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Abstract

The Bonferroni Q test of Campbell and Yogo (2006) is routinely used in empirical
studies investigating predictability in asset returns because of its near-optimal power
properties for strongly persistent and endogenous predictors. Its formulation, how-
ever, only allows for a constant mean in the predictor, seemingly at odds with many
of the predictors used in practice. We establish the asymptotic size and local power
properties of the Q test, and the corresponding Bonferroni t-test of Cavanagh, El-
liott and Stock (1995), under a local-to-zero specification for a linear trend in the
predictor, revealing that size and power depends on the magnitude of the trend for
both. To rectify this we develop with-trend variants of the Q and t tests. We also
develop hybrid tests, designed to have good size and power properties when uncer-
tainty exists as to whether or not a linear trend is present in the predictor. These use
union-of-rejections and switching mechanisms to capitalise on the relative power ad-
vantages of the constant-only tests when a trend is absent and the with-trend tests
otherwise. A further extension allows use of a conventional t-test where the predic-
tor appears to be weakly persistent. We show that, overall, our recommended hybrid
test offers excellent size and power properties regardless of the presence of a linear
trend in the predictor, or the predictor’s degrees of persistence and endogeneity. An
empirical application to an updated Welch and Goyal (2008) dataset illustrates the
practical relevance of our new approach.
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1 Introduction

The predictability of asset returns using publicly available data has received a great deal of

attention in both the economics and finance literature, leading to a large number of pub-

lished studies examining whether various financial and macroeconomic variables have pre-

dictive power for returns. Candidate financial predictor variables considered have included

valuation ratios such as the dividend-price or earnings-price ratio, the dividend yield and a

variety of interest rate measures. Macroeconomic variables such as inflation and industrial

production have also been considered; for early contributions see inter alia Fama (1981),

Keim and Stambaugh (1986), Campbell (1987), Campbell and Shiller (1988a,b), Fama and

French (1988,1989) and Fama (1990).

A common feature of many predictor variables used in empirical studies is that they

are highly persistent, with a strong negative correlation found between the innovations to

the returns and predictor; see, eg, Campbell and Yogo (2006) [CY] and Welch and Goyal

(2008). For these highly persistent and endogenous predictors it can be shown that basing

inference on conventional tests can be misleading. For instance, for strongly persistent and

endogenous predictors CY show that using the conventional regression t-statistic to test for

predictability leads to right-tail tests that are asymptotically oversized, with this oversize

more severe the stronger is the persistence or endogeneity of the predictor, other things

equal.

As a consequence, numerous tests for predictability have been developed that are de-

signed to deliver robust inference in the presence of strongly persistent and endogenous re-

gressors. These include likelihood-based tests developed by Cavanagh, Elliott and Stock

(1995) [CES], Lewellen (2004), CY and Jansson and Moreira (2006), with these approaches

explicitly modelling the predictor as an autoregressive process with the dominant root

given by ρ = 1 + cT−1 where c is a finite constant and T is the sample size. Of these tests,

the Bonferroni Q test in particular has been widely adopted in the empirical literature.

Other test procedures based on instrumental variable estimation have also recently been

proposed, including contributions by Kostakis et al. (2015) and Breitung and Demetrescu

(2015). Regardless of the approach taken, a common feature of all of these papers is that

their primary (or even exclusive) focus is on the constant-only tests, and the properties of

these tests in the presence of a (neglected) trend in the predictor are not established.

Assuming that the predictor only contains a deterministic constant would seem justi-

fied for some of the candidate predictors considered in previous empirical studies. Few,

for example, would argue that for developed countries macroeconomic variables such as in-

flation or interest rates would likely contain deterministic elements other than a constant.
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However, the same is not true for other variables that have been considered in the litera-

ture, and in many instances one cannot discount the possibility that a predictor variable

may contain a deterministic linear trend. Indeed, in Section 7 of this paper we find there

to be statistically significant evidence of a linear trend in many of the financial variables

commonly employed as predictors in the Welch and Goyal (2008) datatset. Given the evi-

dence of a potential trend in these predictors it is of great interest to examine the impact

of an omitted trend on extant tests for predictability, and also to consider predictability

tests that explicitly account for the potential presence of a trend.

In this paper we will consider constant-only and with-trend variants of the Bonferroni Q

test of CY and the Bonferroni t test of CES. The Bonferroni approach underpinning these

tests is based on constructing an initial confidence interval for the dominant autoregressive

root, ρ, in the predictor, by inverting a unit root test, then basing a confidence interval for

the predictive regression coefficient on this initial confidence interval for ρ. It is well known

in the unit root literature that an omitted deterministic trend impacts the asymptotic

distribution of mean-only unit root tests, see eg Harvey et al. (2009), and we will show

in Section 4 that in the constant-only case, omitting the trend in the predictive regression

test stage also impacts the limit distribution of the constant-only predictive regression

test statistics of both CY and CES. When the correlation between the innovations to the

predictor and returns is negative both of these effects combined will be shown to lead the

constant-only Bonferroni Q and t tests to exhibit substantial asymptotic undersize when

testing in the right tail, with the tests displaying a subsequent loss of power, and substantial

asymptotic oversize when testing in the left tail in the presence of an omitted trend.

The with-trend variants of CY and CES that we consider are based on an initial confi-

dence interval for ρ that uses a trend-augmented unit root test statistic, and a secondary

confidence interval for the coefficient on the predictor from a trend-augmented predictive

regression. These tests are exact invariant to a linear trend in the predictor. In the unit root

testing context it is known that while the inclusion of a trend in the unit root test regres-

sion renders inference invariant to the presence of a trend, the power of the resulting trend-

augmented unit root tests lags behind their constant-only counterparts when no trend is

present, again see Harvey et al. (2009). We observe a similar phenomenon in the predictive

regression testing context, with the with-trend Bonferroni Q and t-tests displaying inferior

power to the constant-only Bonferroni Q and t-tests when no trend is present in the predic-

tor. However, this ranking can be reversed when a trend of reasonable magnitude is present.

In view of the different tests’ power rankings across no trend and trend environments,

we first propose a union-of-rejections strategy for the right (left) tailed testing context
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when the correlation is negative (positive), that combines inference from both the constant-

only and with-trend Bonferroni Q test. This procedure will be shown to capitalise on the

relative power advantages of the constant-only and with-trend tests in the no trend and

trend scenarios, respectively, delivering attractive levels of power regardless of whether a

trend is or is not present in the predictor. In the case of left (right) tailed testing when

the correlation is negative (positive), as the constant-only tests are over-sized, our initial

hybrid test is simplified to the with-trend Bonferroni Q test. Such preliminary approaches,

however, will be shown to be of most benefit when the predictor is strongly persistent with

ρ = 1+c/T and c close to zero. We then further develop our recommended hybrid test that

switches into the with-trend Bonferroni t-test when there is evidence that c is not close to

zero, or into the conventional t-test when there is sufficient evidence that the predictor is

weakly persistent.

The remainder of this paper is organised as follows. Section 2 introduces the predictive

regression model we consider and the assumptions we place on the data generating process

(DGP). In Section 3 we give a description of both the constant-only Bonferroni Q and t-

tests of CY and CES, respectively, as well as modifications of these tests that account for

the presence of a trend in the predictor. In Section 4 we report the limiting distributions of

the predictive regression and unit root test statistics used in the test procedures outlined in

this paper, and examine the relative local asymptotic power of the constant-only and with-

trend Bonferroni type tests. Our proposed hybrid test procedures are outlined in Section 5,

and the local asymptotic power of these tests, as well as recommendations on which test to

use in practice, are provided in Section 6. The results of an empirical exercise applying our

new tests to an updated version of the Welch and Goyal (2008) dataset is provided in Section

7. Section 8 concludes. Additional Monte Carlo simulation results exploring both the local

asymptotic and finite sample size and power properties of the tests, together with proofs

of the main theorems presented in the paper, are provided in the supplementary appendix.

2 The Predictive Regression DGP

We consider the following predictive regression DGP

rt = α + β(xt−1 − γ(t− 1)) + ut, t = 2, ..., T (1)

where rt denotes the return on an asset in period t, and xt−1 denotes a putative predictor

observed at time t− 1. We assume the process for xt is given by

xt = µ+ γt+ wt, t = 1, ..., T (2)

wt = ρwt−1 + vt, t = 2, ..., T (3)
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where w1 is assumed to be an Op(1) random variable and where ut and vt are disturbances,

formal assumptions on which are made below.

Remark 2.1. While we permit the potential presence of a linear trend in the predictor,

xt, note that (1) implies that only the detrended component of the predictor enters the

DGP for returns, rt. This assumption is made to rule out the possibility of a linear trend

in rt when β 6= 0 which is not empirically reasonable. ♦

We make the following assumptions concerning the disturbances ut and vt.

Assumption D. We assume that ψ(L)vt = et where ψ(L) :=
∑p−1

i=0 ψiL
i with ψ0 = 1 and

ψ(1) 6= 0, with the roots of ψ(L) assumed to be less than one in absolute value. We assume

that zt := (ut, et)
′ is a bivariate martingale difference sequence with respect to the natural

filtration Ft := σ {zs, s ≤ t} satisfying the following conditions: (i) E[ztz
′
t] =

[
σ2
u σue

σue σ2
e

]
,

(ii) supt E[u4
t ] < ∞, and (iii) supt E[e4

t ] < ∞. For future reference, we define ω2
v :=

limT→∞ T
−1E(

∑T
t=2 vt)

2 = σ2
e/ψ(1)2 to be the long run variance of the error process {vt},

and δ := σue/σuσe as the correlation between the innovations {ut} and {et}.

Remark 2.2. The conditions in Assumption D coincide with the most general set of as-

sumptions considered by CY (see pages 56-57 of CY). The assumptions placed on zt permit

conditional heteroskedasticity in the innovations, but impose unconditional homoskedas-

ticity. The MDS aspect of Assumption D implies the standard assumption made in this lit-

erature that the unpredictable component of returns, ut, is serially uncorrelated. Assump-

tion D allows the dynamics of the predictor variable to be captured by an AR(p), with the

degree of persistence of the predictor (strong or weak) controlled by the parameter ρ in

(3), as will be formalised in Assumptions S and W below. ♦

As discussed in Section 1, the focus of this paper is on testing the null hypothesis that

(rt−α) is a MDS and, hence, that rt is not predictable by xt−1; that is, H0 : β = β0 = 0 in

(1). We focus on developing tests that offer reliable levels of size and power regardless of

whether a linear trend is present in the predictor variable xt under different assumptions

regarding the degree of persistence in the predictor. We therefore allow the predictor

process {xt} in (2) to satisfy one of the following two assumptions.

Assumption S. The predictor {xt} is strongly persistent, with the autoregressive parameter

ρ in (3) given by ρ = ρT=1 + cT−1 with c a finite non-zero constant.

Assumption W. The predictor {xt} is weakly persistent, with the autoregressive parameter

ρ in (3) fixed and bounded away from unity, |ρ| < 1.
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Remark 2.3. Under Assumption S the predictor xt is a strongly persistent local-to-unity

process with the degree of persistence controlled by the parameter c. For c = 0, xt is a pure

unit root process, while for c < 0, xt is a stationary but near-integrated process. Finally,

for c > 0, xt is a (locally) explosive process. ♦

In order to facilitate an asymptotic power analysis in the strongly persistent case, we

consider the following local-to-zero alternative hypothesis for β:

Assumption B. When the predictor {xt} is strongly persistent, the local alternative hy-

pothesis is given by Hb : β = βT = b(σu/ωv)T
−1, where b is a finite constant.

Our analysis will consider predictability tests that are invariant to the presence of a

trend in the predictor xt and also tests that depend on the trend parameter γ. In order

to enable analysis of the asymptotic behaviour of the latter tests when the predictor xt is

strongly persistent (i.e. when Assumption S holds), at points below we will make use of an

additional assumption for γ:

Assumption T. The trend coefficient γ in (1) and (2) is given by γ = γT = κωvT
−1/2,

where κ is a finite constant.

Remark 2.4. Under Assumptions B and T, the scalings by T−1 and T−1/2 in βT and γT ,

respectively, provide the appropriate Pitman drifts when xt is strongly persistent, while the

scalings by σu/ωv and ωv are simply convenience measures to ensure that these nuisance

parameters do not appear in the subsequent expressions for the limit distributions. Note

that Assumption T is not required for test statistics that are invariant to γ. ♦

3 Predictability Tests under Strong Persistence

In this section we outline the candidate Bonferroni predictability tests that we consider

for testing the null of no predictability under Assumption S, i.e. that the predictor series

is strongly persistent. In each case, we present extant tests which are valid only when

assuming that no trend is present in the predictor series xt, that is assuming γ = 0. We

also consider modified variants that allow for the more general case where it is possible

that γ 6= 0 , such that a trend might be present in xt.

3.1 Bonferroni Q Tests

The first test we consider is the Bonferroni Q test of CY which makes use of an initial

confidence interval for ρ = 1 + cT−1, where this confidence interval is obtained by inverting

a unit root test. CY consider only the possibility of a constant appearing in the predictor
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series; that is, they impose that γ = 0 in (2). For a given value of ρ, CY propose a test for

the null hypothesis β = β0 based on the following (infeasible) test statistic

Qµ(β0, ρ) :=

∑T
t=2 xµ,t−1

[
rt − β0xt−1 − σue

σeωv
(xt − ρxt−1)

]
+ T

2
σue
σeωv

(ω2
v − σ2

v)√
σ2
u(1− δ2)

∑T
t=2 x

2
µ,t−1

= Qµ(0, ρ)− β0/(sµ
√

1− δ2)

where s2
µ := σ2

u/
∑T

t=2 x
2
µ,t−1, σ2

v denotes the short run variance of vt, and xµ,t−1, t = 2, ..., T ,

are the residuals from regressing xt−1 on a constant. A confidence interval for β can then

be derived based on the quantity Qµ(β, ρ). As we will quantify later, the behaviour of this

statistic will depend on the trend coefficient γ when γ 6= 0. In view of this, we now consider

a variant of the Bonferroni Q test which is invariant to γ. To obtain such a variant, we

replace xµ,t−1 in the CY statistic with xτ,t−1, where xτ,t−1, t = 2, ..., T , denotes the residuals

from a regression of xt−1 on a constant and linear trend. The modified statistic is then

Qτ (β0, ρ) :=

∑T
t=2 xτ,t−1

[
rt − β0xt−1 − σue

σeωv
(xt − ρxt−1)

]
+ T

2
σue
σeωv

(ω2
v − σ2

v)√
σ2
u(1− δ2)

∑T
t=2 x

2
τ,t−1

= Qτ (0, ρ)− β0/(sτ
√

1− δ2)

where s2
τ := σ2

u/
∑T

t=2 x
2
τ,t−1.

Remark 3.1. The statistic Qτ (β0, ρ) is exact invariant to the value of γ. Moreover, al-

though our DGP excludes the possibility of a linear trend in rt, Qτ (β0, ρ) would also be

invariant to such a trend, should one be present; that is, if equation (1) of the DGP was in-

stead rt = α+λt+βxt−1 +ut, then Qτ (β0, ρ) would be (exact) invariant to both λ and γ. ♦

Under Assumptions D and S, Qµ(β0, ρ) admits a standard normal limiting null distri-

bution provided γ = 0 and, as we will subsequently show in Section 4, Qτ (β0, ρ) also ad-

mits a standard normal limiting null distribution under these assumptions, regardless of

the value of γ. Therefore, when the predictor xt is strongly persistent a (1− α) confidence

interval for β, [βQ
d

(ρ, α), β
Q

d (ρ, α)] with d = µ denoting the constant-only case and d = τ

the with-trend case, can be constructed as:

βQ
d

(ρ, α) = {Qd(0, ρ) + zα/2}sd
√

1− δ2, β
Q

d (ρ, α) = {Qd(0, ρ)− zα/2}sd
√

1− δ2 (4)

with zα/2 denoting the α/2 quantile of the standard normal distribution.
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The confidence interval in (4), however, implicitly relies on knowledge of the value of

ρ = 1 + cT−1, where the parameter c cannot be consistently estimated. In the constant

only case, d = µ, CY propose obtaining a valid confidence interval for ρ by inverting

the constant-only ADF-GLS test1 of Elliott et al. (1996), denoted DF -GLScµ henceforth,

applied to the predictor xt using pre-computed (asymptotic) confidence belts for the DF -

GLScµ test statistic. Denoting this confidence interval for ρ constructed at the α1 level as

[ρ
µ
(α1), ρµ(α1)] CY show that the confidence interval [βQ

µ
(ρµ(α1), α2), β

Q

µ (ρ
µ
(α1), α2)] has

(asymptotic) coverage of at least (1− α) where α = α1 + α2.

