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Abstract

Current price jump tests assume a constant intra-day volatility pattern (IVP) over
sample period. We test this assumption by allowing IVP to depend on the sign of returns
from day t-1 or overnight period. Estimation results from 5-minute GARCH for four
equity indices show that squared-return-based IVP weights increase in early morning
hours when previous returns are negative, suggesting an asymmetric [VP. For a jump-
robust IVP estimator, strong response is found for days with Realized Variance
increasing from the previous day. Our results are consistent with and complement recent
studies on time-varying IVP. Jumps test results using the state-dependent VP are more

prudent, show lower degree of clustering and are less concentrated over trading hours.

Key words: Intra-day Volatility Pattern, Jump, Realized Volatility, Leverage Effect,
GARCH, High-frequency Data

Acknowledgements: We thank Peter Rousseeuw for insightful suggestions on the construction of jump-
robust IVP estimator, Mark Shackleton for comments on a previous version of the paper and the
conference participants in the 2022 Annual Meeting of Taiwan Econometric Society (TES) in National

Taiwan University.


mailto:vincenttsai@mail.nsysu.edu.tw
mailto:shunter@pusan.ac.kr

1. Introduction

The U-shape intraday volatility pattern (IVP) is a well-established stylized fact for high-
frequency data (Andersen and Bollerslev 1997; Taylor and Xu 1997). Thus, many jump
tests propose to remove the deterministic IVP before identifying intraday jumps
(Andersen et al. 2007; Lee and Mykland 2008; Boudt et al. 2011; Caporin 2022). Boudt
et al. (2011) further show that it is important to use a jump-robust [VP estimator, as
opposed to the squared-return-based estimator by Taylor and Xu (1997), hereafter TX,
in implementing intraday jump tests. The Weighted Standard Deviation (WSD)
estimator of Boudt et al. (2011) has since become a standard approach for finding
intraday jumps?.

Both the TX and WSD estimators of IVP give a static U-shape pattern over time.
More recently, however, there have been studies that find evidence on time-varying IVP
(Christensen et al. 2018; Andersen et al. 2019)?. Specifically, in Christensen et al. (2018)
they show that a deterministic IVP does not fully capture the intraday variation of
volatility. Andersen et al. (2019) also provide evidence that [IVP weights are not constant
— their Figure 3 show two shapes of IVP for days with and without FOMC

announcements. The [VP weights become lower in the morning but increase sharply in

1 See, for example, Gilder et al. (2014), Jondeau et al. (2015), Piccotti (2018), Sun and Gao (2020),
Caporin and Poli (2022) and Marcaccioli et al. (2022).
2 Miiller et al. (2011) and Gabrys et al. (2013) consider functional data analysis for IVP, which explicitly
specify that IVP is time-varying.
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the afternoon hours for those days with FOMC. Andersen et al. (2019) further show that

IVP weights present different patterns depending on the level of volatility as measured

by the VIX index.

In this paper, we follow the developments in Andersen et al. (2019) and allow IVP

weights to depend on some state variables or events. Specifically, the state variables are

chosen to reflect the so-called leverage effect or asymmetric volatility, a phenomenon

in which volatility tends to increase after negative returns than positive ones; see the

extensive results in Yu (2005) and Catania (2022). Therefore, we classify days in our

sample into those that see previous negative returns versus positive ones, and

investigate whether [VP weights should be adjusted in response to these different states.

Intuitively, a previous negative return will not have uniform or homogenous impact on

all IVP weights, but the effect will decrease toward the end of a trading day. Therefore,

we use an exponential decay function to describe the relative increase in IVP. This state-

dependent structure of IVP and the associated parameters are then estimated using an

intraday GARCH (1, 1) model, and a formal test on the significance of the state events

can be done by a likelihood ratio test.

