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Our econometric techniques are all designed for large time series and small
cross sections. Our data has a large cross section and short time series. A large
unsolved problem in finance is the development of appropriate large-N small-T
tools for evaluating asset pricing models. (Cochrane, 2005, p 226)

1 Introduction

A standard asset pricing test evaluates whether a small number of factors can explain
the differences in expected returns across a variety of test assets. Such an evaluation is
statistically problematic when the number of test assets (V) is large relative to the length
of the time series (1) available for the factors. The combination of large N and small 7" is
particularly awkward for macroeconomic factors observed at low frequencies. We propose
a methodology that is well-suited for such tasks.

We consider a stochastic discount factor (SDF') asset pricing model. Theory implies that
the SDF should be orthogonal to the excess returns on the test assets. An overall test for
the asset pricing conditions involves the N-vector of sample means of the pricing errors and
its (N x N) covariance matrix. This runs into two problems. First, the test requires the
inverse of the high-dimensional covariance matrix. Second, a test on all N test assets may
have low power, even if a profitable trading strategy exists. Many of the test assets may be
correctly priced, but carefully chosen portfolios of test assets may violate the orthogonality
conditions.

We address both problems by applying machine learning methods for model selection
and shrinkage. We rewrite the asset pricing test as a time series regression of the SDF on
excess returns. If the model is correct, the regression should not have any explanatory power.
But without regularisation that regression still suffers from the same large-N problem. We
therefore impose sparsity. If the model has any value, we should not expect that many
assets have large coefficients in this regression.

The fitted values of that regularised regression are excess returns on a portfolio of test
assets that is most anomalous for the asset pricing model. The larger the magnitude of
the fitted values, the larger the pricing errors. The average of the squared fitted values is
an estimate of the Hansen-Jagannathan (HJ) distance (Hansen and Jagannathan, 1997), a
well-defined metric for evaluating asset pricing models. Usually the HJ-distance cannot be
computed for large N due to the need for inverting the high-dimensional second moments
matrix of returns. Being able to estimate the HJ distance the evaluation of an asset pricing
model can go beyond the commonly used cross-sectional R? (of a regression of average

returns on beta’s) with its well known shortcomings.



Our main contribution takes this regression approach one step further. The SDF usually
depends on unknown parameters §. For a linear SDF, m = 1 — f’4, with traded factors f,

estimation comes down to a regression of the constant ‘1’ on the factor returns,
1= f'6 +u, (1)

For a small set of traded factors, this does not present any complications (Britten-Jones,
1999). Kozak, Nagel, and Santosh (2020) consider the case of many traded factors. We focus
on the case of non-traded factors. In this case, minimising the HJ-distance is equivalent
to estimating J in the same regression model (1) but now by instrumental variables using
the excess returns of the test assets as instruments. That again is a large-N problem
for which we need sparsity conditions to select the optimal instruments. The optimal
instruments emerge as portfolios of test assets that minimise the overall pricing error and
can be interpreted as returns on mimicking portfolios for the factors. Mimicking portfolios,
for which we use tracking portfolios as a synonym, contain all the essential information about
the stochastic discount factor (Cochrane, 2005, ch 7). With the estimate 5 we construct
m=1—f § and proceed with the projection of m on the excess returns to identify anomalies
and estimate the HJ distance as discussed before.

In short, our proposed methodology has two elements. The first is an instrumental
variables regression to estimate the parameters of the asset pricing model. Although the
IV regression is a straightforward implication of basic asset pricing moment conditions, it
has, to the best of our knowledge, never been implemented empirically. With large N it
relies on regularised regressions to construct tracking portfolios. The second element is a
regularised regression to identify an anomaly portfolio.

The proposed IV estimator is an alternative to Fama-MacBeth (FM) regressions (Fama
and MacBeth, 1973). In an FM regression the § parameters are estimated through a cross-
sectional OLS regression of average returns on covariances between factors and returns.
It avoids the high-dimensional matrix inversion by giving equal weight to all test assets
and by exploiting the time series variation for statistical tests. The IV estimator can
be interpreted as a method for finding the optimal N-dimensional weighting matrix to
perform a GLS regression. The IV estimator will be more efficient than FM in situations
with a lot of heteroskedasticity and correlations in the cross section, which is typical in
applications with macro-economic factors that can only explain part of the factor structure
in returns. Balduzzi and Robotti (2008) indicate that the risk premium estimated from
tracking portfolios can only agree with the FM regression if the FM regression would be

done in GLS style, which is exactly what we aim to approximate by constructing the optimal



instrument as a tracking portfolio.

Our approach complements Feng, Giglio, and Xiu (2020). Feng, Giglio, and Xiu (2020)
estimate the risk prices d using FM regressions, but apply machine learning to the selection
of factors, allowing for a large set of candidate factors. We assume that the number of
factors is small, while the number of test assets can be large. Instead of FM regressions we
use the machine learning tools to select optimal instruments for efficient estimation of risk
prices and to identify anomaly portfolios that are most informative on mispricing.

The first stage in the IV estimator is the construction of a tracking portfolio as an optimal
instrument. Factor mimicking portfolios for non-traded factors have a long history in em-
pirical asset pricing (Breeden, Gibbons, and Litzenberger, 1989). Lamont (2001) developed
the econometric methodology for the construction of tracking portfolios for macro-economic
factors. Examples of applications in an SDF asset pricing model with macro factors are
Vassalou (2003) and Aretz, Bartram, and Pope (2010). Most distinguishing in our ap-
proach is the use of machine learning tools in constructing tracking portfolios from a large
cross-section of assets.

Since a portfolio return is a linear combination of asset returns, we need regularised
linear regressions, both to construct tracking portfolios, as well as to identify anomaly
portfolios relative to the pricing model. The various model selection and shrinkage esti-
mators in the literature differ by their implicit priors on the coefficients (Murphy, 2012).
We choose to work with LoBoosting. Bai and Ng (2009) earlier suggested LoBoosting for
instrument selection, while Belloni, Chen, Chernozhukov, and Hansen (2012) propose it as
one of the methods for selecting optimal instruments. Belloni et al. (2012) also provide the
statistical theory for inference for the IV estimator with optimal instrument selection.

LsBoosting is related to Lasso (Hastie, Tibshirani, and Friedman, 2009, §16.2). Both
perform simultaneous model selection and shrinkage, while increasing model complexity
step by step, along different paths, until some optimal stopping time. Lasso is known to be
less effective in regressions with strong multicollinearity. This is a real concern, since return
data typically have a factor structure, and thus feature strong multicollinearity. Lasso and
LoBoosting differ in the form of regularisation and type of sparsity that they produce.
Lasso assumes that just a few assets have non-zero weights, whereas LoBoosting allows for
many small coefficients with a bound on their sum of absolute values when N grows large
(Biithlmann and Van de Geer, 2011). The latter is a natural form of sparsity in portfolio
applications. If returns follow a factor model, the tracking portfolios will generally have
weights on all assets with a loading on the factor. But when the number of test assets

grows, the weight of each single asset decreases such that sum of (absolute values) of weight



remains bounded.

Another related regularisation device is an Elastic Net, which also does simultaneous
model selection and shrinkage and which is designed to address multicollinearity (Zou and
Hastie, 2005). In the asset pricing literature, Kozak, Nagel, and Santosh (2020) apply
an Flastic Net for portfolio construction from a large set of correlated returns. For the
implementation they develop an elaborate informative prior. In contrast, LoBoosting has
minimal tuning parameters.

In a large-N setting Giglio and Xiu (2021) construct a tracking portfolio using the first
few principal components of the excess returns as base assets. Their aim is very different
from ours, though. Important in their application is that the base assets span the space
of excess returns. The principal components serve that purpose, since they are the linear
combinations of excess returns that explain as much as possible of the return covariance
matrix. But the first few PCs do not necessarily provide the best fit for a factor. Especially
in the second stage, when we search for anomalies relative to the fitted SDF model, the
interest is not on the PCs of the excess returns, but on the portfolios of test assets that
violate the pricing conditions most. Likewise, in the first step, our approach finds the linear
combination of excess returns that is maximally correlated with the factor. This reduces
the impact that assets with weak association to the factor have on the estimation of the risk
price. Giglio, Xiu, and Zhang (2022) also stress the importance of emphasizing the assets
with the strongest association to the factors. They highlight that whether a factor is strong
or weak should be assessed within the context of a given set of test assets, and propose a
supervised version of PCA to ensure reliable inference.

Other methods, such as ridge estimators, solely operate on the second moment (or
covariance) matrix. For example, the shrinkage estimators developed by Ledoit and Wolf
(2003, 2004, 2017) or estimators based on high-frequency data such as Bollerslev, Meddahi,
and Nyawa (2019), would produce tracking portfolios as well as anomaly portfolios that
have non-zero weights for all test assets. While we prefer LoBoosting based on our reading
of the literature, we have not empirically tested which one works best for our application.
With proper calibration and tuning other methods may outperform LsBoosting. But the
simplicity of LoBoosting provides robustness to overfitting and attenuate the skepticism
that macro factors are only weakly related to equity returns.

Concerns about weak or useless instruments have been raised in, e.g., Kan and Zhang
(1999) and Kleibergen and Zhan (2020). Prominent macro factors such as consumption
have very low correlation with financial returns. Reasons for the weak correlation are

plenty and well-known (Breeden, Gibbons, and Litzenberger, 1989; Kroencke, 2017). For



macroeconomic factors that only exhibit weak correlation with returns Kleibergen (2009)
shows that the cross-sectional FM two-pass regression can provide misleading inference. A
similar problem exists for IV estimators (Staiger and Stock, 1997). As a partial solution
Belloni et al. (2012) suggest a split-sample estimator, as a large N version of ideas in Angrist
and Krueger (1995). The split-sample estimates of the tracking portfolio returns produce
out-of-sample fitted values for the tracking portfolios. Lacking easy solutions to rule out
weak instrument problems, Kroencke (2021) argues that the best one can do is have a large
enough correlation between factor and excess returns. In our empirical application the
out-of-sample correlation between consumption and its tracking portfolio is 0.45.

The optimal instrument selection may not solve all weak instrument problems, but will
not be worse than the FM two-pass estimator in the ‘small T', large N’ setting. By selecting
the excess returns most correlated with the factor we avoid one of the problem cases in
Kleibergen (2009), where only a finite number of useful instruments is available along with
a large number of useless assets. Adding all, including the many useless assets with a zero
beta, in an OLS cross-sectional regression, leads to a strong bias. Our model selection
alleviates the problem, since the useless assets will be ignored in the tracking portfolio. The
tracking portfolio aggregates the returns that are most highly correlated with the factors.
As Bryzgalova (2016) we put more weight on instruments that correlate stronger with a
factor.

The first stage model selection also serves as a form of pre-test. Risk price estimates
are essentially the sample mean of the tracking portfolio scaled by the covariance of the
tracking portfolio returns with the factor. If tracking portfolios have a zero mean, or average
returns not significantly different from zero, the price of risk will also be zero, except in
the problematic ‘zero divide by zero’ useless factor case that the covariance is zero as well.
In the empirical analysis we find a reliably non-zero mean for the consumption mimicking
portfolio, but not for some of the other macro factors. Tracking portfolios with close to
zero average returns are most subject to the weak instrument problems. For our data, the
results for consumption appear insensitive to their inclusion.

One of the suggestions in Kleibergen and Zhan (2020) is to conduct robust inference
by inverting a test statistic of the model fit in order to find the risk prices that would be
consistent with the SDF model. In our case it would mean finding § such that the HJ
distance is bounded by a critical value under correct specification, or otherwise conclude

that an admissible § does not exist.! But the entire motivation of our approach stems from

! Kleibergen and Zhan (2020) propose the Anderson-Rubin test statistic, which in our model is a scaled
version of the Hansen-Jagannathan distance. For large N the AR statistic is infeasible, but a version derived
in Belloni et al. (2012) is valid for large N.



allowing pricing errors and thus not assuming that the population value of HJ equals zero.
Estimating ¢ is one goal, but identifying anomaly portfolios from a large set of test assets
is the main motivation for applying a statistical learning algorithm.

Before delving into the empirics, we conduct an extensive Monte Carlo study. In a
setting that is typical for a macroeconomic factor, i.e. low correlation with returns and a
strong factor structure not explained by the factor, the IV estimator performs as one would
expect from its asymptotic properties. With data resembling 7" equal to 10 years of monthly
data and N = 200 test assets, the IV estimator appears almost unbiased and has a standard
error that is less than half that of the two-pass FM estimator. When the true HJ distance
equals zero, the LoBoosting algorithm will correctly set it to zero in the majority of cases.
With the same N and T the sampling distribution under the null of correct pricing has a
60% probability of an exact zero. When there is mispricing, the sampling distribution of the
HJ distance quickly becomes median unbiased. Estimation uncertainty decreases with /7T,
but is more or less constant in N. The mispricing hardly affects risk price estimates. The
sampling distribution for d, and also its asymptotic standard error, are robust with respect
to misspecification in the form of omitted factors. The latter is similar to Giglio and Xiu
(2021). Finally, adding substantial noise to the factors to approximate a weak factor, the
IV estimator becomes biased. But it still performs better than the FM two-pass estimator.

