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Abstract

We propose an alternative approach towards cost mitigation in volatility-managed portfolios based
on smoothing the predictive density of an otherwise standard stochastic volatility model. Specifically,
we develop a novel variational Bayes estimation method that flexibly encompasses different smooth-
ness assumptions irrespective of the persistence of the underlying latent state. Using a large set of
equity trading strategies, we show that smoothing volatility targeting helps to regularise the extreme
leverage/turnover that results from commonly used realised variance estimates. This has important
implications for both the risk-adjusted returns and the mean-variance efficiency of volatility-managed
portfolios, once transaction costs are factored in. An extensive simulation study shows that our vari-
ational inference scheme compares favourably against existing state-of-the-art Bayesian estimation
methods for stochastic volatility models.
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1 Introduction

The evidence that volatility tends to cluster over time and negatively correlates with realised re-
turns have motivated the use of volatility-managed strategies. Effectively, a volatility-managed
strategy targets a constant level of volatility, rather than a constant capital exposure to the
original portfolio. This is achieved by leveraging up (scaling down) the investment in a given
portfolio at times of low (high) volatility. A conventional approach to volatility targeting builds
upon the idea that portfolio returns are simply rescaled by the previous month’s realized vari-
ance. Its theoretical foundation lies in the evolution of the risk-return trade-off over time (see,
e.g., Moreira and Muir, 2017).! However, this often leads to extremely leveraged positions to

gain aggressive factor exposures following periods of low volatility.

Figure 1 shows this case in point. The left panel shows the volatility-managed portfolio
allocation based on realised variance estimates for three common factors; the market, and the
size and momentum factors as originally proposed by Fama and French (1996) and Jegadeesh
and Titman (1993), respectively. Simple volatility targeting leads to a tenfold exposure in
some of the most common factor portfolios at times of low volatility. This excess leverage is
widespread across different factor portfolios. The right panel in Figure 1 shows that volatility
targeting based on realised variance leads to a leverage between 1.8 and 4 times for at least 10%
of the original factor returns, and between 3 to 11 times for at least 1% of the observations.
This makes volatility-managed strategies both particularly challenging to implement and rather
risky, as high leverage could exacerbates tail risk when volatility targeting is missed and/or

forecasts are not sufficiently accurate (see, e.g., Bongaerts et al., 2020).

A simple solution proposed in the literature is to impose leverage constraints on the volatility-
targeting weights (see, e.g., Moreira and Muir, 2017; Cederburg et al., 2020). While this cer-
tainly simplifies an empirical analysis, leverage constraints do not regularise the often erratic

underlying volatility estimates and are typically set arbitrarily, absent sounded economic ar-

INotice that the terms “volatility-managed”, “volatility-targeting”, “volatility-managing” are used inter-
changeably throughout the paper as they carry the same meaning for our purposes.



guments for their optimal setup. In this respect, leverage constraints are as valuable as the
underlying volatility estimates. For instance, smoother volatility-targeting weights may require
less binding constraints over the out-of-sample period to achieve a similar performance. This
is akin a joint-test problem whereby leverage constraints are well-specified only to the extent

that the assumptions underlying the volatility estimates are correct.

In this paper, we take a different approach towards the regularization of volatility-targeting
weights. Specifically, we propose a novel variational Bayes (henceforth, VB) inference scheme
which allows to discipline potentially erratic monthly volatility forecasts by smoothing the
predictive density of an otherwise standard AR(1) latent stochastic volatility model. Put
it differently, our underlying assumption is that actual monthly returns’ volatility follows a
conventional autoregressive latent stochastic process.? However, monthly volatility forecasts
can be noisy, which leads to extreme portfolio turnover in volatility-targeting strategies. As
a result, one could “filter out” the noise in the forecasts by leveraging on a simple Gaussian
Markov random field representation of the latent volatility state. Our approach is general,
meaning that encompasses both non-smooth predictive densities and different types of smooth

functions, e.g., spline basis functions (see Rue and Held, 2005).

We evaluate the economic performance of our smooth volatility forecasts based on a broad
sample of 158 equity trading strategies. We first consider the nine equity factors examined by
Moreira and Muir (2017). In addition, we include 149 characteristic-managed portfolios, or
“factors”, as reported in Jensen et al. (2022). For comparability with the existing research, we
consider value-weighted portfolios built within the context of the US equity markets (see, e.g,
Cederburg et al., 2020; Wang and Yan, 2021). In addition to previous month’s realised variance
(henceforth RV), we benchmark our smooth volatility-managed portfolios (SSV) against several
alternative implementations of volatility-targeting. The first uses the expected variance from a

simple AR(1) rather than realized variance (RV AR), which helps to reduce the extremity of the

2See for example, Harvey et al. (1994); Andersen and Sgrensen (1996); Ghysels et al. (1996); Gallant et al.
(1997); Bali (2000); Durbin and Koopman (2000); Jacquier et al. (2002, 2004); Shephard and Pitt (2004); Yu
(2005); Han (2006); Hansen et al. (2008); Bansal et al. (2010); Schorfheide et al. (2018), among others. An
extensive review of the use of stochastic volatility models as an alternative to ARCH-type approaches can be
found in Shephard (2020).



weights. Second, we consider an alternative three-month window to estimate the longer-term
realised variance (RV3). Third, we consider both a long-memory model for volatility forecast
as proposed by Corsi (2009) (HAR), and a standard AR(1) latent stochastic volatility model
(SV) (see, e.g., Taylor, 1994). Finally, we consider a plain GARCH(1,1) specification (Garch),
which has been shown to be a challenging benchmark in volatility forecasting (see, Hansen and

Lunde, 2005).

1.1 Findings

Our empirical tests evaluate the performance of alternative volatility-managed implementations

of a broad set of equity trading strategies. Each of the managed portfolios is constructed as

*

c
Y = =i, (1)
Ut2—1|t

where y7 and y; are the scaled and the original portfolio’s excess returns in month ¢, respectively,
and 3?_1‘ . is the variance forecast of unscaled portfolio returns based on information available
up to the previous month ¢t — 1. We follow Cederburg et al. (2020) and consider both an
in-sample and a real-time implementation of Eq.(1). For the in-sample implementation, the
constant c¢* is chosen such that the unconditional variance of the managed y; and unmanaged
y; portfolios coincide. For the real-time implementation, c; is time-varying and is chosen such
that the variance of the managed and unmanaged portfolios coincide only conditional on the

returns up to month ¢.

Most prior studies assess the value of volatility targeting strategies by comparing the Sharpe
ratios obtained by scaled factors y¢ as in Eq.(1), with the Sharpe ratios obtained from the
original factors y, (see, e.g., Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016;
Moreira and Muir, 2017; Bianchi et al., 2022). We follow this approach and show that volatility-
targeting based on out smoother volatility forecasts substantially improves upon conventional
realised variance measures. For instance, a real-time RV scaling yields a Sharpe ratio that is

significantly higher compared to the unscaled factor for 8 out of 158 equity strategies. Instead,



a real-time SSV implementation delivers a Sharpe ratio both economically and statistically
higher than the unmanaged factor for 15 equity strategies out of the 158 considered. Consistent
with Cederburg et al. (2020), these results suggest that, regardless of the variance forecasting
method, stand-alone investments in volatility-managed portfolios do not systematically improve

upon unmanaged factors.

Nevertheless, our smoothed volatility-managed portfolios show a substantially lower turnover
compared to alternative volatility forecasting methods. For instance, the managed portfolio
turnover from our SSV is 5% on average across all 158 equity strategies. By comparison, the
turnover from the RV scaled portfolio is 65% on average across all equity strategies. Perhaps
more importantly, we show that greater portfolio stability translates into a substantially large
risk-adjusted performance. For conservative levels of transaction costs, our SSV produces a
Sharpe ratio which is almost twice as large as other volatility-managed strategies, and for 8
equity strategies out of 158 a significantly larger SR compared to the corresponding unmanaged

portfolios.

For each equity strategy and volatility-targeting methodology, we estimate the spanning

regression on both the scaled and unscaled returns,

vl = a+ By + &, (2)

When portfolios are rescaled by smooth volatility forecasts, the results show that 50 out of the
158 managed portfolios earn a positive and significant alpha, compared to 9 with a negative
and significant alpha. The amount of significant alphas slightly decrease to 42 equity strategies
for a real-time volatility-scaled implementation. Interestingly, the results from our smoothed
volatility forecasts are slightly worse than a standard realised variance implementation. For
instance, a RV method implies that 56 (50) equity strategies have a positive and significant

alphas for the in-sample (real-time) scaling implementation.

The economic implication of a > 0 is that volatility scaled portfolios may expand the mean-

variance frontier relative to the unscaled portfolios (see, e.g., Gibbons et al., 1989). We test



this assumption by comparing the certainty equivalent return (CER) for two strategies both
in-sample and in real-time: (i) a strategy that allocates between a given volatility-managed
portfolio and its corresponding original portfolio, and (ii) a strategy constrained to invest
only in the original portfolio. The baseline combination correspond to the optimal mean-
variance allocation assuming a risk aversion coefficient equal to five. We show that without
considering transaction costs, the CERs are positive and quite comparable across volatility-
targeting methods. However, when transaction costs are considered, our SSV stands out as the
most profitable rescaling method, on average. Perhaps more interestingly, the SSV is the only
with a positive median CER differential with respect to the unmanaged portfolio strategies.

That is, the economic gain is positive for at least 50% of the equity strategies considered.

A regularisation of the volatility targeting weights based on leverage constraints does not
help to mitigate the gap between our SSV method and all the alternative weighting schemes
we consider. For instance, a tight 50% leverage constraint and 50 basis points transaction
costs imply an average Sharpe ratio from the RV method of 0.04, versus a 0.24 from the SSV.
Similarly, the economic gain from a mean-variance combination strategy of the unmanaged
and managed portfolios is substantially in favour of our SSV method. For instance, the CER
differential with 50 basis points transaction costs and a 50% leverage constraint is 8.15% for

the SSV versus a negative -1.4% for the benchmark RV scaling.

We also provide more formal statistical evidence on the difference in the realised returns of
our smooth volatility-managed portfolios versus alternative volatility targeting methods. Our
assumption is that the tight relationship between the scaled and unscaled factors in Eq.(1)
allows to recover the distribution of the volatility-managed returns conditional on the unscaled
factor y; and the predictive density of the smoothed latent stochastic volatility. As a result, a
simple test boils down to compare the returns distribution from the SSV against the realised
returns from all of the alternative volatility targeting methods. The results show that our SSV
outperforms the RV scaling at conventional significance thresholds for up to 20% of the equity

strategies. This increases to more than 30% of the equity strategies during recession periods.

Finally, we explore the statistical underpinnings of our modeling framework through an



extensive simulation exercise. We compare the estimation accuracy of our VB inference scheme
against state-of-the-art Bayesian methods, such as MCMC (see, Hosszejni and Kastner, 2021)
and variational Bayes (see, e.g., Chan and Yu, 2022). The main simulation study is based on
the assumption that the underlying latent state is an AR(1) with different levels of persistence.
The results show that when we do not arbitrarily impose any smoothness in the posterior
estimates of the latent stochastic volatility state, our algorithm is as accurate as MCMC and
existing variational Bayes methods. Yet, when we arbitrarily smooth the posterior estimates
the accuracy deteriorates. This is expected since the wavelet basis functions mechanically tilts
the posterior estimates of the parameters towards a more persistent latent state relative to the

actual data generating process.

1.2 Reference literature

In addition to Moreira and Muir (2017), our work contributes to a growing literature that seeks
to understand the origins and the dynamic properties of volatility-managed portfolios (see, e.g.,
Harvey et al., 2018; Bongaerts et al., 2020; Cederburg et al., 2020; Liu et al., 2019; Barroso and
Detzel, 2021; Wang and Yan, 2021, among others). Liu et al. (2019) shows that a real-time
implementation of volatility targeting suffers from severe drawdowns, compared to unmanaged
portfolios. Similarly, Cederburg et al. (2020) shows that volatility-managed portfolios do not

systematically outperform the corresponding unmanaged equity strategies.

We contribute to this literature by highlighting the importance of volatility modeling for the
profitability of scaled portfolios. Specifically, we show that smoothing the volatility forecasts
provide an intuitive regularization to the scaled portfolios, which is alternative to hard-to-
calibrate optimal leverage constraints. This translates in an economically better performance
versus realised variance measures, in particular within the context of a real-time implementation
with conservative transaction costs. In addition, unlike the existing literature, we explicitly
acknowledge that the uncertainty around the volatility predictions might be pervasive. By
taking a Bayesian approach we can quantify the uncertainty around the scaled portfolio returns,

so that a more direct statistical comparison between scaled and unscaled factors can be made.



A second strand of literature we contribute to, relates to the estimation of stochastic volatil-
ity models. The non-linear interaction between the latent volatility state and the observed
returns lead to a likelihood function that depends upon high dimensional integrals. A va-
riety of estimation procedures have been proposed to overcome this difficulty, including the
generalized method of moments (GMM) of Melino and Turnbull (1990), the quasi maximum
likelihood (QML) approach of Harvey et al. (1994) and Ruiz (1994), and the efficient method of
moments (EMM) of Gallant et al. (1997). Within the context of Bayesian methods, the anal-
ysis of stochastic volatility models has been initially proposed by Kim et al. (1998); Durbin
and Koopman (2000); Jacquier et al. (2002, 2004); Shephard and Pitt (2004); Durbin and
Koopman (2000). We contribute to this literature by proposing a novel variational Bayes esti-
mation framework which allows to flexibly smooth the predictive density of the latent stochastic
volatility state irrespective of the underlying assumption about the data generating process.
Our approach is general, meaning that encompasses different smoothness assumptions for the
volatility forecasts without changing the underlying model structure. This adds a layer of
flexibility compared to standard Bayesian methods, in that the latter would require to change

the model structure entirely to achieve smooth volatility forecasts.

Finally, this paper connects to a third strand of literature that introduces the use of vari-
ational Bayes methods for economic forecasting (see, e.g., Gefang et al., 2019; Koop and Ko-
robilis, 2020; Chan and Yu, 2022). Variational approximate methods (Bishop, 2006) have
become popular as computational feasible alternatives to the leading paradigm of simulation-
based methods, such as Markov Chain Monte Carlo (MCMC) for approximating the posterior
distributions. This type of inferential methods have been used in a wide range of applications,
ranging from statistics (Rustagi, 1976) to quantum mechanics (Sakurai, 1994), statistical me-
chanics (Parisi, 1988), machine learning (Hinton and Van Camp, 1993) and then generalized to
many probabilistic models, taking advantage of the graphical models’ representation (Jordan
et al., 1999). We contribute to this literature by proposing a flexible approximation based on
a Gaussian Markov random field approximation of the latent stochastic volatility state. This

allows to consider both non-smooth and smooth volatility forecasts based on a simple twist in



the posterior approximating density of the latent state.