In the case where d = τ , such that a linear trend is permitted in the predictor, we use the

obvious with-trend parallel of the approach taken in CY. Specifically, we obtain a confidence

interval for ρ by inverting the with-trend ADF-GLS test of Elliott et al. (1996), henceforth

denoted DF -GLScτ , applied to the predictor xt using pre-computed (asymptotic) confidence

belts for the DF -GLScτ test statistic. Denoting this confidence interval for ρ constructed

at the α1 level as [ρ
τ
(α1), ρτ (α1)], the confidence interval [βQ

τ
(ρτ (α1), α2), β

Q

τ (ρ
τ
(α1), α2)]

will have (asymptotic) coverage of at least (1− α) where, again, α = α1 + α2.

CY show that the confidence interval [βQ
µ

(ρµ(α1), α2), β
Q

µ (ρ
µ
(α1), α2)] suffers from over-

coverage, with the asymptotic size of tests based on this confidence interval often well below

(α/2), and we found the same for the confidence interval [βQ
τ

(ρτ (α1), α2), β
Q

τ (ρ
τ
(α1), α2)].

Therefore, we follow CY and use a refinement where the significance level used to obtain

the initial confidence interval for ρ is adapted to the upper and lower bounds separately,

and also to the value of δ. Values of this significance level are chosen numerically to

minimise over-coverage associated with the confidence interval for β, while ensuring that

the asymptotic size of the overall Bonferroni test does not exceed a chosen level across

a specified range of c. Denoting the chosen significance levels for the lower and upper

confidence bounds for ρ by αQ1,d and αQ1,d, respectively, the confidence interval for ρ can be

written as [ρ
d
(αQ1,d), ρd(α

Q
1,d)], and the resulting (1 − α2) level confidence interval for β is

obtained as [βQ
d

(ρd(α
Q
1,d), α2), β

Q

d (ρ
d
(αQ1,d), α2)] where

βQ
d

(ρd(α
Q
1,d), α2) = {Qd(0, ρd(α

Q
1,d)) + zα2/2}sd

√
1− δ2,

β
Q

d (ρ
d
(αQ1,d), α2) = {Qd(0, ρd(α

Q
1,d))− zα2/2}sd

√
1− δ2.

For a given value of δ, CY propose selecting αQ1,d and αQ1,d such that one-sided tests for

predictability constructed in this manner have an asymptotic size of exactly α2/2 for some

1 In the context of both DF -GLScµ and the DF -GLScτ statistic defined below, c denotes the parameter
used for quasi-difference demeaning/detrending the data. We follow Elliott et al. (1996) and set c = −7
for DF -GLScµ and c = −13.5 for DF -GLScτ in what follows. Owing to Assumption D, the DF -GLScµ and

DF -GLScτ unit root statistics will be calculated from ADF-type regressions which include p− 1 lags.
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value of c while remaining slightly undersized for other values of c. Consequently, two-sided

tests will have size of at most α2 across the specified range of c.

CY calibrate their constant-only test procedure by fixing α2 = 0.1 and considering

c ∈ [−50, 5] such that their resulting one-sided tests have a maximum (asymptotic) size

of 0.05. The appropriate values of αQ1,µ and αQ1,µ are reported in Table 2 of CY, and are

reproduced here in Table 1 for convenience. We denote the predictability test based on this

confidence interval as QGLS
µ . We follow the approach taken by CY for the trend-augmented

version of the Bonferroni Q test, with the appropriate values of αQ1,τ and αQ1,τ chosen such

that one-sided tests for predictability also have a maximum asymptotic size of 0.05 for

c ∈ [−50, 5], with the asymptotic size of the test computed using the limiting distributions

we subsequently outline in Section 4, and with these values of αQ1,τ and αQ1,τ also reported

in Table 1. We denote the predictability test based on this confidence interval as QGLS
τ .

Remark 3.2. The appropriate values of αQ1,d and αQ1,d reported in Table 1 are only provided

for δ < 0. For δ > 0, CY note that replacing xt in (1) with −xt flips the sign of both β

and δ (and, indeed of γ). Therefore, an equivalent right (left) tailed test for predictability

when δ > 0 can be performed as a left (right) tailed test for predictability based on (1)

with xt replaced by −xt using the values of αQ1,d and ᾱQ1,d appropriate for a negative value

of δ. This also holds for the Bonferroni t test discussed below. ♦

3.2 Bonferroni t Tests

The second test procedure we consider is the Bonferroni t test based approach of CES.

Where γ = 0 in (2), this is based on the following (infeasible) OLS statistic for testing the

null β = β0 = 0, tµ := β̂µ/
√
σ2
u/
∑T

t=2 x
2
µ,t−1, where β̂µ is obtained from the OLS estimated

regression, rt = α̂ + β̂µxt−1 + ût. As with Qµ(β, ρ), the behaviour of tµ will be dependent

on the trend coefficient γ, when γ 6= 0. Accordingly, CES suggest a with-trend variant of

the OLS t statistic which is invariant to γ, specifically

tτ :=
β̂τ√

σ2
u/
∑T

t=2 x
2
τ,t−1

(5)

where β̂τ is obtained from the with-trend estimated OLS regression, rt = α̂+γ̂t+β̂τxt−1+ût.

Under Assumptions D and S the limiting null distribution of td for d = µ or d = τ

is a function of the unknown parameter c. CES overcome this issue by constructing a

confidence interval for β based on an initial confidence interval for c obtained by inverting

the constant-only or with-trend ADF-OLS test (henceforth denoted DF -OLSµ or DF -

OLSτ respectively) using pre-computed confidence belts.
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Specifically, for a given value of δ, a (1− α2) level confidence interval for β is obtained

as [βt
d
(αt1,d, α2), β

t

d(α
t
1,d, α2)], d = {µ, τ}, where:

βt
d
(αt,d1 , α2) = β̂d−

{
max

c(αt1,d)≤c≤c(αt1,d)
cvc1−α2/2,d

}
sd, β

t
d(α

t
1,d, α2) = β̂d−

{
min

c(αt1,d)≤c≤c(αt1,d)
cvcα2/2,d

}
sd

and where cvcη,d denotes the η-level critical value of the limiting null distribution of td for a

given value of c. The significance levels used to obtain the c confidence intervals, αt1,d and

αt1,d, are selected numerically to ensure that the implied one-sided tests for predictability

constructed in this manner will have an asymptotic size of exactly α2/2 for some value of

c ∈ [−50, 5] while remaining slightly undersized for other values of c. For α2 = 0.1, the

appropriate values of αt1,µ and αt1,µ are those of CY, and are reported in Table 1. We denote

the predictability test based on this confidence interval as tOLSµ . The appropriate values of

αt1,τ and αt1,τ in the with-trend case are also reported in Table 1 and were found by directly

simulating the limit distributions that we subsequently detail in Section 4. We denote the

predictability test based on this confidence interval as tOLSτ .

For full details on the practical implementation of the QGLS
µ and tOLSµ procedures, in-

cluding consistent estimation of the parameters σe, σu, σv, σue, ωv and δ, implementation

of the DF -GLScµ and DF -OLSµ unit root tests, and the pre-computed confidence belts

for the DF -GLScµ and DF -OLSµ test statistics, see CY, CES and the corresponding sup-

plementary material to CY.2 We follow exactly the same steps as CY for the QGLS
τ and

tOLSτ tests, but where any regression including an intercept is also augmented with a linear

trend. Pre-computed confidence belts for the DF -GLScτ and DF -OLSτ test statistics are

included as part of the code used to implement all of the tests outlined in this paper which

is available on request.

4 Asymptotic Behaviour of Tests under Strong Persistence and

a Local Trend

In this section we outline the asymptotic behaviour of the constant-only QGLS
µ and tOLSµ

tests, and the with-trend QGLS
τ and tOLSτ tests, when Assumption S holds, i.e. the case

where the predictor is a strongly persistent process and contains a trend. While the QGLS
τ

and tOLSτ tests are invariant to the trend coefficient γ, the QGLS
µ and tOLSµ tests are not;

here, we consider the behaviour of QGLS
µ and tOLSµ under Assumption T, i.e. a local-to-zero

2The supplement to CY is available at https://scholar.harvard.edu/campbell/publications/implementing-
econometric-methods-efficient-tests-stock-return-predictability-0. The confidence belts and
also code for the procedures are available from Motohiro Yogo’s personal website:
https://sites.google.com/site/motohiroyogo/research/asset-pricing.

9

https://scholar.harvard.edu/campbell/publications/implementing-econometric-methods-efficient-tests-stock-return-predictability-0
https://scholar.harvard.edu/campbell/publications/implementing-econometric-methods-efficient-tests-stock-return-predictability-0
https://sites.google.com/site/motohiroyogo/research/asset-pricing


trend. We begin by outlining the limiting distributions of the relevant test statistics under

the local alternative Hb : β = b(σu/ωv)T
−1, before proceeding to investigate the asymptotic

size and power of the corresponding procedures both when a linear trend is present and

when it is not. The following Theorem outlines the limiting distribution of the statistics,

where in the context of QGLS
µ and QGLS

τ , ρ̃ = 1 + c̃T−1 for an arbitrary c̃.

Theorem 1. Let data be generated according to (1)-(3). Let W1(s) and W2(s) be indepen-

dent standard Brownian motion processes and let W1c(r) =
∫ r

0
e(r−s)cdW1(s). Under As-

sumptions D, S and T, and under the local alternative specified in Assumption B,

(a) tµ
w→
b
{
κ
∫ 1

0 rW
µ
1c(r)dr +

∫ 1
0 W

µ
1c(r)

2dr
}

+ δ
∫ 1

0 W
µ,κ
1c (r)dW1(r)√∫ 1

0 W
µ,κ
1c (r)2dr

+
√

1− δ2Zµ

(b) Qµ(β0, ρ̃)
w→
b
[
κ
∫ 1

0 rW
µ
1c(r)dr +

∫ 1
0 W

µ
1c(r)

2dr
]

+ δcκ
∫ 1

0 rW
µ,κ
1c (r)dr + δ(c̃− c)

∫ 1
0 W

µ,κ
1c (r)2dr

√
1− δ2

√∫ 1
0 W

µ,κ
1c (r)2dr

+ Zµ

(c) tτ
w→ b

√∫ 1

0
W τ

1c(r)
2dr + δ

∫ 1
0 W

τ
1c(r)dW1(r)√∫ 1

0 W
τ
1c(r)

2dr
+
√

1− δ2Zτ

(d) Qτ (β0, ρ̃)
w→

[b+ δ(c̃− c)]
√∫ 1

0 W
τ
1c(r)

2dr
√

1− δ2
+ Zτ .

where
w→ denotes weak convergence of the associated probability measures, and where

W µ
1c(r) := W1c(r) −

∫ 1

0
W1c(s)ds, W

τ
1c(r) := W µ

1c(r) − 12(r − 0.5)
∫ 1

0
(s − 0.5)W1c(s)ds,

W µ,κ
1c (r) := {κ(r−0.5)}+W µ

1c(r), Zµ :=
(∫ 1

0
W µ,κ

1c (r)2dr
)−1/2 ∫ 1

0
W µ,κ

1c (r)dW2(r) and Zτ :=(∫ 1

0
W τ

1c(r)
2dr
)−1/2 ∫ 1

0
W τ

1c(r)dW2(r). Finally, Zµ and Zτ are two dependent standard nor-

mal random variables.

Remark 4.1. Representations for the limiting null distributions of the statistics obtain

on setting b = 0 in the expressions in Theorem 1. If b = 0 and c̃ = c, then Qτ (β0, ρ̃)

is asymptotically distributed as a N(0, 1) random variable, and if in addition κ = 0 then

Qµ(β0, ρ̃) is also asymptotically distributed as a N(0, 1) random variable. If b = 0 and

δ = 0 then tτ is asymptotically distributed as a N(0, 1) random variable, and if in addition

κ = 0 then tµ is also asymptotically distributed as a N(0, 1) random variable. ♦

Remark 4.2. The representations in (a) and (b) of Theorem 1 show that the limiting

null and local alternative distributions of both tµ and Qµ(β0, ρ̃) depend on the value of

κ. It is immediately apparent from the representations in (c) and (d) of Theorem 1 that

the limiting distributions of tτ and Qτ (β0, ρ̃) are invariant to the value of κ. Hence tµ and
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Qµ(β0, ρ̃) are dependent on the magnitude of the trend in the predictor variable, while tτ

and Qτ (β0, ρ̃) are not. ♦

4.1 Local Asymptotic Power of tOLSd and QGLS
d tests

We now report results of a Monte Carlo simulation experiment examining the asymptotic

power of the tOLSd and QGLS
d tests under the local alternative given in Assumption B, when

Assumptions D, S and T hold. We will focus on testing for predictability when δ < 0 as the

size and power of right (left) tailed tests for predictability when δ > 0 are identical to left

(right) tailed tests for predictability when δ < 0, for the reasons outlined in Remark 3.2.

Before proceeding we require the limiting distributions of the DF -OLSµ, DF -GLScµ,

DF -OLSτ and DF -GLScτ test statistics used to construct the initial confidence interval for

ρ for the tOLSµ , QGLS
µ , tOLSτ and QGLS

τ tests, respectively. Under the conditions of Theorem

1, these limiting distributions are given by (see, for example, Harvey et al., 2009):

DF -OLSµ
w→ (κ/2 +Wµ

1c(1))
2 − (−κ/2 +Wµ

1c(0))
2 − 1

2
√∫ 1

0 {κ(r − 1/2) +Wµ
1c(r)}

2
dr

(6)

DF -OLSτ
w→ W τ

1c(1)2 −W τ
1c(0)2 − 1

2
√∫ 1

0 W
τ
1c(r)

2dr
(7)

DF -GLScµ
w→ (κ+W1c(1))2 − 1

2
√∫ 1

0 {κr +W1c(r)}2 dr
, DF -GLScτ

w→ W τ,c
1c (1)2 − 1

2
√∫ 1

0 W
τ,c
1c (r)2dr

(8)

where W τ,c
1c (r) := W1c(r) − r

{
c∗W1c(1) + 3(1− c∗)

∫ 1

0
rW1c(r)dr

}
and c∗ := (1 − c)/(1 −

c+ c2/3).

Remark 4.3. The representations in (6) and (8) show that the limiting distributions

of DF -OLSµ and DF -GLScµ depend on κ, whereas (7) and (8) show that the limiting

distributions of DF -OLSτ and DF -GLScτ are invariant to the value of κ. Harvey et al.

(2009) show that the impact of a neglected local trend in DF -OLSµ and DF -GLScµ is to

reduce both size and power of the unit root tests, implying a rightward shift in the tail of the

distribution, resulting in a corresponding rightward shift in the confidence intervals for c. ♦

For clarity, we now outline how the local asymptotic power of the tests is computed for

right tailed testing. Left tailed testing is handled similarly with obvious modifications.

For the QGLS
d , d = {µ, τ}, tests we first simulate draws from the limiting distribution

of DF -GLScd. These draws are then used to compute the upper bound of the confidence

interval for c which we denote c(αQ1,d) using pre-computed confidence belts implemented

11



using the values of αQ1,d appropriate for δ taken from Table 1.3 Note that this value of c

also corresponds to the upper bound of the confidence interval for ρ, i.e. ρd(ᾱQ1,d) = 1 +

c(ᾱQ1,d)T
−1. Testing in the right tail is equivalent to determining whether βQ

d
(ρd(α

Q
1,d), α2) >

0, and the asymptotic local power function associated with Qd(0, ρd(ᾱ
Q
1,d)) is given by

E[Φ(hd(α
Q
1,d, α2))] where Φ(.) denotes one minus the standard normal cdf and

hd(α
Q
1,d, α2) := z1−α2/2 − (Q∞d − Zd) (9)

where Q∞d denotes the limiting distribution of Qd(0, ρd(ᾱ
Q
1,d)), and Zd is as defined in

Theorem 1. Next we simulate a draw from Q∞d and construct hd(α
Q
1,d, α2) in (9). Finally,

we evaluate whether a simulated draw from a Zd exceeds this value of h(αQ1,d, α2). The

limiting power is then obtained as the average of these exceedances across replications.

