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Abstract

Recently, a simple nowcasting model for volatility has been proposed by Breitung and Hafner
(2016). They suggest a model in which today’s volatility is not only driven by past returns, but
also by the current information from the same day. Empirical results demonstrate the relevance
of the current squared return for volatility nowcasting. Their model obeys an ARMA repre-
sentation estimable by maximum likelihood. However, their estimation approach builds on a
number of simplifications and we suggest improvements. Rather than assuming normality of the
innovations in the ARMA representation for highly skewed and leptokurtic log-squared returns,
we take non-normality explicitly into account. Contrary to most situations regarding volatility
estimation and forecasting, the distribution actually plays a crucial role in the construction
of volatility nowcasts. We devise a one-step exact maximum likelihood estimator which offers
significant improvements in estimation efficiency and volatility nowcast accuracy in finite sam-
ples. In our empirical application, we investigate five major international stock markets from
2000 to 2019 (including sub-samples relating to the Great Financial Crisis). The results suggest
that our estimation approach significantly outperforms the one by Breitung and Hafner (2016)
in all cases. Financial volatility can be nowcasted more accurately by applying our suggested
estimation approach.
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1 Introduction

Financial volatility is key in a wide range of theoretical and applied fields including risk manage-

ment, portfolio choice, asset and option pricing. The voluminous literature on volatility modelling

and forecasting has experienced many major breakthroughs in the last decades including the (gen-

eralized) autoregressive conditional heteroskedasticity model (Engle, 1982 and Bollerslev, 1986),

the stochastic volatility model (Taylor, 1986), and the realized and implied volatility measures

(Andersen and Bollerslev, 1998 and Latane and Rendleman, 1976).

ARCH-type volatility models based on daily returns are indisputable the leading workhorse in

empirical studies and very often used as a benchmark, see e.g. Hansen and Lunde (2005). In

these models conditional variances are driven by its lags and past returns. Breitung and Hafner

(2016) emphasize that the current (squared) return is not included in the information set when

estimating the volatility even though it contains presumably the most important information, see

also Politis (2007). Breitung and Hafner (2016) make an important contribution to the literature

by suggesting a simple model which includes the currently observed return and thus enables so-

called volatility nowcasts.1 Quick changes in volatility are typically better captured by including

the contemporaneous return information. A similar idea was picked up by Smetanina (2017) and

introduced as Real-Time GARCH (RT-GARCH). Ding (2021) studies the weak diffusion limits

of these two approaches and finds that only the one by Breitung and Hafner (2016) converges

to a meaningful process, i.e. the same limit to which the exponential GARCH by Nelson (1991)

converges.

Breitung and Hafner (2016) demonstrate the relevance of the current observation for volatility now-

casting in an application to daily S&P 500 returns from 1950 to 2012. Their suggested simple

structural nowcasting model obeys an reduced-form ARMA representation (see also Ruiz, 1994,

Asai, 1998 and Francq and Sucarrat, 2018) for the log-squared returns. Thereby, the effect of the

contemporaneous observation can be estimated from reduced-form ARMA parameters. The exis-

tence of the ARMA representation is also beneficial for a comparison to the log-GARCH model

independently proposed by Pantula (1986) and Geweke (1986) which also admits an ARMA rep-

resentation for log-squared returns, but excludes the current return from the information set. For

this model, Francq and Sucarrat (2018) suggest a maximum likelihood estimator which takes the
1The term "nowcasting" is borrowed from the macroeconomic literature and probably somewhat confusing in the

financial context. The basic idea of volatility nowcasting is to have a volatility model in which the current squared
return enters. In this sense, the volatility nowcasts enable a contemporaneous news effect.
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distributional characteristics of log-squared return innovations explicitly into account. Asymptotic

results on strong consistency and asymptotic normality for the estimator are provided in Francq and

Sucarrat (2018). Their simulation results clearly indicate efficiency gains which certainly outweigh

the slightly increased computational efforts.

In the estimation part, Breitung and Hafner (2016) make some simplifications which motivates our

suggested modifications leading to improvements in parameter estimation efficiency and volatility

nowcasting accuracy. Contrary to most volatility estimation and forecasting situations (see e.g.

Corsi et al., 2008), in the particular case considered here, the distribution actually matters for

the construction of volatility nowcasts. In our work, we follow Breitung and Hafner (2016) and

combine it with the maximum likelihood estimation approach of Francq and Sucarrat (2018) to

explicitly account for the inherent non-normality of log-squared return innovations. Due to a large

moving average root, we do use stationary initial recursion values obtained from a nonlinear and

non-Gaussian state space filter and thus devise an exact maximum likelihood estimator. It improves

estimation efficiency of the parameters involved in the ARMA representation and provides more

accurate volatility nowcasts. The following points address differences and similarities to existing

approaches.

First, standardized log-squared returns are highly negatively skewed and leptokurtic and thus far

from normality. Even under normality of returns, the consequential distribution would be a stan-

dardized logarithmic χ2-distribution which strongly deviates from normality. Under fat-tailedness

of returns, as commonly observed as a stylized fact in financial markets (Cont, 2001), say via a

t(ν)-distribution, log-squared standardized returns would follow a standardized logarithmic F (1, ν)-

distribution. Simulation results in Francq and Sucarrat (2018) are encouraging and motivate us to

account for non-normality in the context of Breitung’s and Hafner’s volatility nowcasting model

in a similar fashion. We emphasize that the distribution of the reduced form ARMA innovations

is directly and uniquely determined by the distribution of the structural innovations. It is thus

only required to specify a distribution for the structural innovations as the reduced form ARMA

innovation distribution is then determined by the log-squared transformation automatically. Given

that symmetry is a requirement in this model framework2, we restrict our attention to the class

of symmetric location-scale distributions for the structural innovations. We thus show how to ob-

tain the distribution for the log-squared transformation needed for the exact maximum likelihood
2The distribution of the structural innovations needs to be symmetric such that the returns follow a martingale

difference sequence, see Breitung and Hafner (2016). Such a property implies that the reduced form innovations are
serially uncorrelated.
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estimation of reduced form ARMA model in general and work out two leading examples in this

work. Besides normality, we provide the leading case of a t-distribution (see e.g. Bollerslev, 1987)

and thus derive estimators based on the log−χ2- and log−F -distributions. We thus compare the

results of different distributions and also explicitly state which distribution suits best for the struc-

tural innovations. For this issue, we refer to the selection of densities as in Marin and Sucarrat

(2015) and use information criteria. The authors find that the Schwarz criterion performs very well,

especially for the relatively large sample sizes we consider. This procedure addresses the question

how to select the best suited distribution for the structural innovations. Thereby, the distribution

of reduced form innovations is automatically given by the log-squared transformation.

Second, we also improve upon estimation of the expected value of standardized log-squared returns

which plays a crucial role in the construction of volatility nowcasts via a mean-adjusting localization

parameter. Due to an identification problem of the intercept in the ARMA representation for

log-squared returns, estimation is carried out for a mean-corrected ARMA representation, see also

Breitung and Hafner (2016) and Francq and Sucarrat (2018). The construction of volatility nowcasts

require the inverse operation of adding an appropriate localization parameter which hinges also on

the expected value of standardized log-squared returns. Breitung and Hafner (2016) use a two-step

estimation approach, while we suggest a one-step estimator. Therefore, we also improve estimation

and nowcasting accuracy from this angle. As a by-product, we provide an estimator for the standard

deviation of the estimator for this expected value. Such an estimator is not available in Breitung

and Hafner (2016).