We apply the estimator to revisit asset pricing with four well-known macroeconomic
variables: consumption, inflation, term spread and credit spread. As test assets we select
80 managed portfolio based on anomalies and industry sorts. The industry portfolios have
very different business cycle exposures and thus provide an interesting set of assets for con-
structing different macroeconomic tracking portfolios. We would expect that the algorithm
heavily loads on some of the industries for constructing tracking portfolios, but avoids them
when constructing a portfolio of mispriced assets. The anomalies may be redundant return
series that just complicate the task for the statistical learning algorithm in constructing a
tracking portfolio. Conversely, they may be important for the mispricing portfolio. That
corresponds with what we see in the empirical results.

The tracking portfolio for consumption growth loads heavily on various industries, has
a market beta of one, and a Sharpe ratio close to that of the market portfolio. Still it differs
substantially from the market portfolio, while only half of its variation can be explained by
the five Fama-French factors. Using the optimal tracking portfolio as an instrument, the risk
price of the consumption factor is statistically significant. This result is robust across model
specifications. This stands in contrast to the other macroeconomic tracking portfolios. The

inflation tracking portfolio has a similar out-of-sample fit as the consumption mimicking



portfolio. However, the portfolio returns do not reveal a sizeable risk premium.

Using the IV estimates, the macroeconomic models produce average pricing errors of
similar magnitude as the five Fama-French factors. The pricing errors stem from a wide
variety of anomalies and industry sorts. The largest pricing errors are due to the anomaly
test assets, in particular industry relative reversals. None of the models is able to accurately
price these assets. Pricing errors for consumption model differ from those resulting from
the Fama-French five factor models, most notably due to the asset growth anomaly.

The remainder of the paper is structured as follows. Section 2 lays out the methodolog-
ical framework. In section 3 we present implementation details of regularised regressions
using LoBoosting. Sections 4 and 5 report the results of a Monte Carlo simulation and the

empirical application. Section 6 concludes.

2 Stochastic discount factor projections

Let x be a vector of excess returns on IV different assets or portfolios of assets. The stochastic

discount factor model states that the excess returns satisfy the N moment conditions
Efma] = 0, (2)

where m is a stochastic discount factor (SDF). The model is given economic content by
specifying a functional form for the discount factor. We will consider linear models of the

form

m=1-471, (3)

for M-vectors of factors f and parameters §. For a model of excess returns we can set factor
means to zero, i.e. f= f — E[ f], and take the intercept ”1” as an arbitrary normalisation.
The two interesting questions are how well the discount factor model can explain the cross-
section of expected returns, and which factors are priced. The two questions are related, as
the vector of risk prices ¢ is estimated to maximise the model fit. We discuss both questions

separately, beginning with the model fit conditional on J, and then estimation of §.

2.1 HJ distance

Ideally the factors explain the entire cross-section of expected returns, in which case all the
moment conditions (2) hold exactly. In practice anomalies exist, either due to mispricing,
omitted factors, or measurement error in observed factors. If the moment conditions are

only approximate, the deviations E[mz]| are pricing errors. Hansen and Jagannathan (1997)



propose a distance measure to evaluate the fit of the stochastic discount factor model. It is

defined as
HJ = E[mz] E[zz'] ! E[ma], (4)

which is a quadratic form in the pricing errors with weighting matrix E[z2']~!. Hansen
and Jagannathan (1997) discuss the difference between the distance measure HJ and a
general optimal GMM weighting matrix. Using E[zz]~! as a weighting matrix assures that
results are invariant to repackaging of the assets, and independent of the model for m.
Forming portfolios of the original assets does not change the HJ distance. Independence of
m facilitates model comparisons using the HJ distance. Moreover, if squared pricing errors
are independent of the cross-products of returns, the weighting matrix is optimal for GMM.
In applications the population moments in (4) are replaced by sample moments assuming
that we have a sample of T observations for both z and f. When N is large relative to
T, the weighting matrix E[z2/]~! contains O(N?) elements to be estimated. Finding any
quantity depending on E[z2’]~! involves a huge matrix inversion that can be very sensitive
to estimation error. In the really large-N case, when N > T, the sample second moment
matrix of excess returns will even be singular.?3
Our approach transforms the problem of estimating a weighting matrix to a model

selection problem that constructs interesting portfolios from the N test assets. Let
m = E[mz) Elza’] 'z (5)
be the projection of m onto the excess returns x. Then the HJ distance can be rewritten as
HJ = E [m?], (6)

a result that follows by direct calculation using the definition of /m in (4). This expresses
the distance as the expected magnitude of the squared projection of the discount factor
on the excess returns. To avoid the explicit need for E[z2/]~! we estimate 1 as the fitted
values from the regression model

m =&z +w, (7)

with £ a vector of regression parameters. Without restrictions on & this regression still

requires the same large-N matrix E[zz/]~!. It becomes feasible by imposing some form of

2 Hansen and Jagannathan (1997) provide asymptotic distribution theory for the sample HJ distance for
fixed N and a true HJ distance strictly greater than zero. For fixed small N the asymptotic distribution
of the HJ distance, under the null that all assets are correctly priced, and assuming homoskedasticity is
chi-squared with NV — K degrees of freedom. With large N neither is a good approximation.

3 A partial solution is the use of high-frequency data to obtain a much more accurate estimate of the
quadratic variation. When not all assets are traded on a sufficiently high frequency, this restricts the space
of test assets.



sparsity on the parameters £. The sparsity constraint implies that many of the elements in
& should be small or equal to zero. The estimation algorithm selects the combination of test
assets that provide the most flagrant violations of the pricing conditions. Implementation

details, and the form of sparsity, will be discussed in section 3 below.

2.2 Risk price estimator

When the risk prices are unknown, the HJ distance can be minimised with respect to 9.
The solution is

5 = (E[f2|Elza') " Elzf") ' E[f2/| E[za’] " Elx] (8)

Again we will transform the problem such that we avoid the explicit estimation of the high-
dimensional weighting matrix E[z2/]~!. We interpret the optimal value for § in (8) as the

instrumental variables (IV) estimator for ¢ in the regression model,
1=6f+u, 9)
using x as instruments. To see the equivalence, note that the first stage regression
f=Ix+wv, (10)
with (IV x M) parameter matrix II implies instruments
f = Proj(flx) = Elfe’| E[ea’) 2. (11)
Given f , the second stage IV estimator then becomes
5 = BLf ) ELf1), (12)

which is identical to the original expression (8).

The large-N challenge is in the tracking portfolios f, as they depend on E[zz/] ™. Anal-
ogously to the pricing error regression (7) before, we construct these portfolios using a
regularised linear regression imposing a sparsity constraint on the elements of the matrix of
portfolio weights II. The fitted values from this regression, f, are the instruments in (12).

Our model setup fits directly within the framework of Belloni, Chen, Chernozhukov, and
Hansen (2012). They consider optimal instrument selection in a regression model with a
fixed small number of endogenous regressors f, for which we have many instruments x. All
x; are potential instruments, but including too many will lead to overfitting in finite samples
and thus create a bias. Under sparsity conditions for the projections, Belloni et al (2012)
prove that various machine learning methods lead to asymptotically optimal instruments,

one of them being LoBoosting that we use in the empirical work.



Let F and X be the data matrices containing 1" rows of observations on the M factors
and N excess returns on the test assets, respectively. In the empirical analysis factors are
always demeaned, i.e. t/F = 0. The first stage penalised regression provides a matrix
F = XI1I as a linear combination of the instruments. Using F as instruments, and with ¢

a T-vector of ones, the IV estimator for § in (12) becomes
6= (F'F)"'F'y (13)

with an asymptotic covariance matrix consistently estimated as

~ A A

Var(6) = s2(F'F) ' F'F(F'F)™! (14)

u

with 2 = L4/a (for @ = ¢ — F$) the sample second moment of the residuals in the SDF

model (9). The scaled numerator term in the estimator (13), %ﬁ” L, is nothing but the time
series mean of the tracking portfolios. This is a standard estimator for the risk premium of
a factor using factor mimicking portfolios.

The denominator differs. The usual transformation from risk premiums to risk prices is
by the inverse of the factor covariance matrix. In (13) we have %ﬁ" F, which for large T
converges to the second moment matrix of the mimicking portfolios EJ f f’ ]. Since mimicking
portfolios for priced factors do not have a zero mean, this is not the covariance matrix. The
difference between second moments and covariances will be small when returns are measured
with reasonably high frequency.*

The first stage projection becomes redundant for factors that are traded and also among
the test assets. For a traded factor we observe the excess return f (note that f = f— E[ f]
are demeaned factors), which is assumed to be perfectly priced by the moment condition
E[mf] = 0. Its price is

67 = BLF £~ ELf1], (15)

where the subscript “I” indicates that we consider f as a ‘T’raded factor. The structure

is identical to the general IV estimator (12), but now with f instead of f as the obvious

instruments. Since this does not involve the N-dimensional matrix inversion E[zz’]~!

)

estimation of the risk prices does not pose a high dimensional challenge.

When the traded factors are not among the test assets, or if the moments E[mf] are

allowed to deviate from zero, we still need the first stage regression to find the § that

4 We obtain the second moment matrix due to the second moment weighting matrix in the HJ distance.
Replacing the second moment matrix in the HJ distance by a covariance matrix, as in Giglio and Xiu (2021),
leads to adding a constant term in the tracking portfolio regression (10) and to a covariance matrix for the
mimicking portfolio f in the transformation from risk premium to risk prices. We keep the second moments
to remain close to the original Hansen-Jagannathan distance.
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minimises the HJ distance. The difference in treatment of the traded factors is similar to
the choice between estimating risk prices from a cross-sectional regression of (expected)
returns on beta’s (covariances) or estimating them directly from the traded factors. The
evaluation of the fit on the test assets x remains, however, a large N problem, with or
without traded factors. Using the estimate ¢ in (3) we form the SDF and assess the HJ

distance using the regularised regression (7).

2.3 Efficient Frontier

For the interpretation of the HJ distance it is useful to split the projection of m in two

parts,

m = Proj(m|z) = Proj(1|z) — & Proj(f|x). (16)

When the tracking portfolios span the efficient frontier, the residual m will be zero. The
projection of a constant on the excess returns, 1 = Proj(1|x), defines a mean-variance (MV)
efficient portfolio (Cochrane, 2005; Britten-Jones, 1999), which can be constructed by the
regression model

1 =mx+ v (17)

The HJ-distance is measured by the Mean-Squared-Error (MSE) of the difference between
an unrestricted MV portfolio and the optimal portfolio implied by the factor mimicking
returns.

The decomposition suggests that the projection of the SDF on the space of excess returns
can also be computed using m = 1—¢§’ f . In population this is an identity, but due to sparsity
conditions it is not an identity at estimation stage with regularised regressions. Sparsity
constraints on the tracking portfolio weights IT in (10) and the mispricing weights £ in (7)
do not imply sparsity in 7 for the mean-variance optimal portfolio, and vice versa. We
impose sparsity on the tracking portfolio weights II and the anomaly portfolio £, not on the
overall MV efficient portfolio 1. Constructing a mean-variance efficient portfolio, without

referring to factors, is of independent interest. We include appendix C as an example.

3 L-.Boosting regressions

We need regularised linear regressions for several purposes. First, to evaluate the magnitude
of the pricing errors through (7); second, to construct tracking portfolios for non-traded

factors as in (10); and third, for additional insight, to estimate the mean-variance efficient
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portfolio in (17). All three can be analysed in the regression model

N
y = Zejscj + v, (18)
j=1

where y is the T-vector with observations of the dependent variable y;, v is the T-vector
of errors, and x; are T-vectors of observations on the excess returns x;;. All excess returns
together are stored in the (7' x N) matrix X = (@1,...,xy). The dependent variable y is
either a factor f, the constant 1, or an SDF m. Fitted values are always excess portfolio
returns: a mean-variance efficient portfolio, a factor mimicking portfolio, or an anomaly.
Boosting algorithms were developed as a technique for producing a projection by ag-
gregating weak predictors. Our version closely follows Biithlmann (2006). Although it is a
learning algorithm that penalizes the Lo-norm of the parameters, boosting differs from ridge
regression. In ridge regression all coefficients are non-zero, but shrunk towards a target.
With LsBoosting, the final result will have many exact zeros, very much like Lasso and

Elastic Net estimators (Hastie, Tibshirani, and Friedman, 2009).