For tOLSd , in each simulation replication we first simulate a draw from the limiting

distribution of DF -OLSd, and then obtain [c(αt1,d), c(α
t
1,d)] using the corresponding pre-

computed confidence belts for the values of αt1,d appropriate for δ obtained from Table 1.

Then we simulate the limit of td using the results in Theorem 1, and compare this with the

critical value maxc(αt1,d)≤c≤c(αt1,d) cv
c
1−α2/2,d

. The limiting power is again calculated as the

average of these exceedances across replications.

Figures 1-8 report the local asymptotic power of right-tailed test for predictability for

δ = −0.95 for c = {0,−2,−5,−10,−20,−30,−40,−50} and for various values of κ.4 Note

that these figures also include results for the hybrid Uhyb and Shyb test procedures we

propose in Section 5 - these will be discussed later.

When κ = 0, so that no trend is present in the predictor (panel (a) of each figure), it

is apparent that for small or moderate (negative) values of c the best power performance

is offered by the QGLS
µ test, followed by the tOLSµ test. Also for this range of c, we observe

that the QGLS
τ test has superior power to the tOLSτ test, although both have power that falls

below the constant-only tests. These results when no trend is present are entirely expected,

since the QGLS
τ and tOLSτ tests are based on regressions that unnecessarily include a trend.

As c becomes more negative, the Bonferroni t-tests start to display superior power to the

Bonferroni Q tests, with tOLSµ displaying consistently superior power to QGLS
µ for c ≤ −30.

3Here and throughout the paper results were obtained by direct simulation of the limiting distributions,
with the Wiener processes approximated using NIID(0,1) random variates, and with the integrals approx-
imated by normalized sums of 1,000 steps. All simulations were performed in Gauss 22.2 using 20,000
Monte Carlo replications. The confidence belts form part of the Gauss code used throughout the paper
and are available on request.

4Additional results, available in the on-line supplementary appendix for δ = −0.75 were found to be
qualitatively similar to those discussed here for δ = −0.95 for both right-tailed and left-tailed tests. This
can be found at https://rtaylor-essex.droppages.com/esrc2/default.htm.
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However, in this more negative c setting, the power differences between the competing

tests are reduced compared to the small c cases, hence there is relatively little to choose

between the constant-only procedures here. Overall, one would arguably wish to use the

QGLS
µ test in the case of κ = 0 if allowing only for a constant in the predictor. For the

trend-augmented tests there is little to choose between tOLSτ and QGLS
τ for c = −30, with

tOLSτ offering superior power to QGLS
τ for lower values of b and vice-versa. For c ≤ −40,

however, tOLSτ clearly offers superior power to QGLS
τ across almost the full range of values

of b. This relative power performance of the trend augmented tests is true for all values of

κ given that the trend-augmented tests are exact invariant to the value of κ.

We now consider panels (b)-(f) of each figure, where κ is positive and increasing in

magnitude. Here a different pattern emerges as the value of κ increases away from zero.5

The asymptotic sizes of QGLS
µ and tOLSµ are now decreasing in κ, and as a consequence

the powers of these tests are also decreasing in κ, with this effect more pronounced the

more negative is the value of c. The power of the QGLS
τ and tOLSτ tests are, as previously

discussed, invariant to the value of κ, with the consequence that for larger values of κ these

tests outperform their constant-only counterparts, with the QGLS
τ test becoming the best

performing procedure for small or moderate c, and the tOLSτ test displaying the best power

for the larger c. Hence for larger κ, one would wish to use the QGLS
τ test when the c values

are small or moderate, and the tOLSτ test otherwise.

Figures 9-13 report the local asymptotic power of left-tailed tests for predictability for

δ = −0.95 and c = {0,−2,−5,−10,−20} for various values of κ. When κ = 0 the constant-

only QGLS
µ and tOLSµ tests again outperform their with-trend QGLS

τ and tOLSτ counterparts

for a given d ∈ {µ, κ}, as expected. In the left-tailed testing environment it can also be

seen that the range of values of c over which the QGLS
d tests display superior power to the

tOLSd tests is smaller for a given d ∈ {µ, κ}. There is little to choose between the tOLSµ and

QGLS
µ tests for c = −5, but for c ≤ −10 the tOLSµ test has superior power to QGLS

µ . Likewise,

there is little to choose between the tOLSτ and QGLS
τ tests for c = −10, but for c = −20 the

tOLSτ test has superior power to QGLS
τ . Additional results reported in the supplementary

appendix show that the tOLSd tests continue to display superior power over the QGLS
d tests for

c < −20. For κ > 0, however, the QGLS
µ and tOLSµ tests can suffer from substantial oversize,

with the degree of this oversize increasing in κ and also as c becomes more negative. As

such, the QGLS
µ and tOLSµ tests are inappropriate for testing for predictability in the left

tail when δ < 0 when uncertainty exists over the possible presence of a linear trend, and

5We also generated results for κ < 0 and found them to be broadly similar, although not perfectly
symmetric, to those found for positive values of κ
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reliable inference can only be made using QGLS
τ or tOLSτ . Here we would ideally use QGLS

τ

for small or moderate c, and tOLSτ otherwise.

The results in Figures 1-13 show that, as might be expected, no single test is best suited

to testing for predictability when uncertainty exists over both the values of c and κ. Instead,

each of QGLS
µ , QGLS

τ and tOLSτ provides the best overall power for certain combinations of

these parameters. Given that neither c nor κ can be consistently estimated, in the following

section we propose hybrid tests for predictability that use combinations of the QGLS
µ , QGLS

τ

and tOLSτ tests to deliver both controlled size and good power across the parameter space.

5 Hybrid Tests for Predictability

Based on the results in Section 4.1 we now propose tests for predictability when uncertainty

exists over the possible presence of a linear trend in the predictor. We start with tests

that are designed for strongly persistent predictors generated according to Assumption S,

motivated by the results of the previous section, before outlining how these can be modified

to also allow for weakly stationary predictors generated according to Assumption W.

We will outline our hybrid tests in what follows only for the case where δ < 0. For

δ > 0, from the result in Remark 3.2, we may simply replace the predictor xt in (1) with

−xt, thereby flipping the sign of δ such that our recommended procedures for negative

values of δ which follow can then be applied. Given that this also flips the sign of β, for

a right (left) tailed test for predictability one should perform a left (right) tailed test for

predictability in the transformed predictive regression based on the predictor −xt−1. So,

for example, the right-tailed tests appropriate for δ < 0 outlined in Section 5.1 are also

recommended, on replacing xt−1 by −xt−1 throughout, for use in the case where one wishes

to perform left-tailed tests with δ > 0. In practice, the true value of δ will be unknown, but

the appropriate approach can be determined according to the sign of a consistent estimator

of δ. Here we propose using the estimate of δ from the with-trend Bonferroni type test

procedures, i.e. the sample correlation between ût and êt, where ût are the residuals from

a regression of rt on a constant, trend and xt−1 and êt are the residuals from estimating an

AR(p) for the predictor variable allowing for a constant and trend.

5.1 Right-Tailed Tests when δ < 0

The results in Section 4.1 suggest that for strongly persistent predictors, with δ < 0, when

κ = 0 the constant-only QGLS
µ test outperforms its with-trend counterpart QGLS

τ , while

for larger κ > 0 the converse is true. As such, when testing in the right-tail the first test

procedure we propose is a Union-of-Rejections strategy in which we reject the null of β = 0

in favour of the alternative that β > 0 when either the QGLS
µ or QGLS

τ tests reject, with the
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aim of capturing the relative power advantages of QGLS
µ and QGLS

τ for different magnitudes

of κ. Taking a simple union-of-rejections in this manner, however, will inevitably result

in an overall test with asymptotic size in excess of (α2/2), given that inference from two

tests is being combined, each individually calibrated to have a maximum asymptotic size

of (α2/2). To ensure that the union-of-rejections strategy has a maximum asymptotic

size of (α2/2) we modify the significance levels at which the confidence intervals for ρ are

constructed for both the DF -GLSµ and DF -GLSτ tests, as well as the significance level

used to construct the confidence interval for β for a given value of ρ. Recalling that the

lower bound of the confidence interval for ρ used for right-tailed testing for the QGLS
d test

is given by βQ
d

(ρd(α
Q
1,d), α2) our proposed union-of-rejections test, U , is given by

U : Reject H0 if U > 0 (10)

where

U := max
(
βQ
µ

(ρµ(ξαQ1,µ), ξα2), βQ
τ

(ρτ (ξα
Q
1,τ ), ξα2)

)
(11)

with ξ < 1 a scaling parameter chosen such that, for a given value of δ, the asymptotic

size of U is no greater than (α2/2) for the same grid of values of c considered by CY, i.e.

c ∈ [−50, 5]. The appropriate values of ξ that lead to a right-tailed test with maximum

asymptotic size of 0.05 are reported in Table 1.

While the union-of-rejections strategy outlined above will be shown to capture the

superior power of QGLS
µ when κ is small, and that of QGLS

τ for larger values of κ when c is

small or moderate, it is apparent from the results reported in Figures 1-8 that for the more

negative values of c the power of both the QGLS
µ and QGLS

τ tests lag behind that of tOLSτ .

As such, we consider an extra layer to our test procedure where for right-tailed tests the

union-of-rejections test is employed when c is estimated to be “small”, and the tOLSτ test is

employed when c is estimated to be “large”. To do so we propose using an estimate of c to

choose which test to perform in practice. Specifically, we propose computing an estimate, ĉ,

that is equal to the with-trend ADF-GLS normalised bias unit root test statistic, henceforth

denoted NB-GLScτ . Specifically, ĉ = NB-GLScτ := (T φ̂)/(1−
∑p−1

i=1 ψ̂i), where φ̂ and ψ̂i,

i = 1, ..., p− 1 are obtained by OLS estimation of

∆x̃t = φx̃t−1 +
∑p−1

i=1
ψi∆x̃t−i + et

where, on setting ρ̄T := 1 + cT−1, x̃t := xt− z′tθ̃ with θ̃ obtained from the quasi-differenced

regression of xc̄ := (x1, x2− ρ̄Tx1, ..., xT − ρ̄TxT−1)′ on Zc̄ := (z1, z2− ρ̄T z1, ..., zT − ρ̄T zT−1)′,

where zt := (1, t)′. The NB-GLScτ statistic is closely related to DF -GLScτ , being obtained

from the same regression, and in keeping with this link between the statistics, we use
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c = −13.5; cf. footnote 1. Under Assumption S, the limiting distribution of ĉ is given by

ĉ
w→ W τ,c

1c (1)2 − 1

2
∫ 1

0 W
τ,c
1c (r)2dr

(12)

where W τ,c
1c is as previously defined under equation (8). While it is clear that ĉ is not

a consistent estimate of c, a near monotonic relationship nonetheless exists between the

expected value of the limiting distribution of ĉ and the true value of c. We therefore propose

a cut-off rule where we employ the U test for ĉ ≥ cR, but switch to the tOLSτ test for ĉ < cR

for some cut-off point cR (R denoting right-tailed). Formally, our second proposed testing

procedure, S, is therefore given by:

S : Reject H0 if US > 0 (13)

where

US := I(ĉ ≥ cR)U + I(ĉ < cR)βt
τ
(αt1,τ , α2). (14)

and where I(.) denotes the indicator function equal to 1(0) when its argument is true (false).

Our choice of the cut-off value cR to use in practice is motivated by the asymptotic local

power functions in Figures 1-8, where we recall from the discussion in Section 4.1 that the

local asymptotic power of the U test is superior to that of tOLSτ for c ≥ −30, whereas for c <

−30 the reverse is true. We found through extensive Monte Carlo simulation that the choice

of cR = −35 gave an overall test for predictability with the best overall power properties,

tracking the power of U for small c and that of tOLSτ for large c. We also found that using

the existing calibration for U and tOLSτ led to S maintaining a maximum asymptotic size

of 0.05 for c ∈ [−50, 5], so no further calibration was required for this particular test.

5.2 Left-Tailed Tests when δ < 0

We now turn our attention to left tailed tests when δ < 0 and Assumption S holds. We

propose a simpler strategy for left-tailed tests as the asymptotic oversize of QGLS
µ and tOLSµ

when κ 6= 0 prevents the implementation of an asymptotically size-controlled union-of-

rejections procedure, such as that proposed in Section 5.1, as this relies on the constituent

tests being (asymptotically) correctly sized or undersized both when κ = 0 and when κ 6= 0.

The appropriate simplification for the U procedure is then to just use QGLS
τ , which recalling

Section 3, entails rejecting the null of no predictability if β
Q

d (ρ
d
(αQ1,d), α2) < 0.

Examining the relative power of QGLS
τ and tOLSτ in Figures 9-13 it is immediately appar-

ent that the QGLS
τ test only offers superior power to tOLSτ when c is small, with the power
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of tOLSτ above that of QGLS
τ for even modest values of c. As such, for the switching strat-

egy S we propose a simpler version to that in Section 5.1 where the QGLS
τ test is employed

when ĉ ≥ cL (L denoting left-tailed) and the tOLSτ test is used when ĉ < cL. Specifically,

for left tailed tests the decision rule for our test procedure S is given by.

S : Reject H0 if S < 0 (15)

where

S := I(ĉ ≥ cL)β
Q

τ (ρ
τ
(αQ1,τ ), α2) + I(ĉ < cL)β

t

τ (α
t
1,τ , α2). (16)

Our choice of the cut-off value cL to use in practice is, again, motivated by the local

asymptotic power functions presented in Figures 9-13 which, as discussed in Section 4.1,

show that the local asymptotic power of the QGLS
τ test is superior to that of tOLSτ for

c > −10 but inferior for c < −10, with little to choose between the two tests for c = −10.

We again used Monte Carlo simulation to determine an appropriate value for cL and found

a value of cL = −15 led to a test with the best overall power properties. As was the case for

right-tailed testing, we found that the maximum asymptotic size of S was still maximised

at 0.05 for c ∈ [−50, 5] when testing in the left tail, so no further calibration was required.

5.3 Dealing with Weakly Persistent Predictors

The U and S tests outlined in Sections 5.1 and 5.2 are constructed under the assumption

that the predictor is strongly persistent. When Assumption W holds, such that the predic-

tor is weakly persistent, the QGLS
d and tOLSd tests, and hence the U and S tests, are asymp-

totically invalid. In contrast, under Assumption W a “conventional” OLS t-test, which

compares the OLS t-statistic tτ of (5) with standard normal critical values, is asymptoti-

cally valid and is optimal (among feasible tests) under Gaussianity, regardless of the value

of δ; see Jansson and Moreira (2006,p.704).6

Based on these considerations, we propose an approach similar to that followed by Elliott

et al. (2015) and Harvey et al. (2021), whereby we switch from the use of the U and S tests

to a conventional t-test which compares tτ of (5) with standard normal critical values, when

there is sufficient evidence that the predictor is weakly persistent. We will use the with-

trend variant of the ADF-OLS normalised bias statistic, NB-OLSτ := (T φ̂)/(1−
∑p−1

i=1 ψ̂i),

6In contrast to the case of strongly persistent predictors, for weakly stationary predictors there is no loss
of asymptotic local power, relative to a test based on tµ (where the trend regressor is omitted), from basing
the conventional t-test on the with-trend tτ statistic when the trend is irrelevant (see, e.g., Grenander and
Rosenblatt, 1957). We therefore always base the conventional t-test on tτ because, unlike tµ, it is exact
invariant to the magnitude of the linear trend.
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where φ̂ and ψ̂i, i = 1, ..., p− 1 are obtained by OLS estimation of

∆xt = π0 + π1t+ φxt−1 +
∑p−1

i=1
ψi∆xt−i + et,

to determine whether the predictor is weakly persistent. We use the OLS variant of the

normalised bias unit root statistic, rather than the GLS variant used to estimate c in Section

5.1, because of its superior power properties for non-local departures from a unit root.

Under Assumption S, NB-OLSτ = Op(1), while under Assumption W, NB-OLSτ

diverges to −∞ at a rate faster than T 1/2. If we classify a predictor as weakly persistent

when NB-OLSτ < cvNB then, for any fixed value of cvNB, a predictor generated according

to Assumption W will be classified as weakly persistent asymptotically with probability

one. However, employing a fixed critical value can result in a strongly persistent predictor

generated according to Assumption S being classified as weakly persistent with non-zero

probability (the usual type I error). To address this issue we instead propose the use of a

(sample size dependent) diverging critical value given by

cvNB = −υT 1/2 (17)

where υ > 0 is a user-chosen tuning parameter, so that the conventional t-test is employed

whenever NB-OLSτ < −υT 1/2. The divergence rate of NB-OLSτ ensures that, in the

limit, our Bonferroni-type U and S tests will always be performed when the predictor is

strongly persistent, while the conventional t-test based on comparing tτ of (5) with standard

normal critical values will always be performed when the predictor is weakly persistent,

regardless of the value of υ.

