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Abstract

The Bonferroni @ test of Campbell and Yogo (2006) is routinely used in empirical
studies investigating predictability in asset returns because of its near-optimal power
properties for strongly persistent and endogenous predictors. Its formulation, how-
ever, only allows for a constant mean in the predictor, seemingly at odds with many
of the predictors used in practice. We establish the asymptotic size and local power
properties of the @) test, and the corresponding Bonferroni t-test of Cavanagh, El-
liott and Stock (1995), under a local-to-zero specification for a linear trend in the
predictor, revealing that size and power depends on the magnitude of the trend for
both. To rectify this we develop with-trend variants of the ) and ¢ tests. We also
develop hybrid tests, designed to have good size and power properties when uncer-
tainty exists as to whether or not a linear trend is present in the predictor. These use
union-of-rejections and switching mechanisms to capitalise on the relative power ad-
vantages of the constant-only tests when a trend is absent and the with-trend tests
otherwise. A further extension allows use of a conventional t-test where the predic-
tor appears to be weakly persistent. We show that, overall, our recommended hybrid
test offers excellent size and power properties regardless of the presence of a linear
trend in the predictor, or the predictor’s degrees of persistence and endogeneity. An
empirical application to an updated Welch and Goyal (2008) dataset illustrates the
practical relevance of our new approach.
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1 Introduction

The predictability of asset returns using publicly available data has received a great deal of
attention in both the economics and finance literature, leading to a large number of pub-
lished studies examining whether various financial and macroeconomic variables have pre-
dictive power for returns. Candidate financial predictor variables considered have included
valuation ratios such as the dividend-price or earnings-price ratio, the dividend yield and a
variety of interest rate measures. Macroeconomic variables such as inflation and industrial
production have also been considered; for early contributions see inter alia Fama (1981),
Keim and Stambaugh (1986), Campbell (1987), Campbell and Shiller (1988a,b), Fama and
French (1988,1989) and Fama (1990).

A common feature of many predictor variables used in empirical studies is that they
are highly persistent, with a strong negative correlation found between the innovations to
the returns and predictor; see, eg, Campbell and Yogo (2006) [CY] and Welch and Goyal
(2008). For these highly persistent and endogenous predictors it can be shown that basing
inference on conventional tests can be misleading. For instance, for strongly persistent and
endogenous predictors CY show that using the conventional regression t-statistic to test for
predictability leads to right-tail tests that are asymptotically oversized, with this oversize
more severe the stronger is the persistence or endogeneity of the predictor, other things
equal.

As a consequence, numerous tests for predictability have been developed that are de-
signed to deliver robust inference in the presence of strongly persistent and endogenous re-
gressors. These include likelihood-based tests developed by Cavanagh, Elliott and Stock
(1995) [CES], Lewellen (2004), CY and Jansson and Moreira (2006), with these approaches
explicitly modelling the predictor as an autoregressive process with the dominant root
given by p = 1+ ¢T'~! where c is a finite constant and T is the sample size. Of these tests,
the Bonferroni () test in particular has been widely adopted in the empirical literature.
Other test procedures based on instrumental variable estimation have also recently been
proposed, including contributions by Kostakis et al. (2015) and Breitung and Demetrescu
(2015). Regardless of the approach taken, a common feature of all of these papers is that
their primary (or even exclusive) focus is on the constant-only tests, and the properties of
these tests in the presence of a (neglected) trend in the predictor are not established.

Assuming that the predictor only contains a deterministic constant would seem justi-
fied for some of the candidate predictors considered in previous empirical studies. Few,
for example, would argue that for developed countries macroeconomic variables such as in-

flation or interest rates would likely contain deterministic elements other than a constant.



However, the same is not true for other variables that have been considered in the litera-
ture, and in many instances one cannot discount the possibility that a predictor variable
may contain a deterministic linear trend. Indeed, in Section 7 of this paper we find there
to be statistically significant evidence of a linear trend in many of the financial variables
commonly employed as predictors in the Welch and Goyal (2008) datatset. Given the evi-
dence of a potential trend in these predictors it is of great interest to examine the impact
of an omitted trend on extant tests for predictability, and also to consider predictability
tests that explicitly account for the potential presence of a trend.

In this paper we will consider constant-only and with-trend variants of the Bonferroni ¢)
test of CY and the Bonferroni ¢ test of CES. The Bonferroni approach underpinning these
tests is based on constructing an initial confidence interval for the dominant autoregressive
root, p, in the predictor, by inverting a unit root test, then basing a confidence interval for
the predictive regression coefficient on this initial confidence interval for p. It is well known
in the unit root literature that an omitted deterministic trend impacts the asymptotic
distribution of mean-only unit root tests, see eg Harvey et al. (2009), and we will show
in Section 4 that in the constant-only case, omitting the trend in the predictive regression
test stage also impacts the limit distribution of the constant-only predictive regression
test statistics of both CY and CES. When the correlation between the innovations to the
predictor and returns is negative both of these effects combined will be shown to lead the
constant-only Bonferroni () and t tests to exhibit substantial asymptotic undersize when
testing in the right tail, with the tests displaying a subsequent loss of power, and substantial
asymptotic oversize when testing in the left tail in the presence of an omitted trend.

The with-trend variants of CY and CES that we consider are based on an initial confi-
dence interval for p that uses a trend-augmented unit root test statistic, and a secondary
confidence interval for the coefficient on the predictor from a trend-augmented predictive
regression. These tests are exact invariant to a linear trend in the predictor. In the unit root
testing context it is known that while the inclusion of a trend in the unit root test regres-
sion renders inference invariant to the presence of a trend, the power of the resulting trend-
augmented unit root tests lags behind their constant-only counterparts when no trend is
present, again see Harvey et al. (2009). We observe a similar phenomenon in the predictive
regression testing context, with the with-trend Bonferroni () and t-tests displaying inferior
power to the constant-only Bonferroni () and ¢-tests when no trend is present in the predic-
tor. However, this ranking can be reversed when a trend of reasonable magnitude is present.

In view of the different tests’ power rankings across no trend and trend environments,

we first propose a union-of-rejections strategy for the right (left) tailed testing context



when the correlation is negative (positive), that combines inference from both the constant-
only and with-trend Bonferroni () test. This procedure will be shown to capitalise on the
relative power advantages of the constant-only and with-trend tests in the no trend and
trend scenarios, respectively, delivering attractive levels of power regardless of whether a
trend is or is not present in the predictor. In the case of left (right) tailed testing when
the correlation is negative (positive), as the constant-only tests are over-sized, our initial
hybrid test is simplified to the with-trend Bonferroni () test. Such preliminary approaches,
however, will be shown to be of most benefit when the predictor is strongly persistent with
p = 1+¢/T and c close to zero. We then further develop our recommended hybrid test that
switches into the with-trend Bonferroni t-test when there is evidence that ¢ is not close to
zero, or into the conventional t-test when there is sufficient evidence that the predictor is
weakly persistent.

The remainder of this paper is organised as follows. Section 2 introduces the predictive
regression model we consider and the assumptions we place on the data generating process
(DGP). In Section 3 we give a description of both the constant-only Bonferroni ¢ and t-
tests of CY and CES, respectively, as well as modifications of these tests that account for
the presence of a trend in the predictor. In Section 4 we report the limiting distributions of
the predictive regression and unit root test statistics used in the test procedures outlined in
this paper, and examine the relative local asymptotic power of the constant-only and with-
trend Bonferroni type tests. Our proposed hybrid test procedures are outlined in Section 5,
and the local asymptotic power of these tests, as well as recommendations on which test to
use in practice, are provided in Section 6. The results of an empirical exercise applying our
new tests to an updated version of the Welch and Goyal (2008) dataset is provided in Section
7. Section 8 concludes. Additional Monte Carlo simulation results exploring both the local
asymptotic and finite sample size and power properties of the tests, together with proofs

of the main theorems presented in the paper, are provided in the supplementary appendix.

2 The Predictive Regression DGP

We consider the following predictive regression DGP
re=a+ B(xi_g — Yt —1)) + uy, t=2,...,T (1)

where r; denotes the return on an asset in period ¢, and z;_; denotes a putative predictor

observed at time t — 1. We assume the process for z; is given by

xy = A+t 4wy, t=1,...,T (2)
Wy = Pwi—1 + Vg, t:277T (3)
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where w; is assumed to be an O,(1) random variable and where u; and v; are disturbances,

formal assumptions on which are made below.

Remark 2.1. While we permit the potential presence of a linear trend in the predictor,
x4, note that (1) implies that only the detrended component of the predictor enters the
DGP for returns, r;. This assumption is made to rule out the possibility of a linear trend

in r; when 8 # 0 which is not empirically reasonable. &
We make the following assumptions concerning the disturbances u; and v;.

Assumption D. We assume that y)(L)v; = e; where (L) := 30— 0 ;L' with 1y = 1 and
(1) # 0, with the roots of (L) assumed to be less than one in absolute value. We assume

that z = (u;, e;) is a bivariate martingale difference sequence with respect to the natural

2
filtration Fy = o{zs,s <t} satisfying the following conditions: (i) Elzz;] = {0“ 0“6} ,
Oye g

(ii) sup, Elu}] < oo, and (i) sup, Fle}] < oo. For future reference, we define w? :=
limy e TVE(_, )2 = 02/1(1)? to be the long run variance of the error process {v},

and 0 1= 0u./0,0¢ as the correlation between the innovations {u;} and {e;}.

Remark 2.2. The conditions in Assumption D coincide with the most general set of as-
sumptions considered by CY (see pages 56-57 of CY). The assumptions placed on z; permit
conditional heteroskedasticity in the innovations, but impose unconditional homoskedas-
ticity. The MDS aspect of Assumption D implies the standard assumption made in this lit-
erature that the unpredictable component of returns, w;, is serially uncorrelated. Assump-
tion D allows the dynamics of the predictor variable to be captured by an AR(p), with the
degree of persistence of the predictor (strong or weak) controlled by the parameter p in

(3), as will be formalised in Assumptions S and W below. %

As discussed in Section 1, the focus of this paper is on testing the null hypothesis that
(r, — a) is a MDS and, hence, that r; is not predictable by x;_1; that is, Hy : § = o =0 in
(1). We focus on developing tests that offer reliable levels of size and power regardless of
whether a linear trend is present in the predictor variable x; under different assumptions
regarding the degree of persistence in the predictor. We therefore allow the predictor

process {z:} in (2) to satisfy one of the following two assumptions.

Assumption S. The predictor {x;} is strongly persistent, with the autoregressive parameter

p in (3) given by p = pr=1+ T~ with ¢ a finite non-zero constant.

Assumption W. The predictor {x,} is weakly persistent, with the autoregressive parameter

p in (3) fired and bounded away from unity, |p| < 1.
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Remark 2.3. Under Assumption S the predictor x; is a strongly persistent local-to-unity
process with the degree of persistence controlled by the parameter c¢. For ¢ = 0, z; is a pure
unit root process, while for ¢ < 0, x; is a stationary but near-integrated process. Finally,

for ¢ > 0, z; is a (locally) explosive process. &

In order to facilitate an asymptotic power analysis in the strongly persistent case, we

consider the following local-to-zero alternative hypothesis for f:

Assumption B. When the predictor {x;} is strongly persistent, the local alternative hy-
pothesis is given by Hy : 8 = Br = b(o,/w,) T, where b is a finite constant.

Our analysis will consider predictability tests that are invariant to the presence of a
trend in the predictor x; and also tests that depend on the trend parameter +. In order
to enable analysis of the asymptotic behaviour of the latter tests when the predictor x; is
strongly persistent (i.e. when Assumption S holds), at points below we will make use of an

additional assumption for :

Assumption T. The trend coefficient v in (1) and (2) is given by v = yp = kw, T2,

where k is a finite constant.

Remark 2.4. Under Assumptions B and T, the scalings by 7-! and 7-%/? in fr and 77,
respectively, provide the appropriate Pitman drifts when x; is strongly persistent, while the
scalings by o, /w, and w, are simply convenience measures to ensure that these nuisance
parameters do not appear in the subsequent expressions for the limit distributions. Note

that Assumption T is not required for test statistics that are invariant to ~. &

3 Predictability Tests under Strong Persistence

In this section we outline the candidate Bonferroni predictability tests that we consider
for testing the null of no predictability under Assumption S, i.e. that the predictor series
is strongly persistent. In each case, we present extant tests which are valid only when
assuming that no trend is present in the predictor series x;, that is assuming v = 0. We
also consider modified variants that allow for the more general case where it is possible

that v # 0 , such that a trend might be present in z;.
3.1 Bonferroni ) Tests

The first test we consider is the Bonferroni ) test of CY which makes use of an initial
confidence interval for p = 1+ ¢T'~!, where this confidence interval is obtained by inverting

a unit root test. CY consider only the possibility of a constant appearing in the predictor



series; that is, they impose that v = 0 in (2). For a given value of p, CY propose a test for
the null hypothesis 8 = Sy based on the following (infeasible) test statistic

S T [Tt — Boi-1 — 2= (v — pxtfl)] + L oue (2 — o2)

2 OeWwn
\/‘712;,(1 —6?%) 23:2 J’ﬁ,t—l
= Qu(0,p) = Bo/(sp V1 —0?)

Qu(ﬁm p)

where s2 := 02/ 3/, 2%, |, 02 denotes the short run variance of v;, and 7,1, t = 2, ..., T,
are the residuals from regressing x;_; on a constant. A confidence interval for 8 can then
be derived based on the quantity Q,(f, p). As we will quantify later, the behaviour of this
statistic will depend on the trend coefficient v when v # 0. In view of this, we now consider
a variant of the Bonferroni () test which is invariant to . To obtain such a variant, we
replace x,,—1 in the CY statistic with x,,_;, where x,,_1, ¢t = 2, ..., T, denotes the residuals

from a regression of x;_; on a constant and linear trend. The modified statistic is then

T oue

23;2 Lrt—1 |:Tt - BOxt*l o Uo;:jv (:Ct - pxt*1> 2 Tewy (Mv - UU)

\/‘73(1 —6?%) 23:2 x?,t_l
= Q-(0,p) = Bo/(s:V1 —6?)

QT(BO? p)

2 . 2 T 2
where 5= Uu/ Zt:2 xT,tfl'

Remark 3.1. The statistic Q. (5o, p) is exact invariant to the value of . Moreover, al-
though our DGP excludes the possibility of a linear trend in r;, Q,(5o, p) would also be
invariant to such a trend, should one be present; that is, if equation (1) of the DGP was in-
stead r; = a+ At + Bry_1 +uy, then Q,(Bo, p) would be (exact) invariant to both A and 7.

Under Assumptions D and S, Q,(5o, p) admits a standard normal limiting null distri-
bution provided v = 0 and, as we will subsequently show in Section 4, Q. (5o, p) also ad-
mits a standard normal limiting null distribution under these assumptions, regardless of
the value of v. Therefore, when the predictor x; is strongly persistent a (1 — «)) confidence
interval for 3, [ﬁ?(p, a),B?(p, a)] with d = p denoting the constant-only case and d = 7

the with-trend case, can be constructed as:
-Q@
82(p, 0) = {Qu(0, p) + 22}V T= 0, BI(p,a) = {Qu(0, p) — zapp}s/T— 8 (4)
with 2./, denoting the a/2 quantile of the standard normal distribution.
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The confidence interval in (4), however, implicitly relies on knowledge of the value of
p = 1+ cT'!, where the parameter ¢ cannot be consistently estimated. In the constant
only case, d = u, CY propose obtaining a valid confidence interval for p by inverting
the constant-only ADF-GLS test! of Elliott et al. (1996), denoted DF -G LS}, henceforth,
applied to the predictor x; using pre-computed (asymptotic) confidence belts for the DF-
GLSE test statistic. Denoting this confidence interval for p constructed at the «a; level as
[Bu(o‘l)’ﬁu(al)] CY show that the confidence interval [ﬁf(ﬁ“(al), 042),33(&(041), as)| has
(asymptotic) coverage of at least (1 — «) where @ = a1 + .