Algorithm 1 Ly;Boosting

1: Initialize
Step size parameter v € (0, 1]
Maximum number of iterations L
Projection y =0
Coefficients §; =0 (j =1,...,N)
for {=1to L do

Compute residuals v =y — g

J J

Find best predictor j* = argmin;(9}9;) with v; = v — p;x;

x;) o

2:
3
4: Find univariate regression coefficients p; = (x
5
6 Update the projection: ¢ <— ¢y + vpjx ;=
7

Update regression coefficients: éj* — éj* + vpj

The detailed steps of the algorithm are listed in algorithm 1. At each iteration the algo-
rithm searches for the univariate predictor that improves the fit the most. Implementation
requires two tuning parameters: the stepsize v and the number of iterations L. The exact
value of the stepsize parameter does not have much of an effect on the results, as long as
it is sufficiently small. It should be large enough for the algorithm to make progress, yet
small enough to enable shrinkage and deal with multicollinearity. The value v = 0.1 is often
recommended. The number of iterations is more critical, since eventually the solution will

converge to the least squares estimator and therefore be prone to overfitting.
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Each iteration increases model complexity. Since boosting is a linear method, the fitted
values can be expressed as y = Hy, where H is the (T x T') projection (hat) matrix (see
appendix A for the updating formula). Model complexity is defined as ¢ = tr(H). In
standard regression models, doing OLS on a full data matrix X, tr(H) equals the number
of explanatory variables, i.e. the number of columns in X. Due to the tuning parameters v
and L, model complexity ¢ is less than the number of included variables. Bithlmann (2006)
suggests to use the model complexity as an input in the corrected Akaike Information

Criterion
T+q

AIC(b,q) =In (1 — R?) + T2

(19)

where (1 — R?) = /9 /y’'y. The penalty is added to the log of the sum of squared residuals
©'0. Minimising AIC leads to an optimal stopping time L.
The LsBoosting algorithm is consistent for the conditional expectation of the response,

if the regression coefficients in (18) satisfy the sparsity condition

N
> 1651 = o(\/T/In(N)) (20)
j=1

for T'— oo, maintaining that In(N)/T" — 0 (assuming existence of sufficient moments for x
and y; see Bithlmann and Van de Geer (2011, section 12.6.2.2)). This sparsity condition is
attractive for our purpose of constructing a tracking portfolio. With more data the model
may become more complex and the number of assets in the tracking portfolio may grow
very quickly, but the weight of each individual asset should shrink. The condition is likely
to be satisfied for standard asset pricing models. For example, when excess returns follow a
factor model, appendix B.2 shows that the portfolio weights for the tracking portfolio satisfy
the condition. The same holds for the mean-variance portfolio with ‘1’ as the dependent
variable.

In our experience, and well-known in the literature, the AIC' tends to select rather
complex models. Complex models increase the risk of overfitting, which creates a bias for
the IV estimator in the direction of the OLS estimator. In our case the OLS estimator
5013 = (F'F)~'F't = 0 because the factors are demeaned. Overfitting in the first stage
regression will thus result in risk prices that may be biased towards zero. We therefore per-
form our model selection using cross-validation. With K-fold cross-validation the sample is
split in K equal-sized subsamples (folds). For each fold k, the boosting algorithm performs
a sequence of L iterations for the parameter vector 6 on the complement of all data not in
the k" subsample. These parameters are used to generate fitted values and residuals for

the k™" subsample. Doing this for all k gives a complete vector © of T validation sample
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residuals. The value of L that minimises the residual sum of squares in the validation sam-
ples determines the optimal number of iterations. In practice we use 5-fold cross validation
with random subsamples. We repeat the cross validation 7 times to minimise the sampling

variation induced by the random subsample assignment.® Details are listed in algorithm 2.

Algorithm 2 Repeated cross-validation

1: Initialize

Number of CV folds K

Number of repeated cross-validations T
2: fort=1to 7 do

3: Randomly order all time indices in the data to construct data matrices X and y
with permuted rows.

4: for k =1to K do
Partition X in blocks X} with the data for fold k£ and its complement X _;. Do
the same for y.

6: Run L iterations of LeBoosting projecting y_x on X_j, and save parameters é(_gl)c
at all boosting iterations ¢ < L.

T Compute fitted values g,(f) =X ké(_e,)g and residuals f),(f) =Yi — Qg)

) . . . . _ . @' ()
8: Find optimal stopping L argming » ., v, vy,

9: Save fitted values g7 = (91, ..., Y% )" at the optimal stopping time L*

10: Compute the average y = % .U

We apply the LoBoosting separately to each factor. For each factor j data are in the
column vector f; and the tracking portfolio returns in fj. Joining all factors together we
have the (T x M) data matrix F' for the instruments.

In algorithm 2 the fitted values at the optimal number of boosting iterations are out-
of-sample estimates, with each fold & using portfolio weights that are estimated with the
data not in fold k. The motivation for the out-of-sample fitted values comes from the split-
sample IV estimator in Angrist and Krueger (1995). Its purpose is to reduce bias in cases
with many potentially weak instruments. See appendix B.3 for details.

Because we use regularised regressions for the mimicking portfolios, the IV estimator
(13) differs from a number of alternatives that would normally be equivalent. For example,
with the complete set of N instruments, the projection matrix is H = X (X’X)~ !X’ and
we obtain the tracking portfolios F = HF and the MV-efficient portfolio £ = He. Risk

% Since the cross-validation randomly assigns observations to folds, some sampling variation will remain
in the estimates. To minimise this effect we use the overly large 7 = 1000 in the empirical work.
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prices could then be estimated from the second stage OLS regression,
i=F6+u, (21)

which has the returns on an optimal mean-variance portfolio on the left-hand side, and
the factor portfolio returns on the right-hand side. With unregularised projections this
two-stage least squares estimator would be identical to the IV estimator (13). The identity
holds because in this unrestricted case H? = H, implying F'F = F'F. With boosting
(and other statistical learning algorithms), H is a pseudo projection matrix and is not
idempotent. Furthermore, when different macro variables use different optimal instruments
we have fj = H, f; with individual projection matrices H;, which is a second reason the
equivalence with 2SLS breaks down. In our empirical work we follow Belloni et al. (2012)
and use the IV estimator (13).

For the HJ distance we need the projection of the SDF m = ¢ — F¢ on the excess
returns X. We therefore apply the LyBoosting algorithm with dependent variable ¢ — F§,
i.e. the residuals w of the IV regression (13). Denoting the fitted values by rm the Hansen-

Jagannathan distance is computed as
HJ = —m/m. (22)

As for the IV estimator (13), there are alternative ways to compute the HJ distance, which
would be equivalent without regularisation, but are different when using shrinkage and
model selection. As mentioned before in section 2.3 an alternative option would be to use
the returns of the mean-variance efficient portfolio £ and construct m = ¢ — F§. Due to the
different amounts of shrinkage applied in construction ¢ and F the two sets of fitted values
have a different scaling, and hence the quantity m = ¢ — F§ is ill-behaved. The problem
does not occur with a regularised regression of ¢ — F'd on X, since the shrinkage is applied
to the entire left-hand side, and not independently (with different amounts of shrinkage) to

separate components ¢ and F'.

4 Monte Carlo Evidence

We conduct a Monte Carlo study to evaluate the properties of the IV estimator of the
risk parameters and HJ distance using the LsBoosting algorithm to select instruments.
Asymptotic theory in Belloni et al. (2012) indicates that the IV estimator is consistent and
asymptotically normal with standard errors as if we would have the optimal instruments.
We choose a setting that may be challenging for two reasons. First, we consider cases where

T is small relative to N, such that standard GMM with an optimal weighting matrix is not

15



feasible. Second, we simulate data that resemble noisy equity returns that have a very low
correlation with a non-traded factor. Both may lead to poor small sample performance of
the IV-boosting estimator. In addition we allow for noisy observations of the factor and
mispricing.

For the simulations excess returns are generated by the 2-factor model,

= B1(f1 + M)+ Ba(fe+ A2) +e (23)

where (3; are N-vectors of factor loadings, and e is an N-vector of idiosyncratic risk. Factors
f1 and fo are mutually independent with variances w? and w3, and also independent of the
idiosyncratic risk e. In estimation we only include the first factor. The second factor controls
the cross-sectional error structure and mispricing. To lighten notation we will mostly drop
the subscript on the first factor, and write the stochastic discount factor model m =1—4f,

with f = f1,0 =1, A= A, and w = wy.

4.1 Correct specification

The model is correctly specified if Ay = 0. Misspecification will be considered in section 4.2.
To satisfy the pricing condition E[mz] = 0, we must have A = dw?. As a normalisation we
set 0 = 1 as the true value. Since the SDF prices all assets, the HJ distance is zero.

The parameters in the DGP are calibrated to meet a number of design criteria. Ap-
pendix B contains a full specification of the calibration. Below we summarise the main
ingredients. First, the factor variance w?, which is also the maximum Sharpe ratio for any
trading strategy, is set equal to 0.8 on an annual basis. Second, for a low correlation between
x and f we select the factor loadings 5 such that the squared correlation between f and an
equally weighted portfolio is equal to 0.1. A third design criterion fixes the idiosyncratic
noise variance as the difference between the average variance of individual assets and the
variance of the equally weighted portfolio. As a fourth criterion, the cross-sectional varia-
tion in expected returns determines how much can be explained by a regression of average
returns on beta’s. This defines the cross sectional dispersion in 5. Finally we specify the
cross-correlations in the errors = fa fo+e with implied error covariance matrix ¥ = E[nn/].
The larger and more dispersed the elements in (3, the bigger the difference between the
optimal weighting matrix and the identity weighting matrix for a cross-sectional regression
of average returns on beta’s. We assume that factor loadings B2 are cross-sectionally in-
dependent of 3. This resembles a setting where we wish to estimate the price of risk of a
macro factor, knowing that a strong factor structure will remain in the test assets.

We discuss one of the Monte Carlo experiments in detail. The example has N = 200
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Panel (a) shows densities of the estimates of § in the SDF model m = 1 — §f using simulated data with
N = 200 test assets and T' = 120 time series observations. In panel (b) the blue solid line is the Monte Carlo

density of the t-statistic ¢ = (5 — 1)/s(8), where s(3) is the asymptotic standard error of the IV-estimator.
The thin black line is the standard normal density. See Table 1 for further notes.

Figure 1: Monte Carlo densities

test assets and T = 120 time series observations. Other combinations of N and T are
discussed in appendix B. Since NV > T this is a setting where Fama-MacBeth would usually
be the only option to estimate §, since the large IV precludes estimation of a GMM weighting
matrix. The IV estimator with optimal instrument selection is designed for this setting. We
compare it with the Fama-MacBeth estimator, which is implemented by running a cross-
sectional regression of the N sample average excess returns on the N covariances between
returns and the factor.%

Figure 1(a) shows densities of § for four alternative estimators; Table 1 provides sum-
mary statistics. The IV estimator appears almost unbiased. Moreover, it is also efficient: in
figure 1(a) its density nearly overlaps with the infeasible optimal instrument that uses the
population weights for the tracking portfolio. This would also be the GMM estimator with
the optimal population weighting matrix. The boosting algorithm succeeds in constructing
a tracking portfolio that performs nearly as well as an estimator with optimal weights. The
efficiency loss of the IV-boosting estimator is a tiny difference in standard deviation: 0.47
versus 0.44. The difference between the boosting and the infeasible optimal estimator is
only in the tails of the sampling distribution. These simulation results therefore confirm
that the asymptotic theory in Belloni et al. (2012) is relevant is an asset pricing setting
with a low signal-to-noise ratio and highly correlated regressors.

The most interesting comparison is with the Fama-MacBeth estimator. As expected

the Fama-MacBeth estimator is slightly downward biased due to the well known errors-in-

5 For a fair comparison between FM and IV we estimate the FM cross-sectional regression without a
constant term.
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quantiles

Estimator ave std 1% 25% med 75% 99%
A: independent design

IV boosting 1.01 0.47 0.01 0.69 0.98 1.30 227
Optimal 1.02 0.44 0.05 0.71 1.00 1.30 2.17
Fama-MacBeth 0.93 1.01 -1.47 0.27 0.93 157 3.43
Equal Weight 1.15 3.16 -2.42 0.13 1.01 1.93 5.87
B: orthogonal design

IV boosting 1.02 0.44 0.06 0.72 1.00 1.30 1.76
Optimal 1.01 0.43 0.07 0.73 1.01 1.30 2.10
Fama-MacBeth 0.98 0.44 -0.02 0.68 0.96 1.26 2.08
C: noisy factor

IV boosting 1.12 0.75 -0.16 0.65 1.01 1.45 3.47
Optimal 1.09 0.52 0.04 0.73 1.03 1.38 2.54
Fama-MacBeth 0.80 0.93 -1.43 0.23 0.77 1.35 3.17
D: mispricing

IV boosting 0.99 0.46 0.03 0.68 0.96 1.27 2.18
Optimal 1.04 0.44 0.06 074 1.02 1.30 2.14
Fama-MacBeth 3.45 1.27 145 2.65 3.41 4.25 6.62

The table report averages, standard deviations, and quantiles for alternative estimators for ¢ in the discount
factor model m = 1 — §f with true value § = 1. Simulated data are generated for N = 200 test assets and
T = 120 time series observations. I'V boosting denotes the Instrumental Variables estimator using a tracking
portfolio for f obtained by L2Boosting; Optimal is the infeasible optimal IV estimator using the population
portfolio weights for the tracking portfolio; Equal Weight is the IV estimator using the equally weighted
portfolio of the test assets as the instrument; Fama-MacBeth is the cross-sectional regression of the sample
average excess returns on the sample covariances of excess returns with the factor.

