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Forecasting volatility using drift burst information

Abstract
Using high-frequency data for the S&P 500 Index, this paper investigates whether the

information of drift burst intensity predicts future volatility. We find that drift burst intensity
increases future volatility. Moreover, we find the intensity of drift burst signs is also important:
the intensity of negative drift bursts strongly increases the future volatility while the intensity
of positive drift bursts weakly decreases the future volatility. And the models exploiting these

findings lead to significantly better out-of-sample forecast performance.

JEL: G12, E44, E32



1 Introduction

Recent years see a growing strand of literature that emphasized the economic value of drift
bursts. Research tends to use this model to identify flash crashes, which are then used for case
studies for financial stability. Relying on the flash crashes informed by the drift burst model,
Bellia et al. (2020) find that High-Frequency Traders (HFTs) consume liquidity during a flash
crash, which exacerbates the downtrend. Using the crash events identified by the drift bust
model, other studies find that well-capitalized standby liquidity providers such as short-term
traders (Getmansky et al., 2017, Jagannathan et al., 2019) and mutual funds (Jagannathan et al.,
2021) help the market recover from crashes. Flora and Reno (2020) apply the drift burst model
to detect mini-flash crashes and estimate the transient crash loss for some security markets.
Christensen et al. (2022) apply drift bursts to forecast return dynamics during flash crash

periods.

Although researchers find drift bursts are economically important, whether drift bursts also
benefit volatility forecasting is new in the literature. Recently financial econometricians argue
that reducing the drift burst bias has volatility forecasting advantages. For example, Andersen
etal. (2021) find alleviating drift burst bias for the historical volatility predictors improves their
predictive ability. Only very few papers focus on the possible usefulness of drift burst itself in

forecasting volatility (Laurent et al., 2022).

We contribute to the literature by investigating whether drift burst intensity predicts
volatility. We identify the drift bursts based on the method by Christensen et al. (2022) and
estimate the intensity by the approaches by Hawkes (1971) and Tauchen and Zhou (2011). The
in-sample results from S&P 500 index reveal that drift burst intensity strongly increases future
volatility. Moreover, we also show the importance of decomposing the signs of the drift bursts:
the negative drift burst intensity strongly increases volatility and the positive drift burst

intensity weakly decreases volatility, and this effect is more prominent and robust than that of



(unsigned) drift bursts. In addition, our findings from the in-sample are robust to the intensity

measures by both Hawkes (1971) and Tauchen and Zhou (2011).

More importantly, we find the drift bursts also greatly contribute to the out-of-sample
forecast. The model associated with drift burst intensities is able to provide significantly better
out-of-sample volatility forecasts, for both short-term and long-term horizons. Further, we
show that it is also essential to separate the signs of drift bursts for out-of-sample: the model
associated with the intensities of signed drift burst provide more accurate forecasts than that
with the intensities of (unsigned) drift bursts. Besides, these out-of-sample results are robust to
the intensity measures by Hawkes (1971) and Tauchen and Zhou (2011), and the drift burst
intensity measure by Tauchen and Zhou (2011) leads to better out-of-sample than that by

Hawkes (1971).

The work by Laurent et al. (2022) is closely related to our study. They also find the
usefulness of drift bursts for predicting volatility. However, there are several aspects which
differ from (or extend) their works. First, we measure the drift bursts from a different
perspective. Laurent et al. (2022) measure the drift burst magnitude while we gauge the
intensity of drift bursts. Second, Laurent et al. (2022) have not yet investigated the information
on the sign of drift bursts. As discussed in Christensen et al. (2022) and Andersen et al. (2021),
drift bursts commonly lead to substantial short price trends, with positive (negative) drifts
contributing to the upside (downside) price trend. Motivated by this, we expect that drift burst
intensity should have a leverage effect on future volatility: positive drift burst intensity

increases volatility while negative drift burst intensity decreases volatility.

Third, Laurent et al. (2022) identify drift bursts at the daily level while we detect the drift
bursts at the intraday level by the method of Christensen et al. (2022). Drift bursts at the
intraday level may provide richer and possibly more useful information. Fourth, for forecasting

volatility, Laurent et al. (2022) use general drift bursts (not pretested) while we use statistically
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significant (or pre-tested) drift bursts. The use of significant drift bursts benefits less bias driven
by the measurement error. Fifth, Laurent et al. (2022) focus on short horizon forecast
(tomorrow) while we include both short- and long-term volatility forecasts. The long-term
volatility forecast has important implications for option pricing models and longer-term value-

at-risk models (Ederington and Guan, 2010).

The remainder of the paper is organized as follows. Section 2 introduces the detection
methods for drift bursts and the approaches for estimating drift burst intensity. Section 3 shows
the data and descriptive analysis. Section 4 reports the in-sample and out-of-sample analysis of

the drift burst intensity. Section 5 is the robustness analysis. Section 6 concludes.



2 Volatility estimation, drift burst detection and intensity measurement
2.1 Measuring volatility

Assuming log prices p;; are observed at ¢, ¢, ..., t, at day t. Andersen and Bollerslev

(1998) show that the full variation QV; for day t is estimated by the Realized Variance (RV;),
which sums up all n squared returns computed from these prices,

n

RV, = > 125 QV,
i=1
Based on a continuous-time stochastic process for log prices, the full variation QV can be
decomposed into the drift, integrated volatility and jump component,

t t
QVtzfu§S+fatzs+ Z K2l
0 0

1<s<t

As integrated volatility is of primary interest in finance, Mancini (2009) estimates the
volatility by assuming the drift component is small and using a threshold-based estimator to
remove the jump component. However, recent literature assumes drift could be not small but
large and explosive during some short intraday periods (or drift bursts). Therefore, the
threshold-based estimator may be biased in estimating integrated volatility. To reduce this bias
in the threshold-based estimator, Andersen et al. (2021) proposed a so-called Differenced-

return Volatility (DV) estimator 2,

n
1
DV =2 (=) 11, =i, | < 32870 ),
i=2

with (677¢4)” = —~ (L) i med(|re, | e, ) redl)

m4+6—4v3 \n-2

2 For generalization, we only report the results for DV as opposed to DV;_5 in Andersen et al. (2021).
But we confirm that the results for DV, _; are qualitatively consistent.
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2.2 Detecting intraday drift bursts

The drift burst component is trackable. In the literature, there are three detection methods
developed by Christensen et al. (2022), Laurent et al. (2022) and Andersen et al. (2021). The
methods by Laurent et al. (2022) and Andersen et al. (2021) detect whether drift bursts occur
over a long period (e.g., one day) while the method by Christensen et al. (2022) can locate both
drift bursts and their signs at the intraday level. In this paper, we choose the method by
Christensen et al. (2022) as it is the only method that identifies the sign of drift bursts, which

is our primary interest.

