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Abstract 

Current price jump tests assume a constant intra-day volatility pattern (IVP) over 

sample period. We test this assumption by allowing IVP to depend on the sign of returns 

from day 𝑡-1 or overnight period. Estimation results from 5-minute GARCH for four 

equity indices show that squared-return-based IVP weights increase in early morning 

hours when previous returns are negative, suggesting an asymmetric IVP. For a jump-

robust IVP estimator, strong response is found for days with Realized Variance 

increasing from the previous day. Our results are consistent with and complement recent 

studies on time-varying IVP. Jumps test results using the state-dependent IVP are more 

prudent, show lower degree of clustering and are less concentrated over trading hours.  
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GARCH, High-frequency Data 

Acknowledgements: We thank Peter Rousseeuw for insightful suggestions on the construction of jump-

robust IVP estimator, Mark Shackleton for comments on a previous version of the paper and the 

conference participants in the 2022 Annual Meeting of Taiwan Econometric Society (TES) in National 

Taiwan University. 

mailto:vincenttsai@mail.nsysu.edu.tw
mailto:shunter@pusan.ac.kr


2 
 

1. Introduction 

The U-shape intraday volatility pattern (IVP) is a well-established stylized fact for high-

frequency data (Andersen and Bollerslev 1997; Taylor and Xu 1997). Thus, many jump 

tests propose to remove the deterministic IVP before identifying intraday jumps 

(Andersen et al. 2007; Lee and Mykland 2008; Boudt et al. 2011; Caporin 2022). Boudt 

et al. (2011) further show that it is important to use a jump-robust IVP estimator, as 

opposed to the squared-return-based estimator by Taylor and Xu (1997), hereafter TX, 

in implementing intraday jump tests. The Weighted Standard Deviation (WSD) 

estimator of Boudt et al. (2011) has since become a standard approach for finding 

intraday jumps1. 

Both the TX and WSD estimators of IVP give a static U-shape pattern over time. 

More recently, however, there have been studies that find evidence on time-varying IVP 

(Christensen et al. 2018; Andersen et al. 2019)2. Specifically, in Christensen et al. (2018) 

they show that a deterministic IVP does not fully capture the intraday variation of 

volatility. Andersen et al. (2019) also provide evidence that IVP weights are not constant 

– their Figure 3 show two shapes of IVP for days with and without FOMC 

announcements. The IVP weights become lower in the morning but increase sharply in 

 
1 See, for example, Gilder et al. (2014), Jondeau et al. (2015), Piccotti (2018), Sun and Gao (2020), 

Caporin and Poli (2022) and Marcaccioli et al. (2022). 
2 Müller et al. (2011) and Gabrys et al. (2013) consider functional data analysis for IVP, which explicitly 

specify that IVP is time-varying. 
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the afternoon hours for those days with FOMC. Andersen et al. (2019) further show that 

IVP weights present different patterns depending on the level of volatility as measured 

by the VIX index.  

In this paper, we follow the developments in Andersen et al. (2019) and allow IVP 

weights to depend on some state variables or events. Specifically, the state variables are 

chosen to reflect the so-called leverage effect or asymmetric volatility, a phenomenon 

in which volatility tends to increase after negative returns than positive ones; see the 

extensive results in Yu (2005) and Catania (2022). Therefore, we classify days in our 

sample into those that see previous negative returns versus positive ones, and 

investigate whether IVP weights should be adjusted in response to these different states. 

Intuitively, a previous negative return will not have uniform or homogenous impact on 

all IVP weights, but the effect will decrease toward the end of a trading day. Therefore, 

we use an exponential decay function to describe the relative increase in IVP. This state-

dependent structure of IVP and the associated parameters are then estimated using an 

intraday GARCH (1, 1) model, and a formal test on the significance of the state events 

can be done by a likelihood ratio test.  

Our empirical results are obtained from four equity indices sampled at 5-minute 

frequency during Jan 2019 to March 2021. First, we find that the TX IVP weights on 

average increase in the early morning hours when previous daily returns or overnight 
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returns are negative. This finding confirms leverage effect in the TX IVP estimator. On 

the other hand, the jump-robust WSD estimator of Boudt et al. (2011) is more resilient 

to negative previous returns; however, when the states are chosen such that Realised 

Variance (RV) is relatively large, or it increases from the previous day, i.e., 𝑅𝑉𝑡 >

𝑅𝑉𝑡−1, we find strong evidence in rejecting constant WSD weights.  

Our findings of asymmetric or state-dependent IVP weights have important 

implications on intraday jump detection. To illustrate the consequence of using fixed 

IVP weights versus state-dependent ones, we implement the jump test by Andersen et 

al. (2007). The jumps detected using our approach are less concentrated during the 

trading hours, and also display a smaller degree of over-dispersion across the whole 

sample period, when compared with the standard WSD approach. These properties are 

relevant in determining whether and to what extent the arrivals of price jumps cluster 

in time. As a result, we show that ignoring the state-dependent IVP weights in intraday 

jump tests could lead to spurious estimation of jump intensity.  

