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Forecasting volatility using drift burst information 

Abstract 

Using high-frequency data for the S&P 500 Index, this paper investigates whether the 

information of drift burst intensity predicts future volatility. We find that drift burst intensity 

increases future volatility. Moreover, we find the intensity of drift burst signs is also important: 

the intensity of negative drift bursts strongly increases the future volatility while the intensity 

of positive drift bursts weakly decreases the future volatility. And the models exploiting these 

findings lead to significantly better out-of-sample forecast performance. 

JEL: G12, E44, E32
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1 Introduction 

Recent years see a growing strand of literature that emphasized the economic value of drift 

bursts. Research tends to use this model to identify flash crashes, which are then used for case 

studies for financial stability. Relying on the flash crashes informed by the drift burst model, 

Bellia et al. (2020) find that High-Frequency Traders (HFTs) consume liquidity during a flash 

crash, which exacerbates the downtrend. Using the crash events identified by the drift bust 

model, other studies find that well-capitalized standby liquidity providers such as short-term 

traders (Getmansky et al., 2017, Jagannathan et al., 2019) and mutual funds (Jagannathan et al., 

2021) help the market recover from crashes. Flora and Renò (2020) apply the drift burst model 

to detect mini-flash crashes and estimate the transient crash loss for some security markets. 

Christensen et al. (2022) apply drift bursts to forecast return dynamics during flash crash 

periods. 

Although researchers find drift bursts are economically important, whether drift bursts also 

benefit volatility forecasting is new in the literature. Recently financial econometricians argue 

that reducing the drift burst bias has volatility forecasting advantages. For example, Andersen 

et al. (2021) find alleviating drift burst bias for the historical volatility predictors improves their 

predictive ability. Only very few papers focus on the possible usefulness of drift burst itself in 

forecasting volatility (Laurent et al., 2022).  

We contribute to the literature by investigating whether drift burst intensity predicts 

volatility. We identify the drift bursts based on the method by Christensen et al. (2022) and 

estimate the intensity by the approaches by Hawkes (1971) and Tauchen and Zhou (2011). The 

in-sample results from S&P 500 index reveal that drift burst intensity strongly increases future 

volatility. Moreover, we also show the importance of decomposing the signs of the drift bursts: 

the negative drift burst intensity strongly increases volatility and the positive drift burst 

intensity weakly decreases volatility, and this effect is more prominent and robust than that of 
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(unsigned) drift bursts. In addition, our findings from the in-sample are robust to the intensity 

measures by both Hawkes (1971) and Tauchen and Zhou (2011). 

More importantly, we find the drift bursts also greatly contribute to the out-of-sample 

forecast. The model associated with drift burst intensities is able to provide significantly better 

out-of-sample volatility forecasts, for both short-term and long-term horizons. Further, we 

show that it is also essential to separate the signs of drift bursts for out-of-sample: the model 

associated with the intensities of signed drift burst provide more accurate forecasts than that 

with the intensities of (unsigned) drift bursts. Besides, these out-of-sample results are robust to 

the intensity measures by Hawkes (1971) and Tauchen and Zhou (2011), and the drift burst 

intensity measure by Tauchen and Zhou (2011) leads to better out-of-sample than that by 

Hawkes (1971). 

The work by Laurent et al. (2022) is closely related to our study. They also find the 

usefulness of drift bursts for predicting volatility. However, there are several aspects which 

differ from (or extend) their works. First, we measure the drift bursts from a different 

perspective. Laurent et al. (2022) measure the drift burst magnitude while we gauge the 

intensity of drift bursts. Second, Laurent et al. (2022) have not yet investigated the information 

on the sign of drift bursts. As discussed in Christensen et al. (2022) and Andersen et al. (2021), 

drift bursts commonly lead to substantial short price trends, with positive (negative) drifts 

contributing to the upside (downside) price trend. Motivated by this, we expect that drift burst 

intensity should have a leverage effect on future volatility: positive drift burst intensity 

increases volatility while negative drift burst intensity decreases volatility.  

Third, Laurent et al. (2022) identify drift bursts at the daily level while we detect the drift 

bursts at the intraday level by the method of Christensen et al. (2022). Drift bursts at the 

intraday level may provide richer and possibly more useful information. Fourth, for forecasting 

volatility, Laurent et al. (2022) use general drift bursts (not pretested) while we use statistically 



4 
 

significant (or pre-tested) drift bursts. The use of significant drift bursts benefits less bias driven 

by the measurement error. Fifth, Laurent et al. (2022) focus on short horizon forecast 

(tomorrow) while we include both short- and long-term volatility forecasts. The long-term 

volatility forecast has important implications for option pricing models and longer-term value-

at-risk models (Ederington and Guan, 2010). 

The remainder of the paper is organized as follows. Section 2 introduces the detection 

methods for drift bursts and the approaches for estimating drift burst intensity. Section 3 shows 

the data and descriptive analysis. Section 4 reports the in-sample and out-of-sample analysis of 

the drift burst intensity. Section 5 is the robustness analysis. Section 6 concludes. 
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2 Volatility estimation, drift burst detection and intensity measurement 

2.1 Measuring volatility 

Assuming log prices 𝑝𝑡𝑖
 are observed at 𝑡0, 𝑡1, … , 𝑡𝑛  at day 𝑡. Andersen and Bollerslev 

(1998) show that the full variation 𝑄𝑉𝑡 for day 𝑡 is estimated by the Realized Variance (𝑅𝑉𝑡), 

which sums up all 𝑛 squared returns computed from these prices, 

𝑅𝑉𝑡 = ∑ 𝑟𝑡𝑖

2

𝑛

𝑖=1

𝑝
→ 𝑄𝑉𝑡, 

Based on a continuous-time stochastic process for log prices, the full variation QV can be 

decomposed into the drift, integrated volatility and jump component,  

𝑄𝑉𝑡 = ∫ 𝜇𝑡𝑠
2

𝑡

0

+ ∫ 𝜎𝑡𝑠
2

𝑡

0

+ ∑ 𝜅𝑠
2𝐼

1<𝑠≤𝑡

 

As integrated volatility is of primary interest in finance, Mancini (2009) estimates the 

volatility by assuming the drift component is small and using a threshold-based estimator to 

remove the jump component. However, recent literature assumes drift could be not small but 

large and explosive during some short intraday periods (or drift bursts). Therefore, the 

threshold-based estimator may be biased in estimating integrated volatility. To reduce this bias 

in the threshold-based estimator, Andersen et al. (2021) proposed a so-called Differenced-

return Volatility (DV) estimator 2, 

𝐷𝑉𝑚,𝑡 =
1

2
∑(𝑟𝑡𝑖

− 𝑟𝑡𝑖−𝑚
)

2
𝑛

𝑖=2

𝐼(|𝑟𝑡𝑖
− 𝑟𝑡𝑖−𝑚

| ≤ 3√2𝜎̂𝑡
𝑚𝑒𝑑/√𝑛 ),  

with (𝜎̂𝑡
𝑚𝑒𝑑)

2
=

𝜋

𝜋+6−4√3
(

𝑛

𝑛−2
) ∑ med(|𝑟𝑡𝑖−2

|, |𝑟𝑡𝑖−1
|, |𝑟𝑡,𝑖|)

2𝑛
𝑖=3 . 

 
2 For generalization, we only report the results for DV as opposed to DV1−3 in Andersen et al. (2021). 

But we confirm that the results for DV1−3 are qualitatively consistent. 
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2.2 Detecting intraday drift bursts  

The drift burst component is trackable. In the literature, there are three detection methods 

developed by Christensen et al. (2022), Laurent et al. (2022) and Andersen et al. (2021). The 

methods by Laurent et al. (2022) and Andersen et al. (2021) detect whether drift bursts occur 

over a long period (e.g., one day) while the method by Christensen et al. (2022) can locate both 

drift bursts and their signs at the intraday level. In this paper, we choose the method by 

Christensen et al. (2022) as it is the only method that identifies the sign of drift bursts, which 

is our primary interest. 

The method by Christensen et al. (2022) detects the existence of intraday drift bursts at 𝑡𝑖 

if  

|𝑇̂𝑡𝑖

𝑛| = √ℎ𝑛

|𝜇̂𝑡
𝑛|

√𝜎̂𝑡
𝑛

> 𝛷, 

where 𝛷 is a positive critical value,  

𝜇̂𝑡𝑖

𝑛 =
1

ℎ𝑛
∑ 𝐾 (

𝑡𝑗−1 − 𝑡𝑖

ℎ𝑛
) 𝑟𝑗−1,𝑘𝑛

∗

𝑛−𝑘𝑛+2

𝑗=1

, 

and 

𝜎̂𝑡𝑖

𝑛 =
1

ℎ𝑛
′

∑ (𝐾 (
𝑡𝑗−1 − 𝑡𝑖

ℎ𝑛
′

) 𝑟𝑗−1,𝑘𝑛

∗ )
2

𝑛−𝑘𝑛+2

𝑗=1

+ 2 ∑ 𝜔 (
𝐿

𝐿𝑛
) ∑ 𝐾 (

𝑡𝑗−1 − 𝑡𝑖

ℎ𝑛
′

) 𝐾 (
𝑡𝑗+𝐿−1 − 𝑡𝑖

ℎ𝑛
′

) 𝑟𝑗−1,𝑘𝑛

∗ 𝑟𝑗−1+𝐿,𝑘𝑛

∗ 𝑌

𝑛−𝑘𝑛−𝐿+2

𝑗=1

𝐿𝑛

𝐿=1

. 