In the case where d = 7, such that a linear trend is permitted in the predictor, we use the
obvious with-trend parallel of the approach taken in CY. Specifically, we obtain a confidence
interval for p by inverting the with-trend ADF-GLS test of Elliott et al. (1996), henceforth
denoted DF-GLSE, applied to the predictor z; using pre-computed (asymptotic) confidence
belts for the DF-GLSE test statistic. Denoting this confidence interval for p constructed
at the ay level as [p_(a1),p,(a1)], the confidence interval [@?(ﬁT(al),ag),E?(BT(al), as)]
will have (asymptotic) coverage of at least (1 — «) where, again, o = oy + .

CY show that the confidence interval [ég(ﬁu(al), 042),33 (/_)M(al), as)] suffers from over-
coverage, with the asymptotic size of tests based on this confidence interval often well below
(a/2), and we found the same for the confidence interval [é?(@(oq), QQ),B?(BT(Q1)7 as)].
Therefore, we follow CY and use a refinement where the significance level used to obtain
the initial confidence interval for p is adapted to the upper and lower bounds separately,
and also to the value of §. Values of this significance level are chosen numerically to
minimise over-coverage associated with the confidence interval for 8, while ensuring that
the asymptotic size of the overall Bonferroni test does not exceed a chosen level across
a specified range of ¢. Denoting the chosen significance levels for the lower and upper
confidence bounds for p by Q?,d and aﬁd, respectively, the confidence interval for p can be

written as [p d(gﬁd),pd(afd)], and the resulting (1 — ) level confidence interval for f is

. — ol
obtained as [ﬁdQ(pd(a?d), az), By (Bd@?,d)’ as)] where

éQ(ﬁd(alQ,d)’oQ) - {Qd(oapd(agd))+Zo¢2/2}8dm,
Bg(ﬁd(ggd)’az) - {Qd(o’ﬁd(ggd))—Za2/2}3dm.

For a given value of §, CY propose selecting Q?,d and aﬁd such that one-sided tests for

predictability constructed in this manner have an asymptotic size of exactly as/2 for some

! In the context of both DF-GLS}, and the DF-GLS? statistic defined below, ¢ denotes the parameter
used for quasi-difference demeaning/detrending the data. We follow Elliott et al. (1996) and set ¢ = —7
for DF-GLS, and ¢ = —13.5 for DF-GLS? in what follows. Owing to Assumption D, the DF-GLS}, and

DF-GLSS unit root statistics will be calculated from ADF-type regressions which include p — 1 lags.
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value of ¢ while remaining slightly undersized for other values of ¢. Consequently, two-sided
tests will have size of at most ay across the specified range of c.

CY calibrate their constant-only test procedure by fixing ay; = 0.1 and considering
¢ € [—50,5] such that their resulting one-sided tests have a maximum (asymptotic) size
of 0.05. The appropriate values of QlQ,u and aﬁu are reported in Table 2 of CY, and are
reproduced here in Table 1 for convenience. We denote the predictability test based on this
confidence interval as QSLS . We follow the approach taken by CY for the trend-augmented
version of the Bonferroni () test, with the appropriate values of g({%T and EgT chosen such
that one-sided tests for predictability also have a maximum asymptotic size of 0.05 for
¢ € [-50, 5], with the asymptotic size of the test computed using the limiting distributions
we subsequently outline in Section 4, and with these values of g?ﬁ and EST also reported
in Table 1. We denote the predictability test based on this confidence interval as Q%%°.

Remark 3.2. The appropriate values of gg . and aﬁ g reported in Table 1 are only provided
for 6 < 0. For § > 0, CY note that replacing z; in (1) with —z, flips the sign of both
and § (and, indeed of «y). Therefore, an equivalent right (left) tailed test for predictability
when 6 > 0 can be performed as a left (right) tailed test for predictability based on (1)
with x; replaced by —x; using the values of Q?,d and @?d appropriate for a negative value
of . This also holds for the Bonferroni ¢ test discussed below. &

3.2 Bonferroni t Tests

The second test procedure we consider is the Bonferroni ¢ test based approach of CES.
Where v = 0 in (2), this is based on the following (infeasible) OLS statistic for testing the
null =6y =0,t,:= B”/\/ag/ ST x?, 4, where B, is obtained from the OLS estimated
regression, 1, = & + Buxt—l + ;. As with Q. (8, p), the behaviour of ¢, will be dependent

on the trend coefficient v, when ~ # 0. Accordingly, CES suggest a with-trend variant of
the OLS t statistic which is invariant to ~, specifically
b ﬁ; (5)
\/‘75/ Zt:Q x?,H

where BT is obtained from the with-trend estimated OLS regression, r; = d—l—%+37xt_1 + 1.

Under Assumptions D and S the limiting null distribution of ¢4 for d = por d = 7
is a function of the unknown parameter c. CES overcome this issue by constructing a
confidence interval for S based on an initial confidence interval for ¢ obtained by inverting
the constant-only or with-trend ADF-OLS test (henceforth denoted DF-OLS, or DF-
OLS., respectively) using pre-computed confidence belts.
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Specifically, for a given value of §, a (1 — ay) level confidence interval for [ is obtained

as [@Z(Eﬁjd,ag),ﬁg(gﬁyd,ag)], d = {u, 7}, where:

ﬁg(@’i‘ﬁ Q) = Bd_{ﬂ(a’i,dg??c(ai,d) Cvf—aQ/z,d} Sd; Bfi(gtl,da ) = Bd_{c(atl’d)glcigc(a;d) CUEQ/Q,d} Sd
and where cvy ; denotes the n-level critical value of the limiting null distribution of ¢, for a
given value of c. The significance levels used to obtain the ¢ confidence intervals, o] ; and
aid, are selected numerically to ensure that the implied one-sided tests for predictability
constructed in this manner will have an asymptotic size of exactly as/2 for some value of
¢ € [—50,5] while remaining slightly undersized for other values of ¢. For ay = 0.1, the
appropriate values of gtl’ ., and ai’ ., are those of CY, and are reported in Table 1. We denote
the predictability test based on this confidence interval as tffLS. The appropriate values of
aj, and @j ; in the with-trend case are also reported in Table 1 and were found by directly
simulating the limit distributions that we subsequently detail in Section 4. We denote the
predictability test based on this confidence interval as t9%9.

For full details on the practical implementation of the QﬁLS and tffLS procedures, in-
cluding consistent estimation of the parameters o., 0., 0y, Oue, W, and 0, implementation
of the DF —GLSE and DF-OLS,, unit root tests, and the pre-computed confidence belts
for the DF-GLS}, and DF-OLS,, test statistics, see CY, CES and the corresponding sup-
plementary material to CY.? We follow exactly the same steps as CY for the Q¢ and
t9L5 tests, but where any regression including an intercept is also augmented with a linear
trend. Pre-computed confidence belts for the DF-GLSS and DF-OLS; test statistics are
included as part of the code used to implement all of the tests outlined in this paper which

is available on request.

4 Asymptotic Behaviour of Tests under Strong Persistence and
a Local Trend
In this section we outline the asymptotic behaviour of the constant-only QELS and

tests, and the with-trend Q%% and t919 tests, when Assumption S holds, i.e. the case

where the predictor is a strongly persistent process and contains a trend. While the Q%%°

OLS
n

and t919 tests are invariant to the trend coefficient v, the QIC]'LS and tSLS tests are not;

here, we consider the behaviour of Q™ and t{*% under Assumption T, i.e. a local-to-zero

2The supplement to CY is available at https://scholar.harvard.edu/campbell /publications /implementing-
econometric-methods-efficient-tests-stock-return-predictability-0. The confidence belts and
also code for the procedures are available from Motohiro Yogo’s personal website:
https://sites.google.com/site/motohiroyogo/research/asset-pricing.
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trend. We begin by outlining the limiting distributions of the relevant test statistics under
the local alternative Hy : 8 = b(0,/w,)T ', before proceeding to investigate the asymptotic
size and power of the corresponding procedures both when a linear trend is present and
when it is not. The following Theorem outlines the limiting distribution of the statistics,

where in the context of QELS and QY%°, p =1+ &I~ for an arbitrary é.

Theorem 1. Let data be generated according to (1)-(3). Let Wi(s) and Wa(s) be indepen-
dent standard Brownian motion processes and let Wic(r) = [ e"=dW;(s). Under As-

sumptions D, S and T, and under the local alternative specified in Assumption B,

b{k fy rWE)r + o WE()2dr | +6 f) WES (r)dwa (r)

+V1-6%2Z,

(a) tu =
fo WS (r)2dr

bk Jy rWEr)dr + fy WEr)2dr| + den [y rWES(r)dr + 6(2 — ) [y WE(r)2dr

W\/fo WL (r)2dr

u ! W (r)dWi(
() tr—b / W (r)2dr +5f0 fe(T) WA +\/1—62Z
0 fo W1 (r)2dr

(b) Qu(/BOaﬁ) o + 2y

[b+d(¢—c)] fo W1 (r)2dr
Noers o

(d)  Qr(bo.p) =

where = denotes weak convergence of the associated probability measures, and where

Wi (r) = Wie(r) — [y Wie(s)ds, Wi(r) == Wi(r) — 12(r — 0.5) [;/ (s — 0.5)Wi.(s)ds,
—1/2

W (r) = {r(r — 0.5)} W), Zyo= (o WES@)dr) [y WES(r)dWa(r) and Z, =

~1/
(fo WTi.(r 2dr> fol Wi .(r)dWs(r). Finally, Z,, and Z, are two dependent standard nor-

mal random variables.

Remark 4.1. Representations for the limiting null distributions of the statistics obtain
on setting b = 0 in the expressions in Theorem 1. If b = 0 and ¢ = ¢, then Q.(5o,p)
is asymptotically distributed as a N(0,1) random variable, and if in addition x = 0 then
Qu(Bo, p) is also asymptotically distributed as a N(0,1) random variable. If b = 0 and
d = 0 then ¢, is asymptotically distributed as a N (0, 1) random variable, and if in addition
x = 0 then ¢, is also asymptotically distributed as a N(0,1) random variable. &

Remark 4.2. The representations in (a) and (b) of Theorem 1 show that the limiting
null and local alternative distributions of both ¢, and @,(5o, p) depend on the value of
k. It is immediately apparent from the representations in (c¢) and (d) of Theorem 1 that

the limiting distributions of ¢, and Q,(8, p) are invariant to the value of x. Hence t,, and
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Qu(Bo, p) are dependent on the magnitude of the trend in the predictor variable, while ¢,
and Q. (Bo, p) are not. O

4.1 Local Asymptotic Power of t91% and Q¢L° tests

We now report results of a Monte Carlo simulation experiment examining the asymptotic
power of the t9L5 and QG%* tests under the local alternative given in Assumption B, when
Assumptions D, S and T hold. We will focus on testing for predictability when ¢ < 0 as the
size and power of right (left) tailed tests for predictability when § > 0 are identical to left
(right) tailed tests for predictability when ¢ < 0, for the reasons outlined in Remark 3.2.
Before proceeding we require the limiting distributions of the DF-OLS,,, DF -GLSE,
DF-OLS; and DF-GLS% test statistics used to construct the initial confidence interval for

OLS GLS ;OLS
tu ) Qu, b tT

p for the and QYL tests, respectively. Under the conditions of Theorem

1, these limiting distributions are given by (see, for example, Harvey et al., 2009):

(£/2 4+ WHe(1)" — (—r/24+ W(0)* — 1

DF-OLS, % (6)
2\/Ji mlr = 1/2) + W)Y dr
T 2 T 2 _
DF-OLST 3) ch(]') ch(o) 1 (7)
2y/ [y WI(r)2dr
2 . B T,C 2
DF-GLS¢ % (r + Wie(D)” — 1 , DF-GLS¢ % W @) -1 (8)

24/ fol WE(r)2dr

where Wi (r) == Wio(r) — r {E*ch(l) +3(1—2) [ rWlC(r)dr} and = (1 —2)/(1 —
c+c*/3).

! 2\/f01 {rkr + ch(r)}2 dr

Remark 4.3. The representations in (6) and (8) show that the limiting distributions
of DF-OLS,, and DF-GLS;, depend on r, whereas (7) and (8) show that the limiting
distributions of DF-OLS; and DF-GLSt are invariant to the value of k. Harvey et al.
(2009) show that the impact of a neglected local trend in DF-OLS, and DF-GLS, is to
reduce both size and power of the unit root tests, implying a rightward shift in the tail of the

distribution, resulting in a corresponding rightward shift in the confidence intervals for c¢.

For clarity, we now outline how the local asymptotic power of the tests is computed for
right tailed testing. Left tailed testing is handled similarly with obvious modifications.

For the Q% d = {u, 7}, tests we first simulate draws from the limiting distribution
of DF-GLSS. These draws are then used to compute the upper bound of the confidence

interval for ¢ which we denote E(@fd) using pre-computed confidence belts implemented
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using the values of @gd appropriate for § taken from Table 1. Note that this value of ¢
also corresponds to the upper bound of the confidence interval for p, i.e. ﬁd(dgd) =1+
E(dg )T~ Testing in the right tail is equivalent to determining whether @dQ (ﬁd(aﬁd), ag) >
0, and the asymptotic local power function associated with Qd(O,ﬁd(dgd)) is given by

E[@(hd(aﬁd, a3))] where ®(.) denotes one minus the standard normal cdf and

ha(@2 4, 2) 1= 21-ay2 — (QF — Za) 9)

where Q5° denotes the limiting distribution of Qd(O,ﬁd(@gd)), and Z; is as defined in
Theorem 1. Next we simulate a draw from Q)5° and construct hd(aﬁd, as) in (9). Finally,
we evaluate whether a simulated draw from a Z; exceeds this value of h(a({%d,og). The
limiting power is then obtained as the average of these exceedances across replications.
For t91% in each simulation replication we first simulate a draw from the limiting
distribution of DF-OLS,, and then obtain [c(@f ;),¢(@] ;)] using the corresponding pre-
computed confidence belts for the values of @id appropriate for 0 obtained from Table 1.
Then we simulate the limit of t; using the results in Theorem 1, and compare this with the

critical value MaX(gt )<e<e VT /2,4 The limiting power is again calculated as the

@,q)
average of these exceedances 1;cross replications.

Figures 1-8 report the local asymptotic power of right-tailed test for predictability for
§ = —0.95 for ¢ = {0, -2, -5, —10, —20, —30, —40, —50} and for various values of x.* Note
that these figures also include results for the hybrid U™ and S™P test procedures we
propose in Section 5 - these will be discussed later.

When k = 0, so that no trend is present in the predictor (panel (a) of each figure), it
is apparent that for small or moderate (negative) values of ¢ the best power performance
is offered by the QSLS test, followed by the tffLS test. Also for this range of ¢, we observe
that the QL% test has superior power to the t91% test, although both have power that falls
below the constant-only tests. These results when no trend is present are entirely expected,
since the Q9% and t919 tests are based on regressions that unnecessarily include a trend.