The method by Christensen et al. (2022) detects the existence of intraday drift bursts at ¢t;

if
- Az
72| :th\/ﬁ>(p'
t
where @ is a positive critical value,
1 n—kn+2
t; t
A ]—1 l *
i, = K ( )T'— '
t h—n & hn j—1kn
and
1 n—knp+2 2
t: . —t:
An _ j—1 i *
e > ()
Ln ! n—kp—L+2
t: . —t: t: — t;
j—1 i j+L—-1 L * *
+2) o (Z) ). K( , )K< r, )rf-l”‘nrf-“b"ny'
L=1 j=1

The remaining parameters are defined as follows. h,, and h,, are the bandwidths for

estimating the spot drift 4;. and spot volatility 67, respectively. And L, is the lag number for

the Heteroscedasticity and Autocorrelation Consistent (HAC) correction. 7, is the



preaveraged return with 7, = é(zf:;i/z Piajyyn — 2522 Piajyyn ) where P denotes

the price. w(+) is a Parzen kernel,

1—6x%2+6|x|3for0 < |x| <1/2,
w(x) = 2(1 —|x]3,for1/2 < |x| <1,
0, otherwise.

And k(-) is a backwards-looking exponential kernel, K(x) = exp(—|x]|), for x < 0.
The sign of drift burst at ¢; is consistent with the sign of T‘{i‘. After identifying all drift bursts
for day t, we obtain the total number of drift bursts N;, positive drift bursts N;*, and negative

drift bursts N .

2.3 Hawkes drift burst intensity

We utilize the information on the drift burst occurrence, through a parametric intensity
measure by Hawkes (1971). Such an approach is widely applied to deal with event studies in
financial markets (Bauwens and Hautsch, 2009, Bowsher, 2007, Large, 2007) and jump studies
(Ait-Sahalia et al., 2015, Ma et al., 2019, Clements and Liao, 2017). To begin with, several

definitions are required. Let {tq} N be a random sequence of increasing event times 0 >

qe€1l,...,
t; > --- > ty that describe a simple point process (Index t represents the daily frequency).
Given that Y == X451 1t is a counting function, the conditional intensity A, can be

viewed as the expected change in Y; (as a reflection of the probability of an event occurring)

over a short time horizon.

A common specification for 4, is the self-exciting Hawkes process (Hawkes, 1971)



t

Ae = ,u+f w(t —u)dY,
0

=u+Zw(t—tq)

tq<t

where p is a constant and w(+) is a non-negative weight function. This process is self-
exciting in the sense that Cov[Y(a, b),Y(b,c)] > 0, where N(a, b) represents the number of
events within time interval [a,b], and 0 > a > b < c. The weight function w(-) is a
decreasing function of t — u, meaning that the intensity decays following a spike. The common
approach to implementing the Hawkes model in the above equation is to replace the integral
with a discrete sum over past events such that the intensity is given by,

le=p+ Z ae Pt-ta) )
tg<t

where a captures the immediate impact on the intensity after a drift burst occurs, and g
controls the rate of decay in the exponential weighting function as ¢ — t, grows. Estimates of
the parameters in the above equation are obtained by maximum likelihood. Ogata (1981) shows

that the log-likelihood function can be defined recursively as,

a - "
InL ({tq}qzlmn) = —ut, — Ez 1— e Bltn=tq) 4 z In[p + aRy), 2)
q=1 q=1

where Ry = 0 and R, = e‘ﬁ(%‘tq-l)(l + R,_1), with R, corresponding to the time of

the gth event.

The evaluation of the likelihood begins by setting R, = 0, with the recursive series R,
then being constructed from Equation 1, given the timing of each jump event. The values for
R, are then used to evaluate the loglikelihood in Equation 2. We estimate a and 8 by the

maximum likelihood estimation (MLE) method, minimising the negative of the log-likelihood



function. The variance of parameter estimates is the inverse of the diagonal of the hessian
matrix of the loglikelihood function (Hessian is the equivalent of the observed Fisher
information matrix of the log-likelihood function). To estimate the subsequent forecasting
models, estimates of the intensity for all points in day t (including those when no events occur)
can be constructed recursively from Equation 1 using the estimated « and 8 and the occurrence

time t, of all past events, t > t,. The intensities estimated on the drift burst, positive, and

negative drift burst series are indicated as A;, Af, and A7, respectively.

2.4 Drift burst intensity by Tauchen and Zhou (2011)

The parametric nature of the Hawkes intensity measure may lead to model specification
bias. Moreover, the Hawkes measure may require a high computational cost (due to iterations
for the Maximum likelihood estimation) when applied to a high volume of assets. In contrast,
the Tauchen and Zhou (2011) (T&Z) measure only requires simple mean calculation, which
also requires lower computational costs. Specifically, T&Z proposed an intensity measure by

simply averaging the previous point process. The drift burst intensity A is defined by,

t
2= Zt_kl(]i\[t > 0)' (3)

where k = 504 is a 2-year window (Note N, is previously defined in section 2.2)3.

Analogously, the intensity of positive and negative drift bursts is defined by,

Yt (NS >0)
A =2 (4)

and

Xtk [(Ne > 0)
Ay == 5)

¥ When there are not enough elements to fill the window, we substitute nonexisting elements with the
average of the full sample. We apply this method for the rest of the paper.
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3 Data

We retrieve one-second E-mini futures (ES) trade prices from Tick Data Inc. This sample
is for 17 years from June 2, 2003, to September 30, 2020. To ensures that the sample consists
of regular trading days, we remove all non-business days and days in which the exchange
closed earlier. After cleaning, we obtain T = 4310 observations. As in Andersen et al. (2021),
we focus on the most active intraday session (09:30-16:00 EST) and eliminate days with

reduced trading hours, to avoid idiosyncratic overnight and weekend effects.

We sample 5-minute prices for previously defined volatility measures. Typically, the five-
minute frequency is to alleviate the distortion from market microstructure noise (Ait-Sahalia et
al., 2005, Bandi and Russell, 2006, Hansen and Lunde, 2006, Andersen et al., 2007, Bandi and
Russell, 2008) 4. In addition to the realized measures, we obtain an option-based S&P 500
index volatility measure (labelled SV) by Todorov (2019). The SV can be downloaded on
www.tailindex.com website, ranging from January 2008 until the end of December 2020. The
SV is originally the percentage of annualized volatility, and we transform it to daily level
variance to be consistent with the RV and DV measures. As discussed by Andersen et al. (2021),
the SV is constructed exclusively from option prices, and thus is void of the specific form for

noise structure present in the high-frequency asset prices.