The paper is organized as follows. Section 2 describe our intraday equity indices 

data and Section 3 develops our methodology and models. Section 4 reports the 

empirical results with a discussion, and Section 5 concludes.  
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2. Intraday Equity Indices Data  

Our data includes the index values of KOSPI200, NI225, FTSE100 and ESTX50 from 

firstratedata.com, with sample period 2019/01/03 - 2021/03/31. We use data sampled at 

5-minute frequency to mitigate the effect of micro-structure noise. After removing 

incomplete trading days3, we obtain and summarize the four indices in Table 1. First, 

note that we have made some adjustments on the data. Specifically, we delete the last 

10-minutes in KOSPI200 index, as trading is halted and saved for auction before market 

close at 15:00 in Korean Stock Exchange. For NI225, there is a lunch break during 

11:30-12:30 in Tokyo Stock Exchange, and therefore we remove the 10-minute period 

12:30-12:40 to avoid the abrupt increase of trading activities after lunch break. For both 

FTSE100 and ESTX50, we observe very erratic price movements in the first 10-minute 

interval of a trading day, and following Gilder et al. (2014) and Ferriani and Zoi (2020) 

we delete this interval from our sample. As a result, the number of 5-minute intervals 

per day 𝑀 are 70, 58, 100 and 100 for the four indices respectively.  

In the bottom of Table 1, we report summary statistics of 5-minute returns for the 

four indices. It can be seen that that 5-min returns do not have a normal distribution but 

display very large values of kurtosis, which is a typical result from high-frequency data.  

 
3 See an online Appendix which is available from the authors upon request.  
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3. Methodology 

First, an intraday return 𝑟𝑡,𝑗 on the 𝑗-th 5-minute interval of day 𝑡 is defined as: 

𝑟𝑡,𝑗 = ln(𝑃𝑡,𝑗) − ln(𝑃𝑡,𝑗−1),                                     (1) 

where 𝑃𝑡,𝑗 is the index value. We consider two non-parametric IVP estimators. The 

first is the 𝑟𝑡,𝑗
2 -based estimator 𝜆𝑗

𝑇𝑋 by Taylor and Xu (1997): 

𝜆𝑗
𝑇𝑋 =

∑ 𝑟𝑡,𝑗
2𝑇

𝑡=1

∑ ∑ 𝑟𝑡,𝑗
2𝑀

𝑗=1
𝑇
𝑡=1

,                                                     (2) 

for 𝑗 = 1, … , 𝑀 and ∑ 𝜆𝑗
𝑇𝑋𝑀

𝑗=1 = 1. The second is the jump-robust Weighted Standard 

Deviation (WSD) estimator by Boudt et al. (2011): 

𝜆𝑗
𝑊𝑆𝐷 =

𝑊𝑆𝐷𝑗
2

∑ 𝑊𝑆𝐷𝑗
2𝑀

𝑗=1

,                                                    (3) 

where 

𝑊𝑆𝐷𝑗
2 = 1.081

∑ 𝑤𝑡,𝑗𝑟𝑡,𝑗
2𝑇

𝑡=1

∑ 𝑤𝑡,𝑗
𝑇
𝑡=1

,                                             (4) 

with 𝑤𝑡,𝑗 = 𝟏
{𝑍𝑡,𝑗

2 ≤6.635}
 is an indicator function for 𝑍𝑡,𝑗 = 𝑟𝑡,𝑗(𝐵𝑃𝑉𝑡𝜆𝑗

𝑆𝐻)
−1/2

, 𝑟𝑡,𝑗 is 

standardized by the Bipower Variation (BPV) of Barndorff-Nielsen and Shephard (2004, 

2006): 

𝑟𝑡,𝑗 =
𝑟𝑡,𝑗

√𝐵𝑃𝑉𝑡(1/𝑀)
,                                                    (5) 

𝐵𝑃𝑉𝑡 = (
𝜋

2
) (

𝑀

𝑀 − 1
) ∑ |𝑟𝑡,𝑗−1||𝑟𝑡,𝑗|

𝑀

𝑗=2
,                                  (6) 

and in 𝑍𝑡,𝑗 the shortest half scale estimator 𝜆𝑗
𝑆𝐻 is given by Rousseeuw and Leroy 

(1988)4: 

 
4 An alternative way can be given by the 𝑄𝑛 estimator of Rousseeuw and Croux (1993); we thank Peter 

Rousseeuw for pointing out this alternative.  
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𝜆𝑗
𝑆𝐻 =

𝑆ℎ𝑜𝑟𝑡𝐻𝑗
2

∑ 𝑆ℎ𝑜𝑟𝑡𝐻𝑗
2𝑀

𝑗=1

,                                                   (7) 

where 𝑆ℎ𝑜𝑟𝑡𝐻𝑗 = 0.741 min{𝑟(ℎ),𝑗 − 𝑟(1),𝑗, … , 𝑟(𝑇),𝑗 − 𝑟(𝑇−ℎ+1),𝑗} , ℎ = ⌊𝑇/2⌋ + 1 , 

⌊𝑥⌋  takes the integer part of 𝑥  and the order statistics are defined as 𝑟(1),𝑗 <

𝑟(2),𝑗 … < 𝑟(𝑇),𝑗. The WSD estimator is robust to price jumps because firstly the shortest 

half scale estimator 𝜆𝑗
𝑆𝐻  avoids tail values in 𝑟𝑡,𝑗  across days in the sample, and 

secondly the indicator function 𝑤𝑡,𝑗 truncates extremely large 𝑍𝑡,𝑗.  