Our empirical results are obtained from four equity indices sampled at 5S-minute

frequency during Jan 2019 to March 2021. First, we find that the TX VP weights on

average increase in the early morning hours when previous daily returns or overnight



returns are negative. This finding confirms leverage effect in the TX I'VP estimator. On

the other hand, the jump-robust WSD estimator of Boudt et al. (2011) is more resilient

to negative previous returns; however, when the states are chosen such that Realised

Variance (RV) is relatively large, or it increases from the previous day, i.e., RV, >

RV,_,, we find strong evidence in rejecting constant WSD weights.

Our findings of asymmetric or state-dependent IVP weights have important

implications on intraday jump detection. To illustrate the consequence of using fixed

IVP weights versus state-dependent ones, we implement the jump test by Andersen et

al. (2007). The jumps detected using our approach are less concentrated during the

trading hours, and also display a smaller degree of over-dispersion across the whole

sample period, when compared with the standard WSD approach. These properties are

relevant in determining whether and to what extent the arrivals of price jumps cluster

in time. As a result, we show that ignoring the state-dependent [IVP weights in intraday

jump tests could lead to spurious estimation of jump intensity.

The paper is organized as follows. Section 2 describe our intraday equity indices

data and Section 3 develops our methodology and models. Section 4 reports the

empirical results with a discussion, and Section 5 concludes.



2. Intraday Equity Indices Data
Our data includes the index values of KOSPI200, NI1225, FTSE100 and ESTX50 from

firstratedata.com, with sample period 2019/01/03 - 2021/03/31. We use data sampled at

S-minute frequency to mitigate the effect of micro-structure noise. After removing
incomplete trading days®, we obtain and summarize the four indices in Table 1. First,
note that we have made some adjustments on the data. Specifically, we delete the last
10-minutes in KOSPI200 index, as trading is halted and saved for auction before market
close at 15:00 in Korean Stock Exchange. For NI225, there is a lunch break during
11:30-12:30 in Tokyo Stock Exchange, and therefore we remove the 10-minute period
12:30-12:40 to avoid the abrupt increase of trading activities after lunch break. For both
FTSE100 and ESTXS50, we observe very erratic price movements in the first 10-minute
interval of a trading day, and following Gilder et al. (2014) and Ferriani and Zoi (2020)
we delete this interval from our sample. As a result, the number of 5-minute intervals
perday M are 70, 58, 100 and 100 for the four indices respectively.

In the bottom of Table 1, we report summary statistics of 5-minute returns for the
four indices. It can be seen that that 5-min returns do not have a normal distribution but

display very large values of kurtosis, which is a typical result from high-frequency data.

3 See an online Appendix which is available from the authors upon request.
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3. Methodology

First, an intraday return 7, ; on the j-th S-minute interval of day ¢ is defined as:

rt’j == ln(Pt,]) - ln(Pt‘]'_l), (1)
where P ; is the index value. We consider two non-parametric IVP estimators. The

first is the r7;-based estimator A/* by Taylor and Xu (1997):

T .2
ATX t=1"t,

j T NT M 2
t=12j=1rt,j

for j=1,..,M and Z?”:l/lj” = 1. The second is the jump-robust Weighted Standard

(2)

Deviation (WSD) estimator by Boudt et al. (2011):

WSD?
WSD _ J
j=1 J
where
T w, 7o
WSD? = 1081 222"t 4

Z{=1 Wy j

-1/2
. _ . . . . = . SH . .
with wy ; = 1{Zt2]_S 6. 635} is an indicator function for Z; ; = 1y ; (BPVt/lj ) , Ty 18

standardized by the Bipower Variation (BPV) of Barndorft-Nielsen and Shephard (2004,

2006):
L R— (5)
7 [BPV,(1/M)
(0 M M
o= ) ) S el ©

and in Z;; the shortest half scale estimator AfH is given by Rousseeuw and Leroy

(1988)*:

4 An alternative way can be given by the Q,, estimator of Rousseeuw and Croux (1993); we thank Peter

Rousseeuw for pointing out this alternative.
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where ShortH; = 0.741min{ry ; — Ty jy ) T(r)j — Tr—n+1)}» R =1T/21 +1,
|x| takes the integer part of x and the order statistics are defined as 7(q); <
T(2),j - < T(r),j- The WSD estimator is robust to price jumps because firstly the shortest
half scale estimator /’IJ-SH avoids tail values in 7 ; across days in the sample, and
secondly the indicator function w;; truncates extremely large Z; ;.