The remaining parameters are defined as follows. ℎ𝑛  and ℎ𝑛
′  are the bandwidths for 

estimating the spot drift 𝜇̂𝑡𝑖

𝑛  and spot volatility 𝜎̂𝑡𝑖

𝑛, respectively. And 𝐿𝑛 is the lag number for 

the Heteroscedasticity and Autocorrelation Consistent (HAC) correction. 𝑟𝑡𝑖,𝑘𝑛

∗ is the 
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preaveraged return with 𝑟𝑡𝑖,𝑘𝑛

∗ =
1

𝑘𝑛
(∑ 𝑃(𝑖+𝑗)/𝑁

𝑘𝑛−1
𝑗=𝑘𝑛/2 − ∑ 𝑃(𝑖+𝑗)/𝑁

𝑘𝑛/2−1
𝑗=0 ) , where 𝑃  denotes 

the price. 𝜔(∙) is a Parzen kernel, 

𝜔(𝑥) = {
1 − 6𝑥2 + 6|𝑥|3, for 0 ≤ |𝑥| < 1/2,

2(1 − |𝑥|)3, for 1 2⁄ < |𝑥| ≤ 1,
0, otherwise.

 

And 𝑘(∙)  is a backwards-looking exponential kernel, 𝐾(𝑥)  =  exp(−|𝑥|),  for 𝑥 ≤  0 . 

The sign of drift burst at 𝑡𝑖 is consistent with the sign of 𝑇̂𝑡𝑖

𝑛. After identifying all drift bursts 

for day 𝑡, we obtain the total number of drift bursts 𝑁𝑡, positive drift bursts 𝑁𝑡
+, and negative 

drift bursts 𝑁𝑡
−. 

 

2.3 Hawkes drift burst intensity 

We utilize the information on the drift burst occurrence, through a parametric intensity 

measure by Hawkes (1971). Such an approach is widely applied to deal with event studies in 

financial markets (Bauwens and Hautsch, 2009, Bowsher, 2007, Large, 2007) and jump studies 

(Aït-Sahalia et al., 2015, Ma et al., 2019, Clements and Liao, 2017). To begin with, several 

definitions are required. Let {𝑡𝑞}
𝑞∈1,…,𝑁

 be a random sequence of increasing event times 0 ≥

𝑡1 > ⋯ > 𝑡𝑁 that describe a simple point process (Index 𝑡 represents the daily frequency).  

Given that Υ𝑡 ≔  ∑ 𝟏𝑡𝑞≥𝑡𝑞≥1  is a counting function, the conditional intensity 𝜆𝑡  can be 

viewed as the expected change in Υ𝑡 (as a reflection of the probability of an event occurring) 

over a short time horizon. 

𝜆𝑡 = lim
𝑠→𝑡

1

𝑠 − 𝑡
𝐸[Υ𝑠 − Υ𝑡]. 

A common specification for 𝜆𝑡 is the self-exciting Hawkes process (Hawkes, 1971) 
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𝜆𝑡 = 𝜇 + ∫ 𝑤(𝑡 − 𝑢)𝑑Υ𝑢

𝑡

0

 

= 𝜇 + ∑ 𝑤(𝑡 − 𝑡𝑞)

𝑡𝑞<𝑡

 

where μ is a constant and 𝑤(·) is a non-negative weight function. This process is self-

exciting in the sense that Cov[Υ(𝑎, 𝑏), Υ(𝑏, 𝑐)]  >  0, where 𝑁(𝑎, 𝑏) represents the number of 

events within time interval [𝑎, 𝑏] , and 0 > 𝑎 ≥ 𝑏 < 𝑐 . The weight function 𝑤(·)  is a 

decreasing function of 𝑡 − 𝑢, meaning that the intensity decays following a spike. The common 

approach to implementing the Hawkes model in the above equation is to replace the integral 

with a discrete sum over past events such that the intensity is given by, 

𝜆𝑡 = 𝜇 + ∑ 𝛼𝑒−𝛽(𝑡−𝑡𝑞)

𝑡𝑞<𝑡

 (1) 

where 𝛼 captures the immediate impact on the intensity after a drift burst occurs, and 𝛽 

controls the rate of decay in the exponential weighting function as 𝑡 − 𝑡𝑞 grows. Estimates of 

the parameters in the above equation are obtained by maximum likelihood. Ogata (1981) shows 

that the log-likelihood function can be defined recursively as, 

𝑙𝑛𝐿 ({𝑡𝑞}
𝑞=1,…,𝑛

) = −𝜇𝑡𝑛 −
𝛼

𝛽
∑ 1 − 𝑒−𝛽(𝑡𝑛−𝑡𝑞)

𝑛

𝑞=1

+ ∑ ln[𝜇 + 𝛼𝑅𝑞]

𝑛

𝑞=1

, (2) 

where 𝑅0 = 0  and 𝑅𝑞 = 𝑒−𝛽(𝑡𝑞−𝑡𝑞−1)(1 + 𝑅𝑞−1), with 𝑅𝑞  corresponding to the time of 

the 𝑞th event. 

The evaluation of the likelihood begins by setting 𝑅0  =  0, with the recursive series 𝑅𝑞 

then being constructed from Equation 1, given the timing of each jump event. The values for 

𝑅𝑞  are then used to evaluate the loglikelihood in Equation 2. We estimate 𝛼 and 𝛽 by the 

maximum likelihood estimation (MLE) method, minimising the negative of the log-likelihood 
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function. The variance of parameter estimates is the inverse of the diagonal of the hessian 

matrix of the loglikelihood function (Hessian is the equivalent of the observed Fisher 

information matrix of the log-likelihood function). To estimate the subsequent forecasting 

models, estimates of the intensity for all points in day 𝑡 (including those when no events occur) 

can be constructed recursively from Equation 1 using the estimated 𝛼 and 𝛽 and the occurrence 

time 𝑡𝑞 of all past events, 𝑡 >  𝑡𝑞. The intensities estimated on the drift burst, positive, and 

negative drift burst series are indicated as 𝜆𝑡, 𝜆𝑡
+, and 𝜆𝑡

−, respectively.  

2.4 Drift burst intensity by Tauchen and Zhou (2011) 

The parametric nature of the Hawkes intensity measure may lead to model specification 

bias. Moreover, the Hawkes measure may require a high computational cost (due to iterations 

for the Maximum likelihood estimation) when applied to a high volume of assets. In contrast, 

the Tauchen and Zhou (2011) (T&Z) measure only requires simple mean calculation, which 

also requires lower computational costs. Specifically, T&Z proposed an intensity measure by 

simply averaging the previous point process. The drift burst intensity 𝜆 is defined by, 

𝜆𝑡 =
∑ 𝐼(𝑁𝑡 > 0)𝑡

𝑡−𝑘

𝑘
, (3) 

where 𝑘 = 504  is a 2-year window (Note 𝑁𝑡  is previously defined in section 2.2) 3 . 

Analogously, the intensity of positive and negative drift bursts is defined by, 

𝜆𝑡
+ =

∑ 𝐼(𝑁𝑡
+ > 0)𝑡

𝑡−𝑘

𝑘
, (4) 

and 

𝜆𝑡
− =

∑ 𝐼(𝑁𝑡
− > 0)𝑡

𝑡−𝑘

𝑘
. (5) 

 
3 When there are not enough elements to fill the window, we substitute nonexisting elements with the 

average of the full sample. We apply this method for the rest of the paper. 
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3 Data 

We retrieve one-second E-mini futures (ES) trade prices from Tick Data Inc. This sample 

is for 17 years from June 2, 2003, to September 30, 2020. To ensures that the sample consists 

of regular trading days, we remove all non-business days and days in which the exchange 

closed earlier. After cleaning, we obtain 𝑇 = 4310 observations. As in Andersen et al. (2021), 

we focus on the most active intraday session (09:30–16:00 EST) and eliminate days with 

reduced trading hours, to avoid idiosyncratic overnight and weekend effects. 

We sample 5-minute prices for previously defined volatility measures. Typically, the five-

minute frequency is to alleviate the distortion from market microstructure noise (Ait-Sahalia et 

al., 2005, Bandi and Russell, 2006, Hansen and Lunde, 2006, Andersen et al., 2007, Bandi and 

Russell, 2008) 4. In addition to the realized measures, we obtain an option-based S&P 500 

index volatility measure (labelled SV) by Todorov (2019). The SV can be downloaded on 

www.tailindex.com website, ranging from January 2008 until the end of December 2020. The 

SV is originally the percentage of annualized volatility, and we transform it to daily level 

variance to be consistent with the RV and DV measures. As discussed by Andersen et al. (2021), 

the SV is constructed exclusively from option prices, and thus is void of the specific form for 

noise structure present in the high-frequency asset prices. 