The two IVP estimators will be used in estimating an intraday GARCH model for 

5-minute returns: 

𝑟𝑡,𝑗 = 𝜇 + √ℎ𝑡,𝑗𝑧𝑡,𝑗, 𝑧𝑡,𝑗  ~ 𝑖. 𝑖. 𝑑. 𝑁(0, 1),                                   (8) 

ℎ𝑡,𝑗

𝜆𝑗𝑀
= 𝜔 +

𝛼𝑒𝑡,𝑗−1
2

𝜆𝑗−1𝑀
+

𝛽ℎ𝑡,𝑗−1

𝜆𝑗−1𝑀
,                                           (9) 

for 𝑡 = 1, … , 𝑇 , 𝑗 = 1, … , 𝑀  and by definition, 𝜆0 ≡ 𝜆𝑀 . The IVP weights 𝜆𝑗  in 

(9) can be either the conventional 𝜆𝑗
𝑇𝑋 or the jump-robust 𝜆𝑗

𝑊𝑆𝐷. Estimation results 

based on (8) and (9) are our baseline model, i.e., the IVP weights 𝜆𝑗
𝑇𝑋 or 𝜆𝑗

𝑊𝑆𝐷 are 

constant over time.  

To develop the relevance of state-dependent IVP, we first allow 𝜆𝑗 to depend on 

the following two events: 

𝐴 = {𝑟𝑡−1
𝑜𝑝𝑜𝑝 < 0} and 𝐵 = {𝑟𝑡−1

𝑜𝑣𝑛 < 0}, 

where 𝑟𝑡−1
𝑜𝑝𝑜𝑝

  is the open-to-open return and 𝑟𝑡−1
𝑜𝑣𝑛  is the overnight return from day 

𝑡 − 1. Specifically, when the state 𝐴 or 𝐵 is present, we conjecture the IVP weights 
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will see higher values than otherwise, which is consistent with the leverage effect or 

asymmetric volatility. However, a previous negative return 𝑟𝑡−1
𝑜𝑝𝑜𝑝 < 0 or 𝑟𝑡−1

𝑜𝑣𝑛 < 0 is 

unlikely to impose the same impact on all the IVP weights throughout a trading day, 

and we use an exponential function to describe this potentially decaying pattern. The 

structure of state-dependent IVP weights when, for example, event 𝐴 is true, is thus 

given as: 

𝜆𝑗
𝐴 =

𝜆𝑗 + 𝑐1𝟏𝐴 exp (−(1 + 𝑐2)
𝑗 − 1

𝑀 )

∑ (𝜆𝑗 + 𝑐1𝟏𝐴 exp (−(1 + 𝑐2)
𝑗 − 1

𝑀 ))𝑀
𝑗=1

,                          (10) 

where 𝑐1 > 0 and 𝑐2 ≥ 0 are two constant parameters, 𝟏𝐴 is the indicator function 

for event 𝐴 and importantly by construction, ∑ 𝜆𝑗
𝐴𝑀

𝑗=1 = 1. Therefore, the first IVP 

weight 𝜆1
𝐴 will increase – by an amount proportional to 𝑐1 – and this increase will 

decay at a rate controlled by (1 + 𝑐2)  as 𝑗  counts from 1, 2, … to 𝑀 . Thus, a 

rejection of 𝑐1 = 0  and 1 + 𝑐2 = 0  will suggest that IVP weights are not constant 

over time, but show asymmetric responses to the states considered. The specification 

of 𝜆𝑗 in (9) now becomes 𝜆𝑗(1 − 𝟏𝐴) + 𝜆𝑗
𝐴𝟏𝐴.  

The dependence of IVP weights on previous returns in (10) reflects the leverage 

effect or asymmetric volatility, and to our knowledge is the first mechanism in the 

literature which links IVP with leverage effect. The two states 𝐴  and 𝐵  represent 

conditional information, as they look at the direction of returns from day 𝑡 − 1. In the 

intraday GARCH model (8) and (9), however, the use of 𝜆𝑗 implies the information 
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set is not necessarily limited to day 𝑡 − 1, because the TX and WSD IVP weights in (2) 

and (3) are calculated from the whole sample. Therefore, we further consider two states: 

𝐶 = {𝑅𝑉𝑡 > 𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝑉𝑡=1…𝑇)} and 𝐷 = {𝑅𝑉𝑡 > 𝑅𝑉𝑡−1}, 

where 𝑅𝑉𝑡 is the Realized Variance on day 𝑡. These two states represent a relatively 

higher RV, or when RV increases from the previous day, in an ad hoc sense. We 

emphasize the same ad hoc classification is used in Andersen et al. (2019), who find 

that time-varying IVP weights depend on the level of VIX index. Thus, our states 𝐶 

and 𝐷 will serve to confirm the findings in Andersen et al. (2019). 