The two IVP estimators will be used in estimating an intraday GARCH model for

5-minute returns:

rt,j =u + ‘[ht,th,j, Zt,j ~ 1. i.d.N(O, 1), (8)

ﬂ_ ® aelj_y  Bhej
LM M M

€))
for t=1,..,T, j=1,..,M and by definition, 1y = Ay,. The IVP weights Aj n
(9) can be either the conventional A]-TX or the jump-robust AJWSD . Estimation results
based on (8) and (9) are our baseline model, i.e., the IVP weights /1]-TX or AJWSD are
constant over time.

To develop the relevance of state-dependent IVP, we first allow A; to depend on
the following two events:

A={r’? <0} and B = {r2 < 0},
opop ovn

where 1,.Z;" 1s the open-to-open return and 7;°7" is the overnight return from day

t — 1. Specifically, when the state A or B is present, we conjecture the [IVP weights



will see higher values than otherwise, which is consistent with the leverage effect or
asymmetric volatility. However, a previous negative return 7,°%°F < 0 or r2"7' < 0 is
unlikely to impose the same impact on all the IVP weights throughout a trading day,
and we use an exponential function to describe this potentially decaying pattern. The
structure of state-dependent IVP weights when, for example, event A is true, is thus

given as:

-1
A‘ +C11A exp —(1+C2)]
pY — ( ) , (10)

! i (Aj + ¢;1, exp (—(1 + cz)j 1‘_41))

where ¢; > 0 and ¢, > 0 are two constant parameters, 1, is the indicator function
for event A and importantly by construction, 2?/1:1/1}4 = 1. Therefore, the first [VP
weight A4 will increase — by an amount proportional to ¢; — and this increase will
decay at a rate controlled by (14 c,) as j counts from 1, 2, ... to M. Thus, a
rejection of ¢; =0 and 1+ ¢, = 0 will suggest that IVP weights are not constant
over time, but show asymmetric responses to the states considered. The specification
of 4; in (9) now becomes A;(1 —1,) + A1,

The dependence of IVP weights on previous returns in (10) reflects the leverage
effect or asymmetric volatility, and to our knowledge is the first mechanism in the
literature which links IVP with leverage effect. The two states A and B represent
conditional information, as they look at the direction of returns from day t — 1. In the

intraday GARCH model (8) and (9), however, the use of 4; implies the information
8



set is not necessarily limited to day t — 1, because the TX and WSD IVP weights in (2)
and (3) are calculated from the whole sample. Therefore, we further consider two states:
C = {RV; > median(RV,=, 1)} and D = {RV, > RV,_,},
where RV; is the Realized Variance on day t. These two states represent a relatively
higher RV, or when RV increases from the previous day, in an ad hoc sense. We
emphasize the same ad hoc classification is used in Andersen et al. (2019), who find
that time-varying IVP weights depend on the level of VIX index. Thus, our states C

and D will serve to confirm the findings in Andersen et al. (2019).

4. Results
4.1 Test for State-dependent IVP
In Table 2 the estimation results of GARCH (1, 1) for 5-minute returns of four equity
indices show typical a and [ estimated values, with the stationary condition a +
B <1 satisfied. The log-likelihood values L, will be used to conduct a likelihood
ratio (LR) test for the state-dependent parameters c¢; and c,. The obtained L, of
KOSPI200, NI225 and FTSE100 is smaller when the terms of the intraday conditional
variance in (9) are scaled by the Taylor-Xu estimator A]-TX than by the WSD estimator
AP The reverse is true for ESTX50.