2 Modeling framework

Let consider a standard univariate dynamic model with stochastic volatility (Taylor, 1994). A

general specification is based on a state-space representation of the form:

v = X 0+ exp(hy/2)ey, e ~ N(0,1) (3)

hi = c+ p(hi—1 — ¢) + uy, ug ~ N(0, 772)’ (4)

where y;, x; € RP, hy = logo? are, respectively, the log-return, a set of covariates, and the
log-volatility of an equity strategy at time ¢, for ¢ = 1,2,...,n. The error terms ¢; and
u; are mutually independent Gaussian white noise processes. The latent process in (4) is a
conventional autoregressive process of order one, with unconditional mean ¢, persistence p, and
conditional variance n?. We assume |p| < 1, so that the initial state iy can be sampled from the
marginal distribution, i.e. hg ~ N (c, %) Notice that, for comparability with the existing
literature on volatility-managed portfolios, we assume a constant mean p in the observation
equation (3), such that there are no covariates and p = x; /3 with x; an n-dimensional vector
of ones. However, in the following, we provide the full specification of our variational Bayes

inference scheme under the general model with covariates.

2.1 Variational Bayes inference

A variational Bayes approach to inference requires to minimize the Kullback-Leibler (KL)
divergence between an approximating density ¢(1) and the true posterior density p(d|y), (see,
e.g. Blei et al., 2017). The KL divergence cannot be directly minimized with respect to 9
because it involves the expectation with respect to the unknown true posterior distribution.

Ormerod and Wand (2010) show that the problem of minimizing KL can be equivalently stated



as the maximization of the variational lower bound (ELBO) denoted by p (y; q):

q*(9) = argqgggglogzg(y;q), p(y;q) = / q(9) log {pgb?)} dd, (5)

where ¢*(1) € Q represents the optimal variational density and Q is a space of functions.
The choice of the family of distributions Q is critical and leads to different algorithmic ap-
proaches. In this paper we consider two cases. The first is a mean-field variational Bayes
(MFVB) approach which is based on a non-parametric restriction for the variational density,
ie. q(¥) = [[’_, () for a partition {¥,...,89,} of the parameter vector ¥. Under the
MFVB restriction, a closed form expression for the optimal variational density of each compo-

nent ¢(v;) is defined as:

p

0'(9) o exp {Bygono, | logp(y. 9)] . 0@\ 9,) = [Ja0), (6)
7

where the expectation is taken with respect to the joint approximating density with the j-th
element of the partition removed ¢*(9 \ ¥;). This allows to implement a coordinate ascent
variational inference (CAVI) algorithm to estimate the optimal density ¢*(). Equation (6)
shows that the factorization of ¢(1) plays a central role in developing a MFVB algorithm. In the
following, we consider a factorization of the joint variational density of the latent log-variances

h and the parameters 9 = (3, ¢, p,n?) of the form:

q(h,9) = q(h)q(9) = q(h)q(B)q(c)a(p)a(n?). (7)

In the following, we focus on the approximating density for the latent process h, where the
novelty of our estimation procedure lies compared to the existing literature (see, e.g., Chan
and Yu, 2022). For the interested reader, in Appendix A.1 we provide the full set of derivations

of the optimal variational densities for the parameters ¢(3), q(c), q(p), and q(n?).

The marginal distribution p (h) of the joint vector h™ = (hq, hy, ..., h,) admits a Gaussian

Markov random field (GMRF) representation h ~ N, ;1 (ct,11,7*Q™!) that preserves the time



dependence structure implied by the autoregressive process. Specifically, the matrix Q = Q(p)
is a tridiagonal precision matrix with diagonal elements ¢i1 = gn+1041 = 1 and ¢;; = 1 + 0>
for i = 2,...,n, and off-diagonal elements ¢;; = —p if |i — j| = 1 and 0 elsewhere (see Rue
and Held, 2005). We exploit this representation to obtain the approximating density ¢(h)
as h ~ Nnﬂ(uq(h),ﬂq_(}l)) with mean vector p,;y = Wiy and variance-covariance matrix
Zom) = Q-

Notice that the choice of g,y as a linear projection Wiy, with ;) € R¥ the projection
coefficients and W an (n + 1) x k deterministic matrix, has a direct effect on the posterior
estimates of log-volatility. In Section 2.1.1 we discuss in details how different structures of
W leads to different posterior estimates irrespective of the underlying dynamics of the latent
state. This is a key feature of our estimation strategy since it allows to customise the volatility

forecasts without changing the underlying model assumptions.

In the following we focus on the more general heteroschedastic case, whereas the optimal
density and the estimation details for the more restrictive homoschedastic case are discussed
in Appendix A.2. The optimal parameters & = (f,(4), Xq)) of the approximating density ¢ (h)

can be found by solving the optimization problem

~

£ =arg mex {E,(logp(y,h)) — E,(log q(h))}, (8)

To solve the optimization we leverage on the GMRF representation of ¢ (h) and exploit the
results in Rohde and Wand (2016). They provide a closed-form updating scheme for the
variational parameters when the approximating density is a multivariate Gaussian. Proposition
2.1 the details on the optimal updating scheme for the variational density of the latent volatility

states. The proof and analytical derivations are available in Appendix A.3.

Proposition 2.1. Let pys) = (Hg(sy)s - - -+ Ha(sn))T With fig(s,) = (Ye —XtTu,q(ﬁ))2 +tr {Eq(ﬁ)xtxtT},
and sy, Xq(p) denote the variational mean and covariance of the regression parameters (3.

Assuming a GMRF representation of h ~ Ny 1 (£, Qq‘&l)), with mean vector pg;y = Wiy

10



and variance-covariance matriz ;) = Q;(}Z), an iterative algorithm can be set as:

-1
new o 2 old old
> [v“q<h)“q<h S(Nq( h)> zDq(h))] ’ (9)
new _ folh) 4 W+ Eq(;;)v S( old Eold ) (10)
Hqiny = WEGY, )

with W+ = (WTW)~'"WT the left Moore-Penrose pseudo-inverse of W, and S(p,y, Zg(n))
equal to E,(logp(h,y)) (see Eq.A.25), such that,

1 1 g
Vg S (Bgny» Ba(ny) = _5[07 o+ 5[07 Byl ©e by 30 (B (12)
= Hg(1/m2) (@) (Bqn) — Ha(e)bn+1), (13)

1. - Ldiag(=
Viq(muq(ms(“qw’EQ(h)) - —§D|ag [0, g T @€ a5 9o8(%um) | Ha(1/m Mgy (14)
where v, is an n-dimensional vector of ones, iy /2y is the variational mean of 1/n?, Hyq) S

the element-wise variational mean of Q, and ® denotes the Hadamard product.

Our approach expands the global approximation method proposed by Chan and Yu (2022)
along three main dimensions. First, we relax the assumption that the initial distribution
q(hg) is independent on the trajectory of the latent state g(h;), that is, we do not assume
q(h) = q(ho)q(h;). Second, we do not make any assumption on the 3y, which is not fixed
conditional on g, ), but is estimated jointly with g,;). Third, our latent volatility state
accommodates a more general AR(1) dynamics, instead of a random walk. While the latter
reduces the parameter space, it imposes a strong form of non-stationarity in the log-volatility
process. In Section 4, we show via an extensive simulation study that all these features have

a significant effect on the accuracy of the variational Bayes estimates.

2.1.1 Smoothing the volatility estimates. The choice of p,, as a linear projection
Wi, 1), with f,,) € R* the projection coefficients and W an (n + 1) x k deterministic matrix,

has a direct effect on the posterior estimates of log-volatility. Figure 2 shows examples of

11



the shape of p,p) = Wiy, for difference choices of W (solid line), and the corresponding
confidence intervals implied by X,y (dashed line). The gray trajectory represents the true
simulated value of the log-stochastic volatility h™ = (hq, hy, ..., h,) for n = 300. The top-left
panel reports the posterior estimates obtained by setting W = I,,,;, with I,,; an identity
matrix of dimension n + 1. This represents a non-smooth estimate which is akin to the output

of a standard MCMC estimation scheme (see, e.g., Hosszejni and Kastner, 2021).

The remaining panels of Figure 2 highlight a key feature of our estimation strategy; that is, it
allows to customise the volatility forecasts without changing the underlying model assumptions.
For instance, the top-right panel shows the posterior estimates of the latent volatility state
with W a matrix of wavelet basis functions with a fixed degree of smoothness [ = 4 (see Wand
and Ormerod, 2011). The fact that the matrix W enters both in the conditional mean and
covariance of the optimal variational density ¢* (h) allows to smooth not only the conditional

mean of the latent volatility state, but also the corresponding confidence intervals.

The bottom panels in Figure 2 highlight the flexibility of our approach; the left panel shows
that more than one smoothing assumption can coexists in the same optimal variational density.
For instance, the shape of the posterior estimates assuming W = 1,1 for the first half of the
sample and W a wavelet basis function with [ = 4 for the second half of the sample. The
bottom-right panel shows that a variety of smoothing functions can be adopted; for instance,
the estimates of the latent stochastic volatility can be smoothed based on W equal to be a
B-spline basis matrix representing the family of piecewise polynomials with the pre-specified

interior knots (kn), degree (dg), and boundary knots.

Figure 3 depicts the form of W when B-spline and Daubechies wavelets are used. The form
of W in case of B-spline basis functions (top) and wavelet basis functions (bottom). Right
panels correspond to columns of the matrix W. The B-spline basis functions is a sequence
of piecewise polynomial functions of a given degree, in this case dg = 3. The locations of
the pieces are determined by the knots, here we assume kn = 20 equally spaced knots. The
functions that compose the wavelet basis matrix W are constructed over equally spaced grids

on [0,n] of length R, where R is called resolution and it is equal to 2!=, where [ defines the

12



level, and as a result the degree of smoothness. The number of functions at level [ is then equal

to R and they are defined as dilatation and/or shift of a more general mother function.

2.1.2 Variance prediction. Consider the posterior distribution of p(h,9¥|y) given the in-
formation set up to time ¢, y = {yi.}, and p(h,41|y,h,9) the likelihood for the new latent

state hy,y1. The predictive density then takes the familiar form,

plhnesly) = / P(hnsly, b, 9)p(h, Oly) dhdd. (15)

Given a variational density ¢(h,¥) = ¢(h)g(?¥) that approximates p(h,d|y), we follow Gu-

nawan et al. (2021) and obtain the variational predictive distribution:

(laily) = [ pllasaly, b 9)aa(9) ddo
= [ bl D)alt)a(9) dbdo. (16)
where the second equality follows from Markov property. Recall that within the context of a

volatility-managed portfolio our object of interest is the forecast of the variance o2, rather than

the log-volatility h; for ¢ = n + 1. Since h,, = logo?, the density of the conditional variance is

readily available as ¢ (02, |y) = gg%ﬁ q(hpi1ly) = ﬁq (hnt1ly). The integral in Eq.(16) can-
not be solved analytically. However, it can be approximated through Monte Carlo integration
exploiting the fact that the optimal variational densities ¢(h,) and ¢(9) are known and we can
efficiently sample from them. A simulation-based approximated estimator for the variational
predictive distribution of the conditional variance ¢(o2,,|y) is therefore obtained by averaging
the density p(hn1|h, 9@) over the draws A% ~ g(h,) and 99 ~ (8), for i =1,..., N from

the optimal variational density, such that g(cZ2,,]y) = #ﬂ% SN p(hia |0 9.

13



3 Empirical results

We now investigate the statistical and economic value of our smooth volatility forecast within
the context of volatility targeting across a large set of equity strategies. We first consider
the nine equity factors examined by Moreira and Muir (2017). We collect daily and monthly
data on the excess returns on the market, and the daily and monthly returns on the size,
value, profitability and investment factors as originally proposed by Fama and French (2015),
in addition to the profitability and investment factors from Hou et al. (2015) and the betting-

against-beta factor from Frazzini and Pedersen (2014).?

We augment the first group of test portfolios with a second group covering a broader set
of trading strategies based on established asset pricing factors. We start with the list of 153
characteristic-managed portfolios, or “factors”, reported in Jensen et al. (2022). We then
restrict our analysis to value-weighted strategies that can be constructed using the Center for
Research in Security Prices (CRSP) monthly and daily stock files, the Compustat Fundamental
annual and quarterly files, and the Institutional Broker Estimate (IBES) database. In addition,
we exclude a handful of strategies for which there are missing returns. This process identifies
149 value-weighted long-short portfolios for which we collect both daily and monthly returns.
For a more detailed description of the portfolio construction we refer to Jensen et al. (2022).*

The combined sample consists of 158 equity trading strategies.

3.1 Construction of volatility-managed portfolios

For a given equity trading strategy, let 3; be the buy-and-hold excess portfolio return in month

t. We follow Moreira and Muir (2017) and construct the corresponding volatility-managed

3Data on the Fama and French (2015) factors and the Jegadeesh and Titman (1993) momentum are available
on the Kenneth French’s website at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html. Data on the betting-against-beta factor are available on the AQR website https://www.aqr.
com/Insights/Datasets/Betting-Against-Beta-Original-Paper-Data.

4Data on the 153 set of characteristic-based portfolios can be found at https://jkpfactors.com. We thank
Bryan Kelly for making these data available.
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portfolio return y7 as

*

o C
Yy = ~9 Yt, (17)
Tt

where c* is a constant chosen such that the unconditional variance of the managed y; and

unmanaged 1, portfolios coincide, and 62 |, is the variance forecast of unscaled portfolio returns

t—1t
based on information available up to the previous month ¢t — 1. The objective of Eq.(17) is to
adjust the capital invested in the original equity strategy based on the inverse of the (lagged)
predicted variance. Effectively, a volatility-managed portfolio is targeting a constant level of
volatility, rather than a constant level of notional capital exposure. As such, the dynamics
investment position in the underlying portfolio a't%l\t is a measure of (de)leverage required to
invest in the volatility-portfolio in month ¢. Notice that in the standard implementation in

Eq.(18) the scaling parameter ¢* is not know by an investor in real time as it requires to observe

the full time series of the unscaled returns y; and the volatility forecasts 83‘ Ny

2

1) 18 to use the

A benchmark approach to approximate the variance forecast at month ¢, o
previous month’s realized variance (henceforth RV) calculated based on daily portfolio returns
(see, e.g., Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016; Moreira and Muir,

2017; Cederburg et al., 2020; Barroso and Detzel, 2021),

22
~2 2
Otjt—1 = N, ; Yit—195 (18)
where y;:—1 be the excess returns on a given portfolio in day j =1,...,N;_; for month ¢ — 1.

