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1 Introduction

Left tail risk is a pervasive feature of financial markets. As such, a large body of

work has investigated its role in determining asset prices. Taken together, the empirical

evidence indicates that compensation required by investors for bearing tail risk is funda-

mental to explain aggregate market risk premia and the cross-section of stock returns.

This evidence is based on a number of different tail measures. In particular, informa-

tion can be extracted either from stock prices (e.g., Bali et al., 2009; Kelly and Jiang,

2014; Weller, 2019), reflecting risk under the physical or statistical measure under which

prices are observed, or from option prices (e.g., Andersen et al., 2015; Bollerslev and

Todorov, 2011; Bollerslev et al., 2015), capturing tail risk under the risk-neutral measure

incorporating investors’ preferences.

In this paper, we propose a new tail measure available at a daily frequency, which

allows us to investigate the short-term effects of tail risk on asset prices. We first estimate

the common tail risk component of a cross-section of intra-day stock returns on day t, λPt ,

using the Hill (1975) power law estimator. This essentially adapts the tail index by Kelly

and Jiang (2014) to a high-frequency environment. Then, we introduce a novel version

of the Hill estimator, λQt , that relies on risk-neutralized returns. More specifically, we

apply a nonparametric adjustment to the pooled cross-section of stock returns on day t

where “bad” states of nature, represented by negative observations, are overweighted to

reflect investors’ compensation for risk. The dynamics of the physical and risk-neutral

Hill estimators differ substantially as compensation for risk varies over time.

Our approach overcomes two main challenges. First, extreme events are infrequently

observed by definition. This limits the information available from the time series of

a single asset such as the market index. Second, option maturities are relatively long

compared to daily events, which makes it difficult to measure the tail risk specific to

day t using option prices. By using high-frequency data on a large cross-section of stock

returns, we are able to extract information about the level of tail risk at day t from

the individual extreme events experienced by different stocks. Furthermore, our risk-

neutralization allows to obtain a tail measure incorporating the economic valuation of
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tail risks by investors, which otherwise would only be possible using option prices (see,

e.g., Aït-Sahalia and Lo, 2000).

Our empirical analysis is conducted considering each of our tail measures (λPt and λQt )

in order to assess the information content of investors’ economic valuation of tail risk.

In particular, we compute the difference between the two estimators at a given point in

time to capture the additional thickness of the left tail coming from the compensation

demanded by investors for bearing tail risk. We call this difference the tail risk premium

(TRP ) and also investigate its implications for asset prices.

A distinctive feature of the tail measures we estimate is that they tend to decrease in

periods of market distress. This contrasts with the usual increase that volatility-based

risk measures exhibit during crises. In fact, the Hill estimator captures the thickness

of the left tail after taking into account the effect of volatility, such that tail risk and

volatility can move in different directions. This suggests that crisis periods are more often

associated with bursts in volatility rather than more activity in the left tail.1 Perhaps

more surprising, the tail risk premium also decreases during financial crises, indicating

that extreme negative events are more painful to investors in calm markets.2 Intuitively,

negative returns contain more information about unfavorable business conditions when

they occur in periods of low volatility.

We start by examining the predictive relation between the tail measures and market

risk premium in the short-term. We find that the tail risk premium positively predicts

excess market returns, consistent with the idea that investors require higher returns to

hold the market when compensation for bearing tail risk is higher. This relation is

statistically significant and holds out-of-sample for weekly and monthly horizons, while

there is no predictability at the daily horizon. Patterns are similar for λQt , albeit with

insignificant coefficients, whereas λPt has no predictive power for the equity premium at

the horizons considered. As for the variance risk premium, it is strongly predicted by λPt ,

λQt and TRP at all horizons, with a negative relation. This indicates that compensation

1This is consistent with the evidence by Christensen et al. (2014), Kelly and Jiang (2014) and
Chapman et al. (2018), and the fact that realized kurtosis also decreases during financial crises.

2This is in line with contemporaneous evidence from option data in Schreindorfer and Sichert (2022).
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for risk in the left tail and compensation for variance risk are inversely related once we

control for changes in volatility in computing tail risk.

Tail risk also strongly predicts market risk for all short-term horizons considered.

The predictive relation is negative for realized (and option-implied) volatility and realized

skewness, while it is positive for realized kurtosis. This holds both for λPt and λ
Q
t , although

the predictive power of the risk-neutral tail measure consistently dominates that of the

physical one, in- and out-of-sample. In particular, bivariate regressions considering both

λPt and TRP often render the former insignificant, reaffirming the incremental information

afforded by the risk-neutralization. In addition, we show that our tail measures, estimated

from a cross-section of U.S. stocks, significantly predict international market realized

variances. This suggests important cross-border contagion effects of tail risk.

We then investigate whether short-term tail risk is priced in the cross-section of stocks.

To do so, for each of our tail measures, we build a long-short portfolio by sorting stocks

each month on their recent exposure to the measure, based on contemporaneous daily

regressions. The tail risk factors constructed from λQt and TRP generate statistically

significant average returns that cannot be explained by standard factor models, where

stocks with high exposure to tail risk (or tail risk premium) have high hedging capacity

and are thus highly priced, yielding subsequent low returns. In contrast, the tail factor

associated with λPt leads to insignificant spreads in returns. In other words, only the

short-term exposure to tail risk as perceived by investors (that is, its economic valuation)

helps explain differences in expected returns across stocks.

Finally, in light of the fact that momentum remains a puzzle for standard factor

models (Fama and French, 2016), we test if including our tail risk factor improves the

explanatory power for this anomaly. In fact, Daniel and Moskowitz (2016) show that

there is a crash risk component in momentum strategies, the compensation for which can

potentially be captured by our factor. We find that the average return of the momentum

strategy can be explained by its statistically significant loading on the risk-neutral tail

risk factor. The same is not true considering the physical tail risk factor. This suggests

that momentum is priced because it captures short-term exposure to tail risk.
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The remainder of the paper is organized as follows. After a brief discussion of the

related literature, Section 2 describes the methodology to construct our tail measures.

Section 3 presents the data and the estimated tail measures, while Section 4 contains our

empirical analysis. Section 5 concludes the paper.

1.1 Related literature

Our paper is mainly related to an evolving literature investigating the effects of left

tail risk and investors’ compensation for such risk on financial markets. Bollerslev and

Todorov (2011), Bollerslev et al. (2015) and Andersen et al. (2015, 2017) provide evidence

that tail risk is an important determinant of the equity and variance risk premia using

option-implied tail measures. Extracting information from observed stock prices, Bali

et al. (2009), Kelly and Jiang (2014), Almeida et al. (2017), Weller (2019) and Almeida

et al. (2022) show that tail risk strongly predicts future market returns and macroeco-

nomic activity. Computing tail risk at the firm-level, Bali et al. (2014), Chabi-Yo et al.

(2018) and Atilgan et al. (2020) document significant cross-sectional relations between

tail risk and future stock returns. International evidence on the effects of tail risk beyond

the U.S. market is provided by Andersen et al. (2020), Andersen et al. (2021) and Freire

(2021). We contribute to this literature by providing a novel method to estimate the

tail risk specific to each day t. We document new short-term return predictability for

the aggregate market and the cross-section of stocks, with particular focus on the role of

incorporating investors’ preferences towards tail risk.3

The closest work to ours is by Kelly and Jiang (2014), who propose the Hill estimator

to estimate the common tail risk component of a cross-section of stocks at a monthly

frequency. We adapt their estimator to a daily frequency using intra-day stock returns

and put forward a new version of the Hill estimator based on risk-neutralized returns.