Following Christensen et al. (2022) °, the implementation of the drift burst test depends on
a 5-minute bandwidth (h,, = 300 second) for the spot drift and 25-minute (h;, = 1500 second)
bandwidth for the spot volatility, with k,, = 3 and L,, = 2(k,, — 1) + 10 lags for the HAC
robust estimate. Using 1-second returns (n = 23400), the drift burst test statistic T‘t’i‘ IS

calculated across a regular five-second grid (i = 1,6,11, ...,23400). Following Christensen et

4 An alternative strategy to guard against microstructure noise uses the 3-minute prices as in Andersen et al. (2021).
We confirm that under the 3-minute frequency, the results hold true.
5 We thank the authors for sharing the code for the estimation procedure.
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al. (2022), we identify an intraday drift burst at ¢; if |T7| exceed @ = 4, 4.5, or 5, with the sign

of this drift burst consistent with the sign of T‘,_Z} 6,

Figure 1. daily realized volatility and drift burst intensities for |T| > 4

Reazlied Volatility +/ (RV)
T T

0
2004 2006 2008 2010 2012 2014 2016 2018 2020

2004 2006 2008 2010 2012 2014 2016 2018 2020

2004 2006 2008 2010 2012 2014 2016 2018 2020

2004 2006 2008 2010 2012 2014 2016 2018 2020

As in Christensen et al. (2022), we find an unignorable number of intraday drift bursts,
with a greater number of negative drift bursts. For example, for |T| > 4, we find overall
YT N, = 799 intraday drift bursts ’, with 349 positive drift bursts and 450 negative drift bursts.
The distribution of these intraday drift burst quantities across sample days is depicted in Figure
1. As the figure shows, most days only have one intraday drift burst. There appear to be both

more daily and intraday drift bursts during the 2008 financial crisis and 2020 pandemic sessions,

% Following Christensen et al. (2022), we allow at most one drift burst to be established over any 5-minute window
at which the test statistic attains a local extremum and exceeds the critical value. This cleaning method accounts
for the rolling calculation of the test statistic and avoid double counting of events.

" This frequency corresponds to about 4 drift bursts one month on average for this ES sample. Table 3 of
Christensen et al. (2020) show higher occurrence rate of drift burst for the same E-mini asset (5.7 drift bursts one
month). This is because that they detect intraday drift bursts for a longer trading session (02:00-16:15 Eastern
Time) and they focus on a more recent subsample of our sample (January 2010-December 2017).
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with the realized volatility, also being highest for these periods. It seems that the occurrence
rate of drift bursts is positively related to the volatility. To conserve space, the results are not
reported for more conservative critical value |T| > 4.5 or |T| > 5. But we confirm that the

patterns of drift bursts in Figure 1 are consistent if those critical values are applied.

To estimate the occurrence of drift bursts, we use the above intensity measures. The T&C
intensity is measured based on Equations 3, 4 and 5. To obtain the Hawkes intensity, we first
estimate the parameters in Equation (1). Table 1 reports the estimation results for these
parameters for |T| >4 . As the table shows, the parameters for drift bursts A, are
overwhelmingly highly significant, with their magnitude in line with those of Clements and
Liao (2017), Table 2. Also, the parameters of positive drift burst A and negative drift burst A7

are systematically significant.

Table 1. Coefficient estimates of Equation (1) (1, = u + th<tae‘ﬁ(t‘tq))
for |T| > 4. The brackets below the coefficients are t-statistics.

U a B Log-like

A 0.006 0.010 0.010 2,062.9
(1.48) (25.86) (25.00)

Af 0.013 0.013 0.016 1,203.6
(3.69) (14.91) (14.49)

Ay 0.042 0.029 0.051 1,431.0
(10.20) (11.40) (10.74)

We then recursively estimate the Hawkes drift burst intensity, based on the estimated
parameters for Equation (1). The upper panel of Figure 2 depicts the time series of the Hawkes
drift burst intensity estimates. The black, red, and blue lines denote the drift bursts’ intensity,
negative intensity, and positive intensity, respectively. As the panel show, both the drift burst
intensity and negative drift burst intensity are volatile over the sample periods and reach their
highest during the 2008 financial crisis and the 2020 pandemic. In contrast, the positive drift
burst intensity is generally smaller, more peaceful, and has a less obvious cyclical pattern

during the two recessions.
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The lower panel shows the time series for the T&Z intensity estimates. As the figure shows,
the cyclical patterns of T&Z intensities are qualitatively very similar to those of the above
Hawkes intensity. Besides the similarity, a difference is that Hawkes intensity is rougher than
T&Z intensity. This is because Hawkes intensity uses an exponential weighted average, which

gives more weighting to recent observations.

Figure 2. Time series of drift burst intensity for |T| > 4

Hawkes intensity

0.2 - t

0.15 /\/\/w

T&Z intensity
0.3

2004 2006 2008 2010 2012 2014 2016 2018 2020

Table 2. Descriptive Statistics

Min Mean Q25 Median Q75 Max
RV x 10* 0.011 0.881 0.198 0.347 0.722 62.50
SV x 10* 0.041 0.971 0.240 0.455 1.021 26.48
Hawkes (1971)

A 0.089 0.167 0.153 0.165 0.181 0.227

Af 0.053 0.076 0.067 0.074 0.082 0.116

Ar 0.045 0.096 0.083 0.093 0.108 0.143
Tauchen and Zhou (2011)

At 0.109 0.162 0.141 0.157 0.179 0.254

Af 0.040 0.074 0.063 0.071 0.083 0.115

AL 0.050 0.093 0.071 0.088 0.109 0.155
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4 Predicting volatility using drift burst intensity

The benchmark model is the HAR-DV model of Andersen et al. (2021),

Vetsn = Bo + By DVi_yt+ Bw DVi_st + B DVi_gp + &, (6)

where

h
1
DVt,t+h = Hz DVt+i ) h = 1,2, ey

=1

and VHW is the h-day average cumulative volatility (following Patton and Sheppard (2015)

and Andersen et al. (2021),

h
_ 1
Vt,t+h = HZ Vitie
i=1

To explore the importance of drift burst intensity in predicting future volatility, we add the
drift burst intensity component to the HAR-DV model, resulting in the following HAR-DV-
Intensity (HAR-DVI) model,

Vetrn = Bo+ BrAec1 + BaDVieyt + Bw DVisy + B DVi_gze + &1 (7)

Analogously, we formulate the HAR-DV -Signed Intensity (HAR-DVIE) model by including

the positive and negative drift burst intensity,

Vetrn = Bo+ Bt Ai—1e + Ba- Ae—1e + Ba DVeeyp + Bw DVisy + B DVizze + €. (8)

4.1 In-sample estimation

Table 3 reports the OLS in-sample results for the HAR-DV model, and the competing drift
burst intensity augmented models for |T| > 4. The forecasting target is the conventional 5-
minute RV, V; ;+n = RV, .4, We consider the forecasting horizons h = 1, 5, 22, 44, and 66,

with the longer horizons covering expiries of the heavily traded options. The brackets are HAC
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robust t -statistics by Newey and West (1987). Following Corsi and Reno (2012), the
bandwidth used for the HAC is 2(h + 1), where h is the lead length of the left-hand-side variable.

The results reveal the importance of including drift burst information for the in-sample. The
drift burst intensity strongly increases future volatility: for both Hawkes and T&Z measures
and across all horizons, the coefficient of drift burst intensity is systematically positive and
highly significant. Moreover, including the drift burst component leads to a substantial increase
in the model goodness of fit. For example, for h = 66, the HAR-DVI model based on the

Hawkes intensity gains 27.9% R? against the HAR-DV model.

The results also evidence the in-sample advantage of separating the drift burst signs. Across
all of these different scenarios, drift burst signs show a clear leverage effect on future volatility,
with the negative (positive) drift bursts strongly increasing (weakly affecting) volatility.
Moreover, the negative sign has a more prominent impact than the unsigned: the t-statistic of
negative drift bursts is generally more positive than that of (unsigned) drift bursts. Further,
decomposing drift burst signs yield a further increase in the goodness of fit of the drift burst
augmented model. In particular, for h = 66 for the Hawkes measure, the HAR-DVI* model has

a 5.0% greater R? than the HAR-DVI model.

