.

4 A simulation study

In the simulation study we focus on examining whether the forecast evaluation methods of Sec-

tion 3.3 can distinguish between the performance of models based on correctly and incorrectly spec-

ified copula processes. The marginal distribution of the data is always estimated nonparametrically

using the (scaled) empirical distribution function.

The true data-generating process is a Clayton AR(3) model, in other words a model in which

the partial copulas at the first three lags are all Clayton or rotated Clayton (and partial copulas of

higher order are all equal to the independence copula). Use of an AR model (as opposed to MA or

ARMA models) leads to faster simulation times and thus accelerates the Monte Carlo study. The

parameters of the three Clayton copulas are respectively 1.0, 0.8 and 0.6, but the second copula

is rotated through 90 degrees to the left; the corresponding Kendall rank correlations are 0.333,

-0.286, 0.231.

We consider two forecasters: the first forecaster correctly deduces the order of the model and the

13



fact that the copula sequence is Clayton; the second forecaster correctly deduces the order of the

model but uses a sequence of 3 Gaussian partial copulas. Both forecasters estimate the parameters

of their models from the data.

In each repetition of the simulation experiment we assume that the first n observations from

the data-generating process are used to estimate the parameters of the copula process and these

parameters are subsequently held fixed. The marginal distribution is estimated used a rolling

window of n observations and a series of m one-step forecasts are made. To calculate PIT values,

we use formula (8) with k = 3 (since both forecasters use models of finite order 3) combined with

the scaled version of the empirical distribution function F̂
(n)
X (x) = 1

n+1

∑n
i=1 I{xt−n+i⩽x} to ensure

that the first and second arguments of the function Rk are in (0, 1) and (0, 1)k respectively; this

guarantees the PIT values are also in (0, 1).

To calculate quantile scores, AQS and AWQS values we estimate F−1
t+1|k(u), the u-quantile

of the predictive distribution, by taking the empirical Qk(u; F̂
(n)
X (x[t:t−k+1]))-quantile of the data

{xt−n+1, . . . , xt}; we use the default definition of the empirical quantile in R which is calculated

according to method 7 of Hyndman and Fan (1996).

Figure 1 shows the quantile score plot and weighted quantile score plot (14) for a single simulation

experiment where n = 500 and m = 100. In this case we have applied the uniform template function

and we have set J = 100. The black line show the score curve for the first forecaster, who deduces

the correct copula sequence (but still has to estimate their parameters); the red line shows the score

curve for the second forecaster, who incorrectly uses a sequence of Gaussian copulas; the green

line shows the score curve for an ideal forecaster who knows the correct copula sequence and its

parameters. Note how the weighted score plot blows up the differences in both tails and potentially

forms a better basis for comparing forecast performance when the tails of the predictive distribution

are important. The Diebold-Mariano test of forecast equality yields a p-value of 4.9× 10−5 for the

unweighted comparison based on the AQS and a (smaller) p-value of 2.9× 10−5 for the weighted

comparison based on the AWQS. In this case the weighting makes no difference to the inference

(that the first forecaster is significantly better) but this is not always the case.

In the simulation study, using different values of n and m, we obtain the results in Table 1 based

on 1000 replications. Note that, for example, the case where n = 200 and m = 40 represents a

situation where a model is fitted to 50 years of quarterly data and validated on a further 10 years

of data, so this case is relevant to macroeconomic models based on quarterly data (see Section 5);

other cases are more relevant to data collected at a higher frequency, or for a longer period.
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Figure 1: Quantile score plot and weighted quantile scoreplot for m = 100 forecasts based on an estimation window
of length n = 500. Weighting is by the reciprocal of the uniform template function and J = 100. Black line -
forecaster using correct non-Gaussian s-vine copula model; red line - forecaster using incorrect Gaussian copula
model; green line - ideal forecaster.