In Table 3, we see the introduction of ¢; and ¢, in the Taylor-Xu estimator ,1]7."X

works quite well when event A = {r,°%’? < 0} is true. An LR test with test statistic
9



2(L4 —L0)~Xfi_f=2 rejects ¢; =0 and 1+ ¢, =0 with small p values for all
indices. On the other hand, however, such a specification does not attain significantly

higher log-likelihood when the jump-robust is used to account for IVP in (9),

A]WSD
except for ESTX50. Therefore, there appears to be some leverage effect in Taylor-Xu
IVP weights, but not in jump-robust IVP.

The performance of state-dependent IVP weights improves as we use information
set B ={r2' <0}, C ={RV, > median(RV;—, 1)} and D = {RV, > RV,_;}. To
save space, in Table 4 we only report the estimated ¢; and c, values, and the LR test
results. In the top panel, when we allow IVP weights to depend on event B =
{r2" < 0}, the increases in log-likelihood values are all significant for the Taylor-Xu
estimator A/*5. For jump-robust A}*”, the information B = {r2]" < 0}, like the
event A = {r,”’’" < 0}, only gives marginal improvement in log-likelihood values for
KOSPI200, NI225 and FTSE100. In the bottom panel, however, the estimation results
on the state-dependent structure improve greatly when IVP weights can react to event
C = {RV, > median(RV,=,_7)}. For both A]-TX and A]WSD, the introduction of ¢;
and c, is highly significant for days with relatively large RV;, with p values from

the LR test smaller than 1%.

We obtain our most significant results in Table 5 when IVP weights can react

> With the exception of FTSE100, which is due to the fact that most overnight returns of FTSE100 are
zero (98.94%).
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differently to the event D = {RV, > RV;_,}. The increases in log-likelihood values are
usually in hundreds for both A]-TX and A]WS D" and this can be seen across the four equity
indices. This result suggests that both IVP weights /1]-TX and /1}”51) are markedly
different for days which see RV increasing from the previous day, which is consistent
with the empirical findings of Andersen et al. (2019). Figure 1 plots the constant (blue
circle) and the state-dependent IVP (green line) for two IVP estimators using the
estimation results in Table 5. In Figure 1A, we see a clear leverage effect in Taylor-Xu
IVP — when RV increases from the previous day, the IVP weights become higher in the
morning hours than the constant case. In Figure 1B, on the other hand, the jump-robust
WSD IVP weights are initially lower after market open, then higher during the noon

and finally become lower again in the afternoon than their static counterpart®.

4.2 Consequence on Intraday Jump Detection

To illustrate the consequence of ignoring state-dependent IVP weights and using a set
of constant ones, we conduct the intraday jump test by Andersen, Bollerslev and Dobrev
(2007)":

|rt,j |

JBPV, g

d)l—y/Z' (11)

& This behaviour can be due to the construction of WSD IVP estimator, which will dampen very large
weights in the opening and toward the market close.
7 Our state-dependent IVP can also be applied to the jump test by Lee and Mykland (2008) and those in
Maneesoonthorn et al. (2020).
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where @,_,/, is a N(0,1) critical value at significance level y =1 — (0.99)*/M.
Hence, we use 1% daily significance level of the jump test in (11), and given our sample
of about 550 days, the nominal size is about 5.50. We only use the jump-robust WSD
IVP weights in (11), and compare the test results with those given by its state-dependent
version, since the Taylor-Xu [VP estimator is not robust to jumps.

In Table 6, we report the summary statistics of detected jumps using static WSD
IVP and its responsive version. In the top panel, both methods give much more jumps
than the nominal size 5.50, indicating the jumps are a genuine feature of price process.
In between the two IVP methods, the responsive weights unanimously give fewer
detections than the static approach. In addition, the responsive IVP weights give larger
average jump size as measured by absolute jump returns, except for ESTX50. These
results suggest jump test conducted with the state-dependent IVP weights could deliver
a more prudent outcome.

