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Abstract

This study uses a comprehensive financial modeling approach to optimize the selection of

equity sector Exchange Traded Funds. The probability distribution of fund returns is esti-

mated using market options prices, the Heston stochastic volatility model, and risk-premium

transformation methods. The probability distribution is discretized using Monte-Carlo sim-

ulation, and the simulated input samples are winsorized to account for estimation and sim-

ulation error. We use a portfolio optimization with stochastic dominance constraints to

account for higher moments. The optimal portfolio outperforms the S&P 500 index, a basic

sector-momentum strategy, and a range of alternative active strategies out of sample, after

accounting for risk and transaction costs. The superior performance is more pronounced

during high-volatility states during which option prices are most informative. No significant

performance gains are achieved with a Regular Vine copula instead of a traditional Gaussian

copula, despite the non-linear dependence that exists between the funds.
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1. Introduction

In security selection and asset allocation, a financial modeling approach based on Econo-

metrics and Mathematical Programming often faces head winds in the form of a curse of

dimensions, high sensitivity to estimation error and high transaction costs. Simple heuristic

decision rules such as equal-weighted winners-minus-losers portfolios (Jegadeesh and Titman,

1993) and equal diversification (DeMiguel et al., 2009) are often superior out-of-sample. Im-

provement upon heuristics generally requires an eclectic approach which combines and inte-

grates methods and techniques from Finance, Decision Science, Econometrics and Optimiza-

tion.

This study develops a modeling approach to equity sector selection using Exchange Traded

Funds (ETFs). An ETF is an investment fund that is traded on stock exchanges much like

stocks. It generally operates with an arbitrage mechanism designed to keep it trading close to

its net asset value, although deviations can occasionally occur. This particular application is

promising for a number of reasons. The cross-section is limited to nine diverse sectors ETFs.

Transaction costs are limited due to the low expense ratios and bid-ask spreads. Options are

available for these ETFs, which allows for extracting forward-looking information about the

return distribution from market prices and option valuation formulas.

Equity sector selection appears highly profitable using equal-weighted portfolios of stocks

in winner industries (Moskowitz and Grinblatt, 1999). This approach is, however, based

on paper portfolios which do not account for transactions costs. Earlier studies show lim-

ited evidence that this strategy can be applied in a profitable way due to high turnover

(Andreu et al., 2013; Tse, 2015; Novy-Marx and Velikov, 2016; Vanstone et al., 2021). This

study explores whether a financial modeling approach to sector ETF selection achieves sig-

nificant risk-adjusted outperformance after transaction costs. To assess this, a new and

comprehensive data set (2000-2020) is constructed of spots and options of sector ETFs that

constitute the S&P500 market index. In addition, a number of techniques and methods are

incorporated into a holistic methodology. These include:

• Forward-looking estimates for the marginal risk-neutral distribution (RND) of sector

ETF returns from option prices;
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• Parametric stochastic processes for extracting information from the options prices sur-

face (all strikes and maturities);

• Risk transformation methods to obtain real-world distributions (RWDs) from RNDs;

• Multivariate copulas to model the mutual dependence between the sector ETFs;

• Monte Carlo simulation to draw samples and discretize the estimated joint RWD for

numerical purposes;

• Winsorization of the simulated input samples to account for estimation and simulation

error;

• Portfolio optimization with Stochastic Dominance (SD) constraints to account for the

skewness and downside risk of the RWD of sector ETF portfolio returns.

The combined approach significantly outperforms the S&P500 index (SPX) and various sim-

pler active approaches (including a sector-momentum heuristic and mean-variance optimiza-

tion) in terms of a range of performance measures out of sample. All of the aforementioned

techniques and methods are important for achieving outperformance, with the exception of

the choice of the multivariate copula, which underlines the importance of using an integrated

modeling approach.

Our work is related to several strands of literature. These include option-implied

portfolio selection (Kostakis et al., 2011; DeMiguel et al., 2013; Kempf et al., 2015),

copula-based portfolio optimization (Patton, 2004; Low et al., 2013; Kakouris and Rustem,

2014), portfolio optimization with SD constraints (Dentcheva and Ruszczyński, 2006;

Roman et al., 2013; Post et al., 2018), SD-based option pricing (Constantinides et al., 2009;

Constantinides et al., 2011; Post and Longarela, 2021), and robust portfolio management

(see Fabozzi et al. (2007) for a review). However, to our knowledge, this study is the first

to integrate all of the aforementioned methods and techniques into a feasible, coherent and

effective methodology.

This study finds results of risk-adjusted outperformance, which add to the evidence

against market efficiency. Given the low cost of ETFs, the modest rebalancing frequency
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and the publicly available data that we use, our strategy is applicable in a real-world envi-

ronment and may be of interest to a wide range of investors and institutions.

The methodology is not limited to sector ETFs. Other possible applications that could

benefit from the same methodology are the asset allocation across multiple currencies or

commodity futures. In these cases, the dimensionality is limited, transactions costs are low

and options are available.

2. Methodology

The portfolio optimization approach that is applied in this study can be bifurcated into

two parts. First, we forecast the joint probability distribution of the 9 sector funds and the

marginal probability distribution of the benchmark. Second, we conduct a numerical opti-

mization of the fund portfolio using the predicted probabilities of the funds and benchmark

returns. For each rebalancing date t, the estimation window It consists of the daily data of

the previous 12 months in relation to spot and option prices. The forecast horizon and the

holding period are both one month (H = 1/12 years).

Four steps are taken at every portfolio formation date (t): (1) estimate the marginal

RWDs for every ETF and benchmark, (2) estimate the dependence structure of the funds’

returns using copula models, (3) discretize the ETFs joint distribution using random sam-

pling, and (4) optimize the portfolio with SD constraints. Table 1 provides the description of

the competing investment strategies. A synopsis of these steps is given below; the technical

details are presented in Supplementary Appendices A-E. Table 2 summarizes the notation

that is used for variables and parameters.

[Insert Table 1 ]

[Insert Table 2 ]

2.1. Estimate the marginal RWDs of individual sector funds

Three alternative methods are used for estimating the marginal RWD of every sector ETF.

The first two methods apply option-pricing models (BSM and Heston) to ETF option market

prices. The third model (GJR-GARCH) uses a time-series estimation. While BSM assumes
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an i.i.d. process, Heston and GARCH are based on two different time-varying volatility

processes. Given that volatility clustering is a well-known feature of financial data, the

Heston and GARCH are expected to yield superior forecasts and portfolio performance.

The option-based approach yields RND estimates that need to be transformed into RWD

estimates. One important shortcoming is that the RNDs have zero-valued risk premiums for

all base assets, by definition. Additionally, the risk-neutral variance and kurtosis tend to

be higher than the real-world counterparts. Furthermore, RNDs are more negatively skewed

than real-world densities.

Bliss and Panigirtzoglou (2004) evaluate single-parameter transformations that take the

shape of the Intertemporal Marginal Rate of Substitution of a single-parameter utility func-

tion of a representative agent. They find that ex-post, real-world densities for the S&P

500 and FTSE 100 indices are a significant improvement upon their risk-neutral densities.

Liu et al. (2007) and Kostakis et al. (2011) provide further utility-based results for these

markets. However, as empirical estimates of implied risk aversion are incompatible with

a standard consumption-based framework (Jackwerth, 2000; Rosenberg and Engle, 2002;

Ziegler, 2007), standard utility transformations are unlikely to provide completely satisfac-

tory real-world densities.

Liu et al. (2007) and Shackleton et al. (2010) estimate the two parameters of a more

flexible transformation, by maximizing the likelihood of the one-period-ahead equity prices.

They demonstrate that this approach is superior to a one-parameter transformation in terms

of fitting and forecasting the equity return distribution. We apply two established transfor-

mation methods here following Liu et al. (2007) and Shackleton et al. (2010). With regards

to the lognormal distribution, we apply a statistical calibration using a two-parameter beta

distribution as a calibration function.

For the Heston model, the application of a statistical beta calibration is complicated by

the absence of an analytical cumulative distribution function (cdf) and inverse cdf. There-

fore, we apply an alternative method by Atiya and Wall (2009) based on the adjustment of

risk premia. Shackleton et al. (2010) show that this approach yields similar results as the

two-parameter calibration when both the price and the variance equations are transformed.

Therefore, this approach seems suitable for our Heston bivariate model. Simulation under

5



the risk premium transformation does not require inverse cdf calculations and is based on a

standard discretization scheme such as the Milstein one (Kahl and Jäckel, 2006).

In our application, the Atiya and Wall (2009) method adjusts the risk premiums di-

rectly using Maximum Likelihood estimates for the market price of risk specification

[λ1

√

(1− ρ2)Vt;λ2

√
Vt] proposed by Aı̈t-Sahalia and Kimmel (2007). While λ1,2 are risk

adjustment parameters which are given as a fraction of the variance Vt and ρ is the corre-

lation between price and variance processes, the price risk premium equals λ1(1− ρ2) + λ2ρ

reflecting its dependence on variance. This specification results in the bivariate real-world

stochastic model given by Eq. (C2.1) in Appendix C2.

The steps for each model are as follows.

a. For the BSM model: 1) for each rebalancing date in the window It, find the end-of-day,

nearest-the-money implied variance V for the nearest-to-expiry options; 2) using Eq.

(B.3), calculate risk-neutral lognormal cdfs with forecast period H for all rebalancing

dates in It (see Appendix B); 3) calculate the parameters a and b of the beta distribution

in Eq. (C1.1) that is used as a calibration function by maximizing the likelihood of the

one-period-ahead prices (see Appendix C1).

b. For the Heston model: 1) using the screened cross-section of options contracts on date

t, calculate Heston model parameters, {V0, κ, θ, σ, ρ}, by minimizing mean squared

error in Eq. (B.8) (see Appendix B); 2) using the estimation window It and calculated

parameters, {V0, κ, θ, σ, ρ}, calculate risk-premium drifts, λ1 and λ2, for real-world

dynamics in Eq. (C2.1) by maximizing likelihood in Eq. (C2.8) (see Appendices C2).

c. For the GJR-GARCH(1,1,1) model, using estimation window It, estimate parameter

vector, {ω,α,α−,β,υ}, by maximizing the likelihood of Eq. (E.2) (see Appendix E).

2.2. Estimate the between-fund dependence using copulas

Having estimated the marginal RWDs for every sector fund, we turn to the estimation

of the joint distribution of the funds. Extracting the joint distribution from option prices

requires options with multiple underlying assets that are not available for sector ETFs. In-

stead, we use the historical time series in the estimation window to estimate the dependence

structure using copulas.
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We use two multivariate copulas. The first one is a traditional Gaussian copula which

can model only linear dependence using the Pearson correlation. The second is a Regular

Vine (R-Vine) copula model, which allows modeling of nonlinear dependence between fund

returns. Among other things, the R-Vine copula can model lower tail dependence typically

seen in equity returns due to increased correlations in bad economic times (Ang and Chen,

2002; Patton, 2004; Low et al., 2013).

The R-Vine copula is based on the decomposition of the joint distribution into a product

of conditional bivariate (pair) copulas. Each pair relationship can be modeled using various

types of bivariate copulas.1 The R-Vine copula is a graphical representation of the pair-

copula construction in a sequence of 8 connected trees, where the number of trees is one less

than the number of assets.

To fit the R-Vine copula, we use the Dissmann et al. (2013) algorithm (Algorithm 3.1 in

Dissmann et al. (2013)). It comprises three components which are performed sequentially:

(1) tree structure selection using a maximum spanning tree algorithm with weights being

equal to Kendall correlation; (2) pair-copula selection from 49 bivariate copulas based on the

Akaike criterion; (3) pair-copula parameters estimation using maximum likelihood estimator.