We then extend the in-sample results in Table 3 to a broader range of forecasting targets
and more conservative critical values @. Figure 3 reports these results for the Hawkes measure.
To economize the space, only the t-statistics of drift burst coefficients are reported. Panel A, B
and C of this figure reports the results for the |T| > 4, |T| > 4.5, and |T| > 5. In each panel,
we report the results for the RV, DV and SV forecasts, with the black, red, and blue lines
denoting the t-statistics of drift burst intensity, positive drift burst intensity, and negative drift

burst intensity, respectively.
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Table 3. In-sample estimation results for |T| > 4 for RV forecast
Notes: The brackets are the HAC robust p-values. The intercept result is not reported.

Ba+ Ba- Ba Ba Bw Bm R?

0.390 0.596 0.030 0.593
(3.22) (3.95) (0.38)

Hawkes 0.340 0.389 0.595 0.016 0.593
(3.09) (3.22) (3.95) (0.20)

h=1 T&Z 0.233 0.388 0.596 0.016 0.593
(2.39) (3.22) (3.95) (0.20)

Hawkes -0.198 0.530 0.387 0.596 0.011 0.594
(-0.92) (3.58) (3.21) (3.95) (0.13)

T&Z 0.181 0.235 0.388 0.596 0.016 0.593
(1.11) (2.75) (3.22) (3.95) (0.19)

0380 0455  0.100  0.646
(3.60) (2.96) (0.94)

Hawkes 0575 0378 0454 0076  0.649
(2.85) (3.61) (2.95) (0.69)

h=5 T&Z 0.376 0.377 0.456 0.077 0.648
(2.32) (3.61) (2.94) (0.69)

Hawkes -0.281 0.890 0.375 0.455 0.067 0.651
(-0.92) (3.16) (3.62) (2.98) (0.60)

T&Z 0.296 0.378 0.377 0.456 0.076 0.648
(1.12) (2.86) (3.61) (2.94) (0.67)

0.229 0.333 0.147 0.462
(3.49) (2.62) (1.23)

Hawkes 1.226 0.225 0.329 0.096 0.479
(1.99) (3.61) (2.60) (0.71)

h=22 T&Z 0.775 0.224 0.334 0.100 0.476
(1.84) (3.66) (2.60) (0.73)

Hawkes -0.403 1.815 0.220 0.331 0.078 0.488
(-0.69) (2.13) (3.68) (2.65) (0.57)

T&Z 0.696 0.745 0.224 0.334 0.098 0.476
(1.19) (2.06) (3.66) (2.60) (0.70)

0.158 0.257 0.114 0.323
(4.51) (2.11) (1.67)

Hawkes 1.871 0.151 0.252 0.037 0.370
(2.02) (4.85) (2.07) (0.41)

h=44 T&Z 1.143 0.150 0.259 0.046 0.360
(2.10) (4.96) (2.10) (0.52)

Hawkes 0.002 2.547 0.146 0.253 0.014 0.386
(0.00) (2.20) (5.02) (2.10) (0.15)

T&Z 1.134 1.051 0.149 0.260 0.044 0.360
(1.58) (2.20) (4.97) (2.10) (0.49)

0.118 0.168 0.152 0.251
(5.03) (2.08) (2.41)

Hawkes 2.106 0.111 0.161 0.066 0.321
(2.06) (5.53) (2.02) (0.80)

h=66 T&Z 1.286 0.109 0.169 0.077 0.305
(2.31) (5.70) (2.07) (0.93)

Hawkes 0.378 2.722 0.106 0.161 0.043 0.337
(0.50) (2.31) (5.74) (2.05) (0.54)

T&Z 1.383 1.129 0.109 0.169 0.075 0.304
(1.94) (2.27) (5.72) (2.06) (0.90)
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Figure 3. HAC robust t-statistics of Hawkes drift burst intensity as a function of forecasting horizons.
Black, red, and blue lines denote the t-statistics of drift burst intensity, positive drift burst intensity, and
negative drift burst intensity, respectively.
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The results show that the positive effect of drift burst is consistent for all of these cases but
is sometimes not highly significant for a more conservative @. For example, the coefficients of
drift bursts are not highly significant for RV and DV targets for |T| > 4.5 and |T| > 5. The
leverage effect of drift bursts is more robust: for all cases of the three panels, the coefficient of
negative drift burst is systematically negative and significant. The more consistent impact of

negative drift bursts on future volatility again indicates the importance of decomposing drift

burst signs.

17



Figure 4. HAC robust t-statistics of drift burst intensity by Tauchen and Zhou (2011) as a function of
forecasting horizons. Black, red, and blue lines denote the t-statistics of drift burst intensity, positive
drift burst intensity, and negative drift burst intensity, respectively.
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Figure 4 depicts the in-sample t-statistics for T&Z drift burst intensities for extended
critical values and forecast targets. The pattern of Figure 4 is very similar to that of Figure 3:
across all of these different scenarios, the drift burst intensity has a positive effect on volatility

while the intensity of drift burst signs has a leverage effect on volatility.

Overall, including information on drift bursts and drift burst signs strongly predict future

volatility and improves the model's in-sample performance. However, whether the
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improvements for in-sample are also of practical importance remains an empirical question to

be answered in the out-of-sample forecasting exercise in the following section 4.2.

4.2 Out-of-sample forecasting

This section compares the drift burst intensity augmented HAR-DV models with the HAR-
DV model, in terms of the out-of-sample performance. Motivated by the above limited in-
sample evidence of positive drift burst intensity, we formulate a new HAR-DVI™ model by
including the negative drift burst intensity only,

Viesn = Bo + Br- Ar—1 + Ba DVi_1 i + By DVist + B DVi_zz1 + & (6)

For in-sample estimation, we rely on OLS to generate both a rolling window forecast using
the prior 1000 trading days and an increasing window forecast using all prior observations,
starting from an initial set of 1000 trading days. The intensities and models are all estimated
only within each window, to ensure that only past/current information is used for forecasting.
These estimated parameters are then used to construct h-step-ahead out-of-sample forecasts

which incorporate new information as it becomes available.
The following two loss functions are applied for evaluating the forecasting performance:

(a) mean square error (MSE),

MSE(Vt,t+h'Ft,t+h) = (Vt,t+h - Ft,t+h)2'

(b) gaussian Quasi-likelihood (QLIKE) loss function:

Viern o Viern

In
Ft,t+h Ft,t+h

QLIKE (Vt+h|t: Ft,t+h) = 1,

where Fy,p| denotes the h-day-ahead forecast. The MSE and QLIKE are both unbiased loss

functions (Patton, 2011) and are widely applied by key research (Bollerslev et al., 2016,
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Andersen et al., 2021). The statistical significance difference is evaluated via the Diebold—
Mariano-West (DMW) statistic & developed by Diebold and Mariano (1995) and West (1996),
with adjustment to the Newey—West Heteroskedasticity and Autocorrelation Corrected (HAC)

standard errors.

