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Our econometric techniques are all designed for large time series and small
cross sections. Our data has a large cross section and short time series. A large
unsolved problem in finance is the development of appropriate large-N small-T
tools for evaluating asset pricing models. (Cochrane, 2005, p 226)

1 Introduction

A standard asset pricing test evaluates whether a small number of factors can explain

the differences in expected returns across a variety of test assets. Such an evaluation is

statistically problematic when the number of test assets (N) is large relative to the length

of the time series (T ) available for the factors. The combination of large N and small T is

particularly awkward for macroeconomic factors observed at low frequencies. We propose

a methodology that is well-suited for such tasks.

We consider a stochastic discount factor (SDF) asset pricing model. Theory implies that

the SDF should be orthogonal to the excess returns on the test assets. An overall test for

the asset pricing conditions involves the N -vector of sample means of the pricing errors and

its (N × N) covariance matrix. This runs into two problems. First, the test requires the

inverse of the high-dimensional covariance matrix. Second, a test on all N test assets may

have low power, even if a profitable trading strategy exists. Many of the test assets may be

correctly priced, but carefully chosen portfolios of test assets may violate the orthogonality

conditions.

We address both problems by applying machine learning methods for model selection

and shrinkage. We rewrite the asset pricing test as a time series regression of the SDF on

excess returns. If the model is correct, the regression should not have any explanatory power.

But without regularisation that regression still suffers from the same large-N problem. We

therefore impose sparsity. If the model has any value, we should not expect that many

assets have large coefficients in this regression.

The fitted values of that regularised regression are excess returns on a portfolio of test

assets that is most anomalous for the asset pricing model. The larger the magnitude of

the fitted values, the larger the pricing errors. The average of the squared fitted values is

an estimate of the Hansen-Jagannathan (HJ) distance (Hansen and Jagannathan, 1997), a

well-defined metric for evaluating asset pricing models. Usually the HJ-distance cannot be

computed for large N due to the need for inverting the high-dimensional second moments

matrix of returns. Being able to estimate the HJ distance the evaluation of an asset pricing

model can go beyond the commonly used cross-sectional R2 (of a regression of average

returns on beta’s) with its well known shortcomings.
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Our main contribution takes this regression approach one step further. The SDF usually

depends on unknown parameters δ. For a linear SDF, m = 1− f ′δ, with traded factors f ,

estimation comes down to a regression of the constant ‘1’ on the factor returns,

1 = f ′δ + u, (1)

For a small set of traded factors, this does not present any complications (Britten-Jones,

1999). Kozak, Nagel, and Santosh (2020) consider the case of many traded factors. We focus

on the case of non-traded factors. In this case, minimising the HJ-distance is equivalent

to estimating δ in the same regression model (1) but now by instrumental variables using

the excess returns of the test assets as instruments. That again is a large-N problem

for which we need sparsity conditions to select the optimal instruments. The optimal

instruments emerge as portfolios of test assets that minimise the overall pricing error and

can be interpreted as returns on mimicking portfolios for the factors. Mimicking portfolios,

for which we use tracking portfolios as a synonym, contain all the essential information about

the stochastic discount factor (Cochrane, 2005, ch 7). With the estimate δ̂ we construct

m = 1−f ′δ̂ and proceed with the projection of m on the excess returns to identify anomalies

and estimate the HJ distance as discussed before.

In short, our proposed methodology has two elements. The first is an instrumental

variables regression to estimate the parameters of the asset pricing model. Although the

IV regression is a straightforward implication of basic asset pricing moment conditions, it

has, to the best of our knowledge, never been implemented empirically. With large N it

relies on regularised regressions to construct tracking portfolios. The second element is a

regularised regression to identify an anomaly portfolio.

The proposed IV estimator is an alternative to Fama-MacBeth (FM) regressions (Fama

and MacBeth, 1973). In an FM regression the δ parameters are estimated through a cross-

sectional OLS regression of average returns on covariances between factors and returns.

It avoids the high-dimensional matrix inversion by giving equal weight to all test assets

and by exploiting the time series variation for statistical tests. The IV estimator can

be interpreted as a method for finding the optimal N -dimensional weighting matrix to

perform a GLS regression. The IV estimator will be more efficient than FM in situations

with a lot of heteroskedasticity and correlations in the cross section, which is typical in

applications with macro-economic factors that can only explain part of the factor structure

in returns. Balduzzi and Robotti (2008) indicate that the risk premium estimated from

tracking portfolios can only agree with the FM regression if the FM regression would be

done in GLS style, which is exactly what we aim to approximate by constructing the optimal
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instrument as a tracking portfolio.

Our approach complements Feng, Giglio, and Xiu (2020). Feng, Giglio, and Xiu (2020)

estimate the risk prices δ using FM regressions, but apply machine learning to the selection

of factors, allowing for a large set of candidate factors. We assume that the number of

factors is small, while the number of test assets can be large. Instead of FM regressions we

use the machine learning tools to select optimal instruments for efficient estimation of risk

prices and to identify anomaly portfolios that are most informative on mispricing.

The first stage in the IV estimator is the construction of a tracking portfolio as an optimal

instrument. Factor mimicking portfolios for non-traded factors have a long history in em-

pirical asset pricing (Breeden, Gibbons, and Litzenberger, 1989). Lamont (2001) developed

the econometric methodology for the construction of tracking portfolios for macro-economic

factors. Examples of applications in an SDF asset pricing model with macro factors are

Vassalou (2003) and Aretz, Bartram, and Pope (2010). Most distinguishing in our ap-

proach is the use of machine learning tools in constructing tracking portfolios from a large

cross-section of assets.

Since a portfolio return is a linear combination of asset returns, we need regularised

linear regressions, both to construct tracking portfolios, as well as to identify anomaly

portfolios relative to the pricing model. The various model selection and shrinkage esti-

mators in the literature differ by their implicit priors on the coefficients (Murphy, 2012).

We choose to work with L2Boosting. Bai and Ng (2009) earlier suggested L2Boosting for

instrument selection, while Belloni, Chen, Chernozhukov, and Hansen (2012) propose it as

one of the methods for selecting optimal instruments. Belloni et al. (2012) also provide the

statistical theory for inference for the IV estimator with optimal instrument selection.

L2Boosting is related to Lasso (Hastie, Tibshirani, and Friedman, 2009, §16.2). Both

perform simultaneous model selection and shrinkage, while increasing model complexity

step by step, along different paths, until some optimal stopping time. Lasso is known to be

less effective in regressions with strong multicollinearity. This is a real concern, since return

data typically have a factor structure, and thus feature strong multicollinearity. Lasso and

L2Boosting differ in the form of regularisation and type of sparsity that they produce.

Lasso assumes that just a few assets have non-zero weights, whereas L2Boosting allows for

many small coefficients with a bound on their sum of absolute values when N grows large

(Bühlmann and Van de Geer, 2011). The latter is a natural form of sparsity in portfolio

applications. If returns follow a factor model, the tracking portfolios will generally have

weights on all assets with a loading on the factor. But when the number of test assets

grows, the weight of each single asset decreases such that sum of (absolute values) of weight
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remains bounded.

Another related regularisation device is an Elastic Net, which also does simultaneous

model selection and shrinkage and which is designed to address multicollinearity (Zou and

Hastie, 2005). In the asset pricing literature, Kozak, Nagel, and Santosh (2020) apply

an Elastic Net for portfolio construction from a large set of correlated returns. For the

implementation they develop an elaborate informative prior. In contrast, L2Boosting has

minimal tuning parameters.

In a large-N setting Giglio and Xiu (2021) construct a tracking portfolio using the first

few principal components of the excess returns as base assets. Their aim is very different

from ours, though. Important in their application is that the base assets span the space

of excess returns. The principal components serve that purpose, since they are the linear

combinations of excess returns that explain as much as possible of the return covariance

matrix. But the first few PCs do not necessarily provide the best fit for a factor. Especially

in the second stage, when we search for anomalies relative to the fitted SDF model, the

interest is not on the PCs of the excess returns, but on the portfolios of test assets that

violate the pricing conditions most. Likewise, in the first step, our approach finds the linear

combination of excess returns that is maximally correlated with the factor. This reduces

the impact that assets with weak association to the factor have on the estimation of the risk

price. Giglio, Xiu, and Zhang (2022) also stress the importance of emphasizing the assets

with the strongest association to the factors. They highlight that whether a factor is strong

or weak should be assessed within the context of a given set of test assets, and propose a

supervised version of PCA to ensure reliable inference.

Other methods, such as ridge estimators, solely operate on the second moment (or

covariance) matrix. For example, the shrinkage estimators developed by Ledoit and Wolf

(2003, 2004, 2017) or estimators based on high-frequency data such as Bollerslev, Meddahi,

and Nyawa (2019), would produce tracking portfolios as well as anomaly portfolios that

have non-zero weights for all test assets. While we prefer L2Boosting based on our reading

of the literature, we have not empirically tested which one works best for our application.

With proper calibration and tuning other methods may outperform L2Boosting. But the

simplicity of L2Boosting provides robustness to overfitting and attenuate the skepticism

that macro factors are only weakly related to equity returns.

Concerns about weak or useless instruments have been raised in, e.g., Kan and Zhang

(1999) and Kleibergen and Zhan (2020). Prominent macro factors such as consumption

have very low correlation with financial returns. Reasons for the weak correlation are

plenty and well-known (Breeden, Gibbons, and Litzenberger, 1989; Kroencke, 2017). For
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macroeconomic factors that only exhibit weak correlation with returns Kleibergen (2009)

shows that the cross-sectional FM two-pass regression can provide misleading inference. A

similar problem exists for IV estimators (Staiger and Stock, 1997). As a partial solution

Belloni et al. (2012) suggest a split-sample estimator, as a large N version of ideas in Angrist

and Krueger (1995). The split-sample estimates of the tracking portfolio returns produce

out-of-sample fitted values for the tracking portfolios. Lacking easy solutions to rule out

weak instrument problems, Kroencke (2021) argues that the best one can do is have a large

enough correlation between factor and excess returns. In our empirical application the

out-of-sample correlation between consumption and its tracking portfolio is 0.45.

The optimal instrument selection may not solve all weak instrument problems, but will

not be worse than the FM two-pass estimator in the ‘small T , large N ’ setting. By selecting

the excess returns most correlated with the factor we avoid one of the problem cases in

Kleibergen (2009), where only a finite number of useful instruments is available along with

a large number of useless assets. Adding all, including the many useless assets with a zero

beta, in an OLS cross-sectional regression, leads to a strong bias. Our model selection

alleviates the problem, since the useless assets will be ignored in the tracking portfolio. The

tracking portfolio aggregates the returns that are most highly correlated with the factors.

As Bryzgalova (2016) we put more weight on instruments that correlate stronger with a

factor.

The first stage model selection also serves as a form of pre-test. Risk price estimates

are essentially the sample mean of the tracking portfolio scaled by the covariance of the

tracking portfolio returns with the factor. If tracking portfolios have a zero mean, or average

returns not significantly different from zero, the price of risk will also be zero, except in

the problematic ‘zero divide by zero’ useless factor case that the covariance is zero as well.

In the empirical analysis we find a reliably non-zero mean for the consumption mimicking

portfolio, but not for some of the other macro factors. Tracking portfolios with close to

zero average returns are most subject to the weak instrument problems. For our data, the

results for consumption appear insensitive to their inclusion.

One of the suggestions in Kleibergen and Zhan (2020) is to conduct robust inference

by inverting a test statistic of the model fit in order to find the risk prices that would be

consistent with the SDF model. In our case it would mean finding δ such that the HJ

distance is bounded by a critical value under correct specification, or otherwise conclude

that an admissible δ does not exist.1 But the entire motivation of our approach stems from

1 Kleibergen and Zhan (2020) propose the Anderson-Rubin test statistic, which in our model is a scaled
version of the Hansen-Jagannathan distance. For large N the AR statistic is infeasible, but a version derived
in Belloni et al. (2012) is valid for large N .
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allowing pricing errors and thus not assuming that the population value of HJ equals zero.

Estimating δ is one goal, but identifying anomaly portfolios from a large set of test assets

is the main motivation for applying a statistical learning algorithm.

Before delving into the empirics, we conduct an extensive Monte Carlo study. In a

setting that is typical for a macroeconomic factor, i.e. low correlation with returns and a

strong factor structure not explained by the factor, the IV estimator performs as one would

expect from its asymptotic properties. With data resembling T equal to 10 years of monthly

data and N = 200 test assets, the IV estimator appears almost unbiased and has a standard

error that is less than half that of the two-pass FM estimator. When the true HJ distance

equals zero, the L2Boosting algorithm will correctly set it to zero in the majority of cases.

With the same N and T the sampling distribution under the null of correct pricing has a

60% probability of an exact zero. When there is mispricing, the sampling distribution of the

HJ distance quickly becomes median unbiased. Estimation uncertainty decreases with
√
T ,

but is more or less constant in N . The mispricing hardly affects risk price estimates. The

sampling distribution for δ, and also its asymptotic standard error, are robust with respect

to misspecification in the form of omitted factors. The latter is similar to Giglio and Xiu

(2021). Finally, adding substantial noise to the factors to approximate a weak factor, the

IV estimator becomes biased. But it still performs better than the FM two-pass estimator.