Following Christensen et al. (2022) 5, the implementation of the drift burst test depends on 

a 5-minute bandwidth (ℎ𝑛 = 300 second) for the spot drift and 25-minute (ℎ𝑛
′ = 1500 second) 

bandwidth for the spot volatility, with 𝑘𝑛 = 3 and 𝐿𝑛 = 2(𝑘𝑛 − 1) + 10 lags for the HAC 

robust estimate. Using 1-second returns ( 𝑛 = 23400 ), the drift burst test statistic 𝑇̂𝑡𝑖

𝑛  is 

calculated across a regular five-second grid (𝑖 = 1,6,11, … ,23400). Following Christensen et 

 
4 An alternative strategy to guard against microstructure noise uses the 3-minute prices as in Andersen et al. (2021). 

We confirm that under the 3-minute frequency, the results hold true. 
5 We thank the authors for sharing the code for the estimation procedure. 
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al. (2022), we identify an intraday drift burst at 𝑡𝑖 if |𝑇̂𝑡𝑖

𝑛| exceed 𝛷 = 4, 4.5, or 5, with the sign 

of this drift burst consistent with the sign of 𝑇̂𝑡𝑖

𝑛 6. 

Figure 1. daily realized volatility and drift burst intensities for |𝑇| > 4 

 

As in Christensen et al. (2022), we find an unignorable number of intraday drift bursts, 

with a greater number of negative drift bursts. For example, for |𝑇| > 4, we find overall 

∑ 𝑁𝑡 = 799𝑇
1  intraday drift bursts 7, with 349 positive drift bursts and 450 negative drift bursts. 

The distribution of these intraday drift burst quantities across sample days is depicted in Figure 

1. As the figure shows, most days only have one intraday drift burst. There appear to be both 

more daily and intraday drift bursts during the 2008 financial crisis and 2020 pandemic sessions, 

 
6 Following Christensen et al. (2022), we allow at most one drift burst to be established over any 5-minute window 

at which the test statistic attains a local extremum and exceeds the critical value. This cleaning method accounts 

for the rolling calculation of the test statistic and avoid double counting of events. 
7 This frequency corresponds to about 4 drift bursts one month on average for this ES sample. Table 3 of 

Christensen et al. (2020) show higher occurrence rate of drift burst for the same E-mini asset (5.7 drift bursts one 

month). This is because that they detect intraday drift bursts for a longer trading session (02:00–16:15 Eastern 

Time) and they focus on a more recent subsample of our sample (January 2010–December 2017). 
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with the realized volatility, also being highest for these periods. It seems that the occurrence 

rate of drift bursts is positively related to the volatility. To conserve space, the results are not 

reported for more conservative critical value |𝑇| > 4.5 or |𝑇| > 5. But we confirm that the 

patterns of drift bursts in Figure 1 are consistent if those critical values are applied. 

To estimate the occurrence of drift bursts, we use the above intensity measures. The T&C 

intensity is measured based on Equations 3, 4 and 5. To obtain the Hawkes intensity, we first 

estimate the parameters in Equation (1). Table 1 reports the estimation results for these 

parameters for |𝑇| > 4 . As the table shows, the parameters for drift bursts 𝜆𝑡  are 

overwhelmingly highly significant, with their magnitude in line with those of Clements and 

Liao (2017), Table 2. Also, the parameters of positive drift burst 𝜆𝑡
+ and negative drift burst 𝜆𝑡

− 

are systematically significant.  

Table 1. Coefficient estimates of Equation (1) (𝜆𝑡 = 𝜇 + ∑ 𝛼𝑒−𝛽(𝑡−𝑡𝑞)
𝑡𝑞<𝑡 ) 

for |𝑇| > 4. The brackets below the coefficients are t-statistics. 

   𝜇  𝛼  𝛽 Log-like 

 𝜆𝑡 0.006 0.010 0.010 2,062.9 

 (1.48) (25.86) (25.00)  

 𝜆𝑡
+ 0.013 0.013 0.016 1,203.6 

 (3.69) (14.91) (14.49)  

 𝜆𝑡
− 0.042 0.029 0.051 1,431.0 

  (10.20) (11.40) (10.74)   

 

We then recursively estimate the Hawkes drift burst intensity, based on the estimated 

parameters for Equation (1). The upper panel of Figure 2 depicts the time series of the Hawkes 

drift burst intensity estimates. The black, red, and blue lines denote the drift bursts’ intensity, 

negative intensity, and positive intensity, respectively. As the panel show, both the drift burst 

intensity and negative drift burst intensity are volatile over the sample periods and reach their 

highest during the 2008 financial crisis and the 2020 pandemic. In contrast, the positive drift 

burst intensity is generally smaller, more peaceful, and has a less obvious cyclical pattern 

during the two recessions. 
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The lower panel shows the time series for the T&Z intensity estimates. As the figure shows, 

the cyclical patterns of T&Z intensities are qualitatively very similar to those of the above 

Hawkes intensity. Besides the similarity, a difference is that Hawkes intensity is rougher than 

T&Z intensity. This is because Hawkes intensity uses an exponential weighted average, which 

gives more weighting to recent observations. 

Figure 2. Time series of drift burst intensity for |𝑇| > 4 

 

Table 2. Descriptive Statistics 

  Min Mean Q25 Median Q75 Max 

 RV × 104 0.011 0.881 0.198 0.347 0.722 62.50 

 SV × 104 0.041 0.971 0.240 0.455 1.021 26.48 

Hawkes (1971) 

 𝜆𝑡 0.089 0.167 0.153 0.165 0.181 0.227 

 𝜆𝑡
+ 0.053 0.076 0.067 0.074 0.082 0.116 

 𝜆𝑡
− 0.045 0.096 0.083 0.093 0.108 0.143 

Tauchen and Zhou (2011) 

 𝜆𝑡 0.109 0.162 0.141 0.157 0.179 0.254 

 𝜆𝑡
+ 0.040 0.074 0.063 0.071 0.083 0.115 

 𝜆𝑡
− 0.050 0.093 0.071 0.088 0.109 0.155 
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4 Predicting volatility using drift burst intensity 

The benchmark model is the HAR-DV model of Andersen et al. (2021), 

𝑉̅𝑡,𝑡+ℎ = 𝛽0 + 𝛽𝑑 𝐷𝑉𝑡−1,𝑡 + 𝛽𝑤 𝐷𝑉𝑡−5,𝑡 + 𝛽𝑚 𝐷𝑉𝑡−22,𝑡 + 𝜀𝑡,    (6) 

where  

𝐷𝑉𝑡,𝑡+ℎ =
1

h
∑ 𝐷𝑉𝑡+𝑖

ℎ

𝑖=1

, ℎ = 1,2, … , 

and 𝑉̅𝑡+ℎ|𝑡 is the ℎ-day average cumulative volatility (following Patton and Sheppard (2015) 

and Andersen et al. (2021), 

𝑉̅𝑡,t+h =
1

h
∑ 𝑉𝑡+𝑖

ℎ

𝑖=1

. 

To explore the importance of drift burst intensity in predicting future volatility, we add the 

drift burst intensity component to the HAR-DV model, resulting in the following HAR-DV-

Intensity (HAR-DVI) model, 

𝑉̅𝑡,𝑡+ℎ = 𝛽0 + 𝛽𝜆 𝜆𝑡−1 + 𝛽𝑑 𝐷𝑉𝑡−1,𝑡 + 𝛽𝑤 𝐷𝑉𝑡−5,𝑡 + 𝛽𝑚 𝐷𝑉𝑡−22,𝑡 + 𝜀𝑡,    (7) 

Analogously, we formulate the HAR-DV -Signed Intensity (HAR-DVI±) model by including 

the positive and negative drift burst intensity, 

𝑉̅𝑡,𝑡+ℎ = 𝛽0 + 𝛽𝜆+  𝜆𝑡−1,𝑡
+ + 𝛽𝜆−  𝜆𝑡−1,𝑡

− + 𝛽𝑑 𝐷𝑉𝑡−1,𝑡 + 𝛽𝑤 𝐷𝑉𝑡−5,𝑡 + 𝛽𝑚 𝐷𝑉𝑡−22,𝑡 + 𝜀𝑡.    (8) 

 

4.1 In-sample estimation 

Table 3 reports the OLS in-sample results for the HAR-DV model, and the competing drift 

burst intensity augmented models for |𝑇| > 4. The forecasting target is the conventional 5-

minute RV, 𝑉̅𝑡,𝑡+ℎ = 𝑅𝑉̅̅ ̅̅
𝑡,𝑡+ℎ. We consider the forecasting horizons ℎ = 1, 5, 22, 44, and 66, 

with the longer horizons covering expiries of the heavily traded options. The brackets are HAC 
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robust 𝑡 -statistics by Newey and West (1987). Following Corsi and Renò (2012), the 

bandwidth used for the HAC is 2(h + 1), where ℎ is the lead length of the left-hand-side variable. 