The results show that the AIC values from the in-sample estimation of the parametric copula

process always favour the correctly specified model. The tests based on out-of-sample PIT values are

relatively ineffective at distinguishing between the correctly and incorrectly specified models. The

Kolmogorov-Smirnov test for the uniformity of the PITs rejects the correctly specified model a little

more often than desired for tests of size 5%. Conversely, for the misspecified model the rejection

rates, while larger than for the correctly specified model, are very modest and never greater than

17.5%. The Ljung-Box test for abence of serial correlation in the PITs gives similarly weak results.

The AQS and AWQS statistics calculated from the out-of-sample forecasts both tend to be

smaller for the correctly specified model than the incorrectly specified model. This tendency in-

creases withm, the number of forecasts, and with n, the size of the estimation window. The weighted

AWQS and the unweighted AQS both lead to a similar percentage of correct model orderings.

There is, however, some difference between the Diebold-Mariano test results for equivalent fore-

cast performance for the AWQS and AQS statistics. The AWQS leads to a higher percentage of

significant test results than the AQS for all values of n and m. However, we need to make at least

m = 100 forecasts to see significant differences in AWQS values at least 50% of the time.
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n 100 200 500
m 40 100 40 100 40 100

AIC correctly ordered 95.2 99.0 100

PIT KS-test significant (correct model) 10.0 8.6 7.8 9.5 5.6 7.2
PIT KS-test significant (misspecified model) 12.0 12.3 13.0 17.5 14.5 15.7

PIT LB-test significant (correct model) 9.2 22.2 7.5 14.1 4.9 7.9
PIT LB-test significant (misspecified model) 9.8 27.5 8.4 16.6 5.6 10.1

AQS correctly ordered 86.1 93.1 91.3 97.3 93.3 98.1
AQS DM-test significant 24.8 48.5 28.9 58.5 31.5 63.3

AWQS correctly ordered 86.6 93.1 92.1 97.3 93.9 98.5
AWQS DM-test significant 26.4 49.8 32.4 61.1 38.5 68.4

Table 1: Simulation study on evaluation of forecasts. Numbers in body of table are percentages based on 1000
replications. KS = Kolmogorov Smirnov test for uniformity. LB = Ljung-Box test for absence of serial dependence
(based on 3 lags). DM = Diebold-Mariano test for equivalent forecast performance. The values of J used were 25,
50 and 100 for n values of 100, 200 and 500 respectively.

These results suggest that the forecast comparison approach based on scoring developed by Gneit-

ing and Ranjan (2011) is a useful method for distinguishing between competing nonparametric

ARMA models based on different s-vine specifications. It seems reasonable to use the ordering of

AQS or AWQS values (particularly when this accords with the ordering of in-sample AIC values) to

choose a favoured forecasting model, although a large number of forecasts are required before clear

superiority of one model over another can be demonstrated.

5 Forecasting the force of inflation in the US

The raw data for the analysis in this section are taken from the OECD website and are the quarterly

total consumer price index (CPI) values from the final quarter of 1959 to the first quarter of 2022.

From these we compute quarterly values for the annualized force of inflation and express these as

a percentage. In other words, our data are observations of Yt = 100× 4× ln(CPIt/CPIt−1), where

CPIt denotes the CPI in quarter t, and we have 249 quarterly observations of the force of inflation

from the first quarter of 1960, as shown in Figure 2.

We form a training dataset consisting of observations of Yt up to and including the final quarter

of 2011. An automatic ARIMA modelling procedure in R suggests a seasonal ARIMA model of

order (1, 1, 2)(1, 0, 0)4 for the training data implying that a single ordinary difference is required

to obtain data that admit a stationary model. Thus we model the first difference of the force of

inflation Xt = Yt − Yt−1 in our s-vine models; this yields n = 207 observations in the training set.
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Figure 2: Quarterly data on the annual force of inflation in the US from 1960 - 2022.