We apply the estimator to revisit asset pricing with four well-known macroeconomic

variables: consumption, inflation, term spread and credit spread. As test assets we select

80 managed portfolio based on anomalies and industry sorts. The industry portfolios have

very different business cycle exposures and thus provide an interesting set of assets for con-

structing different macroeconomic tracking portfolios. We would expect that the algorithm

heavily loads on some of the industries for constructing tracking portfolios, but avoids them

when constructing a portfolio of mispriced assets. The anomalies may be redundant return

series that just complicate the task for the statistical learning algorithm in constructing a

tracking portfolio. Conversely, they may be important for the mispricing portfolio. That

corresponds with what we see in the empirical results.

The tracking portfolio for consumption growth loads heavily on various industries, has

a market beta of one, and a Sharpe ratio close to that of the market portfolio. Still it differs

substantially from the market portfolio, while only half of its variation can be explained by

the five Fama-French factors. Using the optimal tracking portfolio as an instrument, the risk

price of the consumption factor is statistically significant. This result is robust across model

specifications. This stands in contrast to the other macroeconomic tracking portfolios. The

inflation tracking portfolio has a similar out-of-sample fit as the consumption mimicking
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portfolio. However, the portfolio returns do not reveal a sizeable risk premium.

Using the IV estimates, the macroeconomic models produce average pricing errors of

similar magnitude as the five Fama-French factors. The pricing errors stem from a wide

variety of anomalies and industry sorts. The largest pricing errors are due to the anomaly

test assets, in particular industry relative reversals. None of the models is able to accurately

price these assets. Pricing errors for consumption model differ from those resulting from

the Fama-French five factor models, most notably due to the asset growth anomaly.

The remainder of the paper is structured as follows. Section 2 lays out the methodolog-

ical framework. In section 3 we present implementation details of regularised regressions

using L2Boosting. Sections 4 and 5 report the results of a Monte Carlo simulation and the

empirical application. Section 6 concludes.

2 Stochastic discount factor projections

Let x be a vector of excess returns onN different assets or portfolios of assets. The stochastic

discount factor model states that the excess returns satisfy the N moment conditions

E[mx] = 0, (2)

where m is a stochastic discount factor (SDF). The model is given economic content by

specifying a functional form for the discount factor. We will consider linear models of the

form

m = 1− δ′f, (3)

for M -vectors of factors f and parameters δ. For a model of excess returns we can set factor

means to zero, i.e. f = f̃ − E[f̃ ], and take the intercept ”1” as an arbitrary normalisation.

The two interesting questions are how well the discount factor model can explain the cross-

section of expected returns, and which factors are priced. The two questions are related, as

the vector of risk prices δ is estimated to maximise the model fit. We discuss both questions

separately, beginning with the model fit conditional on δ, and then estimation of δ.

2.1 HJ distance

Ideally the factors explain the entire cross-section of expected returns, in which case all the

moment conditions (2) hold exactly. In practice anomalies exist, either due to mispricing,

omitted factors, or measurement error in observed factors. If the moment conditions are

only approximate, the deviations E[mx] are pricing errors. Hansen and Jagannathan (1997)
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propose a distance measure to evaluate the fit of the stochastic discount factor model. It is

defined as

HJ = E[mx]′ E[xx′]−1 E[mx], (4)

which is a quadratic form in the pricing errors with weighting matrix E[xx′]−1. Hansen

and Jagannathan (1997) discuss the difference between the distance measure HJ and a

general optimal GMM weighting matrix. Using E[xx′]−1 as a weighting matrix assures that

results are invariant to repackaging of the assets, and independent of the model for m.

Forming portfolios of the original assets does not change the HJ distance. Independence of

m facilitates model comparisons using the HJ distance. Moreover, if squared pricing errors

are independent of the cross-products of returns, the weighting matrix is optimal for GMM.

In applications the population moments in (4) are replaced by sample moments assuming

that we have a sample of T observations for both x and f . When N is large relative to

T , the weighting matrix E[xx′]−1 contains O(N2) elements to be estimated. Finding any

quantity depending on E[xx′]−1 involves a huge matrix inversion that can be very sensitive

to estimation error. In the really large-N case, when N > T , the sample second moment

matrix of excess returns will even be singular.2,3

Our approach transforms the problem of estimating a weighting matrix to a model

selection problem that constructs interesting portfolios from the N test assets. Let

m̂ = E[mx]′ E[xx′]−1x (5)

be the projection of m onto the excess returns x. Then the HJ distance can be rewritten as

HJ = E
[
m̂2
]
, (6)

a result that follows by direct calculation using the definition of m̂ in (4). This expresses

the distance as the expected magnitude of the squared projection of the discount factor

on the excess returns. To avoid the explicit need for E[xx′]−1 we estimate m̂ as the fitted

values from the regression model

m = ξ′x+ w, (7)

with ξ a vector of regression parameters. Without restrictions on ξ this regression still

requires the same large-N matrix E[xx′]−1. It becomes feasible by imposing some form of

2 Hansen and Jagannathan (1997) provide asymptotic distribution theory for the sample HJ distance for
fixed N and a true HJ distance strictly greater than zero. For fixed small N the asymptotic distribution
of the HJ distance, under the null that all assets are correctly priced, and assuming homoskedasticity is
chi-squared with N −K degrees of freedom. With large N neither is a good approximation.

3 A partial solution is the use of high-frequency data to obtain a much more accurate estimate of the
quadratic variation. When not all assets are traded on a sufficiently high frequency, this restricts the space
of test assets.
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sparsity on the parameters ξ. The sparsity constraint implies that many of the elements in

ξ should be small or equal to zero. The estimation algorithm selects the combination of test

assets that provide the most flagrant violations of the pricing conditions. Implementation

details, and the form of sparsity, will be discussed in section 3 below.

2.2 Risk price estimator

When the risk prices are unknown, the HJ distance can be minimised with respect to δ.

The solution is

δ =
(
E[fx′] E[xx′]−1 E[xf ′]

)−1
E[fx′] E[xx′]−1 E[x] (8)

Again we will transform the problem such that we avoid the explicit estimation of the high-

dimensional weighting matrix E[xx′]−1. We interpret the optimal value for δ in (8) as the

instrumental variables (IV) estimator for δ in the regression model,

1 = δ′f + u, (9)

using x as instruments. To see the equivalence, note that the first stage regression

f = Π′x+ v, (10)

with (N ×M) parameter matrix Π implies instruments

f̂ = Proj(f |x) = E[fx′] E[xx′]−1x . (11)

Given f̂ , the second stage IV estimator then becomes

δ = E[f̂f ′]−1 E[f̂1], (12)

which is identical to the original expression (8).

The large-N challenge is in the tracking portfolios f̂ , as they depend on E[xx′]−1. Anal-

ogously to the pricing error regression (7) before, we construct these portfolios using a

regularised linear regression imposing a sparsity constraint on the elements of the matrix of

portfolio weights Π. The fitted values from this regression, f̂ , are the instruments in (12).

Our model setup fits directly within the framework of Belloni, Chen, Chernozhukov, and

Hansen (2012). They consider optimal instrument selection in a regression model with a

fixed small number of endogenous regressors f , for which we have many instruments x. All

xj are potential instruments, but including too many will lead to overfitting in finite samples

and thus create a bias. Under sparsity conditions for the projections, Belloni et al (2012)

prove that various machine learning methods lead to asymptotically optimal instruments,

one of them being L2Boosting that we use in the empirical work.
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Let F and X be the data matrices containing T rows of observations on the M factors

and N excess returns on the test assets, respectively. In the empirical analysis factors are

always demeaned, i.e. ι′F = 0. The first stage penalised regression provides a matrix

F̂ = XΠ̂ as a linear combination of the instruments. Using F̂ as instruments, and with ι

a T -vector of ones, the IV estimator for δ in (12) becomes

δ̂ = (F̂ ′F )−1F̂ ′ι (13)

with an asymptotic covariance matrix consistently estimated as

Var(δ̂) = s2
u(F̂ ′F )−1F̂ ′F̂ (F ′F̂ )−1 (14)

with s2
u = 1

T û
′û (for û = ι − F δ̂) the sample second moment of the residuals in the SDF

model (9). The scaled numerator term in the estimator (13), 1
T F̂
′ι, is nothing but the time

series mean of the tracking portfolios. This is a standard estimator for the risk premium of

a factor using factor mimicking portfolios.

The denominator differs. The usual transformation from risk premiums to risk prices is

by the inverse of the factor covariance matrix. In (13) we have 1
T F̂
′F , which for large T

converges to the second moment matrix of the mimicking portfolios E[f̂ f̂ ′]. Since mimicking

portfolios for priced factors do not have a zero mean, this is not the covariance matrix. The

difference between second moments and covariances will be small when returns are measured

with reasonably high frequency.4

The first stage projection becomes redundant for factors that are traded and also among

the test assets. For a traded factor we observe the excess return f̃ (note that f = f̃ − E[f̃ ]

are demeaned factors), which is assumed to be perfectly priced by the moment condition

E[mf̃ ] = 0. Its price is

δT = E[f̃f ′]−1 E[f̃1], (15)

where the subscript ‘T ’ indicates that we consider f̃ as a ‘T’raded factor. The structure

is identical to the general IV estimator (12), but now with f̃ instead of f̂ as the obvious

instruments. Since this does not involve the N -dimensional matrix inversion E[xx′]−1,

estimation of the risk prices does not pose a high dimensional challenge.

When the traded factors are not among the test assets, or if the moments E[mf̃ ] are

allowed to deviate from zero, we still need the first stage regression to find the δ that

4 We obtain the second moment matrix due to the second moment weighting matrix in the HJ distance.
Replacing the second moment matrix in the HJ distance by a covariance matrix, as in Giglio and Xiu (2021),
leads to adding a constant term in the tracking portfolio regression (10) and to a covariance matrix for the
mimicking portfolio f̂ in the transformation from risk premium to risk prices. We keep the second moments
to remain close to the original Hansen-Jagannathan distance.
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minimises the HJ distance. The difference in treatment of the traded factors is similar to

the choice between estimating risk prices from a cross-sectional regression of (expected)

returns on beta’s (covariances) or estimating them directly from the traded factors. The

evaluation of the fit on the test assets x remains, however, a large N problem, with or

without traded factors. Using the estimate δ̂ in (3) we form the SDF and assess the HJ

distance using the regularised regression (7).

2.3 Efficient Frontier

For the interpretation of the HJ distance it is useful to split the projection of m in two

parts,

m̂ = Proj(m|x) = Proj(1|x)− δ′ Proj(f |x). (16)

When the tracking portfolios span the efficient frontier, the residual m̂ will be zero. The

projection of a constant on the excess returns, 1̂ ≡ Proj(1|x), defines a mean-variance (MV)

efficient portfolio (Cochrane, 2005; Britten-Jones, 1999), which can be constructed by the

regression model

1 = π′1x+ v1. (17)

The HJ-distance is measured by the Mean-Squared-Error (MSE) of the difference between

an unrestricted MV portfolio and the optimal portfolio implied by the factor mimicking

returns.

The decomposition suggests that the projection of the SDF on the space of excess returns

can also be computed using m̂ = 1̂−δ′f̂ . In population this is an identity, but due to sparsity

conditions it is not an identity at estimation stage with regularised regressions. Sparsity

constraints on the tracking portfolio weights Π in (10) and the mispricing weights ξ in (7)

do not imply sparsity in π1 for the mean-variance optimal portfolio, and vice versa. We

impose sparsity on the tracking portfolio weights Π and the anomaly portfolio ξ, not on the

overall MV efficient portfolio π1. Constructing a mean-variance efficient portfolio, without

referring to factors, is of independent interest. We include appendix C as an example.

3 L2Boosting regressions

We need regularised linear regressions for several purposes. First, to evaluate the magnitude

of the pricing errors through (7); second, to construct tracking portfolios for non-traded

factors as in (10); and third, for additional insight, to estimate the mean-variance efficient
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portfolio in (17). All three can be analysed in the regression model

y =
N∑
j=1

θjxj + v, (18)

where y is the T -vector with observations of the dependent variable yt, v is the T -vector

of errors, and xj are T -vectors of observations on the excess returns xjt. All excess returns

together are stored in the (T ×N) matrix X = (x1, . . . ,xN ). The dependent variable y is

either a factor f , the constant 1, or an SDF m. Fitted values are always excess portfolio

returns: a mean-variance efficient portfolio, a factor mimicking portfolio, or an anomaly.

Boosting algorithms were developed as a technique for producing a projection by ag-

gregating weak predictors. Our version closely follows Bühlmann (2006). Although it is a

learning algorithm that penalizes the L2-norm of the parameters, boosting differs from ridge

regression. In ridge regression all coefficients are non-zero, but shrunk towards a target.

With L2Boosting, the final result will have many exact zeros, very much like Lasso and

Elastic Net estimators (Hastie, Tibshirani, and Friedman, 2009).