The results reveal the importance of including drift burst information for the in-sample. The 

drift burst intensity strongly increases future volatility: for both Hawkes and T&Z measures 

and across all horizons, the coefficient of drift burst intensity is systematically positive and 

highly significant. Moreover, including the drift burst component leads to a substantial increase 

in the model goodness of fit. For example, for ℎ = 66, the HAR-DVI model based on the 

Hawkes intensity gains 27.9% R2 against the HAR-DV model.  

The results also evidence the in-sample advantage of separating the drift burst signs. Across 

all of these different scenarios, drift burst signs show a clear leverage effect on future volatility, 

with the negative (positive) drift bursts strongly increasing (weakly affecting) volatility. 

Moreover, the negative sign has a more prominent impact than the unsigned: the t-statistic of 

negative drift bursts is generally more positive than that of (unsigned) drift bursts. Further, 

decomposing drift burst signs yield a further increase in the goodness of fit of the drift burst 

augmented model. In particular, for ℎ = 66 for the Hawkes measure, the HAR-DVI∆ model has 

a 5.0% greater R2 than the HAR-DVI model.  

We then extend the in-sample results in Table 3 to a broader range of forecasting targets 

and more conservative critical values 𝛷. Figure 3 reports these results for the Hawkes measure. 

To economize the space, only the t-statistics of drift burst coefficients are reported. Panel A, B 

and C of this figure reports the results for the |𝑇| > 4, |𝑇| > 4.5, and |𝑇| > 5. In each panel, 

we report the results for the RV, DV and SV forecasts, with the black, red, and blue lines 

denoting the 𝑡-statistics of drift burst intensity, positive drift burst intensity, and negative drift 

burst intensity, respectively. 
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Table 3. In-sample estimation results for |𝑇| > 4 for RV forecast 

Notes: The brackets are the HAC robust p-values. The intercept result is not reported. 

     𝛽𝜆+  𝛽𝜆−  𝛽𝜆  𝛽𝑑  𝛽𝑤  𝛽𝑚  𝑅2 

h=1 

 
   0.390 0.596 0.030 0.593 

    (3.22) (3.95) (0.38)  

Hawkes   0.340 0.389 0.595 0.016 0.593 
   (3.09) (3.22) (3.95) (0.20)  

T&Z   0.233 0.388 0.596 0.016 0.593 
   (2.39) (3.22) (3.95) (0.20)  

Hawkes -0.198 0.530  0.387 0.596 0.011 0.594 
 (-0.92) (3.58)  (3.21) (3.95) (0.13)  

T&Z 0.181 0.235  0.388 0.596 0.016 0.593 

  (1.11) (2.75)   (3.22) (3.95) (0.19)   

h=5 

 
   0.380 0.455 0.100 0.646 

    (3.60) (2.96) (0.94)  

Hawkes   0.575 0.378 0.454 0.076 0.649 
   (2.85) (3.61) (2.95) (0.69)  

T&Z   0.376 0.377 0.456 0.077 0.648 
   (2.32) (3.61) (2.94) (0.69)  

Hawkes -0.281 0.890  0.375 0.455 0.067 0.651 
 (-0.92) (3.16)  (3.62) (2.98) (0.60)  

T&Z 0.296 0.378  0.377 0.456 0.076 0.648 

  (1.12) (2.86)   (3.61) (2.94) (0.67)   

h=22 

 
   0.229 0.333 0.147 0.462 

    (3.49) (2.62) (1.23)  

Hawkes   1.226 0.225 0.329 0.096 0.479 
   (1.99) (3.61) (2.60) (0.71)  

T&Z   0.775 0.224 0.334 0.100 0.476 
   (1.84) (3.66) (2.60) (0.73)  

Hawkes -0.403 1.815  0.220 0.331 0.078 0.488 
 (-0.69) (2.13)  (3.68) (2.65) (0.57)  

T&Z 0.696 0.745  0.224 0.334 0.098 0.476 

  (1.19) (2.06)   (3.66) (2.60) (0.70)   

h=44 

 
   0.158 0.257 0.114 0.323 

    (4.51) (2.11) (1.67)  

Hawkes   1.871 0.151 0.252 0.037 0.370 
   (2.02) (4.85) (2.07) (0.41)  

T&Z   1.143 0.150 0.259 0.046 0.360 
   (2.10) (4.96) (2.10) (0.52)  

Hawkes 0.002 2.547  0.146 0.253 0.014 0.386 
 (0.00) (2.20)  (5.02) (2.10) (0.15)  

T&Z 1.134 1.051  0.149 0.260 0.044 0.360 

  (1.58) (2.20)   (4.97) (2.10) (0.49)   

h=66 

 
   0.118 0.168 0.152 0.251 

    (5.03) (2.08) (2.41)  

Hawkes   2.106 0.111 0.161 0.066 0.321 
   (2.06) (5.53) (2.02) (0.80)  

T&Z   1.286 0.109 0.169 0.077 0.305 
   (2.31) (5.70) (2.07) (0.93)  

Hawkes 0.378 2.722  0.106 0.161 0.043 0.337 
 (0.50) (2.31)  (5.74) (2.05) (0.54)  

T&Z 1.383 1.129  0.109 0.169 0.075 0.304 

  (1.94) (2.27)   (5.72) (2.06) (0.90)   
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Figure 3. HAC robust 𝑡-statistics of Hawkes drift burst intensity as a function of forecasting horizons. 

Black, red, and blue lines denote the 𝑡-statistics of drift burst intensity, positive drift burst intensity, and 

negative drift burst intensity, respectively. 

Panel A: |𝑇| > 4 

 

Panel B: |𝑇| > 4.5  

 

Panel C: |𝑇| > 5  

 

The results show that the positive effect of drift burst is consistent for all of these cases but 

is sometimes not highly significant for a more conservative 𝛷. For example, the coefficients of 

drift bursts are not highly significant for RV and DV targets for |𝑇| > 4.5 and |𝑇| > 5. The 

leverage effect of drift bursts is more robust: for all cases of the three panels, the coefficient of 

negative drift burst is systematically negative and significant. The more consistent impact of 

negative drift bursts on future volatility again indicates the importance of decomposing drift 

burst signs. 
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Figure 4. HAC robust 𝑡-statistics of drift burst intensity by Tauchen and Zhou (2011) as a function of 

forecasting horizons. Black, red, and blue lines denote the 𝑡-statistics of drift burst intensity, positive 

drift burst intensity, and negative drift burst intensity, respectively. 

Panel A: |𝑇| > 4 

 

Panel B: |𝑇| > 4.5  

 

Panel C: |𝑇| > 5  

 

Figure 4 depicts the in-sample 𝑡-statistics for T&Z drift burst intensities for extended 

critical values and forecast targets. The pattern of Figure 4 is very similar to that of Figure 3: 

across all of these different scenarios, the drift burst intensity has a positive effect on volatility 

while the intensity of drift burst signs has a leverage effect on volatility. 

Overall, including information on drift bursts and drift burst signs strongly predict future 

volatility and improves the model's in-sample performance. However, whether the 



19 
 

improvements for in-sample are also of practical importance remains an empirical question to 

be answered in the out-of-sample forecasting exercise in the following section 4.2. 

 

4.2  Out-of-sample forecasting 

This section compares the drift burst intensity augmented HAR-DV models with the HAR-

DV model, in terms of the out-of-sample performance. Motivated by the above limited in-

sample evidence of positive drift burst intensity, we formulate a new HAR-DVI− model by 

including the negative drift burst intensity only,  

𝑉̅𝑡,𝑡+ℎ = 𝛽0 + 𝛽𝜆−  𝜆𝑡−1
− + 𝛽𝑑 𝐷𝑉𝑡−1,t + 𝛽𝑤 𝐷𝑉𝑡−5,t + 𝛽𝑚 𝐷𝑉𝑡−22,t + 𝜀𝑡.     (6) 

For in-sample estimation, we rely on OLS to generate both a rolling window forecast using 

the prior 1000 trading days and an increasing window forecast using all prior observations, 

starting from an initial set of 1000 trading days. The intensities and models are all estimated 

only within each window, to ensure that only past/current information is used for forecasting. 

These estimated parameters are then used to construct ℎ-step-ahead out-of-sample forecasts 

which incorporate new information as it becomes available.  

The following two loss functions are applied for evaluating the forecasting performance: 

(a) mean square error (MSE),  

MSE(𝑉̅𝑡,𝑡+ℎ, 𝐹𝑡,𝑡+ℎ) = (𝑉̅𝑡,𝑡+ℎ − 𝐹𝑡,𝑡+ℎ)
2

, 

(b) gaussian Quasi-likelihood (QLIKE) loss function: 

QLIKE(𝑉̅𝑡+ℎ|𝑡, 𝐹𝑡,𝑡+ℎ) =
𝑉̅𝑡,𝑡+ℎ

𝐹𝑡,𝑡+ℎ
− ln

𝑉̅𝑡,𝑡+ℎ

𝐹𝑡,𝑡+ℎ
− 1, 

where 𝐹𝑡+ℎ|𝑡  denotes the ℎ-day-ahead forecast. The MSE and QLIKE are both unbiased loss 

functions (Patton, 2011) and are widely applied by key research (Bollerslev et al., 2016, 
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Andersen et al., 2021). The statistical significance difference is evaluated via the Diebold–

Mariano-West (DMW) statistic 8 developed by Diebold and Mariano (1995) and  West (1996), 

with adjustment to the Newey–West Heteroskedasticity and Autocorrelation Corrected (HAC) 

standard errors. 