In the bottom panel of Table 6, we look at the inter-arrival times, measured in hour,
between two consecutive jumps. When these time durations have a standard deviation
larger than their sample mean, the data is said to display over-dispersion which is a
common feature for clustering count data. Moreover, the value of dispersion ratio,
defined as the standard deviation of inter-arrival times divided by their sample mean, is
closely related to the branching ratio of a self-exciting point process; see Hardiman and

12



Bouchaud (2014) and the review in Tsai (2021). We find that both static and responsive

IVP weights produce jump times with the dispersion ratios larger than 1, except for

NI225; however, the degree of over-dispersion is lower for the jumps given by the

responsive, state-dependent IVP weights. This result suggests that ignoring the state-

dependent nature of IVP and using static ones in intraday jump tests could over-estimate

the degree of price jumps clustering.

Another marked difference between jumps given by static versus responsive [IVP

weights is their distribution over trading hours. Figure 2 plots the intraday distribution

of jumps detected during days with RV, > RV;_;. The blue bars are numbers of jumps

obtained using the static WSD IVP weights, and the green ones are given by the

responsive WSD IVP weights. It can be seen that whilst most jump detections given by

the static IVP weights are concentrated in the middle of trading hours, the state-

dependent, responsive IVP weights discover more jumps in the beginning and toward

the end of trading hours. Figure 3 plots the daily counts of detected jumps from the

static and responsive [VP weights.

4.3 Discussion

In this subsection, we discuss some limitations and potential extensions of our approach.

First, we can consider different structures for the dependence of IVP on state variables

in (10). Secondly, the 5-minute returns of equity indices are highly non-Gaussian, and

13



so it is useful to see if the LR test results in Section 4.1 still hold when the GARCH
model is estimated with fat-tail densities such as t distribution. One can also add
intraday leverage effect in (9) as in Tsai and Eom (2022).

In terms of the state variables, the four events we consider in constructing the state-
dependent IVP either reflect leverage effect in volatility, with A and B as conditional
information, or represent a relatively higher volatility level, with C and D two ad hoc
measure of volatility level. It is certainly possible to use an ex ante measure of volatility
level, such as:

E ={E[RV;|l;_1] > RV;_4},
and let the IVP weights depend on this event. The conditional expectation E[RV;|I;_;]
can be given by some suitable volatility models such as the HAR regression of Corsi
(2009) and many of its extensions (see Tsai and Eom 2022).

In addition, the WSD IVP weights can be modified such that the shortest half scale
estimator in (7) can be replaced by the alternative @Q,, estimator of Rousseeuw and
Croux (1993)%. We note that a similar approach is given by Yeh, Wang and Kuan (2013).

Last but not the least, our proposed state-dependent IVP can be classified
according to many market measures which are relevant for price jumps; these include

measures on price impact, liquidity, the degree of asymmetric information and market

8 This is directly suggested by Peter Rousseeuw through personal communication.
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sentiment; see the review in Ahn and Tsai (2021). One can test if [IVP weights depend

on these measures, and investigate how such a dependence affect subsequent jump test

results. We will leave this interesting task for future research.

5. Conclusion

In the current literature, standard approaches in finding intraday price jumps assume

constant IVP weights over the test sample. We show that IVP weights can depend on

some state variables or events, and propose to test the significance of such dependencies

within an intraday GARCH framework. For four stock equity indices sampled at 5-

minute frequency, we find strong evidence on asymmetric responses of [IVP weights to

the event RV; > RV,_,, and thus reject the constant IVP assumption. This result is

consistent with the recent study by Andersen et al. (2019); it also suggests the state-

dependent IVP weights should be used in finding intraday price jumps on those days

with RV, > RV,_,.