In addition to the realised variance, we compare our smoothing volatility targeting approach
(SSV) against a variety of alternative rescaling approaches. The first uses the expected variance
from a simple AR(1) rather than realized variance (RV AR), which helps to reduce the extremity
of the weights. Second, we follow Barroso and Detzel (2021) and consider an alternative six-
month window to estimate the longer-term realised variance (RV6). Third, we consider both a
long-memory model for volatility forecast as proposed by Corsi (2009) (HAR), and a standard

AR(1) latent stochastic volatility model (SV) (see, e.g., Taylor, 1994). Finally, we consider a
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plain GARCH(1,1) specification (Garch), which has been shown to be a challenging benchmark

in volatility forecasting (see, Hansen and Lunde, 2005).

Throughout the empirical analysis we consider, we follow Cederburg et al. (2020) and con-
sider both unconditional volatility targeting — whereby ¢* is calibrated to match the uncondi-
tional volatility of the scaled and unscaled portfolios —, as well as real-time volatility targeting
— whereby ¢ is calibrated to match the volatility of the scaled and unscaled portfolios at each

month ¢.

3.2 A simple statistical appraisal

In this section we provide a statistical appraisal of the performance of our smoothing volatility
targeting approach compared to both conventional realised variance measures and benchmark
volatility forecasts. This is based on the predictive density of the volatility forecasts obtained
for both the non-smooth SV and smooth SSV stochastic volatility models. Recall that real-time
volatility targeting for month ¢ takes the form w; = a{%, t=1,...,n. As a result, given the
unmanaged factors y; and the recursively calibrated coefficient ¢}, for each month we can define

the distribution of the volatility-managed returns based on the variational predictive density

q(o?]y) with y collecting the strategy returns up to ¢ — 1 (see Section 2.1.2 for more details).

Figure 4 shows this case in point. The top panels report the distribution of the volatility-
managed portfolio returns implied by the non-smooth SV (red area) and smooth SSV (blue area)
stochastic volatility models. For the sake of simplicity, we report the volatility-managed returns
on the market portfolio over three distinct months. The returns on the unmanaged portfolio
and its scaled version based on previous month’s realised variance are indicated as a white and
green circle, respectively. By comparing this distribution on a given month with the realised
returns on a benchmark strategy for the same month, we can calculate Prob (thO > y,f\/“),
which is akin to the p-value on a one-side test where the null hypothesis is Hj : thO = y,{wl.
For instance, a Prob (yl;MO > thl) = 0.95 implies that the null hypothesis Hj is rejected

with a p-value of 0.05 in favour of the alternative H; : ¢ > yM'. On the opposite, if

Prob (y{wo > thl) = (.05, the null hypothesis H is rejected with a p-value of 0.05 in favour of
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the alternative Hj : ;' < yM'. Here 3! represents the returns on the benchmark volatility

managing method, for e.g., RV, whereas y{wl the returns on volatility targeting based on either

a non-smooth or a smooth stochastic volatility model.

The left panel shows the results for October 1995. The Prob (yi¥ > y#Y) = 0.07, that
is the null Hy : yf¥ = 37" can not be rejected at standard significance levels. Similarly,
Prob (y! > y7*Y) = 0.66, which again suggests that the returns on the SSV volatility targeting
and the unmanaged counterpart are statistically equivalent. The right panel of Figure 4 show as
another example the returns distribution on March 2009. The probability Prob (y}¥ > y%') =
0, that is the null hypothesis Hg : y&' = y;°' is rejected with a p-value of 0.000 in favour of
the alternative H; : yf¥ < 37V, Similarly, Prob (y& > ¢5¥) = 0.08, which suggests that the
SV model produce a volatility-managed portfolio which is statistically equivalent to the one
implied by a realised variance RV. The bottom panel of Figure 4 shows that the distribution of
SSV and SV can be highly time varying. The figure shows as an example the distribution of the
returns on a volatility-managed momentum portfolio. The large negative performance of the

unmanaged momentum strategy in March-May 2009 coincides with the so-called “momentum

crashes” (see Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016; Bianchi et al., 2022).

Two interesting facts emerge. First, and perhaps not surprisingly, a non-smooth stochastic
volatility model tends to produce relatively similar volatility adjusted returns with few excep-
tions. In this respect, a standard RV rescaling substantially overperform (underperform) the
unmanaged portfolio during periods of large negative (positive) returns. Put it differently,
standard volatility targeting helps to mitigate tail risk at the expense of cutting upside oppor-
tunities. This is consistent with the abundant empirical evidence that indeed, on average, RV
targeting does not systematically outperforms unmanaged portfolios. The second interesting
fact pertains our smoothing volatility targeting; the returns on the SSV are closer to the original

equity strategy.

We now take to task the intuition highlighted in Figure 4 and compare our SSV methodology
against all of the competing volatility targeting methodsm, across all of the 158 equity strategies

in our sample. Specifically, we calculate each month two indicator dummies ]I,it, I;; for each of
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thet =1,...,n and each of the i = 1,...,m equity trading strategies,

it it

L { 1 if Prob (yy* < y5V) < 0.05 - { 1 if Prob (yy° > y5V) > 0.95
0 otherwise 0 otherwise

(19)

We can then calculate p = n~' Y7 I, and p; = n~' Y )" I7,, with n the sample of ob-
servations, for each equity trading strategy. These indicate the frequency over the full sam-
ple with which the null hypothesis Ho : 3" = y55V is rejected in favour of the alternative

SSV

Hy oy <y i, pf, or the alternative Hy @y > 455, ie., p; .

Figure 5 reports the difference between p; and p; for all 158 equity strategies. This indi-
cates the imbalance between outperformance and underpeformance of our yis?" compared to a
benchmark yi{\fo. The left panel compares our SSV against the original factor portfolios U and
the volatility targeting based on the realised variance RV. The comparison against the unscaled
factors confirms the results of Cederburg et al. (2020); there is no systematic outperformance
of volatility targeting versus unmanaged equity strategies over the sample under investigation.
This is reflected in the fact that the difference between p;” and p; is centered around zero for
the cross section of equity strategies. The middle and right panel also confirms that, uncon-
ditionally over the full sample, the performance of our SSV does not systematically dominate
other competing volatility targeting methods. For instance, the spread p; = p; — p; is as low

as -0.1 and as high as 0.05 when comparing SSV vs RV6. Similarly, p; ranges between -0.05 and

0.05 when comparing our SSV against the HAR or the Garch methods.

The results in Figure 5 show that the returns on volatility-managed portfolios are statis-
tically equivalent to unscaled factors, at least unconditionally. We now look at a conditional
aggregation of the indicators I, and I,. Specifically, we construct a p;” = m~" > " If, and
pr =mty " I;;, with m the number of equity strategies, for month ¢t = 1,...,n. Figure 6
reports the spread p; = p; — p; across the whole sample of observations. The left panel com-
pares the performance of SSV versus RV and the unmanaged factors U. Two interesting facts

emerge; first, for the most part of the sample the performance of the SSV is subpar compared
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to the RV. This is primarily concentrated in the expansionary periods, whereby volatility is low

and the exposure to the original unscaled portfolios is levered up (see, e.g., Figure 1).

Second, a smooth volatility targeting substantially improves upon RV during the recession in
the aftermath of the dot-com bubble and the great financial crisis of 2008/2009. Interestingly,
most of the underperformance of SSV versus U is concentrated during the burst of the dot-
com bubble. A possible explanation is that volatility-targeting implies a deleveraging on the
original factor, in period in which high volatility did not necessarily correspond to large losses
in the original equity factors. The middle and right panel in Figure 6 shows that alternative
volatility measures to RV share a similar pattern compared to our SSV; that is, by smoothing
volatility forecasts the performance during major recessions improves at the expenses of a

subpar performance during economic expansions and/or lower-volatility periods.

3.3 Economic evaluation

We begin our analysis by presenting detailed results on direct performance comparison between
unscaled and scaled portfolios without considering transaction costs. Next, we Moreira and
Muir (2017); Cederburg et al. (2020) and consider two distinct levels of the notional value
traded as transaction costs to implement volatility targeting. Finally, we compared our SSV
volatility targeting against both RV and other competing forecasting methods when leverage

constraints are considered (see, e.g., Barroso and Detzel, 2021).

3.3.1 Baseline results without transaction costs. Table 1 reports the annualised Sharpe
ratio (henceforth SR) and the Sortino ratio, for both unconditional and real-time volatility tar-
geting. For each performance measure, we report both the mean value and the 2.5th, 25th,

50th, 75th, and 97.5th percentiles across all the 158 equity trading strategies.

Both the original and the volatility-managed versions of the factors yield a positive annu-
alised Sharpe ratio on average. The average SR is highly comparable across volatility forecast-
ing methods. For instance, the annualised SR from the RV is 0.28 against a 0.26 obtained from

our SSV smoothing volatility targeting. The dispersion of SRs in the cross section of equity
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strategies is also quite comparable across methods. For instance, the 97.5th percentile in the
distribution of SRs is 0.69 for our SSV method against a 0.81 obtained from a smoother realised

variance estimate RV6.

To determine whether the Sharpe ratio on a given volatility-managed portfolio is statistically
different from its unmanaged counterpart, we follow the bootstrap approach of Jobson and
Korkie (1981); Ledoit and Wolf (2008). Across all 158 equity strategies, Table 1 reports
the fraction of SR differences that are positive or negative and are statistically significant
at the 5% level. Consistent with Cederburg et al. (2020), the results in Table 1 suggest that
volatility-managed portfolios do not systematically outperform their original counterparts. For
instance, volatility targeting based on realised variance leads to a significantly larger (smaller)
SR compared to unmanaged portfolios for 6% (2.5%) of the 158 equity trading strategies
considered. Volatility management based on SSV improves the performance of a slightly larger
set of anomalies compared to, for instance, the HAR volatility targeting which ranks second.

Nevertheless, differences across methods tend to be small in absolute terms.

Table 1 also reveals that without considering transaction costs the performance across meth-
ods is also fairly comparable in terms of how much tail risk they mitigate compared to the
unscaled portfolios. For instance, the average Sortino ratio across the 158 equity strategies
is 1.44, which is smaller than the 1.77 obtained from the RV, but economically fairly close.
The Sortino ratios are fairly comparable across volatility forecasting methods. For instance,
the average Sortino ratio from the RV is 1.77 against a 1.55 obtained from our SSV volatility

forecast.

Existing evidence on the performance of volatility-managed portfolios follows from a span-
ning regression approach of the form y = o + SBy; + €;. The object of interest is the intercept
«, that is a positive o implies that a combination of the original unmanaged factor and its
volatility-managed counterpart expands the mean-variance frontier compared to investing in
the original unscaled portfolio alone (see, e.g., Gibbons et al., 1989). The top panel in Table
2 reports the mean alpha (in %) across all the 158 equity strategies obtained from different

volatility target methods. In addition to the mean value, we report the 2.5th, 25th, 50th, 75th,
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and 97.5th percentile of the alphas across all rescaled portfolios. The RV rescaling achieves
the highest gross «, on average across portfolios (1.68%), on par with the six-month realised
variance RV6. This holds both for the unconditional and the real-time volatility targeting. The
fraction of positive and significant — at the conventional 5% level — gross alphas, is also higher
for the RV and RV6 methods. For instance, more than 40% of the RV6 scaled portfolios have a

positive and significant alpha compared to 31% from our SSV.

Moreira and Muir (2017) link their spanning test results to appraisal ratios and utility gains
for investors. Both metrics can be red in the context of mean-variance portfolio choice. The
appraisal ratio for a given scaled strategy is AR = a/d., where & is the estimated gross alpha
from the spanning regression and &, the root mean squared error. The squared of the appraisal
ratio reflects the extent to which volatility management can be used to increase the slope of the
mean-variance frontier (see, Gibbons et al., 1989). The mid panel of Table 2 shows the results
for both unconditional and real-time volatility targeting. On average, the appraisal ratio from
the RV is higher (0.05) compared to our SSV (0.03). The cross-sectional distribution of the ARs

is quite symmetric, as the mean and median estimates tend to coincide.

The estimates of the @ from the spanning regressions can be used to quantify the utility
gain from volatility management by comparing the certainty equivalent return (CER) for the
investor who has access to both the original and the volatility-managed factor against the
investor who is constrained to the original equity strategy only. We follow Cederburg et al.
(2020); Barroso and Detzel (2021) and define the difference in CER from the unmanaged and

the scaled portfolios as

SR () — SR (1)

ACER =
2

)

where SR (y:) is the Sharpe ratio of the unscaled portfolio and SR (z}) is the Sharpe ratio of the

combined strategy z; = r,w;+x, with w; = 320* . The ex post optimal policy [z,, 7] = %i_lﬁ
tlt—1

allocates a static weight z, to the volatility-managed portfolio and a static x weight on the

original factor, based on the sample covariance S and the sample mean [ returns of the scaled
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and unscaled portfolios. This policy is equivalent to dynamically adjust the exposure to the
original factor portfolio according to z;, so that the returns on the combined strategy can
be obtained as z; = 2, - y;. The bottom panel of Table 2 shows the results for both the
unconditional and real-time volatility targeting. We follow Cederburg et al. (2020); Wang and
Yan (2021) and consider a risk aversion coefficient equal to v = 5. The ACER confirms that
the RV rescaling expands ex post the mean-variance frontier relative to the other volatility
targeting methods, when no transaction costs are considered. For instance, the ACER from
the RV is 0.18 versus 0.09 obtained from our SSV smoothing volatility forecast. Interestingly, a
slightly smoother estimate of realised volatility, i.e., RV6, produces a marginally higher ACER,

both unconditionally and in real time.