 

4.2.1 Drift burst information 

The aim of this section is to explore whether including drift burst intensity leads to an 

improvement in predictive accuracy over the HAR-DVI models. Table 4 presents DM statistics 

for comparing the augmented HAR-DV models with the benchmark HAR-DV model for the 

case of the Hawkes intensity measure. A positive (negative) statistic indicates the competing 

model is superior (inferior) to the benchmark model, with the significant and positive statistics 

(at 5% level) indicated in bold.  

The upper panel of Table 4 shows the out-of-sample results for RV forecast 9. The results 

support the out-of-sample value of drift burst information: for longer horizons (ℎ ≥  5), |𝑇| >

4.5, and both forecast windows, the HAR-DVI, HAR-DVI±, and HAR-DVI− models, with few 

exceptions, overwhelmingly outperform the benchmark HAR-DV model. For the daily forecast 

(ℎ = 1), although these three augmented models generally perform worse than the benchmark 

model, the HAR-DVI and HAR-DVI− models are never significantly inferior. The predictive 

advantage of the drift bursts is somewhat less clear but still qualitatively consistent for |𝑇| > 4 

and |𝑇| > 5, reported in the left and right parts of the upper panel, respectively. 

The lower panel of Table 4 is for SV forecast. As suggested by Andersen et al. (2021), the 

expost SV measure refers directly to a concurrent estimate of the underlying volatility level 

 
8 The DMW results in this paper were obtained using the robust_loss_1 function from Andrew Patton's Matlab code page, 

http://public.econ.duke.edu/~ap172/ 
9 As in Andersen et al. (2021), we also make the out-of-sample results for DV forecast (unreported). The pattern is very similar 

to that for RV forecast in Table 4. 
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thus providing a less noisy benchmark for the assessment of forecast performance. As the panel 

shows, the out-of-sample evidence of the augmented models appears to be even stronger 10. 

For the cases in the panel, the intensity models provide much more forecasts which are 

significantly better than the HAR-DV model. Moreover, the intensity models are able to provide 

significantly better forecasts for both short and long horizons (e.g., HAR-DVI− or HAR-DVI for 

|𝑇| > 4.5).  

Table 5 reports the same out-of-sample results as Table 4 but for the T&Z intensity measure 

case. The patterns here are very close to those in Table 4: the augmented models are again 

superior to the HAR-DV model for longer horizons for forecast RV, or all horizons for forecast 

SV. The consistent results indicate that the predictability of drift burst intensity holds for the 

T&Z intensity measure of Tauchen and Zhou (2011).  

 

4.2.2 Drift burst signs 

The goal of this section is to investigate whether disentangling drift burst signs leads to an 

improvement in predictive accuracy over the drift burst intensity models. We begin by 

comparing the HAR-DV-I± and HAR-DV-I−models with the HAR-DV-I model in Table 4. We 

only discuss the patterns in Table 4 for the Hawkes intensity as the patterns in Table 5 for the 

T&Z intensity are very similar. The first thing to note is that the HAR-DV-I± can perform better 

than the HAR-DV-I model. For example, for |𝑇| > 4 for both SV and RV forecasts, the DM 

statistics of the HAR-DV-I±  model is generally more positive than those of the HAR-DV-I 

model. However, this superiority is not robust for some other cases. For the cases in |𝑇| > 4 

for both SV and RV, the HAR-DV-I± model provides a considerable number of less positive or 

more negative DM statistics over the HAR-DV-I model.  

 
10 The DM statistics discrepancies between upper and lower panels also reflect the different sample periods, as the SV forecasts 

are initiated only during the great financial crisis of 2008-2009. However, we confirm that the difference remains substantial, 

even if we generate the forecasts over the identical time period. 
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The results for the HAR -DVI−  model reveals a cleaner picture for the advantage of 

separating drift burst signs. Except for some cases for |𝑇| > 5  for RV forecasts, the DM 

statistics of the HAR-DVI− model is systematically more positive or less negative than the 

HAR-DVI model. The stronger evidence of the HAR-DVI− model over the HAR-DVI± model 

implies that the positive drift burst intensity does not help forecast volatility, which is consistent 

with its limited in-sample evidence. Overall, the results show that decomposing the drift burst 

signs improves the out-of-sample, and this improvement mainly comes from the negative sign 

of drift bursts.  

 

4.2.3 Comparing two intensity measures 

This section aims to compare the forecast value between Hawkes measures and the T&Z 

measure. The T&Z measure appears to be more beneficial in forecasting accuracy. Comparing 

the DM statistics for the T&Z measure in Table 4 with those for the Hawkes measure in Table 

5, the T&Z measure provides a great number of more positive statistics than the Hawkes 

measure (e.g., |𝑇| > 4 for the HAR-DVI model for SV forecast; |𝑇| > 5 for the HAR-DVI− 

model for RV forecast).  
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Table 4. Diebold–Mariano statistic for Hawkes drift burst intensity 

   |𝑇| > 4  |𝑇| > 4.5  |𝑇| > 5 

   