4. Results 

4.1 Test for State-dependent IVP 

In Table 2 the estimation results of GARCH (1, 1) for 5-minute returns of four equity 

indices show typical 𝛼  and 𝛽  estimated values, with the stationary condition 𝛼 +

𝛽 < 1  satisfied. The log-likelihood values 𝐿0  will be used to conduct a likelihood 

ratio (LR) test for the state-dependent parameters 𝑐1  and 𝑐2 . The obtained 𝐿0  of 

KOSPI200, NI225 and FTSE100 is smaller when the terms of the intraday conditional 

variance in (9) are scaled by the Taylor-Xu estimator 𝜆𝑗
𝑇𝑋 than by the WSD estimator 

𝜆𝑗
𝑊𝑆𝐷. The reverse is true for ESTX50.  

In Table 3, we see the introduction of 𝑐1 and 𝑐2 in the Taylor-Xu estimator 𝜆𝑗
𝑇𝑋 

works quite well when event 𝐴 = {𝑟𝑡−1
𝑜𝑝𝑜𝑝 < 0} is true. An LR test with test statistic 
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2(𝐿1 − 𝐿0)~χ𝑑.𝑓=2
2   rejects 𝑐1 = 0  and 1 + 𝑐2 = 0  with small 𝑝  values for all 

indices. On the other hand, however, such a specification does not attain significantly 

higher log-likelihood when the jump-robust 𝜆𝑗
𝑊𝑆𝐷 is used to account for IVP in (9), 

except for ESTX50. Therefore, there appears to be some leverage effect in Taylor-Xu 

IVP weights, but not in jump-robust IVP.  

The performance of state-dependent IVP weights improves as we use information 

set 𝐵 = {𝑟𝑡−1
𝑜𝑣𝑛 < 0} , 𝐶 = {𝑅𝑉𝑡 > 𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝑉𝑡=1…𝑇)}  and 𝐷 = {𝑅𝑉𝑡 > 𝑅𝑉𝑡−1} . To 

save space, in Table 4 we only report the estimated 𝑐1 and 𝑐2 values, and the LR test 

results. In the top panel, when we allow IVP weights to depend on event 𝐵 =

{𝑟𝑡−1
𝑜𝑣𝑛 < 0}, the increases in log-likelihood values are all significant for the Taylor-Xu 

estimator 𝜆𝑗
𝑇𝑋5 . For jump-robust 𝜆𝑗

𝑊𝑆𝐷 , the information 𝐵 = {𝑟𝑡−1
𝑜𝑣𝑛 < 0} , like the 

event 𝐴 = {𝑟𝑡−1
𝑜𝑝𝑜𝑝 < 0}, only gives marginal improvement in log-likelihood values for 

KOSPI200, NI225 and FTSE100. In the bottom panel, however, the estimation results 

on the state-dependent structure improve greatly when IVP weights can react to event 

𝐶 = {𝑅𝑉𝑡 > 𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝑉𝑡=1…𝑇)} . For both 𝜆𝑗
𝑇𝑋  and 𝜆𝑗

𝑊𝑆𝐷 , the introduction of 𝑐1 

and 𝑐2 is highly significant for days with relatively large 𝑅𝑉𝑡, with 𝑝 values from 

the LR test smaller than 1%.  

We obtain our most significant results in Table 5 when IVP weights can react 

 
5 With the exception of FTSE100, which is due to the fact that most overnight returns of FTSE100 are 

zero (98.94%). 
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differently to the event 𝐷 = {𝑅𝑉𝑡 > 𝑅𝑉𝑡−1}. The increases in log-likelihood values are 

usually in hundreds for both 𝜆𝑗
𝑇𝑋 and 𝜆𝑗

𝑊𝑆𝐷 and this can be seen across the four equity 

indices. This result suggests that both IVP weights 𝜆𝑗
𝑇𝑋  and 𝜆𝑗

𝑊𝑆𝐷 are markedly 

different for days which see 𝑅𝑉 increasing from the previous day, which is consistent 

with the empirical findings of Andersen et al. (2019). Figure 1 plots the constant (blue 

circle) and the state-dependent IVP (green line) for two IVP estimators using the 

estimation results in Table 5. In Figure 1A, we see a clear leverage effect in Taylor-Xu 

IVP – when RV increases from the previous day, the IVP weights become higher in the 

morning hours than the constant case. In Figure 1B, on the other hand, the jump-robust 

WSD IVP weights are initially lower after market open, then higher during the noon 

and finally become lower again in the afternoon than their static counterpart6.  

4.2 Consequence on Intraday Jump Detection 

To illustrate the consequence of ignoring state-dependent IVP weights and using a set 

of constant ones, we conduct the intraday jump test by Andersen, Bollerslev and Dobrev 

(2007)7: 

|𝑟𝑡,𝑗|

√𝐵𝑃𝑉𝑡𝜆𝑗

> 𝛷1−𝛾/2,                                                   (11) 

 
6 This behaviour can be due to the construction of WSD IVP estimator, which will dampen very large 

weights in the opening and toward the market close.  
7 Our state-dependent IVP can also be applied to the jump test by Lee and Mykland (2008) and those in 

Maneesoonthorn et al. (2020). 