As ¢ becomes more negative, the Bonferroni ¢-tests start to display superior power to the

Bonferroni @) tests, with tSLS displaying consistently superior power to QELS for ¢ < —30.

3Here and throughout the paper results were obtained by direct simulation of the limiting distributions,
with the Wiener processes approximated using NIID(0,1) random variates, and with the integrals approx-
imated by normalized sums of 1,000 steps. All simulations were performed in Gauss 22.2 using 20,000
Monte Carlo replications. The confidence belts form part of the Gauss code used throughout the paper
and are available on request.

4Additional results, available in the on-line supplementary appendix for § = —0.75 were found to be
qualitatively similar to those discussed here for § = —0.95 for both right-tailed and left-tailed tests. This
can be found at https://rtaylor-essex.droppages.com/esrc2/default.htm.
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However, in this more negative c¢ setting, the power differences between the competing
tests are reduced compared to the small ¢ cases, hence there is relatively little to choose
between the constant-only procedures here. Overall, one would arguably wish to use the
QSLS test in the case of k = 0 if allowing only for a constant in the predictor. For the
trend-augmented tests there is little to choose between 919 and Q¢S for ¢ = —30, with

t9L5 offering superior power to Q%L for lower values of b and vice-versa. For ¢ < —40,

OLS GLS across almost the full range of values

however, t clearly offers superior power to @)
of b. This relative power performance of the trend augmented tests is true for all values of
k given that the trend-augmented tests are exact invariant to the value of k.

We now consider panels (b)-(f) of each figure, where k is positive and increasing in
magnitude. Here a different pattern emerges as the value of x increases away from zero.”

tSLS are now decreasing in x, and as a consequence

The asymptotic sizes of Q" and
the powers of these tests are also decreasing in x, with this effect more pronounced the
more negative is the value of c. The power of the Q9% and t91% tests are, as previously
discussed, invariant to the value of k, with the consequence that for larger values of x these
tests outperform their constant-only counterparts, with the QL% test becoming the best
performing procedure for small or moderate ¢, and the t9X9 test displaying the best power
for the larger c. Hence for larger », one would wish to use the Q¢S test when the ¢ values
are small or moderate, and the t99 test otherwise.

Figures 9-13 report the local asymptotic power of left-tailed tests for predictability for
9 = —0.95and ¢ = {0, -2, —5, —10, —20} for various values of k. When x = 0 the constant-
only Q5" and tQ™ tests again outperform their with-trend Q™% and t2%% counterparts
for a given d € {u, k}, as expected. In the left-tailed testing environment it can also be
seen that the range of values of ¢ over which the Q™ tests display superior power to the
t9L5 tests is smaller for a given d € {u, x}. There is little to choose between the tgLS and
QS tests for ¢ = =5, but for ¢ < —10 the t7** test has superior power to Q5. Likewise,
there is little to choose between the t2 and QY tests for ¢ = —10, but for ¢ = —20 the
t959 test has superior power to Q%% Additional results reported in the supplementary
appendix show that the 325 tests continue to display superior power over the Q% tests for
¢ < —20. For k > 0, however, the QSLS and tSLS tests can suffer from substantial oversize,
with the degree of this oversize increasing in x and also as ¢ becomes more negative. As
such, the Q5% and Q" tests are inappropriate for testing for predictability in the left

tail when 6 < 0 when uncertainty exists over the possible presence of a linear trend, and

SWe also generated results for x < 0 and found them to be broadly similar, although not perfectly
symmetric, to those found for positive values of
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reliable inference can only be made using Q¢ or t929. Here we would ideally use Q%%
for small or moderate ¢, and 2% otherwise.

The results in Figures 1-13 show that, as might be expected, no single test is best suited
to testing for predictability when uncertainty exists over both the values of ¢ and x. Instead,
each of QELS , QYLS and t919 provides the best overall power for certain combinations of
these parameters. Given that neither ¢ nor x can be consistently estimated, in the following
section we propose hybrid tests for predictability that use combinations of the QELS , QELS

and t919 tests to deliver both controlled size and good power across the parameter space.

5 Hybrid Tests for Predictability

Based on the results in Section 4.1 we now propose tests for predictability when uncertainty
exists over the possible presence of a linear trend in the predictor. We start with tests
that are designed for strongly persistent predictors generated according to Assumption S,
motivated by the results of the previous section, before outlining how these can be modified
to also allow for weakly stationary predictors generated according to Assumption W.

We will outline our hybrid tests in what follows only for the case where § < 0. For
d > 0, from the result in Remark 3.2, we may simply replace the predictor x; in (1) with
—xy, thereby flipping the sign of ¢ such that our recommended procedures for negative
values of ¢ which follow can then be applied. Given that this also flips the sign of 3, for
a right (left) tailed test for predictability one should perform a left (right) tailed test for
predictability in the transformed predictive regression based on the predictor —z;_;. So,
for example, the right-tailed tests appropriate for 6 < 0 outlined in Section 5.1 are also
recommended, on replacing x;_; by —x;_; throughout, for use in the case where one wishes
to perform left-tailed tests with § > 0. In practice, the true value of § will be unknown, but
the appropriate approach can be determined according to the sign of a consistent estimator
of §. Here we propose using the estimate of § from the with-trend Bonferroni type test
procedures, i.e. the sample correlation between 4, and é;, where u; are the residuals from
a regression of r; on a constant, trend and x;_; and ¢é; are the residuals from estimating an

AR(p) for the predictor variable allowing for a constant and trend.
5.1 Right-Tailed Tests when § < 0

The results in Section 4.1 suggest that for strongly persistent predictors, with 6 < 0, when
k = 0 the constant-only QS test outperforms its with-trend counterpart QS*, while
for larger k > 0 the converse is true. As such, when testing in the right-tail the first test
procedure we propose is a Union-of-Rejections strategy in which we reject the null of 5 =0

in favour of the alternative that 5 > 0 when either the QﬁLS or Q%S tests reject, with the
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aim of capturing the relative power advantages of QSLS and QLS for different magnitudes
of k. Taking a simple union-of-rejections in this manner, however, will inevitably result
in an overall test with asymptotic size in excess of (ay/2), given that inference from two
tests is being combined, each individually calibrated to have a maximum asymptotic size
of (ay/2). To ensure that the union-of-rejections strategy has a maximum asymptotic
size of (ay/2) we modify the significance levels at which the confidence intervals for p are
constructed for both the DF-GLS, and DF-GLS. tests, as well as the significance level
used to construct the confidence interval for 3 for a given value of p. Recalling that the
lower bound of the confidence interval for p used for right-tailed testing for the Q™ test

is given by @dQ (ﬁd(@fd), ag) our proposed union-of-rejections test, U, is given by
U : Reject Hyif U >0 (10)

where
U = max (59(7,(€0%2,). €0a). 597, (€0, o) (1)

with € < 1 a scaling parameter chosen such that, for a given value of 9, the asymptotic
size of U is no greater than (ay/2) for the same grid of values of ¢ considered by CY, i.e.
¢ € [=50,5]. The appropriate values of £ that lead to a right-tailed test with maximum
asymptotic size of 0.05 are reported in Table 1.

While the union-of-rejections strategy outlined above will be shown to capture the
superior power of QELS when k is small, and that of Q%% for larger values of xk when c is
small or moderate, it is apparent from the results reported in Figures 1-8 that for the more
negative values of ¢ the power of both the QELS and QLY tests lag behind that of 919,
As such, we consider an extra layer to our test procedure where for right-tailed tests the
union-of-rejections test is employed when c is estimated to be “small”, and the t919 test is
employed when c is estimated to be “large”. To do so we propose using an estimate of ¢ to
choose which test to perform in practice. Specifically, we propose computing an estimate, ¢,
that is equal to the with-trend ADF-GLS normalised bias unit root test statistic, henceforth
denoted NB-GLS?. Specifically, ¢ = NB-GLS® := (T$)/(1 — S~ ), where ¢ and 1),
t=1,...,p— 1 are obtained by OLS estimation of

- - p—1 -
AZy = ¢Ty_1 + Zi:l VAT + e

where, on setting pr := 1+¢l !, 7, := 2, — z{é with 0 obtained from the quasi-differenced
regression of xz := (z1, o — prxy, ..., T — prTr_1) on Zz := (21, 20 — pr2i, -y 21 — Pror—1)
where z; := (1,t)". The NB-GLSE statistic is closely related to DF-G LSS, being obtained
from the same regression, and in keeping with this link between the statistics, we use

15



¢ = —13.5; cf. footnote 1. Under Assumption S, the limiting distribution of ¢ is given by

W12 -1

G e RN
2]0 W o (r)2dr

(12)
where W/:° is as previously defined under equation (8). While it is clear that ¢ is not
a consistent estimate of ¢, a near monotonic relationship nonetheless exists between the
expected value of the limiting distribution of ¢ and the true value of c. We therefore propose
a cut-off rule where we employ the U test for ¢ > cg, but switch to the t9L% test for é < cp
for some cut-off point cg (R denoting right-tailed). Formally, our second proposed testing

procedure, S, is therefore given by:
S : Reject Hy if US >0 (13)

where

US :=1(¢ > cp)U +1(¢ < cp)BL(@) ;, a2). (14)
and where [(.) denotes the indicator function equal to 1(0) when its argument is true (false).
Our choice of the cut-off value ci to use in practice is motivated by the asymptotic local
power functions in Figures 1-8, where we recall from the discussion in Section 4.1 that the
local asymptotic power of the U test is superior to that of 9 for ¢ > —30, whereas for ¢ <
—30 the reverse is true. We found through extensive Monte Carlo simulation that the choice
of cg = —35 gave an overall test for predictability with the best overall power properties,
tracking the power of U for small ¢ and that of t919 for large c. We also found that using
the existing calibration for U and t9%% led to S maintaining a maximum asymptotic size

of 0.05 for ¢ € [—50, 5], so no further calibration was required for this particular test.
5.2 Left-Tailed Tests when ¢ < 0

We now turn our attention to left tailed tests when 6 < 0 and Assumption S holds. We
propose a simpler strategy for left-tailed tests as the asymptotic oversize of QELS and tSLS
when k # 0 prevents the implementation of an asymptotically size-controlled union-of-
rejections procedure, such as that proposed in Section 5.1, as this relies on the constituent
tests being (asymptotically) correctly sized or undersized both when x = 0 and when x # 0.
The appropriate simplification for the U procedure is then to just use Q% which recalling
Section 3, entails rejecting the null of no predictability if Bg(g d(ggd), az) < 0.

oLs
tT

Examining the relative power of Q%% and in Figures 9-13 it is immediately appar-

ent that the QYL test only offers superior power to t2X% when c is small, with the power
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of t9%5 above that of QYL for even modest values of c¢. As such, for the switching strat-
egy S we propose a simpler version to that in Section 5.1 where the Q¥ test is employed
when é > ¢, (L denoting left-tailed) and the t919 test is used when ¢ < cy. Specifically,

for left tailed tests the decision rule for our test procedure S is given by.
S': Reject Hy if S <0 (15)

where

S :=1(e> c1)Be (p (@2,),az) + 1(é < c)Br(al . ). (16)

Our choice of the cut-off value ¢ to use in practice is, again, motivated by the local
asymptotic power functions presented in Figures 9-13 which, as discussed in Section 4.1,
show that the local asymptotic power of the Q%L test is superior to that of t9%% for
¢ > —10 but inferior for ¢ < —10, with little to choose between the two tests for ¢ = —10.
We again used Monte Carlo simulation to determine an appropriate value for ¢;, and found
a value of ¢, = —15 led to a test with the best overall power properties. As was the case for
right-tailed testing, we found that the maximum asymptotic size of S was still maximised

at 0.05 for ¢ € [=50, 5] when testing in the left tail, so no further calibration was required.
5.3 Dealing with Weakly Persistent Predictors

The U and S tests outlined in Sections 5.1 and 5.2 are constructed under the assumption
that the predictor is strongly persistent. When Assumption W holds, such that the predic-
tor is weakly persistent, the Q$%% and t%° tests, and hence the U and S tests, are asymp-
totically invalid. In contrast, under Assumption W a “conventional” OLS t-test, which
compares the OLS t-statistic ¢, of (5) with standard normal critical values, is asymptoti-
cally valid and is optimal (among feasible tests) under Gaussianity, regardless of the value
of §; see Jansson and Moreira (2006,p.704).°

Based on these considerations, we propose an approach similar to that followed by Elliott
et al. (2015) and Harvey et al. (2021), whereby we switch from the use of the U and S tests
to a conventional ¢-test which compares ¢, of (5) with standard normal critical values, when

there is sufficient evidence that the predictor is weakly persistent. We will use the with-
trend variant of the ADF-OLS normalised bias statistic, NB-OLS, := (T'¢)/(1 — S0 4y),

6Tn contrast to the case of strongly persistent predictors, for weakly stationary predictors there is no loss
of asymptotic local power, relative to a test based on t,, (where the trend regressor is omitted), from basing
the conventional ¢-test on the with-trend ¢, statistic when the trend is irrelevant (see, e.g., Grenander and
Rosenblatt, 1957). We therefore always base the conventional ¢-test on ¢, because, unlike ¢,,, it is exact
invariant to the magnitude of the linear trend.
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where qg and 7,@1-, t=1,...,p— 1 are obtained by OLS estimation of
p—1
Az =m0 + mt + dw—1 + Zi:l Vila—i + ey,

to determine whether the predictor is weakly persistent. We use the OLS variant of the
normalised bias unit root statistic, rather than the GLS variant used to estimate ¢ in Section
5.1, because of its superior power properties for non-local departures from a unit root.
Under Assumption S, NB-OLS, = O,(1), while under Assumption W, NB-OLS;
diverges to —oo at a rate faster than T"/2. If we classify a predictor as weakly persistent
when N B-OLS, < cuypg then, for any fixed value of cvyp, a predictor generated according
to Assumption W will be classified as weakly persistent asymptotically with probability
one. However, employing a fixed critical value can result in a strongly persistent predictor
generated according to Assumption S being classified as weakly persistent with non-zero
probability (the usual type I error). To address this issue we instead propose the use of a

(sample size dependent) diverging critical value given by
cuong = —vT/? (17)

where v > 0 is a user-chosen tuning parameter, so that the conventional ¢-test is employed
whenever NB-OLS, < —vT"?. The divergence rate of NB-OLS, ensures that, in the
limit, our Bonferroni-type U and S tests will always be performed when the predictor is
strongly persistent, while the conventional ¢-test based on comparing ¢, of (5) with standard
normal critical values will always be performed when the predictor is weakly persistent,

regardless of the value of v.
5.4 Overall Testing Approach

On the basis of Sections 5.1-5.3 we are now in a position to present our overall hybrid test-
ing procedures for predictability, which we denote by U™ and S™". We outline these test
procedures for the case where § < 0. For § > 0, proceed as per the discussion at the start of
Section 5 substituting x; ; for —x;_; throughout. The decision rules for one-sided tests per-
formed at the /2 nominal asymptotic level can be written as follows, where we again denote
the a quantile of the normal distribution as z,. All confidence intervals are constructed so

that the resultant one-sided tests for predictability have maximum asymptotic size of «/2.
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Decision Rule for Hybrid Test Procedures (§ < 0)
e Decision Rule for UMPb:
— Right Tailed Tests:
« If NB-OLS, > —vT/?: Reject Hy if U > 0
« If NB-OLS, < —vT"/?: Reject Hy if t; > z1_o2
— Left Tailed Tests:
« If NB-OLS, > —vT"'/?: Reject Hy if B?(BT(Q?,T)’QQ) <0
x If NB-OLS, < —vT"%: Reject Hy if t, < 249
e Decision Rule for S™P:
— Right Tailed Tests:
« If NB-OLS, > —vT'/?: Reject Hy if US >0
« If NB-OLS, < —vT"/?: Reject Hy if tr > 2149
— Left Tailed Tests:
« If NB-OLS, > —vT'/?: Reject Hy if S <0
x If NB-OLS, < —vT"%: Reject Hy if t, < 249

Remark 5.1. Although the definitions of the U™P and S™P procedures given above are
framed in terms of one-sided tests for predictability, in principle each of these procedures
can also be used to perform two-sided tests for predictability. For a given test, if the right
tailed and left tailed versions of the test are constructed such that they have asymptotic
size no greater than «/2, then combining inference from the two individual one-sided tests
for predictability will lead to an overall two-sided test for predictability that will have

asymptotic size no greater than «. &

6 Local Asymptotic Power of Hybrid Tests

We now return to Figures 1-8 to assess the power of our proposed U™ and S™P test
procedures, concentrating first on right tailed tests for predictability.