Algorithm 1 L2Boosting

1: Initialize

Step size parameter ν ∈ (0, 1]
Maximum number of iterations L
Projection ŷ = 0
Coefficients θ̂j = 0 (j = 1, . . . , N)

2: for ` = 1 to L do

3: Compute residuals v̂ = y − ŷ
4: Find univariate regression coefficients pj = (x′jxj)

−1x′j v̂

5: Find best predictor j∗ = argminj(v̂
′
j v̂j) with v̂j = v̂ − pjxj

6: Update the projection: ŷ ← ŷ + νpj∗xj∗

7: Update regression coefficients: θ̂j∗ ← θ̂j∗ + νpj∗

The detailed steps of the algorithm are listed in algorithm 1. At each iteration the algo-

rithm searches for the univariate predictor that improves the fit the most. Implementation

requires two tuning parameters: the stepsize ν and the number of iterations L. The exact

value of the stepsize parameter does not have much of an effect on the results, as long as

it is sufficiently small. It should be large enough for the algorithm to make progress, yet

small enough to enable shrinkage and deal with multicollinearity. The value ν = 0.1 is often

recommended. The number of iterations is more critical, since eventually the solution will

converge to the least squares estimator and therefore be prone to overfitting.
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Each iteration increases model complexity. Since boosting is a linear method, the fitted

values can be expressed as ŷ = Hy, where H is the (T × T ) projection (hat) matrix (see

appendix A for the updating formula). Model complexity is defined as q = tr(H). In

standard regression models, doing OLS on a full data matrix X, tr(H) equals the number

of explanatory variables, i.e. the number of columns in X. Due to the tuning parameters ν

and L, model complexity q is less than the number of included variables. Bühlmann (2006)

suggests to use the model complexity as an input in the corrected Akaike Information

Criterion

AIC (v̂, q) = ln
(
1−R2

)
+

T + q

T − q − 2
, (19)

where (1−R2) = v̂′v̂/y′y. The penalty is added to the log of the sum of squared residuals

v̂′v̂. Minimising AIC leads to an optimal stopping time L.

The L2Boosting algorithm is consistent for the conditional expectation of the response,

if the regression coefficients in (18) satisfy the sparsity condition

N∑
j=1

|θj | = o(
√
T/ ln(N)) (20)

for T →∞, maintaining that ln(N)/T → 0 (assuming existence of sufficient moments for x

and y; see Bühlmann and Van de Geer (2011, section 12.6.2.2)). This sparsity condition is

attractive for our purpose of constructing a tracking portfolio. With more data the model

may become more complex and the number of assets in the tracking portfolio may grow

very quickly, but the weight of each individual asset should shrink. The condition is likely

to be satisfied for standard asset pricing models. For example, when excess returns follow a

factor model, appendix B.2 shows that the portfolio weights for the tracking portfolio satisfy

the condition. The same holds for the mean-variance portfolio with ‘1’ as the dependent

variable.

In our experience, and well-known in the literature, the AIC tends to select rather

complex models. Complex models increase the risk of overfitting, which creates a bias for

the IV estimator in the direction of the OLS estimator. In our case the OLS estimator

δ̂ols = (F ′F )−1F ′ι = 0 because the factors are demeaned. Overfitting in the first stage

regression will thus result in risk prices that may be biased towards zero. We therefore per-

form our model selection using cross-validation. With K-fold cross-validation the sample is

split in K equal-sized subsamples (folds). For each fold k, the boosting algorithm performs

a sequence of L iterations for the parameter vector θ on the complement of all data not in

the kth subsample. These parameters are used to generate fitted values and residuals for

the kth subsample. Doing this for all k gives a complete vector v̂ of T validation sample
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residuals. The value of L that minimises the residual sum of squares in the validation sam-

ples determines the optimal number of iterations. In practice we use 5-fold cross validation

with random subsamples. We repeat the cross validation T times to minimise the sampling

variation induced by the random subsample assignment.5 Details are listed in algorithm 2.

Algorithm 2 Repeated cross-validation

1: Initialize

Number of CV folds K
Number of repeated cross-validations T

2: for τ = 1 to T do

3: Randomly order all time indices in the data to construct data matrices X and y
with permuted rows.

4: for k = 1 to K do

5: Partition X in blocks Xk with the data for fold k and its complement X−k. Do
the same for y.

6: Run L iterations of L2Boosting projecting y−k on X−k, and save parameters θ̂
(`)
−k

at all boosting iterations ` ≤ L.

7: Compute fitted values ŷ
(`)
k = Xkθ̂

(`)
−k and residuals v̂

(`)
k = yk − ŷ

(`)
k

8: Find optimal stopping L∗ = argmin`
∑

k v
(`)
k

′
v

(`)
k

9: Save fitted values ŷτ = (ŷ′1, . . . , ŷ
′
K)′ at the optimal stopping time L∗

10: Compute the average ŷ = 1
T
∑

τ ŷ
τ

We apply the L2Boosting separately to each factor. For each factor j data are in the

column vector fj and the tracking portfolio returns in f̂j . Joining all factors together we

have the (T ×M) data matrix F̂ for the instruments.

In algorithm 2 the fitted values at the optimal number of boosting iterations are out-

of-sample estimates, with each fold k using portfolio weights that are estimated with the

data not in fold k. The motivation for the out-of-sample fitted values comes from the split-

sample IV estimator in Angrist and Krueger (1995). Its purpose is to reduce bias in cases

with many potentially weak instruments. See appendix B.3 for details.

Because we use regularised regressions for the mimicking portfolios, the IV estimator

(13) differs from a number of alternatives that would normally be equivalent. For example,

with the complete set of N instruments, the projection matrix is H = X(X ′X)−1X ′ and

we obtain the tracking portfolios F̂ = HF and the MV-efficient portfolio ι̂ = Hι. Risk

5 Since the cross-validation randomly assigns observations to folds, some sampling variation will remain
in the estimates. To minimise this effect we use the overly large T = 1000 in the empirical work.

14



prices could then be estimated from the second stage OLS regression,

ι̂ = F̂ δ + u, (21)

which has the returns on an optimal mean-variance portfolio on the left-hand side, and

the factor portfolio returns on the right-hand side. With unregularised projections this

two-stage least squares estimator would be identical to the IV estimator (13). The identity

holds because in this unrestricted case H2 = H, implying F̂ ′F = F̂ ′F̂ . With boosting

(and other statistical learning algorithms), H is a pseudo projection matrix and is not

idempotent. Furthermore, when different macro variables use different optimal instruments

we have f̂j = Hjfj with individual projection matrices Hj , which is a second reason the

equivalence with 2SLS breaks down. In our empirical work we follow Belloni et al. (2012)

and use the IV estimator (13).

For the HJ distance we need the projection of the SDF m = ι − F δ on the excess

returns X. We therefore apply the L2Boosting algorithm with dependent variable ι− F δ̂,

i.e. the residuals û of the IV regression (13). Denoting the fitted values by m̂ the Hansen-

Jagannathan distance is computed as

HJ =
1

T
m̂′m̂. (22)

As for the IV estimator (13), there are alternative ways to compute the HJ distance, which

would be equivalent without regularisation, but are different when using shrinkage and

model selection. As mentioned before in section 2.3 an alternative option would be to use

the returns of the mean-variance efficient portfolio ι̂ and construct m̂ = ι̂− F̂ δ̂. Due to the

different amounts of shrinkage applied in construction ι̂ and F̂ the two sets of fitted values

have a different scaling, and hence the quantity m̂ = ι̂ − F̂ δ̂ is ill-behaved. The problem

does not occur with a regularised regression of ι−F δ on X, since the shrinkage is applied

to the entire left-hand side, and not independently (with different amounts of shrinkage) to

separate components ι and F .

4 Monte Carlo Evidence

We conduct a Monte Carlo study to evaluate the properties of the IV estimator of the

risk parameters and HJ distance using the L2Boosting algorithm to select instruments.

Asymptotic theory in Belloni et al. (2012) indicates that the IV estimator is consistent and

asymptotically normal with standard errors as if we would have the optimal instruments.

We choose a setting that may be challenging for two reasons. First, we consider cases where

T is small relative to N , such that standard GMM with an optimal weighting matrix is not
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feasible. Second, we simulate data that resemble noisy equity returns that have a very low

correlation with a non-traded factor. Both may lead to poor small sample performance of

the IV-boosting estimator. In addition we allow for noisy observations of the factor and

mispricing.

For the simulations excess returns are generated by the 2-factor model,

x = β1(f1 + λ1) + β2(f2 + λ2) + e, (23)

where βj are N -vectors of factor loadings, and e is an N -vector of idiosyncratic risk. Factors

f1 and f2 are mutually independent with variances ω2
1 and ω2

2, and also independent of the

idiosyncratic risk e. In estimation we only include the first factor. The second factor controls

the cross-sectional error structure and mispricing. To lighten notation we will mostly drop

the subscript on the first factor, and write the stochastic discount factor model m = 1− δf ,

with f = f1, δ = δ1, λ = λ1, and ω = ω1.

4.1 Correct specification

The model is correctly specified if λ2 = 0. Misspecification will be considered in section 4.2.

To satisfy the pricing condition E[mx] = 0, we must have λ = δω2. As a normalisation we

set δ = 1 as the true value. Since the SDF prices all assets, the HJ distance is zero.

The parameters in the DGP are calibrated to meet a number of design criteria. Ap-

pendix B contains a full specification of the calibration. Below we summarise the main

ingredients. First, the factor variance ω2, which is also the maximum Sharpe ratio for any

trading strategy, is set equal to 0.8 on an annual basis. Second, for a low correlation between

x and f we select the factor loadings β such that the squared correlation between f and an

equally weighted portfolio is equal to 0.1. A third design criterion fixes the idiosyncratic

noise variance as the difference between the average variance of individual assets and the

variance of the equally weighted portfolio. As a fourth criterion, the cross-sectional varia-

tion in expected returns determines how much can be explained by a regression of average

returns on beta’s. This defines the cross sectional dispersion in β. Finally we specify the

cross-correlations in the errors η = β2f2+e with implied error covariance matrix Σ = E[ηη′].

The larger and more dispersed the elements in β2, the bigger the difference between the

optimal weighting matrix and the identity weighting matrix for a cross-sectional regression

of average returns on beta’s. We assume that factor loadings β2 are cross-sectionally in-

dependent of β. This resembles a setting where we wish to estimate the price of risk of a

macro factor, knowing that a strong factor structure will remain in the test assets.

We discuss one of the Monte Carlo experiments in detail. The example has N = 200
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(a) δ̂ densities
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Panel (a) shows densities of the estimates of δ̂ in the SDF model m = 1 − δf using simulated data with
N = 200 test assets and T = 120 time series observations. In panel (b) the blue solid line is the Monte Carlo

density of the t-statistic t = (δ̂ − 1)/s(δ̂), where s(δ̂) is the asymptotic standard error of the IV-estimator.
The thin black line is the standard normal density. See Table 1 for further notes.

Figure 1: Monte Carlo densities

test assets and T = 120 time series observations. Other combinations of N and T are

discussed in appendix B. Since N > T this is a setting where Fama-MacBeth would usually

be the only option to estimate δ, since the large N precludes estimation of a GMM weighting

matrix. The IV estimator with optimal instrument selection is designed for this setting. We

compare it with the Fama-MacBeth estimator, which is implemented by running a cross-

sectional regression of the N sample average excess returns on the N covariances between

returns and the factor.6

Figure 1(a) shows densities of δ̂ for four alternative estimators; Table 1 provides sum-

mary statistics. The IV estimator appears almost unbiased. Moreover, it is also efficient: in

figure 1(a) its density nearly overlaps with the infeasible optimal instrument that uses the

population weights for the tracking portfolio. This would also be the GMM estimator with

the optimal population weighting matrix. The boosting algorithm succeeds in constructing

a tracking portfolio that performs nearly as well as an estimator with optimal weights. The

efficiency loss of the IV-boosting estimator is a tiny difference in standard deviation: 0.47

versus 0.44. The difference between the boosting and the infeasible optimal estimator is

only in the tails of the sampling distribution. These simulation results therefore confirm

that the asymptotic theory in Belloni et al. (2012) is relevant is an asset pricing setting

with a low signal-to-noise ratio and highly correlated regressors.

The most interesting comparison is with the Fama-MacBeth estimator. As expected

the Fama-MacBeth estimator is slightly downward biased due to the well known errors-in-

6 For a fair comparison between FM and IV we estimate the FM cross-sectional regression without a
constant term.
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quantiles

Estimator ave std 1% 25% med 75% 99%

A: independent design
IV boosting 1.01 0.47 0.01 0.69 0.98 1.30 2.27
Optimal 1.02 0.44 0.05 0.71 1.00 1.30 2.17
Fama-MacBeth 0.93 1.01 -1.47 0.27 0.93 1.57 3.43
Equal Weight 1.15 3.16 -2.42 0.13 1.01 1.93 5.87

B: orthogonal design
IV boosting 1.02 0.44 0.06 0.72 1.00 1.30 1.76
Optimal 1.01 0.43 0.07 0.73 1.01 1.30 2.10
Fama-MacBeth 0.98 0.44 -0.02 0.68 0.96 1.26 2.08

C: noisy factor
IV boosting 1.12 0.75 -0.16 0.65 1.01 1.45 3.47
Optimal 1.09 0.52 0.04 0.73 1.03 1.38 2.54
Fama-MacBeth 0.80 0.93 -1.43 0.23 0.77 1.35 3.17

D: mispricing
IV boosting 0.99 0.46 0.03 0.68 0.96 1.27 2.18
Optimal 1.04 0.44 0.06 0.74 1.02 1.30 2.14
Fama-MacBeth 3.45 1.27 1.45 2.65 3.41 4.25 6.62

The table report averages, standard deviations, and quantiles for alternative estimators for δ in the discount
factor model m = 1 − δf with true value δ = 1. Simulated data are generated for N = 200 test assets and
T = 120 time series observations. IV boosting denotes the Instrumental Variables estimator using a tracking
portfolio for f obtained by L2Boosting; Optimal is the infeasible optimal IV estimator using the population
portfolio weights for the tracking portfolio; Equal Weight is the IV estimator using the equally weighted
portfolio of the test assets as the instrument; Fama-MacBeth is the cross-sectional regression of the sample
average excess returns on the sample covariances of excess returns with the factor.
Panel A refers to a design with independent factor loadings for β and β2 such that cov [β, β2] = 0. Panel
B has an orthogonal design with E[ββ2] = 0. Panel C has the same design as panel A apart from adding
measurement noise to the factor. Panel D is similar to panel A, except for setting λ2 = 0.9 to introduce
pricing errors. Further details on the simulation design are provided in appendix B. Statistics are from
10,000 replications.