5.4 Overall Testing Approach

On the basis of Sections 5.1-5.3 we are now in a position to present our overall hybrid test-

ing procedures for predictability, which we denote by Uhyb and Shyb. We outline these test

procedures for the case where δ < 0. For δ > 0, proceed as per the discussion at the start of

Section 5 substituting xt−1 for −xt−1 throughout. The decision rules for one-sided tests per-

formed at the α/2 nominal asymptotic level can be written as follows, where we again denote

the α quantile of the normal distribution as zα. All confidence intervals are constructed so

that the resultant one-sided tests for predictability have maximum asymptotic size of α/2.
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Decision Rule for Hybrid Test Procedures (δ < 0)

� Decision Rule for Uhyb:

– Right Tailed Tests:

* If NB-OLSτ ≥ −υT 1/2: Reject H0 if U > 0

* If NB-OLSτ < −υT 1/2: Reject H0 if tτ > z1−α/2

– Left Tailed Tests:

* If NB-OLSτ ≥ −υT 1/2: Reject H0 if β
Q
τ (ρ

τ
(αQ1,τ ), α2) < 0

* If NB-OLSτ < −υT 1/2: Reject H0 if tτ < zα/2

� Decision Rule for Shyb:

– Right Tailed Tests:

* If NB-OLSτ ≥ −υT 1/2: Reject H0 if US > 0

* If NB-OLSτ < −υT 1/2: Reject H0 if tτ > z1−α/2

– Left Tailed Tests:

* If NB-OLSτ ≥ −υT 1/2: Reject H0 if S < 0

* If NB-OLSτ < −υT 1/2: Reject H0 if tτ < zα/2

Remark 5.1. Although the definitions of the Uhyb and Shyb procedures given above are

framed in terms of one-sided tests for predictability, in principle each of these procedures

can also be used to perform two-sided tests for predictability. For a given test, if the right

tailed and left tailed versions of the test are constructed such that they have asymptotic

size no greater than α/2, then combining inference from the two individual one-sided tests

for predictability will lead to an overall two-sided test for predictability that will have

asymptotic size no greater than α. ♦

6 Local Asymptotic Power of Hybrid Tests

We now return to Figures 1-8 to assess the power of our proposed Uhyb and Shyb test

procedures, concentrating first on right tailed tests for predictability.

On examining Figures 1-5 we see that when c is small or moderate, the powers of our

hybrid Uhyb and Shyb tests essentially coincide with each other, as for such values of c,

drawings from the limit distribution of ĉ in (12) rarely fall below cR. For small κ, the

powers of Uhyb and Shyb lie between those of the QGLS
µ and QGLS

τ tests, as expected, but

it can be seen that the Uhyb and Shyb power profiles are reasonably close to that of the

best performing QGLS
µ test and often well in excess of that for QGLS

τ . As κ increases, QGLS
τ

becomes the most powerful individual test, and here we see that the Uhyb and Shyb powers

now move towards the (κ-invariant) QGLS
τ power profile. The consequence of this is that
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the hybrid tests are always among the best performing tests, having power close to that of

QGLS
µ when κ is close to or equal to zero, and that of QGLS

τ for larger values of κ.

We next examine Figures 6-8 where c is large. When κ is small the power of the Uhyb

test still tracks the power of the QGLS
µ test reasonably well, and for larger values of κ the

power of Uhyb continues to track the power of the QGLS
τ test. However, for the larger c

values we see that the power of Uhyb can lag behind that of the tOLSτ test regardless of the

value of κ. For these larger c cases we see that the power of the Shyb test now diverges

from that of Uhyb since ĉ is here much more likely to take a value below −35, causing Shyb

to switch into the tOLSτ test, more so as c becomes increasingly negative. The consequence

is that the power of Shyb is far superior to that of Uhyb for these values of c, and is almost

identical to that of the best performing tOLSτ test for c = {−40,−50}.
We now turn our attention to Figures 9-13 which present the performance of Shyb when

testing in the left-tail. (Here, we recall that the Uhyb test reduces to QGLS
τ in the left tail

under strong persistence.) The results show that for small c, ĉ is almost never less than

−15, hence the power of Shyb coincides almost perfectly with that of QGLS
τ , which is the

most powerful test in these scenarios that maintains size control across κ. As c becomes

more negative, ĉ increasingly drops below −15, with the consequence that inference for Shyb

increasingly becomes based on tOLSτ . As such, for large c the power of Shyb more closely

tracks that of tOLSτ , which is the best performing size-controlled test. As a consequence, the

Shyb test displays one of the best power profiles among size-controlled tests across all values

of c, having power close to that of the QGLS
τ test for smaller c and close to that of tOLSτ for

larger c. We note also that, due to being constructed using only the trend-invariant QGLS
τ

and tOLSτ tests, the Shyb test is itself invariant to the value of κ when testing in the left tail.

An additional consideration in evaluating the local asymptotic size and power of the

tests is their behaviour when c > 0, such that the predictor series is locally explosive. In

the supplementary appendix, we report additional results for the case c = 2, for both right-

tailed and left-tailed testing. We find that in the right-tailed testing context, the best

performing individual tests are QGLS
µ and tOLSµ , even when a large local trend is present

(i.e. large κ), and the Uhyb and Shyb procedures (which coincide here) track QGLS
µ fairly

well across the different κ values considered. In the left-tailed testing scenario, of the two

individual tests that achieve size control across c, i.e. QGLS
τ and tOLSτ , we find that QGLS

τ

provides the better power profile, as in the case of c = 0 and small negative c. Here, the

Shyb test has a power profile that always follows this better performing QGLS
τ test, offering

an attractive power profile across κ. Overall, the newly proposed hybrid tests also perform

well in the locally explosive context.
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In summary, our proposed hybrid test procedures display excellent asymptotic size and

power properties regardless of the values of c and κ. The Shyb test, in particular, has a

power profile that is always close to the best performing size-controlled test in each scenario.

Finite sample simulation results reported in Section S.3 of the supplementary appendix

show that theQGLS
τ , tOLSτ , Uhyb and Shyb test procedures display excellent size control across

a range of values of c and κ both when vt in (3) is i.i.d. or serially correlated, with the only

exception being QGLS
τ and Uhyb which display significant oversize for larger negative values

of c. The oversize for QGLS
τ for less persistent predictors is expected given that this test is

asymptotically invalid for weakly stationary predictors, while the oversize for Uhyb in this

region arises from use of QGLS
τ through the union-of-rejections approach. Aside from this

case, the relative power of the tests in finite samples is almost identical to that observed

in the asymptotic power simulations, with the Shyb test in particular displaying excellent

power across the large range of simulation DGPs considered.

On the basis of our asymptotic and finite sample simulation results, we recommend

basing inference on our proposed Shyb predictability testing procedure as it has controlled

size, and is always among the most powerful tests, over the full range of parameter settings

considered.

7 Empirical Application

We now report results of an empirical exercise in which we apply the tests for predictabil-

ity outlined in this paper to the US equity series analysed in Welch and Goyal (2008), us-

ing updated data at all available data frequencies (annual, quarterly and monthly) for the

period 1926-2021 which can be obtained from http://www.hec.unil.ch/agoyal/. Our de-

pendent variable, rt, is the S&P500 value-weighted log-return, and for xt we consider the

same thirteen candidate predictors variables as Harvey et al. (2021): the dividend payout

ratio, earnings-price ratio, dividend-price ratio, dividend yield, default yield spread, long-

term yield, default return spread, net equity expansion, inflation rate, Treasury bill rate,

term spread the book-to-market ratio and stock variance.

We first formally test for the presence of a linear trend in each predictor using a range of

trend tests available in the literature that are designed to be robust to whether Assumption

S or W holds; namely the tRQFβ (MU) test of Perron and Yabu (2009), the zλ, z
m1
λ and zm2

λ

tests of Harvey et al. (2007), and the Dan-J test of Bunzel and Vogelsang (2005). We

perform left-tailed trend tests for all predictors with the exception of the inflation rate and

term spread for which right-tailed tests are performed, using the setting recommended by

the authors in each case. Tables 2 reports the p-value of the tRQFβ (MU) and zλ tests, as well

as the significance level at which the remaining tests (which are designed to be performed
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only at discrete pre-assigned significance levels) reject the null hypothesis of no linear trend

(γ = 0), for each predictor at each data frequency.

From the results reported in Table 2 it is seen that for each of the default yield spread,

long term yield, default return spread, inflation rate, treasury bill rate and stock variance no

trend is detected, regardless of data frequency. In contrast, for the dividend payout ratio,

earnings-price ratio, dividend-price ratio, dividend yield and net equity expansion series

a significant linear trend is detected regardless of the data frequency. For the remaining

predictors the results of the trend tests are mixed, with the trend tests indicating the

presence of a trend at some, but not all, data frequencies. In summary, there is at least

some statistically significant evidence of a linear trend being present in the majority of the

predictors considered.

We now discuss the results of applying right-tailed tests for predictability. All tests are

performed at a nominal level of 0.05. Following CY, lag selection for all of the unit root

tests utilised in the test procedures is performed using the Bayes Information Criterion

(BIC) with a maximum number of lagged differences of 4. Finally we set υ = 10 in (17)

such that our hybrid Shyb and Uhyb tests switch into a conventional t-test, comparing tτ of

(5) with standard normal critical values, whenever NB-OLSτ < −10T 1/2 as we found this

choice of υ delivered good finite sample performance across a wide range of DGPs in the

Monte Carlo simulation results reported in Section S.3. As Harvey et al. (2021) test for

predictability in the left tail for the stock variance predictor we report results for a right-

tail test for predictability when (−1)× stock variance is employed as the predictor, noting

that this is equivalent to a left-tailed test using the original data (cf. Remark 3.2).

Table 2 also reports the lower bound of the confidence interval for β, denoted generically

as β, for each predictor at each frequency, and for each of the predictability tests discussed

in this paper. Also reported is the estimator δ̂ from the with-trend Bonferroni type test

procedures. We highlight any instances where this lower bound is greater than zero in bold

to help identify instances where the null of β = 0 is rejected in favour of the alternative

that β > 0. Finally, for the lower bound of β from the Shyb and Uhyb tests we use the

superscript z to identify instances where these tests have switched into the conventional t-

test (i.e. comparing tτ of (5) with standard normal critical values), and for Shyb we use the

superscript t to denote instances where this test is basing inference on the tOLSτ test.

For the dividend payout ratio, long term yield, net equity expansion, inflation rate,

Treasury bill rate, term spread and stock variance predictors, no evidence of predictability

is found by any of the tests for any data frequency and so we will not discuss results for

these predictors further.
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For the earnings-price ratio, as noted above, a linear trend was detected at all frequen-

cies, giving reasonable evidence that a trend is present in this predictor. For this predictor

the QGLS
τ , tOLSτ , Uhyb and Shyb tests all reject the null of no predictability at each data fre-

quency, while the QGLS
µ test fails to reject at any frequency and the tOLSµ test rejects only

at the monthly and quarterly frequencies. These results suggest that for this predictor an

unmodelled trend in the predictor may be negatively impacting the power of the constant-

only tests, with the trend-augmented and hybrid tests retaining power to find significant

evidence of predictability.

A similar story is seen for the dividend-price ratio where again a trend was detected at

each data frequency, and where the QGLS
µ and tOLSµ tests provide no evidence of predictabil-

ity at any frequency. The QGLS
τ , Shyb and Uhyb tests, on the other hand, find evidence of

predictability at both the annual and quarterly frequencies, although no predictability is

detected by any test at the monthly frequency.

Turning to the dividend yield predictor a significant trend is detected at each data

frequency by at least one of the trend tests and all of the predictability tests find significant

evidence of predictability at all data frequencies, with the exception of the QGLS
µ and

tOLSµ tests at the annual frequency. Interestingly, the annual frequency data provides the

strongest evidence for the presence of a trend among the three data frequencies and so it is

noteworthy that it is for the annual data that the QGLS
µ and tOLSµ fail to detect predictability,

while our hybrid tests deliver rejections.

There appears to be no evidence of a trend in the default yield spread, and the only data

frequency at which predictability is detected for this predictor is for quarterly data. For

quarterly data rejections are found by all but the tOLSτ test, reflective of the fact that our

hybrid Shyb and Uhyb tests are competitive on power with the best performing individual

tests when no (or a very small) trend is present in the predictor.

For the default return spread no trend is detected at any data frequency and only

one rejection, at the monthly frequency, is observed for the QGLS
µ test. As the Shyb and

Uhyb tests have switched into the conventional t test for this predictor it is likely that

this predictor is weakly persistent, and that the rejection from QGLS
µ may be reflecting the

oversize of this test for weakly persistent predictors.

Finally, results for the book-to-market ratio are mixed. At the annual frequency no

evidence of a trend is found and the only test to reject is QGLS
µ which is perhaps to be

expected if no trend is present and the predictive power of this predictor is weak. At the

quarterly and monthly frequencies, however, a trend is detected and all of the tests reject

the null of no predictability with the exception of tOLSµ and QGLS
τ for monthly data.
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Overall we find that for several predictor series, a trend appears to be present, and

at the same time the constant-only Bonferroni Q and t-tests fail to reject the null of no

predictability, indicating that the presence of omitted trends may be negatively impacting

the power of the constant-only tests. In contrast, our proposed tests find evidence of

predictability in many of these cases, highlighting the value of our hybrid procedures in

detecting predictability when uncertainty exists regarding the presence of a linear trend in

the predictor.

8 Conclusions

In this paper we have considered trend-augmented versions of the Bonferroni Q test of CY

and the Bonferroni t-test of CES. We have shown that in the presence of an omitted trend in

the predictor, when δ < 0 (δ > 0) the constant-only Bonferroni Q and t-tests can be severely

undersized when testing in the right (left) tail, displaying a subsequent lack of power, and

severely oversized when testing in the left (right) tail. The trend augmented Bonferroni Q

and t-tests, while displaying power below their constant-only counterparts when no trend

is present, are invariant to a trend in the predictor. We subsequently proposed union-of-

rejections type hybrid testing procedures that are able to capture the power of the constant-

only Bonferroni Q test when the predictor admits only a deterministic constant, and the

power of the trend-augmented Bonferroni Q and t-tests when a trend is present in the

predictor, with Shyb being our recommended testing procedure given that it has controlled

size, and is always among the most powerful tests, over the full range of parameter settings

considered. An empirical illustration using an updated version of the dataset of Welch and

Goyal (2008) demonstrated that our proposed approach finds evidence of predictability in

several instances where a trend appears to be present in the predictor where the constant-

only Bonferroni Q and t-tests fail to reject, indicating that the presence of omitted trends

may be negatively impacting the power of the constant-only tests in this commonly used

dataset.
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Table 1: Parameters to Deliver One-Sided Tests with Maximum 5% Asymptotic Size.