On examining Figures 1-5 we see that when ¢ is small or moderate, the powers of our
hybrid U"P and S™" tests essentially coincide with each other, as for such values of c,
drawings from the limit distribution of ¢ in (12) rarely fall below cg. For small , the
powers of UMP and S™P lie between those of the QSLS and QYL tests, as expected, but
it can be seen that the U"™P and S™P power profiles are reasonably close to that of the
best performing QELS test and often well in excess of that for Q¢L. As k increases, Q¢S
becomes the most powerful individual test, and here we see that the U™ and S™P powers

now move towards the (k-invariant) Q%% power profile. The consequence of this is that
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the hybrid tests are always among the best performing tests, having power close to that of
QS when £ is close to or equal to zero, and that of Q** for larger values of k.

We next examine Figures 6-8 where ¢ is large. When & is small the power of the U™
test still tracks the power of the QELS test reasonably well, and for larger values of x the
power of UMP continues to track the power of the Q%% test. However, for the larger c
values we see that the power of U™P can lag behind that of the t919 test regardless of the
value of k. For these larger ¢ cases we see that the power of the S"™" test now diverges
from that of U™ since ¢ is here much more likely to take a value below —35, causing S™P
to switch into the t919 test, more so as ¢ becomes increasingly negative. The consequence
is that the power of S"™P is far superior to that of U™ for these values of ¢, and is almost
identical to that of the best performing t9L5 test for ¢ = {—40, —50}.

We now turn our attention to Figures 9-13 which present the performance of S when
testing in the left-tail. (Here, we recall that the U™ test reduces to Q¥ in the left tail
under strong persistence.) The results show that for small ¢, ¢ is almost never less than
—15, hence the power of S™® coincides almost perfectly with that of Q%% which is the
most powerful test in these scenarios that maintains size control across k. As ¢ becomes
more negative, ¢ increasingly drops below —15, with the consequence that inference for S™P
increasingly becomes based on t9%5. As such, for large ¢ the power of S™" more closely
tracks that of t?%% which is the best performing size-controlled test. As a consequence, the
ShP test displays one of the best power profiles among size-controlled tests across all values
of ¢, having power close to that of the Q¢L¥ test for smaller ¢ and close to that of t9% for
larger c. We note also that, due to being constructed using only the trend-invariant Q%*°
and t919 tests, the S™P test is itself invariant to the value of x when testing in the left tail.

An additional consideration in evaluating the local asymptotic size and power of the
tests is their behaviour when ¢ > 0, such that the predictor series is locally explosive. In
the supplementary appendix, we report additional results for the case ¢ = 2, for both right-
tailed and left-tailed testing. We find that in the right-tailed testing context, the best
performing individual tests are QELS and tSLS , even when a large local trend is present
(i.e. large k), and the U™ and S™" procedures (which coincide here) track Q" fairly
well across the different x values considered. In the left-tailed testing scenario, of the two
individual tests that achieve size control across ¢, i.e. Q¥FS and t919 we find that Q¥
provides the better power profile, as in the case of ¢ = 0 and small negative c. Here, the
ShYP test has a power profile that always follows this better performing Q%% test, offering
an attractive power profile across x. Overall, the newly proposed hybrid tests also perform

well in the locally explosive context.
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In summary, our proposed hybrid test procedures display excellent asymptotic size and
power properties regardless of the values of ¢ and k. The S™" test, in particular, has a
power profile that is always close to the best performing size-controlled test in each scenario.

Finite sample simulation results reported in Section S.3 of the supplementary appendix
show that the Q¢S tOL5 WP and S™P test procedures display excellent size control across
a range of values of ¢ and k both when v; in (3) is i.i.d. or serially correlated, with the only
exception being Q¢L% and U™® which display significant oversize for larger negative values
of ¢. The oversize for QEL5 for less persistent predictors is expected given that this test is
asymptotically invalid for weakly stationary predictors, while the oversize for U™" in this
region arises from use of Q%L through the union-of-rejections approach. Aside from this
case, the relative power of the tests in finite samples is almost identical to that observed
in the asymptotic power simulations, with the S™" test in particular displaying excellent
power across the large range of simulation DGPs considered.

On the basis of our asymptotic and finite sample simulation results, we recommend
basing inference on our proposed S™P predictability testing procedure as it has controlled
size, and is always among the most powerful tests, over the full range of parameter settings

considered.

7 Empirical Application

We now report results of an empirical exercise in which we apply the tests for predictabil-
ity outlined in this paper to the US equity series analysed in Welch and Goyal (2008), us-
ing updated data at all available data frequencies (annual, quarterly and monthly) for the
period 1926-2021 which can be obtained from http://www.hec.unil.ch/agoyal/. Our de-
pendent variable, r;, is the S&P500 value-weighted log-return, and for x; we consider the
same thirteen candidate predictors variables as Harvey et al. (2021): the dividend payout
ratio, earnings-price ratio, dividend-price ratio, dividend yield, default yield spread, long-
term yield, default return spread, net equity expansion, inflation rate, Treasury bill rate,
term spread the book-to-market ratio and stock variance.

We first formally test for the presence of a linear trend in each predictor using a range of
trend tests available in the literature that are designed to be robust to whether Assumption
S or W holds; namely the thF(M U) test of Perron and Yabu (2009), the zy, 27! and 22
tests of Harvey et al. (2007), and the Dan-J test of Bunzel and Vogelsang (2005). We
perform left-tailed trend tests for all predictors with the exception of the inflation rate and
term spread for which right-tailed tests are performed, using the setting recommended by
the authors in each case. Tables 2 reports the p-value of the thF(M U) and z), tests, as well

as the significance level at which the remaining tests (which are designed to be performed
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only at discrete pre-assigned significance levels) reject the null hypothesis of no linear trend
(v = 0), for each predictor at each data frequency.

From the results reported in Table 2 it is seen that for each of the default yield spread,
long term yield, default return spread, inflation rate, treasury bill rate and stock variance no
trend is detected, regardless of data frequency. In contrast, for the dividend payout ratio,
earnings-price ratio, dividend-price ratio, dividend yield and net equity expansion series
a significant linear trend is detected regardless of the data frequency. For the remaining
predictors the results of the trend tests are mixed, with the trend tests indicating the
presence of a trend at some, but not all, data frequencies. In summary, there is at least
some statistically significant evidence of a linear trend being present in the majority of the
predictors considered.

We now discuss the results of applying right-tailed tests for predictability. All tests are
performed at a nominal level of 0.05. Following CY, lag selection for all of the unit root
tests utilised in the test procedures is performed using the Bayes Information Criterion
(BIC) with a maximum number of lagged differences of 4. Finally we set v = 10 in (17)
such that our hybrid S"™P and UM tests switch into a conventional ¢-test, comparing ¢, of
(5) with standard normal critical values, whenever NB-OLS, < —107"/? as we found this
choice of v delivered good finite sample performance across a wide range of DGPs in the
Monte Carlo simulation results reported in Section S.3. As Harvey et al. (2021) test for
predictability in the left tail for the stock variance predictor we report results for a right-
tail test for predictability when (—1)x stock variance is employed as the predictor, noting
that this is equivalent to a left-tailed test using the original data (cf. Remark 3.2).

Table 2 also reports the lower bound of the confidence interval for 5, denoted generically
as 3, for each predictor at each frequency, and for each of the predictability tests discussed
in this paper. Also reported is the estimator 5 from the with-trend Bonferroni type test
procedures. We highlight any instances where this lower bound is greater than zero in bold
to help identify instances where the null of § = 0 is rejected in favour of the alternative
that B > 0. Finally, for the lower bound of 8 from the S™® and U™ tests we use the
superscript z to identify instances where these tests have switched into the conventional ¢-
test (i.e. comparing ¢, of (5) with standard normal critical values), and for S"™’ we use the
superscript ¢ to denote instances where this test is basing inference on the 9% test.

For the dividend payout ratio, long term yield, net equity expansion, inflation rate,
Treasury bill rate, term spread and stock variance predictors, no evidence of predictability
is found by any of the tests for any data frequency and so we will not discuss results for

these predictors further.
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For the earnings-price ratio, as noted above, a linear trend was detected at all frequen-
cies, giving reasonable evidence that a trend is present in this predictor. For this predictor
the QL5 915 WP and SWP tests all reject the null of no predictability at each data fre-
quency, while the QSLS test fails to reject at any frequency and the tSLS test rejects only
at the monthly and quarterly frequencies. These results suggest that for this predictor an
unmodelled trend in the predictor may be negatively impacting the power of the constant-
only tests, with the trend-augmented and hybrid tests retaining power to find significant
evidence of predictability.

A similar story is seen for the dividend-price ratio where again a trend was detected at
each data frequency, and where the QSLS and tl?LS tests provide no evidence of predictabil-
ity at any frequency. The QL% SWP and UMP tests, on the other hand, find evidence of
predictability at both the annual and quarterly frequencies, although no predictability is
detected by any test at the monthly frequency.

Turning to the dividend yield predictor a significant trend is detected at each data
frequency by at least one of the trend tests and all of the predictability tests find significant
evidence of predictability at all data frequencies, with the exception of the QfLS and
tgLS tests at the annual frequency. Interestingly, the annual frequency data provides the
strongest evidence for the presence of a trend among the three data frequencies and so it is
noteworthy that it is for the annual data that the Q5™ and t9** fail to detect predictability,
while our hybrid tests deliver rejections.

There appears to be no evidence of a trend in the default yield spread, and the only data
frequency at which predictability is detected for this predictor is for quarterly data. For
quarterly data rejections are found by all but the t9X test, reflective of the fact that our
hybrid S™" and U™" tests are competitive on power with the best performing individual
tests when no (or a very small) trend is present in the predictor.

For the default return spread no trend is detected at any data frequency and only
one rejection, at the monthly frequency, is observed for the QSLS test. As the S™P and
UMP tests have switched into the conventional ¢ test for this predictor it is likely that
this predictor is weakly persistent, and that the rejection from QSLS may be reflecting the
oversize of this test for weakly persistent predictors.

Finally, results for the book-to-market ratio are mixed. At the annual frequency no
evidence of a trend is found and the only test to reject is QSLS which is perhaps to be
expected if no trend is present and the predictive power of this predictor is weak. At the
quarterly and monthly frequencies, however, a trend is detected and all of the tests reject

the null of no predictability with the exception of t7*% and Q¥"% for monthly data.
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Overall we find that for several predictor series, a trend appears to be present, and
at the same time the constant-only Bonferroni ) and t-tests fail to reject the null of no
predictability, indicating that the presence of omitted trends may be negatively impacting
the power of the constant-only tests. In contrast, our proposed tests find evidence of
predictability in many of these cases, highlighting the value of our hybrid procedures in
detecting predictability when uncertainty exists regarding the presence of a linear trend in

the predictor.

8 Conclusions

In this paper we have considered trend-augmented versions of the Bonferroni @) test of CY
and the Bonferroni t-test of CES. We have shown that in the presence of an omitted trend in
the predictor, when § < 0 (6 > 0) the constant-only Bonferroni () and ¢-tests can be severely
undersized when testing in the right (left) tail, displaying a subsequent lack of power, and
severely oversized when testing in the left (right) tail. The trend augmented Bonferroni @
and t-tests, while displaying power below their constant-only counterparts when no trend
is present, are invariant to a trend in the predictor. We subsequently proposed union-of-
rejections type hybrid testing procedures that are able to capture the power of the constant-
only Bonferroni @) test when the predictor admits only a deterministic constant, and the
power of the trend-augmented Bonferroni ) and ¢-tests when a trend is present in the
predictor, with S™P being our recommended testing procedure given that it has controlled
size, and is always among the most powerful tests, over the full range of parameter settings
considered. An empirical illustration using an updated version of the dataset of Welch and
Goyal (2008) demonstrated that our proposed approach finds evidence of predictability in
several instances where a trend appears to be present in the predictor where the constant-
only Bonferroni () and t-tests fail to reject, indicating that the presence of omitted trends
may be negatively impacting the power of the constant-only tests in this commonly used

dataset.
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Table 1: Parameters to Deliver One-Sided Tests with Maximum 5% Asymptotic Size.

QELS tSLS Q‘?LS t?LS U
5 a2, o% at, o, of a% o, a ¢
-0.999 0.050 0.055 0.020 0.035 0.050 0.050 0.040 0.035 0.500
-0.975 0.055 0.080 0.025 0.035 0.055 0.055 0.040 0.025 0.630
-0.950 0.055 0.100 0.025 0.040 0.060 0.065 0.040 0.020 0.660
-0.925 0.055 0.115 0.025 0.040 0.065 0.070 0.035 0.020 0.710
-0.900 0.060 0.130 0.025 0.035 0.070 0.075 0.050 0.020 0.730
-0.875 0.060 0.140 0.025 0.035 0.070 0.085 0.050 0.015 0.710
-0.850 0.060 0.150 0.025 0.035 0.075 0.090 0.0560 0.015 0.730
-0.825 0.060 0.160 0.025 0.035 0.075 0.095 0.055 0.010 0.740
-0.800 0.065 0.170 0.025 0.035 0.080 0.100 0.060 0.010 0.750
-0.775 0.065 0.180 0.030 0.035 0.080 0.105 0.065 0.010 0.760
-0.750 0.065 0.190 0.025 0.035 0.085 0.110 0.065 0.010 0.760
-0.725 0.065 0.195 0.025 0.035 0.085 0.115 0.065 0.010 0.760
-0.700 0.070 0.205 0.025 0.035 0.090 0.120 0.065 0.010 0.750
-0.675 0.070 0.215 0.025 0.035 0.090 0.125 0.065 0.005 0.750
-0.650 0.070 0.225 0.025 0.035 0.095 0.130 0.080 0.005 0.740
-0.625 0.075 0.230 0.025 0.035 0.095 0.135 0.080 0.005 0.740
-0.600 0.075 0.240 0.030 0.035 0.100 0.140 0.085 0.005 0.740
-0.575 0.075 0.250 0.035 0.035 0.100 0.140 0.085 0.005 0.740
-0.550 0.080 0.260 0.035 0.035 0.105 0.145 0.090 0.005 0.730
-0.525 0.080 0.270 0.045 0.035 0.110 0.150 0.095 0.005 0.730
-0.500 0.080 0.280 0.060 0.035 0.115 0.150 0.095 0.010 0.730
-0.475 0.085 0.285 0.050 0.035 0.120 0.150 0.095 0.010 0.730
-0.450 0.085 0.295 0.055 0.040 0.120 0.155 0.095 0.010 0.730
-0.425 0.090 0.310 0.035 0.040 0.125 0.165 0.095 0.010 0.710
-0.400 0.090 0.320 0.060 0.040 0.130 0.165 0.150 0.010 0.710
-0.375 0.095 0.330 0.040 0.040 0.135 0.165 0.150 0.010 0.710
-0.350 0.100 0.345 0.030 0.040 0.140 0.170 0.150 0.010 0.690
-0.325 0.100 0.355 0.015 0.045 0.145 0.170 0.150 0.010 0.690
-0.300 0.105 0.360 0.010 0.050 0.150 0.175 0.150 0.010 0.680
-0.275 0.110 0.370 0.005 0.040 0.155 0.175 0.200 0.010 0.680
-0.250 0.115 0.375 0.005 0.035 0.165 0.175 0.200 0.010 0.680
-0.225 0.125 0.380 0.005 0.025 0.170 0.175 0.200 0.010 0.680
-0.200 0.130 0.390 0.005 0.025 0.175 0.175 0.200 0.005 0.670
-0.175 0.140 0.395 0.005 0.010 0.185 0.175 0.200 0.005 0.650
-0.150 0.150 0.400 0.005 0.010 0.200 0.175 0.200 0.005 0.650
-0.125 0.160 0.405 0.005 0.010 0.200 0.165 0.200 0.005 0.630
-0.100 0.175 0.415 0.005 0.005 0.210 0.145 0.200 0.005 0.610
-0.075 0.190 0.420 0.005 0.005 0.220 0.130 0.200 0.005 0.610
-0.050 0.215 0.425 0.005 0.005 0.225 0.100 0.150 0.005 0.590
-0.025 0.250 0.435 0.005 0.005 0.185 0.035 0.150 0.005 0.570
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Table 2: Trend Tests and 3 for Updated Welch and Goyal (2008) Dataset