Table 1: Monte Carlo risk price estimates

variables problem of using sample covariances instead of the true population values. It is

also much less efficient with more than double the standard deviation of the IV estimator.

Without pricing errors, any asset is a valid instrument, but not every instrument per-

forms well. As an example we consider the equally weighted (EW) portfolio of all N assets

as an instrument. With 200 test assets the EW portfolio is well-diversified. As an instru-

ment it performs poorly. The variance of δ̂ is almost 16 times as large as for the optimal

IV. Careful choice of instrument therefore matters for estimating the price of risk.

Important for inference are the estimated standard errors of the risk price estimates.

For the boosting-IV estimator the asymptotic variance from the standard IV formula is on

average almost identical to the Monte Carlo variance. Moreover, figure 1(b) shows that the

density of the t-statistic is very close to normal.
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The difference between IV-boosting and Fama-MacBeth depends on the calibration of

the parameters in the error covariance matrix Σ. The Fama-MacBeth estimator uses an

identity weighting matrix, whereas the cross sectional error distribution is far from diagonal

due to the dispersion in the β2 factor loadings. Fama-MacBeth would be optimal, and should

perform at least as good as IV boosting, when we alter the design such that the cross-

sectional covariance matrix Σ satisfies Σβ = σ2β. In this case there is no benefit in doing

a GLS or GMM cross-sectional regression. The condition will hold under an orthogonal

design with β′β2 = 0.7 Panel B in table 1 shows that this orthogonal design does not affect

the IV estimator, whereas it leads to a huge improvement for the Fama-MacBeth estimator.

The two now perform equally well.

Since macroeconomic factors are noisy, we also consider the case that the observed factor

has substantial measurement error. For this we assume that returns are as in the baseline

model, but the factor itself is observed with noise: fn = f + n, where n is independent

zero mean noise. More specifically, we set var [n] = 2ω2, meaning that the noise variance

is twice as big as the signal itself. This specification resembles a weak instrument setting.

The noise does not affect the pricing condition, but considerably reduces the correlation

between the factor and excess returns. Panel (c) in table 1 shows that the large amount

of noise affects the IV and FM estimators in different ways. The IV-estimator is upward

biased, whereas FM is downward biased. The biases are not very large compared to the

much larger variance for both estimators. The IV estimator still performs better than FM.

Data are generated by a model without pricing errors. The population HJ distance

is therefore equal to zero. For the baseline calibration the sampling distribution for HJ

contains 58% exact zeros. An exact zero occurs when the boosting algorithm cannot find

a single excess return that has out-of-sample predictive power in the cross validation. In

other words, in 58% of cases the boosting algorithm cannot find an anomaly. Since HJ is

non-negative by construction, the average HJ is positive.

4.2 Pricing errors

As a next step we add pricing errors. We introduce mispricing by adding a risk premium

λ2 in (23). Otherwise all parameters are the same as in the baseline calibration for panel A

in table 1: same factors and factor loadings. The only difference is a positive value for λ2.

Cross-sectionally this type of mispricing is an omitted factor. If we would observe f2, and

construct a tracking portfolio, the HJ distance would still be zero. This is the same design

7 Under the ‘independent’ design the covariance between the two vectors of factor loadings is equal to
zero. With ‘orthogonality’ the inner product is zero, which implies that the cross-sectional covariance equals
−E[β] E[β2], such that E[ββ2] = E[β] E[β2] + cov [β, β2] = 0.

19



0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

HJ distance

true

es
tim

at
e

mean
median

5, 95

The figure shows true and estimated HJ distances. Data are generated by a 2-factor model,
but the model is estimated using a single factor. The true HJ distance is a function of the risk
premium λ2 for the omitted factor using (65) in appendix B.4 averaged over replications of the
factor loadings. Except for λ2, factors and factor loadings are identical to the design in panel A
of table 1. The dashed lines are the 5% and 95% quantiles of the HJ distance estimates. For
scaling the axes show the square root of HJ.

Figure 2: Pricing error estimates

as in Giglio and Xiu (2021) for studying mispricing.

In the Monte Carlo design this implies that the true discount factor changes to m =

1− δf − δ2f2 and thus gets a higher variance. By necessity the maximum Sharpe ratio then

also increases. The unrestricted mean-variance portfolio will thus have a larger Sharpe ratio

than the value of 0.8 in the original design. In figure 2 the range of λ2 corresponds to a

maximum Sharpe ratio moving from 0.8 (annually) for λ2 = 0 to max(Sh) = 2 for λ2 = 0.15

at the far end of the x-axis.

Figure 2 shows that estimates of HJ will be biased upwards for small pricing errors. This

is because HJ, as a distance measure, is non-negative by construction. Since the boosting

algorithm sets HJ to zero in the majority of cases, the median remains at zero for small

mispricings. The larger the mispricing the closer mean and median move together. For

large mispricing our estimator slightly underestimates the true value of HJ. The estimator

thus has power to detect mispricing.

Panel D in table 1 shows the effects of pricing errors on the estimates of the risk price.
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The results refer to the case that λ2 is chosen such the maximum Sharpe ratio is 1.2,

50% higher than the baseline design in panel A. The IV estimates are hardly affected by

the mispricing. Both the average as well as standard error in the misspecified model are

very close to the correctly specified model in panel A. The same holds for the asymptotic

standard errors, which remain close to the Monte Carlo standard error. Results for the

Fama-MacBeth estimator are completely off. The reason is that the FM estimator de-

pends on the factor loadings β and β2 in the design, whereas for large N the IV estimator

is independent of factor loadings. The IV estimator only requires the tracking portfolio

instrument. Appendix B.4 provides analytical details.

5 Empirical results

We use our methodology to assess pricing kernels of both traded and non-traded factors.

The non-traded factors are macroeconomic variables that are well established in the asset

pricing literature. The traded factors serve as a benchmark, both for our methodology

as well as for the macro factors. Since the methodology is for a fixed number of factors,

we only include a few basic macro variables, without an exhaustive model selection on all

macro variables reviewed in Cochrane (2017) or the library of macro factors discussed in

McCracken and Ng (2015).

5.1 Data

All data are monthly for the period July 1963 – December 2017. Table 2 contains the sources

for the macroeconomic variables. The first variable is consumption, being the fundamental

macro factor in asset pricing. We take real expenditures of nondurables plus services.8

Following much of the literature we consider news about the annual growth of monthly

consumption as a factor.9 Denoting the log consumption flow in month t by ct, we define

the annual growth in monthly consumption as C12
t = ct − ct−12.

Other standard macroeconomic factors, at least since Chen, Roll, and Ross (1986), are

inflation, the credit spread, and the term spread. For inflation we construct the factor as the

8 We refrain from searching among the many proposed measures for consumption, such as, e.g. garbage
(Savov, 2011), unfiltered data (Kroencke, 2017), or durables (Yogo, 2006).

9 We consider annual growth rates, again without an elaborate search on the optimal horizon as in Parker
and Julliard (2005) or Malloy, Moskowitz, and Vissing-Jørgensen (2009). A pragmatic reason to work with
annual growth rates is the timing of information. With nowcasting and analyst expectations much of the
news of current month macroeconomic data is already known before the end of the month. Also, since
consumption growth seems to have a persistent component (Schorfheide, Song, and Yaron, 2018), an annual
horizon may be preferable. See Jagannathan and Wang (2007, section III.B) for a detailed analysis of the
trade-offs in selecting the horizon in an SDF model.
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Consumption, services U.S. Bureau of Economic Analysis, Real personal consumption expen-
ditures: Services (chain-type quantity index), DSERRA3M086SBEA

Consumption, non-
durable

U.S. Bureau of Economic Analysis, Real personal consump-
tion expenditures: Nondurable goods (chain-type quantity index),
DNDGRA3M086SBEA

Consumer Price Index US Bureau of Labor Statistics, Consumer Price Index for All Urban
Consumers: All Items, CPIAUCSL

Baa Corporate Bond
Yield

Board of Governors of the Federal Reserve System, Moody’s Seasoned
Baa Corporate Bond Yield, BAA

10-Year Treasury Bond Board of Governors of the Federal Reserve System, 10-year treasury
constant maturity rate, DGS10

3-Month Treasury Rate Board of Governors of the Federal Reserve System, 3-Month Treasury
Bill: Secondary Market Rate, DTB3

Table 2: Macro data sources

innovation in the annual change in the log Consumer Price Index (p), Inf12
t = pt − pt−12.

The term spread (TS ) is the difference between the 10-year Government Bond rate and

the 3-month Treasury Bill rate. The credit spread (CS ) is the difference between the BAA

yield and the 10-year Government Bond rate.10 Both spreads are business cycle indicators

(Harvey, 1993; Gilchrist and Zakrajsek, 2012).

For the return data we use a large number of managed portfolios based on common

industry sorts along with well established financial anomalies.11 The industry portfolios

enable us to relate our macroeconomic factors to typical portfolios that span the entire

market and are likely to have different exposures to macro risk factors. Industry portfolios

have been used for this since the seminal Breeden, Gibbons, and Litzenberger (1989) study.

We take the data for the 49 industries from Kenneth French’s data library. The industry

sorts are expressed in excess of the one-month Treasury bill rate. We drop series that

are not fully observed between July 1963 and December 2017. For the anomaly sorts we

use the collection of characteristic sorted portfolios from Kozak, Nagel and Santosh (2020)

available at Serhiy Kozak’s website. We remove the value-weighted and equally-weighted

market portfolios along with the size and value anomalies from the set of test assets. Traded

factors are the five Fama and French factors (Fama and French, 2015). We thus obtain a

set of N = 79 returns and T = 654 time series observations.

Many of the anomaly portfolios have a Sharpe ratio that is above the Sharpe ratio

10 Since we do not observe the daily Baa Corporate Bond Yield as far back, we instead use the monthly
average corporate bond yield for the missing data.

11 We use managed portfolios instead of individual stocks. Literature is divided on this choice. In recent
studies, e.g. Kelly, Pruitt, and Su (2019), individual stocks are used to simultaneously construct factors and
portfolios. Other recent studies, e.g. Giglio and Xiu (2021) and Kozak, Nagel, and Santosh (2020), rely on
portfolio sorts.
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of the market portfolio (equal to 0.42). The maximum Sharpe ratio is for the Industry

Relative Reversals anomaly, which on its own has an annualised Sharpe ratio of 1.14. The

portfolios also provide a large cross-sectional dispersion in average returns, ranging from

−1.4% to +1.0% per month with a cross-sectional standard deviation 0.5%. Both the mean

and median volatility of the anomalies and the industry sorts are higher than the market

portfolio, although some portfolios appear to have very low risk. This set of portfolios is

thus challenging for any asset pricing model.

For the tracking portfolios we expect that they load primarily on the Industry portfolios.

For the pricing errors we expect stronger weights for the anomaly sorts. It is up to the

learning algorithm to check if this is true.

5.2 Tracking Portfolios

For the construction of the tracking portfolios we mostly follow Lamont (2001). As in

Lamont (2001) the target for the tracking portfolios for consumption and inflation are the

annual growth rates observed at a monthly frequency. For both variables we regress the

macro variable on the excess returns plus a small number of conditioning variables Qt,

Ft+12 = π′xt+1 + φ′Qt + vt+12, (24)

where Ft+12 is either consumption growth (C12
t+12) or inflation (Inf12

t+12). The tracking

portfolio returns are the fitted values f̂t = π̂′xt. They represent the information embedded

in financial returns about the macro growth for the coming year. As conditioning variables

we use a constant and the past annual, quarterly and monthly growth rates.

The main difference with Lamont (2001) is the L2Boosting algorithm for estimating

the portfolio weights. This also affects the treatment of the lagged predictor variables Qt.

Instead of the multiple regression with both xt+1 and Qt, we first regress Ft+12 on the

controls Qt, and then run the L2Boosting algorithm on the residuals. Since we expect very

little correlation between returns and lagged macro control variables Qt, this should not

affect the tracking portfolio, while substantially simplifying the construction.12

Since the two financial spreads are already forward looking variables, their tracking

portfolios are obtained using the spread that is concurrent with the excess returns, i.e. the

regression specification is

Ft+1 = π′xt+1 + φ′Qt + vt+1, (25)

12 The alternative is to apply the model selection after partialling out Qt from all excess returns and the
macro data. However, regressing all elements of xt+1 on Qt and working with the residuals introduces a lot
of noise.
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Consumption Inflation Term Spread Credit Spread
(C) (Inf) (TS ) (CS )

Target (F ) C12
t+12 Inf12

t+12 TSt+1 CSt+1

Controls (Q) C12
t , C

3
t , C

1
t Inf12

t , Inf
3
t , Inf

1
t TSt CSt

CV R2 0.06 0.06 0.06 0.12
Sharpe 0.38 0.07 0.16 0.06
trH∗ 7.92 6.37 5.79 7.99

AIC R2 0.14 0.16 0.20 0.25
Sharpe 0.30 0.01 0.01 0.02
trH 14.09 18.40 29.78 19.60

ρ(CV, AIC) 0.96 0.92 0.82 0.95

The table shows summary statistics for the tracking portfolios of non-traded factors. The target for the
tracking portfolio is the variable F defined in the first line. The residuals from regressing F on the controls
Q in the second line form the dependent variable for the L2Boosting regression. Stopping time is either AIC
or 5-fold cross-validation (CV). The R2 fit refers to the partial R2 after projecting the target on the controls;
trH is the trace of the boosting-projection matrix; for the cross-validated results trH∗ is computed at the
average optimal stopping time L∗T . Sharpe is the annualised Sharpe ratio of the tracking portfolio returns.
ρ is the correlation between the returns of the AIC and CV tracking portfolio returns. Control variables for
consumption and inflation are defined as Cj

t+k ≡ ct+k − ct+k−j and Inf j
t+k = pt+k − pt+k−j .