4.2.1 Drift burst information

The aim of this section is to explore whether including drift burst intensity leads to an
improvement in predictive accuracy over the HAR-DVI models. Table 4 presents DM statistics
for comparing the augmented HAR-DV models with the benchmark HAR-DV model for the
case of the Hawkes intensity measure. A positive (negative) statistic indicates the competing
model is superior (inferior) to the benchmark model, with the significant and positive statistics
(at 5% level) indicated in bold.

The upper panel of Table 4 shows the out-of-sample results for RV forecast °. The results
support the out-of-sample value of drift burst information: for longer horizons (h > 5), |T| >
4.5, and both forecast windows, the HAR-DVI, HAR-DVI#, and HAR-DVI~ models, with few
exceptions, overwhelmingly outperform the benchmark HAR-DV model. For the daily forecast
(h = 1), although these three augmented models generally perform worse than the benchmark
model, the HAR-DVI and HAR-DVI™ models are never significantly inferior. The predictive
advantage of the drift bursts is somewhat less clear but still qualitatively consistent for |T| > 4
and |T| > 5, reported in the left and right parts of the upper panel, respectively.

The lower panel of Table 4 is for SV forecast. As suggested by Andersen et al. (2021), the

expost SV measure refers directly to a concurrent estimate of the underlying volatility level

8 The DMW results in this paper were obtained using the robust_loss_1 function from Andrew Patton's Matlab code page,
http://public.econ.duke.edu/~ap172/

9 As in Andersen et al. (2021), we also make the out-of-sample results for DV forecast (unreported). The pattern is very similar
to that for RV forecast in Table 4.
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thus providing a less noisy benchmark for the assessment of forecast performance. As the panel
shows, the out-of-sample evidence of the augmented models appears to be even stronger °.
For the cases in the panel, the intensity models provide much more forecasts which are
significantly better than the HAR-DV model. Moreover, the intensity models are able to provide
significantly better forecasts for both short and long horizons (e.g., HAR-DVI~ or HAR-DVI for
|T| > 4.5).

Table 5 reports the same out-of-sample results as Table 4 but for the T&Z intensity measure
case. The patterns here are very close to those in Table 4: the augmented models are again
superior to the HAR-DV model for longer horizons for forecast RV, or all horizons for forecast
SV. The consistent results indicate that the predictability of drift burst intensity holds for the

T&Z intensity measure of Tauchen and Zhou (2011).

4.2.2 Drift burst signs

The goal of this section is to investigate whether disentangling drift burst signs leads to an
improvement in predictive accuracy over the drift burst intensity models. We begin by
comparing the HAR-DV-I* and HAR-DV-I~models with the HAR-DV-I model in Table 4. We
only discuss the patterns in Table 4 for the Hawkes intensity as the patterns in Table 5 for the
T&Z intensity are very similar. The first thing to note is that the HAR-DV-I* can perform better
than the HAR-DV-I model. For example, for |T| > 4 for both SV and RV forecasts, the DM
statistics of the HAR-DV-I¥ model is generally more positive than those of the HAR-DV-I
model. However, this superiority is not robust for some other cases. For the cases in |T| > 4
for both SV and RV, the HAR-DV-I* model provides a considerable number of less positive or

more negative DM statistics over the HAR-DV-I model.

10 The DM statistics discrepancies between upper and lower panels also reflect the different sample periods, as the SV forecasts
are initiated only during the great financial crisis of 2008-2009. However, we confirm that the difference remains substantial,
even if we generate the forecasts over the identical time period.
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The results for the HAR-DVI™ model reveals a cleaner picture for the advantage of
separating drift burst signs. Except for some cases for |T| > 5 for RV forecasts, the DM
statistics of the HAR-DVI™ model is systematically more positive or less negative than the
HAR-DVI model. The stronger evidence of the HAR-DVI~ model over the HAR-DVI* model
implies that the positive drift burst intensity does not help forecast volatility, which is consistent
with its limited in-sample evidence. Overall, the results show that decomposing the drift burst
signs improves the out-of-sample, and this improvement mainly comes from the negative sign

of drift bursts.

4.2.3 Comparing two intensity measures

This section aims to compare the forecast value between Hawkes measures and the T&Z
measure. The T&Z measure appears to be more beneficial in forecasting accuracy. Comparing
the DM statistics for the T&Z measure in Table 4 with those for the Hawkes measure in Table
5, the T&Z measure provides a great number of more positive statistics than the Hawkes
measure (e.g., |T| > 4 for the HAR-DVI model for SV forecast; |T| > 5 for the HAR-DVI™

model for RV forecast).

22



Table 4. Diebold—Mariano statistic for Hawkes drift burst intensity

IT| > 4 |T| > 4.5 IT| >5
HAR- HAR- HAR- HAR- HAR- HAR- HAR- HAR- HAR-
DVI DVI* DVI- DVI DVI* DVI- DVI DVI* DVI-

Forecast RV

h=1 MSE RW -127 -150 -1.06 -0.38 -1.25 -0.95 -1.11 -1.80 -0.97
IW 025 060 0.24 -0.18 -0.64 -0.46 -0.88 -1.05 -0.86

QLIKE RW -2.84 -1.11 -155 -1.00 -4.44 -1.81 -149 -3.85 -3.67

IwW -3.18 -2.70 -2.89 0.82 -2.77 -0.69 -3.81 -3.76 -3.64

h=5. MSE RW 000 001 0.16 094 035 0.1 0.11 -0.67 0.39
IW 071 198 165 0.15 020 0.35 044 042 0.59

QLIKE RW -1.32 -1.27 -0.64 043 -248 -0.83 -2.89 -2.83 -2.32

W -311 -1.72 -1.80 117 -1.37 0.08 -1.00 -3.31 -240

h=22 MSE RW 158 1.10 0.82 140 139 167 0.77 054 105
IW 080 198 192 0.65 0.71 0.87 105 116 122

QLIKE RW -223 -1.11 -0.96 1.05 -062 125 -1.19 -091 -0.42

w -212 -0.70 -0.02 0.67 -0.30 1.42 1.18 -243 0.26

h=44 MSE RW 180 1.10 0.1 1.84 167 206 0.77 134 113
IW 108 200 1.99 014 169 1.73 149 113 120

QLIKE RW -159 -1.12 -0.35 230 090 197 -1.01 0.09 -051

w -222 -179 0.29 123 199 205 206 -140 -1.18

h=66 MSE RW 180 0.88 0.71 217 182 2.09 069 182 114
W 130 224 221 -0.02 208 2.06 161 099 105

QLIKE RW 0.75 143 0.60 273 -057 1.79 -1.28 0.87 -0.44

W -226 -111 1.64 154 258 250 261 -087 -211

Forecast SV

h=1 MSE RW 324 3.09 353 191 215 240 2.88 198 3.03
Iw -035 083 1.10 158 1.64 2.09 131 189 3.99

QLIKE RW 225 266 2.86 1.07 134 101 -1.92 -2.25 0.50

Iw 221 206 1.78 212 283 1.85 165 -1.11 731

h=5t MSE RwW 231 362 328 214 197 237 237 140 251
Iw -031 132 1.60 1.20 153 1.87 1.07 365 245