In our empirical illustration, we show that accounting for the state-dependent

nature of [VP weights could result in potentially more prudent jump detections, a lower

degree of jumps clustering and a less concentrated intraday distribution of detected

jumps over the trading hours. As these properties are fundamental to the nature of price

jumps, we highlight the importance of state-dependent IVP weights and advocate the

use of them in relevant applications.
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Table 1. Summary Statistics of Four Equity Indices

KOSPI200 NI225 FTSE100 ESTXS50
T 551 543 565 569
Trading hours  09:00-15:00 09:00-11:30 & 08:00-16:30 09:00-17:30
(local time) 12:30-15:00
Period deleted  14:50-15:00 12:30-12:40 08:00-08:10 09:00-09:10
M 70 58 100 100
Mean -2.5¢e-7 4.7e-6 6.4e-7 3.4e-6
S.D. 0.0013 0.0011 9.5¢e-4 0.0010
Min. -0.0219 -0.0313 -0.0211 -0.0175
Max. 0.0240 0.0212 0.0202 0.0188
Skewness -0.2849 -0.9391 0.0164 0.0041
Kurtosis 27.758 61.163 31.302 27.352

Note: Table 1 reports the summary statistics of four equity indices data. The top panel

shows the trading hours in local time, as well as the periods deleted and the number of

5-min returns M in a day. The bottom panel shows that 5-min returns do not have a

normal distribution.
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Table 2. Estimation of GARCH (1, 1) for 5-minute Returns

KOSPI200 NI225 FTSE100 ESTX50

A}"X A}/VSD /1]TX A}VVS D )BTX A}VVS D AfX /1]1'/I/SD
u-103 0.0072 0.0061 0.0076 0.0085 0.0034 0.0028 0.0105 0.0109

(0.0044) (0.0039) (0.0030) (0.0051) (0.0021) (0.0017) (0.0020) (0.0023)
o100 0.1102 0.1097 0.1207 0.2818 0.0923 0.0960 0.1221 0.1733

(0.0006) (0.0006) (0.0026) (0.1108) (0.0010) (0.0014) (0.0033) (0.0140)
a 0.0361 0.0353 0.0964 0.0833 0.0505 0.0463 0.0619 0.0416

(0.0024) (0.0020) (0.0033) (0.0019) (0.0021) (0.0021) (0.0021) (0.0014)
a+p 0.9928 0.9935 0.9931 0.9991 0.9967 0.9973 0.9976 0.9993

(0.0009) (0.0008) (0.0016) (0.0012) (0.0006) (0.0006) (0.0006) (0.0004)
Lo 213102.9 213280.8 183103.9 183105.9 331659.7 331790.8 331560.4 331417.1

Note: we report parameter o = \/ w/(1 — a—B) and standard errors inside parenthesis. The GARCH (1, 1) is estimated for 5-minute returns by
assuming a conditional normal density.
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Table 3. Estimation of GARCH (1, 1) for 5-minute Returns with State-dependent IVP on 77" < 0

KOSPI200 NI225 FTSE100 ESTX50
A}TX A]VVS D /1]TX A}VVS D )BTX A}VVS D AfX /1]‘”5 D
u-103 0.0069 0.0061 0.0072 0.0083 0.0032 0.0028 0.0103 0.0108
(0.0072) (0.0454) (0.0032) (0.0090) (0.0022) (0.0064) (0.0016) (0.0025)
o100 0.1098 0.1097 0.1305 0.2521 0.0919 0.0960 0.1201 0.1677
(0.0005) (0.0098) (0.0034) (2.1876) (0.0010) (0.0032) (0.0024) (0.0140)
a 0.0369 0.0353 0.0927 0.0822 0.0498 0.0464 0.0592 0.0409
(0.0022) (0.1250) (0.0038) (0.1025) (0.0022) (0.0042) (0.0020) (0.0018)
a+p 0.9925 0.9935 0.9948 0.9989 0.9967 0.9973 0.9977 0.9993
(0.0009) (0.0219) (0.0014) (0.0433) (0.0006) (0.0029) (0.0005) (0.0004)
o 0.0049 3.99E-4 0.0207 7.8E-4 0.0023 9.9E-7 0.0047 7.7E-4
(0.0009) (2.9127) (0.0019) (1.2745) (0.0005) (1.8830) (0.0005) (0.0634)
¢ 1.4545 2.25E-4 4.0379 3.4E-6 2.1426 6.4E-4 3.5971 5.5E-3
(0.0313) (1.1257) (0.1491) (7.2629) (0.0641) (1.0001) (0.0068) (2.9107)
L 213119.1 213280.1 183194.6 183106.8 331675.8 331790.8 331599.4 331422.6
LR test 32.4 1.4 181.4 1.8 32.2 0.0 78.0 11.0
p value 9.2E-08*%**  NA 4.1B-40%**  0.407 1.OE-07*** 1,000 12E-17#%%%  (.004%**