To obtain the copula estimates, we use the following two steps:

a. Extract the standardized residuals z of the estimated univariate GJR-GARCH models

using Eq. (E.1) for the 9 sector ETFs using all observations in the estimation window

It. Convert the standardized residuals z into pseudo-observations u ∈ [0, 1] using the

marginal probability distribution.

b. Fit the multivariate copula model (Gaussian or R-Vine) to the pseudo-observations,

u = [u1, . . . , u9], obtained in Step 2.2.a..

More details are provided in Appendix D.

1For our application, we use the following set of bivariate copulas: independence, Gaussian, Student-t,

Gumbel, Clayton, Frank, Joe, BB1, BB6, BB7, BB8, Tawn (type 1 and 2) copulae and their rotated versions.
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2.3. Draw a large input sample from the joint distribution

To discretize the joint distribution for numerical optimization, we use a Monte Carlo

simulation to obtain a large input sample. The algorithms of the BSM, Heston and GARCH

model sampling is described below in four steps:

a. Draw a sample of 10,000 pseudo-observations u from the estimated copula model,

obtained in Step 2.2.b. (Algorithm 2.2. in Dissmann et al. (2013)).

b. For the BSM model: 1) using the calibration function parameters a and b estimated in

Step 2.1.a., apply the inverse beta cdf to pseudo-observations u obtained in Step 2.3.a.;

2) using V found in Step 2.1.a., apply the inverse of lognormal cdf in Eq. (B.3) to the

obtained values. This will yield a sample input from a joint probability distribution for

the forecast period H.

c. For the Heston model: 1) using estimated parameters {V0, κ, θ, σ, ρ, µ, λ1,2}, obtained
for 9 ETFs in Step 2.1.b., apply the discretization Milstein scheme to real-world price

dynamic of each ETF in Eq. (C2.1) and simulate 10,000 returns for the forecast period

H; 2) sort simulated returns according to copula sample u, obtained in Step 2.3.a., to

generate the joint distribution sample.

d. For the GJR-GARCH (1,1,1) model: 1) using the univariate GJR-GARCH models

estimates, obtained for 9 ETFs in Step 2.1.c., simulate 10,000 returns for the forecast

period H (see Appendix E); 2) sort simulated returns according to copula sample u,

obtained in Step 2.3.a., to generate the joint distribution sample.

2.4. Portfolio optimization with SD constraints

The optimal portfolio is required to dominate the benchmark by second-

degree stochastic dominance (SSD) (Hadar and Russell, 1969; Hanoch and Levy, 1969;

Rothschild and Stiglitz, 1970). SSD occurs if and only if all rational risk-averse investors

with increasing and concave utility functions prefer the optimized portfolio to the bench-

mark. For non-Gaussian returns distributions, this stochastic order accounts for skewness

and downside risk beyond variance. Using the sample input from section 2.3 with equal
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probabilities (pt = 10−5), we solve the SSD optimization problem that is specified in Ap-

pendix A. The optimal portfolio weights are then applied to holding period (H) returns. The

framework can potentially be applied directly to higher degrees of SD (Post and Kopa, 2017;

Fang and Post, 2022).

3. Data and Estimates

3.1. Data

The investment universe consists of nine sectors ETFs. The specific sector ETFs con-

sidered are Materials (XLB), Consumer Staples (XLP), Energy (XLE), Financial (XLF),

Industrial (XLI), Technology (XLK), Utilities (XLU), Consumer Discretionary (XLY), and

Health Care (XLV). These ETFs track the corresponding S&P 500 sector indices. Table 3

presents the assets under management, expense ratio and bid-ask spread of the ETFs. The

median ETF bid-ask spread is 3 basis points, while the median expense ratio equals 0.19%.2

The median market value of funds is $2,906 million.

The sample period is from January 2000 to December 2020. A one-year moving esti-

mation window of daily returns is used for estimating the GARCH model parameters, risk

transformations and copulas. The subperiod from January 2000 to December 2000 is used

only as an estimation window and not as a portfolio holding period.

Previous studies indicate that option-implied measures work well in cases of short-

term horizon forecasting. Specifically, Kostakis et al. (2011) and Kempf et al. (2015) use

a monthly rebalancing frequency for the portfolio, while DeMiguel et al. (2013) consider

three rebalancing intervals: daily, weekly, and fortnightly. We focus on a one-month holding

period in this study and hence have 239 out-of-sample periods. The portfolio is rebalanced

at the start of the first trading day of the month.

As a benchmark, we consider the S&P 500 equity index, (τ in Appendix A), the most

widely used benchmark for US blue-chip stocks. We also consider the equally-weighted

portfolio and an equal-weighted momentum portfolios comprising the one and three sectors

with the highest mean return in the previous year.

2Further detail regarding SPDR S&P500 sector ETFs is available at https://www.spdrs.com/.
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The options data were obtained from IvyDB US (OptionMetrics). The IvyDB US

database contains a complete historical record of end-of-day data on all US exchange-traded

equity and index options from January 1996 to December 2020. The S&P 500 index options

are European style, while all the ETF options are American style. The historical data were

obtained from the CRSP database. We analyze only the prices of OTM and ATM options

because the ITM contracts are less actively traded and have higher early exercise premia.

Since a closed-form pricing formula is available only for European-type contracts and

all ETF options are American style, we estimate equivalent European option prices from

the American prices which have the same implied volatility, using the BSM model and the

Barone-Adesi (1987) pricing formulae to estimate the early exercise premia. To minimize

the early exercise premium, we use the OTM American options. Their effective maturity is

closer to the maturity of the contract, and hence, only very small errors can be created by

applying these formulae. Since the Heston model provides a closed-form formula for calls

only, we obtain call option values from put options using the put-call parity.

Several screening conditions are used to eliminate illiquid options (Carr and Wu, 2009;

Shackleton et al., 2010; Fan et al., 2018). First, we exclude option records when the bid

price is zero, negative, or more than the ask price. Options with less than five days or more

than one year until expiration are excluded from the sample. We also exclude options with

less than five contracts traded over a day, and options contracts with zero open interest

and/or volume. Options with implied volatilities bigger than 100% or lower than 1% are also

excluded.

After the option screening, the average number of S&P 500 option prices per day is 818,

made up of 588 puts and 230 calls. The average number of expiry dates available for the

S&P 500 index options is 12. The ETF option datasets are significantly smaller. The average

number of options is 74 contracts across all nine ETFs. The largest dataset available is for

the XLE fund with 215 contracts per day (129 puts and 86 calls), while the smallest dataset

is for the XLP fund with 40 contracts per day (27 puts and 13 calls). The average number

of maturities available is 5.5 among all ETFs and does not vary significantly between funds.

These screened data are used for the estimation of the option-implied marginal probabilities of

the ETFs (base assets) and the S&P 500 index (benchmark) using the methodology described
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in Section 2.

Table 3 shows descriptive statistics for the daily historical returns data for the nine ETFs

and the S&P 500 index for the whole sample period. The moments are calculated for each

estimation window and medians and interquartile range of their distributions are provided.

Most assets’ distributions are negatively skewed, and assets exhibit excess kurtosis more than

75% of the time. Not surprisingly, a Gaussian distribution is rejected using the Jarque-Bera

test at every conventional level of significance, for all assets. The non-normality of the data

suggests that the classical mean-variance approach may lead to suboptimal portfolios. The

stochastic dominance approach, in contrast, is a more general method, allowing asymmetric

and heavy-tailed data.

In addition, we tested the data for ARCH and leverage effects. In Table 3, the ARCH

coefficients are the autocorrelation coefficients for the squared returns computed for one

lag. The positive values provide evidence of volatility clustering for all assets. The leverage

coefficients are the linear correlations between the lagged returns, rt−1, and the squared

return, r2, at time t. We observe the negative and statistically significant coefficients for

all the ETFs and the index in more than 50% of periods. This results corresponds to the

negative asymmetry in the marginal probability distributions.

[Insert Table 3 here]

Table 4 presents the unconditional Pearson correlation coefficients between each pair of

ETFs. The table also shows the significant difference between the correlations of the S&P

market index and its constituent ETFs when returns are below (above) the 25th (75th) per-

centile of the market daily returns. This pattern corroborates other studies (Ang and Chen,

2002; Patton, 2004; Low et al., 2013) that describe these conditional correlations as ex-

ceedance correlations. To account for this nonlinear dependence, we use the R-Vine copula.

Unlike the Gaussian copula, vine copula is able to model asymmetric tail dependence.

[Insert Table 4 here]

3.2. Option-implied marginal densities

In this subsection, we investigate the option-implied RND, the effect of risk transformation

and the predictive ability of the estimated RND and RWD. The emphasis will be on the

11



Heston model instead of the BSM, as the former is both more general and more effective for

our purposes than the latter.3

Table 5 shows, for every sector fund, the median (across the formation months) of the

central moments of three alternative one-month-ahead return distributions: empirical proba-

bility distribution (EPD), RND based on the Heston option pricing model and the RWD after

the risk transformation. For comparison, results are also shown for the S&P500 index, the

equally-weighted portfolio (EWP), the ETF with the highest mean return in the 12-month

estimation window (Top-1 EPD), and the ETF with the highest mean according to the

RWD (Top-1 RWD). The distribution estimate is significantly affected by the risk-premium

transformation. As expected, the RWD mean and skewness are increased, while standard

deviation and kurtosis declined. The last three columns of Table 5 reveal that risk transfor-

mation significantly improves the in-sample model fit, measured by the Log Likelihood Ratio

(LLR) that is maximized to select the risk transformation parameters.

The Top-1 RWD ETF naturally shows the strongest divergence between RND and RWD

moments. Since this portfolio has the most favorable mean and risk profile, it will play a

prominent role in the portfolio optimization based on the RWD. By contrast, the RWD of the

’Top-1 EPD’ ETF is similar to that of the median ETF and has a lower mean and skewness as

well as higher volatility and kurtosis than Top-1 RWD. This result illustrates that sector fund

selection based on the RWD generally does not resemble a standard momentum strategy.

[Insert Table 5 here]

The LLR ratio describes the improvement in the estimation window, and it may suffer

from over-fitting to the data. To analyze the predictive ability of the RWD out of sample,

we use the weighted likelihood ratio (WLR) test by Amisano and Giacomini (2007). Table

6 reports the values of the test statistic WLR which has an asymptotic standard normal

distribution. The table shows that the RWD yields better forecasts than the RND for most

sector funds, which mitigates concerns about over-fitting to the realized returns in the esti-

mation window. Moreover, the RWD option-implied models (BSM and Heston) have higher

predictive ability than the GARCH model. Since the RWD moves probability mass from the

3Additional details of the results for the BSM are available upon request from the authors.
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left to the right of the support of the distribution, it is not surprising that it achieves a lower

likelihood ratio for the left tail, for some of the funds.

[Insert Table 6 here]

3.3. Joint density estimation using copulas

We now investigate the multivariate copula fit. Table 7 reports the median (across the

formation months) of the values of several dependence and model fit measures implied by

the Gaussian and R-Vine copula (see Appendix D). For each ETF, we averaged the values of

the pairwise measures across all 8 pairs of ETFs. For comparison, results are shown also for

the S&P500 index, the equally-weighted portfolio (EWP), the ETF with the highest mean

return in the 12-month estimation window (Top-1 EPD), and the ETF with the highest mean

according to the RWD (Top-1 RWD).

[Insert Table 7 here]

As dependence measures, we use the unconditional linear correlation and the differ-

ence between the Ang and Chen (2002) exceedence correlation calculated at 25th and 75th

percentiles. These dependence measures are calculated using a sample of 10,000 pseudo-

observations u drawn from the estimated copula (Step 2.3.a.). The values are lower than

those provided in Table 4 because u is not affected by marginals and outliers, unlike empir-

ical returns data. We can observe that the two copula models imply very similar Pearson

correlation levels for all funds. This pattern suggests that the choice of the kernel model will

not materially affect the Mean-Variance optimization of sector fund portfolios.

Since the Gaussian copula is symmetric, it implies zero exceedance correlation difference.