HAR- 

DVI 
HAR- 

DVI± 
HAR- 

DVI−  

HAR- 

DVI 
HAR- 

DVI± 
HAR- 

DVI−  

HAR- 

DVI 
HAR- 

DVI± 
HAR- 

DVI− 

Forecast RV 

h=1 MSE RW -1.27 -1.50 -1.06  -0.38 -1.25 -0.95  -1.11 -1.80 -0.97 

  IW 0.25 0.60 0.24  -0.18 -0.64 -0.46  -0.88 -1.05 -0.86 

 QLIKE RW -2.84 -1.11 -1.55  -1.00 -4.44 -1.81  -1.49 -3.85 -3.67 

  IW -3.18 -2.70 -2.89  0.82 -2.77 -0.69  -3.81 -3.76 -3.64 

h=5 MSE RW 0.00 0.01 0.16  0.94 0.35 0.51  0.11 -0.67 0.39 

  IW 0.71 1.98 1.65  0.15 0.20 0.35  0.44 0.42 0.59 

 QLIKE RW -1.32 -1.27 -0.64  0.43 -2.48 -0.83  -2.89 -2.83 -2.32 

  IW -3.11 -1.72 -1.80  1.17 -1.37 0.08  -1.00 -3.31 -2.40 

h=22 MSE RW 1.58 1.10 0.82  1.40 1.39 1.67  0.77 0.54 1.05 

  IW 0.80 1.98 1.92  0.65 0.71 0.87  1.05 1.16 1.22 

 QLIKE RW -2.23 -1.11 -0.96  1.05 -0.62 1.25  -1.19 -0.91 -0.42 

  IW -2.12 -0.70 -0.02  0.67 -0.30 1.42  1.18 -2.43 0.26 

h=44 MSE RW 1.80 1.10 0.81  1.84 1.67 2.06  0.77 1.34 1.13 

  IW 1.08 2.00 1.99  0.14 1.69 1.73  1.49 1.13 1.20 

 QLIKE RW -1.59 -1.12 -0.35  2.30 0.90 1.97  -1.01 0.09 -0.51 

  IW -2.22 -1.79 0.29  1.23 1.99 2.05  2.06 -1.40 -1.18 

h=66 MSE RW 1.80 0.88 0.71  2.17 1.82 2.09  0.69 1.82 1.14 

  IW 1.30 2.24 2.21  -0.02 2.08 2.06  1.61 0.99 1.05 

 QLIKE RW 0.75 1.43 0.60  2.73 -0.57 1.79  -1.28 0.87 -0.44 

   IW -2.26 -1.11 1.64   1.54 2.58 2.50   2.61 -0.87 -2.11 

Forecast SV 

h=1 MSE RW 3.24 3.09 3.53  1.91 2.15 2.40  2.88 1.98 3.03 

  IW -0.35 0.83 1.10  1.58 1.64 2.09  1.31 1.89 3.99 

 QLIKE RW 2.25 2.66 2.86  1.07 1.34 1.01  -1.92 -2.25 0.50 

  IW 2.21 2.06 1.78  2.12 2.83 1.85  1.65 -1.11 7.31 

h=5 MSE RW 2.31 3.62 3.28  2.14 1.97 2.37  2.37 1.40 2.51 

  IW -0.31 1.32 1.60  1.20 1.53 1.87  1.07 3.65 2.45 

 QLIKE RW 1.81 2.51 2.62  1.43 0.79 0.66  -2.48 -1.81 -0.11 

  IW 1.47 2.20 1.95  1.89 3.09 2.40  2.46 -3.17 6.75 

h=22 MSE RW 1.21 1.91 1.91  1.63 1.46 1.74  1.31 0.82 1.38 

  IW 0.40 1.74 1.96  0.93 1.57 1.94  0.83 1.93 1.61 

 QLIKE RW 0.85 1.58 1.57  1.45 1.03 1.09  -1.93 -1.14 0.66 

  IW -1.10 1.79 1.87  1.65 0.72 2.03  2.26 -3.19 3.40 

h=44 MSE RW 1.57 1.98 2.16  1.70 1.74 2.05  1.38 0.86 1.61 

  IW 0.57 1.95 2.37  0.83 1.88 2.20  1.06 2.11 2.01 

 QLIKE RW -0.75 1.77 1.98  1.95 1.59 1.62  -0.74 -1.11 1.41 

  IW -2.09 1.40 2.31  1.53 1.40 0.68  2.65 -1.15 3.26 

h=66 MSE RW 1.69 2.21 2.41  2.18 1.85 2.22  1.62 1.03 1.97 

  IW 0.66 2.14 3.09  0.87 1.78 1.90  1.17 1.96 2.20 

 QLIKE RW -1.12 1.71 2.43  2.27 1.68 1.40  -1.57 -1.52 1.96 

   IW -1.16 -0.99 3.34   1.48 -1.11 -0.04   2.86 -2.58 1.12 
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Table 5. Diebold–Mariano statistic for drift burst intensity of Tauchen and Zhou (2011) 

   |𝑇| > 4  |𝑇| > 4.5  |𝑇| > 5 

   

HAR- 

DVI 
HAR- 

DVI± 
HAR- 

DVI−  

HAR- 

DVI 
HAR- 

DVI± 
HAR- 

DVI−  

HAR- 

DVI 
HAR- 

DVI± 
HAR- 

DVI− 

Forecast RV 

h=1 MSE RW -1.28 -1.45 -1.07  -1.50 -1.97 -1.13  -0.50 -2.39 -1.89 

  IW -1.06 -1.12 -0.70  -0.57 -0.67 -0.21  -0.52 -1.57 -1.01 

 QLIKE RW -3.36 -2.23 -1.60  -1.40 -2.14 -1.15  -3.02 -3.93 -2.30 

  IW -1.02 -0.88 1.29  -0.50 -1.46 -0.72  -3.02 -1.83 -1.82 

h=5 MSE RW -0.20 0.55 0.34  -0.40 -0.27 0.24  0.03 -0.94 -1.04 

  IW -0.02 -0.05 0.80  0.54 1.00 1.14  0.22 -0.20 0.59 

 QLIKE RW -2.11 -1.73 -0.14  -0.56 -1.92 -0.04  -2.27 -3.04 -1.25 

  IW -1.47 -1.98 1.67  -1.11 -1.23 -0.35  -2.31 -2.62 -1.94 

h=22 MSE RW 1.21 1.34 1.09  0.64 0.72 1.07  0.92 1.23 1.46 

  IW 1.01 1.06 1.35  1.07 1.76 1.67  1.06 1.28 1.53 

 QLIKE RW -0.90 -0.43 0.02  0.01 -1.01 0.46  0.49 0.92 1.62 

  IW -1.04 -2.00 1.83  -0.19 -1.55 0.62  0.03 -1.74 -0.67 

h=44 MSE RW 1.36 1.18 1.14  0.93 0.95 1.11  1.30 1.97 1.98 

  IW 1.16 1.19 1.48  1.51 2.27 2.10  1.75 1.71 1.75 

 QLIKE RW -1.03 -1.15 1.18  0.36 0.70 1.63  1.44 2.44 2.73 

  IW -1.33 -1.86 2.62  -2.13 -1.00 -0.39  1.02 -0.67 2.26 

h=66 MSE RW 1.81 1.05 1.29  0.88 1.07 1.11  0.17 2.10 1.82 

  IW 1.33 1.31 1.56  1.74 2.52 2.34  1.09 2.00 1.87 

 QLIKE RW -1.73 -1.21 0.00  -0.09 -1.11 1.99  1.85 3.11 3.39 

   IW 0.26 -1.20 3.08   -2.09 0.93 -0.79   1.43 -0.88 2.91 

Forecast SV 

h=1 MSE RW 2.08 0.91 1.27  0.60 0.00 1.13  -2.24 -1.21 1.54 

  IW 3.10 1.36 5.39  1.38 0.90 1.34  1.23 1.42 1.66 

 QLIKE RW 2.99 1.16 1.80  1.80 0.92 1.21  -2.64 0.00 2.10 

  IW 6.64 -1.79 8.97  -1.49 1.79 2.99  3.48 6.04 7.47 

h=5 MSE RW 1.54 1.24 1.20  0.57 1.22 1.01  -0.92 -0.02 1.33 

  IW 2.32 1.21 3.99  1.29 0.99 1.22  1.11 1.74 2.50 

 QLIKE RW 2.30 1.24 2.61  2.66 1.49 2.08  -1.91 0.52 2.19 

  IW 5.99 -1.36 8.50  1.32 3.57 3.56  3.25 6.70 7.05 

h=22 MSE RW 1.69 1.66 1.57  1.13 1.29 1.40  0.50 1.64 1.68 

  IW 1.82 1.06 2.64  1.20 1.05 1.23  1.15 1.93 2.63 

 QLIKE RW 1.10 1.36 2.11  1.92 1.53 1.80  -0.93 1.11 1.66 

  IW 3.71 -1.65 4.58  3.36 2.86 3.06  2.18 3.55 2.57 

h=44 MSE RW 1.91 1.68 1.60  1.42 1.04 1.41  0.99 1.75 1.82 

  IW 2.38 1.22 3.00  1.59 1.39 1.71  1.57 2.54 3.25 

 QLIKE RW 1.62 1.76 2.58  2.06 2.18 2.24  0.17 1.40 2.19 

  IW 3.94 -0.60 4.29  3.56 3.04 3.55  2.29 -2.35 4.38 

h=66 MSE RW 2.20 1.43 1.63  1.86 1.00 1.58  1.36 1.43 1.98 

  IW 2.73 0.79 2.63  1.83 1.52 2.11  1.91 3.08 3.94 

 QLIKE RW 1.25 -0.42 3.12  2.17 2.54 2.71  -0.57 -0.14 2.75 

   IW 4.35 2.64 4.59   3.99 3.47 4.42   -0.35 -1.49 3.66 
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5 Robustness analysis 

This section aims to check the robustness of our results in section 4. Only robustness 

results for the critical value |𝑇| > 4  are reported but the (unreported) results for more 

conservative critical value are broadly speaking in line with those reported here. 

 

5.1 Volatility transformations 

This section is to examine if the predictive advantages of the drift burst intensity are still 

observed under some important volatility transformations. As in Andersen et al. (2007), we 

consider the logarithm and square root transformations. And the logarithm and square root 

transformed HAR-DV model are defined by, 

(𝑉̅𝑡,𝑡+ℎ)
1/2

= 𝛽0 + 𝛽𝑑 (𝐷𝑉𝑡−1,𝑡)
1/2

+ 𝛽𝑤 (𝐷𝑉𝑡−5,𝑡)
1/2

+ 𝛽𝑚(𝐷𝑉𝑡−22,𝑡)
1/2

+ 𝜀𝑡,    (3) 

𝑙𝑜𝑔(𝑉̅𝑡,𝑡+ℎ) = 𝛽0 + 𝛽𝑑 𝑙𝑜𝑔(𝐷𝑉𝑡−1,𝑡) + 𝛽𝑤  𝑙𝑜𝑔(𝐷𝑉𝑡−5,𝑡) + 𝛽𝑚 𝑙𝑜𝑔(𝐷𝑉𝑡−22,𝑡) + 𝜀𝑡.    (3) 

We term these two models the sqr-HAR-DV and log-HAR-DV models. We again formulate the 

drift burst augmented models by adding the drift burst intensity to these two models.  