3.3.2 Turnover and leverage. A standard volatility targeting strategy is built upon rescal-
ing original portfolio returns by the inverse of the previous month’s realised variance. As a
result, the often erratic nature of realised volatility potentially imply a high portfolio turnover
and substantial time-varying leverage, which is likely to cast doubt on the actual usefulness
of volatility-managed portfolios under common liquidity constraints (see Moreira and Muir,
2017; Harvey et al., 2018; Bongaerts et al., 2020; Barroso and Detzel, 2021). Table 3 shows the
amount of portfolio turnover for different volatility targeting methods. The portfolio turnover
is calculated as the average absolute change in monthly volatility-managing weights |Aw| (see
Moreira and Muir, 2017). Similar to the direct performance comparison and the spanning re-
gression results, we report the mean turnover as well as the 2.5th, 25th, 50th, 75th, and 97.5th

percentile across the 158 equity strategies.

The average turnover from our SSV volatility targeting is the lowest among all different
methods. For instance, the turnover from the RV is 0.65 on average across portfolios against a
0.05 from the SSV volatility forecast. The average turnover from SSV is consistently lower in the
cross section of equity portfolios. For instance, the 2.5th (97.5th) percentile is 0.03 (0.06) for the
SSV against a 0.51 (0.91) from the previous month’s realised variance rescaling. Interestingly,

a smoother six-month realised variance substantially reduces the turnover compared to RV. For
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instance, the turnover is 0.14 from the RV6 against 0.65 from the RV forecast. Nevertheless,
our SSV stands out in terms of portfolio stability, both within the context of unconditional or

real-time volatility targeting.

We expand on the existing evidence on volatility-managed portfolios also report both the

average leverage implied by volatility targeting, i.e., w; = 3?‘: - The middle panel of Table
3 shows the results. The leverage from the real-time implementaton of the RV rescaling is
1.33, on average across equity strategies. This is almost twice as large as the leverage implied
by our SSV volatility targeting (0.73). Spreads are lower for the unconditional targeting, in
fact the average turnover is similar across volatility targeting methods. However, the bottom
panel shows that our SSV helps to mitigate extreme leverage, with a standard deviation of
0.43, on average across portfolios versus 1.09 from the RV forecast. The stability of the SSV
volatility adjustment is even more clear when looking at the real-time implementation; the

average standard deviation of w; across equity strategies is 0.27 from the SSV against a 1.21,

1, and 0.85 from the RV, RV6 and RV AV, respectively.

3.3.3 Main specification with transaction costs. Table 3 depicts the average turnover
and leverage associated with both the baseline RV and all the other competing volatility fore-
casting methods. The results show that alternative rescaling methods, such as HAR, Garch
and RV AR indeed helps to stabilise volatility managing compared to a standard RV. Neverthe-
less, our SSV generates by far the lowest turnover and lowest leverage. This suggests that by

smoothing volatility forecasts one can mitigate turnover and as a results transaction costs.

For each equity factor we now consider the costs of the leverage adjustment associated with
volatility targeting. We follow Moreira and Muir (2017); Wang and Yan (2021) and consider
two alternative levels of transaction costs of 14 basis points of the notional value traded to
implement volatility targeting — which is in line with Frazzini et al. (2012) — and a more

conservative 50 basis points as in Wang and Yan (2021).

Table 4 reports the net-of-costs performance statistics for the managed factors. After 14

bps costs, the average SR for the RV method decreases to 0.17 from 0.23. The SR from the
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RV method decreases even further when considering a more conservative 50 bps of transaction
costs. For instance, with 50 bps of notional trading costs the average SR across RV volatility-
managed portfolios turns to a negative -0.11 annualised. This is in stark contrast of what we
obtain by smoothing the volatility predictions; our SSV generates a remarkable stable SR of

0.25 and 0.23 after 14 and 50 basis points of trading cost, respectively.

Perhaps more importantly, even with conservative 50 bps of costs, only 10% of volatility-
managed portfolios produce a significantly lower SR compared to the unmanaged counterpart.
This is against a 79% of significantly lower Sharpe ratios produced by RV. The bottom panels
show that our SSV improves upon other competing volatility targeting methods also in terms
of downside risk-adjusted returns. When we consider 50 basis points of transaction costs, the
Sortino ratio from SSV is 1.38 versus -0.69 from RV, 0.85 from RV6 and 0.98 from a Garch model,
respectively. With less conservative 14 basis points of notional trading costs the Sortino ratio

is fairly comparable across volatility targeting methods.

Table 5 reports the results for the spanning regression y; = a+ Sy +¢€;, with y{ the returns
on the volatility managed portfolio net of transaction costs and yy its unscaled counterpart.
The top panels report the estimated alphas (@ in %). When considering a conservative notional
trading cost of 50 basis points, our SSV volatility forecast generates a positive alpha of 0.46%
annualised. This is against a large and negative alpha from the RV, RV AR, HAR, and SV methods.
Consistent with Barroso and Detzel (2021), a longer-term six-month estimate of the realised
variance RV6 gives a substantially improved volatility-managed alpha of 0.12%. Perhaps more
importantly, our SSV method generates a significantly positive alpha for 21% of the equity
strategies in our sample, against, for instance, 3%, 9%, and 14% from the RV, RV6 and Garch

models, respectively.

The appraisal ratio AR = a/o. reported in the middle panel of Table 5 confirms that our
SSV substantially improves upon standard volatility targeting based on RV, especially when
more conservative transaction costs are factored in. For instance, with 50 basis points of
trading costs the SSV is the only method that can still generate a positive appraisal ratio. By

comparison, the RV, RV6, Garch and RV AR all generate significantly negative ARs. The bottom
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panels report the difference in the certainty equivalent return between and investor that can
access both the volatility-managed and the original portfolio, and an investor constrained to
invest in the original portfolio only. The utility gain ACER(%) is highly in favour of our
SSV volatility targeting. For instance, for 14 basis points of transaction costs, the second-best
performing strategy is the RV6 rescaling with a ACER of 9.56%, annualised, against a 14.5%

from our SSV.

3.3.4 Transaction costs with leverage constraints. Standard volatility targeting strate-
gies are not designed to mitigate transaction costs. Indeed, the results in Tables 4-5 show that
when conservative levels of transaction costs to implement volatility targeting are considered,
the performance of standard volatility targeting methods substantially deteriorates. Hence,
we next evaluate whether by reducing liquidity demand via capping leverage render volatility
targeting still profitable after costs. This approach does not necessarily aim at an optimal al-
location from the perspective of a mean-variance investor. Rather, it is a simple, yet effective,
risk-management approach that aims to regularise the capital exposure to the original equity
trading strategy. We follow Moreira and Muir (2017); Cederburg et al. (2020); Barroso and
Detzel (2021); Wang and Yan (2021) and consider two different levels of leverage constraint;
one that cap the leverage at 1.5 times the original factor, and a second less restrictive that cap

leverage at 5 times the exposure to the original factor.

Table 6 reports the Sharpe and the Sortino ratios considering the same level of transaction
costs as in Section 3.3.3, namely 14 and 50 basis points of the notional trading exposure.
Panel A shows the results for a 500% leverage constraint. For a conservative 50 basis points
transaction costs our SSV produces the highest Sharpe and Sortino ratios among the volatility
targeting methods, on average across the 158 equity strategies. For instance, the SSV generates
a 0.23 Sharpe ratio on average against a dismal -0.10 annualised Sharpe ratio from the RV.
Compared to the unmanaged portfolios, the number of significantly higher SRs is also higher
for the SSV case. For instance, none of the rescaled portfolios with RV has a positive and

significant SR differential against 7% of the portfolios rescaled with SSV.
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Panel B shows the results for a more restrictive leverage constraint, which forces the exposure
from volatility targeting no more than 1.5 times the original factor portfolio. Consistent with
Moreira and Muir (2017); Barroso and Detzel (2021), a tighter cap does indeed regularise
more the performance of volatility targeting across all competing methods. Nevertheless, the
performance of our SSV portfolio is quite stable across different levels of leverage constraints.
Interestingly, unlike the case without leverage constraints, the RV6 plus leverage cap proves to

be a quite competitive benchmark volatility targeting method.

Table 7 reports the results for the spanning regression yf = a4+ By, + €;, with y7 the returns
on the volatility managed portfolio with a leverage cap of 5, net of transaction costs. The
top panels report the estimated alphas (@ in %). When considering a conservative notional
trading cost of 50 basis points, our SSV volatility forecast generates a positive alpha of 0.46%
annualised. This is against a large and negative alpha from the RV, RV AR, HAR, and SV methods.
Perhaps more importantly, our SSV method generates a significantly positive alpha for 21% of
the equity strategies in our sample, against, for instance, 3%, 17%, and 14% from the RV, RV6

and Garch models, respectively.

The appraisal ratio AR = &/0. reported in the middle panel of Table 7 confirms that our SSV
substantially improves upon standard volatility targeting based on RV, especially when more
conservative transaction costs are factored in. For instance, with 50 basis points of trading
costs the SSV is the only method that can still generate a positive appraisal ratio together
with the RV6 long-term realised variance method. By comparison, the RV, Garch and RV AR all
generate significantly negative ARs. The bottom panels report the difference in the certainty
equivalent return between and investor that can access both the volatility-managed and the
original portfolio, and an investor constrained to invest in the original portfolio only. The
utility gain ACER(%) is highly in favour of our SSV volatility targeting. For instance, for 14
(50) basis points of transaction costs, our SSV method generates a 12% (8%) utility gain. This
compares to the 7% from the HAR with 14 basis points and 2.2% from the RV6 with 50 basis

points of transaction costs.

Table 8 reports the spanning regression results with a tighter leverage cap of 1.5. The results
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are largely in line with Table 7. That is, the RV6 does indeed represents a challenging benchmark
for our SSV method when it comes to the estimated alphas. However, the ACER(%) from
the combination strategy is substantially in favour of our smoothing volatility targeting. For
instance, the ACER(%) from the SSV is 9.52% (13.8%) with 50 (14) basis points of notional

transaction costs, against a 4.5% (8/2%) from the RV6 volatility targeting.

4 Simulation study and inference properties

We now perform an extensive simulation study to evaluate the properties of our estimation
framework in a controlled setting. We compare our variational Bayes (VB) method against two
state-of-the-art Bayesian approaches used within the context of stochastic volatility models,
such as MCMC (see, Hosszejni and Kastner, 2021) and the global variational approximation
recently introduced by Chan and Yu (2022) (henceforth CY). Since neither of the benchmark
approaches entertain the possibility of arbitrarily smooth predictive densities, the baseline
comparison is based on the assumption that W = 1I,,.; and the underlying latent state follows
an autoregressive dynamics. This gives a cleaner comparison of the accuracy of our variational

estimates both in absolute terms and with respect to MCMC methods.

We compare each estimation method across N = 100 replications and for all different
specifications. We consider T = 600, consistent with the shortest time series in the empirical
application, ¢ = 0, n? = 0.1 and both low and high persistence p € {0.70,0.98}. Recall
that our estimation framework is agnostic on the structure of covariance of the approximating
density g (see Proposition 2.1). However, to better understand the contribution of such
generalisation compared to existing methods, we also consider the performance of a more tight
parametrization with X,,) = 7°Q ™!, where 72 € R* and Q = Q(v) (henceforth VBH). This
provides an homoschedastic representation of the approximating density in the spirit of Chan

and Yu (2022), which further simplifies the estimation of f,), 72, and 7.

Figure 7 reports the mean squared error and a measure of global estimation accuracy com-

pared to the MCMC. The mean squared error is measured as MSE = n~' 7 (hy — hy)?, where
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h, and h are the simulated log-variance and its estimate, respectively. The average aggregated

accuracy of variatonal Bayes with respect to the MCMC approach is calculated as:

ACC = 100 {1 - 0.5/ lg(h) — p(hly)| dh} %, (20)

where p(hly) is the MCMC posterior and ¢(h) is the comparing variational Bayes approxima-
tion (see Wand and Ormerod, 2011). For the higher-persistence scenario with p = 0.98 (top
panels), the MCMC, CY, VB, and VBH provide statistically equivalent performances. The best

approximation to the MCMC is provided by our VB for p = 0.98.

Interestingly, for the lower-persistent scenario with p = 0.70 (bottom panels), the CY ap-
proach shows some difficulty in capturing the full extent of the dynamics of the latent stochastic
volatility process. This is also reflected in a generally lower accuracy in approximating the true
posterior density p(h|y) compared to the MCMC approach. The lower accuracy of the CY ap-
proach for p = 0.7 is due to a more restrictive dynamics of the latent state imposed by their
estimation setting. The approximation proposed by Chan et al. (2021) is based on the compu-
tationally convenient assumption that the latent volatility state is a random walk. As a result,

it shows a substantially lower accuracy when p < 1.

Although neither the CY nor the MCMC approach entertain the possibility of smooth volatility
forecasts, for a full comparison of the estimation accuracy of our VB method we also evaluate the
performance of two alternative smoothing approaches, with W either a B-spline basis matrix
with knots equally spaced every 10 time points (henceforth VBS), or a Daubechies wavelet basis
matrix with [ = 5 (henceforth VBW).? Notice that both these modifications of W represent an
arbitrary intervention on the approximating density ¢ (h). Compared to the baseline VB, the
smooth approximations have a lower accuracy in the estimate of the underlying AR(1) latent
process. Interestingly, similar to CY the global accuracy with respect to the MCMC deteriorates

as the persistence of the latent log-volatility process decreases.

The last column of Figure 7 shows that our variational Bayes is less computationally expen-

5The choice of the equally spaced knots in the basis function and the ! for the wavelet basis matrix is such
that both approaches give a similar degree of smoothness.
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sive compared to both MCMC and CY methods. The gain in terms of computational cost holds
for both highly persistent latent stochastic volatility (top-right panel) and lower-persistent
volatility (bottom-right panel). More generally, our VB is almost an order of magnitude faster
than MCMC, on average. This intuitively represents an advantage when implementing real-time

predictions for more than a 150 equity strategies, as in our main empirical application.

Figure 7 suggests that the accuracy of our variational Bayes estimation framework dete-
riorates when smoothness on the latent state is imposed via the structure in W. We now
investigate more in details why that is the case by looking at the posterior estimates of the
parameters of interest {c,n?, p} for difference specifications of W. Figure 8 shows that by
imposing smoothness in the form of either B-spline or a Daubechies wavelet basis forces the
posterior estimates of p to be close to one, irrespective of the actual level of persistence in the
underlying latent process. Similarly, the estimates of the latent state variance n? are smaller
for both VBS and VBW versus MCMC’s, and even more so when p = 0.7. Figure 8 confirms the
intuition that a lower accuracy of the posterior estimates of the latent state is due to a tight
regularization of the parameters implied by smoothing. The effect on the conditional variance

estimates is particularly striking.