In the case of the R-Vine copula, we can observe a moderate dependence asymmetry which

is in line with previous studies which document increased dependence during down markets

(Ang and Chen, 2002; Patton, 2004; Low et al., 2013). The elevated left tail correlations can

be expected to discourage portfolio diversification based on SSD optimization, if the joint

distribution is estimated using the R-Vine copula.

As model fit measures, we use the log-likelihood, the Akaike and Schwarz (Bayesian)

criterion. We can observe that the R-Vine copula provides a better fit to the data than
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the Gaussian does for all sector funds. Even after adjusting for the number of parameters

and estimation error, the R-Vine model remains superior, as can be witnessed by the better

(lower) scores on the Akaike and Schwarz criteria. Whether the superior model fit affects

the portfolio composition and investment performance of optimized sector fund portfolios

of course remains to be seen; this will depend, among other things, on whether or not the

dominance constraints are binding in the tails of the distribution.

4. Portfolio performance analysis

In this section, we analyze the out-of-sample performance of the ten competing portfolios

described in Table 1. Two strategies are passive: the benchmark S&P500 index and the

equally-weighted portfolio. Eight portfolios are constructed from the nine sector ETFs to

enhance the S&P500 benchmark index. The portfolio rebalancing takes place monthly on the

first trading day of the month from January 2001 to December 2020. Performance evaluation

is based on monthly returns during the subsequent holding period.

4.1. Evaluation methods

The performance evaluation uses the first four central moments to describe the location,

dispersion and shape of the portfolio return distribution. As economic risk measures, the

value at risk (VaR) and conditional value at risk (CVaR) for 95% confidence level are included.

As performance measures, we consider the certainty equivalent (CE) return for a power utility

function with RRA = 4, u(x) = x−3
−1

−3
, the Sharpe ratio and the Sortino ratio. A number of

statistical tests are performed to determine statistical significance.

A paired t-test is used to determine the statistical significance of the mean spread between

a given portfolio and the benchmark. We use the statistical bootstrap test by Ledoit and Wolf

(2008) to test the null hypothesis that the active portfolio has the same Sharpe ratio as the

benchmark. The statistical resampling test by Linton et al. (2005) is used to test the hy-

pothesis that the active portfolio stochastically dominates the benchmark out of sample.

Turnover serves as a proxy for the level of transaction costs associated with portfolio rebal-

ancing. It is computed as the average absolute change summed across all 9 ETF weights over

239 out-of-sample periods:
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Turnover =
1

239

239
∑

t=1

9
∑

i=1

|ωi,t+1 − ωi,t+|

where ωi,t+1 is the optimal portfolio weight of asset i for period t+1 and ωi,t+ is the portfolio

weight of asset i before rebalancing at time t+1. Additionally, we calculate the portfolio

performance net of transaction costs. To assess it, let pc be the proportional transaction

cost. We allow the transaction costs to vary in time and between base assets, pci,t. When

a portfolio is rebalanced, the total proportional cost is given by
∑N

i=1 pci,t+1 |ωi,t+1 − ωi,t+|.
The evolution of wealth net of transaction costs (NW ) for portfolio ω is given by

NWt+1 = NWt

(

1 +R
T

t ω
)

[

1−
N
∑

i=1

pci,t+1 |ωi,t+1 − ωi,t+|
]

The terminal wealth (NWT ) net of transaction costs will be equal to:

NWT = NW1

(

1
∏

t=1

(

1 +R
T
t ω
)

[

1−
N
∑

i=1

pci,t+1 |ωi,t+1 − ωi,t+|
])

.

Specifically, we model terminal wealth by hypothetically investing $100 (NW1) at the

start of the out-of-sample periods for each portfolio management strategy. The return net of

transaction costs, RNTCt+1, for any strategy at time t + 1 is then given by

RNTCt+1 =
NWt+1

NWt

− 1

We then calculate other performance metrics using the return net of transaction costs,

RNTC. We use ETFs bid-ask spreads recorded on the rebalancing dates as proportional

transaction costs.

4.2. Base case

Table 8 summarizes the out-of-sample performances of the competing portfolio strategies.

The benchmark index (S&P 500 in Column 1) on average yields 0.627% per month, with

a standard deviation of 5.32%, while its negative skewness of -1.43 reflects the effects of

stochastic market volatility and stochastic between-stock correlation.

The equally-weighted passive strategy (EWP in Column 2) outperforms the benchmark

index across all considered performance measures, enhancing its mean return by 245 basis

15



points (bps) per annum. The improvements are both economically and statistically significant

according to all considered tests. This result is expected given earlier studies demonstrating

the robust performance improvement of EWP (DeMiguel et al., 2009).

In Columns 3–5 of Table 8, we provide the performance of portfolios selected based on

historical data. The ETF with the highest mean return in the 12-month estimation window

(Top-1), which tries to capture the industry momentum effect, enhances the mean return

of the SPX by 297 bps per annum. This improvement is only slightly higher than what is

achieved using the simple EWP. In addition, the Sharpe ratio is not significantly improved,

based on the Ledoit and Wolf (2008) test. The equally-weighted winners portfolio (Top-3),

demonstrates similar results to Top-1 but with lower volatility due to better diversification.

The active strategy based on the GJR-GARCH model performs on par with EWP and mo-

mentum strategies but has a lower CVaR95% value. The p-values for Ledoit and Wolf (2008)

and mean spread tests, however, reveal the statistical insignificance of GARCH improvement

relative to the SPX.

In Columns 6–11 of Table 8, the option-implied strategies reveal substantial additional

performance improvements. When we estimate the inputs using the BSM marginal model,

the results trail the heuristic EWP and momentum strategies. This result is consistent with

the inability of the model to account for the negative skewness and excess kurtosis of the risk

profile of the S&P500 index and sector ETFs (see Table 3).

[Insert Table 8 here]

By contrast, remarkable performance improvements are found when the optimization uses

option-implied probabilities, based on the Heston model, which accounts for time-varying

variance. Using the Gaussian copula, the Heston portfolio achieves a mean return of 1.23%

per month, which is an annualized 7.20% increase compared to the S&P 500. Despite the

higher standard deviation of 5.13%, the risk-adjusted performance is superior to the bench-

mark and the heuristic EWP and Top-3 strategies, with a CE of 0.46, Sharpe ratio of 0.20

and Sortino ratio of 0.29. The Sharpe ratio increase of 104% is statistically significant at the

5% level; the hypothesis of out-of-sample stochastic dominance cannot be rejected (p-value:

0.005).
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The copula structure does not seem essential here. Using the R-Vine copula to model

the dependence structure does not yield any improvement compared to the Gaussian copula,

both for the BSM (not tabulated) and the Heston model (Column 7 in Table 8), despite

the compelling evidence for non-linear dependence between the sector funds. A comparison

of the distribution of the SPX and the optimal portfolio reveals that the invariance to the

copula structure and tail risk estimation is related to the favorable mean and skewness of

the optimal portfolio. Due to the improvements of the mean and skewness, the benchmark

risk restrictions are not binding in the top and bottom deciles, for more than 75 percent of

sample.

Using winsorized sample input yields more substantial improvement, especially in terms

of downside risk. Wins has the least negatively skewed return distribution and it maximizes

CE, Sharpe and Sortino across all specifications. The winsorization, however, is not essential

to outperforming the passive and heuristic strategies, and the incremental effect is smaller

than that of the adoption of the Heston model.

The use of the SD order is essential to achieve these attractive results. If we use the mean-

variance approach, the performance of the Heston-based portfolio materially deteriorates: CE

is 0.29, Sharpe is 0.15 and Sortino is 0.21. While the portfolio still outperforms the stock

index and heuristic strategies, the numbers for MVD are well below those for SD. The superior

performance of SD compared with MVD is consistent with Post and Kopa (2017), Post et al.

(2018), and Fang and Post (2022). It reflects that SD can achieve a better balance between

upside potential and downside risk by considering the entire risk profile of portfolios instead

of the variance only.

The risk transformation is even more crucial for achieving outperformance. Heston/RND

significantly underperforms the strategies based on real-world Heston probabilities (Heston,

RVine, Wins and MVD), because all ETFs have the same expected return under the RND.

The risk transformation translates the differences between the ETFs in the dispersion and

shape of the RND to differences in RWD expected return.

Figure 1 shows the cumulative returns of the competing strategies. The relative perfor-

mance observed in Table 8 is reflected in the graph. Heston and Wins lead all other portfolios

from 2001 until 2020.
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[Insert Figure 1 here]

The Heston-based strategies yield the highest average turnover, which means that they

are more exposed to transaction costs than the other portfolios. This, in particular, can be

due to the high sector concentration of Heston-based strategies, which have the highest values

of the squared sum of weights among all active strategies. To account for this effect directly,

we also calculate the portfolios’ performance net of proportional transaction costs (pci,t). The

results are presented in Table 9. As expected, we observe the most significant reduction of

profits for the Heston-based portfolios. Heston and Wins, however, still provide significant

outperformance of the benchmark index and improvements upon the heuristics strategies and

the alternative active strategies. EWP, which is the least affected by transaction costs, also

beats S&P 500 but underperforms Heston and Wins in terms of risk-adjusted performance.

The after-costs results remain strong: for the Heston portfolio, a CE of 0.29, Sharpe ratio

of 0.17 and Sortino ratio of 0.24. Again, these improvements stem from the combined use of

the Heston model and SD order; further improvements can be achieved using winsorization.

[Insert Table 9 here]

Here, we conclude that portfolio optimization with option-implied data offers superior

forecasting probabilities and can lead to better out-of-sample performance of the correspond-

ing portfolios. Regarding the marginal distribution, the Heston model yields the best per-

formance in terms of risk-adjusted returns, while the BSM model cannot outperform passive

strategies and the portfolios constructed using the historical distribution. The Heston model,

however, has the highest turnover requirements. This can be explained by the trade-off be-

tween portfolio performance and a necessity to rebalance the portfolio more regularly, revealed

in Carroll et al. (2017). Despite the high turnover, the Heston model yields better portfolio

performance than the benchmark, EWP and other approaches, even after accounting for

transaction costs. Winsorizing improves the asymmetric risk profile of the Heston-based

portfolio, and mean-variance is inferior to SSD when applied to the sector ETFs. The risk-

neutral probability yields poor out-of-sample performance showing the importance of the risk

transformation for proper portfolio selection. Furthermore, the results show that account-

ing for non-linear dependence (using the R-Vine copula) does not yield any gains which are
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statistically or economically significant.

4.3. Portfolio performance during change of market conditions

Option-implied probability estimates rely on the current cross-section of option prices.

Option-implied strategies should yield better performance during crisis periods for two rea-

sons. First, the flow of information is higher during bad economic times, such as during

crises, or during highly volatile periods. In such market conditions, historical information

becomes rapidly out-of-date. Therefore, it is less valuable than the option-implied estimator,

which relies solely on current data and more accurately reflects prevailing market conditions.

Second, option markets offer more benefits for informed investors than spot stock markets

(Easley et al., 1998; Pan and Poteshman, 2006; Hu, 2011). Therefore, one expects to observe

more informed investors in the option market during periods of higher information asymme-

try. This would make option prices more informative, again suggesting that the option-based

portfolios should yield significantly superior performance in crisis periods. In non-crisis pe-

riods, however, when fewer extreme events occur, and the information asymmetry is lower,

option-implied probabilities may have less benefit over historical ones. Meanwhile, several

studies find that option-implied distributions do not anticipate stock market crashes (Bates,

1991; Gemmill and Saflekos, 2000). We test this hypothesis in this subsection.

To test this hypothesis, we compare performances during periods of high and low market

volatility. As a proxy for volatility, we use the VIX (CBOE Volatility) index, which represents

the market’s expectation of monthly forward-looking volatility. The VIX index is widely used

as an indicator of market risk and investor sentiments in industry and the financial literature.