We use both physical and risk-neutral estimators and their difference to study the rela-

tion between tail risk (and its economic valuation) and risk premia at horizons up to a

month. In this context, we find that the economic perception of tail risk, as opposed to
3For an early contribution on the role of taking economic valuation into account for computing risk

measures, see Aït-Sahalia and Lo (2000).
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the physical tail risk, is an important determinant of the equity premium, variance risk

premium and the cross-section of returns.

Also on a closely related work, Almeida et al. (2022) introduce a daily tail measure

based on the expected shortfall of risk-neutralized intra-day market returns.4 While

we also use high-frequency data and risk-neutralization to estimate tail risk at a daily

frequency, there are important differences between our approach and theirs. First, we

extract information about the tail from extreme events of a cross-section of stocks, while

they only consider the market index. Second, the tail measures in the two papers are

inherently different, as their measure is closely related to volatility whereas ours is to

higher moments such as kurtosis. In fact, their measure predicts excess market returns at

the one-day horizon, while we find predictability for weekly and monthly horizons based

on our measure. This suggests the tail measures offer complementary information. Third,

while Almeida et al. (2022) focus on predicting market risk premia, we also investigate

how short-term exposure to tail risk is priced in the cross-section of stocks.

Our paper is also related to the extensive literature identifying factors that are relevant

to explain differences in the cross-section of stock returns, including Carhart (1997), Pás-

tor and Stambaugh (2003), Fama and French (2015, 2016), among many others. Using our

risk-neutral tail measure, we construct a tradable tail risk factor by sorting stocks based

on their recent exposure to tail risk. This factor produces significant spreads in stock

returns that cannot be explained by exposures to standard factors. We also show that

our tail risk factor significantly explains the average returns of the momentum anomaly

(Jegadeesh and Titman, 1993), offering a risk based explanation for momentum that is

in line with previous evidence by Daniel and Moskowitz (2016). The risk-neutralization

and daily frequency of our tail measure are fundamental to this finding.

4Almeida et al. (2022) build on the method by Almeida et al. (2017), who were the first to incorporate
risk-neutralization in the estimation of tail risk.
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2 Methodology

In this section, we describe the approach we take to estimate left tail risk at a daily

frequency. Using a cross-section of intra-day stock returns, we first extract information

about the common component of the tail risks of individual firms using the Hill estimator.

Then, we introduce a new version of the Hill estimator that relies on risk-neutralized stock

returns, thus further incorporating the investors’ perception of risk in the estimation

of extreme event risk. The difference between the two estimators at a given point in

time captures the additional thickness of the left tail distribution that comes from the

compensation demanded by investors for bearing tail risk. We call this difference the tail

risk premium.

2.1 Hill estimator

Extreme events in financial markets are infrequent, even more so in a high-frequency

environment. This makes it challenging to construct an aggregate measure of tail risk

relying on a single asset such as the market index, since informative observations for the

tail are rare by definition. To overcome this issue, we follow Kelly and Jiang (2014) by

adopting a panel estimation approach capturing common tail behavior in the cross-section

of individual stock returns. The identifying assumption is that the dynamics of the tail

distributions of the firms are similar, so that extreme events in the cross-section allow us

to extract the common component of their tail risk at each point in time.

More specifically, we assume that the left tail of the return distribution of asset i

follows a power law structure.5 That is, its day t conditional left tail distribution, defined

as the set of extreme returns below some negative threshold ut, obeys the following

relation:

P (Ri,t+1 < r|Ri,t+1 < ut and Ft) =

(
r

ut

)−ai/λt
, (1)

where r < ut < 0 and Ft is the conditioning information set.6 The parameter ai/λt
5See Kelly and Jiang (2014) for a detailed motivation of the use of a power law structure to model

the left tail distribution of returns. In sum, for a large class of heavy-tailed distributions, the left tail
converges to a generalized power law distribution.

6r < ut < 0 and ai/λt > 0 guarantee that the probability (r/ut)
−ai/λt is always between zero and
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is the tail exponent which determines the shape of the tail distribution of asset i. The

constant ai may be different across assets in the cross-section, implying that they can

have different levels of tail risk. However, their dynamics are driven by a common time-

varying component, λt. The higher the λt, the fatter the stock returns’ left tails and the

higher the probabilities of extreme negative returns in the cross-section. Therefore, we

refer to λt as our measure of aggregate tail risk.7

For each day t in our sample, we estimate the common tail risk component λt by

applying the standard Hill (1975) power law estimator to our pooled cross-section of

intra-day returns:

λPt =
1

Kt

Kt∑
k=1

ln
Rk,t

ut
, (2)

where Rk,t is the kth high-frequency return that is below the threshold ut on day t,

Kt is the total number of returns that fall below this threshold within day t and the

superscript P denotes that returns are observed under the physical probability measure.8

The threshold ut represents an extreme quantile determining that the observed returns

below ut belong to the left tail and follow the power law structure. We follow Kelly and

Jiang (2014) by defining ut to be the fifth percentile of the return cross-section for each

period, which makes the threshold time-varying as the pooled return distribution changes

from day to day.9

2.2 Risk-neutral Hill estimator

The Hill estimator extracts the common tail risk component from the pooled cross-

section of returns observed under the physical probability measure, under which all ob-

servations are deemed equally likely to happen. In that sense, λPt does not incorporate

the true risks that are perceived by investors in financial markets. In particular, if in-

vestors are risk averse, then “bad” states of the world, represented by extreme negative

one.
7In extreme value theory, the parameter λt is also often called the shape parameter, and its inverse

1/λt the tail index (see, e.g., Danielsson, 2011).
8In the Hill formula, returns that fall below threshold ut are treated as the first Kt entries of Rt.

This is without loss of generality since in the pooled cross-section the elements of Rt are exchangeable.
9Our empirical results are qualitatively similar if we define ut to be the first or tenth percentile.
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observations in the cross-section, are overweighted to reflect compensation for risk. Since

such observations are precisely the ones that matter for estimating tail risk, the economic

perception of the left tail of returns may be underestimated by the physical Hill estima-

tor. Moreover, its dynamics can also differ from that captured by λPt , as compensation

for risk demanded by investors may vary over time depending on business conditions.

In order to incorporate investors’ compensation for risk in the estimation of left tail

risk, we propose a new version of the Hill estimator coupled with a nonparametric risk-

neutralization algorithm. The idea is to tilt the physical measure such that risk in the

pooled cross-section of stock returns is corrected for. This is possible by identifying a

pricing kernel, or stochastic discount factor (SDF), that correctly prices the N pooled

intra-day excess returns on a given day:

1

N

N∑
n=1

mn,tRn,t = 0, (3)

where we normalize the mean of the SDF to be one ( 1
N

∑N
n=1mn,t = 1).10 The pricing

kernel corrects for risk as, after risk-neutralizing the excess returns with R̃n,t = mn,tRn,t,

there is no risk premium left. Equivalently, the expectation under the tilted risk-neutral

probabilities mn,t/N of the excess returns in the pooled cross-section equals zero. We

discuss how to identify the pricing kernel in the next subsection.