12 
 

where 𝛷1−𝛾/2  is a 𝑁(0, 1)  critical value at significance level 𝛾 = 1 − (0.99)1/𝑀 . 

Hence, we use 1% daily significance level of the jump test in (11), and given our sample 

of about 550 days, the nominal size is about 5.50. We only use the jump-robust WSD 

IVP weights in (11), and compare the test results with those given by its state-dependent 

version, since the Taylor-Xu IVP estimator is not robust to jumps.  

In Table 6, we report the summary statistics of detected jumps using static WSD 

IVP and its responsive version. In the top panel, both methods give much more jumps 

than the nominal size 5.50, indicating the jumps are a genuine feature of price process. 

In between the two IVP methods, the responsive weights unanimously give fewer 

detections than the static approach. In addition, the responsive IVP weights give larger 

average jump size as measured by absolute jump returns, except for ESTX50. These 

results suggest jump test conducted with the state-dependent IVP weights could deliver 

a more prudent outcome.  

In the bottom panel of Table 6, we look at the inter-arrival times, measured in hour, 

between two consecutive jumps. When these time durations have a standard deviation 

larger than their sample mean, the data is said to display over-dispersion which is a 

common feature for clustering count data. Moreover, the value of dispersion ratio, 

defined as the standard deviation of inter-arrival times divided by their sample mean, is 

closely related to the branching ratio of a self-exciting point process; see Hardiman and 
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Bouchaud (2014) and the review in Tsai (2021). We find that both static and responsive 

IVP weights produce jump times with the dispersion ratios larger than 1, except for 

NI225; however, the degree of over-dispersion is lower for the jumps given by the 

responsive, state-dependent IVP weights. This result suggests that ignoring the state-

dependent nature of IVP and using static ones in intraday jump tests could over-estimate 

the degree of price jumps clustering. 

Another marked difference between jumps given by static versus responsive IVP 

weights is their distribution over trading hours. Figure 2 plots the intraday distribution 

of jumps detected during days with 𝑅𝑉𝑡 > 𝑅𝑉𝑡−1. The blue bars are numbers of jumps 

obtained using the static WSD IVP weights, and the green ones are given by the 

responsive WSD IVP weights. It can be seen that whilst most jump detections given by 

the static IVP weights are concentrated in the middle of trading hours, the state-

dependent, responsive IVP weights discover more jumps in the beginning and toward 

the end of trading hours. Figure 3 plots the daily counts of detected jumps from the 

static and responsive IVP weights.  

4.3 Discussion 

In this subsection, we discuss some limitations and potential extensions of our approach. 

First, we can consider different structures for the dependence of IVP on state variables 

in (10). Secondly, the 5-minute returns of equity indices are highly non-Gaussian, and 
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so it is useful to see if the LR test results in Section 4.1 still hold when the GARCH 

model is estimated with fat-tail densities such as 𝑡  distribution. One can also add 

intraday leverage effect in (9) as in Tsai and Eom (2022).  

In terms of the state variables, the four events we consider in constructing the state-

dependent IVP either reflect leverage effect in volatility, with 𝐴 and 𝐵 as conditional 

information, or represent a relatively higher volatility level, with 𝐶 and 𝐷 two ad hoc 

measure of volatility level. It is certainly possible to use an ex ante measure of volatility 

level, such as:  

𝐸 = {𝐸[𝑅𝑉𝑡|𝐼𝑡−1] > 𝑅𝑉𝑡−1}, 

and let the IVP weights depend on this event. The conditional expectation 𝐸[𝑅𝑉𝑡|𝐼𝑡−1] 

can be given by some suitable volatility models such as the HAR regression of Corsi 

(2009) and many of its extensions (see Tsai and Eom 2022). 

In addition, the WSD IVP weights can be modified such that the shortest half scale 

estimator in (7) can be replaced by the alternative 𝑄𝑛 estimator of Rousseeuw and 

Croux (1993)8. We note that a similar approach is given by Yeh, Wang and Kuan (2013).  

Last but not the least, our proposed state-dependent IVP can be classified 

according to many market measures which are relevant for price jumps; these include 

measures on price impact, liquidity, the degree of asymmetric information and market 

 
8 This is directly suggested by Peter Rousseeuw through personal communication.  
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sentiment; see the review in Ahn and Tsai (2021). One can test if IVP weights depend 

on these measures, and investigate how such a dependence affect subsequent jump test 

results. We will leave this interesting task for future research. 

5. Conclusion 

In the current literature, standard approaches in finding intraday price jumps assume 

constant IVP weights over the test sample. We show that IVP weights can depend on 

some state variables or events, and propose to test the significance of such dependencies 

within an intraday GARCH framework. For four stock equity indices sampled at 5-

minute frequency, we find strong evidence on asymmetric responses of IVP weights to 

the event 𝑅𝑉𝑡 > 𝑅𝑉𝑡−1 , and thus reject the constant IVP assumption. This result is 

consistent with the recent study by Andersen et al. (2019); it also suggests the state-

dependent IVP weights should be used in finding intraday price jumps on those days 

with 𝑅𝑉𝑡 > 𝑅𝑉𝑡−1.  