Third, in contrast to Breitung and Hafner (2016) and Francq and Sucarrat (2018), we rely on a

non-Gaussian state-space filter (Kitagawa, 1987, see also Calzolari and Halbleib, 2018) to obtain

stationary initial recursion values. As the typical reduced-form AR and MA parameters are rela-

tively close to, but still below, the boundary of unity, the initial conditions impact the estimation

in a non-negligible way even in larger samples although the effect vanishes asymptotically.

We investigate the newly proposed estimation routine in comparison to existing ones in a Monte

Carlo study. The results clearly confirm that noticeable efficiency gains are achievable in practice.

In a broad empirical application it turns out that for five major stock markets the approach by

Breitung and Hafner (2016) is significantly outperformed over the full sample from 2000 to 2019.

This finding is robust to various sub-samples relating to the Great Financial Crisis. By considering

possible time-variation explicitly we are also able to show that our newly suggested modifications
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outperform its simpler version for all markets in almost all time points. Mean squared nowcast

errors can be significantly reduced by up to 30%. Generally, we find that the inclusion of the

current observation is quite important for volatility nowcasting. While the log-GARCH model

(excluding current information) is routinely outperformed, the RT-GARCH model by Smetanina

(2017) is good competitor, but outperformed in most situations as well. We would like to stress that

we use a 5-minute realized volatility measure as a benchmark for volatility nowcasts rather than

daily squared returns even though the framework of Breitung and Hafner (2016) is designed for the

latter. Realized volatility has proven to be a robust and reliable benchmark for such comparisons,

see Andersen and Bollerslev (1998). As the model by Breitung and Hafner (2016) is about return

data on a daily frequency, it is widely applicable, even in markets in which intraday data is either

not broadly available at all or only in questionable quality. Moreover, realized volatility is not

available for long time spans and costly for a large number of (individual) assets. Besides financial

applications, the model by Breitung and Hafner (2016) could also be applied in a macro-financial

context, say to output and inflation volatility.3

Our paper is organized as follows. Section 2 gives a detailed exposition of the nowcasting model,

its ARMA representation and estimation approaches. Section 3 contains our empirical analysis.

Conclusions are drawn in Section 4. The appendices contain further empirical and simulation

results.

2 Econometric methods

In the following, we present the nowcasting model for volatility and the corresponding ARMA

representation. We provide the framework for obtaining volatility nowcasts, discuss distributional

properties and devise an exact maximum likelihood estimation approach.

2.1 Model specification

We work with the following simple model for financial returns yt as in Breitung and Hafner (2016):

yt = exp(ht/2)ξt , t = 1, 2, ..., T (1)

with ht being the latent log-volatility process and ξt an i.i.d. process with zero mean and unit
3Historically, the ARCH model was applied to inflation volatility, see Engle (1982).

5



variance. The dynamic volatility process is given as

ht = α+ βht−1 + κεt (2)

where α is the intercept in this autoregressive specification and β is the autoregressive parameter

measuring the persistence. The third parameter κ measures the impact of the current information

on volatility in the same period. Stationarity is ensured by excluding a unit root via the restriction

|β|< 1.4 The innovation term εt is given by εt = log(ξ2t )−C with zero mean and variance σ2ε . The

parameter C is defined via C = E[log(ξ2t )] in order to ensure that εt is a zero mean process. The

expectation depends on the distributional properties of ξt. For instance, if ξt were Gaussian, then εt

is distributed as a log−χ2(1) random variable and C ≈ −1.27. Under fat-tailedness, say ξt would

be distributed as a t(5) random variable and hence εt ∼ log−F (1, 5), C equals approximately

-1.57. Similar to Breitung and Hafner (2016), we assume that C is unknown, but contrary to

their approach, we estimate all parameters jointly in one-step rather than resorting to a two-step

procedure where C is estimated in the second step separately from the other parameters in the

volatility nowcasting model.

2.2 ARMA representation

The nowcasting model can be transformed to obtain a simple linear ARMA(1,1) representation. To

this end, define log-squared returns xt = log y2t and one obtains directly

xt = C + ht + εt . (3)

Replacing ht−1 with xt−1−C − εt−1 in the volatility process equation ht = α+ βht−1 + κεt, we get

after re-arrangement

xt = α∗ + βxt−1 + (1 + κ)εt − βεt−1 .

Here, the intercept α∗ is defined as α∗ ≡ α+ (1− β)C = µ(1− β), where µ is the expected value of

xt. The log-squared return series xt hence obeys an ARMA(1,1) representation where the current

information in εt impacts xt contemporaneously and its strength is measured by the parameter κ.

It is interesting and insightful to compare this representation to the one for the log-GARCH model
4Stationarity is investigated in the empirical application by the unit root test under measurement errors as

suggested by Hansen and Lunde (2014). Their test is based on instrumental variable estimation and the results
suggest that realized volatility is highly persistent, but stationary, see Section 3.
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(Francq and Sucarrat, 2018), i.e.

ht = α+ βht−1 + ψ log y2t−1

which we are considering in our simulations and empirical applications as well. Similarly, the ARMA

representation is given by

xt = α∗ + (ψ + β)xt−1 + εt − βεt−1 .

Here, the impact of the lagged return series is measured by the parameter ψ and hence appears in

front of xt−1.

The above ARMA(1,1) representation of the nowcasting model can be expressed as the observa-

tionally equivalent version

xt = α∗ + βxt−1 + ut − θut−1 (4)

where ut = (1 +κ)εt has zero mean and θ = β/(1 +κ). Stationarity and invertibility of this ARMA

process is achieved when 1 + κ > β implying θ < 1. The structural parameter κ is related to the

reduced-form parameters in the following nonlinear way

κ =
β

θ
− 1 .

The nowcast of volatility is obtained by noting that εt = ut/(1 + κ) = (θ/β)ut and

ht = xt − (θ/β)ut − C .

Noteworthy, the nowcasting model enables a contemporaneous impact of information in t on volatil-

ity in the same period. Re-expressing the volatility nowcast as

ht =
α∗θ

β(1− θ)
+

(
1− θ

β

) ∞∑
j=0

θjxt−j (5)

shows that it is a linear filter of current and past information with weights that are exponentially

decaying, see Breitung and Hafner (2016).

If we replace the dynamic volatility process in Equation (2) with

ht = α+ βht−1 + ηt
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where ηt and ξt are mutually independent. The approach is a classical stochastic volatility (SV)

model. Breitung and Hafner (2016) shows this approach still has an ARMA representation with

σ2η =

[
1− θ

β
− θ(β − θ)

]
σ2u

where the SV parameters are fully transformed into ARMA parameters. Equation (5) shows volatil-

ity can be solely defined be the log squared returns and ARMA parameters, therefore the SV filtered

volatility using Kalman filter technique is equivalent to the filtered volatility using ARMA repre-

sentation.

2.3 Volatility nowcasts

Volatility nowcasts ĥt are obtained via

ĥt = xt − ε̂t − Ĉ (6)

where xt is observed and ε̂t is obtained from ût/(1+κ̂) where ût are the residuals from the estimated

ARMA(1,1) model and κ̂ is estimated as κ̂ = β̂/θ̂−1. The constant C = E[log(ξ2t )] can be estimated

by first assuming a zero mean process for ht and then shifting the nowcasts by an estimate of C as

outlined in Breitung and Hafner (2016). Another option is to estimate it directly with the other

ARMA parameters as we suggest. One of the advantages of doing so is that we also build the

likelihood function properly on the basis of a non-Gaussian density function and we estimate the

parameter C accordingly.