The risk-neutral Hill estimator λQt is then obtained by using the risk-neutralized pooled

cross-section of returns in equation (2):11

λQt =
1

Kt

Kt∑
k=1

ln
R̃k,t

ut
. (4)

If investors are risk averse, then “bad” states of the world with negative return observations

are associated with high marginal utility, i.e., with values of the pricing kernel above its

mean one. Therefore, negative returns get properly overweighted reflecting compensation

10This implies an implicit gross risk-free rate of one such that we can treat the net stock returns in
the cross-section as excess returns.

11That is, we posit that the left tail of the risk-neutral return distribution of each asset i in the
cross-section also follows a power law structure.
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demanded by investors for higher risk. In other words, the left tail of the risk-neutral

distribution is thicker than that of the physical distribution. This naturally implies

that λQt > λPt , where the difference between the two estimators captures the additional

tail thickness coming from the risk compensation demanded by investors for extreme

negative events. Throughout the paper, we call this difference the tail risk premium

(TRPt = λPt − λ
Q
t ).

2.3 Risk-neutralization

The exact distortion of the physical measure, or risk correction of the pooled cross-

section of returns, depends on the pricing kernel considered.12 Besides correctly pricing

the returns, there are two important properties that the SDF must satisfy. First, it must

be nonnegative in order to be consistent with no-arbitrage. This guarantees that the

tilted risk-neutral probabilities mn,t/N constitute a proper probability measure. Second,

it should incorporate information about higher moments of the return distribution. This

is important for modeling tail risk, since investors’ aversion to downside risk is related to

negative skewness aversion (see, e.g., Schneider and Trojani, 2015).

We follow the nonparametric approach developed by Almeida and Garcia (2017) to

obtain a nonlinear pricing kernel satisfying the properties above. Their method consists

in estimating SDFs minimizing a family of discrepancy loss functions (Cressie and Read,

1984) subject to correctly pricing a set of returns. This approach is a generalization of

Hansen and Jagannathan (1991), who show how to obtain a minimum variance SDF from

data on asset returns. Almeida and Garcia (2017) consider more general loss functions

that take into account higher moments and imply nonnegative SDFs. Adapted to our

context, the minimum discrepancy problem is given by:

min
{m1,t,...,mN,t}

1
N

∑N
n=1

mγ+1
n,t −1

γ(γ+1)
,

s.t. 1
N

∑N
n=1 mn,tRn,t = 0, 1

N

∑N
n=1 mn,t = 1, mn,t ≥ 0 ∀n,

(5)

12We consider the realistic case of an incomplete market, where there exists an infinity of pricing
kernels that correctly price the stock returns under no-arbitrage.
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where the parameter γ ∈ R indexes the convex loss function in the Cressie and Read

(1984) discrepancy family. This family captures as particular cases several loss functions

in the literature, such as the Hansen and Jagannathan (1991) quadratic loss function

when γ = 1 and the Kullback Leibler Information Criterion adopted by Stutzer (1995)

when γ → 0.

Under the assumption of no-arbitrage in the observed sample, Almeida and Garcia

(2017) show that solving (5) is equivalent to solving the simpler dual problem below, for

γ < 0:13

λ∗γ = arg max
λ∈Λγ

1

N

N∑
n=1

− 1

γ + 1
(1 + γλRn,t)

( γ+1
γ

) , (6)

where Λγ = {λ ∈ R : for n = 1, ..., N, (1 + γλRn,t) > 0}. The minimum discrepancy SDF

can then be recovered from the first-order condition of (6) with respect to λ, evaluated

at λ∗γ:

m∗γ,n,t =
(
1 + γλ∗γRn,t

) 1
γ , n = 1, ..., N. (7)

For each γ, the solution λ∗γ of the dual problem (6) leads to a different minimum

discrepancy SDF. While by construction they all correctly price the pooled cross-section

of returns, they do so by representing distinct risk preferences. In particular, Almeida and

Freire (2022) show that positive absolute prudence (Kimball, 1990), which is related to

aversion to downside risk and a convex marginal utility, is captured by γ < 1. Moreover,

the smaller the γ, the more aversion to downside risk is embedded in the SDF, where the

pricing kernel gets more convex putting more weight in extreme negative observations

of returns.14 They also show that, for extreme negative γs (usually below −5), the

constrained maximization in the dual problem (6) may not have a solution. In order to

successfully identify a pricing kernel capturing aversion to downside risk, we choose the

one associated with γ = −3 to calculate the risk-neutral Hill estimator.15

13For γ > 0, the problem is unconstrained with an indicator function in the objective function:
1
N

∑N
n=1−

1
γ+1 (1 + γλRn,t)

( γ+1
γ )

IΛγ(Rn,t)(λ), where Λγ(Rn,t) = {λ ∈ R : (1 + γλRn,t) > 0} and IA(x) =
1 if x ∈ A, and 0 otherwise. For γ = 0, the problem is unconstrained and the objective function is
exponential: 1

N

∑N
n=1 −eλRn,t .

14Since the mean of the pricing kernel continues to be the same, this means that less weight is given
to intermediary return observations.

15Considering pricing kernels minimizing loss functions indexed by alternative γs associated with
aversion to downside risk (such as −2 or −1) leads to similar conclusions.
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3 Data description and implementation details

3.1 Data sources

Our sample consists of 5-minute returns for a panel of 100 stocks that were in the S&P

500 for the entire period between 2000 and 2020. The data is obtained from TickData Inc.

Although our approach does not require a balanced panel, it does require liquid assets

as otherwise the estimation may be impacted by the presence of zero returns (see, e.g.,

Bandi et al., 2020, 2017) and liquidity-related microstructure noise (see, e.g., Aït-Sahalia

and Yu, 2009; Hansen and Lunde, 2006).16 Therefore, we consider 100 highly liquid assets

that were traded continuously over the sample period and work with a balanced panel

for transparency and ease of exposition.

Throughout the paper, we utilize data on market returns, risk factors, and other un-

certainty measures. The popular five factors of Fama and French (2015), the momentum

factor and the risk-free rate are obtained from Kenneth French’s website. The liquidity

factor of Pástor and Stambaugh (2003) is available from Lubos Pastor’s website. The

V IX index and the left tail variation (LTV ) proposed by Bollerslev et al. (2015) are

respectively obtained from the Chicago Board Options Exchange (CBOE) and from the

tailindex website, which is made available by Torben Andersen and Viktor Todorov. Fi-

nally, we construct measures of the variance, skewness, and kurtosis of the S&P 500 index

using high-frequency returns sampled every 5 minutes also obtained from TickData Inc.

In following Andersen et al. (2001, 2003) and Amaya et al. (2015), the realized variance

(RV ), realized skewness (RSK), and realized kurtosis (RK) take the following form:

16To formally exclude the impact of microstructure noise, we have performed the Hausman tests
for microstructure noise and first-order serial correlation of Aït-Sahalia and Xiu (2019), for each stock
and each day. The tests reject any significant presence of microstructure noise and first-order serial
autocorrelation in the returns.
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RVt =
M∑
j=1

R2
t,j, (8)

RSKt =

√
M
∑M

j=1R
3
t,j

RV
3/2
t

, (9)

RKt =
M
∑M

j=1R
4
t,j

RV 2
t

, (10)

where Rt,j denotes the return on the S&P 500 index over the j-th intra-daily time interval

on day t, and M denotes the number of high-frequency return intervals each day.