Table 3: Tracking portfolios for macro factors

with Ft either TS t or CS t. Analogously to the annual macro variables we first filter the

spreads. The filter for both is an AR(1) correction.

Table 3 presents summary statistics of the tracking portfolios. For consumption the fit

based on the out-of-sample fitted values in the cross-validation algorithm is R2 = 6%. That

seems low, but is of the same order of magnitude as the partial R2 = 4% reported in Lamont

(2001). Direct comparison is, however, difficult due to various differences in sample and

design. We use shrinkage in a regression with many assets, and estimate over a different

sample period. Our fitted values are out-of-sample, which will typically reduce the reported

fit. Indeed the R2 increases to 14% with the in-sample AIC stopping. Contrary to Lamont

(2001) our excess returns coincide with the first month of the annual consumption growth,

which makes our fit a little better.13

Since the tracking portfolios are for excess returns, without restrictions on the weights,

the mean and standard deviation are subject to scaling and also affected by the shrinkage of

the L2Boosting regressions. Important for their properties as an instrument is the Sharpe

ratio, which scales the mean by the standard deviation. For consumption the annualised

13 Comparison with other literature is also difficult, since many studies relate the growth in annual
consumption to cumulative annual returns over the same period. Empirically the strongest correlation is
between the contemporaneous excess returns and (unexpected) consumption growth. Therefore regressing
annual (unexpected) growth on annual returns over the same interval will provide a better fit than regressing
annual consumption just on one month returns.
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Sharpe ratio of 0.38 for the out-of-sample returns is the highest among all the estimated

tracking portfolios, and close to the Sharpe ratio 0.42 for the market portfolio.

Figure 3(a) presents the consumption tracking portfolio weights and how they evolve

up to the optimal stopping time. The allocation assigns the most weight to industry sorted

portfolios. By far the largest weight is for the Printing and Publishing industry (Books),

which has around twice the weight of the second to largest position. The majority of the

weights, including the larger ones, are positive. The tracking portfolio appears fairly well-

diversified with 20 assets included at the optimal stopping time. The weights are still subject

to considerable shrinkage with a model complexity trH = 7.92, which is less than half of

the full OLS weights for these 20 assets. Continuing the algorithm to the AIC stopping

time the model complexity almost doubles, but the Sharpe ratio nevertheless goes down.

The in-sample AIC portfolio returns are still highly correlated with the out-of-sample CV

returns (ρ = 0.96).

For inflation the tracking portfolio has a similar fit as for consumption, but a much

lower Sharpe ratio. With the CV stopping criterion, the tracking portfolio has a Sharpe

ratio close to zero. The algorithm could choose from many candidate portfolios, many of

which have large Sharpe ratios that are above that of the market. Diversifying over these

portfolios would easily enable a much higher Sharpe ratio, but the algorithm does not select

them due to lack of correlation with inflation news. Running the algorithm until the AIC

stopping time improves the fit (or overfits) but reduces the Sharpe ratio to virtually zero.

An equity portfolio that hedges against inflation thus earns a zero expected excess return.

For both the term spread and the credit spread our cross-validation selects tracking

allocations using a large number of assets. The CV stopping criterion identifies portfolios

with an out-of-sample R2 of 6 and 12 percent, respectively. The most prominent assets

in the term spread tracking portfolio are anomaly sorts: the Value-Profitability and Price

anomaly.14 The credit spread tracking portfolio assigns a large long position to the Utilities

industry. Similar to the inflation tracking allocation, these portfolios are composed of a mix

of anomaly sorts and industries. As with most tracking portfolios the correlation between

the alternative stopping rules, either CV or AIC, is large. An important difference between

the two is the Sharpe ratio. Adding more complexity to the tracking portfolio increases its

volatility, but not the average return. The Sharpe ratio for AIC terminated portfolios is

generally lower. The effect illustrates that overfitting will reduce the mean of the tracking

portfolio until ultimately it has zero mean, just as the demeaned factor itself. We see

the effect for all four macro variables. In the further empirical analysis we will use the

14 See the internet appendix of Kozak, Nagel, and Santosh (2020) for definitions.
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The figure shows the evolution of the factor tracking portfolio weights as a function of the model complexity
(trH). Final point on the horizontal axis is the average model complexity at the optimal stopping time
implied by cross-validation. The projection is performed on the full sample. The legend lists the assets
included in the tracking portfolio sorted in descending order on the final weight.

Figure 3: Tracking portfolio composition
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C Inf TS CS

Intercept 0.31 (1.4) −0.31 (1.0) 0.22 (1.8) 0.13 (0.3)
MKT 1.03 (13.2) 0.01 (0.1) 0.08 (1.8) 0.22 (1.6)
SMB 0.52 (4.6) 0.07 (0.6) −0.18 (2.4) −1.45 (7.1)
HML 0.34 (2.3) 0.34 (2.1) −0.43 (4.2) −0.35 (1.2)
RMW −0.17 (1.3) 1.40 (9.0) 0.28 (2.0) 0.88 (3.3)
CMA −0.71 (3.7) −0.11 (0.5) −0.03 (0.2) 0.73 (1.7)
R2 0.52 0.16 0.30 0.19

The table shows results from regressing the macro tracking portfolio returns on the five Fama-
French factors. Tracking portfolio returns have been scaled by dividing by the sum of the portfolio
weights, such that they represent the excess return on a long-short portfolio. Robust t-statistics
in parentheses.

Table 4: Tracking portfolios and Fama-French factors

out-of-sample tracking portfolios based on the CV stopping times as instruments.

The tracking portfolios contain all pricing information about the macro variables they

are tracking. They will, however, only have independent meaning when the returns differ

from what is available from common traded factors such as the five Fama-French factors.

To characterise the tracking portfolios we regress their returns on the five Fama-French

factors. Table 4 shows that the loadings for the tracking portfolios on the five Fama-French

factors have a very distinct pattern. Consumption is mostly associated with the market

and the investment factor. Inflation is primarily related to profitability — without any

loading on the market—, the credit spread loads on size, while the term spread is a mix of

book-to-market and size.

The tracking portfolios are correlated with the Fama-French factors, but far from perfect.

The highest R2 is 0.52 for the consumption tracking portfolio, while R2 for the other three

tracking portfolios is much lower. The low correlations can be due to genuinely different

pricing information in the industry and anomaly portfolios related to the macro variables,

but it could also be just noise related to the construction of the tracking portfolios. A GRS

test on the intercepts rejects (F = 2.93, p = 0.02) that the Fama-French factors price the

four tracking portfolios, which could be because the tracking portfolios genuinely contain

relevant macro pricing information, but could also just be because some of them load on

the anomaly portfolios. For now we just conclude that the tracking portfolios differ from

the Fama-French factors.

For comparison table 5 reports the summary statistics for tracking portfolio for traded

factors using the same set of test assets. The traded factors are the five Fama-French factors.

The factors are not among the test assets, so may not be perfectly replicable (and we also

do not include test portfolios sorted on the characteristics of the Fama-French factors).
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MKT SMB HML RMW CMA

Sharpe 0.42 0.28 0.43 0.42 0.50

CV R2 0.97 0.83 0.85 0.77 0.77
Sharpe 0.31 0.08 0.33 0.17 0.35
trH∗ 42.42 45.80 33.68 36.87 24.58

AIC R2 0.98 0.87 0.89 0.82 0.82
Sharpe 0.29 0.08 0.32 0.14 0.32
trH 30.37 34.50 31.92 33.28 30.19

The first line reports the annualised Sharpe ratio of the factor based on the sample mean and standard
deviation. Tracking portfolios are formed by projecting the demeaned Fama-French factors onto the set
of excess returns using L2Boosting. The subsequent Sharpe ratios are for the tracking portfolios based on
either CV or AIC stopping.

Table 5: Traded factors tracking portfolios

Nevertheless the fit for the value-weighted market index is close to perfect with many

included assets and a large model complexity. Fit for the Fama-French sorted portfolios is

not that perfect, but still very strong. Most remarkable are the Sharpe ratios of the tracking

portfolios. These are generally lower than those of the factors themselves.

5.3 Factor news

With monthly data the annual growth rate does not represent a news variable that can

be used as an input in the SDF model. To eliminate autocorrelation, news about an-

nual future growth for consumption and inflation is defined as the revision in expectations

(Et+1−Et)[Ft+12]. As in Xiao et al. (2013) (and others) we construct the news factor using

the two low dimensional projections

Ft+12 = h′1Zt + ζ1,t+12, (26)

Ft+12 = h′0Zt+1 + ζ0,t+12, (27)

where Zt = (Q′t f̂t)
′ is the vector of controls used for the tracking portfolio augmented by

the returns on the tracking portfolio. The tracking portfolios returns are added, since they

evidently have predictive power. From (26)-(27) we obtain the news factor

ft+1 = (Et+1−Et) [Ft+12] = h′0Zt+1 − h′1Zt. (28)

The coefficients h0 and h1 are estimated by standard OLS regression.15 For the credit spread

and term spread we already have monthly data with monthly innovations and therefore do

15 The alternative would be a vector autoregression (VAR) for the macro variables (and possibly some
returns) as for example in Petkova (2006). In a VAR, revisions in 12-month ahead expectations can be
constructed by iterating on the VAR prediction equations analogously to Campbell and Vuolteenaho (2004)
and others. That would link the coefficients h0 and h1, but at the cost of many additional parameters in a
full-fledged VAR. Our specification is kept parsimonious to save on degrees of freedom.
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Tracking portfolios (f̂) Factors (f)

C Inf TS CS C Inf TS CS

f̂ Consumption 1
Inflation −0.16 1
Term spread 0.09 −0.04 1
Credit spread −0.15 −0.48 −0.37 1

f Consumption 0.45 −0.14 0.05 −0.05 1
Inflation −0.08 0.53 0.02 −0.21 −0.23 1
Term spread 0.04 0.02 0.24 −0.17 0.03 0.03 1
Credit spread −0.03 −0.25 −0.17 0.35 0.00 −0.21 −0.15 1

The table shows correlations constructed from the sample second moment matrix of factor news (f) and

their tracking portfolio excess returns (f̂) constructed using cross-validation. The lower left panel contains
the correlations between the factor (row) and the tracking portfolio returns (column).

Table 6: Factor and instrument correlation matrix

not need the additional regressions.

Crucial for the instrumental variables estimator are the correlations between the tracking

portfolio and the factors news. For consumption and inflation the correlations, reported

in table 6, are 0.45 and 0.53. These numbers are substantially larger than implied by the

partial R2 in table 3. The reason is the construction of news as the revision in expectations.

The factors ft have much lower volatility than the annual growth targets for the tracking

portfolios. From the correlation matrix in table 6 we also learn that correlations among the

tracking portfolios generally are larger than those among the factor news variables.

5.4 Risk prices

With the estimates of economic news and their respective tracking portfolios as instruments

we estimate the risk prices. Results are presented in table 7. The IV estimator produces

a statistically significant estimate for the price of consumption risk. In the basic CCAPM

model with constant relative risk aversion, a linear approximation of the pricing kernel

is m = 1 − γC, and thus the coefficient on consumption news equals the risk aversion

parameter. The estimate implies very high risk aversion, consistent with the empirical

literature.16 Estimates for the consumption risk are stable across different specifications

that add other macro variables.

To further interpret the estimate for the consumption risk price, consider the implied

pricing kernel mt = 1 − ftδ̂. The pricing kernel is only identified up to a scalar multiple

16 For example, our estimate is close the γ reported in Kroencke (2017, table III) for year on year
consumption growth.
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Sparse IV Fama-MacBeth

Factor C +Inf +TS +CS All C +Inf +TS +CS All

Consumption 36.66 36.47 41.44 40.32 39.81 40.81 39.98 39.97 43.78 45.12
(2.7) (2.6) (2.7) (2.7) (2.6) (2.5) (2.4) (2.4) (2.5) (2.6)

Inflation −0.51 1.62 5.66 −2.15 −19.13 −19.15 −14.16 −12.34
(0.0) (0.1) (0.4) (0.1) (1.6) (1.6) (1.0) (0.9)

Term spread −0.61 −0.73 −0.01 0.15
(1.3) (1.0) (0.0) (0.3)

Credit spread 0.36 −0.24 0.36 0.47
(0.7) (0.3) (0.9) (1.0)

The table reports estimates of the risk prices δ in the SDF model m = 1−δ′f with t-statistics in parentheses.
The left panel refers to the IV boosting estimates. The IV-boosting estimates are based on out-of-sample
tracking portfolios with optimal stopping calibrated through cross-validation. The right panel reports Fama-
MacBeth cross-sectional regressions of average excess returns on the sample covariances between factors and
excess returns. Standard errors are computed under the Shanken correction.

Table 7: Risk price estimates for non-traded factors

(since we work with excess returns), but its volatility is still the maximum Sharpe ratio

for any portfolio. As consumption news has a standard deviation of 0.66% per month,

the implied annualised maximum Sharpe ratio is
√

12 × 36.66 × 0.0066 = 0.84. However,

that portfolio must be perfectly correlated with the factor news. By construction, the

maximally correlated portfolio is the tracking portfolio, which only has a correlation of 0.45

(see table 3), and therefore implies a maximum Sharpe ratio equal to 0.45× 0.84 = 0.378,

equal to the Sharpe ratio for the tracking portfolio in table 3 and close to the sample Sharpe

ratio for the market portfolio in table 5.