High VIX values are generally linked to large volatility resulting from increased uncertainty,

risk, and investors’ fear, while low VIX values correspond to stable, stress-free periods in the

markets. The low VIX period is identified as the months when the VIX is below the 25th

percentile of the VIX values distribution. Correspondingly, the high VIX period is identified

as the months when the VIX is above the 75th percentile of the VIX values distribution.

Table 10 shows the results for high VIX (Panel A) and low VIX (Panel B). In the period

of high volatility, most strategies yield a negative average return except Heston, RVine, Wins

and MVD. Therefore, it is not meaningful to compare portfolios by the Sharpe and Sortino

19



ratios (see Israelsen (2005) for an explanation of the possible paradoxes). Therefore, we calcu-

lated p-values for tests of significance differences between the benchmark and SSD portfolios,

separately, for the mean return and standard deviation. We reject the null of a mean return

difference for these Heston-based portfolios, while Wins also maximizes skewness and CE

returns. When the market is less volatile, none of the portfolios can generate economically

or statistically significant gains for the investor relative to S&P 500. When the market has

moderate volatility (not tabulated), the Heston-based portfolios yield superior performance.

These results are not surprising since the Heston-based portfolios are formed based on the

stochastic volatility model. Therefore, the investor will benefit from them most during peri-

ods of high VIX, when an accurate volatility forecast is more crucial than during stress-free

periods in the market. It is also consistent with recent findings in the literature that the

stock volatility predictability is state-dependent, and strongest during bad economic times

when the market is highly volatile (see Li and Zakamulin (2020) and references therein).

[Insert Table 10 here]

The market volatility is strongly correlated with momentum factor crashes

(Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016). Therefore, the Heston model

allows to predict this factor crash and avoid its negative consequences for portfolio perfor-

mance. Specifically, if the estimation window includes factor crashes, the defensive sectors

which are less correlated with the momentum factor will appear attractive. Given a strong

mean-reversion effect, including these ETFs in a portfolio would then lower the portfolio’s

expected return (Post et al., 2018). In the investigated sample, the most severe momentum

crash corresponds to the estimation period from December 2008 to November 2009, with a

mean monthly return of -5.76%. The Heston-based portfolios maximize the following month

return with a value of 8.44%. GARCH provides a performance less than half of the He-

ston approach, with 3.71% return, while EWP and Top-3 yield 1.75% and 2.08% returns,

respectively. BSM’s performance is inferior with less than 1.00% return in December 2009.

5. Conclusion

Sector ETFs seem an appealing instrument for equity sector allocation and rotation.

ETFs allow for diversification and rebalancing at a low cost. Moreover, the liquid sector-
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ETF options market provides forward-looking information about the returns distribution.

We adopt a comprehensive financial modeling approach to sector investing with ETFs.

Significant and robust outperformance is achieved. The financial modeling approach beats

the passive benchmark and simpler active approaches (including a pure sector momentum

play) in terms of a range of performance measures out-of-sample. The outperformance of the

optimal portfolios is more pronounced in high volatility states, when markets are expected

to be least efficient and option prices are expected to be most informative.

Several elements of the methodology stand out as being particularly effective: option-

implied probabilities estimated using the Heston stochastic volatility model; risk transforma-

tion of the risk-neutral distribution; winsorizing of the Monte Carlo input sample; and the

use of SD to account for skewness and tail risk.

The use of non-Gaussian multivariate copulas adds limited benefit, despite the strong

evidence for non-linear dependence between the sector ETFs. The invariance to the copula

structure stems from the benchmark risk restrictions being non-binding in the tails of the

distribution. This is caused by the fact that the optimal portfolio has more favorable mean

and skewness than the market index.

The performance of the RWD estimate that is based on the Heston model and risk-

transformation methods is supported by three pieces of evidence: (i) the LLR test statistic

in the estimation window for the risk premiums; (ii) the WLR test statistic for out-of-sample

predictive ability; (iii) the outperformance of portfolios formed based on the RWD.

The results show that a financial modeling approach can outperform heuristic approaches,

at least in our benign environment with a narrow cross-section of diversified base assets (9

sector ETFs) and the availability of exchange-traded options and low transactions costs,

provided that insights and methods from Finance, Decision Science, Econometrics and Op-

timization are properly integrated.

The results can also be seen as adding to the evidence against market efficiency. Given the

low costs of ETFs, a modest rebalancing frequency and the publicly available data that we

use, our strategy is applicable in a real-world environment and for a wide range of investors

and institutions.

We conclude with two promising areas for further research. First, despite assuming global
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risk aversion, the SSD does not assume skewness preference and kurtosis aversion, which has

the effect of limiting the admissible set of sector fund portfolios. To exclude unrealistic risk

preferences, the optimization over the forward-looking RWD could be extended to higher or-

ders of SD and approximate SD orders, as in Fang and Post (2022). This approach is however

computationally demanding, because our method uses very large pseudo-samples from the

RWD, and the additional computational burden of using higher-order SD increases quickly

with the sample size. Further research could focus on reducing the computer processing bur-

den using problem reduction, tight sufficient conditions for dominance and/or tailor-made

non-smooth optimization algorithms.

Second, the methodology for RWD estimation and SSD optimization can be extended to

other universes of base assets, for example, currency pairs and commodity futures. Also in

these cases, transactions costs are low and exchange-traded options are available. The choice

of the copula model may be more relevant in those cases than for equity sector funds, as the

diversification of tail risk and the estimation of tail dependence are expected to play a bigger

role. If the number of base assets is much larger than in our application to 9 sector funds,

the curse of dimension may complicate the dependence structure modeling. We can address

this issue by using copula models that account for high multidimensionality, in particular,

the truncated vine copula Brechmann et al. (2012) and factor copula (Oh and Patton, 2017).
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Table 1: Competing investment strategies

Name Data Marginal probability Dependence model Objective Stochastic order Winsorization Risk transformation

S&P500 (SPX) - - - - - - -

EWP - - - - - - -

Top 1 (Top-3) Historical - - Max Mean - - -

GARCH Historical GJR-GARCH Gaussian Max Mean SSD - -

BSM Options BSM model Gaussian Max Mean SSD - Statistical calibration

Heston Options Heston model Gaussian Max Mean SSD - Atiya and Wall (2009) method

RVine Options Heston model R-Vine Max Mean SSD - Atiya and Wall (2009) method

Wins Options Heston model R-Vine Max Mean SSD Yes Atiya and Wall (2009) method

MVD Options Heston model Gaussian Max Mean MVD - Atiya and Wall (2009) method

Heston RND Options Heston model Gaussian Min Variance - - No

The table describes ten competing strategies. First column: short names of the portfolios. Second column: type of data used for the estimation of the

marginal probabilities: option prices or historical returns. Third column: parametric model for the marginal distributions: Black-Scholes-Merton

model (‘BSM’), Heston stochastic volatility model indicates (‘Heston’) or GJR-GARCH (1,1,1) model with Student’s t innovations (‘GJR-GARCH’).

Fourth column: model used to measure the dependence between the base assets: ‘Gaussian’ or ‘R-Vine’. Fifth column: objective function used

for portfolio optimization. Sixth column: stochastic ordering used for portfolio selection: second-degree stochastic dominance (‘SSD’) or Mean-

Variance dominance (‘MVD’). The final columns indicate whether the Monte-Carlo input sample of ETFs and S&P 500 index return is winsorized

at 5th and 95th percentiles, and whether the risk transformation is applied to the marginal distribution.
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Table 2: Summary of Notation

Notation Description

ETF exchange-traded fund

RND risk-neutral probability distribution

RWD real-world probability distribution

t rebalancing date

It estimation window

H investment horizon

BSM model Black-Scholes-Merton model of price S: dS/S = (r − q)dt+
√
V dW

r risk-free rate

q dividend yield

V variance

a, b shape parameters of beta calibration density: ua−1(1− u)b−1/B(a, b), 0 ≤ u ≤ 1

u cumulative distribution function (cdf)

B(a, b) beta function

Heston model Heston (1993) stochastic volatility model:

dS/S = (r − q + (λ1(1− ρ2) + λ2ρ)V ) dt+
√
V d W1

dV = (κθ − (κ− λ2σ)V )dt+ σ
√
V d W2

cor ( W1, W2) = ρ

V0 initial variance value

θ long-term variance towards which the stochastic variance, V , reverts

ρ correlation between the two Wiener processes, W1 and W2

κ rate of reversion of V toward θ

σ volatility of the volatility parameter

λ1,2 risk premium parameters

GJR-GARCH model asymmetric conditional heteroskedasticity (Glosten et al., 1993) model:

Vt+1 = ω + αε2t + α− max (0,−εt)
2 + βVt

ω constant variance term

α coefficient of the ARCH term

α− leverage (asymmetry) term coefficient

β coefficient of the GARCH term

εt error term, εt =
√
Vtzt

zt standardized residuals, z ∼ Student-t(ν)

ν degrees of freedom for the Student-t marginal

u multivariate cdf sample (pseudo-observations), u = [u1, . . . , u9], where u ∈ [0, 1]N

R-Vine copula regular vine copula comprising pair-copulas of 49 types

pt equal probabilities applied to sample of 10,000 observations for portfolio optimization
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Table 3: Descriptive statistics for daily return series

Mean Std. Dev. Skewness Kurtosis ARCH Leverage Jarque-Bera AUM Expense ratio BA Spread

Median

S&P 500 0.03 0.97 -0.16 4.37 0.08 -0.10 0.00

Materials (XLB) 0.04 1.18 -0.22 3.95 0.09 -0.08 0.01 1797.27 0.19 0.03

Consumer Staples (XLP) 0.04 0.77 -0.20 4.25 0.11 -0.07 0.00 2906.40 0.19 0.03

Energy (XLE) 0.03 1.55 -0.28 3.99 0.09 -0.09 0.00 6203.74 0.19 0.02

Financial (XLF) 0.04 1.18 -0.14 4.19 0.11 -0.10 0.00 6566.80 0.19 0.05

Industrial (XLI) 0.04 1.08 -0.16 4.16 0.07 -0.07 0.00 2722.12 0.19 0.03

Technology (XLK) 0.04 1.17 -0.16 4.44 0.07 -0.08 0.00 4550.25 0.19 0.04

Utilities (XLU) 0.04 0.96 -0.26 4.19 0.14 -0.07 0.00 3607.95 0.19 0.03

Consumer Discretionary (XLY) 0.05 1.10 -0.21 4.29 0.09 -0.08 0.00 1815.59 0.19 0.03

HealthCare (XLV) 0.03 0.94 -0.21 4.34 0.12 -0.07 0.00 2709.91 0.19 0.03

Median ETF 0.04 1.10 -0.21 4.19 0.09 -0.08 0.00 2906.40 0.19 0.03

EWP 0.04 0.92 -0.25 4.45 0.09 -0.11 0.00 3578.64 0.19 0.03

IQR

S&P 500 0.07 0.63 0.47 1.98 0.24 0.11 0.01

Materials (XLB) 0.08 0.74 0.40 0.93 0.22 0.12 0.03 2366.63 0.10 0.08

Consumer Staples (XLP) 0.04 0.34 0.41 1.29 0.21 0.15 0.02 7186.73 0.10 0.10

Energy (XLE) 0.14 0.60 0.39 1.63 0.14 0.12 0.06 8583.78 0.10 0.05

Financial (XLF) 0.10 0.96 0.37 1.76 0.23 0.12 0.03 16493.37 0.10 0.04

Industrial (XLI) 0.08 0.74 0.47 1.35 0.17 0.10 0.03 7402.22 0.10 0.10

Technology (XLK) 0.09 0.70 0.57 1.60 0.17 0.10 0.02 11705.17 0.10 0.10

Utilities (XLU) 0.06 0.42 0.51 2.35 0.17 0.11 0.05 4967.21 0.10 0.08

Consumer Discretionary (XLY) 0.06 0.78 0.53 1.72 0.16 0.09 0.04 9747.37 0.10 0.10

HealthCare (XLV) 0.06 0.45 0.42 2.25 0.16 0.14 0.02 11485.47 0.10 0.08

Median ETF 0.08 0.70 0.42 1.63 0.17 0.12 0.03 8583.78 0.10 0.08

EWP 0.06 0.52 0.41 1.96 0.23 0.11 0.01 8852.17 0.10 0.08

This table presents descriptive statistics for the daily returns of nine sectors ETFs and the S&P 500 index.