Panel A refers to a design with independent factor loadings for 8 and B2 such that cov [, 82] = 0. Panel
B has an orthogonal design with E[382] = 0. Panel C has the same design as panel A apart from adding
measurement noise to the factor. Panel D is similar to panel A, except for setting A2 = 0.9 to introduce
pricing errors. Further details on the simulation design are provided in appendix B. Statistics are from
10,000 replications.

Table 1: Monte Carlo risk price estimates

variables problem of using sample covariances instead of the true population values. It is
also much less efficient with more than double the standard deviation of the IV estimator.
Without pricing errors, any asset is a valid instrument, but not every instrument per-
forms well. As an example we consider the equally weighted (EW) portfolio of all N assets
as an instrument. With 200 test assets the EW portfolio is well-diversified. As an instru-
ment it performs poorly. The variance of § is almost 16 times as large as for the optimal
IV. Careful choice of instrument therefore matters for estimating the price of risk.
Important for inference are the estimated standard errors of the risk price estimates.
For the boosting-IV estimator the asymptotic variance from the standard IV formula is on
average almost identical to the Monte Carlo variance. Moreover, figure 1(b) shows that the

density of the t-statistic is very close to normal.
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The difference between IV-boosting and Fama-MacBeth depends on the calibration of
the parameters in the error covariance matrix 3. The Fama-MacBeth estimator uses an
identity weighting matrix, whereas the cross sectional error distribution is far from diagonal
due to the dispersion in the fs factor loadings. Fama-MacBeth would be optimal, and should
perform at least as good as IV boosting, when we alter the design such that the cross-
sectional covariance matrix ¥ satisfies ¥3 = 023. In this case there is no benefit in doing
a GLS or GMM cross-sectional regression. The condition will hold under an orthogonal
design with /82 = 0.7 Panel B in table 1 shows that this orthogonal design does not affect
the IV estimator, whereas it leads to a huge improvement for the Fama-MacBeth estimator.
The two now perform equally well.

Since macroeconomic factors are noisy, we also consider the case that the observed factor
has substantial measurement error. For this we assume that returns are as in the baseline
model, but the factor itself is observed with noise: f, = f + n, where n is independent
zero mean noise. More specifically, we set var [n] = 2w?, meaning that the noise variance
is twice as big as the signal itself. This specification resembles a weak instrument setting.
The noise does not affect the pricing condition, but considerably reduces the correlation
between the factor and excess returns. Panel (c) in table 1 shows that the large amount
of noise affects the IV and FM estimators in different ways. The IV-estimator is upward
biased, whereas FM is downward biased. The biases are not very large compared to the
much larger variance for both estimators. The IV estimator still performs better than FM.

Data are generated by a model without pricing errors. The population HJ distance
is therefore equal to zero. For the baseline calibration the sampling distribution for HJ
contains 58% exact zeros. An exact zero occurs when the boosting algorithm cannot find
a single excess return that has out-of-sample predictive power in the cross validation. In
other words, in 58% of cases the boosting algorithm cannot find an anomaly. Since HJ is

non-negative by construction, the average HJ is positive.

4.2 Pricing errors

As a next step we add pricing errors. We introduce mispricing by adding a risk premium
A2 in (23). Otherwise all parameters are the same as in the baseline calibration for panel A
in table 1: same factors and factor loadings. The only difference is a positive value for .
Cross-sectionally this type of mispricing is an omitted factor. If we would observe fo, and

construct a tracking portfolio, the HJ distance would still be zero. This is the same design

" Under the ‘independent’ design the covariance between the two vectors of factor loadings is equal to
zero. With ‘orthogonality’ the inner product is zero, which implies that the cross-sectional covariance equals

— E[B] E[B2], such that E[3f2] = E[5] E[82] + cov [8, f2] = 0.
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The figure shows true and estimated HJ distances. Data are generated by a 2-factor model,
but the model is estimated using a single factor. The true HJ distance is a function of the risk
premium A for the omitted factor using (65) in appendix B.4 averaged over replications of the
factor loadings. Except for A2, factors and factor loadings are identical to the design in panel A
of table 1. The dashed lines are the 5% and 95% quantiles of the HJ distance estimates. For
scaling the axes show the square root of HJ.

Figure 2: Pricing error estimates

as in Giglio and Xiu (2021) for studying mispricing.

In the Monte Carlo design this implies that the true discount factor changes to m =
1—46f —daf2 and thus gets a higher variance. By necessity the maximum Sharpe ratio then
also increases. The unrestricted mean-variance portfolio will thus have a larger Sharpe ratio
than the value of 0.8 in the original design. In figure 2 the range of Ay corresponds to a
maximum Sharpe ratio moving from 0.8 (annually) for Ay = 0 to max(Sh) = 2 for Ay = 0.15
at the far end of the x-axis.

Figure 2 shows that estimates of HJ will be biased upwards for small pricing errors. This
is because HJ, as a distance measure, is non-negative by construction. Since the boosting
algorithm sets HJ to zero in the majority of cases, the median remains at zero for small
mispricings. The larger the mispricing the closer mean and median move together. For
large mispricing our estimator slightly underestimates the true value of HJ. The estimator
thus has power to detect mispricing.

Panel D in table 1 shows the effects of pricing errors on the estimates of the risk price.
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The results refer to the case that Ao is chosen such the maximum Sharpe ratio is 1.2,
50% higher than the baseline design in panel A. The IV estimates are hardly affected by
the mispricing. Both the average as well as standard error in the misspecified model are
very close to the correctly specified model in panel A. The same holds for the asymptotic
standard errors, which remain close to the Monte Carlo standard error. Results for the
Fama-MacBeth estimator are completely off. The reason is that the FM estimator de-
pends on the factor loadings 5 and (2 in the design, whereas for large N the IV estimator
is independent of factor loadings. The IV estimator only requires the tracking portfolio

instrument. Appendix B.4 provides analytical details.

5 Empirical results

We use our methodology to assess pricing kernels of both traded and non-traded factors.
The non-traded factors are macroeconomic variables that are well established in the asset
pricing literature. The traded factors serve as a benchmark, both for our methodology
as well as for the macro factors. Since the methodology is for a fixed number of factors,
we only include a few basic macro variables, without an exhaustive model selection on all
macro variables reviewed in Cochrane (2017) or the library of macro factors discussed in

McCracken and Ng (2015).

5.1 Data

All data are monthly for the period July 1963 — December 2017. Table 2 contains the sources
for the macroeconomic variables. The first variable is consumption, being the fundamental
macro factor in asset pricing. We take real expenditures of nondurables plus services.?
Following much of the literature we consider news about the annual growth of monthly
consumption as a factor.? Denoting the log consumption flow in month ¢ by ¢;, we define
the annual growth in monthly consumption as Ctl2 = ¢t — Ci—12.

Other standard macroeconomic factors, at least since Chen, Roll, and Ross (1986), are

inflation, the credit spread, and the term spread. For inflation we construct the factor as the

8 We refrain from searching among the many proposed measures for consumption, such as, e.g. garbage
(Savov, 2011), unfiltered data (Kroencke, 2017), or durables (Yogo, 2006).

® We consider annual growth rates, again without an elaborate search on the optimal horizon as in Parker
and Julliard (2005) or Malloy, Moskowitz, and Vissing-Jergensen (2009). A pragmatic reason to work with
annual growth rates is the timing of information. With nowcasting and analyst expectations much of the
news of current month macroeconomic data is already known before the end of the month. Also, since
consumption growth seems to have a persistent component (Schorfheide, Song, and Yaron, 2018), an annual
horizon may be preferable. See Jagannathan and Wang (2007, section I11.B) for a detailed analysis of the
trade-offs in selecting the horizon in an SDF model.
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Consumption, services U.S. Bureau of Economic Analysis, Real personal consumption expen-
ditures: Services (chain-type quantity index), DSERRA3MO86SBEA

Consumption, non- U.S. Bureau of Economic Analysis, Real personal consump-

durable tion expenditures: Nondurable goods (chain-type quantity index),
DNDGRA3MO86SBEA

Consumer Price Index US Bureau of Labor Statistics, Consumer Price Index for All Urban

Consumers: All Items, CPTAUCSL

Baa Corporate Bond Board of Governors of the Federal Reserve System, Moody’s Seasoned
Yield Baa Corporate Bond Yield, BAA

10-Year Treasury Bond Board of Governors of the Federal Reserve System, 10-year treasury
constant maturity rate, DGS10

3-Month Treasury Rate Board of Governors of the Federal Reserve System, 3-Month Treasury
Bill: Secondary Market Rate, DTB3

Table 2: Macro data sources

innovation in the annual change in the log Consumer Price Index (p), Inf!? = p; — pi_12.
The term spread (75) is the difference between the 10-year Government Bond rate and
the 3-month Treasury Bill rate. The credit spread (CS) is the difference between the BAA
yield and the 10-year Government Bond rate.'’ Both spreads are business cycle indicators
(Harvey, 1993; Gilchrist and Zakrajsek, 2012).

For the return data we use a large number of managed portfolios based on common
industry sorts along with well established financial anomalies.'! The industry portfolios
enable us to relate our macroeconomic factors to typical portfolios that span the entire
market and are likely to have different exposures to macro risk factors. Industry portfolios
have been used for this since the seminal Breeden, Gibbons, and Litzenberger (1989) study.
We take the data for the 49 industries from Kenneth French’s data library. The industry
sorts are expressed in excess of the one-month Treasury bill rate. We drop series that
are not fully observed between July 1963 and December 2017. For the anomaly sorts we
use the collection of characteristic sorted portfolios from Kozak, Nagel and Santosh (2020)
available at Serhiy Kozak’s website. We remove the value-weighted and equally-weighted
market portfolios along with the size and value anomalies from the set of test assets. Traded
factors are the five Fama and French factors (Fama and French, 2015). We thus obtain a
set of N = 79 returns and T" = 654 time series observations.

Many of the anomaly portfolios have a Sharpe ratio that is above the Sharpe ratio

10 Since we do not observe the daily Baa Corporate Bond Yield as far back, we instead use the monthly
average corporate bond yield for the missing data.

11 We use managed portfolios instead of individual stocks. Literature is divided on this choice. In recent
studies, e.g. Kelly, Pruitt, and Su (2019), individual stocks are used to simultaneously construct factors and
portfolios. Other recent studies, e.g. Giglio and Xiu (2021) and Kozak, Nagel, and Santosh (2020), rely on
portfolio sorts.
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of the market portfolio (equal to 0.42). The maximum Sharpe ratio is for the Industry
Relative Reversals anomaly, which on its own has an annualised Sharpe ratio of 1.14. The
portfolios also provide a large cross-sectional dispersion in average returns, ranging from
—1.4% to +1.0% per month with a cross-sectional standard deviation 0.5%. Both the mean
and median volatility of the anomalies and the industry sorts are higher than the market
portfolio, although some portfolios appear to have very low risk. This set of portfolios is
thus challenging for any asset pricing model.

For the tracking portfolios we expect that they load primarily on the Industry portfolios.
For the pricing errors we expect stronger weights for the anomaly sorts. It is up to the

learning algorithm to check if this is true.

5.2 Tracking Portfolios

For the construction of the tracking portfolios we mostly follow Lamont (2001). As in
Lamont (2001) the target for the tracking portfolios for consumption and inflation are the
annual growth rates observed at a monthly frequency. For both variables we regress the

macro variable on the excess returns plus a small number of conditioning variables Q,

Fip12 = w1 + ¢'Qr + vig12, (24)

where Fy, 1o is either consumption growth (C/2,,) or inflation (Inf}?,). The tracking
portfolio returns are the fitted values ft = 7'xy. They represent the information embedded
in financial returns about the macro growth for the coming year. As conditioning variables
we use a constant and the past annual, quarterly and monthly growth rates.

The main difference with Lamont (2001) is the LsBoosting algorithm for estimating
the portfolio weights. This also affects the treatment of the lagged predictor variables Q).
Instead of the multiple regression with both x;y; and @, we first regress Fj;12 on the
controls ¢, and then run the LyBoosting algorithm on the residuals. Since we expect very
little correlation between returns and lagged macro control variables ()¢, this should not
affect the tracking portfolio, while substantially simplifying the construction.?