Note: Table 3 reports the estimation of GARCH (1,1) for 5-min returns when IVP weights depend on the sign of previous open-to-open returns in
(10). The LR test is conducted by 2(L; — L0)~X(21.f=2, with L, given by the baseline GARCH (1, 1) in Table 2. The symbols “*”, “**” and “#**>

indicate significant at 10%, 5% and 1% level respectively.
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Table 4. Estimation of GARCH (1, 1) for 5-minute Returns with Asymmetric IVP weights for r;’;’ < 0 and RV, > median(RV,.; r)

KOSPI200 NI225 FTSE100 ESTX50
A}T_"X A]WSD A}?_"X A}WSD AjTX A}WSD A}"X ;{]WSD
State-dependent on: B = {r{"} < 0}
1 0.0084 0.0017 0.0276 0.0031 0.0468 0.0429 0.0091 0.0016
(0.0011) (0.0013) (0.0037) (0.0013) (0.0248) (0.0215) (0.0019) (0.0003)
Cy 1.2795 0.2888 3.0500 1.0609 12.001 12.300 4.2758 1.2108
(0.0372) (0.9569) (0.1777) (0.0929) (1.4669) (1.9483) (0.2840) (0.2346)
Ly 213141.1 213283.8 183254.3 183110.5 331665.0 331794.5 331674.4 331427.6
LR test 76.4 6.0 300.8 9.2 10.6 7.4 228.0 21.0
p value 2.6E-17%*%* 0.050* 4.8E-66%*** 0.010%** 0.005*** 0.025* 3.1E-50%** 2.8E-Q5%**
State-dependent on: C = {RV; > median(RV ;-1 1)}
c 0.0159 0.0062 0.0197 0.0127 0.0030 0.0023 0.0040 0.0055
(0.0023) (0.0014) (0.0018) (0.0018) (0.0006) (0.0004) (0.0008) (0.0005)
c, 2.1850 1.7467 2.9846 1.42E-4 2.1476 3.6E-4 11.498 2.1E-7
(0.5787) (0.1987) (0.2852) (0.0979) (1.1103) (1.2875) (0.0899) (0.3274)
Ly 213200.9 213294.2 183202.7 183164.9 331681.2 3318114 331573.2 331550.2
LR test 196.0 26.8 197.6 118.0 43.0 41.2 25.6 266.2
p value 2. TE-43%** 1.5E-06%** 1.2E-43%** 24E-26%** 4.6E-10%*** 1.1E-Q9%*** 2.8E-06%** 1.6E-58%**
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Table 5. Estimation of GARCH (1, 1) for 5-minute Returns with State-dependent IVP weights on RV, > RV,_,