Clearly, the accuracy of the volatility nowcasts ĥt hinges directly on the estimation accuracy of the

ARMA parameters β and θ and the constant C. The latter directly demonstrates the importance

of the distributional characteristics for the nowcasts of volatility in this framework. Our target

is to improve estimation accuracy of all parameters, and thereby the volatility nowcasting perfor-

mance, by using an exact maximum likelihood approach with non-Gaussian log-squared innovation

densities. Breitung and Hafner (2016) acknowledge that efficiency gains are possible by imposing

appropriate distributional assumptions (e.g. logarithmic χ2-distribution for εt based on normality of

ξt or logarithmic F -distribution under a fat-tailed t-distribution of ξt) when building the likelihood

function. As the authors point out, an exact maximum likelihood procedure (with stationary initial

values) should be preferred as the moving average parameter θ is typically close to unity in empirical
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applications. Overall, the increased computational cost is almost zero on modern computers, while

the gains in accuracy are remarkable, even in larger samples. Our empirical results clearly show

that significant gains are achievable in practice.

2.4 Exact Maximum Likelihood estimation

We start with the reduced-form ARMA(1,1) model

xt = α∗ + βxt−1 + ut − θut−1 .

Similar to Breitung and Hafner (2016) and Francq and Sucarrat (2018), we estimate the sample

mean of xt (µ̂ = T−1
∑T

t=1 xt) and work with the mean-adjusted counterpart (as indicated by x̃t)

x̃t = βx̃t−1 + ũt − θũt−1.

The general log-likelihood function with (non-Gaussian) density f for estimating the parameters

ϑ = {β, θ, C} is given as

logLT (ϑ) = log f(x1;ϑ) +

T∑
t=2

log f(xt|xt−1, ..., x1;ϑ) . (7)

A crucial point is the specification of the density f .5 The innovation term of the reduced form

ARMA process for log-squared returns might follow an unfamiliar distribution even if the structural

return innovation distribution is well known. In some cases (like for the Gaussian and Student-

t distribution), the densities of the squared standardized random variable belong to the set of

standard distributions (e.g. χ2- and F -distribution).6 The logarithmic form is, however, only

available in a few cases, but can be derived from the original distribution by using the exponentiated

squared standardized random variable and associated standardization parameters. The general

exact maximum likelihood approach we suggest allows for symmetric location-scale distributions of

the structural innovation distribution and uses their log-squared transformation.7 Besides normality

of structural return innovations, we provide the leading case for modelling fat tails in finance, namely
5Please note that this density is determined via the log-squared transformation of the structural innovation density,

see below.
6A counterexample could be the generalized error distribution (see e.g. Nelson, 1991) whose squared form needs

to be derived as an intermediate step.
7Symmetry is required to retain the martingale difference sequence properties of yt, see the discussion in Breitung

and Hafner (2016). The authors also study an asymmetric extension covering the leverage effect. Such a specification
might absorb some of potential asymmetry. Hence, an asymmetric version might be interesting in such situations.
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the t-distribution, see Bollerslev (1987) for the GARCH context. This leads us to the log−χ2(1)-

and log−F (1, ν2)-distribution for the reduced form ARMA innovations in the representation for

log-squared returns. The selection of the density for structural innovations is addressed at the end

of this section.

Similar to Francq and Sucarrat (2018), the reduced form innovation density is a log−χ2(1) distri-

bution, given Gaussianity of ξt. The standardized density of the log−χ2(1)-distribution is given

as:
1√
2π

exp

(
1

2
ũt

)
exp

(
−1

2
exp(ũt)

)
, (8)

see e.g. Comte (2004) for its probabilistic properties. Alternatively, under fat-tailedness of ξt, say

via ξt ∼ t(ν2), the resulting density for the reduced form innovations is the standardized density of

the log−F (1, ν2)-distribution following Jones (2008):

1

B
(
1
2 ,

ν2
2

) · exp

(
1

2
ũt −

1 + ν2
2
· log (1 + exp(ũt))

)
(9)

where B(·, ·) is the beta function. In this case, the parameter vector ϑ is augmented by the additional

parameter ν2.

To construct the volatility nowcasts given in (6), we need to transform the estimated ARMA error

term ̂̃ut into ût = ̂̃ut − α̂∗, and ε̂t = (θ̂/β̂)ût. The intercept α∗ is estimated as α̂∗ = µ̂(1 − β̂).

Henceforth, volatility nowcasts are given as ĥt = xt − ε̂t − Ĉ, as described above. Finally, κ is

estimated via κ̂ = β̂θ̂−1 − 1.

We resort to an exact maximum likelihood [EML] estimator with stationary initial recursion values.

Several choices can be made to estimate the initial recursion value x1 and to get a non-zero innovation

u1, i.e. via backcasting, an EM-algorithm or a state-space approach. After having experimented,

we opt for the latter approach and rely on the non-Gaussian Kitagawa filter.

A Monte Carlo simulation with 5000 replications shows the exact maximum likelihood estimator

advantage over the conditional one. The data generating process follows the proposed structural

model with standard normally distributed ξt innovations. Two settings of parameters are employed

here: β equals 0.95 (or 0.99) and κ is set to 0.056 (or 0.042). The two settings imply a moving

average root θ of 0.9 (or 0.95) near unity. These settings resemble typical empirical situations. The

intercept α is set to zero.

First, the MSE of estimated reduced form ARMA parameters are reported in Table B.1. In the
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first two columns, the parameters are estimated using the Gaussian approximation using CML. In

columns three to eight, the parameters are estimated by using the log−χ2(1)-distribution with either

zero initial recursion value (CML) or "estimated" initial recursion values (EML and backcasting).

The advantage of the EML estimator can be clearly seen as it offers a gain in MSE of about 30%

compared to the CML estimator by using the log−χ2(1)-distribution. Moreover, a gain of over 40%

is possible for the case of T = 2000. The advantage of accurately estimated parameters by using an

EML estimator with the log−χ2(1)-distribution is also reflected in the evaluation of the nowcast

performance. In Table B.2, the volatility nowcast performance by using the Gaussian approximation

and the log−χ2(1)-distribution with EML is compared by means of R2, MSE and MAE:

R2 = 1−

∑T
t=1

(
ht − ĥt

)2
∑T

t=1

(
ht − h

)2 , (10)

MSE =
1

T

T∑
t=1

(
ht − ĥt

)2
, (11)

MAE =
1

T

T∑
t=1

∣∣∣ht − ĥt∣∣∣ , (12)

where ht is the generated log volatility and h̄t denoting the sample average of ht. The EML estimator

using log−χ2(1)-distribution gives a higher R2 and lower MSE/MAE over all sample sizes. Even

with a sample size of T = 2000, the R2 is more than 10% higher by using the log−χ2(1) distribution

together with the EML estimator in comparison to the Gaussian approximation. Further simulations

are conducted in which both estimation approaches are misspecified. We use Student-t distribution

with ten degrees of freedom for the structural innovations. Results are reported in Table B.3. In all

cases, the log−χ2(1) approach outperforms the Gaussian approximation. Finally, the MSE of the

estimation of the constant parameter C is reported in Table B.4. In comparison to the Gaussian

approximation and log-GARCH model, the proposed ARMA nowcasting model offers the smallest

MSE overall, especially for the smaller sample sizes. Overall, we observe clear evidence of the

advantage of i) using the non-Gaussian distribution, ii) the estimation of the initial recursion value

and iii) the joint estimation of parameters ϑ = {β, θ, C}. All these techniques of the non-Gaussian

distribution, the jointly estimated parameter C and the estimation of initial recursion value (EML)

are applied in our empirical analysis in the next Section.