Since the two financial spreads are already forward looking variables, their tracking
portfolios are obtained using the spread that is concurrent with the excess returns, i.e. the

regression specification is

Fip1 = ' + ¢'Qu + vesa, (25)

12 The alternative is to apply the model selection after partialling out Q; from all excess returns and the
macro data. However, regressing all elements of z:+1 on @+ and working with the residuals introduces a lot
of noise.
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Consumption Inflation Term Spread Credit Spread

(€) (Inf) (T5) (CS)
Target (F) Ct1_~2_12 Inftlfm TStJ,_l CStJ,_l
Controls (Q) ci2 c3,C} Infi2 Inf}, Inf! TS; CSy
CV R? 0.06 0.06 0.06 0.12
Sharpe 0.38 0.07 0.16 0.06

trH* 7.92 6.37 5.79 7.99

AIC R? 0.14 0.16 0.20 0.25
Sharpe 0.30 0.01 0.01 0.02

trH 14.09 18.40 29.78 19.60

p(CV, AIC) 0.96 0.92 0.82 0.95

The table shows summary statistics for the tracking portfolios of non-traded factors. The target for the
tracking portfolio is the variable F' defined in the first line. The residuals from regressing F' on the controls
@ in the second line form the dependent variable for the LoBoosting regression. Stopping time is either AIC
or 5-fold cross-validation (CV). The R? fit refers to the partial R? after projecting the target on the controls;
trH is the trace of the boosting-projection matrix; for the cross-validated results trH* is computed at the
average optimal stopping time L3-. Sharpe is the annualised Sharpe ratio of the tracking portfolio returns.
p is the correlation between the returns of the AIC and CV tracking portfolio returns. Control variables for
consumption and inflation are defined as C’t]Jr,c = Ci4k — Ci+k—j and [nfthrk = Pit+k — Ditk—j-

Table 3: Tracking portfolios for macro factors

with F} either TS; or CS:. Analogously to the annual macro variables we first filter the
spreads. The filter for both is an AR(1) correction.

Table 3 presents summary statistics of the tracking portfolios. For consumption the fit
based on the out-of-sample fitted values in the cross-validation algorithm is R? = 6%. That
seems low, but is of the same order of magnitude as the partial R? = 4% reported in Lamont
(2001). Direct comparison is, however, difficult due to various differences in sample and
design. We use shrinkage in a regression with many assets, and estimate over a different
sample period. Our fitted values are out-of-sample, which will typically reduce the reported
fit. Indeed the R? increases to 14% with the in-sample AIC stopping. Contrary to Lamont
(2001) our excess returns coincide with the first month of the annual consumption growth,
which makes our fit a little better.'3

Since the tracking portfolios are for excess returns, without restrictions on the weights,
the mean and standard deviation are subject to scaling and also affected by the shrinkage of
the LoBoosting regressions. Important for their properties as an instrument is the Sharpe

ratio, which scales the mean by the standard deviation. For consumption the annualised

13 Comparison with other literature is also difficult, since many studies relate the growth in annual
consumption to cumulative annual returns over the same period. Empirically the strongest correlation is
between the contemporaneous excess returns and (unexpected) consumption growth. Therefore regressing
annual (unexpected) growth on annual returns over the same interval will provide a better fit than regressing
annual consumption just on one month returns.
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Sharpe ratio of 0.38 for the out-of-sample returns is the highest among all the estimated
tracking portfolios, and close to the Sharpe ratio 0.42 for the market portfolio.

Figure 3(a) presents the consumption tracking portfolio weights and how they evolve
up to the optimal stopping time. The allocation assigns the most weight to industry sorted
portfolios. By far the largest weight is for the Printing and Publishing industry (Books),
which has around twice the weight of the second to largest position. The majority of the
weights, including the larger ones, are positive. The tracking portfolio appears fairly well-
diversified with 20 assets included at the optimal stopping time. The weights are still subject
to considerable shrinkage with a model complexity trH = 7.92, which is less than half of
the full OLS weights for these 20 assets. Continuing the algorithm to the AIC stopping
time the model complexity almost doubles, but the Sharpe ratio nevertheless goes down.
The in-sample AIC portfolio returns are still highly correlated with the out-of-sample CV
returns (p = 0.96).

For inflation the tracking portfolio has a similar fit as for consumption, but a much
lower Sharpe ratio. With the CV stopping criterion, the tracking portfolio has a Sharpe
ratio close to zero. The algorithm could choose from many candidate portfolios, many of
which have large Sharpe ratios that are above that of the market. Diversifying over these
portfolios would easily enable a much higher Sharpe ratio, but the algorithm does not select
them due to lack of correlation with inflation news. Running the algorithm until the AIC
stopping time improves the fit (or overfits) but reduces the Sharpe ratio to virtually zero.
An equity portfolio that hedges against inflation thus earns a zero expected excess return.

For both the term spread and the credit spread our cross-validation selects tracking
allocations using a large number of assets. The CV stopping criterion identifies portfolios
with an out-of-sample R? of 6 and 12 percent, respectively. The most prominent assets
in the term spread tracking portfolio are anomaly sorts: the Value-Profitability and Price
anomaly.' The credit spread tracking portfolio assigns a large long position to the Utilities
industry. Similar to the inflation tracking allocation, these portfolios are composed of a mix
of anomaly sorts and industries. As with most tracking portfolios the correlation between
the alternative stopping rules, either CV or AIC, is large. An important difference between
the two is the Sharpe ratio. Adding more complexity to the tracking portfolio increases its
volatility, but not the average return. The Sharpe ratio for AIC terminated portfolios is
generally lower. The effect illustrates that overfitting will reduce the mean of the tracking
portfolio until ultimately it has zero mean, just as the demeaned factor itself. We see

the effect for all four macro variables. In the further empirical analysis we will use the

4 See the internet appendix of Kozak, Nagel, and Santosh (2020) for definitions.
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The figure shows the evolution of the factor tracking portfolio weights as a function of the model complexity
(trH). Final point on the horizontal axis is the average model complexity at the optimal stopping time
implied by cross-validation. The projection is performed on the full sample. The legend lists the assets
included in the tracking portfolio sorted in descending order on the final weight.

Figure 3: Tracking portfolio composition
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C Inf TS cs

Intercept 031 (14) —031 (1.0) 022 (1.8) 0.13 (0.3)
MKT 1.03 (13.2) 0.01 (0.1) 0.08 (1.8) 0.22 (1.6)
SMB 0.52  (4.6) 0.07 (0.6) —0.18 (2.4) —1.45 (7.1)
HML 034 (2.3) 034 (2.1) —043 (4.2) —-035 (1.2)
RMW —0.17  (1.3) 1.40 (9.0) 0.28 (2.0) 0.88 (3.3)
CMA —0.71  (37) —0.11 (0.5) —0.03 (0.2) 0.73 (1.7)
R2 0.52 0.16 0.30 0.19

The table shows results from regressing the macro tracking portfolio returns on the five Fama-
French factors. Tracking portfolio returns have been scaled by dividing by the sum of the portfolio
weights, such that they represent the excess return on a long-short portfolio. Robust t-statistics
in parentheses.

Table 4: Tracking portfolios and Fama-French factors

out-of-sample tracking portfolios based on the CV stopping times as instruments.

The tracking portfolios contain all pricing information about the macro variables they
are tracking. They will, however, only have independent meaning when the returns differ
from what is available from common traded factors such as the five Fama-French factors.
To characterise the tracking portfolios we regress their returns on the five Fama-French
factors. Table 4 shows that the loadings for the tracking portfolios on the five Fama-French
factors have a very distinct pattern. Consumption is mostly associated with the market
and the investment factor. Inflation is primarily related to profitability — without any
loading on the market—, the credit spread loads on size, while the term spread is a mix of
book-to-market and size.

The tracking portfolios are correlated with the Fama-French factors, but far from perfect.
The highest R? is 0.52 for the consumption tracking portfolio, while R? for the other three
tracking portfolios is much lower. The low correlations can be due to genuinely different
pricing information in the industry and anomaly portfolios related to the macro variables,
but it could also be just noise related to the construction of the tracking portfolios. A GRS
test on the intercepts rejects (F' = 2.93, p = 0.02) that the Fama-French factors price the
four tracking portfolios, which could be because the tracking portfolios genuinely contain
relevant macro pricing information, but could also just be because some of them load on
the anomaly portfolios. For now we just conclude that the tracking portfolios differ from
the Fama-French factors.

For comparison table 5 reports the summary statistics for tracking portfolio for traded
factors using the same set of test assets. The traded factors are the five Fama-French factors.
The factors are not among the test assets, so may not be perfectly replicable (and we also

do not include test portfolios sorted on the characteristics of the Fama-French factors).
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MKT SMB HML RMW CMA

Sharpe 0.42 0.28 0.43 0.42 0.50
CV R? 0.97 0.83 0.85 0.77 0.77
Sharpe 0.31 0.08 0.33 0.17 0.35
trH* 42.42 45.80 33.68 36.87 24.58
AIC R? 0.98 0.87 0.89 0.82 0.82
Sharpe 0.29 0.08 0.32 0.14 0.32
trH 30.37 34.50 31.92 33.28 30.19

The first line reports the annualised Sharpe ratio of the factor based on the sample mean and standard
deviation. Tracking portfolios are formed by projecting the demeaned Fama-French factors onto the set
of excess returns using L2Boosting. The subsequent Sharpe ratios are for the tracking portfolios based on
either CV or AIC stopping.

Table 5: Traded factors tracking portfolios

Nevertheless the fit for the value-weighted market index is close to perfect with many
included assets and a large model complexity. Fit for the Fama-French sorted portfolios is
not that perfect, but still very strong. Most remarkable are the Sharpe ratios of the tracking

portfolios. These are generally lower than those of the factors themselves.

5.3 Factor news

With monthly data the annual growth rate does not represent a news variable that can
be used as an input in the SDF model. To eliminate autocorrelation, news about an-
nual future growth for consumption and inflation is defined as the revision in expectations
(Et+1 — E¢)[Fit12]. Asin Xiao et al. (2013) (and others) we construct the news factor using

the two low dimensional projections

Fit12 = My Zy + Cipt12, (26)
Fii12 = hZis1 + Co 412, (27)

where Z; = (Q; ft)’ is the vector of controls used for the tracking portfolio augmented by
the returns on the tracking portfolio. The tracking portfolios returns are added, since they

evidently have predictive power. From (26)-(27) we obtain the news factor
frr = Br1 — Ey) [Frsro] = o Zig1 — hi Z,. (28)

The coefficients hg and hy are estimated by standard OLS regression.'® For the credit spread

and term spread we already have monthly data with monthly innovations and therefore do

5 The alternative would be a vector autoregression (VAR) for the macro variables (and possibly some
returns) as for example in Petkova (2006). In a VAR, revisions in 12-month ahead expectations can be
constructed by iterating on the VAR prediction equations analogously to Campbell and Vuolteenaho (2004)
and others. That would link the coefficients ho and hi, but at the cost of many additional parameters in a
full-fledged VAR. Our specification is kept parsimonious to save on degrees of freedom.
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Tracking portfolios (f) Factors (f)

C Inf TS cs C Inf TS cS
f Consumption 1
Inflation —0.16 1

Term spread 0.09 —-0.04 1
Credit spread —0.15 —0.48 —0.37 1

f Consumption 0.45 —-0.14 0.05 —0.05 1
Inflation —0.08 0.53 0.02 -0.21 -0.23 1
Term spread 0.04 0.02 0.24 —-0.17 0.03 0.03 1
Credit spread —0.03 —0.25 —0.17 0.35 0.00 -0.21 -0.15 1

The table shows correlations constructed from the sample second moment matrix of factor news (f) and

their tracking portfolio excess returns (f) constructed using cross-validation. The lower left panel contains
the correlations between the factor (row) and the tracking portfolio returns (column).

Table 6: Factor and instrument correlation matrix

not need the additional regressions.

Crucial for the instrumental variables estimator are the correlations between the tracking
portfolio and the factors news. For consumption and inflation the correlations, reported
in table 6, are 0.45 and 0.53. These numbers are substantially larger than implied by the
partial R? in table 3. The reason is the construction of news as the revision in expectations.
The factors f; have much lower volatility than the annual growth targets for the tracking
portfolios. From the correlation matrix in table 6 we also learn that correlations among the

tracking portfolios generally are larger than those among the factor news variables.

5.4 Risk prices

With the estimates of economic news and their respective tracking portfolios as instruments
we estimate the risk prices. Results are presented in table 7. The IV estimator produces
a statistically significant estimate for the price of consumption risk. In the basic CCAPM
model with constant relative risk aversion, a linear approximation of the pricing kernel
is m = 1 — ~C, and thus the coefficient on consumption news equals the risk aversion
parameter. The estimate implies very high risk aversion, consistent with the empirical
literature.!'® Estimates for the consumption risk are stable across different specifications
that add other macro variables.

To further interpret the estimate for the consumption risk price, consider the implied

pricing kernel m; = 1 — fté. The pricing kernel is only identified up to a scalar multiple

6 For example, our estimate is close the v reported in Kroencke (2017, table ITI) for year on year
consumption growth.
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Sparse IV Fama-MacBeth
Factor C +Inf +TS +CS Al C +Inf +TS +CS Al

Consumption 36.66 36.47 41.44 40.32 39.81 40.81 39.98 39.97 43.78 45.12
(2.7) (2.6) (2.7) (27) (2.6) (25) (24) (24) (25) (26)

Inflation —0.51 1.62 5.66 —2.15 —19.13 —19.15 —14.16 —12.34
(0.0) (0.1) (0.4) (0.1) (1.6) (1.6) (1.0) (0.9)

Term spread —0.61 —-0.73 —0.01 0.15
(1.3) (1.0) (0.0) (0.3)

Credit spread 0.36 —0.24 0.36 0.47
(0.7) (0.3) (0.9) (1.0)

The table reports estimates of the risk prices ¢ in the SDF model m = 1—§' f with t-statistics in parentheses.
The left panel refers to the IV boosting estimates. The IV-boosting estimates are based on out-of-sample
tracking portfolios with optimal stopping calibrated through cross-validation. The right panel reports Fama-
MacBeth cross-sectional regressions of average excess returns on the sample covariances between factors and
excess returns. Standard errors are computed under the Shanken correction.