In our empirical illustration, we show that accounting for the state-dependent 

nature of IVP weights could result in potentially more prudent jump detections, a lower 

degree of jumps clustering and a less concentrated intraday distribution of detected 

jumps over the trading hours. As these properties are fundamental to the nature of price 

jumps, we highlight the importance of state-dependent IVP weights and advocate the 

use of them in relevant applications.  
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Table 1. Summary Statistics of Four Equity Indices 

 KOSPI200 NI225 FTSE100 ESTX50 

𝑇 551 543 565 569 

Trading hours 

(local time)   

09:00-15:00 09:00-11:30 & 

12:30-15:00 

08:00-16:30 09:00-17:30 

Period deleted 14:50-15:00 12:30-12:40 08:00-08:10 09:00-09:10 

𝑀 70 58 100 100 

Mean -2.5e-7 4.7e-6 6.4e-7 3.4e-6 

S.D. 0.0013 0.0011 9.5e-4 0.0010 

Min. -0.0219 -0.0313 -0.0211 -0.0175 

Max. 0.0240 0.0212 0.0202 0.0188 

Skewness -0.2849 -0.9391 0.0164 0.0041 

Kurtosis 27.758 61.163 31.302 27.352 

 

Note: Table 1 reports the summary statistics of four equity indices data. The top panel 

shows the trading hours in local time, as well as the periods deleted and the number of 

5-min returns 𝑀 in a day. The bottom panel shows that 5-min returns do not have a 

normal distribution.  
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Table 2. Estimation of GARCH (1, 1) for 5-minute Returns 

 KOSPI200 NI225 FTSE100 ESTX50 

 𝜆𝑗
𝑇𝑋 𝜆𝑗

𝑊𝑆𝐷 𝜆𝑗
𝑇𝑋 𝜆𝑗

𝑊𝑆𝐷 𝜆𝑗
𝑇𝑋 𝜆𝑗

𝑊𝑆𝐷 𝜆𝑗
𝑇𝑋 𝜆𝑗

𝑊𝑆𝐷 

𝜇 ∙ 103 0.0072 0.0061 0.0076 0.0085 0.0034 0.0028 0.0105 0.0109 

 (0.0044) (0.0039) (0.0030) (0.0051) (0.0021) (0.0017) (0.0020) (0.0023) 

𝜎 ∙ 100 0.1102 0.1097 0.1207 0.2818 0.0923 0.0960 0.1221 0.1733 

 (0.0006) (0.0006) (0.0026) (0.1108) (0.0010) (0.0014) (0.0033) (0.0140) 

𝛼 0.0361 0.0353 0.0964 0.0833 0.0505 0.0463 0.0619 0.0416 

 (0.0024) (0.0020) (0.0033) (0.0019) (0.0021) (0.0021) (0.0021) (0.0014) 

𝛼 + 𝛽 0.9928 0.9935 0.9931 0.9991 0.9967 0.9973 0.9976 0.9993 

 (0.0009) (0.0008) (0.0016) (0.0012) (0.0006) (0.0006) (0.0006) (0.0004) 

𝐿0 213102.9 213280.8 183103.9 183105.9 331659.7 331790.8 331560.4 331417.1 

 

Note: we report parameter 𝜎 = √𝜔/(1 − 𝛼 − 𝛽) and standard errors inside parenthesis. The GARCH (1, 1) is estimated for 5-minute returns by 

assuming a conditional normal density. 
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Table 3. Estimation of GARCH (1, 1) for 5-minute Returns with State-dependent IVP on 𝒓𝒕−𝟏
𝒐𝒑𝒐𝒑

< 𝟎 

 KOSPI200 NI225 FTSE100 ESTX50 

 𝜆𝑗
𝑇𝑋 𝜆𝑗

𝑊𝑆𝐷 𝜆𝑗
𝑇𝑋 𝜆𝑗

𝑊𝑆𝐷 𝜆𝑗
𝑇𝑋 𝜆𝑗

𝑊𝑆𝐷 𝜆𝑗
𝑇𝑋 𝜆𝑗

𝑊𝑆𝐷 

𝜇 ∙ 103 0.0069 0.0061 0.0072 0.0083 0.0032 0.0028 0.0103 0.0108 

 (0.0072) (0.0454) (0.0032) (0.0090) (0.0022) (0.0064) (0.0016) (0.0025) 

𝜎 ∙ 100 0.1098 0.1097 0.1305 0.2521 0.0919 0.0960 0.1201 0.1677 

 (0.0005) (0.0098) (0.0034) (2.1876) (0.0010) (0.0032) (0.0024) (0.0140) 

𝛼 0.0369 0.0353 0.0927 0.0822 0.0498 0.0464 0.0592 0.0409 

 (0.0022) (0.1250) (0.0038) (0.1025) (0.0022) (0.0042) (0.0020) (0.0018) 