We employ the density selection procedure proposed by Marin and Sucarrat (2015) to select the best

suited distribution for the structural innovations ξt. The reduced form innovation density is then
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obtained via the log-squared transformation. The method uses information criteria. According

to the simulation study in Marin and Sucarrat (2015), the Schwarz criterion provides the most

accurate density selection. The procedure consists of three steps: for each candidate density, its

parameters (collected in the vector λ, including mean and variance parameters) are estimated via

maximum likelihood in their standardized form. Next, the Schwarz criterion, SC = −2 logLT (λ) +

dim(λ) log T , is computed. The density yielding the smallest value of SC is selected for ξt. The

density for the reduced form innovations is then obtained via the log-squared transformation.

We illustrate the accuracy of the density selection procedure in a small Monte Carlo simulation

study. We draw the innovations ξt from the standard normal distribution or the t-distribution

with ten degrees of freedom. To be noticed, we use the standardized form of the t-distribution as

given in the R (R Core Team, 2020) package "fGarch" Wuertz et al. (2013) with three parameters

λ = {µ, σ2, ν} in both, the simulation study and the empirical analysis. The results are reported

in Table B.5. The procedure performs quite well. With a sample size of T = 2000, the procedure

selects the correct distribution in more than 99% of the cases. The estimated parameters lie close

to the true parameters.

3 Application to five stock indices

We apply the proposed volatility nowcasting methods to the daily returns of five major stock

indices: Dow Jones Industrial Average, Nasdaq, S&P 500, FTSE and Nikkei 225. Thereby, we

cover three different US stock markets, a European and an Asian one. These markets have been

widely analyzed in the related literature and we study the merits and limitations of several volatility

nowcasting approaches. In particular, we compare our approach using exact maximum likelihood

for the log−χ2-distribution (and log−F (1, ν2)-distribution) to the simplified version by Breitung

and Hafner (2016) using normality assumptions and QML estimation.8 We provide an empirical

study of our volatility nowcasting approach building upon non-normality of log-squared returns to

a version assuming normality (Breitung and Hafner, 2016) and a specification which accounts for

non-normality but excludes the contemporaneous effect (Francq and Sucarrat, 2018). In detail,

we include a log-GARCH specification in our comparison whose maximum likelihood estimation

builds upon the log−χ2-distribution. Thereby, we are able to isolate the effect of including the

contemporaneous effect from simultaneously accounting for non-normality of log-squared returns.

8The authors exploit the information that the theoretical variance equals π2

2
in their estimation procedure.

12



Table 1: Descriptive statistics of returns and log-squared returns

rt log r2t
# obs. Mean Var Skewness Kurtosis Mean Var Skewness Kurtosis

Dow Jones 5010 0.000 1.174 -0.141 11.250 -1.889 6.999 -1.187 5.990
Nasdaq 5011 -0.020 1.721 -0.049 10.224 -1.385 6.295 -1.084 5.466
S&P 500 5013 0.009 1.224 -0.333 11.168 -1.825 6.702 -1.158 6.398
FTSE 5041 -0.005 1.251 -0.388 9.109 -1.571 5.802 -1.148 6.106
Nikkei 225 4866 0.000 1.235 -0.747 14.182 -1.635 5.829 -1.117 5.993

All specifications are estimated via their ARMA representation and are thus directly comparable.

The daily data is sampled from 01/03/2000 to 12/30/2019 and retrieved from the Oxford-Man

Realized Library.9 We use open-to-close returns.10 We conduct a full sample analysis and further

studies on sub-samples (see below). The full sample data is visualized in Figure 1. Here, we plot the

returns and the log-squared returns for the five markets under consideration. Descriptive statistics

of (log-squared) returns are provided in Table 1. It can be seen that the returns share the common

characteristics of an almost zero mean, slightly negative skewness and considerable excess kurtosis.

Typical features like volatility clusters are present in the data. Regarding the log-squared returns

we also find remarkable skewness and kurtosis which further motivates the use of an exact maximum

likelihood estimation approach.

Now, we proceed with the estimation of volatility models and nowcast evaluation.11 Estimation re-

sults are reported in Table 2. In the first column, the result for the Breitung and Hafner (2016) [BH]

approach is given, followed by our proposed versions with a log−χ2-distribution and a log−F (1, ν2)-

distribution and finally, the log-GARCH model as implemented in Francq and Sucarrat (2018) by

means of the R (R Core Team, 2020) package "lgarch" Sucarrat (2015). R2 of each estimation is

computed. Moreover, we present estimation results for the reduced-form ARMA(1,1) model with

autoregressive parameter β, moving average parameter θ and the implied measure κ for the impor-

tance of the contemporaneous information. For the log−F (1, ν2)-distribution, an estimate of ν2 is

reported as well. Standard errors computed via the Hessian matrix are reported in parentheses.

The estimates of the ARMA parameters β and θ are plausible and highly significant. The implied

estimates of κ = β/θ − 1 have also plausible sign and magnitude in all markets. We find the

contemporaneous effect to be important and somewhat larger in log−χ2-specifications (up to 0.093
9Data is retrieved from: https://realized.oxford-man.ox.ac.uk/

10Returns are calculated as rt = 100 · (lnPt− lnPt−1) with Pt denoting the level of the stock market index in time
point t.

11Estimation of the covariance matrix of the parameters is done via the Hessian matrix. As κ is defined as the
ratio between the autoregressive and the moving average parameter (minus one), the variance of κ̂ is obtained by the
delta method.
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Figure 1: Returns and log-squared returns
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for Dow Jones). Furthermore, the estimated degree of freedom ν2 in the log−F (1, ν2)-specifications

resemble the previously detected non-normality in returns. The estimates vary between 6.2 and 9.0.

This result is consistent with the result obtained from the density selection procedure which prefers

the fat-tailed t-distribution over the Gaussian distribution in all markets, see Table 3. The estimated

degrees of freedom stay in line with the ones in log−F -distribution. Finally, the estimated values for

the constant C controlling the volatility nowcasting mean adjustment also suggest deviations from

normality as their estimates differ (significantly) from the theoretical value of -1.27. By construction,

the Breitung and Hafner (2016) approach does not offer a standard error for the estimate of C, while

it is available for our exact maximum likelihood approach and also the log-GARCH model by Francq

and Sucarrat (2018).

In Table 4, as evaluation measures for volatility nowcasts ĥt we compute the MSE and MAE by using

log-realized volatility ht (based on 5-minutes sampling) as a benchmark. Contrary to Breitung and

Hafner (2016), we evaluate the nowcasts against realized volatility (5-min).12 For both loss functions

we also provide relative measures in which the Breitung and Hafner (2016) approach is taken as

the benchmark (with value 1). Values below unity indicate that the benchmark is outperformed

and vice versa. Additionally, we compare the volatility nowcast obtained from the RT-GARCH

model following Smetanina (2017). In the RT-GARCH model the volatility is also driven by the

information set including the current period and QML is employed for parameter estimation.13

The nowcasting performance is compared by means of the model confidence set (MCS) approach

introduced by Hansen et al. (2011). The p-values for models included in the final model confidence

set are given in the table below MSEs and MAEs, respectively. Missing entries indicate that the

respective model is eliminated from the model confidence set.