Table 7: Risk price estimates for non-traded factors

(since we work with excess returns), but its volatility is still the maximum Sharpe ratio
for any portfolio. As consumption news has a standard deviation of 0.66% per month,
the implied annualised maximum Sharpe ratio is v/12 x 36.66 x 0.0066 = 0.84. However,
that portfolio must be perfectly correlated with the factor news. By construction, the
maximally correlated portfolio is the tracking portfolio, which only has a correlation of 0.45
(see table 3), and therefore implies a maximum Sharpe ratio equal to 0.45 x 0.84 = 0.378,
equal to the Sharpe ratio for the tracking portfolio in table 3 and close to the sample Sharpe
ratio for the market portfolio in table 5.

Risk prices of the other macro variables are insignificant and do not contribute to explain
the cross section. The main reason is that their tracking portfolios have a much lower Sharpe
ratio than the consumption tracking portfolio.

The table also contains results from a Fama-MacBeth (FM) regression. The FM esti-
mates are based on covariances of the same candidate assets with the factors. The macroeco-
nomic news data are identical to the time series used for the IV approach. For consumption
the IV and FM estimates are similar. The only difference are the somewhat smaller stan-
dard errors for the IV estimator. The standard errors are smaller, but the difference is not
as big as in the Monte Carlo simulations. The results of the IV estimates deviate from the
Fama-MacBeth estimates for the other macro factors. Estimates for the inflation risk price
are very different. For IV they are never significant due to the close to zero mean of the
inflation tracking portfolio. The FM results are a bit more erratic, with inflation being close

to significant in some specifications.
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MKT SMB HML RMW CMA

Sample 0.0539  0.0398  0.0011  0.1010  0.1260
(0.0109)  (0.0150)  (0.0206) (0.0209) (0.0309)
IV-boosting 0.0438  0.0108 —0.0077  0.0549  0.1133

(0.0111)  (0.0163)  (0.0266) (0.0236)  (0.0420)

Fama-MacBeth ~ 0.0606  0.0031 —0.0811  0.0889  0.2182
(0.0110)  (0.0184)  (0.0326) (0.0251) (0.0522)

Risk prices in the first row are estimated from (15) treating the factors as traded assets. The
second row shows IV estimates using the sparse tracking portfolios from table 5. The third row
are the Fama-MacBeth estimates based on sample covariances between factor news and excess
returns of test assets. In parenthesis we report standard errors.

Table 8: Risk price estimates for 5 Fama-French factors

Estimates for the Fama-French 5-factor model on the same test assets provide some
further insights in the properties of the sparse IV estimator. As the Fama-French factors are
traded, we can estimate the risk prices directly, using the factors themselves as instruments
as in estimator (15), without requiring any test assets. By construction, we should not be
able to get better estimates. Indeed, in table 8 these estimates have the lowest standard
errors. As already noted by Fama and French (2015), the HML factor seems redundant.
The other risk price estimates in the table are based on the test assets, without using the
average returns of the five Fama-French factors. Both the IV as well as FM estimator
recover the market premium, which can be readily identified from the industry portfolios.
Standard errors are only marginally above those for the direct estimates in the top row of
the table. For the other factors the standard errors have the predicted theoretical ranking.
Direct estimates are most precise, followed by the sparse IV, while the FM estimates have
largest standard errors. The point estimates are quite different. When we need to learn
about the factor risk prices through the lens of the test assets, the size factor is insignificant
using either IV or FM. Furthermore, the FM cross-sectional regression finds a significant
role (with the wrong sign) for HML, contrary to the other estimates. The test data allow
identification of the profitability and investment factors. The IV estimator tends to generate
lower risk prices than FM, sometimes correctly so (as for CMA) and sometimes not (as for

RMW).

5.5 Pricing errors

Projecting the fitted SDF, 1 — & ft+ onto the test assets, the boosting algorithm stepwise
builds a portfolio of mispriced assets. The fitted values are m;, from which we estimate the

HJ distance.
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C  +Inf +TS +CS Al CAPM FF5

HJ 033 033 033 034 032 035 031
(0.027) (0.027) (0.027) (0.026) (0.027) (0.027) (0.025)

The Hansen-Jagannathan distance (HJ) is the time series average of m?, where 172;

are the fitted values from projecting the SDF 1 — & ft on the excess returns with )
estimated using the sparse IV estimator. The FF5 model uses the tracking portfolios
of the Fama-French factors. CAPM refers to the single factor model with only the
market portfolio. The column ‘All’ denotes the model that includes all macro factors.
Standard errors are computed from a regression of m? on a constant using Newey-West
correction for autocorrelation.

Table 9: SDF mispricing

Table 9 shows that the HJ distance for all models is of a similar magnitude. In the
FF5 model the risk parameters 0 are estimated from the IV estimator (see table 8), and
thus not restricted to the traded factor sample means. A noticeable result is that the
Consumption CAPM performs better the standard CAPM with the market portfolio as the
single factor. As expected, models that add inflation, credit spread and/or term spread do
not make a difference relative to the consumption model. The Fama-French 5-factor model
(FF5) performs slightly better than most of the macro factors on these test assets. Still,
the model with all macro factors achieves the same HJ distance. The standard errors in the
table probably underestimate the true uncertainty, as they do not adjust for the uncertainty
in the LyBoosting projection.

Figure 4 shows which assets are selected to explain the pricing errors by the LoBoosting
algorithm up to the optimal stopping time. The largest pricing errors are associated with
anomaly characteristics. For both the CCAPM and the FF5 model, the Industry Relative
Reversal anomaly obtains by far the largest (negative) weight. Indeed, the top 3 positive
and top 5 negative weights in the mispricing portfolios are identical in both models and are
all anomaly portfolios. These anomalies are consistently identified as the most difficult to
price.

From the HJ distances it seems that the models are fairly similar in their ability to
explain average returns. For a closer look at the dissimilarities we project the difference
in pricing errors for two models (A and B), m{! — m¥, onto the set of excess returns.
The boosting projection will select assets for which the mispricing greatly differs between
the models. We limit ourselves to two pairwise comparisons, CCAPM - Fama-French and
CCAPM - CAPM. The coefficients of the projections are presented in figure 5.

The pricing differences between the FF5 model and the CCAPM are mainly driven by
how they price the asset growth anomaly; all other coefficients are small. For the pricing

differences between the CAPM and CCAPM, the algorithm mostly selects various industry
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The legend is sorted on the final weight of the assets in descending order. The stopping time for the
L2Boosting algorithm is determined by cross validation. The figure shows the full sample estimates
up to the average optimal stopping time.

Figure 4: Pricing error portfolios

portfolios. Neither of the two sets of coefficients contains the Industry reversal anomaly,
despite being the most mispriced asset in figure 4. Clearly, none of the models is able to

price this anomaly.

6 Conclusion

We have reformulated the problem of estimating risk prices in a stochastic discount factor
model as an instrumental variables regression. For an asset pricing model that contains
non-traded factors and is tested on many assets the main benefit of writing the problem in
this form is that regularised regression techniques for optimal instrument selection provide
a large efficiency gain relative to the two-pass Fama-MacBeth estimator. In a simulation
study the IV estimator is close to the infeasible GMM estimator for short time series for
factors and a large collection of test assets. The estimator approximates the GMM weighting
matrix without the need to explicitly estimate a high-dimensional covariance matrix. In an
empirical application the IV estimator shows that consumption is a priced factor for the

cross-section of excess equity returns.
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The figure shows the evolution of portfolio weights that explain the difference between two pricing
kernels. Optimal stopping of the L2Boosting determined by cross validation. Full sample estimates
are shown up to the average optimal stopping time.

Figure 5: Pricing differences between SDF models

A similar regularised regression is used to evaluate the pricing error of the asset pricing
model when there are many test assets. The stochastic discount factor is projected on all
available test assets to construct a maximally mispriced portfolio. The average squared
returns of the projection are an estimate of the Hansen-Jagannathan distance.

For the empirical results we implemented LsBoosting for high-dimensional instrument
selection problem for data that are strongly collinear, such as returns data. Using a large
asset space of characteristics and industry sorts, the algorithm finds a consumption tracking
portfolio that is strongly correlated with consumption news. Although it has a market
beta close to one, it consists of a limited number of mostly industry portfolios and differs
markedly from an aggregate market index. This tracking portfolio performs better than
the standard CAPM in explaining the cross-section of the included tests assets. The HJ
distance indicates that its pricing errors are similar to the Fama-French five factor model.
Other macro-economic factor, inflation, term spread and credit spread, contribute little to
performance of the SDF model for our set of test assets, but also do not affect the pricing

implications of the consumption factor.
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The proposed methodology appears promising for estimating and testing asset pricing
models. Still, given the huge empirical literature on macro-finance asset pricing, many
extensions remain unexplored. First, is the need to extend the factor space, since the few
standard macro factors we considered do not explain the cross-section. Our analysis has
taken the number of factors as given, while concentrating on dealing with a large number
of test assets. When combined with the large literature on bringing order in the ‘factor
200’ (see, e.g Feng, Giglio, and Xiu (2020)), we face the double regularisation problem to
simultaneously deal with many assets and many factors.

Second, we have restricted the tracking portfolio weights to be constant over time. For
the industry portfolios in our empirical work Fama and French (1997) already document
time varying risk exposures. Extending the tracking portfolios to allow for time-varying
weights, whether by rolling windows or through conditioning information (Ferson, Siegel,
and Xu, 2007), will enrich the empirical contents, but also further challenge the large N
regularisation. With rolling windows there will be fewer time series observations, while
conditional information increases the asset space.

A third extension is moving to individual stocks. Individual stocks introduces further
technical issues, for example an unbalanced panel with missing data. In its current the
instrument selection algorithm cannot tackle this. Individual stocks will also greatly increase
the amount of noise. With the managed portfolio sorts we could focus on assets that are

informative, either for constructing a tracking portfolio or discovering mispricing.
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A 1V Boosting and Fama-MacBeth

The boosting algorithm produces a time series of tracking portfolio returns ft. With a single
factor, the time series of the factor and the tracking portfolio are collected in the T-vectors

f and f, respectively. The relation between f and f can be written as

f=Hf, (29)
where H is the estimated hat matrix. The second stage IV estimator for ¢ is defined as
. F/y "H'L
orv = f{c'f = J]:’H’f (30)

The hat matrix is defined recursively in the projection update step of the boosting algorithm
as

Hy 1 =H),+ I/Pk“_l(f — Hg) (31)

where P; is the univariate projection matrix x;x;/ d?, d? = xx;, k¢ indexes the predictor

selected at step ¢, and Hy is the hat matrix after ¢ steps. Note that H is not symmetric,

even though all P; are. Using an induction argument (proof omitted) it follows that
Hy =) a; Py, (32)
2%

with (IV x N) coefficient matrices Ay = {as;;} and data matrices P;; = @;x}/(d;d;). Obvi-
ously, for £ = 0, we have Hy = 0, which satisfies (32) with Ag = 0.
With this notation, omitting the ¢-subscript, we can rewrite the numerator and denom-

inator in (30) as

1 TH, — ,xjm;"_ 7. =1 A
T e
] 4,7
1 'z;
SPH =0y f;J "”;Ff =" a0 = C'AC (34)
2% 2

The vector & holds the average excess returns of the IV assets, while C' is the vector of N
covariances of returns with the factor. The C; are sample covariances, and not second mo-
ments, because factors have been demeaned. The IV estimator (30) is therefore equivalent
to a cross-sectional regression of average returns on covariances with a weighting matrix A.
This provides a direct relation with the Fama-MacBeth estimator which estimates § from

the same cross-sectional regression, but with the identity weighting matrix A = I, i.e.
orpy = (C'C)7IC'z (35)

For the analogy with Fama-MacBeth the FM cross-sectional regression does not have a

constant term. The analogy also suggests that the boosting IV estimator could be subject
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to a similar errors-in-variables problem as Fama-MacBeth. The covariances C; are estimated
from a finite time series and differ from their population counterparts. As is known from
Jagannathan and Wang (1998) this measurement error bias will disappear for large T'. The
difference is that boosting selects the a;; that maximise the correlation of the asset portfolio
with the factor. These will typically be the largest elements C;. Since large elements C;
will on average correspond to relatively large true covariances, the measurement error bias
is less severe for the IV estimator. Also, by concentrating on the assets that have the most
information on the factor, we expect to gain precision.