QGLS
µ tOLSµ QGLS

τ tOLSτ U

δ αQ1,µ ᾱQ1,µ αt1,µ ᾱt1,µ αQ1,τ ᾱQ1,τ αt1,τ ᾱt1,τ ξ

-0.999 0.050 0.055 0.020 0.035 0.050 0.050 0.040 0.035 0.500
-0.975 0.055 0.080 0.025 0.035 0.055 0.055 0.040 0.025 0.630
-0.950 0.055 0.100 0.025 0.040 0.060 0.065 0.040 0.020 0.660
-0.925 0.055 0.115 0.025 0.040 0.065 0.070 0.035 0.020 0.710
-0.900 0.060 0.130 0.025 0.035 0.070 0.075 0.050 0.020 0.730
-0.875 0.060 0.140 0.025 0.035 0.070 0.085 0.050 0.015 0.710
-0.850 0.060 0.150 0.025 0.035 0.075 0.090 0.050 0.015 0.730
-0.825 0.060 0.160 0.025 0.035 0.075 0.095 0.055 0.010 0.740
-0.800 0.065 0.170 0.025 0.035 0.080 0.100 0.060 0.010 0.750
-0.775 0.065 0.180 0.030 0.035 0.080 0.105 0.065 0.010 0.760
-0.750 0.065 0.190 0.025 0.035 0.085 0.110 0.065 0.010 0.760
-0.725 0.065 0.195 0.025 0.035 0.085 0.115 0.065 0.010 0.760
-0.700 0.070 0.205 0.025 0.035 0.090 0.120 0.065 0.010 0.750
-0.675 0.070 0.215 0.025 0.035 0.090 0.125 0.065 0.005 0.750
-0.650 0.070 0.225 0.025 0.035 0.095 0.130 0.080 0.005 0.740
-0.625 0.075 0.230 0.025 0.035 0.095 0.135 0.080 0.005 0.740
-0.600 0.075 0.240 0.030 0.035 0.100 0.140 0.085 0.005 0.740
-0.575 0.075 0.250 0.035 0.035 0.100 0.140 0.085 0.005 0.740
-0.550 0.080 0.260 0.035 0.035 0.105 0.145 0.090 0.005 0.730
-0.525 0.080 0.270 0.045 0.035 0.110 0.150 0.095 0.005 0.730
-0.500 0.080 0.280 0.060 0.035 0.115 0.150 0.095 0.010 0.730
-0.475 0.085 0.285 0.050 0.035 0.120 0.150 0.095 0.010 0.730
-0.450 0.085 0.295 0.055 0.040 0.120 0.155 0.095 0.010 0.730
-0.425 0.090 0.310 0.035 0.040 0.125 0.165 0.095 0.010 0.710
-0.400 0.090 0.320 0.060 0.040 0.130 0.165 0.150 0.010 0.710
-0.375 0.095 0.330 0.040 0.040 0.135 0.165 0.150 0.010 0.710
-0.350 0.100 0.345 0.030 0.040 0.140 0.170 0.150 0.010 0.690
-0.325 0.100 0.355 0.015 0.045 0.145 0.170 0.150 0.010 0.690
-0.300 0.105 0.360 0.010 0.050 0.150 0.175 0.150 0.010 0.680
-0.275 0.110 0.370 0.005 0.040 0.155 0.175 0.200 0.010 0.680
-0.250 0.115 0.375 0.005 0.035 0.165 0.175 0.200 0.010 0.680
-0.225 0.125 0.380 0.005 0.025 0.170 0.175 0.200 0.010 0.680
-0.200 0.130 0.390 0.005 0.025 0.175 0.175 0.200 0.005 0.670
-0.175 0.140 0.395 0.005 0.010 0.185 0.175 0.200 0.005 0.650
-0.150 0.150 0.400 0.005 0.010 0.200 0.175 0.200 0.005 0.650
-0.125 0.160 0.405 0.005 0.010 0.200 0.165 0.200 0.005 0.630
-0.100 0.175 0.415 0.005 0.005 0.210 0.145 0.200 0.005 0.610
-0.075 0.190 0.420 0.005 0.005 0.220 0.130 0.200 0.005 0.610
-0.050 0.215 0.425 0.005 0.005 0.225 0.100 0.150 0.005 0.590
-0.025 0.250 0.435 0.005 0.005 0.185 0.035 0.150 0.005 0.570
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Table 2: Trend Tests and β for Updated Welch and Goyal (2008) Dataset

Annual Data
β

Predictor p(t
RQF
β

) p(Zλ) Zm1
λ Zm2

λ DAN-J δ̂ tOLSµ QGLSµ tOLSτ QGLSτ Uhyb Shyb

Dividend Payout Ratio 0.000 0.000 ∗∗∗ ∗∗∗ ∗∗∗ -0.313 -0.1650 -0.1439 -0.1635 -0.1353 -0.1605 -0.1635t

Earnings-Price Ratio 0.083 0.223 -0.301 -0.0018 -0.0095 0.0192 0.0391 0.0188 0.0188
Dividend-Price Ratio 0.000 0.008 ∗∗ ∗∗ ∗ -0.843 -0.0624 -0.0443 -0.0280 0.0406 0.0251 0.0251
Dividend Yield 0.200 0.028 ∗∗ ∗∗ ∗ 0.133 -0.0024 -0.0024 0.0838 0.0753 0.0753 0.0753
Default Yield Spread 0.314 0.397 -0.570 -0.1221 -0.1002 -0.1705 -0.1242 -0.1192 -0.1192
Long Term Yield 0.376 0.384 -0.028 -0.0467 -0.0460 -0.0547 -0.0539 -0.0544 -0.0544
Default Return Spread 0.267 0.227 0.315 -0.2064 -0.2143 -0.1993 -0.4130 -1.0099z -1.0099z

Net Equity Expansion 0.000 0.000 ∗∗∗ ∗∗∗ ∗∗ 0.086 -0.3479 -0.3280 -0.3408 -0.3512 -0.3512 -0.3408t

Inflation Rate 0.259 0.262 -0.032 -0.0724 -0.0738 -0.0834 -0.0872 -0.0943 -0.0943
Treasury Bill Rate 0.355 0.363 0.093 -0.0802 -0.0859 -0.0817 -0.0886 -0.0886 -0.0886

Term Spread 0.361 0.363 -0.111 -0.0821 -0.0837 -0.0943 -0.0905 -0.1065 -0.0943t

Book-to-market Ratio 0.196 0.282 -0.806 -0.0388 0.0036 -0.0313 -0.0229 -0.0087 -0.0087

Stock Variance 0.306 0.472 0.398 -0.1521 -0.2169 -0.1559 -0.2288 -0.2288 -0.1559t

Quarterly Data
β

Predictor p(t
RQF
β

) p(Zλ) Zm1
λ Zm2

λ DAN-J δ̂ tOLSµ QGLSµ tOLSτ QGLSτ Uhyb Shyb

Dividend Payout Ratio 0.000 0.064 ∗∗ ∗∗ ∗∗∗ -0.120 -0.0229 -0.0235 -0.0250 -0.0307 -0.0277 -0.0250t

Earnings-Price Ratio 0.000 0.241 ∗ -0.614 0.0043 -0.0157 0.0068 0.0049 0.0006 0.0068t

Dividend-Price Ratio 0.183 0.072 ∗∗ ∗∗ ∗∗ -0.949 -0.0085 -0.0061 -0.0002 0.0160 0.0110 0.0110

Dividend Yield 0.204 0.106 ∗ ∗∗ ∗ 0.113 0.0023 0.0024 0.0240 0.0224 0.0224 0.0240t

Default Yield Spread 0.196 0.416 -0.512 0.0095 0.0126 -0.0051 0.0062 0.0071 0.0071
Long Term Yield 0.363 0.391 -0.054 -0.0159 -0.0155 -0.0171 -0.0169 -0.0177 -0.0177
Default Return Spread 0.355 0.265 0.303 -0.1263 -0.1792 -0.1247 -0.3683 -0.6196z -0.6196z

Net Equity Expansion 0.000 0.004 ∗∗∗ ∗∗∗ ∗∗ 0.115 -0.0755 -0.0676 -0.0909 -0.0898 -0.0898 -0.0909t

Inflation Rate 0.151 0.314 0.030 -0.1078 -0.1020 -0.1093 -0.1033 -0.1033 -0.1093t

Treasury Bill Rate 0.393 0.414 -0.067 -0.0280 -0.0269 -0.0298 -0.0295 -0.0303 -0.0303

Term Spread 0.074 0.345 0.031 -0.0273 -0.0256 -0.0279 -0.0279 -0.0279 -0.0279t

Book-to-market Ratio 0.409 0.360 ∗ -0.793 0.0212 0.0185 0.0392 0.0122 0.0153 0.0153

Stock Variance 0.227 0.455 0.290 -0.1263 -0.1100 -0.1272 -0.1320 -0.1320 -0.1272t

Monthly Data
β

Predictor p(t
RQF
β

) p(Zλ) Zm1
λ Zm2

λ DAN-J δ̂ tOLSµ QGLSµ tOLSτ QGLSτ Uhyb Shyb

Dividend Payout Ratio 0.412 0.089 ∗∗ ∗∗∗ ∗∗ -0.049 -0.0052 -0.0053 -0.0059 -0.0065 -0.0059 -0.0059t

Earnings-Price Ratio 0.374 0.353 ∗∗ -0.799 0.0009 -0.0060 0.0015 0.0017 0.0006 0.0015t

Dividend-Price Ratio 0.200 0.198 ∗ ∗∗ ∗ -0.975 -0.0042 -0.0031 -0.0026 -0.0008 -0.0026 -0.0026
Dividend Yield 0.201 0.199 ∗ ∗∗ ∗ -0.068 0.0008 0.0008 0.0096 0.0099 0.0085 0.0085
Default Yield Spread 0.438 0.434 -0.248 -0.0015 -0.0012 -0.0036 -0.0017 -0.0028 -0.0028
Long Term Yield 0.354 0.384 -0.087 -0.0051 -0.0049 -0.0057 -0.0057 -0.0056 -0.0056
Default Return Spread 0.321 0.374 0.182 -0.0162 0.0636 -0.0158 -0.0259 -0.0678z -0.0678z

Net Equity Expansion 0.000 0.020 ∗∗ ∗∗∗ ∗∗ -0.030 -0.0222 -0.0225 -0.0268 -0.0269 -0.0240 -0.0240

Inflation Rate 0.189 0.456 0.035 -0.0747 -0.0652 -0.0760 -0.0720 -0.0720 -0.0760t

Treasury Bill Rate 0.387 0.402 -0.056 -0.0072 -0.0070 -0.0077 -0.0077 -0.0079 -0.0079

Term Spread 0.001 0.400 ∗ 0.008 -0.0079 -0.0078 -0.0084 -0.0084 -0.0084 -0.0084t

Book-to-market Ratio 0.438 0.435 ∗ -0.807 -0.0001 0.0035 0.0007 -0.0023 0.0025 0.0025

Stock Variance 0.204 0.497 0.267 -0.0429 -0.0018 -0.0431 -0.0130 -0.0130 -0.0431t

Notes:

(i) The entries in the columns headed p(t
RQF
β

) and p(Zλ) denote p-values for the t
RQF
β

and Zλ tests. Bold entries highlight p-values below 0.1.

(ii) For Zm1
λ , Zm2

λ and DAN-J, ∗ denotes rejection at the 10% level, ∗∗ denotes rejection at the 5% level, and ∗∗∗ denotes rejection at the 1% level.
(iii) Bold entries in the β columns highlight cases where the null hypothesis of no predictability can be rejected at the 5% level.

(iv) For entries in the Uhyb and Shyb columns, a z superscript denotes that the test compares tτ with N(0, 1) critical values, while a t superscript

denotes that the test bases inference on the tOLSτ test.

(v) In the case of Stock Variance, we report δ̂ and β for (-1)× Stock Variance as the predictor. A right-tailed test from this regression is equivalent to a

left-tailed test using the original data.
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Figure 1: Local Asymptotic Power of Right Tailed Tests - δ = −0.95, c = 0

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure 2: Local Asymptotic Power of Right Tailed Tests - δ = −0.95, c = −2

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure 3: Local Asymptotic Power of Right Tailed Tests - δ = −0.95, c = −5

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure 4: Local Asymptotic Power of Right Tailed Tests - δ = −0.95, c = −10

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure 5: Local Asymptotic Power of Right Tailed Tests - δ = −0.95, c = −20

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure 6: Local Asymptotic Power of Right Tailed Tests - δ = −0.95, c = −30

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure 7: Local Asymptotic Power of Right Tailed Tests - δ = −0.95, c = −40

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .

34



Figure 8: Local Asymptotic Power of Right Tailed Tests - δ = −0.95, c = −50

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure 9: Local Asymptotic Power of Left Tailed Tests - δ = −0.95, c = 0

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Shyb: . .
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Figure 10: Local Asymptotic Power of Left Tailed Tests - δ = −0.95, c = −2

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Shyb: . .
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Figure 11: Local Asymptotic Power of Left Tailed Tests - δ = −0.95, c = −5

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Shyb: . .
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Figure 12: Local Asymptotic Power of Left Tailed Tests - δ = −0.95, c = −10

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Shyb: . .
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Figure 13: Local Asymptotic Power of Left Tailed Tests - δ = −0.95, c = −20

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Shyb: . .
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S.1 Proof of Theorems

It is useful to use the Cholesky decomposition to write

et = σeε1t

ut = σu{δε1t + (1− δ2)1/2ε2t}

where et denotes the innovation to vt, and ε1t and ε2t are independent martingale difference

sequences with unit variance. Also, note that we can write as

rt = α∗ + βTwt−1 + ut (S.1)

with α∗ = α + βTµ. Since a constant term is fitted in the regression, for the purposes of

the theory we can set α = µ = 0 (and therefore α∗ = 0) without loss of generality in what

follows.

S.1.1 Proof of Theorem 1(a)

First write

T−1/2

rT∑
t=2

ε1t
w→ W1(r)

T−1/2

rT∑
t=2

ε2t
w→ W2(r)

where W1(r) and W2(r) are independent Brownian motions.

The tµ statistic can be written as

tµ =
T−1

∑T
t=2 xt−1(rt − r̄)√

σ2
uT
−2
∑T

t=2(xt−1 − x̄−1)2

Consider first the numerator of tµ. Using (S.1),

T∑
t=2

xt−1(rt − r̄) = βT

T∑
t=2

xt−1(wt−1 − w̄−1) +
T∑
t=2

xt−1(ut − ū)
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Here,

T−2

T∑
t=2

xt−1(wt−1 − w̄−1) =
T∑
t=2

{γT (t− 1) + wt−1}(wt−1 − w̄−1)

= κωvT
−5/2

T∑
t=2

(t− 1)(wt−1 − w̄−1) + T−2

T∑
t=2

(wt−1 − w̄−1)2

w→ κω2
v

∫ 1

0

rW µ
1c(r)dr + ω2

v

∫ 1

0

W µ
1c(r)

2dr

Also,

T−1

T∑
t=2

xt−1(ut − ū) = T−1

T∑
t=2

(xt−1 − x̄−1)ut

= κωvT
−3/2

T∑
t=2

{(t− 1)− t− 1}ut + T−1

T∑
t=2

(wt−1 − w̄−1)ut

= κωvσuT
−3/2

T∑
t=2

{(t− 1)− t− 1}{δε1t + (1− δ2)1/2ε2t}

+σuT
−1

T∑
t=2

(wt−1 − w̄−1){δε1t + (1− δ2)1/2ε2t}

w→ κωvσu{δ
∫ 1

0

(r − 0.5)dW1(r) + (1− δ2)1/2

∫ 1

0

(r − 0.5)dW2(r)}

+ωvσu{δ
∫ 1

0

W µ
1c(r)dW1(r) + (1− δ2)1/2

∫ 1

0

W µ
1c(r)dW2(r)}

= ωvσu

∫ 1

0

W µ,κ
1c (r){δdW1(r) + (1− δ2)1/2dW2(r)}

So,

T−1

T∑
t=2

xt−1(rt − r̄)
w→ σuωvb{κ

∫ 1

0

rW µ
1c(r)dr +

∫ 1

0

W µ
1c(r)

2dr}+ σuωv{δ
∫ 1

0

W µ,κ
1c (r)dW1(r)

+ ωvσu(1− δ2)1/2

∫ 1

0

W µ,κ
1c dW2(r)}
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Next consider the denominator of tµ

T−2

T∑
t=2

(xt−1 − x̄−1)2 = T−2

T∑
t=2

{γT (t− 1− t− 1) + (wt−1 − w̄−1)}2

= κ2ω2
vT
−3

T∑
t=2

(t− 1− t− 1)2 + T−2

T∑
t=2

(wt−1 − w̄−1)2

+2κωvT
−5/2

T∑
t=2

(t− 1− t− 1)(wt−1 − w̄−1)

w→ κ2ω2
v/12 + ω2

v

∫ 1

0

W µ
1c(r)

2dr + 2κω2
v

∫ 1

0

rW µ
1c(r)dr

= ω2
v

∫ 1

0

{κ(r − 0.5) +W µ
1c(r)}

2 dr

= ω2
v

∫ 1

0

W µ,κ
1c (r)2dr

Hence we obtain

tµ =
T−1

∑T
t=2 xt−1(rt − r̄)√

σ2
uT
−2
∑T

t=2(xt−1 − x̄−1)2

w→
b{κ

∫ 1

0
rW µ

1c(r)dr +
∫ 1

0
W µ

1c(r)
2dr}+ δ

∫ 1

0
W µ,κ

1c (r)dW1(r) + (1− δ2)1/2
∫ 1

0
W µ,κ

1c dW2(r)√∫ 1

0
W µ,κ

1c (r)2dr

=
b{κ

∫ 1

0
rW µ

1c(r)dr +
∫ 1

0
W µ

1c(r)
2dr}+ δ

∫ 1

0
W µ,κ

1c (r)dW1(r)√∫ 1

0
W µ,κ

1c (r)2dr
+ (1− δ2)1/2Zµ

where Zµ := {
∫ 1

0
W µ,κ

1c (r)2dr}−1/2
∫ 1

0
W µ,κ

1c (r)dW2(r) is a N(0, 1) random variable.