The statistics are calculated for each estimation window and medians and interquartile ranges (IQR) of

the distributions are provided. The full sample runs from January 2000 to December 2020. The list of

ETFs includes Materials (XLB), Consumer Staples (XLP), Energy (XLE), Financial (XLF), Industrial

(XLI), Technology (XLK), Utilities (XLU), Consumer Discretionary (XLY), and Health Care (XLV). The

mean, standard deviation, expense ratio and bid-ask (BA) spread are presented as percentages. ARCH

refers to the one-lag autocorrection coefficients for the squared returns. Leverage refers to the linear

correlation coefficients between the lagged returns, rt−1 . and the squared return, r2
t
. The normality

hypothesis is rejected for all assets using the Jarque-Bera test with 99% confidence. AUM refers to the

assets under management in millions.
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Table 4: Unconditional Pearson correlation and Ang & Chen (2002) exceedance correlation

Median

Materials (XLB) Consumer Staples (XLP) Energy (XLE) Financial (XLF) Industrial (XLI) Technology (XLK) Utilities (XLU) Consumer Discretionary (XLY) HealthCare (XLV) EWP

Materials (XLB) 1.00 0.60 0.71 0.74 0.84 0.73 0.50 0.75 0.66 0.88

Consumer Staples (XLP) 0.60 1.00 0.46 0.68 0.68 0.63 0.59 0.70 0.68 0.78

Energy (XLE) 0.71 0.46 1.00 0.61 0.68 0.60 0.49 0.60 0.54 0.78

Financial (XLF) 0.74 0.68 0.61 1.00 0.81 0.74 0.54 0.81 0.71 0.88

Industrial (XLI) 0.84 0.68 0.68 0.81 1.00 0.79 0.53 0.84 0.74 0.92

Technology (XLK) 0.73 0.63 0.60 0.74 0.79 1.00 0.45 0.80 0.69 0.86

Utilities (XLU) 0.50 0.59 0.49 0.54 0.53 0.45 1.00 0.49 0.48 0.68

Consumer Discretionary (XLY) 0.75 0.70 0.60 0.81 0.84 0.80 0.49 1.00 0.73 0.89

HealthCare (XLV) 0.66 0.68 0.54 0.71 0.74 0.69 0.48 0.73 1.00 0.83

EWP 0.88 0.78 0.78 0.88 0.92 0.86 0.68 0.89 0.83 1.00

25%-75% 0.05 0.00 0.04 0.05 0.03 -0.02 0.02 0.04 0.05 0.03

IQR

Materials (XLB) Consumer Staples (XLP) Energy (XLE) Financial (XLF) Industrial (XLI) Technology (XLK) Utilities (XLU) Consumer Discretionary (XLY) HealthCare (XLV) EWP

Materials (XLB) 0.00 0.14 0.26 0.13 0.07 0.15 0.35 0.11 0.17 0.05

Consumer Staples (XLP) 0.14 0.00 0.32 0.15 0.16 0.22 0.23 0.15 0.14 0.12

Energy (XLE) 0.26 0.32 0.00 0.32 0.33 0.40 0.30 0.38 0.30 0.22

Financial (XLF) 0.13 0.15 0.32 0.00 0.10 0.13 0.31 0.07 0.12 0.09

Industrial (XLI) 0.07 0.16 0.33 0.10 0.00 0.11 0.32 0.06 0.11 0.04

Technology (XLK) 0.15 0.22 0.40 0.13 0.11 0.00 0.29 0.13 0.15 0.09

Utilities (XLU) 0.35 0.23 0.30 0.31 0.32 0.29 0.00 0.36 0.33 0.28

Consumer Discretionary (XLY) 0.11 0.15 0.38 0.07 0.06 0.13 0.36 0.00 0.13 0.06

HealthCare (XLV) 0.17 0.14 0.30 0.12 0.11 0.15 0.33 0.13 0.00 0.11

EWP 0.05 0.12 0.22 0.09 0.04 0.09 0.28 0.06 0.11 0.00

25%-75% 0.22 0.26 0.25 0.18 0.14 0.13 0.26 0.19 0.20 0.20

This table presents the sample unconditional Pearson’s correlations between the daily returns for the nine sectors ETFs and equally-weighted

portfolio. The correlations are calculated for each estimation window, then medians and interquartile ranges (IQR) of the distributions are

provided. The full sample runs from January 2000 to December 2020. The rows “25%-75%” show the difference between Ang & Chen (2002)

exceedance correlation between the ETFs and the S&P 500 index, calculated for the 25th and 75th percentiles.
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Table 5: Comparison of empirical historical density, risk-neutral and real-world densities based on the Heston pricing model

EPD RND RWD Maximum Likelihood

Mean Std. Dev. Skewness Kurtosis Mean Std. Dev. Skewness Kurtosis Mean Std. Dev. Skewness Kurtosis LL1 (RND) LL2 (RWD) LLR p-val

S&P 500 0.78 4.44 -0.16 4.37 0.09 4.76 -1.28 5.92 0.41 4.02 -1.26 5.88 681.46 687.30 5.79 0.06

Materials (XLB) 0.94 5.42 -0.22 3.95 0.09 6.11 -0.78 4.78 0.34 4.85 -0.54 4.67 591.28 645.28 34.92 0.00

Consumer Staples (XLP) 0.76 3.53 -0.20 4.25 0.09 4.19 -0.93 6.20 0.40 3.34 -0.79 5.29 710.85 775.11 59.46 0.00

Energy (XLE) 0.70 7.09 -0.28 3.99 0.09 6.97 -0.40 3.64 0.10 5.92 -0.37 3.52 504.56 542.41 23.32 0.00

Financial (XLF) 0.74 5.38 -0.14 4.19 0.09 5.98 -0.86 4.96 0.57 4.70 -0.79 4.90 626.04 662.12 38.61 0.00

Industrial (XLI) 0.85 4.95 -0.16 4.16 0.09 5.45 -0.97 5.31 0.57 4.43 -0.78 4.87 654.33 683.74 34.89 0.00

Technology (XLK) 0.89 5.36 -0.16 4.44 0.09 5.75 -1.00 5.29 0.50 4.69 -0.96 5.30 613.88 642.49 22.56 0.00

Utilities (XLU) 0.90 4.38 -0.26 4.19 0.09 4.96 -0.64 4.77 0.24 3.81 -0.41 4.05 617.98 716.18 71.50 0.00

Consumer Discretionary (XLY) 0.99 5.03 -0.21 4.29 0.09 5.39 -1.03 5.47 0.55 4.46 -0.81 5.18 637.58 689.13 35.94 0.00

HealthCare (XLV) 0.69 4.30 -0.21 4.34 0.09 4.89 -0.95 5.73 0.48 3.91 -0.76 5.21 646.76 719.10 55.53 0.00

Median ETF 0.85 4.99 -0.21 4.19 0.09 5.45 -0.93 5.29 0.48 4.46 -0.78 4.90 626.04 683.74 35.94 0.00

EWP 0.92 4.18 -0.25 4.42 0.09 4.48 -0.66 4.32 0.92 3.40 -0.52 4.04 624.42 676.57 92.06 0.00

Top-1 EPD 1.92 5.67 -0.27 4.26 0.09 6.21 -0.80 4.86 0.43 5.08 -0.70 4.72 590.62 625.17 28.90 0.00

Top-1 RWD 0.91 4.83 -0.23 4.30 0.09 5.58 -0.90 4.86 3.59 2.80 -0.12 4.01 582.86 739.78 176.21 0.00

The table reports the median of the moments across 239 portfolio formation dates calculated using three probability distribution: empirical

historical distribution based on 12 month estimation window (EPD); risk-neutral distribution based on options and Heston pricing model (RND);

real-world distribution based on risk premium transformation of RND using 12 month estimation window. The results are provided for monthly

return distributions. The last three columns report the loglikelihoods of RND (LL1) and RWD (LL2) with the log-likelihood test statistics

(LLR = 2(LL2 − LL1)) and corresponding p-value with asymptotic chi-squared distribution with 2 degrees of freedom.
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Table 6: Comparing density forecasts using the weighted likelihood ratio test

Full distribution Left tail of distribution

Heston RWD - RND Heston RWD - BSM RWD Heston RWD - GARCH Heston RWD - RND Heston RWD - BSM RWD Heston RWD - GARCH

S&P 500 11.56 2.41 7.88 10.77 -0.60 7.08

Materials (XLB) 2.28 0.64 7.67 1.36 -0.49 6.15

Consumer Staples (XLP) 1.69 -0.70 5.43 0.99 -1.99 5.10

Energy (XLE) 0.91 -1.73 5.94 0.78 -2.30 5.08

Financial (XLF) 2.21 0.10 7.58 -0.43 -3.18 4.55

Industrial (XLI) -0.02 0.78 6.57 -1.81 -1.57 6.22

Technology (XLK) 3.51 0.74 7.73 1.39 -1.81 7.60

Utilities (XLU) 1.82 0.74 5.22 1.45 0.59 4.47

Consumer Discretionary (XLY) 0.29 1.33 6.13 -0.74 -0.33 5.57

HealthCare (XLV) 2.54 2.83 4.99 1.61 1.38 4.85

Median ETF 1.82 0.74 6.13 0.99 -1.57 5.10

EWP 3.85 1.46 6.57 1.45 -1.98 5.69

Top-1 EPD 0.06 -1.27 5.96 -1.19 -1.64 5.49

Top-1 RWD 2.24 1.65 5.45 0.14 -0.84 3.52

This table reports the results for the weighted likelihood ratio (WLR) test by Amisano and Giacomini (2007). The null hypothesis is that the two

comparing models f and g perform identically in terms of density forecasting, The WLR is calculated as follows:

WLRt+1 = w (Pt+1)
(

log
(

f̂t (Pt+1)
)

− log (ĝt (Pt+1))
)

, t = 1, . . . , T − 1,

where Pt+1 is the price at time t + 1, ft and gt are density forecasts estimated at time t using the model f and g, w() is the weight function,

T − 1 is the number of forecasting periods. The test is conducted for 9 sectors ETFs and S&P500 index. The out-of-sample period is from January

2001 to December 2020, where T = 240 months. The table reports the test statistics t = ¯WLR/σ̂
√
T − 1, where σ̂ is HAC estimator of the WLR

asymptotic variance. The t-statistic is normally distributed with mean 0 and variance 1. The first three columns report results with no weighting

(w() = 1). The last three columns report results for the left-tail-weighted case where the tails of distribution have higher left weights w() values

than the upper part of distribution. The header of each column indicates the comparing models’ names (f − g). Positive values indicate that f

outperforms g and vice versa. The bold values indicate that the null is reject for at least 10 % significance level.
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Table 7: The copula fit analysis

Dependence measures Model fitting

Median IQR
Loglikelihood Akaike Schwartz

Gaussian RVine Gaussian RVine

Corr 25%-75% Corr 25%-75% Corr 25%-75% Corr 25%-75% Gaussian RVine Gaussian RVine Gaussian RVine

Materials (XLB) 0.63 0.00 0.61 0.05 0.14 0.00 0.12 0.10 27.57 29.45 -53.14 -56.47 -49.61 -52.19

Consumer Staples (XLP) 0.58 0.00 0.57 0.03 0.16 0.00 0.15 0.08 18.83 20.43 -35.67 -38.51 -32.14 -34.37

Energy (XLE) 0.50 0.00 0.48 0.06 0.31 0.00 0.25 0.11 14.16 15.54 -26.31 -28.94 -22.79 -25.16