Risk prices of the other macro variables are insignificant and do not contribute to explain

the cross section. The main reason is that their tracking portfolios have a much lower Sharpe

ratio than the consumption tracking portfolio.

The table also contains results from a Fama-MacBeth (FM) regression. The FM esti-

mates are based on covariances of the same candidate assets with the factors. The macroeco-

nomic news data are identical to the time series used for the IV approach. For consumption

the IV and FM estimates are similar. The only difference are the somewhat smaller stan-

dard errors for the IV estimator. The standard errors are smaller, but the difference is not

as big as in the Monte Carlo simulations. The results of the IV estimates deviate from the

Fama-MacBeth estimates for the other macro factors. Estimates for the inflation risk price

are very different. For IV they are never significant due to the close to zero mean of the

inflation tracking portfolio. The FM results are a bit more erratic, with inflation being close

to significant in some specifications.
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MKT SMB HML RMW CMA

Sample 0.0539 0.0398 0.0011 0.1010 0.1260
(0.0109) (0.0150) (0.0206) (0.0209) (0.0309)

IV-boosting 0.0438 0.0108 −0.0077 0.0549 0.1133
(0.0111) (0.0163) (0.0266) (0.0236) (0.0420)

Fama-MacBeth 0.0606 0.0031 −0.0811 0.0889 0.2182
(0.0110) (0.0184) (0.0326) (0.0251) (0.0522)

Risk prices in the first row are estimated from (15) treating the factors as traded assets. The
second row shows IV estimates using the sparse tracking portfolios from table 5. The third row
are the Fama-MacBeth estimates based on sample covariances between factor news and excess
returns of test assets. In parenthesis we report standard errors.

Table 8: Risk price estimates for 5 Fama-French factors

Estimates for the Fama-French 5-factor model on the same test assets provide some

further insights in the properties of the sparse IV estimator. As the Fama-French factors are

traded, we can estimate the risk prices directly, using the factors themselves as instruments

as in estimator (15), without requiring any test assets. By construction, we should not be

able to get better estimates. Indeed, in table 8 these estimates have the lowest standard

errors. As already noted by Fama and French (2015), the HML factor seems redundant.

The other risk price estimates in the table are based on the test assets, without using the

average returns of the five Fama-French factors. Both the IV as well as FM estimator

recover the market premium, which can be readily identified from the industry portfolios.

Standard errors are only marginally above those for the direct estimates in the top row of

the table. For the other factors the standard errors have the predicted theoretical ranking.

Direct estimates are most precise, followed by the sparse IV, while the FM estimates have

largest standard errors. The point estimates are quite different. When we need to learn

about the factor risk prices through the lens of the test assets, the size factor is insignificant

using either IV or FM. Furthermore, the FM cross-sectional regression finds a significant

role (with the wrong sign) for HML, contrary to the other estimates. The test data allow

identification of the profitability and investment factors. The IV estimator tends to generate

lower risk prices than FM, sometimes correctly so (as for CMA) and sometimes not (as for

RMW).

5.5 Pricing errors

Projecting the fitted SDF, 1 − δ̂′ft onto the test assets, the boosting algorithm stepwise

builds a portfolio of mispriced assets. The fitted values are m̂t, from which we estimate the

HJ distance.
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C +Inf +TS +CS All CAPM FF5

HJ 0.33 0.33 0.33 0.34 0.32 0.35 0.31
(0.027) (0.027) (0.027) (0.026) (0.027) (0.027) (0.025)

The Hansen-Jagannathan distance (HJ) is the time series average of m̂2
t , where m̂t

are the fitted values from projecting the SDF 1 − δ̂′ft on the excess returns with δ̂
estimated using the sparse IV estimator. The FF5 model uses the tracking portfolios
of the Fama-French factors. CAPM refers to the single factor model with only the
market portfolio. The column ‘All’ denotes the model that includes all macro factors.
Standard errors are computed from a regression of m̂2

t on a constant using Newey-West
correction for autocorrelation.

Table 9: SDF mispricing

Table 9 shows that the HJ distance for all models is of a similar magnitude. In the

FF5 model the risk parameters δ are estimated from the IV estimator (see table 8), and

thus not restricted to the traded factor sample means. A noticeable result is that the

Consumption CAPM performs better the standard CAPM with the market portfolio as the

single factor. As expected, models that add inflation, credit spread and/or term spread do

not make a difference relative to the consumption model. The Fama-French 5-factor model

(FF5) performs slightly better than most of the macro factors on these test assets. Still,

the model with all macro factors achieves the same HJ distance. The standard errors in the

table probably underestimate the true uncertainty, as they do not adjust for the uncertainty

in the L2Boosting projection.

Figure 4 shows which assets are selected to explain the pricing errors by the L2Boosting

algorithm up to the optimal stopping time. The largest pricing errors are associated with

anomaly characteristics. For both the CCAPM and the FF5 model, the Industry Relative

Reversal anomaly obtains by far the largest (negative) weight. Indeed, the top 3 positive

and top 5 negative weights in the mispricing portfolios are identical in both models and are

all anomaly portfolios. These anomalies are consistently identified as the most difficult to

price.

From the HJ distances it seems that the models are fairly similar in their ability to

explain average returns. For a closer look at the dissimilarities we project the difference

in pricing errors for two models (A and B), mA
t − mB

t , onto the set of excess returns.

The boosting projection will select assets for which the mispricing greatly differs between

the models. We limit ourselves to two pairwise comparisons, CCAPM - Fama-French and

CCAPM - CAPM. The coefficients of the projections are presented in figure 5.

The pricing differences between the FF5 model and the CCAPM are mainly driven by

how they price the asset growth anomaly; all other coefficients are small. For the pricing

differences between the CAPM and CCAPM, the algorithm mostly selects various industry
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The legend is sorted on the final weight of the assets in descending order. The stopping time for the
L2Boosting algorithm is determined by cross validation. The figure shows the full sample estimates
up to the average optimal stopping time.

Figure 4: Pricing error portfolios

portfolios. Neither of the two sets of coefficients contains the Industry reversal anomaly,

despite being the most mispriced asset in figure 4. Clearly, none of the models is able to

price this anomaly.

6 Conclusion

We have reformulated the problem of estimating risk prices in a stochastic discount factor

model as an instrumental variables regression. For an asset pricing model that contains

non-traded factors and is tested on many assets the main benefit of writing the problem in

this form is that regularised regression techniques for optimal instrument selection provide

a large efficiency gain relative to the two-pass Fama-MacBeth estimator. In a simulation

study the IV estimator is close to the infeasible GMM estimator for short time series for

factors and a large collection of test assets. The estimator approximates the GMM weighting

matrix without the need to explicitly estimate a high-dimensional covariance matrix. In an

empirical application the IV estimator shows that consumption is a priced factor for the

cross-section of excess equity returns.
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The figure shows the evolution of portfolio weights that explain the difference between two pricing
kernels. Optimal stopping of the L2Boosting determined by cross validation. Full sample estimates
are shown up to the average optimal stopping time.

Figure 5: Pricing differences between SDF models

A similar regularised regression is used to evaluate the pricing error of the asset pricing

model when there are many test assets. The stochastic discount factor is projected on all

available test assets to construct a maximally mispriced portfolio. The average squared

returns of the projection are an estimate of the Hansen-Jagannathan distance.

For the empirical results we implemented L2Boosting for high-dimensional instrument

selection problem for data that are strongly collinear, such as returns data. Using a large

asset space of characteristics and industry sorts, the algorithm finds a consumption tracking

portfolio that is strongly correlated with consumption news. Although it has a market

beta close to one, it consists of a limited number of mostly industry portfolios and differs

markedly from an aggregate market index. This tracking portfolio performs better than

the standard CAPM in explaining the cross-section of the included tests assets. The HJ

distance indicates that its pricing errors are similar to the Fama-French five factor model.

Other macro-economic factor, inflation, term spread and credit spread, contribute little to

performance of the SDF model for our set of test assets, but also do not affect the pricing

implications of the consumption factor.
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The proposed methodology appears promising for estimating and testing asset pricing

models. Still, given the huge empirical literature on macro-finance asset pricing, many

extensions remain unexplored. First, is the need to extend the factor space, since the few

standard macro factors we considered do not explain the cross-section. Our analysis has

taken the number of factors as given, while concentrating on dealing with a large number

of test assets. When combined with the large literature on bringing order in the ‘factor

zoo’ (see, e.g Feng, Giglio, and Xiu (2020)), we face the double regularisation problem to

simultaneously deal with many assets and many factors.

Second, we have restricted the tracking portfolio weights to be constant over time. For

the industry portfolios in our empirical work Fama and French (1997) already document

time varying risk exposures. Extending the tracking portfolios to allow for time-varying

weights, whether by rolling windows or through conditioning information (Ferson, Siegel,

and Xu, 2007), will enrich the empirical contents, but also further challenge the large N

regularisation. With rolling windows there will be fewer time series observations, while

conditional information increases the asset space.

A third extension is moving to individual stocks. Individual stocks introduces further

technical issues, for example an unbalanced panel with missing data. In its current the

instrument selection algorithm cannot tackle this. Individual stocks will also greatly increase

the amount of noise. With the managed portfolio sorts we could focus on assets that are

informative, either for constructing a tracking portfolio or discovering mispricing.
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A IV Boosting and Fama-MacBeth

The boosting algorithm produces a time series of tracking portfolio returns f̂t. With a single

factor, the time series of the factor and the tracking portfolio are collected in the T -vectors

f and f̂ , respectively. The relation between f and f̂ can be written as

f̂ = Hf , (29)

where H is the estimated hat matrix. The second stage IV estimator for δ is defined as

δ̂IV =
f̂ ′ι

f̂ ′f
=
f ′H ′ι

f ′H ′f
(30)

The hat matrix is defined recursively in the projection update step of the boosting algorithm

as

H`+1 = H` + νPk`+1
(I −H`) (31)

where Pi is the univariate projection matrix xix
′
i/d

2
i , d

2
i = x′ixi, k` indexes the predictor

selected at step `, and H` is the hat matrix after ` steps. Note that H is not symmetric,

even though all Pi are. Using an induction argument (proof omitted) it follows that

H` =
∑
i,j

a`,ijPij , (32)

with (N ×N) coefficient matrices A` = {a`,ij} and data matrices Pij = xix
′
j/(didj). Obvi-

ously, for ` = 0, we have H0 = 0, which satisfies (32) with A0 = 0.

With this notation, omitting the `-subscript, we can rewrite the numerator and denom-

inator in (30) as

1

T 2
f ′H ′ι =

∑
i,j

aij
f ′xj
T

x′iι

T
=
∑
i,j

aijCj x̄i = x̄′AC (33)

1

T 2
f ′H ′f =

∑
i,j

aij
f ′xj
T

x′if

T
=
∑
i,j

aijCjCi = C ′AC (34)

The vector x̄ holds the average excess returns of the N assets, while C is the vector of N

covariances of returns with the factor. The Ci are sample covariances, and not second mo-

ments, because factors have been demeaned. The IV estimator (30) is therefore equivalent

to a cross-sectional regression of average returns on covariances with a weighting matrix A.

This provides a direct relation with the Fama-MacBeth estimator which estimates δ from

the same cross-sectional regression, but with the identity weighting matrix A = I, i.e.

δ̂FM = (C ′C)−1C ′x̄ (35)

For the analogy with Fama-MacBeth the FM cross-sectional regression does not have a

constant term. The analogy also suggests that the boosting IV estimator could be subject
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to a similar errors-in-variables problem as Fama-MacBeth. The covariances Ci are estimated

from a finite time series and differ from their population counterparts. As is known from

Jagannathan and Wang (1998) this measurement error bias will disappear for large T . The

difference is that boosting selects the aij that maximise the correlation of the asset portfolio

with the factor. These will typically be the largest elements Ci. Since large elements Ci

will on average correspond to relatively large true covariances, the measurement error bias

is less severe for the IV estimator. Also, by concentrating on the assets that have the most

information on the factor, we expect to gain precision.

Even N = 1 is sufficient to obtain a consistent estimate, as T → ∞, for δ (in this

single factor model). Larger N has two opposing effects. More data generally increases

the efficiency of the estimator for given matrix A, but the quadratically expanding number

of elements in the weighting matrix A may lead to less efficient estimates. It is up to the

boosting algorithm to find a balance in the structure for A.

When boosting overfits, the IV estimator will be biased towards zero. Overfitting means

that f̂ becomes too close to f itself. In that case the IV estimator approaches the OLS

estimator, δ̂OLS = f ′ι
f ′f = 0. It is identically equal to zero, since the factor has mean zero by

construction.

B Monte Carlo evidence

B.1 Calibration

The text refers to five design criteria. Below we list them in detail.

1. With the normalisation δ = 1 we must have λ = ω2. In that case ω is the maximum

Sharpe ratio for any trading strategy. We take the stylised fact that the Sharpe ratio

of the market portfolio is about 0.4 for annual data. In the simulations we allow for

a mean-variance optimal portfolio with an annualised Sharpe ratio of 0.8. Since we

simulate monthly data, we set ω1 = ω = 0.8/
√

12.