S.1.2 Proof of Theorem 1(b)

Assuming ρ̃T = 1 + c̃/T and letting yt := (rt − (σu,e/σeωv)(xt − ρ̃xt−1)), we can write

Qµ(β0, ρ̃) with β0 = 0 as

Qµ(β0, ρ̃) =

∑T
t=2(xt−1 − x̄−1)yt + T

2
(σu,e/σeωv)(ω

2
v − σ2

v)

(1− δ2)1/2σu

√∑T
t=2(xt−1 − x̄−1)2

(S.2)

Turning first to the numerator of (S.2) first note that we can write
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yt = βTwt−1 + ut − (σu,e/σeωv)(xt − ρ̃xt−1)

= βTwt−1 + ut − (σu,e/σeωv)(xt − ρxt−1)

+(σu,e/σeωv)T
−1(c̃− c)xt−1

= βTwt−1 + ut − (σu,e/σeωv){vt − γT{cT−1(t− 1)− 1}

+(σu,e/σeωv)T
−1(c̃− c)xt−1

using

xt − ρxt−1 = γT t+ wt − ρwt−1 − ργT (t− 1)

= vt + γT{t− (1 + cT−1)(t− 1)}

= vt − γT{cT−1(t− 1)− 1}

So,

yt = βTwt−1 + {ut − (σu,e/σeωv)vt}+ (σu,e/σeωv)γT{cT−1(t− 1)− 1}

+(σu,e/σeωv){T−1(c̃− c)xt−1} (S.3)

Hence we find

Qµ(β0, ρ̃) =
βT
∑T

t=2(xt−1 − x̄−1)wt−1

(1− δ2)1/2σu

√∑T
t=2(xt−1 − x̄−1)2

(S.4)

+

∑T
t=2(xt−1 − x̄−1)(ut − (σu,e/σeωv)vt) + T

2
(σu,e/σeωv)(ω

2
v − σ2

v)

(1− δ2)1/2σu

√∑T
t=2(xt−1 − x̄−1)2

(S.5)

+
(σu,e/σeωv)γT cT

−1
∑T

t=2(xt−1 − x̄−1)(t− 1)

(1− δ2)1/2σu

√∑T
t=2(xt−1 − x̄−1)2

(S.6)

+
(σu,e/σeωv)T

−1(c̃− c)
∑T

t=2(xt−1 − x̄−1)2

(1− δ2)1/2σu

√∑T
t=2(xt−1 − x̄−1)2

(S.7)
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We now examine the limit of each of the terms (S.4)-(S.7) in turn. Beginning with (S.4),

we can write it as

(bσu/ωv)T
−2
∑T

t=2 xt−1(wt − w̄−1)

(1− δ2)1/2σu

√
T−2

∑T
t=2(xt−1 − x̄−1)2

w→
(bσu/ωv){κω2

v

∫ 1

0
rW µ

1c(r)dr + ω2
v

∫ 1

0
W µ

1c(r)
2dr}

(1− δ2)1/2σu

√
ω2
v

∫ 1

0
W µ,κ

1c (r)2dr

=
b{κ

∫ 1

0
rW µ

1c(r)dr +
∫ 1

0
W µ

1c(r)
2dr}

(1− δ2)1/2

√∫ 1

0
W µ,κ

1c (r)2dr
(S.8)

For (S.5) we note that

T−1

T∑
t=2

(xt−1 − x̄−1)vt
w→ ω2

v

∫ 1

0

W µ,κ
1c (r)dW1(r) +

1

2
(ω2

v − σ2
v)

Then,

T−1
∑T

t=2(xt−1 − x̄−1)(ut − σue
σeωv

vt) + 1
2
σue
σeωv

(ω2
v − σ2

v)

σu(1− δ2)1/2(T−2
∑T

t=2(xt−1 − x̄−1)2)1/2

=
T−1

∑T
t=2(xt−1 − x̄−1)ut − σue

σeωv
T−1

∑T
t=2(xt−1 − x̄−1)vt + 1

2
σue
σeωv

(ω2
v − σ2

v)

σu(1− δ2)1/2(T−2
∑T

t=2(xt−1 − x̄−1)2)1/2

w→
ωvσu

∫ 1

0
W µ,κ

1c (r){δdW1(r) + (1− δ2)1/2dW2(r)} − σue
σeωv

ω2
v

∫ 1

0
W µ,κ

1c (r)dW1(r)

σu(1− δ2)1/2ωv

√∫ 1

0
W µ,κ

1c (r)2dr

+
−1

2
σue
σeωv

(ω2
v − σ2

v) + 1
2
σue
σeωv

(ω2
v − σ2

v)

σu(1− δ2)1/2ωv

√∫ 1

0
W µ,κ

1c (r)2dr

=
δ
∫ 1

0
W µ,κ

1c (r)dW1(r) + (1− δ2)1/2
∫ 1

0
W µ,κ

1c dW2(r)− δ
∫ 1

0
W µ,κ

1c (r)dW1(r)

(1− δ2)1/2

√∫ 1

0
W µ,κ

1c (r)2dr

=

∫ 1

0
W µ,κ

1c (r)dW2(r)√∫ 1

0
W µ,κ

1c (r)2dr
(S.9)

= Zµ ∼ N(0, 1) (S.10)

S5



For (S.6),

(σu,e/σeωv)γT cT
−1
∑T

t=2(xt−1 − x̄−1)(t− 1)

(1− δ2)1/2σu

√∑T
t=2(xt−1 − x̄−1)2

=
(σu,e/σeωv)cκωvT

−3/2
∑T

t=2(xt−1 − x̄−1)(t− 1)

(1− δ2)1/2σu

√∑T
t=2(xt−1 − x̄−1)2

=
δcκT−5/2

∑T
t=2(xt−1 − x̄−1)(t− 1)

(1− δ2)1/2

√
T−2

∑T
t=2(xt−1 − x̄−1)2

w→
δcκωv

∫ 1

0
rW µ,κ

1c (r)dr

(1− δ2)1/2ωv{
√∫ 1

0
W µ,κ

1c (r)2dr

=
δcκ

∫ 1

0
rW µ,κ

1c (r)dr

(1− δ2)1/2

√∫ 1

0
W µ,κ

1c (r)2dr
(S.11)

Finally, for (S.7),

(σu,e/σeωv)T
−1(c̃− c)

∑T
t=2(xt−1 − x̄−1)2

(1− δ2)1/2σu

√∑T
t=2(xt−1 − x̄−1)2

=
δω−1

v (c̃− c)T−2
∑T

t=2(xt−1 − x̄−1)2

(1− δ2)1/2

√
T−2

∑T
t=2(xt−1 − x̄−1)2

w→
δω−1

v (c̃− c)ω2
v

∫ 1

0
W µ,κ

1c (r)2dr

(1− δ̂2)1/2ωv

√∫ 1

0
W µ,κ

1c (r)2dr

=
δ(c̃− c)

∫ 1

0
W µ,κ

1c (r)2dr

(1− δ2)1/2

√∫ 1

0
W µ,κ

1c (r)2dr
(S.12)

Combining results we therefore have that

Qµ(β0, ρ̃)
w→
b{κ

∫ 1

0
rW µ

1c(r)dr +
∫ 1

0
W µ

1c(r)
2dr}+ δcκ

∫ 1

0
rW µ,κ

1c (r)dr + δ(c̃− c)
∫ 1

0
W µ,κ

1c (r)2dr

(1− δ2)1/2{
∫ 1

0
W µ,κ

1c (r)2dr}1/2
+Zµ
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S.1.3 Proof of Theorem 1(c)

Write the tτ statistic as

tτ =
bσuω

−1
v (T−2

∑T
t=2 x

2
τ,t−1)1/2

σu
+

T−1
∑T

t=2 xτ,t−1ut

σu

√
T−2

∑T
t=2 x

2
τ,t−1

w→ b(

∫ 1

0

W τ
1c(r)

2dr)1/2 +
δ
∫ 1

0
W τ

1c(r)dW1(r) + (1− δ2)1/2
∫ 1

0
W τ

1c(r)dW2(r)√∫ 1

0
W τ

1c(r)
2dr

= b(

∫ 1

0

W τ
1c(r)

2dr)1/2 + δ

∫ 1

0
W τ

1c(r)dW1(r)√∫ 1

0
W τ

1c(r)
2dr

+ (1− δ2)1/2Zτ

where Zτ :=
(∫ 1

0
W τ

1c(r)
2dr
)−1/2 ∫ 1

0
W τ

1c(r)dW2(r) is a N(0, 1) random variable.

S.1.4 Proof of Theorem 1(d)

The Qτ (β0, ρ̃) statistic with β0 = 0 can be written as

Qτ (β0, ρ̃) =
bω−1

v (T−2
∑T

t=2 x
2
τ,t−1)1/2

(1− δ2)1/2
+
δ(c̃− c)(T−2

∑T
t=2 x

2
τ,t−1)1/2

ωv(1− δ2)1/2

+
T−1

∑T
t=2 xτ,t−1(ut − σue

σeωv
vt) + 1

2
σue
σeωv

(ω2
v − σ2

v)

σu(1− δ2)1/2

√
T−2

∑T
t=2 x

2
τ,t−1

(S.13)

We will derive limiting expressions for each of the three terms on the right hand side of

(S.13) Here

bω−1
v (T−2

∑T
t=2 x

2
τ,t−1)1/2

(1− δ2)1/2

w→
b{
∫ 1

0
W τ

1c(r)
2dr}1/2

(1− δ2)1/2
(S.14)

and

δ(c̃− c)(T−2
∑T

t=2 x
2
τ,t−1)1/2

ωv(1− δ2)1/2

w→
δ(c̃− c)

(∫ 1

0
W τ

1c(r)
2dr
)1/2

(1− δ2)1/2
(S.15)
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Finally,

T−1
∑T

t=2 xτ,t−1(ut − σue
σeωv

vt) + 1
2
σue
σeωv

(ω2
v − σ2

v)

σu(1− δ2)1/2

√
T−2

∑T
t=2 x

2
τ,t−1

=
T−1

∑T
t=2 xτ,t−1ut − σue

σeωv
T−1

∑T
t=2 xτ,t−1vt + 1

2
σue
σeωv

(ω2
v − σ2

v)

σu(1− δ2)1/2

√
T−2

∑T
t=2 x

2
τ,t−1

w→
σuωv

∫ 1

0
W τ

1c(s){δdW1(r) + (1− δ2)1/2dW2(r)} − σue
σeωv

ω2
v

∫ 1

0
W τ

1c(s)dW1(s)

σu(1− δ2)1/2ωv

√∫ 1

0
W τ

1c(r)
2dr

+
−1

2
σue
σeωv

(ω2
v − σ2

v) + 1
2
σue
σeωv

(ω2
v − σ2

v)

σu(1− δ2)1/2ωv

√∫ 1

0
W τ

1c(r)
2dr

=

∫ 1

0
W τ

1c(s)dW2(s)√∫ 1

0
W τ

1c(r)
2dr

= Zτ ∼ N(0, 1) (S.16)

Combining results we obtain

Qτ (β0, ρ̃)
w→

b{
∫ 1

0
W τ

1c(r)
2dr}1/2

(1− δ2)1/2
+
δ(c̃− c){

∫ 1

0
W τ
,1c(r)

2dr}1/2

(1− δ2)1/2
+ Zτ

=
{b+ δ(c̃− c)}{

∫ 1

0
W τ

1c(r)
2dr)1/2}

(1− δ2)1/2
+ Zτ .

S.2 Additional Local Asymptotic Power Simulations

In this section we report additional asymptotic simulation results to those reported in

the main paper. Figures S.1 - S.3 report local asymptotic power for left-tailed tests for

predictability with δ = −0.95 and c = −30,−40,−50. Finally, the local asymptotic power

of the tests for predictability for an explosive predictor with c = 2 and δ = −0.95 are

reported in Figures S.4 - S.5, with Figure S.4 reporting the power of right-tailed tests, and

Figure S.5 reporting the power of left-tailed tests. Additional results for δ = −0.75 can

be found in the on-line supplementary appendix which can be found at https://rtaylor-

essex.droppages.com/esrc2/default.htm.
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Figure S.1: Local Asymptotic Power of Left Tailed Tests - δ = −0.95, c = −30

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Shyb: . .
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Figure S.2: Local Asymptotic Power of Left Tailed Tests - δ = −0.95, c = −40

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Shyb: . .
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Figure S.3: Local Asymptotic Power of Left Tailed Tests - δ = −0.95, c = −50

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Shyb: . .
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Figure S.4: Local Asymptotic Power of Right Tailed Tests - δ = −0.95, c = 2

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.5: Local Asymptotic Power of Left Tailed Tests - δ = −0.95, c = 2

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Shyb: . .
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S.3 Finite Sample Size and Power

In this section we evaluate the finite sample size and power of tests for predictability

discussed in this paper. To do so data were generated according to (1) - (3) with vt =

φvt−1 + et where et ∼ NIID(0, 1), setting w1 = v1 = e1. We set T = 250 and generate

data according to Assumptions S and T such that ρ = 1+ cT−1 and γT = κωvT
−1/2, noting

that for larger negative values of c the predictor will behave more like a weakly stationary

process in finite samples. All tests are performed at a nominal level of 0.05. Following CY,

lag selection for all of the unit root tests utilised in the test procedures is performed using

the Bayes Information Criterion (BIC) with a maximum number of lagged differences of

4. Finally we set υ = 10 in (17) such that our hybrid Shyb and Uhyb tests switch into the

conventional t-test whenever NB-OLSτ < −10T 1/2 as we found this choice of υ delivered

good finite sample performance across a wide range of DGPs.

S.3.1 Finite Sample Size

We being by examining the finite sample size of the tests. We first report result for φ = 0.0

such that vt is an i.i.d. process, and for c = 2, 0,−2,−5,−10,−20,−30,−40,−50,−100,−250,

with the final setting clearly corresponding to weak persistence (ρ = 0 when c = −250).

We report results for κ = 0 in Table S.1 and κ = 0.5 + 0.5I(c > −20) in Table S.2, where

we make κ dependent on c in the latter scenario due to the impact of κ on the size of the

tests being greater the more negative is the value of c.

Turning first to Table S.1 we see that for right-tailed tests with κ = 0 and φ = 0.0 all

tests are well size controlled for c > −50, with this result unsurprising given that all tests

are designed to be asymptotically size controlled when ρ is local-to-unity, with the tOLSµ and

tOLSτ tests retaining size control across all other values of c. As c becomes more negative we

do see some size distortions for the QGLS
d tests, as for these values of c the predictor will be

behaving more like a weakly stationary process, in which case these tests are asymptotically

invalid. While the QGLS
µ test displays severe size distortions only for c = −250, the QGLS

τ

test also suffers severe size distortions for c = −100. As a consequence, the Uhyb test does

suffer from severe size distortions for c = −100 as while Uhyb is correctly switching into

the conventional t-test in almost all (99.9%) of replications for c = −250, and is therefore

S14



correctly sized, this will not be true for c = −100 and the oversize of QGLS
τ in this scenario

feeds through into the size of Uhyb. This renders the Uhyb test potentially unreliable. The

size of the Shyb test, on the other hand, is well controlled across all values of c. This is due

to the fact for intermediate values of c that span the gap between strongly persistent and

weakly persistent predictors this test will be switching into the size controlled tOLSτ test

with very high probability.

For left tailed tests with κ = 0 and φ = 0.0 we observe that, with the exception of the

QGLS
µ test for larger negative values of c, all tests display reasonable size control across all

values of c. While the tests have very low size for values of c closer to zero this is in line

with the asymptotic size of the tests when maximising size at 0.05 across a large range of c.