𝛼 + 𝛽 0.9925 0.9935 0.9948 0.9989 0.9967 0.9973 0.9977 0.9993 

 (0.0009) (0.0219) (0.0014) (0.0433) (0.0006) (0.0029) (0.0005) (0.0004) 

𝑐1 0.0049 3.99E-4 0.0207 7.8E-4 0.0023 9.9E-7 0.0047 7.7E-4 

 (0.0009) (2.9127) (0.0019) (1.2745) (0.0005) (1.8830) (0.0005) (0.0634) 

𝑐2 1.4545 2.25E-4 4.0379 3.4E-6 2.1426 6.4E-4 3.5971 5.5E-3 

 (0.0313) (1.1257) (0.1491) (7.2629) (0.0641) (1.0001) (0.0068) (2.9107) 

𝐿1 213119.1 213280.1 183194.6 183106.8 331675.8 331790.8 331599.4 331422.6 

LR test 32.4 -1.4 181.4 1.8 32.2 0.0 78.0 11.0 

𝑝 value 9.2E-08*** NA 4.1E-40*** 0.407 1.0E-07*** 1.000  1.2E-17*** 0.004*** 

 

Note: Table 3 reports the estimation of GARCH (1,1) for 5-min returns when IVP weights depend on the sign of previous open-to-open returns in 

(10). The LR test is conducted by 2(𝐿1 − 𝐿0)~χ𝑑.𝑓=2
2 , with 𝐿0 given by the baseline GARCH (1, 1) in Table 2. The symbols “*”, “**” and “***” 

indicate significant at 10%, 5% and 1% level respectively.  
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Table 4. Estimation of GARCH (1, 1) for 5-minute Returns with Asymmetric IVP weights for 𝒓𝒕−𝟏
𝒐𝒑𝒐𝒑

< 𝟎 and 𝑹𝑽𝒕 > 𝒎𝒆𝒅𝒊𝒂𝒏(𝑹𝑽𝒕=𝟏…𝑻) 

 KOSPI200 NI225 FTSE100 ESTX50 

 𝜆𝑗
𝑇𝑋 𝜆𝑗

𝑊𝑆𝐷 𝜆𝑗
𝑇𝑋 𝜆𝑗

𝑊𝑆𝐷 𝜆𝑗
𝑇𝑋 𝜆𝑗

𝑊𝑆𝐷 𝜆𝑗
𝑇𝑋 𝜆𝑗

𝑊𝑆𝐷 

 State-dependent on: 𝐵 = {𝑟𝑡−1
𝑜𝑣𝑛 < 0}  

𝑐1 0.0084 0.0017 0.0276 0.0031 0.0468 0.0429 0.0091 0.0016 

 (0.0011) (0.0013) (0.0037) (0.0013) (0.0248) (0.0215) (0.0019) (0.0003) 

𝑐2 1.2795 0.2888 3.0500 1.0609 12.001 12.300 4.2758 1.2108 

 (0.0372) (0.9569) (0.1777) (0.0929) (1.4669) (1.9483) (0.2840) (0.2346) 

𝐿1 213141.1 213283.8 183254.3 183110.5 331665.0 331794.5 331674.4 331427.6 

LR test 76.4 6.0 300.8 9.2 10.6 7.4 228.0 21.0 

𝑝 value 2.6E-17*** 0.050* 4.8E-66*** 0.010** 0.005*** 0.025* 3.1E-50*** 2.8E-05*** 

 State-dependent on: 𝐶 = {𝑅𝑉𝑡 > 𝑚𝑒𝑑𝑖𝑎𝑛(𝑅𝑉𝑡=1…𝑇)} 

𝑐1 0.0159 0.0062 0.0197 0.0127 0.0030 0.0023 0.0040 0.0055 

 (0.0023) (0.0014) (0.0018) (0.0018) (0.0006) (0.0004) (0.0008) (0.0005) 

𝑐2 2.1850 1.7467 2.9846 1.42E-4 2.1476 3.6E-4 11.498 2.1E-7 

 (0.5787) (0.1987) (0.2852) (0.0979) (1.1103) (1.2875) (0.0899) (0.3274) 

𝐿1 213200.9 213294.2 183202.7 183164.9 331681.2 331811.4 331573.2 331550.2 

LR test 196.0 26.8 197.6 118.0 43.0 41.2 25.6 266.2 

𝑝 value 2.7E-43*** 1.5E-06*** 1.2E-43*** 2.4E-26*** 4.6E-10*** 1.1E-09*** 2.8E-06*** 1.6E-58*** 
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Table 5. Estimation of GARCH (1, 1) for 5-minute Returns with State-dependent IVP weights on 𝑹𝑽𝒕 > 𝑹𝑽𝒕−𝟏 

 KOSPI200 NI225 FTSE100 ESTX50 

 𝜆𝑗
𝑇𝑋 𝜆𝑗

𝑊𝑆𝐷 𝜆𝑗
𝑇𝑋 𝜆𝑗

𝑊𝑆𝐷 𝜆𝑗
𝑇𝑋 𝜆𝑗

𝑊𝑆𝐷 𝜆𝑗
𝑇𝑋 𝜆𝑗

𝑊𝑆𝐷 

𝜇 ∙ 103 0.0068 0.0058 0.0071 0.0066 0.0031 0.0025 0.0102 0.0102 

 (0.0040) (0.0031) (0.0029) (0.0035) (0.0024) (0.0024) (0.0021) (0.0023) 