Financial (XLF) 0.64 0.00 0.63 0.06 0.11 0.00 0.11 0.12 26.91 28.83 -51.81 -55.22 -48.29 -50.90

Industrial (XLI) 0.68 0.00 0.67 0.05 0.13 0.00 0.12 0.08 58.23 61.31 -114.46 -119.75 -110.93 -114.69

Technology (XLK) 0.63 0.00 0.59 0.04 0.13 0.00 0.12 0.08 22.44 24.49 -42.89 -46.52 -39.36 -42.19

Utilities (XLU) 0.44 0.00 0.42 0.02 0.27 0.00 0.21 0.09 9.44 10.65 -16.89 -19.12 -13.36 -15.27

Consumer Discretionary (XLY) 0.65 0.00 0.65 0.04 0.13 0.00 0.11 0.09 38.83 40.88 -75.65 -79.18 -72.13 -74.62

HealthCare (XLV) 0.59 0.00 0.57 0.04 0.13 0.00 0.13 0.10 18.33 20.10 -34.66 -37.87 -31.13 -33.73

Median 0.63 0.00 0.59 0.04 0.13 0.00 0.12 0.09 22.44 24.49 -42.89 -46.52 -39.36 -42.19

EWP 0.59 0.00 0.57 0.05 0.15 0.00 0.14 0.08 26.08 27.97 -50.16 -53.51 -46.64 -49.24

Top-1 EPD 0.59 0.00 0.56 0.04 0.26 0.00 0.25 0.10 20.85 22.57 -39.69 -42.77 -36.17 -38.59

Top-1 RWD 0.63 0.00 0.61 0.04 0.16 0.00 0.17 0.10 31.31 33.29 -60.62 -64.11 -57.09 -59.78

The table reports the median and interquartile ranges (IQR) of several dependence and model fit measures implied by Gaussian multivariate copula

and Regular Vine (RVine) multivariate copula with various pair-copula types. The dependence measures are unconditional linear correlation (Corr)

and the difference between Ang and Chen (2002) exceedance correlation, calculated for the 25th and 75th percentiles (“25%-75%” show). The

model fit measures are Log-Likelihood, Akaike and Schwarz (Bayesian) information criterion. For each of the 9 ETFs, the dependence and model

fit measures are averaged across the 8 fund pairs that include the relevant fund.
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Table 8: The out-of-sample performance (base case)

Passive Historical Option-implied

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

SPX EWP Top-1 Top-3 GARCH BSM Heston RVine Wins MVD Heston/RND

Mean 0.627 0.831 0.871 0.800 0.748 0.761 1.226 1.157 1.232 1.024 0.676

TW 311.82 505.24 512.46 487.26 442.56 429.67 1242.54 1046.47 1297.76 788.53 388.74

Stand. Dev. 5.32 5.33 6.04 5.10 4.86 5.38 5.64 5.69 5.49 5.45 4.46

Semidev. 4.00 3.95 4.04 3.69 3.51 3.80 3.86 3.93 3.59 3.83 3.27

Skewness -1.43 -1.59 -0.38 -1.16 -1.28 -0.77 -1.10 -1.15 -0.55 -1.24 -1.74

VaR95% 8.20 7.86 9.49 7.17 7.02 8.34 6.79 7.20 6.79 6.76 5.04

CVaR95% 14.53 14.17 13.75 13.20 12.24 13.63 13.50 13.56 12.62 13.13 11.17

CE -0.06 0.12 0.08 0.20 0.20 0.11 0.46 0.37 0.56 0.30 0.17

Sharpe 0.10 0.14 0.13 0.14 0.13 0.12 0.20 0.18 0.20 0.17 0.13

Sortino 0.13 0.18 0.19 0.19 0.18 0.17 0.29 0.27 0.31 0.24 0.17

Turnover 0.02 0.69 0.46 1.04 0.87 1.37 1.35 1.37 1.35 0.54

Concentration 0.11 1.00 0.33 0.56 0.68 0.86 0.87 0.92 0.76 0.40

Mean t-test 0.000 0.152 0.123 0.201 0.240 0.000 0.002 0.001 0.006 0.388

LW08 p-value 0.004 0.507 0.145 0.254 0.495 0.005 0.021 0.002 0.030 0.406

LMW05 p-value 0.210 0.152 0.843 0.719 0.743 0.581 0.586 0.714 0.590 0.343

This table presents the out-of-sample performance of competing portfolio strategies over the sample period

from January 2001 to December 2020. Rebalancing happens on the first trading day of every month. The

performance measures are estimated from monthly returns. The measures shown are the mean, standard

deviation, semi-deviation, and skewness, as well as the historical value at risk (VaR) and conditional

value at risk (CVaR) for the 95% confidence level, the certainty equivalent (CE) return for a power utility

function with RRA = 4, the Sharpe ratio, the Sortino ratio, turnover and the sum of squared portfolio

weights (Concentration). Mean t-test displays p-values for testing whether the average return spread

between the corresponding portfolio and the benchmark S&P 500 equals zero. The LW08 p-value is a

p-value for the Sharpe ratio difference test between the corresponding portfolio and the benchmark S&P

500, estimated using robust bootstrap inference, as suggested by Ledoit and Wolf (2008). The LMW05

p-value is a p-value for the Linton et al. (2005) SSD statistical tests. The bold p-values indicate that

the null is rejected for at least 10% significance level. For excess returns, we use 0.11% as the monthly

risk-free rate.
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Table 9: The out-of-sample performance net of transaction costs

Passive Historical Option-implied

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

SPX EWP Top-1 Top-3 GARCH BSM Heston RVine Wins MVD Heston RND

Mean 0.627 0.826 0.758 0.730 0.595 0.643 1.057 0.992 1.062 0.851 0.601

TW 311.82 500.38 393.12 412.54 314.18 340.55 861.72 735.11 879.61 539.43 328.03

Stand. Dev. 5.32 5.34 6.02 5.10 4.86 5.40 5.63 5.69 5.48 5.45 4.47

Semidev. 4.00 3.96 4.09 3.72 3.60 3.87 3.93 4.00 3.67 3.90 3.32

Skewness -1.43 -1.59 -0.39 -1.17 -1.34 -0.76 -1.15 -1.19 -0.63 -1.25 -1.76

VaR95% 8.20 7.87 9.49 7.24 7.02 8.40 6.80 7.24 6.80 7.33 5.34

CVaR95% 14.53 14.21 13.86 13.27 12.59 13.73 13.66 13.72 12.76 13.32 11.43

CE -0.06 0.11 -0.02 0.13 0.04 -0.01 0.29 0.20 0.39 0.13 0.09

Sharpe 0.10 0.13 0.11 0.12 0.10 0.10 0.17 0.15 0.17 0.14 0.11

Sortino 0.13 0.18 0.16 0.17 0.13 0.14 0.24 0.22 0.26 0.19 0.15

Turnover 0.02 0.71 0.47 1.04 0.87 1.37 1.36 1.38 1.35 0.54

Concentration 0.11 1.00 0.33 0.56 0.68 0.86 0.87 0.92 0.75 0.40

Mean t-test 0.000 0.312 0.244 0.628 0.498 0.010 0.029 0.011 0.093 0.593

LW08 p-value 0.003 0.808 0.343 0.993 0.972 0.041 0.129 0.029 0.251 0.769

LMW05 p-value 0.211 0.081 0.708 0.455 0.340 0.593 0.598 0.718 0.656 0.292

This table presents the out-of-sample performance calculated net of proportional transaction costs. Re-

balancing happens on the first trading day of every month. The performance measures are estimated

from monthly returns. The measures shown are the mean, terminal wealth(TW), standard deviation,

semi-deviation, and skewness, as well as the historical value at risk (VaR) and conditional value at risk

(CVaR) for the 95% confidence level, the certainty equivalent (CE) return for a power utility function

with RRA = 4, the Sharpe ratio, the Sortino ratio, turnover and the sum of squared portfolio weights

(Concentration). We model TW by hypothetically investing $100 at the start of the out-of-sample periods

for each portfolio. Mean t-test displays p-values for testing whether the average return spread between

the corresponding portfolio and the benchmark S&P 500 equals zero. The LW08 p-value is a p-value for

the Sharpe ratio difference test between the corresponding portfolio and the benchmark S&P 500, esti-

mated using robust bootstrap inference, as suggested by Ledoit and Wolf (2008). The LMW05 p-value

is a p-value for the Linton et al. (2005) SSD statistical tests. The bold p-values indicate that the null is

rejected for at least 10% significance level. For excess returns, we use 0.11% as the monthly risk-free rate.
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Table 10: The out-of-sample performance in periods of high and low VIX (volatility)

Panel A. High VIX

Passive Historical Option-implied

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

SPX EWP Top-1 Top-3 GARCH BSM Heston RVine Wins MVD Heston RND

Mean -0.620 -0.412 -0.344 -0.649 -0.318 -0.551 0.524 0.252 0.564 0.281 -0.404

TW 53.06 59.68 64.62 54.78 67.52 56.79 103.62 87.79 109.83 91.21 64.73

Stand. Dev. 9.03 9.14 8.63 8.19 8.00 8.69 9.40 9.42 8.95 9.05 7.73

Semidev. 7.26 7.28 6.52 6.63 6.28 6.73 6.96 7.09 6.31 6.86 6.11

Skewness -0.75 -0.85 -0.31 -0.66 -0.77 -0.35 -0.75 -0.75 -0.29 -0.85 -0.94

VaR95% 16.47 15.46 13.54 16.10 15.47 17.88 11.70 11.10 11.30 11.11 12.17

CVaR95% 24.83 25.61 20.88 22.78 20.36 21.74 27.37 27.82 24.07 27.03 22.58

CE -2.57 -2.48 -1.98 -2.19 -1.81 -2.21 -1.63 -1.94 -1.23 -1.74 -1.92

Sharpe -0.08 -0.06 -0.05 -0.09 -0.05 -0.08 0.04 0.02 0.05 0.02 -0.07

Sortino -0.10 -0.07 -0.07 -0.11 -0.07 -0.10 0.06 0.02 0.07 0.02 -0.08

Concentration 0.11 1.00 0.33 0.56 0.68 0.86 0.87 0.92 0.76 0.40

Mean t-test 0.086 0.314 0.531 0.214 0.447 0.012 0.051 0.014 0.021 0.334

Variance t-test 0.851 0.674 0.331 0.227 0.730 0.615 0.596 0.972 0.930 0.122

LMW05 p-value 0.506 0.839 0.935 0.258 0.620 0.483 0.506 0.406 0.517 0.657

Panel B. Low VIX

Passive Historical Option-implied

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

SPX EWP Top-1 Top-3 GARCH BSM Heston RVine Wins MVD Heston RND

Mean 1.599 1.719 1.805 1.553 1.545 1.812 1.765 1.812 1.677 1.479 1.567

TW 255.89 274.82 272.28 246.17 248.11 285.21 279.43 286.99 265.72 236.46 251.80

Stand. Dev. 2.04 2.03 5.01 2.86 1.98 3.24 2.77 2.86 2.68 2.64 1.81

Semidev. 0.84 0.83 2.70 1.40 0.76 1.40 1.24 1.25 1.27 1.42 0.63

Skewness -0.42 -0.54 0.05 -0.37 -0.37 0.77 -0.24 -0.18 -0.45 -0.81 -0.32

VaR95% 2.05 2.44 6.03 2.60 2.20 2.54 3.13 3.13 3.13 3.40 1.81

CVaR95% 3.27 3.24 10.50 5.23 2.76 5.61 4.55 4.52 4.72 5.54 2.31

CE 1.52 1.64 1.31 1.39 1.47 1.61 1.61 1.65 1.53 1.34 1.50

Sharpe 0.73 0.79 0.34 0.50 0.72 0.53 0.60 0.59 0.58 0.52 0.80

Sortino 1.76 1.94 0.63 1.03 1.88 1.22 1.33 1.36 1.23 0.96 2.29

Concentration 0.11 1.00 0.33 0.56 0.68 0.86 0.87 0.92 0.76 0.40

Mean t-test 0.022 0.367 0.566 0.620 0.275 0.279 0.230 0.385 0.690 0.560

LW08 p-value 0.138 0.039 0.061 0.951 0.138 0.318 0.289 0.269 0.072 0.575

LMW05 p-value 0.903 0.000 0.258 0.871 0.774 0.097 0.097 0.097 0.097 0.323

The table shows the out-of-sample performances during periods of high and low market volatility proxied by the VIX index.