3.2 Risk-neutral estimates

As described in Section 2, we estimate the SDF for each day t using the pooled cross-

section of intra-day stock returns. Sampling returns every 5 minutes based on 6.5 trading

hours leads to 78 intra-day observations per stock per trading day, yielding a total of

N = 7, 800 observations by pooling the cross-section of 100 stocks. The estimation of the

SDF is subject to the issue of outliers, as in their presence the risk-neutral distribution

will allocate most of the probability weight to the (few) largest negative returns. To

address this issue and guarantee a smooth risk-neutral measure, we winsorize 0.25%

of the lowest and highest returns in the cross-section. We also impose the economic

restriction of a 5% lower bound on the annualized equity premium, following Almeida

and Freire (2022).17 While results are similar compared to those where this restriction

is not imposed, we keep it because it is economically sound to consider a lower bound

on the equity premium (Campbell and Thompson, 2008; Martin, 2017; Pettenuzzo et al.,

2014). Note that the restrictions above are only imposed for the estimation of the SDF.18

To illustrate, Figure 1 plots the estimated risk-neutral probabilities (mγ,n,t/N) for

various values of γ and the physical probabilities (1/N) for a random day in our sample.
17More specifically, for each day t, we impose that the average of the pooled returns in the cross-

section is at least 5% above the risk-free rate, in annualized terms. That is, we shift the mean of the
pooled return distribution to the lower bound when the bound is binding.

18That is, to compute the Hill estimator, we do not impose the 5% equity premium lower bound and
we use all returns, including the ones that were categorized as outliers. The SDF weight for an outlier
is set equal to the weight of the smallest (or highest) return not categorized as outlier.

13



The observed patterns are representative of other dates. As can be seen, the risk-neutral

measures give more probability weight to negative returns and less to positive ones com-

pared to the physical measure. This reflects agents’ risk aversion: investors require more

compensation (i.e., the SDF is higher) for “bad” states of the world. The relative compen-

sation for risk in the left tail of the returns depends, in turn, on the aversion to downside

risk. The smaller the γ, the more averse to downside risk (or, equivalently, the more

prudent) is the investor and the greater are the weights to negative returns under the

risk-neutral measure. As previously mentioned, we use the SDF associated with γ = −3

for the estimation of the risk-neutral Hill estimator.

3.3 Tail risk estimates

We estimate the tail risk measures λPt and λQt as detailed in Section 2 using the set of

intra-day return observations for all stocks for each day t. The upper panels of Figure 2

plot their one-month moving averages, for ease of exposition. The measures share similar

dynamics, with a correlation of 83.1%. In particular, both measures tend to decrease in

periods of market distress. This is in contrast to the usual increase that standard risk

measures based on volatility exhibit during crises. To understand this pattern, the left

lower panel of Figure 2 reports the time-varying threshold ut (in absolute value), that

determines where the left tail begins in the Hill estimator. As can be seen, ut resembles

a volatility measure, peaking during financial crises. The tail risk measures λPt and λQt

can thus be thought of as capturing the thickness of the left tail after taking into account

the effect of volatility. In fact, as Kelly and Jiang (2014) note, a fixed percentile is used

to define ut exactly for this reason: if volatility increases but the shape of the return

left tail is unchanged, an increase of the threshold (in absolute value) absorbs the effect

of volatility changes and leaves estimates of the tail exponent unaffected.19 Therefore,

Figure 2 effectively shows that financial crises are more often associated with bursts in

19In unreported tests, we calculate λPt and λQt with a constant threshold ut = u and find that both
measures behave like volatility-type measures. This indicates that defining ut as a fixed percentile of the
return cross-section is instrumental to isolate the effects of volatility from the shape of the left tail.
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volatility rather than more activity in the left tail.20

Even though the tail risk measures λPt and λQt display similar dynamics, they are

still fundamentally different. The right lower panel of Figure 2 plots the absolute value

of the tail risk premium, |TRPt|. By construction, the left tail of the pooled return

distribution is always thicker under the risk-neutral measure than under the physical

measure. However, the additional thickness of the tail coming from the risk compensation

required by investors varies substantially over time. In particular, |TRPt| tends to be

larger during normal times, and smaller during crisis periods. In other words, extreme

negative returns are more painful to investors in calm markets. This is in line with

contemporaneous evidence from option data by Schreindorfer and Sichert (2022). The

intuition is that negative returns contain more information about unfavorable business

conditions when they occur in periods of low volatility.

3.4 Comparison with other risk measures

Table 1 reports the correlation between λPt , λ
Q
t , ut, TRPt and several risk measures.

Both tail risk measures are negatively correlated with volatility measures (RVt, V IX2
t ,

V RPt and LTVt), whereas (the absolute value of) ut is positively correlated with these

measures. This is consistent with the fact that the time-varying threshold ut controls

for the effect of volatility in the calculation of λPt and λQt , as discussed in the previous

subsection. In contrast, both tail risk measures are positively related to realized higher-

order moments such as skewness and kurtosis. As for the TRPt, it is negatively related to

both λPt and λ
Q
t , indicating that the additional thickness of the tail coming from investors’

risk compensation increases (i.e., TRPt gets more negative) when tail risk increases.

Figure 3 provides further details on the relation between λQt and risk variables (the

plots are similar for λPt ). The upper panels make clear that tail risk, as measured as

the shape parameter of the left tail of returns, is lower during periods of high volatility.

On the other hand, the lower panels show that realized skewness and kurtosis co-move

considerably with λQt . This is especially true for kurtosis, which is often regarded as a
20This is in line with previous findings in the literature (see, e.g., Chapman et al., 2018; Christensen

et al., 2014; Kelly and Jiang, 2014).
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measure of tail thickness. As can be seen, like λQt , realized kurtosis tends to be lower

during periods of market distress. This suggests that measures of tail thickness, such as

the ones we propose here, are more closely related to higher-order return moments like

kurtosis than to second moments such as volatility.

4 Empirical results

This section provides empirical evidence of the information content of our tail risk

measures for asset prices in the short-term. We document the predictive power of the

tail measures in forecasting the equity premium, variance risk premium, U.S. and inter-

national market variances, as well as various risk measures. In particular, we perform

daily (h = 1), weekly (h = 5), and monthly (h = 22) in- and out-of-sample forecasting

exercises. The out-of-sample exercise is based on a rolling window of 500 days. In ad-

dition, we investigate how tail risk is priced in the cross-section of stocks. To do so, we

construct monthly long-short portfolios by sorting stocks on their recent exposure to the

tail risk measures.

4.1 Predicting excess market returns

Table 2 contains the forecasting results for the excess market returns, i.e., the equity

premium. We report the coefficients and t-statistics that are computed using Newey-West

robust standard errors with a lag length equal to the forecasting horizon h. All reported

coefficients are scaled to be interpreted as the effect of a one standard deviation increase

in the regressor on future excess market returns. The last two columns of each sub-

panel convey the out-of-sample R2 for an unconstrained and equity constrained forecast.

The equity constraint sets to zero all the forecasted values that are non-positive (see, e.g.,

Campbell and Thompson, 2008; Pettenuzzo et al., 2014). This constraint can be seen as a

mild restriction, since it is difficult to consider an equilibrium framework where risk averse

investors would hold the market if the expected compensation was negative.21 The out-of-

21The use of economic constraints to sharpen market return forecasts is standard in the literature.
While previous studies have also considered no-arbitrage restrictions (e.g., Ang and Piazzesi, 2003) and
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sample R2 is defined as R2
oos = 1−

∑
t

(
rt+1:t+h − r̂t+1:t+h|t

)2
/∑

t

(
rt+1:t+h − rt+1:t+h|t

)2,

where r̂t+1:t+h|t is the out-of-sample forecast of the market return based solely on data

through t, and rt+1:t+h|t is the historical average return estimated through period t.