Beside the possibility of introducing smoothness in the estimates and the competitive esti-
mation accuracy performance, our variational Bayes approach relax the assumption that the
initial distribution ¢(ho) is independent on the trajectory of the latent state ¢(h;), that is, we
do not assume ¢g(h) = q(hg)q(h;y). Figure 9 shows that this generalisation has a non-negligible
impact on the posterior estimate of the latent state, especially at the beginning on the sample.
This is shown by comparing the global accuracy as per Equation (20) for different slices of
data. The top (bottom) panels report the global accuracy when p = 0.98 (p = 0.7). We
report the estimation results for ¢ € (1,10) in the left panel, ¢ € (301,310) in the middle
panel, and ¢ € (591,600) in the right panel. The simulation results show that, irrespective
of the underlying persistence of the latent state, our variational Bayes approach maintains an
optimal performance over all the timeline. On the other hand, the accuracy of CY drops at the

beginning of the time series. This is due to the restrictive independence assumption between
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the initial condition and the rest of the latent state trajectory q(h) = q(ho)q(h;).

5 Conclusion

Prior studies found that volatility-managed portfolios that increase leverage when volatility is
low produce statistically equivalent economic value compared to the original unscaled factors.
This contradicts conventional investment practice whereby risk mitigation should improve, or at
least not deteriorates, portfolio returns on a risk-adjusted basis. We show that such equivalence
is primarily due to the extreme leverage implied by volatility targeting. Indeed, volatility-
managed portfolios based on standard realised variance tend to have extremely levered exposure
to the original factors; such exposure is highly time varying. When factoring in moderate levels

of notional transaction costs the benefit of volatility-managing disappears.

To regularise turnover and mitigates the effect of transaction costs on volatility-managed
portfolios, we propose a novel inference scheme which allows to smooth the predictive density
of an otherwise standard stochastic volatility model. Specifically, we develop a novel varia-
tional Bayes estimation method that flexibly encompasses different smoothness assumptions
irrespective of the underlying persistence of the latent state. Using a large set of 158 equity
strategies, we provide evidence that our smoothing volatility targeting approach has economic
value when conservative levels of transaction costs are considered. This has important implica-
tions for both the risk-adjusted returns and the mean-variance efficiency of volatility-managed

portfolios.
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Table 1: Volatility-managed portfolios and original equity strategies

This table compares the performance of volatility-managed and original portfolios (U) for the cross section of
158 equity strategies. For a given factor, the volatility-managed factor return in month ¢ is based on a forecast
of the conditional variance. In addition to our smoothing volatility forecast (SSV), the variance forecasts are
from a simple AR(1) fitted on the realised variance (RV AR), an alternative six-month window to estimate the
longer-term realised variance (RV6), a long-memory model for volatility forecast as proposed by Corsi (2009)
(HAR), a standard AR(1) latent stochastic volatility model (SV), and a plain GARCH(1,1) specification (Garch).
For each volatility targeting method we report the mean annualised Sharpe ratio, Sortino ratio and maximum
drawdown (in %), as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles in the cross section of equity
strategy. In addition, we report the fraction of volatility-managed portfolios that generate a Sharpe ratio
which is statistically different from the unscaled strategy (see, Ledoit and Wolf, 2008), and is either positive or
negative. The table reports both the performance measure with the scale parameter ¢* calibrated over the full
sample (unconditional targeting) or at each month ¢, ¢ (real time targeting).

Unconditional targeting Real time targeting

U RV RV6 RV AR HAR Garch SV SSvV U RV RV6 RV AR HAR Garch SV SSv
SR
Mean 024 0.28 0.29 029 0.27 026 026 0.26 024 027 0.28 0.28 027 026 026 0.26
Percentiles
2.5 -0.12 -0.20 -0.22 -0.19 -0.20 -0.21 -0.20 -0.20 -0.12 -0.22 -0.23 -0.20 -0.20 -0.22 -0.21 -0.19
25 0.08 0.07 0.06 0.07 0.07 0.03 0.03 0.06 0.08 0.07 0.06 0.08 0.06 0.03 0.02 0.07
50 0.22 026 0.27 0.27  0.26 0.25 030 0.23 0.22 0.25 0.26 026 027 026 028 0.22
75 037 048 048 0.49 0.45 0.43 0.44 043 037 045 048 0.46  0.45 0.44 043 041
97.5 0.63 0.79 0.81 0.80 0.73 0.78 0.79  0.69 0.63 0.75 0.77 0.76 0.74 0.77 0.76  0.68
p<0.05& SR>0 6.33 7.59 7.59 8.23 8.86 7.59 10.13 5.06 6.96 7.59 8.23 8.86 8.23 11.39
p< 0.05 & SR<0 2.53 0.00 1.27  1.90 6.33 5.06 5.06 2.53  0.63 1.27 127 443 570 3.80
Sortino
Mean 144 177 184 1.79  1.60 1.56 1.61 1.55 144 1.74 1.85 1.75  1.61 1.59 1.61 1.51
Percentiles
2.5 -0.79 -1.06 -1.27 -1.06 -1.20 -1.21 -1.19 -1.12 -0.79 -1.23 -1.39 -1.22 -1.22 -1.23 -1.26 -1.11
25 049 0.46 0.44 0.50 0.39 0.17 0.18 0.35 049 048 041 0.47 0.38 0.16 0.13 0.44
50 1.38 1.59 1.66 1.62  1.55 1.67 1.72 1.43 1.38 1.58 1.63 1.61 1.55 1.57  1.67 1.42
75 217 290 2095 2.85  2.69 2.63 253 240 217 280 290 2.81 2.66 262 254 239
97.5 3.50 5.77 5.03 547 4.48 4.77 464 418 3.50 4.84 4.75 4.73  4.55 4.73 462  4.09

31



Table 2: Spanning regression results

This table reports the results from a spanning regression of the form yf = o + By, + €, with y7 the returns
on the volatility managed portfolio and y¢ its unscaled counterpart. We report the estimated alphas (@ in %),
the appraisal ratio AR = @/0. and the difference in the certainty equivalent return between and investor that
can access both the volatility-managed and the original portfolio, and an investor constrained to invest in the
original portfolio only ACER. In addition to our smoothing volatility forecast (SSV), the variance forecasts are
from a simple AR(1) fitted on the realised variance (RV AR), an alternative six-month window to estimate the
longer-term realised variance (RV6), a long-memory model for volatility forecast as proposed by Corsi (2009)
(HAR), a standard AR(1) latent stochastic volatility model (SV), and a plain GARCH(1,1) specification (Garch).
For each volatility targeting method we report the mean annualised Sharpe ratio, Sortino ratio and maximum
drawdown (in %), as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles in the cross section of equity
strategy. In addition, we report the fraction of volatility-managed alphas that are significant and either positive
or negative. The table reports both the performance measure with the scale parameter c* calibrated over the
full sample (unconditional targeting) or at each month ¢, ¢} (real time targeting).

Unconditional targeting Real-time targeting

RV RV6 RV AR HAR Garch SV SSV RV RV6 RV AR HAR Garch SV SSv
a(%)
Mean 1.68  1.68 1.49 093 1.20 1.17 0.74 1.78  1.84 1.50  0.98 1.39 049 0.34
Percentiles
2.5 -1.87 -1.77  -159 -1.77 -251 -2.33 -1.62 -293 -1.83 -252 -145 -219 -0.96 -0.97
25 -0.04 -0.10 0.03 -0.13 -0.34 -0.25 -0.32 -0.05 -0.15 0.02 -0.14 -0.29 -0.12 -0.19
50 1.11  1.04 0.92 0.66 0.66 0.69 0.32 1.04  0.99 0.88  0.55 0.60 028 0.15
75 223 223 1.91  1.30 1.80 1.61 1.08 1.98  1.90 1.56  1.26 1.27  0.60 0.56
97.5 7.06  8.03 6.53  5.39 649 6.21 3.63 10.78 10.48 9.08 6.38 857 240 2.12

p<0.05 & a>0 36.08 40.51 34.18 26.58 32.28 31.65 31.01 3291 34.18 33.54 2848 3228 29.75 27.22
p<005& a<0 190 253 1.90 253 8.86 5.70  6.96 1.90 253 3.16  2.53 823 7.59 9.49

AR

Mean 0.05 0.05 0.05 0.04 0.03 0.04 0.03 0.04 0.05 0.05  0.04 0.03 0.03 0.03
Percentiles

2.5 -0.06 -0.06 -0.06 -0.06 -0.09 -0.08 -0.09 -0.06 -0.06 -0.07 -0.06 -0.08 -0.08 -0.09
25 0.00 -0.01 0.00 -0.01 -0.02 -0.02 -0.02 0.00  0.00 0.00 -0.01 -0.02 -0.02 -0.02
50 0.04 0.05 0.05 0.04 0.03 0.04 0.03 0.04 0.05 0.04 0.04 0.04 0.04 0.03
75 0.09 0.09 0.09 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07
97.5 0.19 0.19 0.20 0.18 0.18 0.17 0.16 0.16 0.18 0.17  0.19 0.18 0.17 0.16
ACER

Mean 0.18 0.19 0.16  0.09 0.14 0.13 0.09 0.15 0.17 0.12  0.07 0.12  0.02 0.03
Percentiles

2.5 -0.06 -0.05 -0.05 -0.04 -0.08 -0.07 -0.06 -0.23 -0.08 -0.11 -0.10 -0.11 -0.37 -0.35
25 0.00 0.01 0.00 0.00 0.00 0.00 -0.01 0.05 0.05 0.04 0.03 0.03 0.01 0.01
50 0.06 0.06 0.05 0.03 0.03 0.03 0.02 0.11 0.11 0.11  0.09 0.09 0.06 0.06
75 0.20 0.18 0.16 0.11 0.13 0.10 0.07 0.22 0.25 0.21  0.17 0.14 0.12 0.11
97.5 0.92 0.65 0.80 0.41 0.49 047 0.26 0.76  0.80 0.63 0.38 042 029 0.23
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Table 3: Portfolios turnover and leverage dispersion

This table reports a set of descriptive statistics for the volatility-managed portfolio turnover and leverage.
The portfolio turnover is calculated as the average absolute change in monthly volatility-managing weights

|Aw| (see Moreira and Muir, 2017). The leverage is calculated as w; = 367 In addition to our smoothing
tlt—1

volatility forecast (SSV), the variance forecasts are from a simple AR(1) fitted on the realised variance (RV AR),
an alternative six-month window to estimate the longer-term realised variance (RV6), a long-memory model
for volatility forecast as proposed by Corsi (2009) (HAR), a standard AR(1) latent stochastic volatility model
(SV), and a plain GARCH(1,1) specification (Garch). For each volatility targeting method we report the mean
annualised Sharpe ratio, Sortino ratio and maximum drawdown (in %), as well as their 2.5th, 25th, 50th, 75th,
and 97.5th percentiles in the cross section of equity strategy. The table reports both the performance measure
with the scale parameter ¢* calibrated over the full sample (unconditional targeting) or at each month ¢, ¢}
(real time targeting).

Unconditional targeting Real time targeting

RV RV6 RV AR HAR Garch SV  SSV RV RV6 RV AR HAR Garch SV SSV
Turnover
Mean 0.65 0.14 0.48 0.23 0.16 0.21 0.05 69.98 2722 50.05 22.17 15.66 8.99 2.66
Percentiles
2.5 0.51 0.11 0.32 0.13 0.05 0.10 0.03 42.08 16.20 29.49 12.82 4.59 497 1.36
25 0.57 0.12 0.41 0.20 0.13 0.17 0.04 51.17 19.23 37.26 19.26 10.59 7.64 2.34
50 0.62 0.14 0.45 0.23 0.15 0.20 0.05 59.43 22.04 4098 21.80 14.09 835 2.57
75 0.69 0.16 0.54 0.26 0.19 0.24 0.05 86.49 34.09 64.53 24.94 19.25 10.14 2.92
97.5 0.91 0.22 0.71 0.30 0.29 0.33 0.06 128.35 55.72  98.16 33.43 34.72 14.38 4.21
Average leverage
Mean 1.24 1.30 1.30 1.23 1.24 1.26 1.22 1.33  1.36 1.34  1.22 1.18 0.56 0.73
Percentiles
2.5 1.00 1.08 1.07 1.06 1.00 1.04 1.02 0.83 0.89 091 0.86 0.76 0.33 0.53
25 1.15 1.20 1.21 1.15 1.15 1.18 1.15 1.00  1.06 1.06 1.01 0.93 0.47 0.67
50 1.22 1.29 1.28 1.22 1.22 124 1.20 1.19 1.22 1.19 1.14 1.08 0.56 0.73
75 1.30 1.36 1.35 1.29 1.31 1.33 1.26 1.58 1.63 1.57 1.39 1.38  0.62 0.79
97.5 1.59 1.67 1.65 1.53 1.55 1.56 1.45 222 221 222  1.95 1.93 0.79 0.92
Leverage dispersion
Mean 1.09 0.92 0.79 0.51 0.72 0.72 0.43 121 1.00 0.85 0.48 0.70  0.32 0.27
Percentiles
2.5 0.71 0.55 0.41 0.29 0.33 0.27 0.22 0.64 0.49 0.38 0.28 0.26 0.13 0.14
25 0.92 0.76 0.62 0.44 0.56 0.56 0.36 0.82 0.68 0.58  0.40 048 0.24 0.23
50 1.02 0.87 0.74 0.50 0.66 0.64 0.41 0.97 0.80 0.66 0.46 0.58 0.30 0.26
75 1.22 1.04 0.94 0.55 0.87 0.85 0.49 1.62 1.18 1.10  0.55 0.86 0.37 0.32
97.5 1.71 1.39 1.34 0.80 1.38 1.28 0.70 247  2.03 1.82  0.82 1.46  0.61 0.40
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Table 4: Volatility-managed portfolios with transaction costs

This table compares the performance of volatility-managed and original portfolios (U) for the cross section of
158 equity strategies. For a given factor, the volatility-managed factor return in month ¢ is based on a forecast
of the conditional variance. In addition to our smoothing volatility forecast (SSV), the variance forecasts are
from a simple AR(1) fitted on the realised variance (RV AR), an alternative six-month window to estimate the
longer-term realised variance (RV6), a long-memory model for volatility forecast as proposed by Corsi (2009)
(HAR), a standard AR(1) latent stochastic volatility model (S8V), and a plain GARCH(1,1) specification (Garch).
For each volatility targeting method we report the mean annualised Sharpe ratio, Sortino ratio and maximum
drawdown (in %), as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles in the cross section of equity
strategy. In addition, we report the fraction of volatility-managed portfolios that generate a Sharpe ratio
which is statistically different from the unscaled strategy (see, Ledoit and Wolf, 2008), and is either positive or
negative. The table reports the results for two levels of transaction costs, 14 and 50 basis points of the notional
value traded to implement volatility targeting.