We use the semi-parametric method to fit various s-vine models of order (1, 2)(1, 0)4 to the data

x1, . . . , xn starting with a model where all pair copulas are Gaussian, which we consider to be the

baseline model. We systematically replace pair copulas at the first few lags with non-Gaussian

copulas from the Clayton, Joe, Frank and Gumbel families; in these cases the copula sequences are

all truncated at lag k = 40 since longer copula sequences yield no improvement in fit. The most

promising models result from Gumbel substitutions and our final chosen model of order (1, 2)(1, 0)4

is based on substituting Gumbel copulas at the first 15 lags. The parameter estimates, AIC and

BIC values for the baseline Gaussian copula model and the model with Gumbel substitutions (which

we simply refer to as the Gumbel model) are shown in Table 2. Figure 3 shows the Kendall partial

autocorrelation function (kpacf) of the Gumbel model, showing negative partial dependence at the

first three gags and then a decaying pattern of alternating positive and negative partial dependence

thereafter; this picture provides some justification for truncation of the copula sequence at lag

k = 40.

ar1 ma1 ma2 sar1 AIC BIC

Gaussian model -0.45 0.14 -0.67 0.30 -77.20 -63.80
Gumbel model -0.47 0.14 -0.61 0.34 -83.80 -70.40

Table 2: Estimates for AR, MA and seasonal AR parameters as well as AIC and BIC values for two ARMA
(1, 2)(1, 0)4 models fitted to training data.

We conducted a residual analysis for both models based on an idea proposed in Bladt and McNeil
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Figure 3: Kendall partial autocorrelation function (kpacf) of the Gumbel copula model.

(2022). We construct the series {z1, . . . , zn} by setting z1 = F̂
(n)
X (x1) and

zt+1 = R̂t

(
F̂

(n)
X (xt+1); F̂

(n)
X (x[t:1])

)
, t = 1, . . . , n− 1,

and then test whether {Φ−1(z1), . . . ,Φ
−1(zn)} forms a random sample from a normal distribution.

For both models the normal hypothesis is not rejected in a Shapiro-Wilks test.

We now turn to one-step, out-of-sample forecasting using m = 41 values of the first difference

Xt = Yt − Yt−1 starting in the first quarter of 2012 and ending in the first quarter of 2022. To

compare the forecasting performance of the models we form the score plot and weighted score plot

(this time based on the normal template function) as shown in Figure 4. The Gumbel model tends

to give lower scores and lower weighted scores than the Gaussian model. The AQS values are

respectively 0.643 and 0.659 while the AWQS values (using the normal template function) are 2.26

and 2.32. While these both indicate a preference for the Gumbel model, the Diebold-Mariano tests

do not indicate a significant different in forecasting performance in this case (p-values are 0.49 for

AQS and 0.50 for AWQS).

To complete the analysis we show in Figure 5 our forecasts of the distribution of Yt for each

quarter from the start of 2012. The distributional forecasts are summarised by red lines at the
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Figure 4: Quantile score plot and weighted quantile scoreplot for m = 41 forecasts of the first difference of the force
of inflation based on an estimation window of length n = 207. Weighting is by the reciprocal of the normal template
function and J = 50. Black line - forecaster using Gumbel copula model; red line - forecaster using Gaussian copula
model.
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Figure 5: Forecasting the annual force of inflation in the US from 2012–2022. The red lines show estimated
quantiles of the forecast distribution at the levels αj = j/20 for j = 1, . . . , 19.
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estimated αj-quantiles, where αj = j/20 for j = 1, . . . , 19. The actual realized value of Yt is

superimposed as a black line.

6 Conclusion

The methodology described in this paper offers improved forecasting for time series that are poorly

modelled by classical ARMA processes. In contrast to other approaches that are designed to acco-

modate non-Gaussian data in the classical linear paradigm, such as Box-Cox transformations of the

data or the use of non-Gaussian innovations, our approach allows a fully flexible non-parametric

estimate of the marginal distribution as well as a detailed modelling of serial dependence using a

parametric s-vine that may contain non-Gaussian pair copulas.

The methodology is relatively straightforward to implement and tools for estimation and model

validation are available in the R package tscopula on CRAN.
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