Even N = 1 is sufficient to obtain a consistent estimate, as 7' — oo, for § (in this
single factor model). Larger N has two opposing effects. More data generally increases
the efficiency of the estimator for given matrix A, but the quadratically expanding number
of elements in the weighting matrix A may lead to less efficient estimates. It is up to the
boosting algorithm to find a balance in the structure for A.

When boosting overfits, the IV estimator will be biased towards zero. Overfitting means
that f becomes too close to f itself. In that case the IV estimator approaches the OLS
estimator, SOLS = }% = 0. It is identically equal to zero, since the factor has mean zero by

construction.

B Monte Carlo evidence

B.1 Calibration

The text refers to five design criteria. Below we list them in detail.

1. With the normalisation § = 1 we must have \ = w?.

In that case w is the maximum
Sharpe ratio for any trading strategy. We take the stylised fact that the Sharpe ratio
of the market portfolio is about 0.4 for annual data. In the simulations we allow for
a mean-variance optimal portfolio with an annualised Sharpe ratio of 0.8. Since we

simulate monthly data, we set w; = w = 0.8/v/12.

2. Consider the equally weighted index of all stocks, such that all idiosyncratic noise has

been diversified away,

= lim —sz Bra(fi+ A1) + Bra(fa+ A2), (36)

N%oo

where 871 and 12 are the average loadings of 31; and 3; 2, respectively. The variance

of X can be decomposed as
var [X7] = R7f7 1wf + (1 — R)BF ow) (37)

where R? is the proportion of the index variance attributed to the first (priced) factor. A

low value for R? generates data with a low correlation between returns and the included
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factor. We set R? = 0.1. For the index variance we use the empirical estimate var [X;] =
(0.2)2/12, i.e. an annual volatility of 20% for an equally weighted index. The remaining
common variance (3 172(,u2)2 is due to the omitted factor. Since only the product B;aws

matters, scaling the variance of f2 to w3 = 1/12 for monthly data is just a normalisation.

3. For the calibration of the idiosyncratic noise we look at the average variance of individual
assets relative to the variance of the index. The large sample cross-sectional average

variance of returns is

- 1
V2 = plim N Zvar [z;] = E| Zl]w% + E| Zﬂw% + a2, (38)
i

where E[ﬁf ;] is the second moment of the cross-sectional distribution of the ;;’s, i.e.
E[ 12]] = B%J Ej, with E; the cross-sectional standard deviation of the 3; j’s. Subtract-

ing the variance of the index gives
V2 - V{ = Eiw} + Z5ws + o (39)

Setting the average variance of individual stocks to V2 = 0.32/12, a 30% annual volatility,

we still need two assumptions to fix Z; and Z5 before we can use (39) to solve for o2.

4. One additional moment for calibration is the cross-sectional dispersion in expected re-

turns,
.1 = -
8% = plim N Z(E[xl] — E[xz])Q = _%)\2, (40)

assuming Ao = 0. We set sz is 2% annually; this determines Z;.

5. Finally, to fix the cross-sectional dispersion =9 in the loadings of the omitted factor we

split the remainder in (39) equally between o2 and Z3w3.

Table 10 summarises the Monte Carlo design parameters. The large difference between =
and Eg implies that only very little of the cross-sectional covariance structure is due to the

factor that is included in the SDF model.

Moments (annual)

Sharpe | R? | sd(Y7)
0.80 0.10 | 0.20 | 0.30 | 0.02

<
&

Derived parameters (monthly)

w
[1]
no

W= w W o A=A | Bra Br,2
0.2309 | 0.2887 | 0.0454 w? 0.0791 | 0.1897 | 0.0313 | 0.1571

Table 10: Monte Carlo design parameters
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For the baseline model we assume that the factor loadings 3; 1 and f3; 2 are independent.
In each iteration of the Monte Carlo experiments both factor loadings as well as factors
are random. We first draw factor loadings 3;1 and ;2 given the parameters in table 10.
We subsequently draw the time series of factors and noises. The factors are generated
from a normal distribution. Finally we combine loadings, factors and idiosyncratic noise to
generate excess returns and the SDF. Since the pricing kernel must also be positive, strictly
speaking a normal distribution for f is inadmissible. The volatility w is, however, small
enough that the probability for m to become negative is negligible with monthly data.

To introduce pricing errors we set A2 > 0, such that the true pricing kernel is given by
m=1-0f—0da2f2 (41)

with d2 = Ao/ w%. Except for Ao all other parameters remain as in the bottom row of table 10.
With mispricing there will be a wedge between the maximum Sharpe ratio from the factor
mimicking portfolio and an unrestricted mean-variance portfolio. In the baseline design
without pricing errors the two Sharpe ratios are equal. Since the term ds fs increases the
variance of the true pricing kernel, the resulting excess returns exhibit more cross-sectional
dispersion in expected returns and to allow for a larger maximum Sharpe ratio. Values for
A2 used in figure 2 range from zero to 0.15 in monthly units. Results in panel D in table 1

in the text and in figure 7 below are for Ay = 0.075.

B.2 Population properties

Written as a single factor model, and assuming correct specification with Ao = 0, (23)

becomes
v = B(f+ )+, (42)

with error covariance matrix E[nn/] = ¥ = BoBhws + 021. Given the design (with Ay = 0)
we can compute the projections f = Proj(f|x) and 1 = Proj(1|z) using the population
parameters. Due to the normalisation § = 1, we have f = 1. In words: the factor mimicking

portfolio equals the mean-variance efficient portfolio. From the pricing condition we have
Elfa] = E[la] = fu?, (43)

Next, using the matrix inversion lemma, the second moment matrix

Elza'] = (W* +2?)88' + 3, (44)
has the inverse 2, 2
n-1_ y-1_ W+ 15401
Elzz']|7" =X T )\2)52 BB (45)
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with S = 8’Y~!4. Using these intermediate results gives the projection coefficients for both
the factor mimicking portfolio and the mean-variance efficient portfolio as

w2

™ = E[za/| "V E[fz] = 1+ (w2 +A\2)S

'8 (46)

Mean and standard deviation of the portfolio excess returns follow as

N w3\S
/=5 + (w2 +A2)S
w2Vw?2S2 + S

stdev(f) = T @210 (48)

(47)

(and of course the same for E[1] and stdev(1)), from which we find the Sharpe ratio

g 1/2

given that A = w?. Under our model design the quadratic form S = f’Y !4 increases with
N.17 The limiting Sharpe ratio, as S — oo, is therefore equal to w, while for all finite N
the Sharpe ratio is strictly less than w.

Although the two projections are the same, their fit is very different. For the MV-
efficient portfolio the second moment of the dependent variable is obviously E[1%] = 1,

while for the factor it is E[f?] = w?. The projections have second moment

E [(«'£)?] = B[ f]* + Var[r'f]
wts

EEENCESUE (50

For large N (large S) we therefore have the measures of fit
R} = lim B[/ - (51)

S50 B[f2] 1+ w?
R = lim B[] W (52)

In this simulation design these R?’s of the tracking portfolio regressions solely depend on
the volatility of the pricing kernel, which is also the risk premium associated with the factor.
By construction the tracking portfolio will never fully identify the factor, nor will it produce
a fully risk free portfolio (this would violate the no-arbitrage condition). The more volatile
the factor, the better the tracking performance of the mimicking portfolio. For our design
parameters the fit for the tracking portfolio will converge to R% = 0.81. The fit for the

mean-variance portfolio can therefore not be larger than R? = 0.19. Given the difference

17 The two exceptions are when many assets have zero beta’s and do not contain any information on the
factor, and when some assets have zero idiosyncratic risk. In the first case S need not go to infinity with N,
while in the latter case S will be infinite without N going to infinity.
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in the signal/noise ratio a statistical learning algorithm will typically perform much better
for the tracking portfolio problem than in constructing a mean-variance efficient portfolio.

For consistency of the boosting algorithm it is important that the portfolios are suffi-
ciently sparse. The sparsity condition requires Zf\il |;| to be bounded as sample size T
goes to infinity while N grows exponentially in 7" (see Bithlmann (2006)). In the current
setting with two factors we need to work out the details of S and X713 as N becomes large.

For ¥ we have the inverse

21_1<_f_w%5 5') (53)
o2 02 + w3 BB 22
As a result, by simply substituting and simplifying,
5 . 1 1 E[3ifa,:]?
= pl —S=_" | E[p% - e 4

When f; and f; are independent, we have that E[B;52,] = B1812. Therefore, S > 0 as
long as E[3?] > 0. Moreover, all elements
1 w33 B
sy = — (g8 — 2 4
( /8)7, 0—2 </BZ O—2+w%ﬁé/825271
have finite expected absolute value. Since the denominator S in (46) is of order N, the sum
over |m;| will be bounded in N, and hence satisfies the Bithlmann condition.

As a benchmark for the efficiency of the IV estimator we consider the case where the

optimal instrument is known, .e. we have the instruments
fopt = 7'z, (55)

with 7 the population tracking portfolio weights defined in (46). The resulting estimator

3Opt = % is infeasible in practice, but it provides an upper bound on the precision of the

actual IV estimator.

B.3 In-sample versus Out-of-Sample

The first use of the simulation design is to evaluate the difference between in-sample and
out-of-sample fits of the tracking portfolios. In section 3 we propose to implement the IV
estimator using the cross-validation predictions F, = X,I1_; for each subsample k with
II_; the estimator of the tracking portfolio weights using the training data (F_i, X ).
The alternative is to use cross-validation to determine the optimal stopping, and then run
the boosting algorithm one more time on the full sample (F, X) with the optimal stopping
to obtain the final estimates II and tracking portfolio returns F. We use Monte Carlo to
illustrate that the latter results in a strong downward bias in the estimated § when 7" and

N are of similar magnitude. Using the design in table 10 we simulate both estimators to
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quantiles

N T  Estimator ave  std 1% 25% med 75% 99%

200 120 Out-of-sample 1.01 0.47 0.01 0.69 0.98 1.30 227
In-sample 0.52 0.28 0.01 0.32 049 0.70 1.26

200 600 Out-of-sample 1.00 0.21 0.58 0.86 1.00 1.14 1.51
In-sample 0.82 0.17 047 0.71 0.82 093 1.25

200 1200 Out-of-sample 1.00 0.13 0.73 0.91 1.00 1.09 1.30
In-sample 0.89 0.11 0.64 0.82 090 098 1.13

20 120 Out-of-sample 1.03 0.58 -0.19 0.63 1.00 1.39 2.54

In-sample 0.84 0.46 -0.17 0.54 0.82 1.13 1.98

The table reports averages, standard deviations, and quantiles for alternative estimators for ¢ in the discount
factor model m = 1 — §f with true value 6 = 1. Simulated data are generated for N test assets and T time
series observations. Out-of-sample uses the cross-validated predictions and is identical to the design in panel
A of table 1; In-sample denotes the Instrumental Variables estimator using a tracking portfolio for f obtained
by boosting on the full sample of T" observations with the same number of boosting iterations. Statistics are
from 10,000 replications.

Table 11: In-sample versus out-of-sample tracking portfolio returns

illustrate the difference. As benchmark we set (N,T") = (200, 120). We then vary N and T’
to show the dependence on the sample size. The tracking portfolio is estimated by boosting
using stepsize v = 0.1 and 5-fold cross-validation to determine the optimal stopping.'®

In table 11 the in-sample estimator for the benchmark has a mean of only 0.52 instead
of the true value equal to one. The out-of-sample estimator is nearly unbiased with the
same sample sizes. The bias slowly diminishes if either T" grows bigger, or N decreases.

The intuition for the bias reduction is similar to what motivated the split sample IV
estimator in Angrist and Krueger (1995) and its large N counterpart in Belloni et al. (2012).
In both papers the sample is split in two parts, whereas we exploit the sample splits we
already have for computing the cross-validated fit. Below we illustrate the intuition for
the bias, and its correction, in the simple case of unpenalised regressions in a setting with

N < T. The tracking portfolio from unrestricted least squares in the first stage regressions
F=XII+V, (56)
yields (without regularisation),
F=XX'X)"'X'F=XIl'+HV (57)
The crucial element in estimating ¢ is the cross-product F F,

F'F=TX'XII' +IX'V + V'XIlI' + HV (58)

18 All computations have been done in R. For boosting we use the function gimboost from package mboost
where the options (offset=0, center=F) suppress the constant from the regression function.
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Denoting the sample second moment matrix by M = X’'X /T, and taking expectations
conditional on the instruments X, assuming the orthogonality E[v;z;] = 0, we have

1 - N
E|-F'F|X|=1IMII'+ -V
FFIX] + X (59)

where ¥ = E[v 0] is the second moment matrix of the regression errors. The second term
creates a bias. Of course, for fixed N and growing 1" the bias becomes negligible relative to
the first term, but for 7' and N of similar magnitudes the bias can be substantial.

No such bias exists for the cross-product F L, since
E lF’L|X —e|(irx)mt(Llx, X | =11z (60)
T T T

for z = XT/L The magnitude of the bias in the IV estimator (13) depends on further distri-
butional assumptions, because the bias term appears in the denominator and E[(F'F)~1] #
(E[I:"’ F])_l. The bias will be towards zero, since the additional term %lll is positive defi-
nite.