From the in-sample predictive regressions, we find a negative relation between the

physical tail risk measure λPt and the equity premium irrespective of the forecasting hori-

zon. By contrast, the risk-neutral tail measure λQt positively predicts weekly and monthly

excess market returns, consistent with a premium for bearing tail risk. While coefficients

are insignificant in both cases, the discrepancies in their signs for λPt and λQt suggest that

only the economic perception of tail risk carries a premium. The third sub-panel, which

reports the bivariate regression based on λPt and the tail risk premium (TRP ), corrobo-

rates these findings. Although both coefficients are negative, it is important to note that

the TRPt is negative by construction. Thus, as the wedge between the risk-neutral and

physical tail risk increases (i.e., TRPt becomes more negative), so does the future market

return. In other words, investors require higher returns to hold the market at weekly and

monthly horizons when compensation for bearing tail risk is higher. This relation is both

economically and statistically significant.22

To further assess the information content of the tail risk premium, we compare the

in-sample R2 of the univariate and bivariate regressions. As can be seen, after adding

the TRPt onto the univariate regression of the physical tail risk, the weekly and monthly

R2 increase substantially, from 0.012% and 0.003% to 0.102% and 0.379%, respectively.

In addition, the univariate (bivariate) regression shows a consistent decrease (increase)

in performance as the forecasting horizon lengthens. The increasing predictive power of

the tail risk premium for longer horizons is in line with the previous literature (see, e.g.,

Andersen et al., 2015, 2020; Bollerslev et al., 2015), and is supported by the fact that at

shorter horizons the unpredictable and noisy component of returns dominates, whereas

the predictable component emerges as the holding period increases (see. e.g., Andersen

et al., 2020; Stambaugh, 1999).

slope coefficient constraints (e.g., Campbell and Thompson, 2008), we use the equity constraint because
it is economically sound and easy to implement.

22These results are robust to controlling for several alternative predictors of excess market returns as
shown in Table 8 in Appendix B.
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We now focus on the out-of-sample performance, which is assessed by means of the

R2
oos and its constrained counterpart, R2

oos,EC .23 Beginning with the R2
oos, we find that

the physical tail risk has no predictive power for future excess market returns, regardless

of the forecasting horizon. In contrast, the risk-neutral tail measures are able to beat

the benchmark historical mean at the monthly horizon. For instance, the monthly R2
oos

of λPt , λ
Q
t , and the bivariate regression (λPt + TRPt) are respectively −0.018%, 0.272%,

and 0.354%. In other words, the inclusion of the TRPt results in an increase of the R2
oos

of 37.20 basis points with respect to the univariate case with λPt . Turning to the equity

constrained results, we see that imposing this economic restriction increases the out-of-

sample R-squared for all predictors. Nevertheless, this improvement does not alter the

ranking of the forecasts, as λQt and (λPt + TRPt) generate the highest R2
oos,EC for weekly

and monthly forecasts, respectively.

In summary, our results indicate that the tail risk premium is an important determi-

nant of the equity premium at weekly and monthly horizons. In particular, accounting for

investors’ aversion to downside risk in computing tail risk affords incremental information

about future market returns above and beyond that contained in the physical tail risk.

4.2 Predicting variance and alternative risk measures

The temporal variation of volatility is usually associated with time-varying economic

uncertainty.24 In addition, the variance risk premium (V RP ) captures investors’ com-

pensation for variance risk and is often regarded as a proxy for aggregate risk aversion

(see, e.g., Bekaert et al., 2013; Campbell and Cochrane, 1999). Given that our tail risk

measures capture extreme events associated with “bad” states of the economy, and our

risk-neutralized measures further incorporate investors’ aversion to downside risk, it is

natural to assess their information content for predicting risk and compensation for risk.

Table 3 reports the forecasting results for the V RP and various risk measures of
23The use of the R2

oos to evaluate the out-of-sample performance of candidate models is a popular
choice in the literature (see, e.g., Campbell and Thompson, 2008; Kelly and Jiang, 2014; Pettenuzzo
et al., 2014). Negative values indicate that the predictor performs worse than forecasts given by the
historical mean.

24While we use the volatility and variance terms interchangeably, the results are based on predicting
variances.

18



the S&P 500 index, such as the squared V IX (V IX2), realized variance (RV ), left

tail variation (LTV ), realized skewness (RSK), and realized kurtosis (RK).25 As it is

customary in the forecasting volatility literature (see, e.g., Andersen et al., 2007, 2003),

we model the logarithmic variances.26 Panels A, B, and C report the coefficients and

t-statistics at the one-day (h = 1), one-week (h = 5), and one-month (h = 22) forecasting

horizon, respectively. Coefficients are scaled to be interpreted as the effect of a one

standard deviation increase on future market risk. The last two columns of each sub-

panel report the in- and out-of-sample R2.

The univariate predictive regressions in Table 3 indicate that both the physical and

risk-neutral tail risk are strong predictors of variance risk and compensation for such risk,

for all horizons considered. Even so, the predictive power of λQt consistently dominates

that of λPt . In line with the discussion in Section 3.4, the coefficients are negative and

strongly significant, suggesting an inverse relation between activity in the left tail and

volatility. Considering the bivariate regressions, we further find that adding the TRP

substantially increases the R2
is across all forecasting horizons. For instance, focusing

on the results for the V IX2, the R2
is of λPt increases from 6% to 18% and from 3.8%

to 14.6% for one-day and one-month horizons, respectively. Moreover, the inclusion of

TRPt renders λPt insignificant for predicting monthly V RP and LTV , reaffirming the

incremental information provided by the risk-neutralization. Results are similar out-of-

sample, where the λQt and TRPt are always superior to λPt in terms of R2
oos.

The results above highlight how the tail measures we construct are fundamentally

different from existing ones in the literature. For instance, Bollerslev et al. (2015) demon-

strate how the LTV is an important component of the V RP , where both are positively

related. Furthermore, the tail measure of Almeida et al. (2022) positively predicts the

V RP . In contrast, our measures, which capture the thickness of the left tail disentangled

from the effects of volatility, strongly negatively predict the V RP . In this sense, our

results suggest that compensation for risk in the left tail and compensation for variance

25The V RP is defined as the difference between the V IX2 (adjusted to a monthly scale) and the
realized variance over the previous 30 calendar days.

26Results for predictive regressions estimated on levels are qualitatively similar.
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risk are inversely related once we control for changes in volatility in computing tail risk.

Turning to the higher-order moments, it can be seen that both physical and risk-

neutral tail risk are important predictors of skewness and kurtosis, across all horizons. In

particular, an increase in tail risk decreases future skewness: periods with more activity

in the left tail are followed by market return distributions that are more skewed to the

left. Moreover, tail risk positively predicts kurtosis: thicker left tails, as captured by

our tail measures, are indicative of thicker tails in the market return distribution in

subsequent periods. More specifically, a one-standard deviation increase in λPt and λQt

increases kurtosis at the monthly horizon by 2.93 and 3.68, respectively. The bigger

magnitude of the λQt ’s coefficient is observed across all forecasting horizons, reflecting

the incremental information afforded by incorporating the risk compensation required

by investors. This also translates into both stronger coefficient significance and higher

R-squared. For instance, the t-statistics and R2
is for the monthly forecasts of kurtosis

are 4.35 and 6.34, and 3.41% and 5.38%, for λPt and λQt , respectively. The bivariate

regressions further indicate that the TRPt provides additional relevant information for

future skewness and kurtosis, as its inclusion substantially increases the in- and out-of-

sample performance relative to the physical tail risk.