2. Consider the equally weighted index of all stocks, such that all idiosyncratic noise has

been diversified away,

XI = lim
N→∞

1

N

∑
xi = βI,1(f1 + λ1) + βI,2(f2 + λ2), (36)

where βI,1 and βI,2 are the average loadings of β1,i and βi,2, respectively. The variance

of XI can be decomposed as

var [XI ] = R2
Iβ

2
I,1ω

2
1 + (1−R2

I)β
2
I,2ω

2
2 (37)

where R2
I is the proportion of the index variance attributed to the first (priced) factor. A

low value for R2
I generates data with a low correlation between returns and the included
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factor. We set R2
I = 0.1. For the index variance we use the empirical estimate var [XI ] =

(0.2)2/12, i.e. an annual volatility of 20% for an equally weighted index. The remaining

common variance (βI,2ω2)2 is due to the omitted factor. Since only the product βI,2ω2

matters, scaling the variance of f2 to ω2
2 = 1/12 for monthly data is just a normalisation.

3. For the calibration of the idiosyncratic noise we look at the average variance of individual

assets relative to the variance of the index. The large sample cross-sectional average

variance of returns is

V̄ 2 ≡ plim
1

N

∑
i

var [xi] = E[β2
i,1]ω2

1 + E[β2
i,2]ω2

2 + σ2, (38)

where E[β2
i,j ] is the second moment of the cross-sectional distribution of the βi,j ’s, i.e.

E[β2
i,j ] = β2

I,j + Ξ2
j , with Ξj the cross-sectional standard deviation of the βi,j ’s. Subtract-

ing the variance of the index gives

V̄ 2 − V 2
I = Ξ2

1ω
2
1 + Ξ2

2ω
2
2 + σ2 (39)

Setting the average variance of individual stocks to V̄ 2 = 0.32/12, a 30% annual volatility,

we still need two assumptions to fix Ξ1 and Ξ2 before we can use (39) to solve for σ2.

4. One additional moment for calibration is the cross-sectional dispersion in expected re-

turns,

s2
x̄ ≡ plim

1

N

∑
(E[xi]− E[xi])

2 = Ξ2
1λ

2, (40)

assuming λ2 = 0. We set sx̄ is 2% annually; this determines Ξ1.

5. Finally, to fix the cross-sectional dispersion Ξ2 in the loadings of the omitted factor we

split the remainder in (39) equally between σ2 and Ξ2
2ω

2
2.

Table 10 summarises the Monte Carlo design parameters. The large difference between Ξ1

and Ξ2 implies that only very little of the cross-sectional covariance structure is due to the

factor that is included in the SDF model.

Moments (annual)

Sharpe R2
I sd(YI) V̄ sx̄

0.80 0.10 0.20 0.30 0.02

Derived parameters (monthly)

ω ≡ ω1 ω2 σ λ ≡ λ1 βI,1 βI,2 Ξ1 Ξ2

0.2309 0.2887 0.0454 ω2 0.0791 0.1897 0.0313 0.1571

Table 10: Monte Carlo design parameters
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For the baseline model we assume that the factor loadings βi,1 and βi,2 are independent.

In each iteration of the Monte Carlo experiments both factor loadings as well as factors

are random. We first draw factor loadings βi,1 and βi,2 given the parameters in table 10.

We subsequently draw the time series of factors and noises. The factors are generated

from a normal distribution. Finally we combine loadings, factors and idiosyncratic noise to

generate excess returns and the SDF. Since the pricing kernel must also be positive, strictly

speaking a normal distribution for f is inadmissible. The volatility ω is, however, small

enough that the probability for m to become negative is negligible with monthly data.

To introduce pricing errors we set λ2 > 0, such that the true pricing kernel is given by

m = 1− δf − δ2f2 (41)

with δ2 = λ2/ω
2
2. Except for λ2 all other parameters remain as in the bottom row of table 10.

With mispricing there will be a wedge between the maximum Sharpe ratio from the factor

mimicking portfolio and an unrestricted mean-variance portfolio. In the baseline design

without pricing errors the two Sharpe ratios are equal. Since the term δ2f2 increases the

variance of the true pricing kernel, the resulting excess returns exhibit more cross-sectional

dispersion in expected returns and to allow for a larger maximum Sharpe ratio. Values for

λ2 used in figure 2 range from zero to 0.15 in monthly units. Results in panel D in table 1

in the text and in figure 7 below are for λ2 = 0.075.

B.2 Population properties

Written as a single factor model, and assuming correct specification with λ2 = 0, (23)

becomes

x = β(f + λ) + η, (42)

with error covariance matrix E[ηη′] ≡ Σ = β2β
′
2ω

2
2 + σ2I. Given the design (with λ2 = 0)

we can compute the projections f̂ ≡ Proj(f |x) and 1̂ ≡ Proj(1|x) using the population

parameters. Due to the normalisation δ = 1, we have f̂ = 1̂. In words: the factor mimicking

portfolio equals the mean-variance efficient portfolio. From the pricing condition we have

E[fx] = E[1x] = βω2, (43)

Next, using the matrix inversion lemma, the second moment matrix

E[xx′] = (ω2 + λ2)ββ′ + Σ, (44)

has the inverse

E[xx′]−1 = Σ−1 − ω2 + λ2

1 + (ω2 + λ2)S
Σ−1ββ′Σ−1 (45)
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with S = β′Σ−1β. Using these intermediate results gives the projection coefficients for both

the factor mimicking portfolio and the mean-variance efficient portfolio as

π = E[xx′]−1 E[fx] =
ω2

1 + (ω2 + λ2)S
Σ−1β (46)

Mean and standard deviation of the portfolio excess returns follow as

E[f̂ ] =
ω2λS

1 + (ω2 + λ2)S
(47)

stdev(f̂) =
ω2
√
ω2S2 + S

1 + (ω2 + λ2)S
(48)

(and of course the same for E[1̂] and stdev(1̂)), from which we find the Sharpe ratio

Sh = ω ×
(

S

S + 1/ω2

)1/2

, (49)

given that λ = ω2. Under our model design the quadratic form S = β′Σ−1β increases with

N .17 The limiting Sharpe ratio, as S → ∞, is therefore equal to ω, while for all finite N

the Sharpe ratio is strictly less than ω.

Although the two projections are the same, their fit is very different. For the MV-

efficient portfolio the second moment of the dependent variable is obviously E[12] = 1,

while for the factor it is E[f2] = ω2. The projections have second moment

E
[
(π′f)2

]
= E[π′f ]2 + Var[π′f ]

=
ω4S

1 + (ω2 + λ2)S
(50)

For large N (large S) we therefore have the measures of fit

R2
f ≡ lim

S→∞

E[f̂2]

E[f2]
=

1

1 + ω2
(51)

R2
1 ≡ lim

S→∞

E[1̂2]

E[12]
=

ω2

1 + ω2
(52)

In this simulation design these R2’s of the tracking portfolio regressions solely depend on

the volatility of the pricing kernel, which is also the risk premium associated with the factor.

By construction the tracking portfolio will never fully identify the factor, nor will it produce

a fully risk free portfolio (this would violate the no-arbitrage condition). The more volatile

the factor, the better the tracking performance of the mimicking portfolio. For our design

parameters the fit for the tracking portfolio will converge to R2
f = 0.81. The fit for the

mean-variance portfolio can therefore not be larger than R2
1 = 0.19. Given the difference

17 The two exceptions are when many assets have zero beta’s and do not contain any information on the
factor, and when some assets have zero idiosyncratic risk. In the first case S need not go to infinity with N ,
while in the latter case S will be infinite without N going to infinity.
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in the signal/noise ratio a statistical learning algorithm will typically perform much better

for the tracking portfolio problem than in constructing a mean-variance efficient portfolio.

For consistency of the boosting algorithm it is important that the portfolios are suffi-

ciently sparse. The sparsity condition requires
∑N

i=1 |πi| to be bounded as sample size T

goes to infinity while N grows exponentially in T (see Bühlmann (2006)). In the current

setting with two factors we need to work out the details of S and Σ−1β as N becomes large.

For Σ we have the inverse

Σ−1 =
1

σ2

(
I − ω2

2

σ2 + ω2
2β
′
2β2

β2β
′
2

)
(53)

As a result, by simply substituting and simplifying,

S̄ = plimN→∞
1

N
S =

1

σ2

(
E[β2

i ]− E[βiβ2,i]
2

E[β2
2,i]

)
(54)

When βi and β2,i are independent, we have that E[βiβ2,i] = βIβI,2. Therefore, S̄ > 0 as

long as E[β2
i ] > 0. Moreover, all elements

(
Σ−1β

)
i

=
1

σ2

(
βi −

ω2
2β
′β2

σ2 + ω2
2β
′
2β2

β2,i

)
have finite expected absolute value. Since the denominator S in (46) is of order N , the sum

over |πi| will be bounded in N , and hence satisfies the Bühlmann condition.

As a benchmark for the efficiency of the IV estimator we consider the case where the

optimal instrument is known, i.e. we have the instruments

f̂opt = π′x, (55)

with π the population tracking portfolio weights defined in (46). The resulting estimator

δ̂opt = ι′Xπ
f ′Xπ is infeasible in practice, but it provides an upper bound on the precision of the

actual IV estimator.

B.3 In-sample versus Out-of-Sample

The first use of the simulation design is to evaluate the difference between in-sample and

out-of-sample fits of the tracking portfolios. In section 3 we propose to implement the IV

estimator using the cross-validation predictions F̂k = XkΠ̂−k for each subsample k with

Π̂−k the estimator of the tracking portfolio weights using the training data (F−k,X−k).

The alternative is to use cross-validation to determine the optimal stopping, and then run

the boosting algorithm one more time on the full sample (F ,X) with the optimal stopping

to obtain the final estimates Π̂ and tracking portfolio returns F̂ . We use Monte Carlo to

illustrate that the latter results in a strong downward bias in the estimated δ when T and

N are of similar magnitude. Using the design in table 10 we simulate both estimators to
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quantiles

N T Estimator ave std 1% 25% med 75% 99%

200 120 Out-of-sample 1.01 0.47 0.01 0.69 0.98 1.30 2.27
In-sample 0.52 0.28 0.01 0.32 0.49 0.70 1.26

200 600 Out-of-sample 1.00 0.21 0.58 0.86 1.00 1.14 1.51
In-sample 0.82 0.17 0.47 0.71 0.82 0.93 1.25

200 1200 Out-of-sample 1.00 0.13 0.73 0.91 1.00 1.09 1.30
In-sample 0.89 0.11 0.64 0.82 0.90 0.98 1.13

20 120 Out-of-sample 1.03 0.58 -0.19 0.63 1.00 1.39 2.54
In-sample 0.84 0.46 -0.17 0.54 0.82 1.13 1.98

The table reports averages, standard deviations, and quantiles for alternative estimators for δ in the discount
factor model m = 1− δf with true value δ = 1. Simulated data are generated for N test assets and T time
series observations. Out-of-sample uses the cross-validated predictions and is identical to the design in panel
A of table 1; In-sample denotes the Instrumental Variables estimator using a tracking portfolio for f obtained
by boosting on the full sample of T observations with the same number of boosting iterations. Statistics are
from 10,000 replications.

Table 11: In-sample versus out-of-sample tracking portfolio returns

illustrate the difference. As benchmark we set (N,T ) = (200, 120). We then vary N and T

to show the dependence on the sample size. The tracking portfolio is estimated by boosting

using stepsize ν = 0.1 and 5-fold cross-validation to determine the optimal stopping.18

In table 11 the in-sample estimator for the benchmark has a mean of only 0.52 instead

of the true value equal to one. The out-of-sample estimator is nearly unbiased with the

same sample sizes. The bias slowly diminishes if either T grows bigger, or N decreases.

The intuition for the bias reduction is similar to what motivated the split sample IV

estimator in Angrist and Krueger (1995) and its large N counterpart in Belloni et al. (2012).

In both papers the sample is split in two parts, whereas we exploit the sample splits we

already have for computing the cross-validated fit. Below we illustrate the intuition for

the bias, and its correction, in the simple case of unpenalised regressions in a setting with

N < T . The tracking portfolio from unrestricted least squares in the first stage regressions

F = XΠ′ + V , (56)

yields (without regularisation),

F̂ = X(X ′X)−1X ′F = XΠ′ +HV (57)

The crucial element in estimating δ is the cross-product F̂ ′F ,

F̂ ′F = ΠX ′XΠ′ + ΠX ′V + V ′XΠ′ +HV (58)

18 All computations have been done in R. For boosting we use the function glmboost from package mboost
where the options (offset=0, center=F) suppress the constant from the regression function.
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Denoting the sample second moment matrix by M = X ′X/T , and taking expectations

conditional on the instruments X, assuming the orthogonality E[vtx
′
t] = 0, we have

E

[
1

T
F̂ ′F |X

]
= ΠMΠ′ +

N

T
Ψ, (59)

where Ψ = E[vtv
′
t] is the second moment matrix of the regression errors. The second term

creates a bias. Of course, for fixed N and growing T the bias becomes negligible relative to

the first term, but for T and N of similar magnitudes the bias can be substantial.

No such bias exists for the cross-product F̂ ′ι, since

E

[
1

T
F̂ ′ι|X

]
= E

[(
1

T
F ′X

)
M−1

(
1

T
X ′ι

)
|X
]

= Πx̄ (60)

for x̄ = X′ι
T . The magnitude of the bias in the IV estimator (13) depends on further distri-

butional assumptions, because the bias term appears in the denominator and E[(F̂ ′F )−1] 6=(
E[F̂ ′F ]

)−1
. The bias will be towards zero, since the additional term N

T Ψ is positive defi-

nite.

The bias can be greatly reduced by using the cross-validated tracking portfolio returns.