QLIKE RW 181 251 262 143 0.79 0.66 -248 -1.81 -0.11

Iw 147 220 1.95 189 3.09 240 246 -3.17 6.75

h=22 MSE RwW 121 191 191 163 146 174 131 082 1.38
Iw 040 174 1.96 093 157 194 0.83 193 161

QLIKE RW 0.85 158 1.57 145 1.03 1.09 -193 -1.14 0.66

iw -1.10 179 1.87 165 0.72 203 226 -3.19 3.40

h=44 MSE RW 157 198 216 1.70 1.74 2.05 138 0.86 161
Iw 057 195 237 0.83 188 2.20 1.06 211 201

QLIKE RW -0.75 1.77 198 195 159 1.62 -0.74 -111 141

Iw -209 140 231 153 1.40 0.68 265 -1.15 3.26

h=66 MSE RW 169 221 241 218 185 222 162 1.03 197
Iw 066 214 3.09 0.87 178 1.90 117 196 220

QLIKE RW -1.12 171 243 227 168 1.40 -1.57 -152 196

Iw -1.16 -099 3.34 148 -1.11 -0.04 286 -258 1.12
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Table 5. Diebold—Mariano statistic for drift burst intensity of Tauchen and Zhou (2011)

IT| > 4 |T| > 4.5 IT| >5
HAR- HAR- HAR- HAR- HAR- HAR- HAR- HAR- HAR-
DVI DVI* DVI- DVI DVI* DVI- DVI DVI* DVI-
Forecast RV
h=1 MSE RW -128 -145 -1.07 -150 -1.97 -1.13 -0.50 -2.39 -1.89
Iw -1.06 -1.12 -0.70 -0.57 -0.67 -0.21 -0.52 -157 -1.01
QLIKE RW -3.36 -2.23 -1.60 -140 -2.14 -1.15 -3.02 -3.93 -2.30
Iw -1.02 -0.88 1.29 -0.50 -1.46 -0.72 -3.02 -1.83 -1.82
h=b MSE RW -0.20 055 0.34 -0.40 -0.27 0.24 0.03 -0.94 -1.04
Iw -0.02 -0.05 0.80 054 100 114 0.22 -0.20 0.59
QLIKE RW -2.11 -1.73 -0.14 -0.56 -1.92 -0.04 -2.27 -3.04 -1.25
IwW -147 -198 1.67 -1.11 -1.23 -0.35 -2.31 -2.62 -194
h=22 MSE RW 121 134 1.09 0.64 072 1.07 092 123 1.46
Iw 101 106 1.35 1.07 176 1.67 1.06 1.28 153
QLIKE RW -0.90 -0.43 0.02 0.01 -1.01 0.6 049 092 162
IwW -1.04 -200 1.83 -0.19 -155 0.62 0.03 -1.74 -0.67
h=44 MSE RW 136 118 114 093 09 111 130 197 198
IwW 116 119 1.48 151 227 210 175 171 175
QLIKE RW -1.03 -1.15 1.18 0.36 0.70 1.63 144 244 273
IW -133 -186 2.62 -2.13 -1.00 -0.39 1.02 -0.67 226
h=66 MSE RW 181 105 129 0.88 107 111 0.17 210 182
IW 133 131 156 174 252 234 1.09 200 187
QLIKE RW -1.73 -1.21 0.00 -0.09 -1.11 1.99 185 311 3.39
IW 026 -1.20 3.08 -2.09 0.93 -0.79 143 -0.88 2091
Forecast SV
h=1 MSE RW 208 091 1.27 0.60 000 1.13 -2.24 -121 154
IW 310 136 5.39 1.38 090 1.34 123 142 166
QLIKE RW 299 116 1.80 180 092 121 -2.64 0.00 210
IW 6.64 -1.79 8.97 -149 179 299 3.48 6.04 7.47
h=5 MSE RW 154 124 120 057 122 1.01 -0.92 -0.02 1.33
W 232 121 3.99 1.29 099 122 111 174 250
QLIKE RW 230 124 261 266 149 2.08 -1.91 052 219
IW 599 -136 8.50 1.32 357 356 325 6.70 7.05
h=22 MSE RW 169 166 1.57 1.13 129 140 050 164 1.68
IW 182 106 2.64 1.20 1.05 1.23 115 193 263
QLIKE RW 110 136 211 192 153 1.80 -093 111 1.66
IW 371 -165 458 3.36 286 3.06 218 355 257
h=44 MSE RW 191 168 1.60 142 1.04 141 099 175 182
IwW 238 122 3.00 159 139 171 157 254 325
QLIKE RW 162 176 2.58 206 218 224 0.17 140 2.19
IW 394 -060 4.29 356 3.04 355 229 -235 4.38
h=66 MSE RW 220 143 1.63 186 1.00 1.58 136 143 1.98
IwW 273 079 263 183 152 211 191 3.08 394
QLIKE RW 125 -042 3.12 217 254 271 -0.57 -0.14 275
IW 435 264 459 3.99 347 442 -0.35 -1.49 3.66
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5 Robustness analysis
This section aims to check the robustness of our results in section 4. Only robustness
results for the critical value |T| > 4 are reported but the (unreported) results for more

conservative critical value are broadly speaking in line with those reported here.

5.1 Volatility transformations

This section is to examine if the predictive advantages of the drift burst intensity are still
observed under some important volatility transformations. As in Andersen et al. (2007), we
consider the logarithm and square root transformations. And the logarithm and square root
transformed HAR-DV model are defined by,

1/2

1/2 1/2

(Veesn) " =Bo+Ba (DVecre) "+ Bw (DVese) '~ + ﬁm(DVt—zz,t)l/z +é&, (3)

10g(Vee4n) = Bo + Balog(DVi_y) + B 10g(DVis ) + B log(DVizze) + & (3)

We term these two models the sqr-HAR-DV and log-HAR-DV models. We again formulate the
drift burst augmented models by adding the drift burst intensity to these two models.

We first explore the in-sample estimation results of the augmented sqr-HAR-DV and log-
HAR-DV models. Figure 5 reports the coefficient estimates (t-statistics) for the drift burst
intensity components, with the upper and lower panel showing the results for the square root
and logarithm transformations, respectively. The general pattern in both the upper and lower
panel directly mirrors that of the estimates for the non-transformation case in Figure 3&4: for
both Hawkes and T&Z measures for all RV, DV, and SV forecast targets, the drift burst
intensity significantly increases the future volatility, with the negative (positive) drift burst
intensity strongly increase (weakly decrease) the future volatility. This indicates that the impact
of (signed) drift burst intensity on future volatility is robust to the square root and logarithm

volatility transformations.
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Figure 5. HAC robust t-statistics of drift burst intensity as a function of forecasting horizons. Black,
red, and blue lines denote the t-statistics of drift burst intensity, positive drift burst intensity, and
negative drift burst intensity, respectively. |T| > 4
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Table 6. Diebold—Mariano statistic for root volatility transformations for |T| > 4