Finally, we investigate whether our tail measures, based on a cross-section of U.S. stock

returns, can also be useful to forecast the variances of international stock indices.27 Ta-

ble 4 conveys the results for predicting realized variances of the FTSE (United Kingdom),

DAX (Germany), CAC-40 (France), STOXX (Eurozone), IBEX (Spain), Nikkei (Japan),

and SSEC (Shanghai). The results reveal that both physical and risk-neutral U.S. tail

risk are strong predictors of international market variances. This suggests our measures

capture an important common tail risk component reflecting cross-border contagion and

transmission of bad states of the economy across different countries.28 Importantly, these

relations are much stronger when incorporating investors’ aversion to downside risk with

the risk-neutralization. The R2
is of λQt is generally twice as large as that of its physical

27The realized variances of the international markets, obtained from the Oxford-Man Institute’s Re-
alized Library, are also estimated based on 5-minute returns.

28The high degree of association between the volatility of the S&P 500 and the international volatilities,
with an average correlation of 72.9%, confirms that volatilities are driven by common components.

20

https://www.oxford-man.ox.ac.uk/resources/the-realized-library/
https://www.oxford-man.ox.ac.uk/resources/the-realized-library/


counterpart, across all forecasting horizons. Even more striking, the R2
is of the bivariate

regressions including TRP are often three times as large as those of the univariate re-

gressions. In particular, the TRPt is strongly significant and, for h = 22, subsumes the

information contained in λPt for all the indices with the exception of the DAX.

In summary, we document that our tail risk measures possess strong predictive power

for the variance risk premium and several risk measures for the S&P 500 index,29 as

well as for a number of international market variances. This holds for daily, weekly

and monthly forecasting horizons. Predictive performance is always stronger when the

economic valuation of tail risk is taken into account with our risk-neutralized tail mea-

sures. In particular, the incremental information of the TRPt generally subsumes the

information content of the physical tail risk at monthly horizons.

4.3 Tail risk and the cross-section of stock returns

Hitherto, we have shown that the economic perception of tail risk by investors is an

important determinant of aggregate market risk and risk premia at short-horizons. This

section investigates whether recent exposure to tail risk is priced in the cross-section of

stock returns through portfolio sorts. To do so, at the end of each month in our sample,

we measure the insurance value of our 100 individual stocks with daily regressions over

the previous 7 months, i.e., we estimate contemporaneous betas with respect to our tail

measures: Ri,t = µi + βiTRi,t, where TRi,t ∈ {λPt , λ
Q
t , TRPt}.30 Then, we form equally-

weighted portfolios over the next month by sorting the 100 stocks into portfolios using

quintile breakpoints calculated based on the given sorting variable.

The first three panels of Table 5 report the results for λPt , λ
Q
t and TRPt, respectively.

In addition to the average returns of the quintile portfolios, we also report the portfolios

alphas (i.e., intercepts) from regressions of portfolio excess returns on the Fama-French

three and five factors as well as extended models controlling for momentum (Carhart,

1997) and liquidity (Pástor and Stambaugh, 2003) factors. The last two columns report
29Tables 9, 10, 11 and 12 in Appendix B show that such predictive power is robust to controlling for

lagged risk variables and several alternative predictors.
30Our results are robust to different estimation windows for the betas, such as 3, 5, 9, 12 and 24

months. These results are available upon request.
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the average returns and alphas of the high minus low zero net investment portfolio and

associated t-statistics, which are estimated using Newey-West robust standard errors.

Panel D presents the p-values from various tests of the monotonicity (Patton and Tim-

mermann, 2010) of average returns across the five quintile portfolios reported in Panels

A–C. All tests have a null hypothesis of a flat pattern (no relation). While the MR Up

and MR Down tests have alternative hypotheses of an increasing and decreasing pattern,

the MR test alternative hypothesis is unrestricted. The tests are estimated using 10,000

bootstrap replications and a block length equal to 10 months.

Several conclusions can be drawn from these results. First, stocks that are more

positively related to tail risk in the short-term earn lower returns. This is economically

sound, as stocks with high βi provide hedging opportunities against tail risk and are thus

highly priced, yielding subsequent low returns. This relation is monotonic across quintile

portfolios for λQt , which is formally confirmed by the rejection of the flat pattern using

the MR and MR Down tests. In contrast, a flat pattern cannot be rejected for λPt . For

the TRPt, there is a monotonic increasing pattern across quintile portfolios, which is due

to its negative sign as λPt is always smaller than λQt . Stocks with more negative βi with

respect to TRPt have higher insurance value for tail risk premium and are highly priced,

with subsequent low returns. This relation is confirmed by the rejection of the MR and

MR Up tests.

Second, exposure to physical tail risk generates insignificant average returns for the

high minus low portfolio. On the other hand, the return spreads associated with ex-

posures to λQt and TRPt are both statistically and economically significant, where the

corresponding high minus low strategies earn an average monthly return of −0.67% and

0.87%, respectively. This shows that recent exposure to tail risk as perceived by investors

is strongly priced in the cross-section. To further illustrate, Figure 4 plots the cumulative

returns of the quintile portfolios based on TRPt. As can be seen, while the high port-

folio performs reasonably well on its own, the robust profitability of the high minus low

strategy is mainly driven by selling the stocks with higher hedging capacity for tail risk.

Third, the average high minus low returns in Table 5 are generally larger (in abso-
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lute value) after controlling for standard factor models in the literature. For instance,

controlling for the Fama-French 3 factors results in an average monthly excess return of

−1.11% (t-statistic −3.88) and 1.42% (t-statistic 4.44) for λQt and TRPt, respectively.

The reason is that the tail factors are negatively correlated with the market, size and

value factors. This can be seen from Table 6, which provides further details on the re-

gressions of our high minus low portfolio returns on factors models. Again, only the tail

measures incorporating investors’ preferences are able to generate statistically significant

alphas. In particular, the large alphas of the high minus low λQt and TRPt portfolios hold

with significant factor exposure and high adjusted R2. This suggests that our risk-neutral

tail factors capture risk premium that is not reflected in firms’ exposures to the market,

size, value, profitability and momentum factors. By contrast, the tail factor based on λPt

holds no relation with standard factors, as it is only significantly exposed to the market

factor and the adjusted R2 of the regressions are low.

The results above unambiguously show that only the tail measures incorporating

investors’ preferences drive risk premium in the cross-section of stocks. To illustrate the

differences between the physical and risk-neutral tail measures, Figure 5 plots, for each

measure, the time series of the average βi within each quintile portfolio and its difference

between the high and low portfolios. During financial crises (e.g., the dot-com bubble, the

global financial crisis and the Covid-19 pandemic), stocks’ exposures to risk-neutral tail

risk and tail risk premium generally increase, as would be expected.31 In contrast, the βis

with respect to physical tail risk either decrease or fail to increase by the same magnitude.

This suggests that the additional information content of the economic valuation of tail

risk for the cross-section of returns is especially relevant during periods of market distress.

In sum, we find that the investors’ perception of tail risk and the compensation for

such risk in the short-term is strongly priced in the cross-section of stocks. High minus low

portfolios based on the recent exposure to tail risk generate statistically and economically

significant average returns, which are even larger after controlling for standard factor

models. The information content of risk-neutralization beyond that contained in physical

31Note that the TRPt is negative by construction and therefore a more negative βi implies a higher
sensitivity to tail risk premium.
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tail risk is especially relevant during financial crises.