12An application of the Hansen and Lunde (2014) instrumental variable-based unit root test confirms the absence
of a unit root at all conventional significance levels, see Appendix C.

13Estimation results for the RT-GARCH model are available upon request.
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Table 2: Volatility nowcasting estimation of full sample data

Dow Jones
BH log−χ2(1) log−F (1, ν2) log-GARCH

R2 0.484 0.591 0.588 0.393
κ 0.060 (0.006) 0.093 (0.005) 0.060 (0.005)
β 0.990 (0.003) 0.967 (0.004) 0.985 (0.003) 0.973 (0.003)
θ 0.934 (0.007) 0.885 (0.003) 0.929 (0.003) 0.907 (0.006)
C -1.472 (—) -1.395 (0.023) -1.474 (0.032) -1.632 (0.020)
ν2 6.213 (0.523)

Nasdaq
BH log−χ2(1) log−F (1, ν2) log-GARCH

R2 0.434 0.520 0.624 0.333
κ 0.047 (0.005) 0.060 (0.004) 0.048 (0.004)
β 0.994 (0.002) 0.984 (0.002) 0.991 (0.002) 0.982 (0.002)
θ 0.949 (0.006) 0.928 (0.003) 0.945 (0.003) 0.925 (0.005)
C -1.356 (—) -1.315 (0.021) -1.335 (0.026) -1.606 (0.020)
ν2 9.002 (1.005)

S&P 500
BH log−χ2(1) log−F (1, ν2) log-GARCH

R2 0.503 0.580 0.613 0.394
κ 0.062 (0.006) 0.083 (0.005) 0.061 (0.004)
β 0.989 (0.003) 0.977 (0.003) 0.988 (0.002) 0.980 (0.002)
θ 0.932 (0.007) 0.902 (0.003) 0.931 (0.003) 0.915 (0.005)
C -1.438 (—) -1.387 (0.022) -1.441 (0.030) -1.476 (0.020)
ν2 6.650 (0.582)

FTSE
BH log−χ2(1) log−F (1, ν2) log-GARCH

R2 0.506 0.570 0.589 0.404
κ 0.057 (0.006) 0.081 (0.005) 0.066 (0.004)
β 0.985 (0.004) 0.976 (0.003) 0.982 (0.003) 0.981 (0.003)
θ 0.932 (0.007) 0.903 (0.003) 0.921 (0.003) 0.915 (0.006)
C -1.337 (—) -1.280 (0.022) -1.328 (0.026) -1.482 (0.020)
ν2 9.003 (0.908)

Nikkei 225
BH log−χ2(1) log−F (1, ν2) log-GARCH

R2 0.447 0.558 0.549 0.331
κ 0.057 (0.007) 0.090 (0.005) 0.046 (0.004)
β 0.987 (0.004) 0.967 (0.005) 0.988 (0.003) 0.975 (0.003)
θ 0.934 (0.009) 0.887 (0.004) 0.944 (0.003) 0.911 (0.006)
C -1.459 (—) -1.387 (0.023) -1.471 (0.031) -1.604 (0.020)
ν2 6.193 (0.507)

Note: Bold-faced values indicate the best performing specification. Numbers in parentheses are standard
deviations.
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Table 3: Density selection of full sample data

Gaussian distribution t-distribution
SC µ σ2 SC µ σ2 ν

Dow Jones 14988.823 0.026 1.085 14575.010 0.065 1.096 4.789
Nasdaq 14703.280 -0.006 1.054 14476.281 0.034 1.055 6.508
S&P 500 14994.256 0.011 1.085 14644.012 0.053 1.092 5.182
FTSE 14961.910 -0.002 1.072 14829.378 0.020 1.076 7.602
Nikkei 225 14564.930 0.005 1.086 14111.200 0.029 1.076 5.438

Note: Bold-faced value indicates the selected density.

Table 4: Volatility nowcasting performance of full sample data

Dow Jones
BH log−χ2(1) log−F (1, ν2) log-GARCH RT-GARCH

MSE 1 0.794 0.799 1.177 0.793
MCS p-value 1.000 0.956 1.000
MAE 1 0.883 0.799 1.103 0.882
MCS p-value 0.100 1.000 0.690

Nasdaq
BH log−χ2(1) log−F (1, ν2) log-GARCH RT-GARCH

MSE 1 0.849 0.666 1.177 0.834
MCS p-value 1.000
MAE 1 0.911 0.787 1.097 0.903
MCS p-value 1.000

S&P 500
BH log−χ2(1) log−F (1, ν2) log-GARCH RT-GARCH

MSE 1 0.846 0.780 1.221 0.804
MCS p-value 1.000 0.199
MAE 1 0.916 0.858 1.122 0.886
MCS p-value 1.000 0.059

FTSE
BH log−χ2(1) log−F (1, ν2) log-GARCH RT-GARCH

MSE 1 0.870 0.833 1.206 0.878
MCS p-value 0.242 1.000 0.323
MAE 1 0.933 0.895 1.123 0.933
MCS p-value 1.000

Nikkei 225
BH log−χ2(1) log−F (1, ν2) log-GARCH RT-GARCH

MSE 1 0.798 0.815 1.210 0.774
MCS p-value 0.964 0.464 1.000
MAE 1 0.884 0.861 1.127 0.864
MCS p-value 1.000 0.846

Note: Bold-faced value(s) indicate the model(s) with the largest MCS p-value. Numbers in italics are
relative to the benchmark (BH). Missing entries indicate that the respective model is eliminated from the

model confidence set.
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Figure 2: Volatility nowcasting (full sample)
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Figure 3: Cumulative net squared and absolute error plots (full sample)
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Strikingly, the Breitung and Hafner (2016) approach is outperformed in each case by both sug-

gested variants (log−χ2(1) and log−F ) using exact maximum likelihood estimation. This result

holds irrespectively of the particular evaluation measure (R2, MSE or MAE). The coefficient of

determination is increased by 8.2 (FTSE) to 18.9 (Nasdaq) percentage points relative to the bench-

mark. Overall, the best performing specifications (estimated via exact maximum likelihood and

non-Gaussian distributions) offer R2 measure in the range from 55.8% (Nikkei) to 62.4% (Nas-

daq). The log-GARCH specification performs somewhat worse, suggesting that the inclusion of the

contemporaneous information is indeed quite important. However, additionally accounting for non-

normality of log-squared returns via an exact maximum likelihood approach further enhances the

nowcast performance via the log−χ2 and log−F specifications. The MSE and MAE measures can

be reduced by around twenty and fifteen percent (in comparison to the Breitung and Hafner (2016)

approach) across the different markets, respectively. Volatility nowcasts are displayed in Figure

2. It can be seen that realized volatility is tracked quite well by the ARMA-based models using

only daily data rather than intra-day information. This is also supported by the overall R2-values

of around 60%. Based on the MCS results, the best nowcasting model with log−F -distribution

is included for all five markets (being consistent with the density selection procedure), while the

second best is the RT-GARCH model which is included less often. Neither the Gaussian nowcasting

model nor the log-GARCH model are included in the model confidence set for any market.