Annual Data

B
Predictor p(tFOFY  p(zy)  zZPt ZP? DAN-J 5 tQLs QGLs tOLS QCLs yhyb ghyb
Dividend Payout Ratio 0.000 0.000 ook ok ook ok ok -0.313 -0.1650 -0.1439 -0.1635 -0.1353 -0.1605 -0.1635°
Earnings-Price Ratio 0.083 0.223 -0.301 -0.0018 -0.0095 0.0192 0.0391 0.0188 0.0188
Dividend-Price Ratio 0.000 0.008 * %k * ok * -0.843 -0.0624 -0.0443 -0.0280 0.0406 0.0251 0.0251
Dividend Yield 0.200 0.028 * ok * ok * 0.133 -0.0024 -0.0024 0.0838 0.0753 0.0753 0.0753
Default Yield Spread 0.314 0.397 -0.570 -0.1221 -0.1002 -0.1705 -0.1242 -0.1192 -0.1192
Long Term Yield 0.376 0.384 -0.028 -0.0467 -0.0460 -0.0547 -0.0539 -0.0544 -0.0544
Default Return Spread 0.267 0.227 0.315 -0.2064 -0.2143 -0.1993 -0.4130 -1.0099% -1.0099%
Net Equity Expansion 0.000 0.000 *okok *ok ok * ok 0.086 -0.3479 -0.3280 -0.3408 -0.3512 -0.3512 -0.3408*
Inflation Rate 0.259 0.262 -0.032 -0.0724 -0.0738 -0.0834 -0.0872 -0.0943 -0.0943
Treasury Bill Rate 0.355 0.363 0.093 -0.0802 -0.0859 -0.0817 -0.0886 -0.0886 -0.0886
Term Spread 0.361 0.363 -0.111 -0.0821 -0.0837 -0.0943 -0.0905 -0.1065 -0.0943%
Book-to-market Ratio 0.196 0.282 -0.806 -0.0388 0.0036 -0.0313 -0.0229 -0.0087 -0.0087
Stock Variance 0.306 0.472 0.398 -0.1521 -0.2169 -0.1559 -0.2288 -0.2288 -0.1559%

Quarterly Data

B
Predictor p(tF°F)  p(Za)  ZP' ZP? DAN-J ] tQES  QGLS 4 9LS  QGLS uhyb shyb
Dividend Payout Ratio 0.000 0.064 *k *k ook ok -0.120 -0.0229 -0.0235 -0.0250 -0.0307 -0.0277 -0.0250°
Earnings-Price Ratio 0.000 0.241 * -0.614 0.0043 -0.0157 0.0068 0.0049 0.0006 0.0068"
Dividend-Price Ratio 0.183 0.072 *k *k koK -0.949 -0.0085 -0.0061 -0.0002 0.0160 0.0110 0.0110
Dividend Yield 0.204 0.106 * ok * 0.113 0.0023 0.0024 0.0240 0.0224 0.0224 0.0240"
Default Yield Spread 0.196 0.416 -0.512 0.0095 0.0126 -0.0051 0.0062 0.0071 0.0071
Long Term Yield 0.363 0.391 -0.054 -0.0159 -0.0155 -0.0171 -0.0169 -0.0177 -0.0177
Default Return Spread 0.355 0.265 0.303 -0.1263 -0.1792 -0.1247 -0.3683 -0.6196% -0.6196%
Net Equity Expansion 0.000 0.004 *okok *ok ok *ok 0.115 -0.0755 -0.0676 -0.0909 -0.0898 -0.0898 -0.0909%
Inflation Rate 0.151 0.314 0.030 -0.1078 -0.1020 -0.1093 -0.1033 -0.1033 -0.1093%
Treasury Bill Rate 0.393 0.414 -0.067 -0.0280 -0.0269 -0.0298 -0.0295 -0.0303 -0.0303
Term Spread 0.074 0.345 0.031 -0.0273 -0.0256 -0.0279 -0.0279 -0.0279 -0.0279%
Book-to-market Ratio 0.409 0.360 * -0.793 0.0212 0.0185 0.0392 0.0122 0.0153 0.0153
Stock Variance 0.227 0.455 0.290 -0.1263 -0.1100 -0.1272 -0.1320 -0.1320 -0.1272%

Monthly Data

B
Predictor p(tF°F)  p(Zan)  ZP' ZP? DAN-J 5 tQLS  QGLS QLS QGLS uhyb shyb
Dividend Payout Ratio 0.412 0.089 * ok *okok *ok -0.049 -0.0052 -0.0053 -0.0059 -0.0065 -0.0059 -0.0059°
Earnings-Price Ratio 0.374 0.353 * ok -0.799 0.0009 -0.0060 0.0015 0.0017 0.0006 0.0015%
Dividend-Price Ratio 0.200 0.198 * ok * -0.975 -0.0042 -0.0031 -0.0026 -0.0008 -0.0026 -0.0026
Dividend Yield 0.201 0.199 * ok * -0.068 0.0008 0.0008 0.0096 0.0099 0.0085 0.0085
Default Yield Spread 0.438 0.434 -0.248 -0.0015 -0.0012 -0.0036 -0.0017 -0.0028 -0.0028
Long Term Yield 0.354 0.384 -0.087 -0.0051 -0.0049 -0.0057 -0.0057 -0.0056 -0.0056
Default Return Spread 0.321 0.374 0.182 -0.0162 0.0636 -0.0158 -0.0259 -0.0678% -0.0678%
Net Equity Expansion 0.000 0.020 *k Hokook ok -0.030 -0.0222 -0.0225 -0.0268 -0.0269 -0.0240 -0.0240
Inflation Rate 0.189 0.456 0.035 -0.0747 -0.0652 -0.0760 -0.0720 -0.0720 -0.0760°"
Treasury Bill Rate 0.387 0.402 -0.056 -0.0072 -0.0070 -0.0077 -0.0077 -0.0079 -0.0079
Term Spread 0.001 0.400 * 0.008 -0.0079 -0.0078 -0.0084 -0.0084 -0.0084 -0.0084%
Book-to-market Ratio 0.438 0.435 * -0.807 -0.0001 0.0035 0.0007 -0.0023 0.0025 0.0025
Stock Variance 0.204 0.497 0.267 -0.0429 -0.0018 -0.0431 -0.0130 -0.0130 -0.0431%

Notes:
(i) The entries in the columns headed p(thF) and p(Z)) denote p-values for the thF and Z) tests. Bold entries highlight p-values below 0.1.

(ii) For Z;\nl, Z;\nQ and DAN-J, * denotes rejection at the 10% level, ** denotes rejection at the 5% level, and *** denotes rejection at the 1% level.
(iii) Bold entries in the E columns highlight cases where the null hypothesis of no predictability can be rejected at the 5% level.

(iv) For entries in the UPYP and shyb columns, a z superscript denotes that the test compares t with N (0, 1) critical values, while a t superscript
denotes that the test bases inference on the t?LS test.

(v) In the case of Stock Variance, we report ¢ and g for (-1) x Stock Variance as the predictor. A right-tailed test from this regression is equivalent to a
left-tailed test using the original data.
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Figure 1: Local Asymptotic Power of Right Tailed Tests - 6 = —0.95, ¢ =0
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Figure 2: Local Asymptotic Power of Right Tailed Tests - § = —0.95, ¢ = —2
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Figure 3: Local Asymptotic Power of Right Tailed Tests - § = —0.95, ¢ = —5
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Figure 4: Local Asymptotic Power of Right Tailed Tests - 6 = —0.95, ¢ = —10
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Figure 5: Local Asymptotic Power of Right Tailed Tests - 6 = —0.95, ¢ = —20
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Figure 6: Local Asymptotic Power of Right Tailed Tests - 6 = —0.95, ¢ = —30
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Figure 7: Local Asymptotic Power of Right Tailed Tests - 6 = —0.95, ¢ = —40
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Figure 8: Local Asymptotic Power of Right Tailed Tests - 6 = —0.95, ¢ = —50
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Figure 9: Local Asymptotic Power of Left Tailed Tests - 6 = —0.95, ¢ =0

(a) K =0.0 (b) k=0.2
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Figure 10: Local Asymptotic Power of Left Tailed Tests - 6 = —0.95, ¢ = —2

(a) Kk =0.0 (b) k=0.2
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Figure 11: Local Asymptotic Power of Left Tailed Tests - 6 = —0.95, ¢ = —5

(a) Kk =0.0 (b) k=0.2
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Figure 12: Local Asymptotic Power of Left Tailed Tests - 6 = —0.95, ¢ = —10
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Figure 13

: Local Asymptotic Power of Left Tailed Tests - § = —0.95, ¢ = —20
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Abstract

The outline of this supplementary paper is as follows. Section S.1 provides proofs
of the Theorems in the paper. Section S.2 reports the local asymptotic power of
our proposed tests across additional scenarios to those considered in the main paper.
Finally, Section S.3 reports results from a Monte Carlo simulation exercise examining

the finite sample size and power performance of our proposed tests.

*We are grateful to Motohiro Yogo for making his Gauss programs to implement the mean-only Bon-
ferroni @ and t tests publicly available on his website. We thank participants at the NBER-NSF Time
Series Conference held at Boston University in September 2022 for helpful comments and feedback on an
earlier version of this paper. Taylor gratefully acknowledges financial support provided by the Economic
and Social Research Council of the United Kingdom under research grant ES/R00496X/1. Address cor-
respondence to: Sam Astill, Essex Business School, University of Essex, Wivenhoe Park, Colchester, CO4
35Q, UK. Email: sastill@essex.ac.uk.



S.1 Proof of Theorems

It is useful to use the Cholesky decomposition to write

€t = Ocl1t

uy, = ou{den + (1 — 6% %y}

where e; denotes the innovation to v, and £1; and €9, are independent martingale difference

sequences with unit variance. Also, note that we can write as
Ty = + Brwi_1 + u (S.1)

with a* = a + [rpu. Since a constant term is fitted in the regression, for the purposes of
the theory we can set a = 1 = 0 (and therefore a* = 0) without loss of generality in what

follows.
S.1.1 Proof of Theorem 1(a)

First write

rT

T_I/QZZEM ﬂ) Wl(T)

t=2

rT
T_I/ZZ?E% ﬂ) WQ(T)

t=2

where Wi (r) and Wa(r) are independent Brownian motions.

The t, statistic can be written as

71 Zfzz xt—l(rt —7)
Vo2 (o — 7o)

t, =

Consider first the numerator of ¢,,. Using (S.1),

T T T
Z xy_1(ry —7) = Br Z Ty (Wp—y — W_1) + Z T (uy — )
t—2 =2 =2

S1



Here,

T T
T Z$t—1(wt—1 —w_1) = Z{’YT(t — 1)+ wpy fwy — W)
=2 =2
T T
= KWUT_5/2 Z(t — 1)(wt_1 — w_l) + T_2 Z(U}t_l — ’(I}_l)Q
t=2 t=2

1 1
= mf,/ TWl"c(r)dr—f—w?,/ W (r)*dr
0 0

Also,

T

T
T_l Z xt_l(ut — 'EL) = T_l Z(.ﬁlft_l — f_l)ut
t=2 t=2

T T
= kTP {(t=1) =TTy + T (wimy — 1)y

t=2 t=2

T
= Kwyo, T2 Z{(t — 1) =T =1} {0 + (1 — 6%y}

t=2

T
+UUT_1 Z(wt_l — U_)_l){(Séfu + (1 — (52)1/28215}

t=2

Wvo—u{(s/o (r — 0.5)dW; (r) + (1 — 52)1/2/0 (r — 0.5)dWa(r)}

le

—i—wvau{é/o W{‘c(r)dwl(r)+(1—(52)1/2/o WE(rYdWs(r)}
= wyo, /01 WES () {6dWy (1) + (1 — 62)2dWy(r)}

So,

T 1 1 1
7! Zwt,l(m -7 3 auwvb{n/ rWE (r)dr + / WE (r)2dr} + Juwv{(S/ WS (r)dWy (1)
0 0 0

t=2

1
+ wvau(1—52)1/2/ WEEdW,(r)}
0

52



Next consider the denominator of

T2y (w1 —720)° = T2 {pr(t—1-T=1) + (g — w_y)}?

t=2
T T
= RWT Y (t—1-1=1P+T) (wg — W)
t=2 t=2
T
+26w0, T2 (¢ — 1 —F = 1)(wy—y — w_y)
t=2

18

1 1
n2w5/12+w3/ W{‘C(r)Zdr+2m3/ rWE (r)dr
0 0
1
= w?)/ {k(r —0.5) + W (r)} dr
0
1
= wi/ WS (r)2dr
0

Hence we obtain

Ty wa(re—7)
\/‘7371_2 S (1 = T1)?
Ol o rWE(r)dr + Jy WEGr)Pdry +6 fy WES(dWa(r) + (1= 6)Y2 f; Wi dWs(r)
Jo Wi (r)2dr
b{w [ rWE(r)dr + [ WE(r)2dr} + 6 [} W (r)dWi (r)

- + (104422,
[ WS (r)2dr

t, =

where 7, := {fol WS (r)2dr}—1/2 fol WL (r)dWy(r) is a N(0,1) random variable.
S.1.2 Proof of Theorem 1(b)

Assuming pr = 1+ ¢/T and letting y = (1 — (Oue/Tewy) (s — pri—1)), We can write

Qu(Bo, p) with Sy = 0 as

2322(1’}*1 - jfl)yt + %(Uu,e/o-ewy)(UJg — 0'12))
(1 — 52)1/20'11\/2?:2(51‘7:_1 _ j_l)z

Turning first to the numerator of (S.2) first note that we can write

Qu(Bo, p) = (S.2)
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Yo = Brwii +u — (Oue/0cwy) (s — py_1)
= Brwiy + ur — (Oue/0ewy) (T — pri_q)
+(Uu7e/aewU)T_1(5 — )T
= Brwi—y + us — (Oue/0ewy){ve — yr{cTt(t—1) -1}