4.4 Tail risk factor and the momentum anomaly

Since Jegadeesh and Titman (1993), momentum has been one of the most widely

studied anomalies in the cross-section of returns. Even so, there is still no consensus on

how to explain it. As documented by Fama and French (2016), momentum remains one of

the few anomalies for which predominant factor models such as Fama and French (2015)

hold no explanatory power. More recently, Kelly et al. (2021) show that a sizable fraction

of momentum can be explained by conditional risk exposure, as stocks’ past performance

can be seen as a noisy proxy for their time-varying loadings to priced factors. In this

section, we alternatively investigate whether the momentum strategy remains profitable

after controlling for its static exposure to our tail risk factors. Our motivation comes from

the fact that there is a crash risk component in momentum strategies as they experience

large negative returns during financial crises (Daniel and Moskowitz, 2016), such that the

compensation for such risk can potentially be captured by our factors.

Table 7 conveys the regression results of the momentum high minus low returns on

the Fama-French five factor model plus the liquidity factor of Pástor and Stambaugh

(2003), as well as extended models including the tail risk factors. The first column shows

that, in our sample, momentum generates a positive alpha over the Fama-French and

liquidity factors, which is statistically significant at the 10% level. Further controlling

for the physical tail risk factor does not help in explaining momentum, as noted by a

larger alpha, an insignificant loading on the tail factor and the decrease in the adjusted

R-squared. In contrast, after adding the tail risk factor based on λQt or TRPt, the alpha

of the momentum strategy becomes insignificant and even negative, and the adjusted R-

squared increases substantially. In other words, the significant exposure of the momentum

strategy to risk-neutral tail risk helps explain the spreads in returns it generates, which

is aligned with our initial motivation.

In sum, we find that the risk premium associated with the momentum anomaly is

in large part coming from the significant exposure of this strategy to risk captured by
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our tail factors. That is, short-term tail risk helps explain momentum. Importantly, this

holds true only when investors’ preferences are incorporated in the tail measures.

5 Conclusion

In this paper, we introduce a new tail risk measure at a daily frequency by combining

high-frequency returns of a cross-section of stocks with a risk-neutralization algorithm.

We use our measure to shed light on the effects of tail risk on asset prices at short-

horizons and investigate to what extent these effects depend on information coming from

the physical measure, under which asset prices are observed, and the risk-neutral measure,

which incorporates investors’ preferences.

We find that the compensation required by investors for bearing tail risk is an impor-

tant determinant of the equity premium and the variance risk premium at horizons up

to a month. Our tail measure also strongly predicts market risk, both for the U.S. and

for international markets. In addition, tail risk is priced in the cross-section of stocks. A

tradable tail factor built by sorting stocks on their recent exposure to tail risk produces

significant spreads in stock returns that cannot be explained by standard factor models.

Using our tail factor, we show that exposure of momentum strategies to tail risk helps

explain the momentum anomaly. Incorporating investors’ preferences in the estimation

of tail risk is fundamental to our findings.
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A Figures and Tables

Figure 1: Minimum dispersion risk-neutral probabilities
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Note: The figure depicts the minimum dispersion risk-neutral probabilities
for various values of γ and the physical measure (π = 1/N) for 78,000 intra-
daily returns sampled every 5 minutes for a random day in our sample.
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Figure 2: Tail risk index measures

Note: The figure plots, in the upper panels, the 1-month moving average of the physical and risk-neutral
tail risk indices. In the bottom panels, the corresponding moving averages for the threshold and the tail
risk premium are depicted. For illustration purposes, the bottom panels plot the absolute value of both
the threshold and the tail risk premium. Shaded areas depict NBER recession dates. The sample ranges
from January, 2000 to December, 2020.
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Figure 3: Tail risk index and risk measures

Note: The figure plots, in the upper panels, the 1-month standardized moving average of the squared
VIX and realized variance of the S&P 500 index. Similarly, the bottom panels depict the corresponding
stardandized moving averages for the realized kurtosis and realized skewness. For comparison, we also plot
the 1-month standardized moving average of the risk-neutral tail risk index (blue dotted line). Shaded
areas depict NBER recession dates. The sample ranges from January, 2000 to December, 2020.
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Figure 4: Cumulative monthly quintile portfolio returns formed by sorting on TRP

Note: The figure depicts the cumulative monthly returns for each quintile portfolio and the high minus low
zero net investment portfolio formed by sorting on the tail risk premium (TRP ). Shaded areas depict NBER
recession dates. The sample ranges from January, 2000 to December, 2020.
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Figure 5: Portfolio quintile βs

Note: The figure depicts the time series average sensitivity to tail risk for all stocks within each quintile portfolio
and the high minus low zero net investment portfolio. Shaded areas depict NBER recession dates. The sample
ranges from January, 2000 to December, 2020.
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Table 1: Correlation and AR(1) coefficients

λPt λQt TRPt |ut| RVt V IX2
t V RPt RSKt RKt LTVt

λPt 0.398 0.831 −0.316 −0.202 −0.157 −0.215 −0.184 0.019 0.205 −0.167

λQt 0.334 −0.790 −0.416 −0.228 −0.302 −0.252 0.266 0.229 −0.209
TRPt 0.210 0.488 0.215 0.278 0.227 −0.433 −0.166 0.173
|ut| 0.913 0.791 0.809 0.414 −0.081 −0.095 0.517
RVt 0.691 0.756 0.398 0.044 0.080 0.539
V IX2

t 0.971 0.606 −0.012 −0.084 0.723
V RPt 0.588 −0.076 −0.062 0.520
RSKt −0.042 0.140 −0.018
RKt 0.052 −0.069
LTVt 0.932

Note: The table reports in the off-diagonal the correlation of each pair of variables, and in the main diagonal the
AR(1) coefficient. The sample ranges from January, 2000 to December, 2020.

Table 2: Excess market return predictability

One-day (h = 1) One-week (h = 5) One-month (h = 22)

λPt −0.021 −0.023 −0.022 −0.042 −0.024 −0.108
t-stat −1.542 −1.587 −0.553 −1.023 −0.226 −0.844

λQt −0.014 0.015 0.123
t-stat −1.080 0.397 1.272
TRPt −0.006 −0.064 −0.268
t-stat −0.423 −1.695? −2.524??