Before we turn to our sub-sample analyses, we first investigate potential time-variation in the

relative nowcasting performance: It is possible that even though the newly proposed exact maximum

likelihood approach dominates the extant one by Breitung and Hafner (2016) over the full sample,

the relative nowcasting performance might be time-varying within the sample. This is studied by

considering simple cumulative net squared (or absolute) errors. The squared and absolute errors

(ht − ĥt)
2 and |ht − ĥt| enter the three evaluation measures R2, MSE and MAE. Therefore, it

is informative to consider the cumulative net difference (Vt) of these errors between the BH and

x = {log−χ2} approach over time

Vt =
t∑

j=1

∣∣∣hj − ĥBHj ∣∣∣p − ∣∣∣hj − ĥxj ∣∣∣p ,
with p = {1, 2}. These are provided in Figure 3. For convenience, we rescale the values to a

terminal value of ±1 for ease of comparison.14 Values above unity indicate that the Breitung and
14As the BH approach is outperformed in all cases, terminal values VT are always rescaled to +1.
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Hafner (2016) approach is outperformed and vice versa. While the sign of the cumulative net errors

might vary over time, the terminal value is positive as the Breitung and Hafner (2016) approach is

outperformed in all markets. Remarkably, the displayed cumulative net errors clearly demonstrate

a dominance by the newly proposed methods over nearly each single time period.

Overall, the results indicate the advantages of the newly proposed methods over existing ones, also

dynamically over time. We observe a mostly monotonic and sometimes even linear shape of the

cumulative net errors. There is very little difference in the results for squared and absolute errors.

We now turn to our sub-sample analyses relating to the Great Financial Crisis, we choose for

simplicity a similar sample split point as in the related work of Smetanina (2017), i.e. 07/31/2008.

The pre-crisis sample contains about 2100 observations, while the crisis (and post-crisis) sample

ends in 12/30/2019 covering about 2860 data points.

Descriptive statistics of the data on sub-samples are given in Table A.1. The overall descriptive

findings in the full sample hold approximately for all considered sub-samples with some interesting

variations. The stock returns during the (post-)crisis sub-sample exhibit the largest kurtosis, while

the pre-crisis has smaller kurtosis in contrast. The difference in kurtosis between the samples is

clearly smaller, when we consider the log-squared returns. In contrast, the skewness of the series is

increased through the log-squared transformation nearly in all markets and across all sub-samples.

What does the sub-sample analysis of pre- and post-crisis reveal? Tables A.2 to A.5 report the

results. First of all, most of the previous findings can also be established for two sub-samples

relating to the Great Financial Crisis. The evaluation of performance measures leads to similar

conclusions as for the full sample. Interestingly, the importance of the contemporaneous information

is much more important in the sample ranging from 08/01/2008 to 12/30/2019. Here, we find that

in most markets the estimate of κ is doubled in comparison to the pre-crisis sub-sample. In a similar

vein, the estimated degree of freedom ν2 is reduced by around two units indicating fatter tails as

expected and confirmed by descriptive statistics. This is also reflected and further substantiated

by the estimates of C which deviate stronger from -1.27 (under normality). Again, the density

selection procedure follows Marin and Sucarrat (2015) is in favour of t-distribution in all cases, see

Table A.6. The cumulative net error plots in Figures A.1 and A.2 reveal that the BH approach

performs best in the beginning of the early 2000s for the Nasdaq and during the Great Financial

Crisis for the FTSE, while it is outperformed in all other cases and time points. The findings

within sub-samples are consistent with the results obtained for the full sample. The MCS results
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also show a similar pattern to the previous analysis. In the pre-crisis sub-sample, the nowcasting

model with log−F -distribution performs best for all markets (one exception is the Nikkei with

MAE loss). The benchmark model is always excluded, while th RT-GARCH model is excluded

for the Nasdaq and S&P 500. In the post-crisis sub-sample, we find a more diverse picture. The

RT-GARCH model is best performing in three markets (Dow Jones, S&P 500 and Nikkei), while

the log-F nowcasting model performs best for Nasdaq and FTSE. Still, the benchmark model (BH)

is significantly outperformed and thus excluded for each market.

4 Conclusions

In this work, we consider a simple nowcasting model for daily financial volatility. The model allows

the current return observation to impact volatility of the same day. Contrary to many situations

involving volatility estimation and forecasting, the distributional assumptions in the estimation

of the model plays a decisive role. We suggest a one-step exact maximum likelihood estimator

which takes non-normal distributional characteristics of log-squared return innovations explicitly

into account. Overall, estimation efficiency can be improved from several angles. In simulations we

show that noticeable improvements are achievable. Our empirical application to five major stock

markets underline the merits of the suggested approach. We find the benchmark to be significantly

outperformed in all cases. The current information matters and so does the estimation routine for

the construction of volatility nowcasts. These claims are clearly confirmed by our empirical results.

As the proposed volatility nowcasting method does not require intraday data, it can be of additional

interest in markets where such information is difficult to obtain in a sufficiently high quality. Fur-

thermore, the use of daily data is (almost) free of charge and does not require tedious intra-day data

cleaning procedures. Given that the volatility nowcasts extracted from the exact maximum likeli-

hood approach perform quite well and may explain around 60% percent of 5-min realized volatility,

it offers a good benefit/cost-ratio for practical purposes.

An interesting extension for practical situations with many assets in a high-dimensional setting

would be a multivariate equation-by-equation framework similar to Francq and Sucarrat (2017).

This avenue is left for future research.
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Figure A.1: Cumulative net squared and absolute error plots (pre-crisis sub-sample)
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Figure A.2: Cumulative net squared and absolute error plots (post-crisis sub-sample)
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Tables

Table A.1: Descriptive statistics of returns and log-squared returns (pre/post-crisis sub-sample)

pre-crisis sub-sample 01/03/2000 to 07/31/2008
rt log r2t

# obs. Mean Var Skewness Kurtosis Mean Var Skewness Kurtosis

Dow Jones 2145 0.011 1.146 -0.162 6.505 -1.583 5.906 -1.088 4.877
Nasdaq 2144 0.000 2.497 0.193 8.705 -0.813 5.646 -1.024 4.787
S&P 500 2145 -0.012 1.159 -0.065 5.460 -1.534 5.721 -1.050 4.888
FTSE 100 2157 -0.031 1.256 -0.339 5.902 -1.460 5.672 -1.170 5.581
Nikkei 225 2075 0.000 1.218 -0.237 4.306 -1.345 5.714 -1.356 6.416

post-crisis sub-sample 08/01/2008 to 12/30/2019
rt log r2t

# obs. Mean Var Skewness Kurtosis Mean Var Skewness Kurtosis

Dow Jones 2865 0.000 1.193 -0.146 14.171 -2.069 7.016 -0.875 4.413
Nasdaq 2867 0.020 1.134 -0.470 9.431 -1.800 6.328 -1.199 6.132
S&P 500 2868 0.024 1.269 -0.478 14.583 -2.028 7.062 -0.967 4.989
FTSE 2884 0.014 1.242 -0.385 11.609 -1.693 6.535 -1.383 6.874
Nikkei 225 2791 -0.028 1.250 -1.120 21.104 -1.895 6.440 -1.211 6.408
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Table A.2: Volatility nowcasting estimation of pre-crisis sub-sample data