Hawkes T&Z
sqr-HAR- sqr-HAR- sqr-HAR- sqr-HAR- sqr-HAR- sqr-HAR-
DVI DVIE DVI™ DVI DVIE DVI™
Forecast RV1/2
h=1 MSE RW -0.34 -0.27 -0.02 -0.65 -0.23 0.26
w -0.18 1.62 1.57 0.12 0.03 1.36
QLIKE RW -0.19 0.48 0.95 0.17 0.09 1.34
Iw -0.72 -0.01 -0.06 0.21 0.33 1.87
h=5 MSE RW 0.71 0.81 0.58 0.36 1.06 0.90
w 0.74 2.24 1.94 0.93 0.97 1.78
QLIKE RW -0.10 1.09 1.22 0.04 1.12 1.92
Iw -0.68 0.79 0.49 0.54 0.61 2.15
h=22 MSE RW 1.49 1.26 0.67 1.25 1.69 1.52
w 0.99 2.28 2.04 1.44 1.47 2.26
QLIKE RW -0.07 1.24 1.18 0.53 2.16 2.57
w -0.68 1.39 1.19 1.37 1.23 2.40
h=44 MSE RW 2.32 1.39 0.79 1.94 1.98 1.96
w 1.99 2.43 2.34 1.92 1.88 2.69
QLIKE RW 0.61 1.74 1.51 1.08 2.51 2.45
w 0.23 1.91 1.81 2.01 1.64 2.79
h=66 MSE RW 2.42 1.15 0.75 2.38 2.00 2.18
w 2.28 2.75 2.69 2.34 2.21 3.08
QLIKE RW 1.55 212 1.72 1.00 2.65 2.70
W 0.78 244 2.34 2.47 1.98 3.12
Forecast SV1/2
h=1 MSE RW 2.34 3.12 3.51 3.39 2.08 2.63
w 0.11 0.96 1.14 3.30 2.39 5.84
QLIKE RW 242 3.13 2.93 3.36 1.79 2.32
w 0.60 0.15 -0.06 4.10 2.65 6.99
h=5 MSE RW 141 3.31 3.26 2.70 1.77 2.27
w -0.06 1.31 1.45 2.80 2.17 4.92
QLIKE RW 1.53 2.65 2.44 2.83 1.85 2.82
w 0.55 0.79 0.57 3.59 2.44 6.10
h=22 MSE RW 0.93 2.71 2.66 1.89 1.63 1.87
w 0.31 1.69 1.97 2.28 1.81 3.48
QLIKE RW 0.71 2.31 2.07 2.16 2.28 3.07
w 0.76 1.71 1.63 2.86 2.19 3.99
h=44 MSE RW 1.31 2.31 2.47 2.50 2.09 2.30
w 0.64 1.83 2.40 2.71 1.99 3.57
QLIKE RW 1.09 2.21 2.25 2.59 2.83 3.28
W 1.13 2.15 2.21 3.10 2.57 3.74
h=66 MSE RW 1.30 2.46 2.60 2.83 2.22 2.54
w 1.03 1.99 3.01 2.92 1.77 3.30
QLIKE RW 1.30 2.47 2.61 2.70 3.37 3.72
W 1.66 2.57 2.86 3.35 2.91 3.85
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Table 7. Diebold—Mariano statistic for logarithm volatility transformations for |T| > 4
Notes: the DM statistics are based on the MSE function.

Hawkes T&Z
log-HAR- log-HAR- log-HAR- log-HAR- log-HAR- log-HAR-
DVI DVIE DVI™ DVI DVIE DVI™
Forecast log(RV)
=1 MSE RW -0.69 1.02 0.99 -0.33 0.38 1.22
W -0.44 0.90 1.00 0.98 1.06 1.87
QLIKE RW -0.85 0.93 0.88 -0.15 0.47 1.10
W -0.39 0.98 1.16 0.91 0.97 1.71
=5 MSE RW 0.15 1.54 1.22 0.24 1.26 1.59
Iw 0.52 1.53 1.38 1.43 1.55 2.33
QLIKE RW 0.03 1.31 1.01 0.41 1.18 1.38
W 0.64 1.64 1.54 1.33 1.43 2.17
=22 MSE RW 0.86 1.14 0.72 0.79 217 2.40
W 0.90 1.78 1.59 1.92 2.02 2.88
QLIKE RW 0.94 0.72 0.30 0.97 1.88 1.98
W 1.06 1.80 1.64 1.67 1.79 2.68
=44 MSE RW 2.05 1.59 0.89 1.49 3.11 3.06
IW 2.29 2.19 2.14 2.61 2.61 3.36
QLIKE RW 2.24 1.19 0.36 1.80 2.76 2.73
W 2.47 2.15 2.14 2.39 2.44 3.30
=66 MSE RW 1.68 1.47 1.01 1.26 3.46 3.06
W 2.88 2.83 2.82 3.12 3.02 3.72
QLIKE RW 1.85 0.95 0.41 1.68 2.90 2.69
IW 3.03 2.73 2.77 2.98 2.94 3.71
Forecast log(SV)
=1 MSE RW 2.30 3.68 3.59 3.54 2.29 2.93
W 0.81 1.05 1.15 3.39 3.09 5.92
QLIKE RW 1.98 3.64 3.71 3.47 2.32 2.91
w 0.89 1.34 1.47 3.19 2.98 5.65
=5 MSE RW 1.16 2.96 2.88 2.73 1.94 2.73
W 0.53 1.25 1.34 2.80 2.69 4.88
QLIKE RW 0.84 3.06 3.07 2.70 1.92 2.59
W 0.54 1.43 1.56 2.64 2.59 4.70
=22 MSE RW 0.54 2.41 2.59 2.26 2.10 2.97
W 0.65 1.63 1.91 2.61 2.67 4.15
QLIKE RW 0.36 2.27 2.72 2.15 1.80 2.55
W 0.52 1.55 1.95 2.34 2.46 4.00
=44 MSE RW 0.97 2.54 2.66 3.35 3.26 4.04
W 1.02 1.90 2.43 3.06 3.02 4.15
QLIKE RW 0.92 2.48 2.73 3.37 2.98 3.67
w 0.86 1.73 2.47 2.88 2.85 4.16
=66 MSE RW 0.99 2.51 2.79 3.70 3.95 4.62
W 1.58 2.18 2.97 3.23 3.19 4.09
QLIKE RW 0.90 2.50 2.81 3.83 3.55 4.26
IW 1.39 1.96 3.01 3.05 2.89 4.01
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We next focus on forecast accuracy. Table 6 evaluates the out-of-sample of the augmented
sqr-HAR-DV models, in terms of their DM statistics relative to that of the benchmark sqr-
HAR-DV model. The upper and lower panel report the results for RV/2 and SV'/2 forecast,
and in each of these two panels results for the Hawkes and T&Z intensity measures are also
reported. These results are not only confirmed but strengthened, compared to those in Table 4
and Table 5. In detail, for both RV*/2 and SV*/2 forecasts, the augmented sqr-HAR-DV models
overwhelmingly outperform the benchmark model, with few exceptions (mostly from the sqr-
HAR-DV model associated with the Hawkes measure for RV forecast). Moreover, the
superiority of the sqr-HAR-DVI~™ model over the sqr-HAR-DV model also holds true for the
square root volatility transformations: the DM statistics of the sqr-HAR-DVI~ model is
substantially more positive across these different cases in the table. Further, comparing the
Hawkes and T&Z measure, the latter provides a greater number of significant DM statistics,
for these different scenarios. Table 7 compares the augmented log-HAR-DV models with the
log-HAR-DV model for the out-of-sample. The pattern is qualitatively in line with those in

Table 8, indicating that our findings are also robust to logarithm volatility transformations.