We see that the size of Shyb is identical to that of QGLS
τ for c close to 0, and to that of tOLSτ

for more negative values of c (with the exception of c = −250 where Shyb is almost always

switching into conventional t) demonstrating that the switching rule in (16) is effective in

finite samples.

We now turn to Table S.2 which reports results for a large positive value of κ. First

we observe that the size of the QGLS
τ and tOLSτ tests are identical to those in Table S.1 for

both right and left tailed tests due to these tests being invariant to the value of κ. For

right (left) tail tests we see that both the QGLS
µ and tGLSµ tests can be severely undersized

(oversized), with this undersize (oversize) more pronounced the more negative is the value

of c for a given value of κ. For right tailed tests we see that for c close to zero the size

of both Uhyb and Shyb is slightly lower relative to the case where κ = 0, and we will see

that this translates into a loss of power for these tests relative to when κ = 0, although the

power of these tests for κ 6= 0 will be shown to still be close to that of the most powerful

test in each scenario. For left tailed tests the Shyb test has identical size to that seen in

Table S.1 as this test is a function of two tests that are both invariant to κ.

We now briefly discuss the results for the size of the tests when φ = 0.5 so that the

predictor is generated as an AR(2) process. We report results only for

c = 2, 0,−2,−5,−10,−20,−30,−40,−50 so that the serial correlation induced by the

value of ρ = 1 + cT−1 remains the dominant driver of the persistence of the predictor.

Table S.3 reports the size of the tests when κ = 0 and Table S.4 reports results for when
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κ = 0.5 + 0.5I(c > −20). While the size of the tests is not identical to the case when

φ = 0.0, the difference in size between φ = 0.5 and φ = 0.0 is minimal in a vast majority

of cases. This is likely due to the fact that we are using the BIC to select the AR order for

the predictor, which selects the true order in a vast majority of instances.

S.3.2 Finite Sample Power

We now examine the finite sample power properties of all tests. We begin by reporting

power for both right and left tailed tests for c = 0,−2,−5,−10,−20,−30,−40,−50,−100,−250

and δ = −0.951, all across various values of κ. We then briefly discuss the relative power

performance of the tests for an explosive predictor with c = 2.

We first examine the finite sample power of right-tailed tests for predictability reported

in Figures S.6 - S.15. The power of the tests when κ = 0 is reported in panel (a) of each

figure, with these results mirroring those found for local asymptotic power in Sections 4.1

and 6 where the best overall power performance for c close to zero is displayed by the QGLS
µ

test. For the more negative values of c <= −30 the best power is displayed by the tOLSµ test.

For c close to zero we see that, much like when examining local asymptotic power, the finite

sample power of the hybrid Uhyb and Shyb tests is very close to that of the best performing

QGLS
µ test. For larger negative values of c the power of the Uhyb test is less competitive,

and for c = −100 the test is oversized, as noted above. The Shyb test, on the other hand,

is among the better performing tests for all values of c, owing to this test basing inference

on the tOLSτ test with increasing probability as c becomes more negative. For the largest

value of c considered (c = −250), both Uhyb and Shyb have switched into the standard tτ

test in almost all replications, and consequently display an attractive power profile.

The power of right-tailed tests when κ > 0 is reported in panels (b) - (f) of Figures S.6

- S.15. Again, these results closely mirror those found for the local asymptotic power of the

tests, with the power of the QGLS
µ and tOLSµ tests falling away as the value of κ increases,

and the power of QGLS
τ and tOLSτ invariant to the value of κ. For c close to zero the power

of the hybrid Uhyb and Shyb tests tracks close to the most powerful QGLS
µ test for small κ,

while for larger κ, the hybrid tests closely track the power of the better performing QGLS
τ

1Additional results for δ = −0.75 can be found in the on-line supplementary appendix which can be
found at https://rtaylor-essex.droppages.com/esrc2/default.htm.
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test, hence the Uhyb and Shyb tests are among the most powerful tests regardless of the

value of κ. For larger negative values of c we see that Shyb continues to be among the

most powerful tests given that it is increasingly likely to switch into the tOLSτ test, which

performs well in this region, as the value of c decreases.

Results for left tailed tests are reported in Figures S.16 - S.25. As with the local

asymptotic power results, although the QGLS
µ and tOLSµ tests perform well when κ = 0,

these tests suffer from substantial oversize when κ 6= 0. Among the with-trend tests, the

QGLS
τ test displays the best overall power for c close to zero, and the tOLSτ test peforms best

for more negative values of c. With the exception of the case c = −250, the Uhyb test here

reduces to QGLS
τ , and therefore does not perform well unless c is close to zero. On the other

hand, the hybrid Shyb test is able to capture the superior power of the best performing test

in each scenario, tracking closely the power of QGLS
τ for c close to zero, and that of tOLSτ

for other values of c.

Finally, the finite sample power of the tests for an explosive predictor with c = 2 and

δ = −0.95 are reported in Figures S.26 - S.27. Figure S.26 reports power of right-tailed tests.

The main differences that we see compared to the previous values of c considered is that in

the explosive predictor case the best overall power performance is, in fact, delivered by the

tOLSµ test, with the impact of an omitted trend on the constant-only tests less pronounced

than for c ≤ 0. Figure S.27 reports power of left-tailed tests. Much like with right-tailed

tests with an explosive predictor, the presence of an omitted trend has minimal impact

on the constant-only tests such that QGLS
µ and tOLSµ are the best performing tests. While

for an explosive predictor the constant-only tests appear to remain the better performing

tests even for relatively large values of κ, this does not change our recommendation to use

our proposed hybrid tests in practice given that a predictor that is explosive for the entire

sample period is extremely unlikely to be observed in empirical practice.

Overall, we have demonstrated that the Shyb test, in particular, is very well suited to

testing for predictability when uncertainty exists over the presence of a trend. For both

right and left tailed tests Shyb displays excellent size control, and has power that is never

far behind that of the best performing test in each scenario considered across a very wide

range of values of c and κ.
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Table S.1: Finite Sample Size, T = 250, φ = 0.0, κ = 0.

(a) Right Tailed Tests (b) Left Tailed Tests

c δ QGLSµ tOLSµ QGLSτ tOLSτ Uhyb Shyb c δ QGLSµ tOLSµ QGLSτ tOLSτ Uhyb Shyb

2 -0.95 0.049 0.048 0.047 0.053 0.055 0.055 2 -0.95 0.017 0.005 0.009 0.000 0.009 0.009
-0.75 0.046 0.049 0.055 0.050 0.056 0.056 -0.75 0.013 0.010 0.013 0.000 0.013 0.013
-0.50 0.045 0.050 0.054 0.047 0.052 0.052 -0.50 0.021 0.023 0.018 0.005 0.018 0.018
-0.25 0.047 0.049 0.053 0.050 0.053 0.053 -0.25 0.035 0.030 0.029 0.027 0.029 0.029

0 -0.95 0.049 0.051 0.047 0.036 0.052 0.052 0 -0.95 0.010 0.004 0.023 0.000 0.023 0.023
-0.75 0.052 0.052 0.045 0.038 0.054 0.054 -0.75 0.010 0.010 0.013 0.000 0.013 0.013
-0.50 0.055 0.051 0.046 0.040 0.052 0.052 -0.50 0.018 0.021 0.013 0.007 0.013 0.013
-0.25 0.057 0.052 0.048 0.046 0.049 0.049 -0.25 0.030 0.028 0.025 0.028 0.025 0.026

-2 -0.95 0.050 0.044 0.039 0.025 0.044 0.044 -2 -0.95 0.010 0.011 0.024 0.000 0.024 0.024
-0.75 0.051 0.038 0.033 0.024 0.044 0.044 -0.75 0.009 0.018 0.019 0.002 0.019 0.019
-0.50 0.054 0.041 0.035 0.029 0.041 0.042 -0.50 0.016 0.029 0.019 0.014 0.019 0.019
-0.25 0.055 0.045 0.041 0.039 0.041 0.041 -0.25 0.029 0.034 0.029 0.036 0.029 0.030

-5 -0.95 0.049 0.044 0.036 0.028 0.041 0.042 -5 -0.95 0.013 0.034 0.016 0.001 0.016 0.016
-0.75 0.049 0.034 0.031 0.018 0.038 0.038 -0.75 0.010 0.035 0.013 0.007 0.013 0.013
-0.50 0.051 0.034 0.031 0.021 0.036 0.036 -0.50 0.015 0.041 0.017 0.026 0.017 0.017
-0.25 0.052 0.038 0.036 0.031 0.036 0.036 -0.25 0.028 0.041 0.031 0.043 0.031 0.032

-10 -0.95 0.045 0.047 0.039 0.039 0.038 0.038 -10 -0.95 0.019 0.046 0.017 0.006 0.017 0.017
-0.75 0.044 0.039 0.033 0.020 0.035 0.036 -0.75 0.012 0.045 0.013 0.026 0.013 0.013
-0.50 0.047 0.034 0.031 0.018 0.031 0.032 -0.50 0.017 0.045 0.018 0.042 0.018 0.021
-0.25 0.047 0.034 0.034 0.026 0.032 0.032 -0.25 0.028 0.045 0.029 0.049 0.029 0.035

-20 -0.95 0.038 0.049 0.043 0.047 0.034 0.038 -20 -0.95 0.035 0.046 0.017 0.046 0.017 0.026
-0.75 0.036 0.045 0.036 0.034 0.031 0.034 -0.75 0.020 0.046 0.014 0.050 0.014 0.033
-0.50 0.039 0.042 0.033 0.026 0.028 0.030 -0.50 0.021 0.047 0.017 0.049 0.017 0.040
-0.25 0.045 0.042 0.037 0.028 0.030 0.031 -0.25 0.031 0.046 0.029 0.050 0.029 0.047

-30 -0.95 0.034 0.050 0.053 0.049 0.037 0.047 -30 -0.95 0.067 0.048 0.019 0.048 0.019 0.048
-0.75 0.032 0.045 0.041 0.043 0.031 0.040 -0.75 0.035 0.049 0.014 0.049 0.014 0.049
-0.50 0.036 0.046 0.037 0.038 0.028 0.037 -0.50 0.028 0.047 0.017 0.049 0.017 0.049
-0.25 0.043 0.047 0.039 0.038 0.029 0.036 -0.25 0.036 0.048 0.029 0.051 0.029 0.051

-40 -0.95 0.032 0.049 0.067 0.050 0.046 0.050 -40 -0.95 0.107 0.049 0.020 0.047 0.020 0.047
-0.75 0.030 0.047 0.050 0.046 0.036 0.045 -0.75 0.057 0.048 0.014 0.048 0.014 0.048
-0.50 0.034 0.047 0.042 0.044 0.029 0.042 -0.50 0.041 0.049 0.017 0.049 0.017 0.049
-0.25 0.042 0.049 0.041 0.044 0.029 0.042 -0.25 0.041 0.048 0.027 0.051 0.027 0.051

-50 -0.95 0.032 0.049 0.085 0.051 0.060 0.051 -50 -0.95 0.150 0.048 0.022 0.047 0.022 0.047
-0.75 0.030 0.048 0.064 0.047 0.046 0.047 -0.75 0.084 0.048 0.016 0.049 0.016 0.049
-0.50 0.033 0.049 0.051 0.047 0.033 0.046 -0.50 0.054 0.048 0.017 0.049 0.017 0.049
-0.25 0.041 0.051 0.045 0.048 0.030 0.048 -0.25 0.046 0.049 0.028 0.051 0.028 0.051

-100 -0.95 0.050 0.047 0.316 0.048 0.259 0.048 -100 -0.95 0.315 0.050 0.040 0.052 0.037 0.052
-0.75 0.042 0.047 0.248 0.049 0.203 0.049 -0.75 0.232 0.051 0.026 0.052 0.024 0.052
-0.50 0.036 0.049 0.161 0.049 0.118 0.049 -0.50 0.148 0.051 0.018 0.051 0.017 0.051
-0.25 0.037 0.051 0.085 0.051 0.055 0.051 -0.25 0.079 0.051 0.020 0.052 0.020 0.052

-250 -0.95 0.281 0.040 0.857 0.036 0.065 0.065 -250 -0.95 0.447 0.065 0.048 0.074 0.039 0.039
-0.75 0.274 0.041 0.837 0.038 0.061 0.061 -0.75 0.407 0.062 0.039 0.067 0.042 0.041
-0.50 0.207 0.045 0.793 0.041 0.057 0.057 -0.50 0.345 0.059 0.030 0.062 0.044 0.043
-0.25 0.099 0.048 0.594 0.047 0.053 0.054 -0.25 0.205 0.053 0.018 0.055 0.046 0.046
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Table S.2: Finite Sample Size, T = 250, φ = 0.0 κ = 0.5 + 0.5I(c > −20).

(a) Right Tailed Tests (b) Left Tailed Tests

c δ QGLSµ tOLSµ QGLSτ tOLSτ Uhyb Shyb c δ QGLSµ tOLSµ QGLSτ tOLSτ Uhyb Shyb

2 -0.95 0.050 0.048 0.047 0.053 0.055 0.055 2 -0.95 0.046 0.006 0.009 0.000 0.009 0.009
-0.75 0.047 0.047 0.055 0.050 0.057 0.057 -0.75 0.030 0.011 0.013 0.000 0.013 0.013
-0.50 0.045 0.047 0.054 0.047 0.053 0.053 -0.50 0.030 0.026 0.018 0.005 0.018 0.018
-0.25 0.045 0.047 0.053 0.050 0.051 0.051 -0.25 0.040 0.033 0.029 0.027 0.029 0.029

0 -0.95 0.030 0.044 0.047 0.036 0.044 0.044 0 -0.95 0.042 0.011 0.023 0.000 0.023 0.023
-0.75 0.034 0.045 0.045 0.038 0.043 0.043 -0.75 0.027 0.017 0.013 0.000 0.013 0.013
-0.50 0.039 0.044 0.046 0.040 0.043 0.043 -0.50 0.030 0.029 0.013 0.007 0.013 0.013
-0.25 0.046 0.047 0.048 0.046 0.046 0.046 -0.25 0.038 0.033 0.025 0.028 0.025 0.026

-2 -0.95 0.010 0.029 0.039 0.025 0.027 0.027 -2 -0.95 0.069 0.032 0.024 0.000 0.024 0.024
-0.75 0.014 0.028 0.033 0.024 0.027 0.027 -0.75 0.038 0.036 0.019 0.002 0.019 0.019
-0.50 0.023 0.032 0.035 0.029 0.030 0.030 -0.50 0.039 0.043 0.019 0.014 0.019 0.019
-0.25 0.038 0.041 0.041 0.039 0.039 0.039 -0.25 0.043 0.039 0.029 0.036 0.029 0.030

-5 -0.95 0.001 0.020 0.036 0.028 0.023 0.023 -5 -0.95 0.161 0.064 0.016 0.001 0.016 0.016
-0.75 0.004 0.020 0.031 0.018 0.021 0.021 -0.75 0.077 0.061 0.013 0.007 0.013 0.013
-0.50 0.013 0.025 0.031 0.021 0.024 0.024 -0.50 0.058 0.060 0.017 0.026 0.017 0.017
-0.25 0.031 0.035 0.036 0.031 0.033 0.033 -0.25 0.055 0.045 0.031 0.043 0.031 0.032

-10 -0.95 0.000 0.011 0.039 0.039 0.024 0.025 -10 -0.95 0.302 0.101 0.017 0.006 0.017 0.017
-0.75 0.002 0.012 0.033 0.020 0.022 0.023 -0.75 0.138 0.085 0.013 0.026 0.013 0.013
-0.50 0.010 0.019 0.031 0.018 0.023 0.024 -0.50 0.086 0.074 0.018 0.042 0.018 0.021
-0.25 0.027 0.030 0.034 0.026 0.032 0.032 -0.25 0.066 0.052 0.029 0.049 0.029 0.035

-20 -0.95 0.001 0.029 0.043 0.047 0.027 0.037 -20 -0.95 0.341 0.079 0.017 0.046 0.017 0.026
-0.75 0.003 0.027 0.036 0.034 0.023 0.029 -0.75 0.162 0.069 0.014 0.050 0.014 0.033
-0.50 0.009 0.027 0.033 0.026 0.022 0.027 -0.50 0.095 0.061 0.017 0.049 0.017 0.040
-0.25 0.025 0.034 0.037 0.028 0.031 0.032 -0.25 0.068 0.052 0.029 0.050 0.029 0.047