Dow Jones
BH log−χ2(1) log−F (1, ν2) log-GARCH

R2 0.388 0.515 0.542 0.330
κ 0.033 (0.007) 0.054 (0.006) 0.038 (0.005)
β 0.995 (0.003) 0.981 (0.004) 0.988 (0.003) 0.981 (0.004)
θ 0.963 (0.007) 0.930 (0.004) 0.951 (0.004) 0.931 (0.008)
C -1.431 (—) -1.362 (0.032) -1.414 (0.042) -1.536 (0.031)
ν2 7.356 (0.935)

Nasdaq
BH log−χ2(1) log−F (1, ν2) log-GARCH

R2 0.308 0.423 0.561 0.296
κ 0.021 (0.005) 0.034 (0.004) 0.025 (0.004)
β 0.998 (0.001) 0.996 (0.001) 0.997 (0.001) 0.995 (0.002)
θ 0.978 (0.005) 0.963 (0.003) 0.973 (0.004) 0.951 (0.005)
C -1.298 (—) -1.223 (0.030) -1.274 (0.038) -1.513 (0.031)
ν2 9.003 (1.166)

S&P 500
BH log−χ2(1) log−F (1, ν2) log-GARCH

R2 0.369 0.465 0.546 0.274
κ 0.032 (0.007) 0.047 (0.005) 0.037 (0.005)
β 0.994 (0.003) 0.986 (0.004) 0.991 (0.003) 0.983 (0.004)
θ 0.963 (0.008) 0.943 (0.004) 0.955 (0.004) 0.935 (0.007)
C -1.403 (—) -1.346 (0.032) -1.391 (0.041) -1.346 (0.031)
ν2 7.611 (0.997)

FTSE
BH log−χ2(1) log−F (1, ν2) log-GARCH

R2 0.515 0.582 0.603 0.412
κ 0.051 (0.008) 0.076 (0.006) 0.067 (0.006)
β 0.987 (0.005) 0.982 (0.004) 0.983 (0.004) 0.986 (0.004)
θ 0.939 (0.009) 0.912 (0.005) 0.922 (0.005) 0.920 (0.008)
C -1.273 (—) -1.199 (0.032) -1.259 (0.039) -1.415 (0.030)
ν2 9.003 (1.155)

Nikkei 225
BH log−χ2(1) log−F (1, ν2) log-GARCH

R2 0.387 0.468 0.498 0.306
κ 0.030 (0.007) 0.043 (0.006) 0.030 (0.005)
β 0.992 (0.005) 0.981 (0.006) 0.990 (0.004) 0.979 (0.005)
θ 0.962 (0.010) 0.940 (0.005) 0.961 (0.004) 0.942 (0.008)
C -1.361 (—) -1.323 (0.033) -1.363 (0.040) -1.437 (0.031)
ν2 9.003 (1.348)

Note: Bold-faced values indicate the best performing specification. Numbers in parentheses are standard
deviations.
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Table A.3: Volatility nowcasting performance of pre-crisis sub-sample data

Dow Jones
BH log−χ2(1) log−F (1, ν2) log-GARCH RT-GARCH

MSE 1 0.792 0.748 1.093 0.814
MCS p-value 0.603 1.000 0.176
MAE 1 0.792 0.832 1.058 0.889
MCS p-value 1.000

Nasdaq
BH log−χ2(1) log−F (1, ν2) log-GARCH RT-GARCH

MSE 1 0.792 0.635 1.018 0.829
MCS p-value 1.000
MAE 1 0.792 0.760 1.014 0.894
MCS p-value 1.000

S&P 500
BH log−χ2(1) log−F (1, ν2) log-GARCH RT-GARCH

MSE 1 0.792 0.719 1.150 0.826
MCS p-value 1.000
MAE 1 0.792 0.812 1.087 0.899
MCS p-value 1.000

FTSE
BH log−χ2(1) log−F (1, ν2) log-GARCH RT-GARCH

MSE 1 0.792 0.818 1.211 0.865
MCS p-value 0.311 1.000 0.680
MAE 1 0.792 0.873 1.131 0.923
MCS p-value 0.084 1.000 0.313

Nikkei 225
BH log−χ2(1) log−F (1, ν2) log-GARCH RT-GARCH

MSE 1 0.792 0.818 1.132 0.813
MCS p-value 0.914 1.000
MAE 1 0.792 0.878 1.075 0.896
MCS p-value 1.000 0.379

Note: Bold-faced value(s) indicate the model(s) with the largest MCS p-value. Numbers in italics are
relative to the benchmark (BH). Missing entries indicate that the respective model is eliminated from the

model confidence set.
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Table A.4: Volatility nowcasting estimation of post-crisis sub-sample data

Dow Jones
BH log−χ2(1) log−F (1, ν2) log-GARCH

R2 0.500 0.604 0.574 0.375
κ 0.082 (0.009) 0.122 (0.008) 0.078 (0.007)
β 0.985 (0.005) 0.959 (0.006) 0.982 (0.004) 0.963 (0.004)
θ 0.910 (0.010) 0.855 (0.005) 0.911 (0.005) 0.875 (0.008)
C -1.485 (—) -1.406 (0.030) -1.512 (0.047) -1.724 (0.026)
ν2 5.199 (0.023)

Nasdaq
BH log−χ2(1) log−F (1, ν2) log-GARCH

R2 0.392 0.492 0.574 0.232
κ 0.061 (0.007) 0.082 (0.007) 0.057 (0.005)
β 0.985 (0.005) 0.967 (0.005) 0.985 (0.003) 0.968 (0.004)
θ 0.929 (0.009) 0.894 (0.004) 0.932 (0.004) 0.900 (0.008)
C -1.387 (—) -1.347 (0.030) -1.412 (0.040) -1.684 (0.026)
ν2 6.233 (0.657)

S&P 500
BH log−χ2(1) log−F (1, ν2) log-GARCH

R2 0.536 0.611 0.609 0.415
κ 0.080 (0.009) 0.112 (0.007) 0.078 (0.006)
β 0.985 (0.004) 0.971 (0.004) 0.987 (0.003) 0.975 (0.003)
θ 0.913 (0.010) 0.874 (0.005) 0.915 (0.005) 0.893 (0.007)
C -1.435 (—) -1.347 (0.031) -1.437 (0.043) -1.539 (0.026)
ν2 5.959 (0.482)

FTSE
BH log−χ2(1) log−F (1, ν2) log-GARCH

R2 0.498 0.565 0.577 0.374
κ 0.063 (0.009) 0.085 (0.007) 0.057 (0.007)
β 0.982 (0.006) 0.973 (0.005) 0.984 (0.004) 0.971 (0.005)
θ 0.924 (0.012) 0.896 (0.005) 0.931 (0.005) 0.895 (0.009)
C -1.388 (—) -1.339 (0.031) -1.427 (0.039) -1.544 (0.026)
ν2 7.175 (0.852)

Nikkei 225
BH log−χ2(1) log−F (1, ν2) log-GARCH

R2 0.419 0.569 0.525 0.273
κ 0.059 (0.009) 0.128 (0.008) 0.056 (0.007)
β 0.987 (0.005) 0.957 (0.007) 0.984 (0.004) 0.972 (0.005)
θ 0.932 (0.011) 0.848 (0.005) 0.931 (0.005) 0.887 (0.009)
C -1.526 (—) -1.346 (0.032) -1.506 (0.049) -1.675 (0.027)
ν2 5.080 (0.484)

Note: Bold-faced values indicate the best performing specification. Numbers in parentheses are standard
deviations.
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Table A.5: Volatility nowcasting performance of post-crisis sub-sample data