14 basis points 50 basis points

U RV RV6 RV AR HAR Garch SV SSV 1) RV RV6 RV AR HAR Garch SV SSV
SR
Mean 0.24 017 0.25 0.21 0.23 0.23 023 0.25 0.24 -0.11 0.14 0.01 0.13 0.16 0.14 0.23
Percentiles
2.5 -0.12 -0.32 -0.26 -0.28 -0.26 -0.23 -0.24 -0.20 -0.12 -0.65 -0.39 -0.52 -0.40 -0.31 -0.32 -0.22
25 0.08 -0.03 0.02 0.00 0.02 0.00 -0.01 0.05 0.08 -0.30 -0.09 -0.19 -0.08 -0.06 -0.09 0.03
50 0.22 0.16 0.23 0.20 0.21 0.23 026 0.23 0.22 -0.14 0.13 0.00 0.11 0.16 0.16 0.21
75 0.37 036 0.43 0.41 0.40 0.40 039 0.42 0.37  0.05 0.32 0.17  0.27 0.33 030 0.39
97.5 0.63 0.69 0.77 0.72 0.69 0.76  0.76  0.68 0.63 0.48 0.66 0.54  0.59 0.71  0.66 0.66
p<0.05 & SR>0 1.90 443 3.80 5.06 6.96 6.96 8.86 0.00 1.27 0.00 1.90 3.80 1.27 6.96
p<0.05 & SR<0 1519 570 10.76 6.96 12.03 12.66 5.70 79.11 2722 65.82 36.71 27.22 36.08 10.13
Sortino
Mean 1.44 1.08 1.52 1.30 1.35 1.40 140 1.50 144 -0.69 0.85 0.04 0.75 0.98 086 1.38
Percentiles
2.5 -0.79 -1.92 -1.55 -1.62 -1.52 -1.32 -1.43 -1.15 -0.79 -4.16 -229 -3.05 -233 -1.77 -191 -1.27
25 048 -0.21 0.13 -0.01 0.12 0.03 -0.05 0.32 048 -1.82 -0.58 -1.22 -0.50 -0.39 -0.53 0.21
50 136 0.91 140 1.15 1.27 148 1.52 137 1.36 -0.91 0.78 0.02  0.68 1.01 101 1.25
75 2.16 221  2.60 2.30 237 241 230 234 2.16 032 1.84 1.05 1.62 198 1.75 221
97.5 349 514 4.87 5.01  4.17 4.65 441 4.14 349 355 432 3.85  3.62 443 384 4.04
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Table 5: Spanning regression results with transaction costs

This table reports the results from a spanning regression of the form yf = o + By; + €, with y7 the returns
on the volatility managed portfolio and vy its unscaled counterpart. We report the estimated alphas (& in %),
the appraisal ratio AR = @/, and the difference in the certainty equivalent return between and investor that
can access both the volatility-managed and the original portfolio, and an investor constrained to invest in the
original portfolio only ACER. In addition to our smoothing volatility forecast (SSV), the variance forecasts
are from a simple AR(1) fitted on the realised variance (RV AR), an alternative six-month window to estimate
the longer-term realised variance (RV6), a long-memory model for volatility forecast as proposed by Corsi
(2009) (HAR), a standard AR(1) latent stochastic volatility model (SV), and a plain GARCH(1,1) specification
(Garch). For each volatility targeting method we report the mean annualised Sharpe ratio, Sortino ratio and
maximum drawdown (in %), as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles in the cross section
of equity strategy. In addition, we report the fraction of volatility-managed alphas that are significant and
either positive or negative. The table reports the results for two levels of transaction costs, 14 and 50 basis
points of the notional value traded to implement volatility targeting.

14 basis points 50 basis points

RV RV6 RV AR HAR Garch SV SSv RV RV6 RV AR HAR Garch SV SSv
(%)
Mean 0.58 1.22 0.68 0.51 0.92 0.82 0.66 -2.23 0.12 -1.39 -0.47 0.23  -0.08 0.46
Percentiles
2.5 -3.00 -250 -259 -2.18 -2.73 -2.76 -1.71 -6.30 -3.88 -5.42 -3.11 -349 -3.92 -1.92
25 -1.02 -0.46 -0.69 -0.49 -0.62 -0.62 -0.40 -3.66 -1.37 -252 -142 -1.34 -144 -0.62
50 0.13  0.76 0.18 0.26 041 034 0.25 -2.61 -027 -1.71 -0.73 -0.29 -0.46 0.06
75 1.17  1.67 1.04 0.87 147 125 1.01 -1.66 0.65 -0.92 -0.01 0.86 0.46 0.83
97.5 562 6.74 5.39  4.92 6.04 5.66 3.53 2.39 5.16 2.58 3.91 5.01 4.29 3.30
p<0.05& a>0 11.39 2658 13.92 1519 2848 20.25 28.48 3.16 8.86 4.43 6.33  14.56 8.23 21.52
p<0.05& a<0 1456 7.59 12.03 9.49 13.92 13.29 10.13 70.89 23.42 60.13 37.34 2342 3228 15.82
AR (%)
Mean 0.60 321 122 149 219 180 250 -1023 -1.29 -830 -431 -1.01 -270 1.04
Percentiles
2.5 -10.51 -8.26 -10.20 -8.60 -9.76 -9.67 -9.72 -25.05 -14.14 -21.95 -16.84 -13.79 -15.14 -11.17
25 -4.24 -1.76 -390 -3.39 -2.79 -3.54 -2.75 -15.13  -6.40 -13.33  -8.92 -6.53 -9.02 -4.55
50 043 2.85 1.01 1.83 1.83 206 217 -10.33  -0.99 -844 -489 -1.88 -2.76 0.52
75 4.82  6.97 5.03 4.70 6.97 6.15 7.55 -5.78 2.82 -4.16 -0.05 4.34 2.27 6.09
97.5 16.35 16.31 16.92 15.75 17.21 16.08 15.43 8.14 12.20 9.53 12.18 13.48 1250 14.43
ACER(%)
Mean 2.85  9.56 9.05 9.10 6.35 3.57 14.50 -14.50 -0.31  -9.70 -2.26 0.65 -3.75 9.47
Percentiles
2.5 -17.02 -7.83 -9.22 -6.10 -9.77 -9.42 -6.53 -49.06 -18.03 -31.85 -15.63 -20.97 -21.88 -8.28
25 -3.33 -0.79 -194 -1.56 -147 -1.68 -0.95 -22.35  -5.21 -15.50 -7.62 -6.03 -7.31 -2.21
50 0.04 3.14 0.07  0.92 1.64 113 124 -8.72 -062 -6.79 -325 -0.54 -1.90 0.14
75 528 12.63 740 499 1024 7.00 6.10 0.45 1.51  -091 -0.01 4.30 1.04 4.52
97.5 43.98 59.18 59.85 29.98 46.04 34.18 25.00 19.55 34.38 20.69 21.91 3848 1834 2241
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Table 6: Volatility-managed portfolios with leverage constraints

This table compares the performance of volatility-managed and original portfolios (U) for the cross section
of 158 equity strategies. For a given factor, the volatility-managed factor return in month ¢ is based on a
forecast of the conditional variance. The volatility-managed weights are capped so that the maximum leverage
attainable is 500% (panel A) or 50% (panel B) of the original factor exposure. In addition to our smoothing
volatility forecast (SSV), the variance forecasts are from a simple AR(1) fitted on the realised variance (RV AR),
an alternative six-month window to estimate the longer-term realised variance (RV6), a long-memory model
for volatility forecast as proposed by Corsi (2009) (HAR), a standard AR(1) latent stochastic volatility model
(SV), and a plain GARCH(1,1) specification (Garch). For each volatility targeting method we report the mean
annualised Sharpe ratio, Sortino ratio and maximum drawdown (in %), as well as their 2.5th, 25th, 50th, 75th,
and 97.5th percentiles in the cross section of equity strategy. In addition, we report the fraction of volatility-
managed portfolios that generate a Sharpe ratio which is statistically different from the unscaled strategy (see,
Ledoit and Wolf, 2008), and is either positive or negative. The table reports the results for two levels of
transaction costs, 14 and 50 basis points of the notional value traded to implement volatility targeting.

Panel A: 500% leverage constraint

14 basis points 50 basis points

1) RV RV6 RV AR HAR Garch SV SSv 1) RV RV6 RV AR HAR Garch SV SSv
SR
Mean 0.24 0.17 0.27 0.21 0.23 0.23 023 0.25 0.24 -0.10 0.21 0.01 0.13 0.16 0.14 0.23
Percentiles
2.5 -0.12 -0.32 -0.25 -0.28 -0.26 -0.23 -0.24 -0.20 -0.12 -0.66 -0.34 -0.52 -0.40 -0.30 -0.32 -0.22
25 0.08 -0.03 0.05 0.00 0.02 0.00 -0.01 0.05 0.08 -0.29 -0.02 -0.19 -0.08 -0.06 -0.09 0.03
50 0.22 0.15 0.24 0.20 0.21 0.23 026 0.23 0.22 -0.11  0.20 0.00 0.11 0.17 0.16 0.21
75 0.37 036 0.47 0.41  0.40 040 0.39 0.42 0.37  0.06 0.40 0.17  0.27 0.34  0.30 0.39
97.5 0.63 0.73 0.82 0.74 0.70 0.76 0.75 0.68 0.63 0.53 0.75 0.57 0.62 0.71 0.66 0.66
p<0.05& SR>0 1.90 6.33 3.80 3.80 759 6.96 8.86 0.00 3.80 0.00 1.27 380 1.90 6.96
p<0.05 & SR<0 1519 253 12.03 6.33 12.66 12.66 5.70 75.95 12.66 65.82 37.97 28.48 36.08 11.39
Sortino
Mean 1.44  1.11 1.68 1.31 1.36 1.40 139 1.50 1.44 -0.61 1.29 0.05 0.75 099 0.86 1.38
Percentiles
2.5 -0.79 -1.92 -140 -1.61 -1.52 -1.33 -1.44 -1.15 -0.79 -4.16 -1.85 -3.05 -233 -1.75 -1.93 -1.27
25 048 -0.20 031 -0.02 0.12 0.03 -0.05 0.32 048 -1.78 -0.09 -1.22 -047 -0.39 -0.53 0.21
50 1.36  0.88 148 1.16 1.27 1.49 1.52  1.37 1.36 -0.77 1.11 0.02  0.68 1.07  1.05 1.25
75 2.16 221 276 2.30  2.36 237 230 234 2.16 036 231 1.05  1.59 2.00 175 221
97.5 349 522 488 5.02 431 4.64 435 4.14 349 375 454 3.86  3.87 442 383 4.04

Panel B: 50% leverage constraint

14 basis points 50 basis points

U RV RV6 RV AR HAR Garch SV SSv 1) RV RV6 RV AR HAR Garch SV SSv
SR
Mean 0.24 0.22 0.28 0.24 0.24 0.25 0.25 0.25 0.24 0.04 0.24 0.11  0.16 0.20 0.19 0.24
Percentiles
2.5 -0.12  -0.30 -0.21 -0.26 -0.24 -0.22 -0.21 -0.19 -0.12 -0.50 -0.28 -0.40 -0.34 -0.26 -0.27 -0.20
25 0.08 0.01 0.07 0.02  0.03 0.02 0.01 0.06 0.08 -0.15 0.03 -0.09 -0.03 -0.03 -0.04 0.05
50 0.22 0.19 0.26 0.20 0.22 024 024 0.21 0.22 004 0.23 0.09 0.14 0.19 0.19 0.20
75 0.37 040 0.46 041 041 0.43 0.42 0.42 0.37 023 042 0.28 0.33 0.37 035 041
97.5 0.63 0.74 0.81 0.72 0.70 0.71 0.73 0.68 0.63 059 0.77 0.60 0.62 0.67 0.67 0.66
p<0.05& SR>0 1.90 6.33 2.53  3.80 759 6.96 4.43 0.63  5.06 1.27  1.90 4.43 443 443
p< 0.05 & SR< 0 10.13 1.90 5.70  5.70 8.86 8.23 4.43 55.06 4.43 43.67 2595 20.25 25.32 6.96
Sortino
Mean 1.44  1.34 1.66 142 1.42 1.45 144 148 1.44  0.28 1.44 0.66 0.97 1.17  1.10  1.40
Percentiles
2.5 -0.79 -1.67 -1.27 -1.46 -1.35 -1.27 -1.25 -1.07 -0.79 -299 -1.55 -2.30 -1.91 -1.48 -1.60 -1.18
25 048 0.06 0.41 0.16  0.17 0.14 0.08 0.34 048 -0.95 0.18 -0.57 -0.16 -0.15 -0.24 0.26
50 1.36 1.19 1.55 1.21 1.33 142 146 1.27 1.36  0.28 1.37 0.53 0.84 1.21 1.17 1.21
75 2.16 240 2.66 249  2.43 241 234 41 2.16 146 247 1.73  1.95 212 198 231

97.5 349 473 474 455 4.19 4.42 437 13 349  4.06 454 3.99  3.80 421  4.05 4.06




Table 7: Spanning regression results with x5 leverage constraints

This table reports the results from a spanning regression of the form yf = a+ Sy +¢;, with y7 the returns on the
volatility managed portfolio and y{ its unscaled counterpart. The volatility-managed weights are capped so that
the maximum leverage attainable is 500% of the original factor exposure. We report the estimated alphas (@ in
%), the appraisal ratio AR = @/ and the difference in the certainty equivalent return between and investor
that can access both the volatility-managed and the original portfolio, and an investor constrained to invest in
the original portfolio only ACER. In addition to our smoothing volatility forecast (SSV), the variance forecasts
are from a simple AR(1) fitted on the realised variance (RV AR), an alternative six-month window to estimate
the longer-term realised variance (RV6), a long-memory model for volatility forecast as proposed by Corsi
(2009) (HAR), a standard AR(1) latent stochastic volatility model (SV), and a plain GARCH(1,1) specification
(Garch). For each volatility targeting method we report the mean annualised Sharpe ratio, Sortino ratio and
maximum drawdown (in %), as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles in the cross section
of equity strategy. In addition, we report the fraction of volatility-managed alphas that are significant and
either positive or negative. The table reports the results for two levels of transaction costs, 14 and 50 basis
points of the notional value traded to implement volatility targeting.