-30 -0.95 0.001 0.028 0.053 0.049 0.035 0.047 -30 -0.95 0.460 0.080 0.019 0.048 0.019 0.048
-0.75 0.002 0.026 0.041 0.043 0.028 0.040 -0.75 0.229 0.071 0.014 0.049 0.014 0.049
-0.50 0.007 0.027 0.037 0.038 0.025 0.036 -0.50 0.125 0.063 0.017 0.049 0.017 0.049
-0.25 0.022 0.032 0.039 0.038 0.030 0.037 -0.25 0.079 0.055 0.029 0.051 0.029 0.051

-40 -0.95 0.001 0.026 0.067 0.050 0.045 0.050 -40 -0.95 0.535 0.081 0.020 0.047 0.020 0.047
-0.75 0.002 0.026 0.050 0.046 0.035 0.045 -0.75 0.282 0.072 0.014 0.048 0.014 0.048
-0.50 0.006 0.027 0.042 0.044 0.028 0.043 -0.50 0.149 0.064 0.017 0.049 0.017 0.049
-0.25 0.020 0.033 0.041 0.044 0.032 0.042 -0.25 0.088 0.057 0.027 0.051 0.027 0.051

-50 -0.95 0.000 0.024 0.085 0.051 0.060 0.051 -50 -0.95 0.577 0.082 0.022 0.047 0.022 0.047
-0.75 0.001 0.024 0.064 0.047 0.046 0.047 -0.75 0.321 0.072 0.016 0.049 0.016 0.049
-0.50 0.005 0.027 0.051 0.047 0.033 0.046 -0.50 0.167 0.064 0.017 0.049 0.017 0.049
-0.25 0.019 0.033 0.045 0.048 0.034 0.048 -0.25 0.092 0.056 0.028 0.051 0.028 0.051

-100 -0.95 0.001 0.007 0.316 0.048 0.259 0.048 -100 -0.95 0.609 0.098 0.040 0.052 0.037 0.052
-0.75 0.002 0.011 0.248 0.049 0.203 0.049 -0.75 0.377 0.086 0.026 0.052 0.024 0.052
-0.50 0.006 0.018 0.161 0.049 0.120 0.049 -0.50 0.200 0.074 0.018 0.051 0.017 0.051
-0.25 0.018 0.029 0.085 0.051 0.062 0.051 -0.25 0.105 0.057 0.020 0.052 0.020 0.052

-250 -0.95 0.000 0.003 0.857 0.036 0.065 0.065 -250 -0.95 0.830 0.158 0.048 0.074 0.039 0.039
-0.75 0.000 0.006 0.837 0.038 0.061 0.061 -0.75 0.594 0.125 0.039 0.067 0.042 0.041
-0.50 0.002 0.012 0.793 0.041 0.057 0.057 -0.50 0.314 0.101 0.030 0.062 0.044 0.043
-0.25 0.012 0.024 0.594 0.047 0.053 0.054 -0.25 0.143 0.062 0.018 0.055 0.046 0.046
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Table S.3: Finite Sample Size, T = 250, φ = 0.5, κ = 0.

(a) Right Tailed Tests (b) Left Tailed Tests

c δ QGLSµ tOLSµ QGLSτ tOLSτ Uhyb Shyb c δ QGLSµ tOLSµ QGLSτ tOLSτ Uhyb Shyb

2 -0.95 0.050 0.050 0.048 0.055 0.054 0.054 2 -0.95 0.000 0.006 0.010 0.000 0.010 0.010
-0.75 0.045 0.051 0.053 0.053 0.056 0.056 -0.75 0.005 0.010 0.013 0.000 0.013 0.013
-0.50 0.045 0.049 0.052 0.048 0.052 0.052 -0.50 0.015 0.023 0.018 0.005 0.018 0.018
-0.25 0.048 0.049 0.051 0.049 0.053 0.053 -0.25 0.033 0.031 0.029 0.027 0.029 0.029

0 -0.95 0.048 0.051 0.046 0.038 0.051 0.052 0 -0.95 0.010 0.004 0.021 0.000 0.021 0.021
-0.75 0.051 0.051 0.044 0.040 0.054 0.054 -0.75 0.010 0.010 0.011 0.001 0.011 0.011
-0.50 0.055 0.052 0.044 0.042 0.051 0.051 -0.50 0.018 0.021 0.013 0.007 0.013 0.013
-0.25 0.055 0.052 0.048 0.047 0.048 0.048 -0.25 0.031 0.028 0.026 0.027 0.026 0.026

-2 -0.95 0.048 0.043 0.037 0.026 0.042 0.043 -2 -0.95 0.010 0.011 0.023 0.000 0.023 0.023
-0.75 0.050 0.040 0.033 0.025 0.043 0.043 -0.75 0.009 0.018 0.018 0.002 0.018 0.018
-0.50 0.053 0.042 0.034 0.031 0.043 0.043 -0.50 0.016 0.029 0.019 0.014 0.019 0.019
-0.25 0.055 0.045 0.041 0.040 0.042 0.042 -0.25 0.029 0.035 0.029 0.034 0.029 0.030

-5 -0.95 0.046 0.045 0.033 0.028 0.037 0.037 -5 -0.95 0.013 0.033 0.015 0.001 0.015 0.015
-0.75 0.046 0.036 0.029 0.018 0.036 0.036 -0.75 0.010 0.034 0.013 0.006 0.013 0.013
-0.50 0.049 0.034 0.031 0.022 0.035 0.036 -0.50 0.015 0.040 0.018 0.025 0.018 0.018
-0.25 0.052 0.040 0.037 0.032 0.036 0.036 -0.25 0.029 0.041 0.030 0.043 0.030 0.032

-10 -0.95 0.040 0.048 0.033 0.035 0.031 0.033 -10 -0.95 0.017 0.046 0.017 0.005 0.017 0.017
-0.75 0.040 0.039 0.029 0.019 0.030 0.031 -0.75 0.012 0.043 0.013 0.023 0.013 0.014
-0.50 0.043 0.033 0.030 0.019 0.029 0.030 -0.50 0.017 0.044 0.019 0.040 0.019 0.022
-0.25 0.047 0.036 0.034 0.027 0.031 0.031 -0.25 0.029 0.045 0.031 0.049 0.031 0.036

-20 -0.95 0.028 0.049 0.032 0.046 0.027 0.037 -20 -0.95 0.033 0.046 0.020 0.036 0.020 0.026
-0.75 0.029 0.045 0.028 0.029 0.026 0.030 -0.75 0.020 0.047 0.015 0.047 0.015 0.030
-0.50 0.035 0.041 0.030 0.023 0.025 0.028 -0.50 0.022 0.047 0.020 0.048 0.020 0.038
-0.25 0.043 0.039 0.036 0.027 0.028 0.030 -0.25 0.033 0.047 0.031 0.049 0.031 0.045

-30 -0.95 0.021 0.048 0.034 0.047 0.024 0.045 -30 -0.95 0.063 0.047 0.021 0.049 0.021 0.049
-0.75 0.023 0.047 0.028 0.037 0.022 0.036 -0.75 0.034 0.047 0.016 0.049 0.016 0.047
-0.50 0.029 0.045 0.030 0.032 0.023 0.034 -0.50 0.030 0.047 0.019 0.049 0.019 0.048
-0.25 0.039 0.044 0.036 0.032 0.027 0.033 -0.25 0.038 0.049 0.030 0.050 0.030 0.049

-40 -0.95 0.016 0.049 0.035 0.049 0.024 0.048 -40 -0.95 0.104 0.048 0.023 0.049 0.023 0.049
-0.75 0.019 0.047 0.029 0.042 0.022 0.042 -0.75 0.055 0.048 0.016 0.047 0.016 0.047
-0.50 0.025 0.046 0.029 0.037 0.022 0.037 -0.50 0.041 0.047 0.019 0.050 0.019 0.050
-0.25 0.037 0.047 0.036 0.038 0.025 0.038 -0.25 0.043 0.048 0.030 0.050 0.030 0.050

-50 -0.95 0.013 0.050 0.037 0.049 0.024 0.049 -50 -0.95 0.150 0.049 0.024 0.049 0.024 0.049
-0.75 0.015 0.047 0.030 0.045 0.021 0.045 -0.75 0.081 0.048 0.017 0.048 0.017 0.048
-0.50 0.022 0.046 0.030 0.041 0.020 0.041 -0.50 0.055 0.048 0.020 0.049 0.020 0.049
-0.25 0.035 0.049 0.036 0.043 0.025 0.043 -0.25 0.048 0.047 0.030 0.050 0.030 0.050
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Table S.4: Finite Sample Size, T = 250, φ = 0.5 κ = 0.5 + 0.5I(c > −20).

(a) Right Tailed Tests (b) Left Tailed Tests

c δ QGLSµ tOLSµ QGLSτ tOLSτ Uhyb Shyb c δ QGLSµ tOLSµ QGLSτ tOLSτ Uhyb Shyb

2 -0.95 0.049 0.048 0.048 0.055 0.056 0.056 2 -0.95 0.007 0.006 0.010 0.000 0.010 0.010
-0.75 0.046 0.047 0.053 0.053 0.057 0.057 -0.75 0.012 0.012 0.013 0.000 0.013 0.013
-0.50 0.045 0.047 0.052 0.048 0.052 0.052 -0.50 0.022 0.026 0.018 0.005 0.018 0.018
-0.25 0.045 0.048 0.051 0.049 0.051 0.051 -0.25 0.036 0.033 0.029 0.027 0.029 0.029

0 -0.95 0.030 0.044 0.046 0.038 0.044 0.044 0 -0.95 0.039 0.011 0.021 0.000 0.021 0.021
-0.75 0.033 0.043 0.044 0.040 0.044 0.044 -0.75 0.026 0.016 0.011 0.001 0.011 0.011
-0.50 0.038 0.045 0.044 0.042 0.044 0.044 -0.50 0.031 0.030 0.013 0.007 0.013 0.013
-0.25 0.047 0.048 0.048 0.047 0.045 0.045 -0.25 0.040 0.033 0.026 0.027 0.026 0.026

-2 -0.95 0.009 0.030 0.037 0.026 0.026 0.026 -2 -0.95 0.067 0.033 0.023 0.000 0.023 0.023
-0.75 0.012 0.028 0.033 0.025 0.026 0.027 -0.75 0.039 0.036 0.018 0.002 0.018 0.018
-0.50 0.023 0.030 0.034 0.031 0.030 0.030 -0.50 0.039 0.043 0.019 0.014 0.019 0.019
-0.25 0.038 0.039 0.041 0.040 0.039 0.039 -0.25 0.044 0.039 0.029 0.034 0.029 0.030

-5 -0.95 0.001 0.020 0.033 0.028 0.020 0.021 -5 -0.95 0.155 0.064 0.015 0.001 0.015 0.015
-0.75 0.004 0.019 0.029 0.018 0.020 0.021 -0.75 0.077 0.059 0.013 0.006 0.013 0.013
-0.50 0.014 0.024 0.031 0.022 0.024 0.024 -0.50 0.058 0.060 0.018 0.025 0.018 0.018
-0.25 0.031 0.034 0.037 0.032 0.035 0.035 -0.25 0.054 0.044 0.030 0.043 0.030 0.032

-10 -0.95 0.001 0.011 0.033 0.035 0.020 0.022 -10 -0.95 0.286 0.098 0.017 0.005 0.017 0.017
-0.75 0.003 0.012 0.029 0.019 0.019 0.021 -0.75 0.134 0.084 0.013 0.023 0.013 0.014
-0.50 0.011 0.018 0.030 0.019 0.021 0.023 -0.50 0.086 0.073 0.019 0.040 0.019 0.022
-0.25 0.027 0.030 0.034 0.027 0.033 0.033 -0.25 0.065 0.051 0.031 0.049 0.031 0.036

-20 -0.95 0.000 0.025 0.032 0.046 0.021 0.035 -20 -0.95 0.339 0.084 0.020 0.036 0.020 0.026
-0.75 0.002 0.022 0.028 0.029 0.019 0.026 -0.75 0.161 0.073 0.015 0.047 0.015 0.030
-0.50 0.008 0.025 0.030 0.023 0.019 0.025 -0.50 0.096 0.063 0.020 0.048 0.020 0.038
-0.25 0.025 0.032 0.036 0.027 0.029 0.031 -0.25 0.070 0.052 0.031 0.049 0.031 0.045

-30 -0.95 0.000 0.020 0.034 0.047 0.021 0.045 -30 -0.95 0.452 0.090 0.021 0.049 0.021 0.049
-0.75 0.002 0.018 0.028 0.037 0.019 0.035 -0.75 0.222 0.078 0.016 0.049 0.016 0.047
-0.50 0.007 0.020 0.030 0.032 0.020 0.033 -0.50 0.122 0.067 0.019 0.049 0.019 0.048
-0.25 0.023 0.030 0.036 0.032 0.030 0.035 -0.25 0.079 0.055 0.030 0.050 0.030 0.049

-40 -0.95 0.000 0.015 0.035 0.049 0.023 0.048 -40 -0.95 0.514 0.095 0.023 0.049 0.023 0.049
-0.75 0.002 0.014 0.029 0.042 0.020 0.042 -0.75 0.262 0.082 0.016 0.047 0.016 0.047
-0.50 0.007 0.017 0.029 0.037 0.021 0.037 -0.50 0.141 0.071 0.019 0.050 0.019 0.050
-0.25 0.021 0.029 0.036 0.038 0.030 0.039 -0.25 0.086 0.057 0.030 0.050 0.030 0.050

-50 -0.95 0.001 0.011 0.037 0.049 0.024 0.049 -50 -0.95 0.542 0.099 0.024 0.049 0.024 0.049
-0.75 0.002 0.012 0.030 0.045 0.020 0.045 -0.75 0.286 0.084 0.017 0.048 0.017 0.048
-0.50 0.007 0.016 0.030 0.041 0.021 0.041 -0.50 0.152 0.072 0.020 0.049 0.020 0.049
-0.25 0.021 0.027 0.036 0.043 0.031 0.044 -0.25 0.088 0.059 0.030 0.050 0.030 0.050
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Figure S.6: Finite Sample Power of Right Tailed Tests - δ = −0.95, c = 0

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.7: Finite Sample Power of Right Tailed Tests - δ = −0.95, c = −2

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.8: Finite Sample Power of Right Tailed Tests - δ = −0.95, c = −5

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.9: Finite Sample Power of Right Tailed Tests - δ = −0.95, c = −10

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.10: Finite Sample Power of Right Tailed Tests - δ = −0.95, c = −20

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.11: Finite Sample Power of Right Tailed Tests - δ = −0.95, c = −30

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.12: Finite Sample Power of Right Tailed Tests - δ = −0.95, c = −40

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.13: Finite Sample Power of Right Tailed Tests - δ = −0.95, c = −50

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.14: Finite Sample Power of Right Tailed Tests - δ = −0.95, c = −100

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .

S30



Figure S.15: Finite Sample Power of Right Tailed Tests - δ = −0.95, c = −250

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.16: Finite Sample Power of Left Tailed Tests - δ = −0.95, c = 0

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.17: Finite Sample Power of Left Tailed Tests - δ = −0.95, c = −2

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.18: Finite Sample Power of Left Tailed Tests - δ = −0.95, c = −5

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.19: Finite Sample Power of Left Tailed Tests - δ = −0.95, c = −10

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.20: Finite Sample Power of Left Tailed Tests - δ = −0.95, c = −20

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.21: Finite Sample Power of Left Tailed Tests - δ = −0.95, c = −30

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.22: Finite Sample Power of Left Tailed Tests - δ = −0.95, c = −40

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.23: Finite Sample Power of Left Tailed Tests - δ = −0.95, c = −50

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.24: Finite Sample Power of Left Tailed Tests - δ = −0.95, c = −100

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.25: Finite Sample Power of Left Tailed Tests - δ = −0.95, c = −250

(a) κ = 0.0 (b) κ = 0.1

(c) κ = 0.2 (d) κ = 0.3

(e) κ = 0.4 (f) κ = 0.5

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .

S41



Figure S.26: Finite Sample Power of Right Tailed Tests - δ = −0.95, c = 2

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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Figure S.27: Finite Sample Power of Left Tailed Tests - δ = −0.95, c = 2

(a) κ = 0.0 (b) κ = 0.2

(c) κ = 0.4 (d) κ = 0.6

(e) κ = 0.8 (f) κ = 1.0

tOLSµ : – – , QGLS
µ : —— , tOLSτ : – –, QGLS

τ : ——, Uhyb: ——, Shyb: . .
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