We first explore the in-sample estimation results of the augmented sqr-HAR-DV and log-

HAR-DV models. Figure 5 reports the coefficient estimates (t-statistics) for the drift burst 

intensity components, with the upper and lower panel showing the results for the square root 

and logarithm transformations, respectively. The general pattern in both the upper and lower 

panel directly mirrors that of the estimates for the non-transformation case in Figure 3&4: for 

both Hawkes and T&Z measures for all RV, DV, and SV forecast targets, the drift burst 

intensity significantly increases the future volatility, with the negative (positive) drift burst 

intensity strongly increase (weakly decrease) the future volatility. This indicates that the impact 

of (signed) drift burst intensity on future volatility is robust to the square root and logarithm 

volatility transformations.  
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Figure 5. HAC robust 𝑡-statistics of drift burst intensity as a function of forecasting horizons. Black, 

red, and blue lines denote the 𝑡-statistics of drift burst intensity, positive drift burst intensity, and 

negative drift burst intensity, respectively. |𝑇| > 4 

Panel A: square root transformation 

Hawkes 

 

T&Z 

 

 

Panel B: logarithm transformation  

Hawkes 

 

T&Z 

 



27 
 

Table 6. Diebold–Mariano statistic for root volatility transformations for |𝑇| > 4 

   Hawkes  T&Z 

   

sqr-HAR- 

DVI 
sqr-HAR- 

DVI± 
sqr-HAR- 

DVI−  

sqr-HAR- 

DVI 
sqr-HAR- 

DVI± 
sqr-HAR- 

DVI− 

Forecast RV1/2 

h=1 MSE RW -0.34 -0.27 -0.02  -0.65 -0.23 0.26 

  IW -0.18 1.62 1.57  0.12 0.03 1.36 

 QLIKE RW -0.19 0.48 0.95  0.17 0.09 1.34 

  IW -0.72 -0.01 -0.06  0.21 0.33 1.87 

h=5 MSE RW 0.71 0.81 0.58  0.36 1.06 0.90 

  IW 0.74 2.24 1.94  0.93 0.97 1.78 

 QLIKE RW -0.10 1.09 1.22  0.04 1.12 1.92 

  IW -0.68 0.79 0.49  0.54 0.61 2.15 

h=22 MSE RW 1.49 1.26 0.67  1.25 1.69 1.52 

  IW 0.99 2.28 2.04  1.44 1.47 2.26 

 QLIKE RW -0.07 1.24 1.18  0.53 2.16 2.57 

  IW -0.68 1.39 1.19  1.37 1.23 2.40 

h=44 MSE RW 2.32 1.39 0.79  1.94 1.98 1.96 

  IW 1.99 2.43 2.34  1.92 1.88 2.69 

 QLIKE RW 0.61 1.74 1.51  1.08 2.51 2.45 

  IW 0.23 1.91 1.81  2.01 1.64 2.79 

h=66 MSE RW 2.42 1.15 0.75  2.38 2.00 2.18 

  IW 2.28 2.75 2.69  2.34 2.21 3.08 

 QLIKE RW 1.55 2.12 1.72  1.00 2.65 2.70 

   IW 0.78 2.44 2.34   2.47 1.98 3.12 

Forecast SV1/2 

h=1 MSE RW 2.34 3.12 3.51  3.39 2.08 2.63 

  IW 0.11 0.96 1.14  3.30 2.39 5.84 

 QLIKE RW 2.42 3.13 2.93  3.36 1.79 2.32 

  IW 0.60 0.15 -0.06  4.10 2.65 6.99 

h=5 MSE RW 1.41 3.31 3.26  2.70 1.77 2.27 

  IW -0.06 1.31 1.45  2.80 2.17 4.92 

 QLIKE RW 1.53 2.65 2.44  2.83 1.85 2.82 

  IW 0.55 0.79 0.57  3.59 2.44 6.10 

h=22 MSE RW 0.93 2.71 2.66  1.89 1.63 1.87 

  IW 0.31 1.69 1.97  2.28 1.81 3.48 

 QLIKE RW 0.71 2.31 2.07  2.16 2.28 3.07 

  IW 0.76 1.71 1.63  2.86 2.19 3.99 

h=44 MSE RW 1.31 2.31 2.47  2.50 2.09 2.30 

  IW 0.64 1.83 2.40  2.71 1.99 3.57 

 QLIKE RW 1.09 2.21 2.25  2.59 2.83 3.28 

  IW 1.13 2.15 2.21  3.10 2.57 3.74 

h=66 MSE RW 1.30 2.46 2.60  2.83 2.22 2.54 

  IW 1.03 1.99 3.01  2.92 1.77 3.30 

 QLIKE RW 1.30 2.47 2.61  2.70 3.37 3.72 

   IW 1.66 2.57 2.86   3.35 2.91 3.85 
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Table 7. Diebold–Mariano statistic for logarithm volatility transformations for |𝑇| > 4 

Notes: the DM statistics are based on the MSE function. 

   Hawkes  T&Z 

   

log-HAR- 

DVI 
log-HAR- 

DVI± 
log-HAR- 

DVI−  

log-HAR- 

DVI 
log-HAR- 

DVI± 
log-HAR- 

DVI− 

Forecast log(RV) 

h=1 MSE RW -0.69 1.02 0.99  -0.33 0.38 1.22 

  IW -0.44 0.90 1.00  0.98 1.06 1.87 

 QLIKE RW -0.85 0.93 0.88  -0.15 0.47 1.10 

  IW -0.39 0.98 1.16  0.91 0.97 1.71 

h=5 MSE RW 0.15 1.54 1.22  0.24 1.26 1.59 

  IW 0.52 1.53 1.38  1.43 1.55 2.33 

 QLIKE RW 0.03 1.31 1.01  0.41 1.18 1.38 

  IW 0.64 1.64 1.54  1.33 1.43 2.17 

h=22 MSE RW 0.86 1.14 0.72  0.79 2.17 2.40 

  IW 0.90 1.78 1.59  1.92 2.02 2.88 

 QLIKE RW 0.94 0.72 0.30  0.97 1.88 1.98 

  IW 1.06 1.80 1.64  1.67 1.79 2.68 

h=44 MSE RW 2.05 1.59 0.89  1.49 3.11 3.06 

  IW 2.29 2.19 2.14  2.61 2.61 3.36 

 QLIKE RW 2.24 1.19 0.36  1.80 2.76 2.73 

  IW 2.47 2.15 2.14  2.39 2.44 3.30 

h=66 MSE RW 1.68 1.47 1.01  1.26 3.46 3.06 

  IW 2.88 2.83 2.82  3.12 3.02 3.72 

 QLIKE RW 1.85 0.95 0.41  1.68 2.90 2.69 

   IW 3.03 2.73 2.77   2.98 2.94 3.71 

Forecast log(SV) 

h=1 MSE RW 2.30 3.68 3.59  3.54 2.29 2.93 

  IW 0.81 1.05 1.15  3.39 3.09 5.92 

 QLIKE RW 1.98 3.64 3.71  3.47 2.32 2.91 

  IW 0.89 1.34 1.47  3.19 2.98 5.65 

h=5 MSE RW 1.16 2.96 2.88  2.73 1.94 2.73 

  IW 0.53 1.25 1.34  2.80 2.69 4.88 

 QLIKE RW 0.84 3.06 3.07  2.70 1.92 2.59 

  IW 0.54 1.43 1.56  2.64 2.59 4.70 

h=22 MSE RW 0.54 2.41 2.59  2.26 2.10 2.97 

  IW 0.65 1.63 1.91  2.61 2.67 4.15 

 QLIKE RW 0.36 2.27 2.72  2.15 1.80 2.55 

  IW 0.52 1.55 1.95  2.34 2.46 4.00 

h=44 MSE RW 0.97 2.54 2.66  3.35 3.26 4.04 

  IW 1.02 1.90 2.43  3.06 3.02 4.15 

 QLIKE RW 0.92 2.48 2.73  3.37 2.98 3.67 

  IW 0.86 1.73 2.47  2.88 2.85 4.16 

h=66 MSE RW 0.99 2.51 2.79  3.70 3.95 4.62 

  IW 1.58 2.18 2.97  3.23 3.19 4.09 

 QLIKE RW 0.90 2.50 2.81  3.83 3.55 4.26 

   IW 1.39 1.96 3.01   3.05 2.89 4.01 

 

 

 



29 
 

We next focus on forecast accuracy. Table 6 evaluates the out-of-sample of the augmented 

sqr-HAR-DV models, in terms of their DM statistics relative to that of the benchmark sqr-

HAR-DV model. The upper and lower panel report the results for RV1/2  and SV1/2 forecast, 

and in each of these two panels results for the Hawkes and T&Z intensity measures are also 

reported. These results are not only confirmed but strengthened, compared to those in Table 4 

and Table 5. In detail, for both RV1/2 and SV1/2 forecasts, the augmented sqr-HAR-DV models 

overwhelmingly outperform the benchmark model, with few exceptions (mostly from the sqr-

HAR - DV  model associated with the Hawkes measure for RV forecast). Moreover, the 

superiority of the sqr-HAR-DVI− model over the sqr-HAR-DV model also holds true for the 

square root volatility transformations: the DM statistics of the sqr - HAR -DVI−  model is 

substantially more positive across these different cases in the table. Further, comparing the 

Hawkes and T&Z measure, the latter provides a greater number of significant DM statistics, 

for these different scenarios. Table 7 compares the augmented log-HAR-DV models with the 

log-HAR-DV model for the out-of-sample. The pattern is qualitatively in line with those in 

Table 8, indicating that our findings are also robust to logarithm volatility transformations.  