+(Oue/Tews) T HE — )y

using
Ty — priy = yrt +w — pwiy — pyr(t —1)
= v+or{t—(1+cT)(t - 1)}
= v —yp{cT 't —1) -1}
So,

Yy = Bth—l + {ut - (Ju,e/gewv)vt} + (O-u,e/o-ewv)'yT{CT_l(t - 1) - 1}
H(Oue T AT (E = )ze 1} (S.3)

Hence we find

Br Z?g(%ﬁ — T_1)wiq
(1= 8220, [y 0y — 74)?
S (= Eoa) (= (Fue/7e)00) + 5 (0ue/0uw,) (@2 — 02)
(1= 82120, S0y (s — T-a)?
1 (Uu,e/aewv>7TCT_l Z:{:Q(xt—l —T)(t—1)
(1= 82)120,\ | S0 (s — T_a)?
4 (Uu,e/aewv)T_l(é —¢) ZtT:Q(xtfl - 3_771>2
(1= 82120,/ Sy (01 — )2

Qy(ﬁﬂ;ﬁ) - (S4)

+

(S.5)

(S.6)

(S.7)
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We now examine the limit of each of the terms (S.4)-(S.7) in turn. Beginning with (5.4),

we can write it as

(bow/wo) T2 32y wea (wy — w_1)
(1 - )20, /T2 5 (g — 7-1)?
w, (bou/wo) (e [ W) dr + w? [ W (r)2dr}
(1—62)Y20, \/w2 fol WL (r)2dr

- b{k fol rWi(r)dr + fo W (r)2dr} 5.8)

(1—42) 1/2\/f0 WHE(r)2dr

For (5.5) we note that

T
1
T (@ — = W™ (r)dW, 2—o)
— Ti—1 . 1Ut Wy / lc )d 1( ) 2(0)1} Uv)

Then,

IZt o(Ti1 — Zo1) (e — Uf vt)+%g%ij(w3—a§)
ou(1 = 8 VAT2 3 (w0 — 21)2)1/2
T3 (s — & a)uy — Zue T ST — Toy)v + 52wy — 07)
ou(1 = 82)2(T-2 3 (g — 21)%)2
ot iy W (){8AWL(r) + (1 — 6%)V2dWa(r)} — Z=w? [F WIS (r)d Wi (r)

w

L CaEed - od) 4z o)

ou(1 — 02)1/2w, fo I/Vl“c"c r)2dr
§ [ WS ()WL (r) + (1 = 62)V/2 [T WS AWy (r) — 6 [ WS (r)d Wi (r)

(= e Wi

_ fo Wlucyﬂ(r)dwﬂr) (89)
Jo W (r)2dr
= Z,~N(0,1) (S.10)
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For (5.6),

(Oue/oew)yreT ™ 3o (@ a — ) (t = 1)
(1= )20,/ S0 (w1oy — 7-a)?
(Oue/oewy)chw, T3S (21 — 7 1) (t — 1)
(1- 52)1/20u\/ZtT=2($t—1 —74)°
SeRT52 ST (20 — 1) (t = 1)
(1= 82/ T2 5 — 70
w Sckw, fol rWLS (r)dr
(1= 82)1 2 {1y Jy WE (r)2dr
dck fol rWES (r)dr

- (S.11)
(1= 822,/ [I W (r)2dr

Finally, for (S.7),

(Oue/oewy) T — ¢) ZtT:Q(:Ut,l —T_)?
(1= 82120, S (11 — T_1)?

dw (@ = )T 3y (w1 — 70)°

(1~ 52)1/2\/71_2 > io(Tem1 = T1)?

w 0w (¢ — c)w? fol WS (r)2dr

_>
(1 — 02)1 2w,/ [ WIS (r)2dr

(@) Jy W) S12)

(1—02)1/2,/ fol WS (r)2dr

Combining results we therefore have that

Oulfo. ) 5 b{r fol rWi(r)dr + fol WE (r)dr} + dck fol rWiE(r)dr + 6(¢ — ¢) fol WL (r)2dr
S (1— 52)1/2{f01 WS ()2} /2

+7,
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S.1.3 Proof of Theorem 1(c)

Write the ¢, statistic as

A bouw, (T2 Zf:2x37t—1)1/2+ T ZtT:QxT,t—lut
o UU\/T_2 Zthz o
/ Wr (a2 4 Lo WECIAWa(r) + (1 = 0OV2 o Wi (r)dWa(r)
1c
\V fo W1 (r)%dr
! W (r)dW, (r
= o [ Wity gl MEOWRE) g,
0

\/fo Wi .(r)2dr

—1/2
where Z, 1= <f0 Wi.(r)2dr ) fol W.(r)dWsy(r) is a N(0,1) random variable.

S.1.4 Proof of Theorem 1(d)

The Q. (Bo, p) statistic with Sy = 0 can be written as

bw, (T2 23:2 xz,t—1>1/2 6(—c) (T2 ZtT:Q xit—1>l/2

QT(ﬁO?ﬁ) (1 _62)1/2 + wv(l —52)1/2
_ T Tue Oue
+T 1 Zt:? 1'7—7t_1(ut T TeWwy Ut) + %m(wg B 0-3) (813)

ou(l— 52)1/2\/T_2 23:2 ﬂﬁz,H

We will derive limiting expressions for each of the three terms on the right hand side of

(S.13) Here
b, (T2 3022, ) w by WEL(r)2dr} 2

(1—52)1/2 = (1—52)1/2 (S.14)
and
’7’ 2 1/2
5E— T2yl a2, )V, 0@ =) (fy Wi(r)dr) .y
wy(1 — 02)1/2 - (1—062)1/2 (S.15)
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Finally,

T s rami(u = 220) + 5 22 (w) — 07)

Tews 2 Towy
AR
D Tetag Ty Trgoavy + 3 2 aif (wp —o?)
Ju 1 — 52 1/2\/T—2 thg xz,t—1
o [ WE(HBAWA(r) + (1 — )W (r)} — 22 [ W ()W (5)

ou(1—62) 1/2wm/f0 WT.(r)2dr

| T (90— o))+ sai (W — o))

ou(1 — 52)1/2wU\/f0 Wi .(r)2dr

fO ch(s>dW2(S)

\V fol W (r)2dr

= Z.~N(0,1) (S.16)

w

Combining results we obtain

o bW (r)2dr} {fy Wic(r)*dr}'/?
Q-(Bo,p) — f0(11(52)1/2 ({0_521)1/2 + 2
{b+0(¢— ) H{Jo Wi(r)?dr)'/?}
‘ c(l _{‘;2)1/12 Yz,

S.2 Additional Local Asymptotic Power Simulations

In this section we report additional asymptotic simulation results to those reported in
the main paper. Figures S.1 - S.3 report local asymptotic power for left-tailed tests for
predictability with 6 = —0.95 and ¢ = —30, —40, —50. Finally, the local asymptotic power
of the tests for predictability for an explosive predictor with ¢ = 2 and § = —0.95 are
reported in Figures S.4 - 5.5, with Figure S.4 reporting the power of right-tailed tests, and
Figure S.5 reporting the power of left-tailed tests. Additional results for 6 = —0.75 can
be found in the on-line supplementary appendix which can be found at https://rtaylor-

essex.droppages.com/esrc2 /default.htm.
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Figure S.1: Local Asymptotic Power of Left Tailed Tests - 6 = —0.95, ¢
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Figure S.2: Local Asymptotic Power of Left Tailed Tests - 6 = —0.95, ¢
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Figure S.3: Local Asymptotic Power of Left Tailed Tests - 6 = —0.95, ¢ = —50
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Figure S.4: Local Asymptotic Power of Right Tailed Tests - § = —0.95, ¢ = 2
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Figure S.5: Local Asymptotic Power of Left Tailed Tests - 6 = —0.95, ¢ = 2
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S.3 Finite Sample Size and Power

In this section we evaluate the finite sample size and power of tests for predictability
discussed in this paper. To do so data were generated according to (1) - (3) with v; =
¢vi_1 + e, where e, ~ NIID(0,1), setting wy = vy = e;. We set T' = 250 and generate
data according to Assumptions S and T such that p = 1+~ and v = kw, T~ 2, noting
that for larger negative values of ¢ the predictor will behave more like a weakly stationary
process in finite samples. All tests are performed at a nominal level of 0.05. Following CY,
lag selection for all of the unit root tests utilised in the test procedures is performed using
the Bayes Information Criterion (BIC) with a maximum number of lagged differences of
4. Finally we set v = 10 in (17) such that our hybrid S™" and U™ tests switch into the
conventional t-test whenever NB-OLS. < —10T"? as we found this choice of v delivered

good finite sample performance across a wide range of DGPs.
S.3.1 Finite Sample Size

We being by examining the finite sample size of the tests. We first report result for ¢ = 0.0
such that v; isan i.i.d. process, and for ¢ = 2,0, -2, —5, —10, —20, —30, —40, —50, —100, —250,
with the final setting clearly corresponding to weak persistence (p = 0 when ¢ = —250).
We report results for £ = 0 in Table S.1 and x = 0.5 + 0.5/ (¢ > —20) in Table S.2, where
we make x dependent on c in the latter scenario due to the impact of k on the size of the
tests being greater the more negative is the value of c.

Turning first to Table S.1 we see that for right-tailed tests with k = 0 and ¢ = 0.0 all
tests are well size controlled for ¢ > —50, with this result unsurprising given that all tests
are designed to be asymptotically size controlled when p is local-to-unity, with the tffLS and
t959 tests retaining size control across all other values of ¢. As ¢ becomes more negative we
do see some size distortions for the QG tests, as for these values of ¢ the predictor will be
behaving more like a weakly stationary process, in which case these tests are asymptotically
invalid. While the QELS test displays severe size distortions only for ¢ = —250, the Q&L
test also suffers severe size distortions for ¢ = —100. As a consequence, the U™P test does
suffer from severe size distortions for ¢ = —100 as while U™ is correctly switching into

the conventional ¢-test in almost all (99.9%) of replications for ¢ = —250, and is therefore
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correctly sized, this will not be true for ¢ = —100 and the oversize of Q¥ in this scenario
feeds through into the size of U™P. This renders the U™P test potentially unreliable. The
size of the S"P test, on the other hand, is well controlled across all values of ¢. This is due
to the fact for intermediate values of ¢ that span the gap between strongly persistent and
weakly persistent predictors this test will be switching into the size controlled t9X9 test
with very high probability.

For left tailed tests with kK = 0 and ¢ = 0.0 we observe that, with the exception of the
QELS test for larger negative values of ¢, all tests display reasonable size control across all
values of c. While the tests have very low size for values of ¢ closer to zero this is in line
with the asymptotic size of the tests when maximising size at 0.05 across a large range of c.
We see that the size of S™P is identical to that of Q¢S for ¢ close to 0, and to that of t9%5
for more negative values of ¢ (with the exception of ¢ = —250 where S™" is almost always
switching into conventional t) demonstrating that the switching rule in (16) is effective in
finite samples.

We now turn to Table S.2 which reports results for a large positive value of x. First
we observe that the size of the Q%% and t9%° tests are identical to those in Table S.1 for
both right and left tailed tests due to these tests being invariant to the value of k. For
right (left) tail tests we see that both the QELS and tffLS tests can be severely undersized
(oversized), with this undersize (oversize) more pronounced the more negative is the value
of ¢ for a given value of k. For right tailed tests we see that for ¢ close to zero the size
of both UMY and S™P is slightly lower relative to the case where x = 0, and we will see
that this translates into a loss of power for these tests relative to when x = 0, although the
power of these tests for k # 0 will be shown to still be close to that of the most powerful
test in each scenario. For left tailed tests the S™P test has identical size to that seen in
Table S.1 as this test is a function of two tests that are both invariant to .

We now briefly discuss the results for the size of the tests when ¢ = 0.5 so that the
predictor is generated as an AR(2) process. We report results only for
c = 2,0,—2,—5,—-10,—-20,—30,—40, —50 so that the serial correlation induced by the
value of p = 1 + ¢IT'~! remains the dominant driver of the persistence of the predictor.

Table S.3 reports the size of the tests when x = 0 and Table S.4 reports results for when
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k = 0.5+ 0.5I(c > —20). While the size of the tests is not identical to the case when
¢ = 0.0, the difference in size between ¢ = 0.5 and ¢ = 0.0 is minimal in a vast majority
of cases. This is likely due to the fact that we are using the BIC to select the AR order for

the predictor, which selects the true order in a vast majority of instances.
S.3.2 Finite Sample Power

We now examine the finite sample power properties of all tests. We begin by reporting
power for both right and left tailed tests for ¢ = 0, —2, —5, —10, —20, —30, —40, —50, —100, —250
and 6 = —0.95', all across various values of k. We then briefly discuss the relative power
performance of the tests for an explosive predictor with ¢ = 2.

We first examine the finite sample power of right-tailed tests for predictability reported
in Figures 5.6 - S.15. The power of the tests when x = 0 is reported in panel (a) of each
figure, with these results mirroring those found for local asymptotic power in Sections 4.1
and 6 where the best overall power performance for ¢ close to zero is displayed by the QSLS
test. For the more negative values of ¢ <= —30 the best power is displayed by the tSLS test.
For ¢ close to zero we see that, much like when examining local asymptotic power, the finite
sample power of the hybrid U™ and S™P tests is very close to that of the best performing
QELS test. For larger negative values of ¢ the power of the U™ test is less competitive,
and for ¢ = —100 the test is oversized, as noted above. The S™P" test, on the other hand,
is among the better performing tests for all values of ¢, owing to this test basing inference
on the t9%5 test with increasing probability as ¢ becomes more negative. For the largest
value of ¢ considered (¢ = —250), both U™P and S™" have switched into the standard ¢,
test in almost all replications, and consequently display an attractive power profile.

The power of right-tailed tests when x > 0 is reported in panels (b) - (f) of Figures S.6
- S5.15. Again, these results closely mirror those found for the local asymptotic power of the
tests, with the power of the QfLS and tSLS tests falling away as the value of k increases,
and the power of Q¢L and t?X% invariant to the value of x. For ¢ close to zero the power
of the hybrid U™P and S™P tests tracks close to the most powerful QSLS test for small k,

while for larger #, the hybrid tests closely track the power of the better performing Q%*°

! Additional results for § = —0.75 can be found in the on-line supplementary appendix which can be
found at https://rtaylor-essex.droppages.com/esrc2/default.htm.
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test, hence the U™P and S™P tests are among the most powerful tests regardless of the
value of k. For larger negative values of ¢ we see that S™P continues to be among the
most powerful tests given that it is increasingly likely to switch into the 225 test, which
performs well in this region, as the value of ¢ decreases.

Results for left tailed tests are reported in Figures S.16 - S.25. As with the local
asymptotic power results, although the QSLS and tSLS tests perform well when k£ = 0,
these tests suffer from substantial oversize when x # 0. Among the with-trend tests, the
QEL5 test displays the best overall power for ¢ close to zero, and the t9%° test peforms best
for more negative values of c. With the exception of the case ¢ = —250, the U™P test here
reduces to Q9% and therefore does not perform well unless c is close to zero. On the other
hand, the hybrid S™" test is able to capture the superior power of the best performing test
in each scenario, tracking closely the power of Q¢ for ¢ close to zero, and that of t9%°
for other values of c.