14 basis points 50 basis points

RV RV3 RV AR HAR Garch SV  SV5 RV RV3 RV AR HAR Garch SV  SV5

a(%)

Mean 0.56 1.39 0.67 0.54 091 0.79 0.66 -2.08 0.78 -1.38  -0.45 0.24 -0.08 0.46
Percentiles

2.5 -2.92 -2.11 -2.60 -2.16 -2.72 -2.85 -1.71 -5.80 -2.76 536 -3.11 -3.43 -3.89 -1.92
25 -0.97 -0.31 -0.69 -0.49 -0.54 -0.57 -0.40 -3.48 -0.86 -2.50 -1.42 -1.24 -1.44 -0.62
50 0.11 0.84 0.18 0.30 040 033 0.25 -2.51  0.32 -1.69 -0.71 -0.28 -0.47 0.06
75 .15 1.92 1.04 0.89 1.47 118 1.01 -149  1.25 -0.89 -0.01 0.86 046 0.83
97.5 552  7.57 539 4.96 6.05 5.66 3.53 251  6.71 2.63 3.91 5.02 434 3.30

p<0.05& a>0 12.03 30.38 13.92 15.82 27.85 20.89 28.48 3.16  17.72 443 696 1392 886 21.52
p<0.05& <0 1519 3.16 12.03 886 13.29 13.92 10.13 70.25 13.92 59.49 36.08 23.42 32.28 15.82

AR(%)

Mean 0.01  0.04 0.01  0.02 0.02 0.02 0.02 -0.10  0.01 -0.08 -0.04 -0.01 -0.03 0.01
Percentiles

2.5 -0.11  -0.07 -0.10 -0.09 -0.10 -0.10 -0.10 -0.25 -0.10 -0.22 -0.17 -0.14 -0.15 -0.11
25 -0.04 -0.02 -0.04 -0.03 -0.03 -0.03 -0.03 -0.15 -0.04 -0.13 -0.09 -0.07 -0.09 -0.05
50 0.00 0.04 0.01 0.02 0.02 0.02 0.02 -0.10  0.02 -0.08 -0.05 -0.02 -0.03 0.01
75 0.05  0.08 0.05  0.05 0.07  0.06 0.08 -0.06  0.05 -0.04  0.00 0.04 0.02 0.06
97.5 0.17  0.19 0.17  0.16 0.17 0.16 0.15 0.09 0.17 0.10 0.12 0.13 0.13 0.14
ACER(%)

Mean 141 3.52 6.68 7.16 297 0.77 11.99 -4.53  2.24 -2.40 1.8 1.67 -1.16 8.26
Percentiles

2.5 -1.01 -0.17 -0.62 -0.08 -0.49 -0.24 -0.01 -6.80 -0.61 -4.22 -0.35 -0.89 -0.82 -0.01
25 0.00  0.00 0.00  0.00 0.00 0.00 0.00 -0.25  0.00 0.00  0.00 0.00 0.00 0.00
50 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00 0.00 0.00
75 0.03  0.00 0.00  0.00 0.00 0.00 0.00 0.00  0.00 0.00  0.00 0.00 0.00 0.00
97.5 18.67 35.18 34.75 28.94 23.41 18.11 16.31 0.96 28.34 4.18 20.08 16.93 9.45 14.89
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Table 8: Spanning regression results with x1.5 leverage constraints

This table reports the results from a spanning regression of the form yy = a+ Sy: + €, with y7 the returns on
the volatility managed portfolio and y¢ its unscaled counterpart. The volatility-managed weights are capped so
that the maximum leverage attainable is 50% of the original factor exposure. We report the estimated alphas (&
in %), the appraisal ratio AR = a/c. and the difference in the certainty equivalent return between and investor
that can access both the volatility-managed and the original portfolio, and an investor constrained to invest in
the original portfolio only ACFER. In addition to our smoothing volatility forecast (SSV), the variance forecasts
are from a simple AR(1) fitted on the realised variance (RV AR), an alternative six-month window to estimate
the longer-term realised variance (RV6), a long-memory model for volatility forecast as proposed by Corsi
(2009) (HAR), a standard AR(1) latent stochastic volatility model (SV), and a plain GARCH(1,1) specification
(Garch). For each volatility targeting method we report the mean annualised Sharpe ratio, Sortino ratio and
maximum drawdown (in %), as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles in the cross section
of equity strategy. In addition, we report the fraction of volatility-managed alphas that are significant and
either positive or negative. The table reports the results for two levels of transaction costs, 14 and 50 basis
points of the notional value traded to implement volatility targeting.

14 basis points 50 basis points

RV  RV3 RV AR HAR Garch SV  SV5 RV~ RV3 RV AR HAR Garch SV SV5
a(%)
Mean 047  0.88 0.50 048 0.62 0.58 0.44 -0.75  0.61 -0.51  -0.19 023 0.10 0.31
Percentiles
2.5 -1.58 -1.04 -1.44 -1.30  -1.95 -1.90 -1.48 -2.86 -1.34 -2.51  -198 -229 -236 -1.61
25 -0.44 -0.12 -0.42 -0.35 -0.20 -0.31 -0.31 -1.73  -041 -1.44  -1.03 -0.72 -0.81 -0.44
50 0.24  0.60 0.26  0.25 0.37 032 0.25 -1.00  0.31 -0.77  -041 -0.05 -0.14 0.10
75 0.95 1.24 094 0.83 1.10 093 0.83 -0.24  0.99 -0.07 0.18 0.78 0.48 0.70
97.5 3.34  4.34 3.39  3.57 439 421 282 2.11  4.02 2.35 2.94 3.88 3.62  2.68
p<005& a>0 1582 28.48 15.82 17.09 25.32 19.62 27.22 5.70 18.99 6.33 823 1582 12.66 20.25
p<0.05& a<0 10.76 1.90 6.96 5.70 11.39 8.23 8.23 48.10  6.33 41.77  24.68 20.25 24.68 12.66
AR(%)
Mean 0.02 0.04 0.02  0.02 0.03 0.02 0.02 -0.06  0.02 -0.05  -0.02 0.00 -0.01 0.01
Percentiles
2.5 -0.10  -0.06 -0.09 -0.07 -0.09 -0.09 -0.09 -0.20  -0.09 -0.18 -0.14 -0.12 -0.13 -0.11
25 -0.03 -0.01 -0.03 -0.02 -0.03 -0.03 -0.03 -0.11  -0.02 -0.09 -0.07 -0.06 -0.06 -0.04
50 0.02 0.04 0.02  0.02 0.02 0.02 0.02 -0.07  0.02 -0.05  -0.03 0.00 -0.01 0.01
75 0.05  0.07 0.05  0.05 0.07  0.06 0.07 -0.01  0.06 0.00 0.01 0.05 0.03  0.06
97.5 0.15  0.19 0.15 0.16 0.17 0.17 0.15 0.10 0.17 0.11 0.13 0.15 0.15 0.14
ACER(%)
Mean 3.52 824 9.00  9.20 5,75 3.21 13.84 -9.14 4.96 -5.50 1.07 252 -1.26 9.52
Percentiles
2.5 -7.81 -1.95 -3.83 -448 -595 -6.19 -4.99 -28.64 -4.98 -19.61 -10.43 -10.47 -12.08 -7.00
25 -0.13  0.00 0.00  0.00 0.00 0.00 0.00 -9.54  -0.01 -6.19 -1.82 -0.12 -0.46 0.00
50 0.00 0.03 0.00  0.00 0.00 0.00 0.00 -0.82  0.00 -0.04  0.00 0.00  0.00 0.00
75 1.34  6.55 1.98  2.55 4.52  3.08 3.25 0.00 2.89 0.00  0.00 1.51 0.02 235
97.5 43.98 60.33 65.16 37.37 46.04 32.86 24.00 10.39 46.72 15.88 26.67 38.48 18.34 21.78
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Figure 1: Volatility targeting and portfolio leverage

The figure reports the leverage implied by rescaling the original factor portfolios by the previous month’s
realised variance. The latter is estimated based on daily squared returns on the same factor. The left panel
reports the rescaling over time for three common factor portfolios, namely the returns on the market in excess
of the risk-free rate, the size portfolio (see, e.g., Fama and French, 1996), and the classic momentum strategy
as proposed by Jegadeesh and Titman (1993). The right panel reports the cross-sectional distribution of the
mean and median leverage weights across all 157 factor portfolios investigated in the main empirical analysis.
In addition to the mean and median, the figure also reports the value of the top 10% and top 1% highest
leverage weight across factor portfolios.

(a) Realised variance targeting (b) Leverage distribution (c) Market volatility targeting
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Figure 2: Shape of the posterior volatility estimates for different W.

(a) Identity matrix (b) Daubechies wavelet basis matrix with { = 4

(c) Identity + Daubechies wavelet basis matrix (d) B-spline basis matrix with kn = 20 and dg = 3
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Figure 3: Modeling smoothing volatility forecasts

The form of W in case of wavelet basis functions (top) and B-spline basis functions (bottom). Right panels
correspond to columns of the matrix W. The B-spline basis functions is a sequence of piecewise polynomial
functions of a given degree, in this case dg = 3. The locations of the pieces are determined by the knots,
here we assume kn = 20 equally spaced knots. The functions that compose the wavelet basis matrix W are
constructed over equally spaced grids on [0,n] of length R, where R is called resolution and it is equal to 2/~1,
where [ defines the level (and in our case the resulting smoothness). The number of functions at level  is then
equal to R and they are defined as dilatation and/or shift of a mother function. In our case the level is [ =5
and therefore the resolution is R = 16.

(a) Daubechies wavelet basis matrix (b) Daubechies wavelet basis functions

(c) B-spline basis matrix with kn = 20 and dg = 3 (d) B-spline basis functions
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Figure 4: Testing the significance of volatility-managed returns

The plot reports the distribution of the volatility-managed portfolio returns implied by the non-smooth SV (red
area) and smooth SSV (blue area) stochastic volatility models. We report a snapshot of the returns distribution
on a given month for the market portfolio. The realised volatility-managed returns from the unmanaged and
the RV are highlighted each month as white and green circles, respectively. The distribution of the volatility-
managed portfolios for the SV and SSV is generated based on the predictive density of the corresponding model
specifications (see Section 2.1.2 for more details).

(a) MKT October 1995 (b) MKT March 2009

(¢) Momentum factor over 2008,/2009
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Figure 5: Smoothing vs alternative volatility targeting for the full sample

This figure reports the probability p; = pj —p; (see Eq.19) for the cross section of 158 equity trading
strategy investigated in the main empirical application. The left panel compares our SSV versus U and RV. The
middle panel compares our SSV against two alternative smoothing volatility forecasts used in the literature,
i.e., RV6 and RV AR. The right panel compares out SSV against two popular volatility forecasting methods,
such as HAR and Garch.

(@) 8 vs o, of" (b) o vs 4B, 41" (©) 43 vs Y,y

Figure 6: Smoothing vs alternative volatility targeting over time
This figure reports the probability p; = p;” — p; (see Eq.19) for the sample period under investigation. The
left panel compares our SSV versus U and RV. The middle panel compares our SSV against two alternative

smoothing volatility forecasts used in the literature, i.e., RV6 and RV AR. The right panel compares out SSV
against two popular volatility forecasting methods, such as HAR and Garch.

(a) ytSSV vs yg7 y?V (b) ytSSV vs y?ve7 y?VAR (C) ytSSV vs yi'[AR’ ygarch
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Figure 7: Accuracy of the latent volatility estimates
This figure reports the mean squared error and a measure of global estimation accuracy compared to the
MCMC. The mean squared error is measured as MSE =n~' > (hy — h;)?, where h; and h are the simulated
log-variance and its estimate, respectively. The global estimation accuracy compared to the MCMC is

calculates as in Eq.(20). In addition, the left panels report the computational time across methods. We report
the simulation results for both p = 0.98 (top panels), and p = 0.7 (bottom panels).

(a) MSE when p = 0.98 (b) Global acc. when p = 0.98 (¢) Comp. time when p = 0.98

(d) MSE when p = 0.70 (e) Global acc. when p = 0.70 (f) Comp. time when p = 0.70
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Figure 8: Estimates for the latent process parameters
This figure reports the posterior estimates of the parameters of interest for the stochastic volatility models
across simulations, and for different inference methods. We report the simulation results for both p = 0.98
(top panels), and p = 0.7 (bottom panels). We compare our variational Bayes methods, with and without

smoothing, against both a standard MCMC (see Hosszejni and Kastner, 2021), and a global approximation
method as proposed by Chan and Yu (2022).

(a) é when p = 0.98 (b) 7% when p = 0.98 (c) p when p =0.98

(d) é when p =0.70 (e) 7? when p = 0.70 (f) p when p =0.70
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Figure 9: Accuracy of approximations compared to MCMC approach at each time.
This figure reports the accuracy of our variational Bayes inference method against the global approximation
method proposed by Chan and Yu (2022). The top (bottom) panels report the global accuracy when p = 0.98
(p = 0.7). We report the estimation results for ¢ € (1,10) in the left panel, ¢t € (301, 310) in the middle panel,

and ¢ € (591, 600) in the right panel. The accuracy is benchmarked against a standard MCMC method as in
Hosszejni and Kastner (2021).

(a) t € (1,10) when p = 0.98 (b) t € (301,310) when p=0.98  (c) t € (591,600) when p = 0.98

(d) t € (1,10) when p = 0.70 (e) t € (301,310) when p=0.70  (f) t € (591,600) when p = 0.70
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Online appendix for:

Smoothing volatility targeting

This online appendix provides the complete derivation of the optimal variational density
approximations for both the latent stochastic volatility state and the corresponding

structural parameters.