These out-of-sample fitted values are

F̂k = Xk(X
′
−kX−k)

−1X ′−kF−k = XkΠ̂−k (61)

(or other linear estimators for Π̂−k that so not depend on Fk). For each fold k we then have

F̂ ′kFk = F ′−kX−k(X
′
−kX−k)

−1X ′kFk, (62)

which is unbiased conditional on X due to the time series independence of the blocks Fk

and F−k and the demeaned factors.

The out-of-sample rows in table 11 illustrate that the cross-validated tracking portfolios

lead to almost unbiased estimates of δ. For this reason, and in light of the analytical

intuition, all our empirical estimates use the cross-validated tracking portfolio returns.

B.4 Mispricing

With mispricing the HJ distance will be positive. Its value as a function of λ2 is found

by simply calculating E[mx] and E[xx′]−1 that enter the HJ distance. The true expected

excess returns are E[x] = βλ+β2λ2, which implies that pricing errors under the misspecified

model m = 1− δf (omitting the second priced factor) are

E[mx] = E[x]− δ E[xf ] = β(λ− δω2) + β2λ2 (63)

Differentiating HJ with respect to δ, the minimum HJ obtains when δ satisfies

λ− δω2 = −λ2
β′ E[xx′]−1β2

β′ E[xx′]−1β
(64)
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The expression shows that with misspecification the implied price of risk is no longer equal

to δ = λ/ω2 unless β′ E[xx′]−1β2 = 0. The HJ-distance is equal to

HJ = λ2
2

(
β′2 E[xx′]−1β2 −

(β′ E[xx′]−1β2)2

β′ E[xx′]−1β

)
(65)

It depends on λ2 in a complicated way. Apart from the leading λ2
2 term, there is a further

nonlinear dependence through E[xx′]. That dependence would disappear when we would

use covariances instead of second moments in the definition of the HJ-distance.19 For a

closer inspection we explicitly compute

E[xx′] = BJ−1B′ + σ2I, (66)

where we introduce the (N × 2) matrix B = (β β2) and the (2× 2) matrix

J−1 =

(
ω2 + λ2 λλ2

λλ2 ω2
2 + λ2

2

)
(67)

By the matrix inversion lemma,

E[xx′]−1 =
1

σ2

(
I − 1

σ2
B(G+ J)−1)B′

)
, (68)

with G = B′B/σ2 and thus

B′ E[xx′]−1B = G−G(G+ J)−1G =
(
G−1 + J−1

)−1
, (69)

In general, neither G nor J is diagonal, so the off-diagonal element β′ E[xx′]−1β2 will be

non-zero, and therefore δ will be affected by the mispricing. Even in the special case of an

orthogonal design, G is diagonal, but J is not. Elements of the matrix G will generally be of

order N , whereas those in J do not depend on N . For large N we have the approximation

lim
N→∞

B′ E[xx′]−1B = J, (70)

which leads to simple limiting expressions for the HJ distance and δ. In the limit, as

N →∞, equations (64) and (65) become

HJ = λ2
2

(
J22 −

J2
21

J11

)
=

λ2
2

λ2
2 + ω2

2

(71)

δ =
1

ω2

(
λ+ λ2

J21

J11

)
=

λ

ω2
× ω2

2

ω2
2 + λ2

2

(72)

19 See our earlier discussion in footnote 4. Giglio and Xiu (2021, sect II.A) analyse exactly the same
two-factor model. They conclude that the omitted variables bias – from leaving out the second factor –
does not affect the estimated risk premium if all assets are included. That is the case we consider for our
population properties with N →∞. The infinite N assumption is essentially the same as their assumption
that idiosyncratic risk vanishes in the limit. We still get a small bias in δ because we estimate the factor
mimicking regression without a constant term. The difference between covariances and second moments is
negligible when returns are observed at a high enough frequency.
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The final equalities in (71)-(72) follow by explicitly inverting (67). Because of (70) neither

depends on the properties of the factor loadings.20 Both the limiting HJ distance as well as

the risk price that minimises the HJ distance depend on the mispricing λ2. As explained

before in footnote 19, the only reason for the dependence on λ2 in (72) is the use of second

moments instead of covariance in the HJ distance. With Var(x) instead of E[xx′] the

expressions would further simplify to HJ = λ2
2/ω

2
2 and δ = λ/ω2 = 1.

Properties of the FM estimator are very different. For the cross-sectional regression of

expected average returns on covariances we have

δFM =
E[xf ]′ E[x]

E[xf ]′ E[xf ]
, (73)

which can be written, analogously to expression (64) for the IV estimator, as

λ− δFMω2 = −λ2
β′β2

β′β
(74)

Unlike the IV estimator, the FM estimator for δ will depend on properties of the factor

loadings, even for N → ∞. Unless the loadings of the second factor are orthogonal to

the included factor, the estimate will be asymptotically biased. This effect shows up in

table 1 for the misspecified model with independent factor loadings. Factor loadings of

a completely independent, but priced, factor matter. For the Monte Carlo design we can

eliminate the bias by adding a constant term in the cross-sectional regression as is often done

in empirical studies. But eliminating the bias will increase the variance of the estimator

due to multicollinearity between the constant term and the factor loadings.

B.5 Results for different N and T

In the text we discuss the case (N,T ) = (200, 120). Here we consider different combinations

of N and T . Using the design settings for the correctly specified model from panel (A) in

table 10, figure 6(a) shows the Root-Mean-Squared-Error (RMSE) for δ̂ for given T as a

function of N . Obviously, with larger T the error decreases for every N . Similarly, for given

sample size T , enlarging the cross section improves the estimate, but reaches a saturation

point for large N .21 The bias, shown in figure 6(b) remains small for all (N,T ) combinations

except when both are very small.

Figure 6(c) compares the IV estimator to Fama-MacBeth. The larger N the larger the

gain in efficiency from using the IV estimator. For small N and T the IV estimator achieves

20 The first equality in (71) holds more generally in case of factor mispricing. With M priced factors of
which M2 are omitted in the pricing model, the general expression is λ′2(J22− J21J−1

11 J12)λ2 with Jij blocks
in the (M ×M) matrix J = (Ω + λλ′)−1 and Ω block diagonal, i.e the omitted factors are independent of
the included factors.

21 For T = 60 it sometimes (less then 1% of replications) happens that the cross-validation cannot find
any asset that has an out-of-sample correlation with the factor, such that the tracking portfolio is equal
to zero. Evidently the IV estimator is not defined for such a clear rank-deficient portfolio. The sampling
distributions are thus censored by excluding the cases for which L2Boosting sets f̂ = 0.
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(a) Root-Mean-Squared-Error
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(c) IV vs Fama-MacBeth
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(d) Asymptotic standard errors
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The figure shows Monte Carlo results for the instrumental variable estimator δ̂ where the first stage regression
is performed by L2Boosting. The upper left panel shows the bias relative to the true value δ = 1; the upper
right panel shows the Root-Mean-Squared-Error. The lower left panel compares the IV and FM estimators.
The lower right panel compares the asymptotic and Monte Carlo standard errors for the IV estimator. The
horizontal axis is the cross-sectional sample size N on a log scale. The different curves refer to different
sample sizes T = (60, 120, 600).

Figure 6: Monte Carlo results: IV estimator with correct specification

about 20% higher precision than the Fama-MacBeth estimator. The gain quickly increases

to more than double the FM precision for larger (N,T ). Finally, panel 6(d) shows that the

asymptotic standard errors are reliable, except when N and T are both small.

Figure 7 shows similar plots related to the design in panel D in table 10, which analyses

the effect of pricing errors. With small N the risk price estimator has substantial bias, which

quickly diminishes as N becomes large. With mispricing we therefore require a reasonably

large cross-section. The variance of the IV estimator is not much affected by the mispricing.

The RMSE in figure 7(a) is of similar magnitude as it was in figure 6(a). An important

result is the quality of the asymptotic standard errors under mispricing. They have been

computed with the standard formula without any adjustment for the misspecification as in
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(a) Root-Mean-Squared-Error
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(c) HJ distance
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(d) Asymptotic standard errors
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Panels (a), (b) and (d) are similar to figure 6 but now for data generated with λ2 = 0.075. The bias is with
respect to the true value in (72) Panel (c) shows the RMSE of the HJ estimates. The y-axis in the lower
right panel (d) has been truncated, since results for N = 10 are far off the normal scales.

Figure 7: Monte Carlo results: IV estimator with pricing errors

Gospodinov, Kan, and Robotti (2014), but even so they are still very close to the Monte

Carlo standard errors. Only for small N they are completely off. The precision of the HJ

estimates is not much affected by N , but improves steadily with increasing T .

C Sparse Mean-Variance Portfolio

As part of testing the performance of the boosting algorithm on noisy return data we apply

the algorithm to the same example data set that Kozak, Nagel, and Santosh (2020, KNS)

use to test their regularised regressions based on economically motivated priors. They

estimate an SDF based on daily excess returns of the 25 Fama-French portfolios sorted on

Size and Book-to-Market from July 1926 to December 2017. We represent that problem as
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the projection of excess returns on a vector of ones, as in (17), written in data notation as

ι = Xπ1 + v1, (75)

where X contains the excess returns orthogonalised with respect to the ‘value-weighted

index return using β’s estimated in the full sample’ (KNS, p 280).

With ‘1’ as the dependent variable the parameters in (75) are weights of a mean-variance

efficient portfolio. Constructing a mean-variance efficient portfolio is notoriously difficult,

especially when the cross-sectional dimension N is large relative to the time series sample

size T . Dangers of overfitting when N is large and cross-correlations are substantial have

been pointed out many times, see the references in KNS. Many shrinkage and dimension

reduction techniques have been suggested to obtain portfolios with reasonable out-of-sample

performance. L2Boosting, as far as we know, new in this respect.

KNS explain that the OLS estimator π̂1 = (X ′X)−1X ′ι has very poor out-of-sample

performance for the mean-variance portfolio due to the noisy sample means 1
TX

′ι, even

with such long time series.22 They suggest an Elastic Net estimator motivated by economic

arguments. A maximum Sharpe ratio motivates L2-norm shrinkage on π1, while the strong

factor structure in the data suggests an L1-norm sparsity with many exact zeros.

Applying L2Boosting to (75) should have the same effect and lead to a very similar

portfolio. We apply boosting on the same data set with standard tuning parameter ν = 0.1

and 5-fold cross-validation. Figure 8 shows results for the first 15 steps of the algorithm.

Figure 8(a) shows that the cross-validated residual sum of squares reaches a saturation

point at a model complexity of trH = 0.9, after 10 iterations of the algorithm. In contrast

the training fit improves steadily by construction. Figure 8(b) shows that the solution is

sparse. At the optimal stopping time just three of the 25 portfolios obtain a non-zero weight,

exactly as in KNS. Most prominent is the Small HiBM portfolio, the most notorious outlier

among the 25 portfolios.

One of the important lessons is the difference between in-sample and out-of-sample

performance. In figure 8(c) the in-sample Sharpe ratio increases steeply while increasing

the complexity of the portfolio. Out-of-sample, the Sharpe ratio already starts to decline

after the first step. L2Boosting minimises the out-of-sample residual sum of squares v̂′1v̂1

(shown in panel (a), which is not the same as maximising the out-of-sample Sharpe ratio

in panel (c). Therefore the algorithm does not stop after the first step, when the Sharpe

ratio starts to decrease.The out-of-sample Sharpe ratio in the test samples hovers around

between 0.41 and 0.47, the same order of magnitude as the Sharpe of the market portfolio.

22 The matrix 1
T
X ′X contains second moments. The choice between second moments or covariances does

not matter for the mean-variance problem. Apart from an arbitrary scaling constant, the two will lead to
the same mean-variance portfolio weights (Britten-Jones, 1999).
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Figure 8: Mean-variance analysis of the 25 Fama-French Size/BtM portfolios

(a) Mean-Squared-Error
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(d) Cross-sectional R2
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Horizontal axis in panels (a)-(d) is the model complexity with increasing number of boosting iterations in
regression (75). Panel (a) displays the time series Mean-Squared-Error v̂′1v̂1/T both in-sample (‘training’)
as well as out-of-sample (‘test’). Panel (b) shows the estimated portfolio weights. As the weights are for
excess returns, scaling is indeterminate (multiplying by any positive constant will give the same Sharpe
ratio). The Sharpe ratio for the portfolio π̂′1x is in panel (c), again both in-sample and out-of-sample. Panel
(d) shows the implied cross-sectional R2 for the regression of sample means on the sample covariances using
the estimated coefficients π̂1 from the time series regression. In panels (a), (c) and (d) the black solid lines
are based on a random training sample containing 80% of the data used to estimate the parameters π̂1. The
red dashed lines apply the estimated π̂1 to the complementary test samples. Coefficients in panel (b) are
from running boosting on the full sample. The procedure is repeated 100 times. Figures shows averages
over these 100 replications.
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KNS evaluate their model based on its cross-sectional fit, derived from the regression

X ′ι = X ′Xπ1 + η, (76)

with N = 25 observations on the average returns, and N regressors formed by the re-

turn covariances. Using the estimated π̂1 from (75), we evaluate the cross-sectional R2

in figure 8(b). The results imply a very similar fit as reported by KNS in their figures 1

and 2: out-of-sample the cross-sectional R2 is around 0.35. Consistent with the time series

regression, the out-of-sample cross-sectional R2 starts to slowly decline after 10 iterations.

The boosting regressions can replicate the results in Kozak, Nagel, and Santosh (2020)

for these 25 FF portfolios with simple default settings for the L2Boosting regressions.
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