Finally, the finite sample power of the tests for an explosive predictor with ¢ = 2 and
0 = —0.95 are reported in Figures S.26 - S.27. Figure S.26 reports power of right-tailed tests.
The main differences that we see compared to the previous values of ¢ considered is that in
the explosive predictor case the best overall power performance is, in fact, delivered by the
tgLS test, with the impact of an omitted trend on the constant-only tests less pronounced
than for ¢ < 0. Figure S.27 reports power of left-tailed tests. Much like with right-tailed
tests with an explosive predictor, the presence of an omitted trend has minimal impact
on the constant-only tests such that QfLS and tSLS are the best performing tests. While
for an explosive predictor the constant-only tests appear to remain the better performing
tests even for relatively large values of k, this does not change our recommendation to use
our proposed hybrid tests in practice given that a predictor that is explosive for the entire
sample period is extremely unlikely to be observed in empirical practice.

Overall, we have demonstrated that the S™P test, in particular, is very well suited to
testing for predictability when uncertainty exists over the presence of a trend. For both
right and left tailed tests S"™P displays excellent size control, and has power that is never
far behind that of the best performing test in each scenario considered across a very wide

range of values of ¢ and k.
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Table S.1: Finite Sample Size, T' = 250, ¢ = 0.0, x = 0.

(a) Right Tailed Tests

(b) Left Tailed Tests

c 5 QELS tkOLLS QgLS tTOLS Uhyb Shyb c F QSLS tgLS Q?LS tQLS Uhyb Shyb
2 -0.95 0.040 0.048 0.047 0.053 0.055 0.055 2 -0.95 0.017 0.005 0.009 0.000 0.009 0.009
-0.75 0.046 0.049 0.055 0.050 0.056 0.056 -0.75 0.013 0.010 0.013 0.000 0.013 0.013
-0.50  0.045 0.050 0.054 0.047 0.052 0.052 -0.50 0.021 0.023 0.018 0.005 0.018 0.018
-0.25  0.047 0.049 0.053 0.050 0.053 0.053 -0.25 0.035 0.030 0.029 0.027 0.029 0.029

TT0 0 -0.95 0.049 0.051 0.047 0.036 0.052 0.052 | 0 ~ -0.95 0.010 0.004 0.023 0.000 0.023 0.023
-0.75  0.052 0.052 0.045 0.038 0.054 0.054 -0.75 0.010 0.010 0.013 0.000 0.013 0.013
-0.50 0.055 0.051 0.046 0.040 0.052 0.052 -0.50 0.018 0.021 0.013 0.007 0.013 0.013
-0.25 0.057 0.052 0.048 0.046 0.049 0.049 -0.25 0.030 0.028 0.025 0.028 0.025 0.026

T2 7 7.0.95° 0.050 0.044 0.039 0.025 0.044 0.044 | -2° 2095 ~0.010 ~0.011 ~ 0.024  0.000 0.024 0.024 ~
-0.75 0.051 0.038 0.033 0.024 0.044 0.044 -0.75 0.009 0.018 0.019 0.002 0.019 0.019
-0.50  0.054 0.041 0.035 0.029 0.041 0.042 -0.50  0.016 0.029 0.019 0.014 0.019 0.019
-0.25 0.055 0.045 0.041 0.039 0.041 0.041 -0.25 0.029 0.034 0.029 0.036 0.029 0.030

T7.5 7 -0.95° 0.049° 0.044 0.036 0.028 0.041 0.042 | -5 ~ -0.95 0.013 ~ 0.034 0.016 0.001 0.016 0.016
-0.75 0.049 0.034 0.031 0.018 0.038 0.038 -0.75 0.010 0.035 0.013 0.007 0.013 0.013
-0.50 0.051 0.034 0.031 0.021 0.036 0.036 -0.50 0.015 0.041 0.017 0.026 0.017 0.017
-0.25 0.052 0.038 0.036 0.031 0.036 0.036 -0.25 0.028 0.041 0.031 0.043 0.031 0.032

2100 -0.95 0.045 0.047 0.039 0.039 0.038 0.038 | -10 -0.95 0.019 0.046 0.017 0.006 0.017 0.017
-0.75 0.044 0.039 0.033 0.020 0.035 0.036 -0.75 0.012 0.045 0.013 0.026 0.013 0.013
-0.50  0.047 0.034 0.031 0.018 0.031 0.032 -0.50  0.017 0.045 0.018 0.042 0.018 0.021
-0.25 0.047 0.034 0.034 0.026 0.032 0.032 -0.25 0.028 0.045 0.029 0.049 0.029 0.035

2200 -0.95° 0.038° 0.049 0.043 0.047 0.034 0.038 | -20  -0.95 0.035 0.046 0.017 0.046 0.017 0.026
-0.75 0.036 0.045 0.036 0.034 0.031 0.034 -0.75  0.020 0.046 0.014 0.050 0.014 0.033
-0.50  0.039 0.042 0.033 0.026 0.028 0.030 -0.50  0.021 0.047 0.017 0.049 0.017 0.040
-0.25  0.045 0.042 0.037 0.028 0.030 0.031 -0.25 0.031 0.046 0.029 0.050 0.029 0.047

T 2300 -0.95 0.034 0.050 0.053 0.049 0.037 0.047 | -30  -0.95 0.067 0.048 = 0.019 0.048 0.019 0.048
-0.75  0.032  0.045 0.041 0.043 0.031 0.040 -0.75  0.035 0.049 0.014 0.049 0.014 0.049
-0.50 0.036 0.046 0.037 0.038 0.028 0.037 -0.50 0.028 0.047 0.017 0.049 0.017 0.049
-0.25 0.043  0.047 0.039 0.038 0.029 0.036 -0.25 0.036 0.048 0.029 0.051 0.029 0.051

T 40 -0.95 0.032° 0.049 0.067 0.060 0.046 0.050 | -40  -0.95 0.107  0.049  0.020 0.047 0.020 0.047
-0.75 0.030 0.047 0.050 0.046 0.036 0.045 -0.75 0.057 0.048 0.014 0.048 0.014 0.048
-0.50  0.034  0.047 0.042 0.044 0.029 0.042 -0.50  0.041 0.049 0.017 0.049 0.017 0.049
-0.25 0.042 0.049 0.041 0.044 0.029 0.042 -0.25  0.041 0.048 0.027 0.051 0.027 0.051

0500 -0.95 0.032° 0.049° 0.085 ~0.061 0.060 0.051 | -50 -0.95 0.150 ~ 0.048 ~ 0.022 = 0.047 0.022  0.047 ~
-0.75 0.030 0.048 0.064 0.047 0.046 0.047 -0.75  0.084 0.048 0.016 0.049 0.016 0.049
-0.50  0.033  0.049 0.051 0.047 0.033 0.046 -0.50 0.054 0.048 0.017 0.049 0.017 0.049
-0.25 0.041 0.051 0.045 0.048 0.030 0.048 -0.25 0.046 0.049 0.028 0.051 0.028 0.051

T 21000 -0.95  0.050 0.047 0.316 0.048 0.259 0.048 | -100 -0.95 0.315 0.050 0.040 0.052 0.037 0.052
-0.75  0.042  0.047 0.248 0.049 0.203 0.049 -0.75 0.232  0.051 0.026 0.052 0.024 0.052
-0.50 0.036  0.049 0.161 0.049 0.118 0.049 -0.50  0.148 0.051 0.018 0.051 0.017 0.051
-0.25 0.037 0.051 0.085 0.051 0.055 0.051 -0.25  0.079 0.051 0.020 0.052 0.020 0.052

T 22500 -0.95° 0.281 0.040 0.857 0.036 0.065 0.065 | -250 -0.95 0.447 ~ 0.065 0.048  0.074 0.039 0.039
-0.75 0.274 0.041 0.837 0.038 0.061 0.061 -0.75  0.407 0.062 0.039 0.067 0.042 0.041
-0.50  0.207 0.045 0.793 0.041 0.057 0.057 -0.50 0.345 0.059 0.030 0.062 0.044 0.043
-0.25  0.099 0.048 0.594 0.047 0.053 0.054 -0.25 0.205 0.053 0.018 0.055 0.046 0.046
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Table S.2: Finite Sample Size, T' = 250, ¢ = 0.0 k = 0.5 4+ 0.5 (¢ > —20).

(a) Right Tailed Tests

(b) Left Tailed Tests

c 5 QELS tkOLLS QgLS tTOLS Uhyb Shyb c F QSLS tgLS Q?LS tQLS Uhyb Shyb
2 -0.95 0.050 0.048 0.047 0.053 0.055 0.055 2 -0.95 0.046 0.006 0.009 0.000 0.009 0.009
-0.75  0.047 0.047 0.055 0.050 0.057 0.057 -0.75 0.030 0.011 0.013 0.000 0.013 0.013
-0.50  0.045 0.047 0.054 0.047 0.053 0.053 -0.50 0.030 0.026 0.018 0.005 0.018 0.018
-0.25  0.045 0.047 0.053 0.050 0.051 0.051 -0.25 0.040 0.033 0.029 0.027 0.029 0.029

T70 T -0.95° 0.030° 0.044 0.047 0.036 0.044 0.044 | 0 ~ -0.95 0.042 ~ 0.011 ~ 0.023 ~ 0.000 0.023  0.023 ~
-0.75 0.034 0.045 0.045 0.038 0.043 0.043 -0.75  0.027 0.017 0.013 0.000 0.013 0.013
-0.50  0.039 0.044 0.046 0.040 0.043 0.043 -0.50 0.030 0.029 0.013 0.007 0.013 0.013
-0.25 0.046  0.047 0.048 0.046 0.046 0.046 -0.25 0.038 0.033 0.025 0.028 0.025 0.026

.27 .0.95 0.0100 0.029 0.039 0.025 0.027 0.027 | -2°  -0.95 0.060 0.032 0.024 0.000 0.024 0.024
-0.75 0.014 0.028 0.033  0.024 0.027 0.027 -0.75 0.038 0.036 0.019 0.002 0.019 0.019
-0.50  0.023 0.032 0.035 0.029 0.030 0.030 -0.50 0.039 0.043 0.019 0.014 0.019 0.019
-0.25 0.038 0.041 0.041 0.039 0.039 0.039 -0.25 0.043 0.039 0.029 0.036 0.029 0.030

"5 7 -0.95° 0.001° T0.0200 0.036 0.028 0.023 0.023 | -5  -0.95 0.161 ~ 0.064 0.016 0.001 0.016 0.016
-0.75  0.004 0.020 0.031 0.018 0.021 0.021 -0.75  0.077 0.061 0.013 0.007 0.013 0.013
-0.50 0.013  0.025 0.031 0.021 0.024 0.024 -0.50 0.058 0.060 0.017 0.026 0.017 0.017
-0.25 0.031 0.035 0.036 0.031 0.033 0.033 -0.25 0.055 0.045 0.031 0.043 0.031 0.032

2100 -0.95 0.0000 0.011 0.039 0.039 0.024 0.025 | -10 -0.95 0.302 0.101  0.017 0.006 0.017 0.017
-0.75  0.002 0.012 0.033 0.020 0.022 0.023 -0.75 0.138 0.085 0.013 0.026 0.013 0.013
-0.50 0.010 0.019 0.031 0.018 0.023 0.024 -0.50  0.086 0.074 0.018 0.042 0.018 0.021
-0.25 0.027 0.030 0.034 0.026 0.032 0.032 -0.25 0.066 0.052 0.029 0.049 0.029 0.035

2200 -0.95° 0.001° 0.029 0.043 ~0.047 0.027 0.037 | -20  -0.95 0.341 ~ 0.079 ~ 0.017  0.046 0.017 0.026
-0.75 0.003 0.027 0.036 0.034 0.023 0.029 -0.75  0.162  0.069 0.014 0.050 0.014 0.033
-0.50  0.009 0.027 0.033 0.026 0.022 0.027 -0.50  0.095 0.061 0.017 0.049 0.017 0.040
-0.25 0.025 0.034 0.037 0.028 0.031 0.032 -0.25 0.068 0.052 0.029 0.050 0.029 0.047

T 2300 -0.95 0.001 0.028 0.053 0.049 0.035 0.047 | -30  -0.95 0.460 0.080 0.019 0.048 0.019 0.048
-0.75  0.002 0.026 0.041  0.043 0.028 0.040 -0.75  0.229 0.071 0.014 0.049 0.014 0.049
-0.50  0.007 0.027 0.037 0.038 0.025 0.036 -0.50 0.125 0.063 0.017 0.049 0.017 0.049
-0.25 0.022 0.032 0.039 0.038 0.030 0.037 -0.25 0.079 0.055 0.029 0.051 0.029 0.051

T 40 -0.95 0.001 0.026 0.067 0.060 0.045 0.050 | -40 -0.95 0.535 0.081 0.020 0.047 0.020 0.047
-0.75 0.002 0.026 0.050 0.046 0.035 0.045 -0.75 0.282 0.072 0.014 0.048 0.014 0.048
-0.50  0.006 0.027 0.042 0.044 0.028 0.043 -0.50  0.149 0.064 0.017 0.049 0.017 0.049
-0.25 0.020 0.033 0.041 0.044 0.032 0.042 -0.25 0.088 0.057 0.027 0.051 0.027 0.051

70500 -0.95 0.000  0.024  0.085 ~0.061 0.060 0.051 | -50 -0.95 0.577 0.082 ~ 0.022 ~ 0.047 0.022 0.047
-0.75  0.001  0.024 0.064 0.047 0.046 0.047 -0.75  0.321  0.072 0.016 0.049 0.016 0.049
-0.50  0.005 0.027 0.051  0.047 0.033 0.046 -0.50 0.167 0.064 0.017 0.049 0.017 0.049
-0.25 0.019 0.033 0.045 0.048 0.034 0.048 -0.25 0.092 0.056 0.028 0.051 0.028 0.051

T 21000 -0.95  0.001° 0.007 0.316 0.048 0.259 0.048 | -100  -0.95 0.609 ~ 0.098 = 0.040 0.052 0.037 0.052
-0.75  0.002 0.011 0.248 0.049 0.203 0.049 -0.75 0.377 0.086 0.026 0.052 0.024 0.052
-0.50  0.006 0.018 0.161 0.049 0.120 0.049 -0.50  0.200 0.074 0.018 0.051 0.017 0.051
-0.25 0.018 0.029 0.085 0.051 0.062 0.051 -0.25  0.105 0.057 0.020 0.052 0.020 0.052

T 22500 -0.95° 0.000 0.003 0.857 0.036 0.065 0.065 | -250 -0.95 0.830 0.158 ~ 0.048  0.074 0.039 0.039
-0.75 0.000 0.006 0.837 0.038 0.061 0.061 -0.75  0.594 0.125 0.039 0.067 0.042 0.041
-0.50  0.002 0.012 0.793 0.041 0.057 0.057 -0.50 0.314 0.101 0.030 0.062 0.044 0.043
-0.25 0.012 0.024 0594 0.047 0.053 0.054 -0.25 0.143 0.062 0.018 0.055 0.046 0.046
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Table S.3: Finite Sample Size, T' = 250, ¢ = 0.5, k = 0.