KOSPI200 NI225 FTSE100 ESTX50
A}TX A]VVS D /1]TX A}VVS D )BTX A}VVS D AfX /1]‘”5 D
u-103 0.0068 0.0058 0.0071 0.0066 0.0031 0.0025 0.0102 0.0102
(0.0040) (0.0031) (0.0029) (0.0035) (0.0024) (0.0024) (0.0021) (0.0023)
o100 0.1129 0.1116 0.1600 0.1606 0.0992 0.1030 0.1336 0.1748
(0.0011) (0.0008) (0.0076) (0.0262) (0.0012) (0.0035) (0.0055) (0.0097)
a 0.0234 0.0242 0.0601 0.0515 0.0328 0.0274 0.0487 0.0279
(0.0012) (0.0012) (0.0035) (0.0037) (0.0015) (0.0015) (0.0022) (0.0011)
a+p 0.9977 0.9974 0.9985 0.9985 0.9988 0.9992 0.9987 0.9997
(0.0004) (0.0004) (0.0006) (0.0017) (0.0003) (0.0003) (0.0004) (0.0001)
o 0.0215 0.0161 0.0367 0.0128 0.0068 0.0060 0.0085 0.0079
(0.0014) (0.0011) (0.0022) (0.0012) (0.0005) (0.0004) (0.0007) (0.0004)
¢ 1.9814 1.6148 3.1695 8.8E-7 1.0178 4.1E-4 3.3944 2.3E-5
(0.1479) (0.0137) (0.1003) (0.6766) (0.1465) (0.7099) (0.4409) (2.0012)
L 213320.8 213388.9 183361.8 183194.9 331793.6 331935.6 331674.1 331734.9
LR test 435.8 216.2 515.8 178.0 267.8 289.6 227.4 635.6
p value 2.3E-95%%* | B-47%%*%  QOE-113*** 22B-30%%*  7(0E-59%%* | 3E-63**%*  42F-50%** 9 GE-]39%**
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Table 6. Summary Statistics of Sizes and Inter-arrival Times of Price Jumps

KOSPI200 NI225 FTSE100 ESTX50
/’IJWS b Static Responsive Static Responsive Static Responsive Static Responsive
Jump size (in absolute value)
No. of Obs. 85 73 119 110 140 131 198 179
Mean 0.0044 0.0048 0.0036 0.0038 0.0036 0.0037 0.0037 0.0036
S.D. 0.0044 0.0047 0.0033 0.0034 0.0028 0.0028 0.0027 0.0025
Min 0.0011 0.0011 7.7e-4 7.7e-4 9.7¢-4 9.7¢-4 8.3e-4 8.3¢e-4
Max 0.0240 0.0240 0.0212 0.0212 0.0202 0.0202 0.0188 0.0188
Inter-arrival time (in hour)
Mean 37.95 44.28 22.06 23.88 32.95 35.57 23.27 25.76
Median 20.75 25.21 16.50 18.25 19.75 22.67 13.92 16.58
S.D. 60.22 65.23 19.81 19.76 37.13 37.80 26.27 28.14
Min 0.17 0.17 0.08 0.17 0.08 0.08 0.08 0.08
Max 390.50 390.50 107.17 80.00 178.50 195.67 162.58 154.75
Dispersion 1.5869 1.4733 0.8981 0.8275 1.1270 1.0626 1.1290 1.0924

Note: The dispersion ratio is given by S.D./Mean of the inter-arrival times between jumps. It is equal to 1 for a Poisson process, and a value

larger than one indicates clustering in the arrivals.

24



Figure 1A. Static and State-dependent Taylor-Xu IVP Weights on RV, > RV, 4
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Note: When RV increases from day ¢ — 1 to day t, the state-dependent IVP (green line) has larger weights in the morning session than the static
case (blue circle). This change of pattern is consistent with the results in Table 1 and 2, and thus confirming leverage effect in Taylor-Xu IVP.
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Figure 1B. Static and State-dependent Jump-robust WSD IVP Weights on RV, > RV,_,
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Note: When RV increases from day t — 1 to day ¢, the state-dependent IVP (green line) first has lower weights than the static case (blue circle),
then shows higher weights in the noon session and finally lower weights again in the afternoon session.
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Figure 2. Intraday Distribution of Price Jumps Detected during Days with RV,
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Note: Blue bars are the number of jumps obtained from static WSD IVP, and green bars are number of jumps obtained from the state-dependent,
responsive WSD IVP.
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Figure 3. Daily Count of Detected Jumps
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Note: From top to down: KOSPI1200, NI1225, FTSE100 and ESTX50. Left panel: jumps obtained
with static WSD IVP; right panel: jumps obtained with state-dependent WSD IVP.
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