 

5.2 Alternative benchmark model 

This section aims to study whether the drift burst intensity also improves other benchmark 

models for the out-of-sample. The first benchmark model we choose is the popular HARQ 

model by Bollerslev et al. (2016), 

𝑅𝑉̅̅ ̅̅
𝑡+ℎ|𝑡 = 𝛽0 + (𝛽𝑑 + 𝛽𝑑

𝑄
√𝑅𝑄𝑡−1,𝑡)𝑅𝑉𝑡−1,𝑡 + 𝛽𝑤 𝑅𝑉𝑡−5,𝑡 + 𝛽𝑚 𝑅𝑉𝑡−22,𝑡 + 𝜀𝑡, (7) 

where 𝑅𝑄𝑡 is the realized quarticity estimator, with 𝑅𝑄𝑡 =
𝑀

3
∑ 𝑟𝑡𝑖

2𝑀
𝑖=1 . The second model 

we consider is a recent HARDQ developed by Laurent et al. (2022), 
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𝑅𝑉̅̅ ̅̅
𝑡,𝑡+ℎ = 𝛽0 + (𝛽𝑑 + 𝛽𝑑

𝑄
√𝑅𝑄𝑡−1,𝑡)𝑅𝑉𝑡−1,𝑡 + 𝛽𝑤 𝑅𝑉𝑡−5,𝑡 + 𝛽𝑚 𝑅𝑉𝑡−22,𝑡

+ (𝛽𝑑 + 𝛽𝑑
𝑄

√𝑅𝑖𝑐𝑒𝑄𝑡−1,𝑡)𝑅𝐴𝐶𝑡−1,𝑡
+ + 𝛽𝑤 𝑅𝐴𝐶𝑡−5,𝑡

+ + 𝛽𝑚 𝑅𝐴𝐶𝑡−22,𝑡
+ + 𝜀𝑡, (7) 

where RAC is the non-negative realized first-order Auto-Covariance (RAC) which measures the 

drift burst variation with 𝑅𝐴𝐶𝑡 = 𝑅𝐴𝐶𝑡 ∙ 𝐼(𝑅𝐴𝐶𝑡 > 0) with  ∑ 𝑟𝑡𝑖
𝑟𝑡𝑖−1

𝑀
𝑖=𝐾 , and 𝑅𝑖𝑐𝑒𝑄 is a drift-

robust quarticity estimator with 𝑅𝑖𝑐𝑒𝑄𝑡 =
𝑀

6
∑ 𝑟𝑡𝑖

𝑟𝑡𝑖−𝐾

𝑀
𝑖=3 . It is worthwhile to note that the 

HARDQ model already contains drift burst information, which, however, is all about the drift 

burst variation. It is interesting to see whether our intensity information of the drift bursts 

contributes a distinct value to this model.  

To study the contribution of drift burst information, we formulate new models by simply 

adding the different drift burst intensities to the HARQ and the HARDQ model, in the same way, 

we have done for the HAR-DV model. For example, we create the HARQ-I model and the 

HARDQ-I model by including the drift burst intensity to the HARQ and the HARDQ model, 

𝑅𝑉̅̅ ̅̅
𝑡+ℎ|𝑡 = 𝛽0 + 𝛽𝜆 𝜆𝑡−1 + (𝛽𝑑 + 𝛽𝑑

𝑄
√𝑅𝑄𝑡−1,𝑡)𝑅𝑉𝑡−1,𝑡 + 𝛽𝑤 𝑅𝑉𝑡−5,𝑡 + 𝛽𝑚 𝑅𝑉𝑡−22,𝑡 + 𝜀𝑡, (8) 

𝑅𝑉̅̅ ̅̅
𝑡+ℎ|𝑡 = 𝛽0 + 𝛽𝜆 𝜆𝑡−1 + (𝛽𝑑 + 𝛽𝑑

𝑄
√𝑅𝑄𝑡−1,𝑡)𝑅𝑉𝑡−1,𝑡 + 𝛽𝑤 𝑅𝑉𝑡−5,𝑡 + 𝛽𝑚 𝑅𝑉𝑡−22,𝑡 + (𝛽𝑑 +

𝛽𝑑
𝑄

√𝑅𝑖𝑐𝑒𝑄𝑡−1,𝑡)𝑅𝐴𝐶𝑡−1,𝑡
+ + 𝛽𝑤 𝑅𝐴𝐶𝑡−5,𝑡

+ + 𝛽𝑚 𝑅𝐴𝐶𝑡−22,𝑡
+ + 𝜀𝑡.  

As a result, we will have overall 6 augmented models: HARQ-I, HARQ-I± , HARQ-I−, 

HARDQ-I, HARDQ-I±, and HARDQ-I− models. Table 8 compares these augmented models 

with their benchmarks, with positive DM statistics indicating that the augmented models 

perform better. We focus on reporting the results for the T&Z measure and SV forecast, as the 

main goal of this section is to check the robustness of the predictive power of drift burst 

intensity. But we confirm that for the HARQ and HARDQ models, the predictive superiority of 

the T&Z measure over the Hawkes intensity measure still holds, and both intensity measures 

provide a better forecast for longer horizons for RV forecast.  
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Table 8. Diebold–Mariano statistic for SV forecast for the augmented-HARQ and the augmented-

HARDQ models. 

   HARQ  HARDQ 

   

HARQ 

-I 
HARQ 

-I± 

HARQ 

-I−  

HARDQ 

-I 
HARDQ 

-I± 

HARDQ 

-I− 

h=1 MSE RW 0.30 -0.25 0.31  -0.71 -0.25 -0.79 

  IW 1.72 1.19 2.19  1.58 0.97 2.06 

 QLIKE RW 2.28 0.63 1.76  2.63 0.61 2.38 

  IW 4.81 -1.88 7.49  3.76 -1.92 7.24 

h=5 MSE RW 0.95 1.24 1.04  1.58 1.58 1.45 

  IW 1.43 1.12 1.86  1.35 0.96 1.78 

 QLIKE RW 1.30 0.50 2.20  2.11 1.77 2.76 

  IW 4.19 -1.67 6.99  3.03 -2.02 6.63 

h=22 MSE RW 1.73 1.79 1.68  1.60 1.76 1.63 

  IW 1.72 1.13 2.38  1.70 1.06 2.36 

 QLIKE RW 0.98 1.31 2.20  1.43 1.66 1.93 

  IW 2.91 -1.20 3.81  2.83 -1.08 3.83 

h=44 MSE RW 1.74 1.80 1.74  1.67 1.92 1.74 

  IW 2.28 1.28 2.82  2.28 1.17 2.81 

 QLIKE RW 1.31 1.13 2.55  1.10 1.46 2.58 

  IW 3.28 -0.01 3.68  3.19 -0.80 3.67 

h=66 MSE RW 2.10 1.72 1.85  1.90 1.66 1.73 

  IW 2.60 0.83 2.44  2.61 0.74 2.44 

 QLIKE RW 0.64 -0.74 2.98  0.11 -0.62 2.19 

   IW 3.75 2.51 4.03   3.71 2.04 4.03 

 

Table 8 evaluates the out-of-sample of the three intensity models over the benchmark 

HARQ model, with forecast target SV. Again, the intensity-augmented HARQ model is able to 

be significantly superior to the HARQ model, and the pattern in the table is very similar to that 

in Table 6. For example, the HARQ-I− model performs significantly better than the HARQ 

model across almost all of these different scenarios. And the HARQ - I±  model generally 

provides significantly better forecasts than the HARQ model for all cases within |𝑇| > 4 and 

|𝑇| > 4.5. In addition, the out-of-sample results for RV and DV as targets are consistent with 

those in Table 4 and Table 5: the augmented HARQ model performs better for long horizons. 

For brevity, we report these results in the appendix. 
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5.3 The insanity filter 

To alleviate these abnormal volatility forecasts, Bollerslev et al. (2016) apply the “insanity 

filter (IF)”. The IF substitutes the forecast with the unconditional mean within the estimation 

window if the forecasts are outside the interval between the minimum and maximum 

forecasting target V̅ of this window. Insanity filters for volatility forecasting have also been 

used by Patton and Sheppard (2015) and Bollerslev et al. (2018) Even so, the vast majority of 

studies examining the HAR model, and extensions thereof, do not employ an IF. Examples 

include Corsi et al. (2010),  Corsi and Renò (2012), Andersen et al. (2021), and Caporin (2022). 

Unreported results show that all our results, including the robustness check, hold for employing 

an IF. 
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6 Conclusion 

This paper exhibits the importance of drift burst information in predicting future volatility. 

The in-sample results reveal the positive effect of drift burst intensity and the leverage effect 

of the intensity of drift burst signs. In addition, including drift burst and drift burst signs 

intensity leads to a significant increase in the out-of-sample performance of the HAR-DV model 

by Andersen et al. (2021), the HARQ model by Bollerslev et al. (2016) and the HARDQ model 

by Laurent et al. (2022). The strong evidence for both in-sample and out-of-sample indicates 

the importance of drift burst information to volatility forecasting. Our findings are robust to 

both approaches by Hawkes (1971) and Tauchen and Zhou (2011), the use of insanity filter, 

and logarithm and square root volatility transformations. 

Future research can be on multivariate intensity modelling. For example, one can use the 

multivariate Hawkes model to model the drift burst intensity across different markets, for 

investigating the interaction between these markets. In addition, the drift bursts may have 

implications for asset pricing. Since the drift bursts affect the price volatility, the drift bursts 

should also influence the beta, which builds on the covariance between the market prices and 

the asset prices. 
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