A Derivation of the variational densities

A.1 Optimal density of the parameters

Remark 1. Assume a set of parameters {0;},_,. The mean-field approach factorizes the joint
variational distribution according to a partition q(9) = Hj\il q(¥;), where, following Wand and

Ormerod (2011), each component q(9¥;) can be computed as

q(9;) oc exp {E_y, [logp(d,y)]} . (A1)

where E_g, denotes the expectation with respect to the density ch\/lzl,k;ﬁj q(0y) and logp(B|y) is

the joint distribution of parameters and the data. A wvalid alternative to (A.1) is given by:

q(9;) o exp {E_g, [log p(¥;]|rest)] }, (A.2)

where p(Y;|rest) denotes the full conditional distribution of 9;.
Proposition A.1. The optimal variational density for the regression parameter wvector is

q(B) = Np(p,q(ﬂ), 3q(p)) where:
_ 1\ —1 _ _
e = (XTH'X + 35 o) = g (XTH 'y + 25" 15) (A.3)

where H™! = Diag (Eh [ehl]) 15 a diagonal matriz with elements that depend on the optimal

density for the latent log-volatilities.
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Proof. The logarithm of the full conditional (B3|rest) is proportional to:

log p(B|rest) o —% (y — XB)" diag (") (y — XB) — % (B— 1) 25" (B — ps)

1 1
e ) (,BTXTdiag (ehl) X3 — 263" X diag (eh1) y) -5 (BTz/ng _ 25TE/§1M5) '

Compute the optimal variational density as log ¢(8) = E_g [log p(8|rest)]:

log q(B) —% (,BTXTdiag (Eh [ehl}) X3 —-26™XT (Eh [ehl}) y)
- 5 (75518 - 2678 )

_ _% (IBT(XTH_lx + 2[;1)5 — 28T (XTH 'y + 251/-1',8)) )

where H™! = diag (Eh [ehl} ) Take the exponential and end up with the kernel of a multivariate

gaussian distribution with parameters as in (A.3). O

Proposition A.2. The optimal variational density for the unconditional mean of the log-

volatility process is q(c) = N(fig(e), ag(c)) where:

03(0) = (Hq(1/m2)tys1Mq(q)tnt1 T 1/o3)!

: T : (A4)
Hq(e) = Tg(c) (Mq(l/n2)bn+1ﬂq(Q)Mq(h) + e/ 07).
where _ _
1 ~Hq(p)
—Ha(p) L+ (o2
Ko = : : :

0 0 o Lt g —Ha(p)
0 0 e 0 1

Proof. The logarithm of the full conditional (c|rest) is proportional to:

1 1
log p(clrest) ox —5 (0 = )T Qb = ) = 5250 = )
1 1
o< __2772 (CQLILHQ%H —2ct),Qh) — @(02 ~2p,).
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Compute the optimal variational density as log ¢(c) = E_. [log p(c|rest)]:

1 1
log a(e) o~ Eyal1L/)(4] 4 B [Qens — 2ee] By [QUEAIB) — 55 (¢ — 2eme)
1
— ol (1/7]2)(62LIL+ly'q(Q)Ln+1 - 20L7T1+1Mq(Q)Mq(h)) ( - 2cpc)
1
- 5( (MQ(l/HQ)L'rL—HI‘l’q( )Ln+1+1/‘73) (n+1ﬂq(Q)Hq + pie/ 0 ))

where p,q) denotes the element-wise expectation of the matrix Q. Take the exponential and

end up Wlth the kernel of an univariate gaussian distribution with parameters as in (A.4). [

Proposition A.3. The optimal variational density for the autoregressive parameter has the

following form.:

n—1 n—1
1 1
log (p) o< 5 log(1 = p*) = SHar/2) (02 d a—2p) m) . pe(-11) (A.5)
t=1 t=0
with
ar = Bq [(he — ©)°] = (tgthe) = Ha(0))” + Totny) + Tute) (A.6)

by = g [(he — ¢)(hug1 — )] = (Hg(ne) — Ha() (Hgtherr) — Ha(e) + Oqthehess) T O (A7)

where ogn, n..,) denotes the covariance between hy and hyy under the approximating density

q. Notice that log q(p) can be written as:

2
1 b
log q(p) o< 5 log(1 = p*) — Mq (1/n2) (Z @t> (/)2 - %) , pE(-L1)  (AB)

t=1 Gt

thus the normalizing constant and the first two moments can be found by Monte Carlo meth-
Z?Qol t

= and precision
Z?:f at P

ods by sampling from an uniwariate gaussian distribution with mean
am) (5 at)

Proof. The logarithm of the full conditional (p|rest) is proportional to:
1 1
log p(p]rest) oc b log |Q[ — 2_?72(11 — tp41)"Q(h — ctpi1)

n—1 n—1
1 1
o 5 log(1 — p*) — pre <PQ (he—¢)* =20 ) (b — &) (hpyr — C)) ;



for p € (—1,1). Compute the optimal variational density as logq(p) = E_, [log p(p|rest)]:

log q(p) o %log(l —p’) - %E [1/n%] (p2 > B, [(h—0)’] - 2/)21% [(he — ) (hesa — 0)]>

t=0
1 n—1 n—1
= 5 log(1 - p?) — —MQ(W) (p2 > a - Qprt> . pe(=1,1),
t=1

where a; and b; are as in (A.6). Take the exponential and obtain:

by 1
q(p) X 1 - p2 ]Ipe(fl,l) ¢ (107 = O n—1 ) )
Zt 1 a;’ Ha(1/n2) D i1 Gt

where ¢(x;m, s?) denotes the density function of an univariate gaussian distribution with mean

m and variance s2. m

Proposition A.4. The optimal variational density for the variance parameter is an Inverse-

Gamma distribution q(n*) = 1G(Ayqz), Bypy), where:

n+1
Aq(UQ) =A + 9
1
Byey = B + 5 (Bqqn) = Hate)bn+1) o) (Hgm) — Ha() tn+1) (A.9)

1
T3 (tr {Zam @} + Tge thria@tnt)

and recall that piy 2y = Agemz)/ By -

Proof. The logarithm of the full conditional (n?|rest) is proportional to:

n+1 1
log p(n*|rest) o ——5—log n* — 2—7]2(h — ty41)"Q(h — ctpir) — (A+ 1) logn” — B/’
1 1 1
— (A n—21— ) logn — 77— (B + 2(h — Clpy1)"Q(h — Cbn+1)) )

Compute the optimal variational density as log ¢(n*) = E_,» [log p(n?|rest)]:

n+ 1 1 1
o) o = (A4 0 1) o = 2 (B 1B [ et QU — et )],
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where

Eepn [(h = ctni1)"Q(h — ctyi1)] = Ecpp [WTQh — 2¢h™Quppy + 0] 1 Qe
=By, [hT“’q(Q)h} + EC[Cz]”:LH“q(Q)L”H
= 24lq(c) N;(h) Fq(q)tn+1
= tr {En[bhT]pyq) } + (Hgee) + 0500 eni1 Bg(q)bn+t
= 2fta(c) Py nyHo(@ bt
=t { (MQ(h)p’;(h) + Eq(h)) Mq(Q)}
+ (Hae) + Oge) bis 1 g1
— 2414(c) u;(h) HgQ)ln+1
= g Pa@tem + Ha(e)bnat Mg bn+1
= 2ftq(c) Py nyHo(@ bt
+tr {Sym by} + Tao) b1 g@bnt
= (Mq(h) - Mq(c)Ln+1)TMq(Q)(Hq(h) — Hg()bn+1)
+tr { S kg } + Tao) b1 g bnt1-

Take the exponential and end up with the kernel of an inverse gamma distribution with pa-

rameters as in (A.9). O

A.2 Homoscedastic log-volatility approximation

First of all, the joint distribution of the latent states and the observations, given the set of

covariates is given by:

log p(h,y|X) o log p(y|hi, X) + log p(h)

1 1 1
= ——ufhy — =sTe ™ — —(h — c1,11)"Q(h — cn41), (A.10)

2m 2 2
where s = (s1,...,8,)T with s, = (y; — %/ 3)%, hy = (hy, ..., h,)T and ePt = (eM1 ... eh)T. Let
the homoschedastic approximation be defined as h ~ N, 1(Wf, 72I'"!) where Koy = WI is
the mean vector and 3,y = 7271 is the variance-covariance matrix. More precisely, I' is a
tridiagonal precision matrix with diagonal elements I'; ; = I',4 1,41 =1l and I';; =1+ ~? for
i =2,...,n, and off-diagonal elements I'; ; = —v if |i — j| = 1 and 0 elsewhere (see Rue and
Held, 2005). Under this setting, the density function of the approximate distribution is given
by:

1
log ¢(h|WFf, 7T 1) T

log(72) — glog(l . %(h — WE)TD(h — WE). (A.11)

2T
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Define the variational lower bound (ELBO) as:

(£, 72,7) = Eq(log p(h,y)) — E,(log g(h))
1 1 19
T —Wif+z7%Ln
x —§LILW1f — SHye® 2
1
- Eﬂqu/n?)(Wf — Hg(e)tnt1) Hgq) (WE — g(e)tny1)

1 -
= St 7t (T )
n+1

log(?) + = log(1 = +?), (A.12)

where Hys) = (/J,q(sl), e ,,uq(sn))T with Haq(sy) = (yt—Xqu(B))QnLtr {Eq(ﬁ)xtxg}, and W, € Rnxk
denotes the matrix obtained by deleting the first row of W. Moreover

tr(I‘_luq(Q)) =2+ (1 + ﬂq(pz))(n - 1) — 2n7uq(p).

Let & = (f,7%,7) be the collection of the optimal parameters, the optimization we have to

solve is equal to /E\ = argmaxg ¢ (f, 72, 7), where the objective function ¢ (f, 72,v) has gradient

equal to
vfw(ﬂ T27 7)
Ve(f,72,7) = |V, (f,72,9) ]
VL u(f, 7%, 7)
where

1 1 - l7'2[, 1
Ve (£, 72,7) = —§WT[O,L7TJT + §WT ([Oali;(s)]T © e Witsming )

— (/) W gy (WE — fig(e)tni), (A.13)
1
VT2¢(f7 T2’ ’7) — _Z(u’q(s) ® Ln)Te_W1f+%T2Ln
1 n+1
= a2 (2 (L fige) (n = 1) = 2071140)) + =5 (A.14)
ny
Va(f, 7%,9) = 07 g2 Hato) — T 5 (A.15)

I—7

and Hessian equal to:

Vied(£. 7)) Vipy(E, %) Vi uE.7%9)
HE = v%’qﬁfw(fu 7—27 7) v72—2,7—2¢(f7 7—27 /7) v32,7¢(f7 7—2’ 7) )
Vi o, 727) Vi y(E7%) V2 (E, %)
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with

1
v%,f¢(fv 7—27 7) = _§WT {Diag [O, /_L;(S)]T ® e_Wf+%720n+1

+ Mq(l/n2)“q(Q)} W (A6)

n+1

1 1 2

2 2 —Wif+57%,

v72,72¢(f7 T, 7) 8( @ Ln) v - 974 (A17)
1+7%)
2 £ 2 _ n( .

V'mw( y T 7’}/) (1 ~ ) (A 18)

1 2
Vi (£, 70, 7) = W0, g [T @ o WiHaT ey (A.19)
v%,%/)(ﬂ 7—27 ’Y) = 04 (AQO)
V2 (. 7%,7) = g o) (A.21)

where a = diag(A) denotes the operator that returns the vector a € R™ of elements belonging
to the main diagonal of the square matrix A € R"*" while A = Diag(a) denotes the operator
that returns a diagonal square matrix A € S whose entries consist of the corresponding

elements of the vector a € R™.

A.3 Heteroscedastic log-volatility approximation

Let the heteroschedastic approximation be defined as h ~ N, (W), Xyn)) where the
mean vector is p,;) = Wiyp). To find the optimal parameters of the approximating den-

sity (fg(n), Xq(n)), we have to solve the following optimization problem:
€ = arg m?X w(fq(h), Eq(h)>, (A22)

where ¥(f,), X)) = Eq(log p(h,y)) —E,(log g(h)) is called variational lower bound (ELBO).
To this aim, we can exploit a result provided by Rohde and Wand (2016) valid when the
approximating density is a multivariate gaussian distribution. The latter states a closed-form

update scheme for the variational parameters:

-1
new vil,,l,l,S(HOldv ZOld) (A23)

“new — “old + EnequS(MOId, Eold)’ (A24)

where VS (p?, %) and Vﬁ“S(u"ld, 329} denote the first and second derivative of S(p, X)
with respect to p and evaluated at (u°¢, $°4). The function S is the so called non-entropy
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function which is given by E,(logp(h,y)). In our scenario, we have that

1 T 1 T Moy t3o5m 1
S(tgys Eony) = —5[07 Uy — 5[07 Pygsle o T am — §Mq(1/n2)tr(2q(h)uq(Q))
1
- §Mq(1/n2)(ﬂq(h) - Mq(c)bn+1)THq(Q)(Hq(h) — Ha(e)bn+1), (A.25)
where a = diag(Xy) is the vector of variances and the diag operator extracts the diagonal

vector from the input matrix. Moreover, we obtain:

1 1 _ 142
vﬂq(h)s<l’l’q(h)7 Zq(h)) = _5[07 l’;l;]T + 5[07 “;(S)]T ©e Ham T2 %am)

- M(I(l/ﬂQ)y'Q(Q)(“’q(h) - :uq(c)Ln—i-l)a (A26)

1
2 - .
v“q<h>ﬂq<h>5(“q(h)v Bamy) = —§D|ag

_ 1,2
[0, )T @ e Hat q“‘)] — BBy (A27)

where ¢, is an n-dimensional vector of ones, (i1 /,2) is the variational mean of 1/n?, Hqq) 18
the element-wise variational mean of Q, and ® denotes the Hadamard product. Then, the

updating scheme becomes:

—1
new __ 2 old old
a(h) = [qumuq(h)s (K 2q(h))] ; (A.28)
n(ew _ fold) 4 W+ EZL(e;Lu S( old EOld ) (A29)
Hain) = W) (A.30)

with W = (WTW)"'WT the left Moore-Penrose pseudo-inverse of W.

Remark 2. Under the multivariate gaussian approzimation of q(h) with mean vector Hypy and

2

covariance matriv Xy, the optimal density of the vector of variances o = exp{h}, namely

q(o?), is a multivariate log-normal distribution such that:

E,[07] = exp{ fg(h,) + 1/20§(ht)}, (A.31)
Var,[o}] = exXp{24tg(ny) + o2 ht)}(exp{ag(ht }—1), (A.32)

Covq[otz> t2+ | = exp{fqh) + Ha(hesr) + 1/2( a(he) T o a(hes1) )}(eXp{COVq[hh higilt —1).
(A.33)

B Additional results
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