Dow Jones
BH log−χ2(1) log−F (1, ν2) log-GARCH RT-GARCH

MSE 1 0.791 0.852 1.249 0.780
MCS p-value 1.000 0.059 1.000
MAE 1 0.889 0.902 1.143 0.882
MCS p-value 1.000 0.494 1.000

Nasdaq
BH log−χ2(1) log−F (1, ν2) log-GARCH RT-GARCH

MSE 1 0.836 0.701 1.263 0.769
MCS p-value 1.000
MAE 1 0.905 0.821 1.138 0.871
MCS p-value 1.000

S&P 500
BH log−χ2(1) log−F (1, ν2) log-GARCH RT-GARCH

MSE 1 0.837 0.843 1.260 0.791
MCS p-value 0.368 0.550 1.000
MAE 1 0.916 0.902 1.135 0.887
MCS p-value 0.301 1.000

FTSE
BH log−χ2(1) log−F (1, ν2) log-GARCH RT-GARCH

MSE 1 0.866 0.842 1.247 0.901
MCS p-value 1.000 1.000 0.116
MAE 1 0.935 0.907 1.140 0.953
MCS p-value 1.000

Nikkei 225
BH log−χ2(1) log−F (1, ν2) log-GARCH RT-GARCH

MSE 1 0.741 0.819 1.251 0.702
MCS p-value 0.139 1.000
MAE 1 0.851 0.856 1.150 0.821
MCS p-value 0.235 0.168 1.000

Note: Bold-faced value(s) indicate the model(s) with the largest MCS p-value. Numbers in italics are
relative to the benchmark (BH). Missing entries indicate that the respective model is eliminated from the

model confidence set.
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Table A.6: Density selection of pre- and post-crisis sub-sample data

Gaussian distribution t-distribution
pre-crisis sub-sample

SC µ σ2 SC µ σ2 ν

Dow Jones 6182.727 0.017 1.034 6108.159 0.036 1.032 7.620
Nasdaq 6047.199 0.019 1.002 6033.608 0.026 1.002 13.796
S&P 500 6168.085 -0.010 1.031 6117.306 0.007 1.030 8.430
FTSE 6299.512 -0.020 1.054 6280.211 -0.002 1.055 11.507
Nikkei 225 6009.261 0.002 1.042 5967.624 0.017 1.040 9.614

post-crisis sub-sample
SC µ σ2 SC µ σ2 ν

Dow Jones 8753.005 0.031 1.125 8417.432 0.088 1.163 3.834
Nasdaq 8558.424 0.021 1.086 8351.026 0.086 1.100 4.831
S&P 500 8732.930 0.029 1.119 8440.743 0.087 1.146 4.137
FTSE 8604.832 0.011 1.085 8499.733 0.034 1.094 6.202
Nikkei 225 8364.680 -0.025 1.093 7985.776 0.005 1.086 4.428

Note: Bold-faced value indicates the selected density.
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B Simulation results

Estimation of ARMA parameters

Table B.1: MSE of parameter estimation

Gaussian log−χ2(1)
CML CML EML Backcasting

β = 0.95, κ = 0.056 (θ = 0.9)
T β θ β θ β θ β θ

500 0.757 0.903 0.293 0.328 0.386 0.435 0.907 1.137
1000 0.362 0.478 0.171 0.204 0.173 0.207 0.217 0.314
1500 0.245 0.333 0.125 0.154 0.102 0.124 0.121 0.186
2000 0.164 0.233 0.093 0.116 0.067 0.082 0.072 0.114

β = 0.99, κ = 0.042 (θ = 0.95)
T β θ β θ β θ β θ

500 0.418 0.592 0.109 0.190 0.123 0.211 0.217 0.401
1000 0.083 0.156 0.041 0.085 0.029 0.063 0.033 0.097
1500 0.030 0.069 0.023 0.054 0.013 0.031 0.014 0.047
2000 0.017 0.045 0.014 0.038 0.007 0.019 0.008 0.030
Note: All values are given in ×100.
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Evaluation criteria

Table B.2: Nowcasting performance of ARMA(1, 1) model with ξt
i.i.d.∼ N(0, 1).

Gaussian log−χ2(1)
T R2 MSE MAE R2 MSE MAE

β = 0.95, κ = 0.056 (θ = 0.9)

500 0.729 0.046 0.165 0.877 0.021 0.113
1000 0.744 0.039 0.157 0.880 0.019 0.108
1500 0.766 0.036 0.151 0.886 0.017 0.106
2000 0.788 0.033 0.145 0.907 0.014 0.098

β = 0.99, κ = 0.042 (θ = 0.95)

500 0.814 0.053 0.171 0.886 0.034 0.138
1000 0.882 0.034 0.138 0.938 0.018 0.098
1500 0.923 0.025 0.120 0.959 0.014 0.083
2000 0.937 0.022 0.112 0.964 0.014 0.074

Table B.3: Nowcasting performance of ARMA(1, 1) model with ξt
i.i.d.∼ t(10).

Gaussian log−χ2(1)
T R2 MSE MAE R2 MSE MAE

β = 0.95, κ = 0.056 (θ = 0.9)

500 0.715 0.058 0.185 0.806 0.041 0.152
1000 0.744 0.046 0.168 0.807 0.035 0.147
1500 0.765 0.040 0.159 0.810 0.032 0.145
2000 0.772 0.038 0.157 0.812 0.032 0.145

β = 0.99, κ = 0.042 (θ = 0.95)

500 0.831 0.056 0.174 0.847 0.054 0.165
1000 0.882 0.039 0.145 0.909 0.031 0.123
1500 0.909 0.030 0.129 0.934 0.023 0.107
2000 0.933 0.026 0.120 0.955 0.017 0.093

Estimation of the constant C

Table B.4: MSE of Ĉ.

β = 0.95, κ = 0.056 (θ = 0.9) β = 0.99, κ = 0.042 (θ = 0.95)

T Gaussian log−χ2(1) log-GARCH Gaussian log−χ2(1) log-GARCH

500 6.054 0.007 0.043 1.648 0.010 0.213
1000 1.360 0.003 0.022 0.279 0.005 0.122
1500 0.137 0.002 0.014 0.071 0.003 0.085
2000 0.088 0.002 0.011 0.002 0.002 0.065
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Density selection

Table B.5: Density selection performance

Gaussian distribution t-distribution
T Frequency µ σ2 Frequency µ σ2 ν

500 0.995 0.000 0.999 0.583 -0.001 1.248 12.232
1000 0.997 0.001 0.999 0.866 0.000 1.248 11.485
1500 0.997 0.000 0.999 0.967 0.001 1.248 10.930
2000 0.998 0.000 1.000 0.991 0.000 1.250 10.631

C Unit root test

Table C.1: Hansen and Lunde (2014) test for RV

full sample pre-crisis post-crisis

Index π̂ HL stat π̂ HL stat π̂ HL stat

Dow Jones 0.963 -177.563 0.955 -94.911 0.964 -94.509
Nasdaq 0.947 -251.238 0.955 -95.284 0.928 -188.433
S&P 500 0.956 -207.697 0.952 -100.856 0.956 -115.028
FTSE 0.960 -188.828 0.950 -107.323 0.968 -83.888
Nikkei 225 0.930 -321.978 0.917 -170.125 0.928 -182.289

Notes: π̂ stands for the largest AR root and HL is the Hansen and Lunde (2014) unit root statistic under
measurement errors. The 1% and 5% critical values are -20.7 and -14.1, respectively.
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