5.2  Alternative benchmark model

This section aims to study whether the drift burst intensity also improves other benchmark
models for the out-of-sample. The first benchmark model we choose is the popular HARQ

model by Bollerslev et al. (2016),
RVisnie = Bo+ (Ba + Bgy/RQe-1,0)RVi 1t + By RVes.e + B RViaa ¢ + &1, (7)
where RQ; is the realized quarticity estimator, with RQ; =% ﬁlrtzi. The second model

we consider is a recent HARDQ developed by Laurent et al. (2022),
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RVprsn = Bo+ (Ba + .33\/ RQt—1t)RVe_1t + Bw RVi_st + B RVi_pz¢
+ (ﬁd + Bff\/ Ricth—1,t)RACt+—1,t + Bw RACt+—5,t + Bm RACt+—22,t + &, (7)
where RAC is the non-negative realized first-order Auto-Covariance (RAC) which measures the

drift burst variation with RAC, = RAC, - I(RAC, > 0) with Y™ . 13,1, ,» and RiceQ is adrift-
robust quarticity estimator with RiceQ; = %Z’& T,Tt, - It is worthwhile to note that the

HARDQ model already contains drift burst information, which, however, is all about the drift
burst variation. It is interesting to see whether our intensity information of the drift bursts
contributes a distinct value to this model.

To study the contribution of drift burst information, we formulate new models by simply
adding the different drift burst intensities to the HARQ and the HARDQ model, in the same way,
we have done for the HAR-DV model. For example, we create the HARQ-I model and the
HARDQ-I model by including the drift burst intensity to the HARQ and the HARDQ model,
Wt+h|t = Po+ B Ar-1+ (ﬁd + ﬁg\M)RVt—l,t + Bw RVi_st + Bm RVi_22¢ + &, (8)
Wt+h|t =Po+ PrAr-1+ (ﬁd + ﬁgM)RVt-l,t + Bw RVt—S,t + Bm RVt—ZZ,t + (ﬁd +
Ba/RiceQr—10)RAC 1 + B RACY 54 + B RAC 21 + &1

As a result, we will have overall 6 augmented models: HARQ-I, HARQ-I¥, HARQ-I",
HARDQ-I, HARDQ-I%, and HARDQ-I~ models. Table 8 compares these augmented models
with their benchmarks, with positive DM statistics indicating that the augmented models
perform better. We focus on reporting the results for the T&Z measure and SV forecast, as the
main goal of this section is to check the robustness of the predictive power of drift burst
intensity. But we confirm that for the HARQ and HARDQ models, the predictive superiority of

the T&Z measure over the Hawkes intensity measure still holds, and both intensity measures

provide a better forecast for longer horizons for RV forecast.
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Table 8. Diebold—Mariano statistic for SV forecast for the augmented-HARQ and the augmented-

HARDQ models.

h=1 MSE
QLIKE
h=5 MSE
QLIKE
h=22  MSE
QLIKE
h=44  MSE
QLIKE
h=66  MSE
QLIKE

HARQ
HARQ HARQ HARQ
-1+ -1~
030 -0.25 0.31
1.72 1.19 2.19
2.28 0.63 1.76
481  -1.88 7.49
0.95 1.24 1.04
1.43 1.12 1.86
1.30 0.50 2.20
419  -1.67 6.99
1.73 1.79 1.68
1.72 1.13 2.38
0.98 1.31 2.20
291 -1.20 3.81
1.74 1.80 1.74
2.28 1.28 2.82
1.31 1.13 2.55
328 -0.01 3.68
2.10 1.72 1.85
2.60 0.83 2.44
064  -0.74 2.98
3.75 251 4.03

HARDQ

HARDQ HARDQ HARDQ

-1+ -1-
071  -025  -0.79
1.58 0.97 2.06
2.63 0.61 2.38
376 -1.92 7.24
1.58 1.58 1.45
1.35 0.96 1.78
2.11 1.77 2.76
303  -202 6.63
1.60 1.76 1.63
1.70 1.06 2.36
1.43 1.66 1.93
283  -1.08 3.83
1.67 1.92 1.74
2.28 1.17 2.81
1.10 1.46 2.58
319  -0.80 3.67
1.90 1.66 1.73
2.61 0.74 2.44
011  -0.62 2.19
3.71 2.04 4.03

Table 8 evaluates the out-of-sample of the three intensity models over the benchmark

HARQ model, with forecast target SV. Again, the intensity-augmented HARQ model is able to

be significantly superior to the HARQ model, and the pattern in the table is very similar to that

in Table 6. For example, the HARQ-I~ model performs significantly better than the HARQ

model across almost all of these different scenarios. And the HARQ-I* model generally

provides significantly better forecasts than the HARQ model for all cases within |T| > 4 and

|T| > 4.5. In addition, the out-of-sample results for RV and DV as targets are consistent with

those in Table 4 and Table 5: the augmented HARQ model performs better for long horizons.

For brevity, we report these results in the appendix.
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5.3 The insanity filter

To alleviate these abnormal volatility forecasts, Bollerslev et al. (2016) apply the “insanity
filter (IF)”. The IF substitutes the forecast with the unconditional mean within the estimation
window if the forecasts are outside the interval between the minimum and maximum
forecasting target V of this window. Insanity filters for volatility forecasting have also been
used by Patton and Sheppard (2015) and Bollerslev et al. (2018) Even so, the vast majority of
studies examining the HAR model, and extensions thereof, do not employ an IF. Examples
include Corsi et al. (2010), Corsi and Reno (2012), Andersen et al. (2021), and Caporin (2022).
Unreported results show that all our results, including the robustness check, hold for employing

an IF.
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6 Conclusion

This paper exhibits the importance of drift burst information in predicting future volatility.
The in-sample results reveal the positive effect of drift burst intensity and the leverage effect
of the intensity of drift burst signs. In addition, including drift burst and drift burst signs
intensity leads to a significant increase in the out-of-sample performance of the HAR-DV model
by Andersen et al. (2021), the HARQ model by Bollerslev et al. (2016) and the HARDQ model
by Laurent et al. (2022). The strong evidence for both in-sample and out-of-sample indicates
the importance of drift burst information to volatility forecasting. Our findings are robust to
both approaches by Hawkes (1971) and Tauchen and Zhou (2011), the use of insanity filter,

and logarithm and square root volatility transformations.

Future research can be on multivariate intensity modelling. For example, one can use the
multivariate Hawkes model to model the drift burst intensity across different markets, for
investigating the interaction between these markets. In addition, the drift bursts may have
implications for asset pricing. Since the drift bursts affect the price volatility, the drift bursts
should also influence the beta, which builds on the covariance between the market prices and

the asset prices.
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