(a) Right Tailed Tests (b) Left Tailed Tests
p 5 QFLS  {OL5 QULS (OLF yhb  ghyb = 5 QGLS (OU5 QULS OIS yhyb  ghyb
2 -0.95 0.050 0.050 0.048 0.055 0.054 0.054 2 -0.95 0.000 0.006 0.010 0.000 0.010 0.010
-0.75  0.045 0.051  0.063 0.053 0.056 0.056 -0.75  0.005 0.010 0.013 0.000 0.013 0.013
-0.50 0.045 0.049 0.052 0.048 0.052 0.052 -0.50 0.015 0.023 0.018 0.005 0.018 0.018
-0.25 0.048 0.049 0.051 0.049 0.053 0.053 -0.25 0.033 0.031  0.029 0.027 0.029 0.029
70 <095 0.048 0.051 0.046 0.038 0.051 0.052 | 0 ~ -0.95 ~0.010 0.004 ~ 0.021 ~ 0.000 0.021 0.021 -
-0.75 0.0561  0.051 0.044 0.040 0.054 0.054 -0.75  0.010 0.010 0.011  0.001 0.011 0.011
-0.50 0.055 0.052 0.044 0.042 0.051 0.051 -0.50 0.018 0.021 0.013 0.007 0.013 0.013
-0.25 0.055 0.052  0.048 0.047 0.048 0.048 -0.25 0.031 0.028 0.026  0.027 0.026 0.026
"2 095 0.048  0.043  0.037  0.026 0.042 0.043 | -2~ -0.95 = 0.010 ~ 0.011 = 0.023  0.000 0.023  0.023
-0.75 0.050 0.040 0.033 0.025 0.043 0.043 -0.75 0.009 0.018 0.018 0.002 0.018 0.018
-0.50 0.053 0.042 0.034 0.031 0.043 0.043 -0.50 0.016 0.029 0.019 0.014 0.019 0.019
-0.25 0.055  0.045 0.041 0.040 0.042 0.042 -0.25 0.029 0.035 0.029 0.034 0.029 0.030
T .5 72095 0.046  0.045 ~ 0.033  0.028 0.037  0.037 | -5 ~-0.95 ~ 0.013 ~ 0.033 ~ 0.015 ~ 0.001 0.015 0.015
-0.75 0.046 0.036 0.029 0.018 0.036 0.036 -0.75 0.010 0.034 0.013 0.006 0.013 0.013
-0.50 0.049 0.034 0.031 0.022 0.035 0.036 -0.50 0.015 0.040 0.018 0.025 0.018 0.018
-0.25 0.052  0.040 0.037 0.032 0.036 0.036 -0.25 0.029 0.041 0.030 0.043 0.030 0.032
T-10 0 -0.95  0.040  0.048  0.033  0.035 0.031 0.033 | -10 ~ -0.95 ~ 0.017 = 0.046 ~ 0.017 = 0.005 0.017  0.017
-0.75 0.040 0.039 0.029 0.019 0.030 0.031 -0.75 0.012 0.043 0.013 0.023 0.013 0.014
-0.50 0.043 0.033 0.030 0.019 0.029 0.030 -0.50  0.017  0.044 0.019 0.040 0.019 0.022
-0.25  0.047 0.036 0.034 0.027 0.031 0.031 -0.25 0.029 0.045 0.031 0.049 0.031 0.036
T 20 T -0.95 ~ 0.028 ~ 0.049 ~ 0.032 ~ 0.046 0.027  0.037 | 20 ~ -0.95 ~ 0.033 ~ 0.046 ~ 0.020 0.036 0.020 0.026
-0.75 0.029 0.045 0.028 0.029 0.026 0.030 -0.75 0.020 0.047 0.015 0.047 0.015 0.030
-0.50 0.035 0.041 0.030 0.023 0.025 0.028 -0.50 0.022 0.047 0.020 0.048 0.020 0.038
-0.25 0.043 0.039 0.036 0.027 0.028 0.030 -0.25 0.033  0.047 0.031 0.049 0.031 0.045
T30 0 -0.95  0.021 ~ 0.048  0.034  0.047  0.024 ~ 0.045 | -30 ~ -0.95 ~ 0.063 ~ 0.047 =~ 0.021 = 0.049 0.021  0.049
-0.75  0.023 0.047 0.028 0.037 0.022 0.036 -0.75 0.034 0.047 0.016 0.049 0.016 0.047
-0.50 0.029 0.045 0.030 0.032 0.023 0.034 -0.50 0.030 0.047 0.019 0.049 0.019 0.048
-0.25 0.039 0.044 0.036 0.032 0.027 0.033 -0.25 0.038 0.049 0.030 0.050 0.030 0.049
T40 © -0.95  0.016  0.049  0.035 0.049 0.024 0.048 | -40 ~ -0.95 = 0.104  0.048 = 0.023 ~ 0.049 0.023  0.049
-0.75 0.019 0.047 0.029 0.042 0.022 0.042 -0.75 0.055 0.048 0.016 0.047 0.016 0.047
-0.50 0.025 0.046 0.029 0.037 0.022 0.037 -0.50 0.041 0.047 0.019 0.050 0.019 0.050
-0.25 0.037 0.047 0.036 0.038 0.025 0.038 -0.25 0.043 0.048 0.030 0.050 0.030 0.050
"50 © 2095  0.013 ~ 0.050 ~ 0.037 ~ 0.049 0.024  0.049 | -50 ~ -0.95 ~ 0.150 = 0.040 = 0.024 = 0.049 0.024 ~ 0.049
-0.75 0.015 0.047 0.030 0.045 0.021 0.045 -0.75 0.081 0.048 0.017 0.048 0.017 0.048
-0.50 0.022 0.046 0.030 0.041 0.020 0.041 -0.50 0.055 0.048 0.020 0.049 0.020 0.049
-0.25 0.035 0.049 0.036 0.043 0.025 0.043 -0.25 0.048 0.047 0.030 0.050 0.030 0.050
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Table S.4: Finite Sample Size, T' = 250, ¢ = 0.5 K = 0.5 4+ 0.51(c > —20).

(a) Right Tailed Tests (b) Left Tailed Tests
p 5 QFLS  {OL5 QULS (OLF yhb  ghyb = 5 QGLS (OU5 QULS OIS yhyb  ghyb
2 -0.95 0.049 0.048 0.048 0.055 0.056 0.056 2 -0.95 0.007 0.006 0.010 0.000 0.010 0.010
-0.75  0.046  0.047 0.0563 0.053 0.057 0.057 -0.75  0.012 0.012 0.013 0.000 0.013 0.013
-0.50 0.045 0.047 0.052 0.048 0.052 0.052 -0.50 0.022 0.026 0.018 0.005 0.018 0.018
-0.25  0.045 0.048 0.051 0.049 0.051 0.051 -0.25 0.036  0.033 0.029 0.027 0.029 0.029
70 <095 ~0.030  0.044  0.046 0.038 0.044  0.044 | 0 ~ -0.95 ~0.039 ~ 0.011 = 0.021 = 0.000 0.021 0.021 -
-0.75 0.033 0.043 0.044 0.040 0.044 0.044 -0.75 0.026 0.016 0.011 0.001 0.011 0.011
-0.50 0.038 0.045 0.044 0.042 0.044 0.044 -0.50 0.031 0.030 0.013 0.007 0.013 0.013
-0.25  0.047 0.048 0.048 0.047 0.045 0.045 -0.25 0.040 0.033 0.026 0.027 0.026 0.026
" 22 095 0.009  0.030 0.037 0.026 0.026 0.026 | -2~ -0.95 0.067 0.033  0.023  0.000 0.023 0.023
-0.75 0.012 0.028 0.033 0.025 0.026  0.027 -0.75 0.039 0.036 0.018 0.002 0.018 0.018
-0.50 0.023 0.030 0.034 0.031 0.030 0.030 -0.50 0.039 0.043 0.019 0.014 0.019 0.019
-0.25  0.038  0.039  0.041 0.040 0.039 0.039 -0.25 0.044 0.039 0.029 0.034 0.029 0.030
" .5 72095 0.001  0.020  0.033  0.028 0.020 0.021 | -5 ~-0.95 ~0.155 ~0.064 ~ 0.015 ~ 0.001 0.015 0.015
-0.75  0.004 0.019 0.029 0.018 0.020 0.021 -0.75  0.077  0.059 0.013 0.006 0.013 0.013
-0.50 0.014 0.024 0.031 0.022 0.024 0.024 -0.50 0.058 0.060 0.018 0.025 0.018 0.018
-0.25 0.031 0.034 0.037 0.032 0.035 0.035 -0.25 0.0564 0.044 0.030 0.043 0.030 0.032
T-10 <095 © 0.001 ~ 0.011  0.033  0.035 0.020 0.022 | -10 ~ -0.95 ~ 0.286  0.098 = 0.017 ~ 0.005 0.017  0.017
-0.75 0.003 0.012 0.029 0.019 0.019 0.021 -0.75 0.134 0.084 0.013 0.023 0.013 0.014
-0.50 0.011  0.018 0.030 0.019 0.021 0.023 -0.50 0.086 0.0v3 0.019 0.040 0.019 0.022
-0.25 0.027 0.030 0.034 0.027 0.033 0.033 -0.25 0.065 0.051 0.031 0.049 0.031 0.036
" 20 T -0.95 ~0.000  0.025 ~ 0.032 ~ 0.046 0.021 ~ 0.035 | 20 ~ -0.95 ~ 0.339 ~ 0.084 ~ 0.020  0.036 0.020 0.026
-0.75 0.002  0.022 0.028 0.029 0.019 0.026 -0.75 0.161  0.073  0.015 0.047 0.015 0.030
-0.50 0.008 0.025 0.030 0.023 0.019 0.025 -0.50 0.096 0.063 0.020 0.048 0.020 0.038
-0.25  0.025 0.032 0.036 0.027 0.029 0.031 -0.25 0.070  0.052  0.031 0.049 0.031 0.045
T30 0 -0.95 0.000  0.020 0.034  0.047  0.021  0.045 | -30 ~ -0.95 ~ 0.452  0.090 = 0.021 = 0.049 0.021  0.049
-0.75 0.002 0.018 0.028 0.037 0.019 0.035 -0.75 0.222 0.078 0.016 0.049 0.016 0.047
-0.50 0.007 0.020 0.030 0.032 0.020 0.033 -0.50 0.122 0.067 0.019 0.049 0.019 0.048
-0.25 0.023 0.030 0.036 0.032 0.030 0.035 -0.25 0.079 0.055 0.030 0.050 0.030 0.049
T 40 <095  0.000 ~ 0.015  0.035 0.049 0.023 0.048 | -40 ~ -0.95 ~ 0.514  0.095 = 0.023 = 0.049 0.023  0.049
-0.75 0.002 0.014 0.029 0.042 0.020 0.042 -0.75 0.262 0.082 0.016 0.047 0.016 0.047
-0.50  0.007 0.017 0.029 0.037 0.021 0.037 -0.50 0.141  0.071  0.019 0.050 0.019 0.050
-0.25 0.021  0.029 0.036 0.038 0.030 0.039 -0.25 0.086 0.057 0.030 0.050 0.030 0.050
"50 © 2095  0.001 ~ 0.011 ~ 0.037 ~ 0.049 0.024  0.049 | -50 ~ -0.95 ~ 0.542 ~ 0.099 ~ 0.024 = 0.049 0.024 ~ 0.049
-0.75 0.002 0.012 0.030 0.045 0.020 0.045 -0.75 0.286  0.084 0.017 0.048 0.017 0.048
-0.50 0.007 0.016 0.030 0.041 0.021 0.041 -0.50 0.152 0.072 0.020 0.049 0.020 0.049
-0.25 0.021  0.027 0.036  0.043 0.031 0.044 -0.25 0.088  0.0569 0.030 0.050 0.030 0.050
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Figure S.6: Finite Sample Power of Right Tailed Tests - 6 = —0.95, ¢ =0
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Figure S.7: Finite Sample Power of Right Tailed Tests - 6 = —0.95, ¢ = —2
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Figure S.8: Finite Sample Power of Right Tailed Tests - 6 = —0.95, ¢ = —5
(a) K =0.0 (b) k=0.2

1.0

0.6 0.7 08

0.3 0.4 05

0.2

0.0 0.1

0.000 0.012 0.024 0.036 0.048 0.060 0.000 0.012 0.024 0.036 0.048 0.060

1.0

0.7 0.8 09

0.2 0.3 04 05 0.

0.0 0.1

0.000 0.012 0.024 0.036 0.048 0.060 0.000 0.012 0.024 0.036 0.048 0.060

1.0

0.6 0.7 08 09

0.3 04 05

0.2

0.000 0.012 0.024 0.036 0.048 0.060 = 0.000

M T T, M ’—77' - T T T .



0.9

0.2 0.3 04 05 0.6 0.7 0.8

0.1

0.0

0.8 0.9

0.7

0.6

0.2 0.3 0.4 05

0.1

0.0

0.9

0.8

0.7

0.6

0.5

0.4

0.2 0.3

0.1

0.0

Figure S.9: Finite Sample Power of Right Tailed Tests - 6 = —0.95, ¢ = —10
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Figure

S.10: Finite Sample Power of Right Tailed Tests - § = —0.95, ¢ = —20
(a) K =0.0 (b) k=0.1
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Figure S.11: Finite Sample Power of Right Tailed Tests - § = —0.95, ¢ = —30
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Figure S.12: Finite Sample Power of Right Tailed Tests - § = —0.95, ¢ = —40
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Figure S.13: Finite Sample Power of Right Tailed Tests - § = —0.95, ¢ = —50
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Figure S.14: Finite Sample Power of Right Tailed Tests - § = —0.95, ¢ = —100
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Figure S.15: Finite Sample Power of Right Tailed Tests - § = —0.95, ¢ = —250
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Figure S.16: Finite Sample Power of Left Tailed Tests - 6 = —0.95, ¢ =0
(a) K =0.0 (b) k=0.2
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Figure S.17: Finite Sample

Power of Left Tailed Tests - 6 = —0.95, ¢ = —2
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Figure S.18: Finite Sample
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Figure S.19: Finite Sample Power of Left Tailed Tests - 6 = —0.95, ¢ = —10
(a) K =0.0 (b) k=0.2
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Figure S.20

: Finite Sample Power of Left Tailed Tests - 6 = —0.95, ¢ = —20
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Figure S.21: Finite Sample Power of Left Tailed Tests - 6 = —0.95, ¢ = —30
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Figure S.22: Finite Sample Power of Left Tailed Tests - 6 = —0.95, ¢ = —40
(b) k=0.1

1.0

0.6 0.7 08

0.3 0.4 05

0.2

0.0 0.1

1
0.000 0.032 0.064 0.096 0.128 0.160

1.0

0.7 0.8 09

0.2 0.3 04 05 0.8

0.0 0.1

I I
0.000 0.032 0.064 0.096 0.128 0.160 0.000 0.032 0.064 0.096 0.128 0.160

0.6 0.7 08 09 1.0

0.3 04 05

0.2

0.1

0.0

L L
0.000 0.032 0.064 0.096 0.128 0.160 0.000 0.032 0.064 0.096 0.128 0.160



0.9

0.1 0.2 D3 04 05 D6 0.7 0.8

0.0

0.8 0.9

0.7

0.6

0.2 0.3 0.4 05

0.1

0.0

0.9

0.8

0.7

0.6

0.5

0.4

0.2 0.3

0.1

0.0

Figure S.23: Finite Sample Power of Left Tailed Tests - 6 = —0.95, ¢ = —50
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Figure S.24: Finite Sample Power of Left Tailed Tests - 6 = —0.95, ¢ = —100
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Finite Sample Power of Left Tailed Tests - § = —0.95, ¢ = —250

Figure S.25
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Figure S.26: Finite Sample Power of Right Tailed Tests - § = —0.95, ¢ = 2
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Figure S.27: Finite Sample Power of Left Tailed Tests - 6 = —0.95, ¢ = 2
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