Panel A shows the results for the period of high VIX, which is identified as the months when the VIX is above the 75th

percentile of the VIX values distribution. Panel A shows the results for the period of low VIX, which is identified as the

months when the VIX is below the 25th percentile of the VIX values distribution.
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Appendix A. Portfolio optimization based on Stochastic Dominance

To apply stochastic dominance to portfolio optimization, we introduce some desig-

nations here. Assume that the investment universe consists of N assets with random

investment returns, R = (R1, R2, . . . , RN ), whose support is bounded by [Rmin, Rmax]
N ,

−100% < Rmin < Rmax < ∞. The investment opportunity set consists of all convex

combinations of the assets, Ω :=
{

ω ∈ R
N
+ : 1TNω = 1;ω ≥ 0

}

, allowing for all long-only

portfolios. The optimization objective is to find a portfolio which will dominate the pre-

specified benchmark, τ ∈ Ω, with returns equal to y := RT
τ .

Let F (R) : IRN ⇒ [0, 1] denote the joint cumulative distribution function (cdf) of R

and

Fω(z) =

∫

{R∈RN ;RT
ω≤z}

dF (R) (A.1)

be the marginal cdf for portfolio ω ∈ Ω. The cdf is latent and needs to be estimated using

one of the methods shown in the sections that will follow. To implement the Second-degree

SD concept (Hadar and Russell, 1969; Hanoch and Levy, 1969; Rothschild and Stiglitz,

1970), Bawa (1975) introduces the first-order lower-partial moment (lpm):

Lω(z) :=

∫ z

Rmin

Fω(R)dR = EFω
[(z −R)I(R ≤ z)], (A.2)

where I(r ≤ z) is an indicator function that takes on a value of unity if the condition

within the parentheses is satisfied, and zero otherwise. Portfolio ω then dominates the

benchmark, τ , by SSD if and only if:

Lω ≤ γτ , ∀z ∈ [Rmin, Rmax] . (A.3)

To allow for a numerical analysis, applications of SSD generally use a discrete cdf

estimator F̂ with atoms Rt and probabilities pt, t = 1, . . . , T . In our application, contin-

uous cdf estimates are discretized using Monte Carlo simulation methods. Each return

vector Rt in the random samples is equiprobable so that pt = 1/T . Using the discrete cdf

estimator, the lpm can be estimated as follows:

γ̂ω(z) =
T
∑

t=1

pt
(

z −R
T
t ω
)

I
(

R
T
t ω ≤ z

)

. (A.4)
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Since the estimated lpm takes on a simple piecewise-linear, increasing, and convex

shape, checking the dominance condition only at the observed return levels for the bench-

mark (z = yt, t = 1, . . . , T ) would suffice. The lpm can be linearized using the lifting

representation by Rockafellar and Uryasev (2000).

Combining the SSD conditions with a budget constraint and short-selling constraints in

Ω, we obtain SSD enhanced portfolios as solutions to the following system of constraints:

γ̂ω (yi) ≤ γ̂τ (yi) , i = 1, . . . , T,

1T
Nω = 1,

ωj ≥ 0, j = 1, . . . ,M.

(A.5)

Any feasible solution, ω∗, to this system dominates the benchmark portfolio, τ , by

SSD.

The objective function for portfolio optimization using SSD is then found as follows:

GF̂ ,ω := EF̂ω
[R]−

T
∑

t=1

λtγ̂ω (yt) , (A.6)

where λt ≤ 0, t = 1, . . . , T are decision weights. In the empirical application, the objective

function is the average portfolio return. This common specification amounts to λt = 0,

t = 1, ..., T . This objective of the SSD optimization problem can theoretically lead to a

solution which is not fully efficient. Secondary performance improvements can be achieved

using multi-stage programming. The effect of this method on out-of-sample performance

is, however, negligible in this study.

The problem of maximizing this objective subject to the system of constraints is a well-

known convex optimization problem which can be solved efficiently using the linearization

of the lpms by Rockafellar and Uryasev (2000) and/or cutting plane algorithms as in

Fábián et al. (2011). The present study uses the Aorda Portfolio Safeguard Toolbox for

MATLAB.1

The portfolio optimization model requires an estimate for the joint probability dis-

tribution of the base assets. In this section, we describe an estimation procedure using

1http://www.aorda.com/index.php/portfolio-safeguard/
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options data. The proposed procedure consists of three parts: 1) an estimation of risk-

neutral process and distribution, 2) a transformation of the risk-neutral to the real-world

probability distribution, and 3) the joint distribution function estimation. For the sake of

comparison, the option-implied estimates are compared with historical estimates for the

marginal distributions which are based on GARCH.

Appendix B. Risk-neutral process

To estimate the option-implied distribution, we assume two alternative specifications

for the risk-neutral stochastic process of the underlying assets. The simple geometric

Brownian motion (GBM) is the basis for the BSM option pricing formula:

dS

S
= (r − q)dt+

√
V dW. (B.1)

Here, r is the risk-free rate, q is the dividend yield, V is the variance andW is a Wiener

process. The risk-neutral distribution of log(ST ) at time T is then normal:

log (ST ) ∼ N (log (S0) + (r − q)T − 0.5V T, V T ) . (B.2)

The risk-neutral density of ST then depends on the parameters, (r, q, S0, V, T ), and is given

by the lognormal density

fQ,T (S) =
1

ST

√
2V πT

exp(−1

2

(log(ST )− [log(S0) + (r − q − 1
2
V 2)T ])2

V T
). (B.3)

A more general model assumes volatility is stochastic. Heston (1993) stochastic volatil-

ity process is chosen because it has a closed-form characteristic function and theoretical

option prices, whose implied volatilities show realistic term structure and smile effects.

Shackleton et al. (2010) found that the option-implied probabilities estimated from the

Heston pricing model were more informative than historical distributions or option-implied

probabilities estimated using the BSM model for a forecast horizon from 2 to 12 weeks.

The risk-neutral process with stochastic volatility is described by the following set of

equations:

dS/S = (r − q)dt+
√
V dW1,

dV = κ(θ − V )dt+ σ
√
V dW2,

cor (W1,W2) = ρ.

(B.4)
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Here, θ is the level towards which the stochastic variance, V , reverts and κ denotes the

rate of reversion of V toward θ. σ is the volatility of the volatility parameter, while ρ is

the correlation between the two Wiener processes, W1 and W2. Relaxation of the constant

volatility assumption allows nonnormality of the underlying distribution, which is more

realistic, given previous empirical studies. In particular, the correlation, ρ, controls the

skewness of the distribution, while the volatility of volatility, σ, affects the kurtosis.

Heston (1993) provides a formula for pricing European style call options based on the

above process:

C (S0, K) = S0e
−qTP1 −Ke−rTP2. (B.5)

Here, Pj, j = 1, 2 are the conditional probabilities that the option expires in the money.

P2 is a risk-neutral probability, while P1 is a probability under another measure with

a different drift rate. The risk-neutral measure Q uses the riskless asset as numeraire,

while the alternative measure for P1 uses the stock price S0.
2 We use this theoretical

price formula to estimate the risk-neutral parameters, by matching theoretical and market

option prices for all expiration dates and moneyness levels.

Given the parameter values, the risk-neutral distribution for different horizons can be

derived by numerical integration of the characteristic functions of models. Heston’s (1993)

characteristic functions have a risk-neutral expectation form, for any real number:

g(ψ) = EQ [exp (iψ log (ST ))] , (B.6)

where i =
√
−1. Using an inversion formula, the risk-neutral density, fQ,T , can then be

estimated:

fQ,T (S) =
1

πS

∫

∞

0

Real[exp(−iψ log(S))g(ψ)]dψ, (B.7)

where we use only the real part of the complex integrand. The latent parameters are

2The relation between P1 and P2 is following:

P1 = EQ

[

dQS

dQ
I (ST > K)

]

;P2 = EQ [I (ST > K)] ;
dQS

dQ
=

ST

S0erT

where EQ[...] is a risk-neutral expectation, I(...) is an indicator function. The last term is a Radon-

Nikodym derivative of alternative measure QS with respect to risk-neutral measure Q.
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estimated monthly on the last trading day (day before the rebalancing date) from the

whole cross-section of options contracts. The estimated volatility of the GBM process

is provided by the simplest credible estimate, namely the end-of-day, nearest-the-money

implied volatility for the nearest-to-expiry options.

On day t, for the Heston model, we estimate the initial variance, Vt, the three volatility

parameters, θt, κt, and σt, and the correlation, ρt. Suppose Nt European call option

contracts are traded on day t, indexed by i = 1, ..., Nt, with strikes Kt,i, expiry times Tt,i,

and market prices ct,i; additionally, suppose pt,i = S0 exp(r − q)T is the futures price for

the equity, calculated for a synthetic futures contract that expires after Tt,i years.
3 The

five Heston parameters are then estimated by minimising:

Nt
∑

i=1

(ct,i − c (pt,i, Kt,i, Tt,i, Vt, κt, θt, σt, ρt))
2 , (B.8)

where c(...) is the Heston pricing formula in Eq. (B.5). Christoffersen and Jacobs (2004a)

conclude that the mean squared pricing error is a ‘. . . good general-purpose loss function

in option valuation applications . . . ’. Subsequently, it has also been employed in studies

on equity dynamics, notably by Christoffersen et al. (2010), Shackleton et al. (2010), and

Fan et al. (2018).

Appendix C. Transformation methods

We apply two established transformation methods here based on Liu et al. (2007) and

Shackleton et al. (2010). For the lognormal distribution of the BSM, we use a statistical

calibration with a two-parameter beta distribution as a calibration function. For the

Heston model, we apply an alternative, more analytically tractable risk transformation

approach based on the direct adjustment of the risk premia.

3Following Shackleton et al. (2010), we assume that the same price dynamics and parameter values

apply to the set of contemporaneous futures contracts. Fan et al. (2018) prove that this assumption is

reasonable.
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Appendix C1. Statistical calibration.

The calibration method relies on learning from past outcomes how best to change

a measure from risk-neutral to real-world. It is well known that the cumulative prob-

abilities are uniformly distributed for correctly specified densities. Observed deviations

from uniformity can be exploited to transform risk-neutral densities and to obtain better

descriptions of real-world outcomes.

At a starting point, t = 0, we forecast the risk-neutral density and cdf from a cross-

section of options and denote them by fQ,H and FQ,H , respectively. Let the calibration

function, CH(u), be the real world cdf of a random variable, UH = FQ,H(SH), that depends

on the forecast horizon, H. The real world cdf, FP,H , then equals the calibrated risk-

neutral cdf (Liu et al., 2007): FP,H(S) = CH(FQ,H(S)). Taking the derivative of FP,H , we

obtain the real-world density, fP,H = fQ,H(S)cT (u), where u = FQ,H(SH) and cH(u) is the

real-world density of UH .

The parametric calibration function, CH(u), is the cdf of the Beta distribution sug-

gested by Fackler and King (1990) and later applied by Liu et al. (2007) and Shackleton et al.

(2010). The calibration density is then:

cT = ua−1(1− u)b−1/B(a, b), 0 ≤ u ≤ 1, (C1.1)

where B(a, b) is a beta function. If the calibration parameters a = b = 1, then the investor

is risk-neutral and fQ,H = fP,H . Given n observations, the parameters for the next period,

(n+ 1), can be estimated using the maximum likelihood method.