The bias can be greatly reduced by using the cross-validated tracking portfolio returns.

These out-of-sample fitted values are
Fi = X (X' X_3) ' X! Fo = X300, (61)
(or other linear estimators for f[_k that so not depend on Fy). For each fold k we then have
FlF,=F ,X_ (X', X_;) ' X,F,, (62)

which is unbiased conditional on X due to the time series independence of the blocks Fj
and F_; and the demeaned factors.

The out-of-sample rows in table 11 illustrate that the cross-validated tracking portfolios
lead to almost unbiased estimates of §. For this reason, and in light of the analytical

intuition, all our empirical estimates use the cross-validated tracking portfolio returns.

B.4 Mispricing

With mispricing the HJ distance will be positive. Its value as a function of A5 is found
by simply calculating E[mz] and E[z2/]~! that enter the HJ distance. The true expected
excess returns are E[z] = SA+ S22, which implies that pricing errors under the misspecified

model m =1 — 0 f (omitting the second priced factor) are
E[mz] = E[z] — §E[zf] = B\ — 6w?) + Badg (63)

Differentiating HJ with respect to J, the minimum HJ obtains when § satisfies

5/ E[l‘xl]_lﬁz

— 2 —
A — Ow A9 BBz 13

(64)
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The expression shows that with misspecification the implied price of risk is no longer equal

to 6 = A\/w? unless B E[za']71 B2 = 0. The HJ-distance is equal to

(5/ E[a?x’}_lﬁz)Q)
B’ Elza!]~18

It depends on Az in a complicated way. Apart from the leading )\g term, there is a further

HI = X3 <5g Elea’)8; - (65)

nonlinear dependence through E[za’]. That dependence would disappear when we would
use covariances instead of second moments in the definition of the HJ-distance.'® For a

closer inspection we explicitly compute
E[z2'] = BJ'B’ + oI, (66)

where we introduce the (N x 2) matrix B = (8 f2) and the (2 x 2) matrix

2 2

FAT N

Jgt= (¥ 2 (67)
Mo wd A

By the matrix inversion lemma,

1 1
E[fﬁl]_l = ; (I — ?B(G—F J)_I)B/> 5 (68)
with G = B'B/0? and thus
B'Ed| 'B=G-GG+J)'G= (G "+, (69)

In general, neither G nor J is diagonal, so the off-diagonal element 3’ E[zz/]~!#y will be
non-zero, and therefore § will be affected by the mispricing. Even in the special case of an
orthogonal design, G is diagonal, but J is not. Elements of the matrix G will generally be of
order NV, whereas those in J do not depend on N. For large N we have the approximation

lim B E[z2/]7'B = J, (70)

N—oo

which leads to simple limiting expressions for the HJ distance and 4. In the limit, as

N — o0, equations (64) and (65) become

HJ = A2 J22—Ji21 _ % (71)
2 J11 )\%—i-w%
1 J21 A w%

0= ([ A4+ X= )= x —"— 72
w2< * 2J11> w2xw§—|—)\§ (72)

19 See our earlier discussion in footnote 4. Giglio and Xiu (2021, sect I1.A) analyse exactly the same
two-factor model. They conclude that the omitted variables bias — from leaving out the second factor —
does not affect the estimated risk premium if all assets are included. That is the case we consider for our
population properties with N — co. The infinite N assumption is essentially the same as their assumption
that idiosyncratic risk vanishes in the limit. We still get a small bias in § because we estimate the factor
mimicking regression without a constant term. The difference between covariances and second moments is
negligible when returns are observed at a high enough frequency.
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The final equalities in (71)-(72) follow by explicitly inverting (67). Because of (70) neither
depends on the properties of the factor loadings.?’ Both the limiting HJ distance as well as
the risk price that minimises the HJ distance depend on the mispricing Ao. As explained
before in footnote 19, the only reason for the dependence on g in (72) is the use of second
moments instead of covariance in the HJ distance. With Var(z) instead of E[zz’] the
expressions would further simplify to HJ = A3 /w3 and § = \/w? = 1.

Properties of the FM estimator are very different. For the cross-sectional regression of

expected average returns on covariances we have

E[z f]' E[x]
OFM = o1 = 73
Bl ]/ Bl ] 7
which can be written, analogously to expression (64) for the IV estimator, as
/
A— (5FMU.J2 = —)\2 /85,662 (74)

Unlike the IV estimator, the FM estimator for § will depend on properties of the factor
loadings, even for N — oo. Unless the loadings of the second factor are orthogonal to
the included factor, the estimate will be asymptotically biased. This effect shows up in
table 1 for the misspecified model with independent factor loadings. Factor loadings of
a completely independent, but priced, factor matter. For the Monte Carlo design we can
eliminate the bias by adding a constant term in the cross-sectional regression as is often done
in empirical studies. But eliminating the bias will increase the variance of the estimator

due to multicollinearity between the constant term and the factor loadings.

B.5 Results for different N and T

In the text we discuss the case (N, T) = (200, 120). Here we consider different combinations
of N and T'. Using the design settings for the correctly specified model from panel (A) in
table 10, figure 6(a) shows the Root-Mean-Squared-Error (RMSE) for § for given T as a
function of N. Obviously, with larger T the error decreases for every N. Similarly, for given
sample size T', enlarging the cross section improves the estimate, but reaches a saturation
point for large N.2! The bias, shown in figure 6(b) remains small for all (N, T') combinations
except when both are very small.

Figure 6(c) compares the IV estimator to Fama-MacBeth. The larger N the larger the

gain in efficiency from using the IV estimator. For small N and T the IV estimator achieves

20 The first equality in (71) holds more generally in case of factor mispricing. With M priced factors of
which M; are omitted in the pricing model, the general expression is )\'2(J22 — J21J1_11 Ji2) A2 with J;; blocks
in the (M x M) matrix J = (Q +AX)~! and Q block diagonal, i.e the omitted factors are independent, of
the included factors.

21 For T = 60 it sometimes (less then 1% of replications) happens that the cross-validation cannot find
any asset that has an out-of-sample correlation with the factor, such that the tracking portfolio is equal
to zero. Evidently the IV estimator is not defined for such a clear rank-deficient portfolio. The sampling
distributions are thus censored by excluding the cases for which LoBoosting sets f = 0.
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(a) Root-Mean-Squared-Error (b) bias
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The figure shows Monte Carlo results for the instrumental variable estimator § where the first stage regression
is performed by L2Boosting. The upper left panel shows the bias relative to the true value § = 1; the upper
right panel shows the Root-Mean-Squared-Error. The lower left panel compares the IV and FM estimators.
The lower right panel compares the asymptotic and Monte Carlo standard errors for the IV estimator. The
horizontal axis is the cross-sectional sample size N on a log scale. The different curves refer to different
sample sizes T' = (60, 120, 600).

Figure 6: Monte Carlo results: IV estimator with correct specification

about 20% higher precision than the Fama-MacBeth estimator. The gain quickly increases
to more than double the FM precision for larger (N, T"). Finally, panel 6(d) shows that the
asymptotic standard errors are reliable, except when N and T" are both small.

Figure 7 shows similar plots related to the design in panel D in table 10, which analyses
the effect of pricing errors. With small N the risk price estimator has substantial bias, which
quickly diminishes as N becomes large. With mispricing we therefore require a reasonably
large cross-section. The variance of the IV estimator is not much affected by the mispricing.
The RMSE in figure 7(a) is of similar magnitude as it was in figure 6(a). An important
result is the quality of the asymptotic standard errors under mispricing. They have been

computed with the standard formula without any adjustment for the misspecification as in
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(a) Root-Mean-Squared-Error (b) bias
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Panels (a), (b) and (d) are similar to figure 6 but now for data generated with A2 = 0.075. The bias is with
respect to the true value in (72) Panel (c) shows the RMSE of the HJ estimates. The y-axis in the lower
right panel (d) has been truncated, since results for N = 10 are far off the normal scales.

Figure 7: Monte Carlo results: IV estimator with pricing errors

Gospodinov, Kan, and Robotti (2014), but even so they are still very close to the Monte
Carlo standard errors. Only for small N they are completely off. The precision of the HJ

estimates is not much affected by N, but improves steadily with increasing 7.

C Sparse Mean-Variance Portfolio

As part of testing the performance of the boosting algorithm on noisy return data we apply
the algorithm to the same example data set that Kozak, Nagel, and Santosh (2020, KNS)
use to test their regularised regressions based on economically motivated priors. They
estimate an SDF based on daily excess returns of the 25 Fama-French portfolios sorted on

Size and Book-to-Market from July 1926 to December 2017. We represent that problem as
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the projection of excess returns on a vector of ones, as in (17), written in data notation as
L= Xm + vy, (75)

where X contains the excess returns orthogonalised with respect to the ‘value-weighted
index return using (’s estimated in the full sample’ (KNS, p 280).

With ‘17 as the dependent variable the parameters in (75) are weights of a mean-variance
efficient portfolio. Constructing a mean-variance efficient portfolio is notoriously difficult,
especially when the cross-sectional dimension N is large relative to the time series sample
size T'. Dangers of overfitting when N is large and cross-correlations are substantial have
been pointed out many times, see the references in KNS. Many shrinkage and dimension
reduction techniques have been suggested to obtain portfolios with reasonable out-of-sample
performance. LoBoosting, as far as we know, new in this respect.

KNS explain that the OLS estimator 41 = (X’X)™' X't has very poor out-of-sample
performance for the mean-variance portfolio due to the noisy sample means %X ", even
with such long time series.??> They suggest an Elastic Net estimator motivated by economic
arguments. A maximum Sharpe ratio motivates Lo-norm shrinkage on 1, while the strong
factor structure in the data suggests an Li-norm sparsity with many exact zeros.

Applying LeBoosting to (75) should have the same effect and lead to a very similar
portfolio. We apply boosting on the same data set with standard tuning parameter v = 0.1
and 5-fold cross-validation. Figure 8 shows results for the first 15 steps of the algorithm.

Figure 8(a) shows that the cross-validated residual sum of squares reaches a saturation
point at a model complexity of tr H = 0.9, after 10 iterations of the algorithm. In contrast
the training fit improves steadily by construction. Figure 8(b) shows that the solution is
sparse. At the optimal stopping time just three of the 25 portfolios obtain a non-zero weight,
exactly as in KNS. Most prominent is the SMALL_H1BM portfolio, the most notorious outlier
among the 25 portfolios.

One of the important lessons is the difference between in-sample and out-of-sample
performance. In figure 8(c) the in-sample Sharpe ratio increases steeply while increasing
the complexity of the portfolio. Out-of-sample, the Sharpe ratio already starts to decline
after the first step. LoBoosting minimises the out-of-sample residual sum of squares ©]0;
(shown in panel (a), which is not the same as maximising the out-of-sample Sharpe ratio
in panel (c). Therefore the algorithm does not stop after the first step, when the Sharpe
ratio starts to decrease.The out-of-sample Sharpe ratio in the test samples hovers around

between 0.41 and 0.47, the same order of magnitude as the Sharpe of the market portfolio.

22 The matrix %X 'X contains second moments. The choice between second moments or covariances does
not matter for the mean-variance problem. Apart from an arbitrary scaling constant, the two will lead to
the same mean-variance portfolio weights (Britten-Jones, 1999).
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Figure 8: Mean-variance analysis of the 25 Fama-French Size/BtM portfolios
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Horizontal axis in panels (a)-(d) is the model complexity with increasing number of boosting iterations in
regression (75). Panel (a) displays the time series Mean-Squared-Error ©7%1 /T both in-sample (‘training’)
as well as out-of-sample (‘test’). Panel (b) shows the estimated portfolio weights. As the weights are for
excess returns, scaling is indeterminate (multiplying by any positive constant will give the same Sharpe
ratio). The Sharpe ratio for the portfolio #1z is in panel (c), again both in-sample and out-of-sample. Panel
(d) shows the implied cross-sectional R? for the regression of sample means on the sample covariances using
the estimated coefficients #; from the time series regression. In panels (a), (c) and (d) the black solid lines
are based on a random training sample containing 80% of the data used to estimate the parameters #;. The
red dashed lines apply the estimated 71 to the complementary test samples. Coefficients in panel (b) are
from running boosting on the full sample. The procedure is repeated 100 times. Figures shows averages
over these 100 replications.
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KNS evaluate their model based on its cross-sectional fit, derived from the regression
X't=X'Xm +n, (76)

with NV = 25 observations on the average returns, and N regressors formed by the re-
turn covariances. Using the estimated #; from (75), we evaluate the cross-sectional R?
in figure 8(b). The results imply a very similar fit as reported by KNS in their figures 1
and 2: out-of-sample the cross-sectional R? is around 0.35. Consistent with the time series
regression, the out-of-sample cross-sectional R? starts to slowly decline after 10 iterations.

The boosting regressions can replicate the results in Kozak, Nagel, and Santosh (2020)
for these 25 FF portfolios with simple default settings for the LoBoosting regressions.
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