𝜎 ∙ 100 0.1129 0.1116 0.1600 0.1606 0.0992 0.1030 0.1336 0.1748 

 (0.0011) (0.0008) (0.0076) (0.0262) (0.0012) (0.0035) (0.0055) (0.0097) 

𝛼 0.0234 0.0242 0.0601 0.0515 0.0328 0.0274 0.0487 0.0279 

 (0.0012) (0.0012) (0.0035) (0.0037) (0.0015) (0.0015) (0.0022) (0.0011) 

𝛼 + 𝛽 0.9977 0.9974 0.9985 0.9985 0.9988 0.9992 0.9987 0.9997 

 (0.0004) (0.0004) (0.0006) (0.0017) (0.0003) (0.0003) (0.0004) (0.0001) 

𝑐1 0.0215 0.0161 0.0367 0.0128 0.0068 0.0060 0.0085 0.0079 

 (0.0014) (0.0011) (0.0022) (0.0012) (0.0005) (0.0004) (0.0007) (0.0004) 

𝑐2 1.9814 1.6148 3.1695 8.8E-7 1.0178 4.1E-4 3.3944 2.3E-5 

 (0.1479) (0.0137) (0.1003) (0.6766) (0.1465) (0.7099) (0.4409) (2.0012) 

𝐿1 213320.8 213388.9 183361.8 183194.9 331793.6 331935.6 331674.1 331734.9 

LR test 435.8 216.2 515.8 178.0 267.8 289.6 227.4 635.6 

𝑝 value 2.3E-95*** 1.1E-47*** 9.9E-113*** 2.2E-39*** 7.0E-59*** 1.3E-63*** 4.2E-50*** 9.6E-139*** 
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Table 6. Summary Statistics of Sizes and Inter-arrival Times of Price Jumps 

 KOSPI200 NI225 FTSE100 ESTX50 

𝜆𝑗
𝑊𝑆𝐷 Static Responsive Static Responsive Static Responsive Static Responsive 

 Jump size (in absolute value) 

No. of Obs. 85 73 119 110 140 131 198 179 

Mean 0.0044 0.0048 0.0036 0.0038 0.0036 0.0037 0.0037 0.0036 

S.D. 0.0044 0.0047 0.0033 0.0034 0.0028 0.0028 0.0027 0.0025 

Min 0.0011 0.0011 7.7e-4 7.7e-4 9.7e-4 9.7e-4 8.3e-4 8.3e-4 

Max 0.0240 0.0240 0.0212 0.0212 0.0202 0.0202 0.0188 0.0188 

 Inter-arrival time (in hour) 

Mean 37.95 44.28 22.06 23.88 32.95 35.57 23.27 25.76 

Median 20.75 25.21 16.50 18.25 19.75 22.67 13.92 16.58 

S.D. 60.22 65.23 19.81 19.76 37.13 37.80 26.27 28.14 

Min 0.17 0.17 0.08 0.17 0.08 0.08 0.08 0.08 

Max 390.50 390.50 107.17 80.00 178.50 195.67 162.58 154.75 

Dispersion 1.5869 1.4733 0.8981 0.8275 1.1270 1.0626 1.1290 1.0924 

 

Note: The dispersion ratio is given by S.D./Mean of the inter-arrival times between jumps. It is equal to 1 for a Poisson process, and a value 

larger than one indicates clustering in the arrivals.  
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Figure 1A. Static and State-dependent Taylor-Xu IVP Weights on 𝑹𝑽𝒕 > 𝑹𝑽𝒕−𝟏 

 
Note: When RV increases from day 𝑡 − 1 to day 𝑡, the state-dependent IVP (green line) has larger weights in the morning session than the static 

case (blue circle). This change of pattern is consistent with the results in Table 1 and 2, and thus confirming leverage effect in Taylor-Xu IVP. 
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Figure 1B. Static and State-dependent Jump-robust WSD IVP Weights on 𝑹𝑽𝒕 > 𝑹𝑽𝒕−𝟏 

 

  
Note: When RV increases from day 𝑡 − 1 to day 𝑡, the state-dependent IVP (green line) first has lower weights than the static case (blue circle), 

then shows higher weights in the noon session and finally lower weights again in the afternoon session.  
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Figure 2. Intraday Distribution of Price Jumps Detected during Days with 𝑹𝑽𝒕 > 𝑹𝑽𝒕−𝟏 

 

  
Note: Blue bars are the number of jumps obtained from static WSD IVP, and green bars are number of jumps obtained from the state-dependent, 

responsive WSD IVP.  
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Figure 3. Daily Count of Detected Jumps 

 

 

 

Note: From top to down: KOSPI200, NI225, FTSE100 and ESTX50. Left panel: jumps obtained 

with static WSD IVP; right panel: jumps obtained with state-dependent WSD IVP. 
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