Appendix C2. Atiya and Wall (2009) method

For the Heston model, the application of statistical beta calibration is complicated

by the absence of analytical cdf and inverse cdf. Therefore, we apply an alternative

method based on the adjustment of risk premia. Shackleton et al. (2010) show that this

approach yields similar results as parametric calibration when both the price and the

variance equations are transformed. Therefore, this approach is suitable for the Heston

bivariate model. Simulation under the risk premium transformation does not require
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inverse cdf calculations and is based on a standard discretisation scheme such as Milstein

one (Kahl and Jäckel, 2006).

The Atiya and Wall (2009) method for risk-premium transformation requires us to

specify the bivariate real-world stochastic process: the logarithmic adjusted price, y =

log(S), and the variance, V :

dy = (r + µV ) dt+
√
V dW̃1,

dV = (α− βV )dt+ σ
√
V d, W̃2

cor
(

W̃1, W̃2

)

= ρ,

(C2.1)

where r is the risk-free rate; µ = λ1(1− ρ2)+λ2ρ− 1/2, α = κθ and β = (κ−λ2σ), where

λ1 and λ2 are market prices of equity and stochastic volatility risks, θ is the level towards

which the stochastic variance, V , reverts, κ denotes the rate of reversion of V towards θ,

σ is the volatility of of stochastic variance, ρ is the correlation between the two Brownian

motions. The risk-neutral parameters {Vt, κt, θt, σt, ρt} are estimated by minimizing Eq.

(B.8). The risk premium parameters {λ1, λ2} are estimated using historical daily returns

data.

Since the Brownian motions are correlated normal random variables, the transition

probability density for the joint log-stock price/variance process from time t to t + 1 is

bivariate normal:

p (yt+1, Vt+1 | yt, Vt) = Φ (M t+1,Σt+1) , (C2.2)

where Φ (M t+1,Σt+1) is the bivariate normal density with mean vector

M t+1 =





yt + (r + µVt) dt

Vt + (α + βVt) dt



 (C2.3)

and covariance matrix

Σt+1 = Vtdt





1 ρσ

ρσ σ2



 , (C2.4)

where dt is the time increment between t and t+1, t = 0, ..., n−1. Since the Atiya and Wall

(2009) method approximates a continuous process with discrete observations, the size
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of dt defines the precision of the method. In the case of daily frequency, dt ≈ 1/251.

Atiya and Wall (2009) apply a filtering argument to show that the likelihood for the un-

observed variances can be approximated from the likelihood of stock prices. The likelihood

at time t+ 1, given a value, Vt, at time t, is proportional to:

Lt+1 (Vt+1) ∝ dt (abt)
−

1

4 e−2
√

abtLt

(

√

bt
a

)

. (C2.5)

This expression uses the following inputs:

a =
β′2 − 2µρσβ′dt− µ2σ2dt2

2σ2 (1− ρ2) dt

bt =
(Vt+1 − αdt)2 − 2ρσ (Vt+1 − αdt) (dyt+1 − rdt) + σ2 (dyt+1 − rdt)2

2σ2 (1− ρ2) dt

dt =

exp

[

(2β′

−2µρσdt)(Vt+1−αdt)−(2ρσβ′

−2µσ2dt)(dyt+1−rdt)

2σ2(1−ρ2)dt

]

D

β′ = 1− βdt

D = 2πσ
√

1− ρ2dt

dyt+1 = yt+1 − yt

(C2.6)

The likelihood function depends also on Vt+1, through the terms bt and dt. To evaluate

Vt+1 from Vt, Atiya and Wall (2009) note that Vt =
√

bt/a. Inverting this expression and

applying the quadratic formula produces the solution

Vt+1 =
√
B2 − C −B, (C2.7)

where

B = −αdt− ρσ (dyt+1 − rdt) ,

C = (αdt)2 + 2ρσαdt (dyt+1 − rdt) + σ2 (dyt+1 − rdt)2 − 2V 2
t aσ

2
(

1− ρ2
)

dt.

Hence, to evaluate the likelihood Eq. (C2.5), we start with initial values L0(V0). To

evaluate Lt+1(Vt+1) given Lt(Vt), we first obtain Vt+1 from Eq. (C2.7). We then apply Eq.

(C2.5). We continue until the last observation n, at which time we have LT (Vn), to which

we apply an optimization routine to find the maximum:
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[λ1, λ2] = argmax
λ1,λ2

Ln (Vn) . (C2.8)

The initial value suggested by Atiya and Wall (2009) is L0(V0) = exp(−V0), where V0
is the initial risk-neutral variance parameter from the Heston model.

Appendix D. Joint probability distribution

According to Sklar’s theorem, the joint probability distribution of F (R), where R

is a vector (R1, R2, . . . , RN ), can be represented using marginal probability functions,

Fi(Ri), i = 1, 2, . . . , N , and copula (dependence) function C:

F (R) = C (F1 (R1) , F2 (R2) , . . . , FN (RN)) , (D.1)

where a copula is also a joint distribution C(u) with marginals ui, i = 1, 2, . . . , N , that are

uniform on the unit interval [0,1]. That is, we can describe the joint distribution of R by

the marginal distributions Fi(Ri) and the copula C. From a modeling perspective, Sklar’s

Theorem allows us to separate the modeling of the marginal distributions Fi(Ri) from the

dependence structure.

Taking the partial derivative of the cdf in Eq. (D.1) with respect to each variable,

Ri, i = 1, 2, . . . , N , we obtain:

f(R) =
N
∏

i=1

fi (Ri) c (F1 (R1) , F2 (R2) , . . . , Fn (Rn)) (D.2)

Here, f(R) is the joint probability density function (pdf), fi(Ri) is the marginal pdf, and

c is the copula density function. The standard Gaussian implies that the Pearson linear

correlation matrix fully describes the dependence structure between variables. However,

many studies reveal that the equity returns exhibit lower tail dependence (Ang and Chen,

2002; Patton, 2004; Low et al., 2013). In this case, Gaussian copula can be a poor ap-

proximation of the real dependence between equities.

The regular vine (R-Vine) copula is a flexible dependence model which consists of con-

ditional pair-copula blocks. It enables specifying various types of dependence (including
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left tail asymmetry) by choosing appropriate bivariate copula families for each pair of

variables. In the case of R-Vine copula, the Eq. (D.2) can be decomposed into a product

of bivariate copulas:

f(R) =
N
∏

i=1

fi

1
∏

k=N−1

k+1
∏

i=N

cmk,k,mi,k|mi+1,k,...,mN,k

(

Fmk,k|mi+1,k,...,mN,k,Fmi,k|mi+1,k,...,mN,k

)

,

(D.3)

where the arguments of all the functions have been omitted to shorten the notation.

The dependence structure and conditional bivariate copulas, cmk,k,mi,k|mi+1,k,...,mN,k
, are

described using matrix notation, where indexation of cmk,k,mi,k|mi+1,k,...,mN,k
corresponds to

the elements of an R-Vine lower triangular M matrix, where diagonal elements are in a

descending order, mk,k = N–k + 1 (Dissmann et al., 2013):

M =











m1,1 0 0
...

. . . 0

m1,N · · · mN,N











. (D.4)

The R-Vine copula approach is widely used in financial studies (see Aas (2016) for a

detailed review). Particularly, Low et al. (2013) reveal the superiority of the minimum

expected shortfall portfolio when it was optimized with a dependence function estimated

using the canonical vine copula (a special case of the regular vine).

Dissmann et al. (2013) provide an automated algorithm for sequential R-Vine model

selection including tree structure, bivariate copula type, and parameter estimation. They

also showed that their model provided additional explanatory power over existing depen-

dence models when applied to financial data. In this study, we use the Dissmann et al.

(2013) model selection methods, in which each pair-copula can be of a different type chosen

from the specified set of 49 bivariate copulas (Algorithm 3.1 in Dissmann et al. (2013)).

The algorithm selects the structure in such a way that the highest dependencies are mod-

eled in the first trees. This approach minimizes the influence of rounding errors in later

trees, which pairs with strong pairwise dependence are most prone to, e.g., when assessing

the joint tail behavior of two variables.

We obtain the real-world R-Vine dependence function using the underlying ETFs’

historical return time series. To sample from the joint option-implied distribution, we first
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sample from the estimated copula model, u = [u1, . . . , uN ], where u ∈ [0, 1]N ; we then

apply inverse marginal cdf estimates to u (inverse sampling). If the cdf is not invertible, as

in the case of the Heston model distribution, the joint distribution sample can be obtained

using rank correlation.

Appendix E. Historical probability estimate

To benchmark our findings, we also estimate historical marginal probabilities. Suppose

that t is the number of trading days and there is a history of n observed daily changes in

price logarithms, In = rt, 0 ≤ t ≤ n− 1, with rt+1 = log(St+1)− log(St). The prices, St+1,

are adjusted for ETF splits and dividends. The history, In, is used to find the density of

the price, Sn+m = SH , after another m days of trading, where H is the forecast horizon.

Following the methodology in Rosenberg and Engle (2002) and Taylor (2005), we sup-

pose that an ARCH model for prices is estimated from the history, In, and that this model

is also applicable in the future. The general historical price process is given by:

rt+1 = µt+1 + εt+1 = µt +
√

Vt+1zt+1, (E.1)

where µt+1 is the conditional mean and Vt+1 is the conditional variance of returns; these

conditional time-varying moment functions are determined by the information, It, and a

parameter vector, θ. zt+1 are time-invariant standardised residuals, distributed according

to some distribution, D(0, 1), with zero mean and unit variance.

Although a constant expected return is not usually compatible with time-varying risk

aversion, the effect over a short period (e.g. up to one month) has a negligible impact

on probability estimates. Johannes et al. (2002) argue that strategies based on time-

varying expected returns perform rather poorly, due to estimation risk, while volatility

timing strategies do not suffer from this problem. Therefore, we approximate Eq. (24) by

replacing the time-varying mean with constant µ.

On the other hand, multiple studies reveal that variance timing yields a significant eco-

nomic value for short horizons (see Johannes et al. (2002), Fleming et al. (2003), Carroll et al.

(2017)), who find that investors benefit from predicting the dynamics of variance when
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forming an optimal portfolio). For the conditional variance, we use the asymmetric con-

ditional heteroskedasticity (Glosten et al., 1993) GJR-GARCH(1,1,1) model, which was

advocated by Christoffersen and Jacobs (2004b) as a better forecasting model than more

richly parameterised models. The choice of the GJR-GARCH model is also determined

by the statistical properties of the historical data described in Table 2; in particular, by

the presence of ARCH and leverage effects.

The GARCH model is known to weakly converge to a bivariate stochastic model with

mean-reverting volatility dynamics (Duan,1997; Escobar-Anel et al., 2021), which make it

a discrete analogue to the Heston model. The leverage effect in the GJR model accounts for

the asymmetry of the underlying process. The distribution of the standardised residuals is

assumed to be the standardised t-distribution with ν degrees of freedom since the data is

heavy-tailed. The GJR-GARCH(1,1,1) model with parameter vector, θ = {ω, α, α−, β, ν},
has the following specification:

Vt+1 = ω + αε2t + α− max (0,−εt)2 + βVt, (E.2)

where εt =
√
Vtzt and θ is estimated using the maximum likelihood method from history,

It.

To forecast returns, we first obtain the values of the standardised residuals, zt+1, . . . , zH ,

by independent drawings from an estimated Student’s t-distribution with ν degrees of

freedom. We obtain a 22-period (one month ahead) return by drawing the first re-

turn innovation, (zt+1), updating the conditional variance, (Vt+2), then drawing the sec-

ond return innovation, (zt+2), updating the conditional variance, (Vt+3), and continu-

ing through to the last innovation. The one-period simulated return, rH , is equal to

exp
[

∑

i=1,...,22 (µ+ εt+i)
]

. We replicate this procedure 10 000 times to obtain the sample

input for the SD optimization.
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