R2
is 0.050 0.023 0.054 0.012 0.006 0.102 0.003 0.087 0.379

R2
oos − 0.246 −0.249 −0.612 −0.221 −0.139 −0.522 −0.018 0.272 0.354

R2
oos,EC 0.033 −0.025 −0.050 0.358 0.361 0.288 1.313 1.528 1.854

Note: The table reports the results for univariate and bivariate predictive regressions for the market excess
returns over one-day (h = 1), one-week (h = 5), and one-month (h = 22). For forecasting horizons larger
than 1 day, we consider the excess market returns from t + 1 to t + h. We compute the t-statistics using
Newey-West robust standard errors with a lag length equal to h. The R2

is is the OLS R-squared, and the
last two rows report the out-of-sample R2 for an unconstrained and equity constrained forecast. The equity
constraint sets to zero all the forecasted values that are non-positive. The out-of-sample exercise is based
on a rolling window of 500 days and R2

oos = 1 −
∑

t

(
rt+1:t+h − r̂t+1:t+h|t

)2
/∑

t

(
rt+1:t+h − rt+1:t+h|t

)2, where
r̂t+1:t+h|t is the out-of-sample forecast of the excess return based on only data through t, and rt+1:t+h|t is the
historical average estimated through period t. A negative R2

oos implies that the prediction performs worse
than setting the forecast equal to the sample mean. We denote with an EC (in the subscript) the out-of-
sample R2 corresponding to the equity constrained forecasts. ?, ?? and ??? indicate statistical significance at
respectively the 10%, 5% and 1% level. Bold numbers highlight the best out-of-sample performance in terms
of the R2

oos and R2
oos,EC for a given horizon. The sample ranges from January, 2000 to December, 2020.
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Table 3: Risk predictability

λPt t-stat R2
is R2

oos λQt t-stat R2
is R2

oos λPt t-stat TRPt t-stat R2
is R2

oos

Panel A: One-day (h = 1)
V IX2 −0.185 −6.830??? 6.020 1.900 −0.300 −13.675??? 15.755 6.185 −0.099 −3.696??? 0.275 14.413??? 18.007 6.210
RV −0.358 −19.117??? 9.926 −0.636 −0.533 −31.525??? 22.141 1.862 −0.217 −11.893??? 0.447 22.314??? 23.958 2.097
V RP −0.117 −7.955??? 2.302 2.165 −0.166 −10.904??? 4.649 4.217 −0.076 −5.301??? 0.130 9.028??? 4.885 5.863
LTV −0.108 −7.033??? 2.536 3.112 −0.137 −9.407??? 4.113 5.318 −0.079 −5.182??? 0.090 7.227??? 4.139 5.640
RSK −0.044 −4.118??? 0.301 −0.039 −0.062 −6.009??? 0.604 0.402 −0.028 −2.508?? 0.048 4.489??? 0.633 0.194
RK 0.224 6.593??? 0.782 0.623 0.267 8.064??? 1.113 0.641 0.175 4.866??? −0.153 −4.375??? 1.113 0.524

Panel B: One-Week (h = 5)
V IX2 −0.173 −6.014??? 5.347 1.672 −0.287 −12.095??? 14.663 5.975 −0.088 −3.122??? 0.270 13.463??? 17.053 6.011
RV −0.298 −12.356??? 7.951 −0.802 −0.468 −22.184??? 19.739 2.126 −0.166 −7.242??? 0.418 19.402??? 22.142 2.557
V RP −0.460 −5.633??? 1.735 1.543 −0.686 −7.849??? 3.855 3.429 −0.280 −3.428??? 0.574 6.242??? 4.166 5.083
LTV −0.468 −4.693??? 2.112 2.771 −0.589 −6.332??? 3.355 4.487 −0.348 −3.523??? 0.380 5.586??? 3.369 4.682
RSK −0.160 −4.909??? 0.916 0.330 −0.181 −6.068??? 1.175 0.868 −0.131 −3.811??? 0.091 3.243??? 1.186 0.695
RK 0.803 5.859??? 1.664 2.113 1.058 8.724??? 2.895 2.317 0.569 3.922??? −0.740 −6.661??? 2.942 2.532

Panel C: One-Month (h = 22)
V IX2 −0.142 −4.567??? 3.790 1.042 −0.252 −9.398??? 11.897 4.561 −0.063 −2.050?? 0.253 11.252??? 14.572 5.432
RV −0.218 −6.155??? 4.865 −1.442 −0.376 −12.042??? 14.481 0.921 −0.102 −2.982??? 0.368 12.931??? 17.381 1.971
V RP −0.938 −2.400?? 0.610 1.059 −1.624 −4.185??? 1.827 1.367 −0.438 −1.064 1.594 3.846??? 2.198 3.969
LTV −1.221 −2.173?? 0.929 1.482 −1.812 −3.476??? 2.050 2.627 −0.744 −1.319 0.090 3.793??? 2.211 3.657
RSK −0.450 −3.482??? 1.627 0.462 −0.466 −4.174??? 1.748 1.095 −0.395 −2.881??? 0.176 1.792? 1.851 1.687
RK 2.929 4.350??? 3.413 4.853 3.676 6.375??? 5.384 4.608 2.187 3.114??? −2.354 −5.549??? 5.404 5.719

Note: The table reports the results for univariate and bivariate predictive regressions for the measures of risk of the S&P 500 index over one-day (h = 1), one-week
(h = 5), and one-month (h = 22). We consider the squared VIX (V IX2), the variance risk-premium (V RP ), the left tail variation (LTV ), the realized variance
(RV ), realized skewness (RSK), and realized kurtosis (RK). The latter three realized measures are constructed from high-frequency data sampled every 5-min.
For forecasting horizons larger than 1 day, we aggregate the risk measures from t + 1 to t + h. The t-statistics are computed using Newey-West robust standard
errors with a lag length equal to h. The R2

is is the OLS R-squared and the last column of each sub-panel reports the out-of-sample R2. The out-of-sample exercise

is based on a rolling window of 500 days and R2
oos = 1−

∑
t

(
Ft+1:t+h − F̂t+1:t+h|t

)2/∑
t

(
Ft+1:t+h − F t+1:t+h|t

)2, where F̂t+1:t+h|t is the out-of-sample forecast of the

risk measure based on only data through t, and F t+1:t+h|t is the historical mean estimated through period t. A negative R2
oos implies that the prediction performs

worse than setting a forecast equal to the sample mean. ?, ?? and ??? indicate statistical significance at respectively the 10%, 5% and 1% level. Bold numbers
highlight the best out-of-sample performance in terms of the R2

oos for each horizon. The sample ranges from January, 2000 to December, 2020.
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Table 4: International realized variance predictability

Ticker Country λPt t-stat R2
is R2

oos λQt t-stat R2
is R2

oos λPt t-stat TRPt t-stat R2
is R2

oos

Panel A: One-day (h = 1)
FTSE U.K. −0.213 −12.642??? 4.483 −1.048 −0.337 −21.373??? 11.192 0.057 −0.118 −6.884??? 0.303 16.603??? 12.605 0.421
DAX Germany −0.227 −13.463??? 4.782 0.254 −0.373 −23.645??? 12.961 1.608 −0.117 −6.880??? 0.349 18.952??? 15.007 2.031
CAC-40 France −0.212 −12.830??? 4.702 −0.898 −0.352 −23.365??? 12.983 1.264 −0.107 −6.433??? 0.333 19.611??? 15.168 1.930
STOXX Eurozone −0.216 −12.401??? 4.275 −1.268 −0.336 −20.767??? 10.314 −0.125 −0.123 −6.916??? 0.296 16.163??? 11.463 0.238
IBEX Spain −0.114 −7.049??? 1.451 −2.033 −0.227 −15.428??? 5.710 0.030 −0.036 −2.143?? 0.250 15.888??? 7.671 0.792
Nikkei Japan −0.194 −11.910??? 4.295 0.251 −0.310 −20.468??? 10.919 2.097 −0.106 −6.393??? 0.281 17.430??? 12.371 2.492
SSEC Shanghai −0.192 −12.165??? 4.132 −0.508 −0.303 −20.518??? 10.290 1.146 −0.107 −6.636??? 0.271 17.311??? 11.558 1.634

Panel B: One-Week (h = 5)
FTSE U.K. −0.177 −8.258??? 3.757 −1.092 −0.313 −16.242??? 11.651 1.196 −0.079 −3.802??? 0.314 16.753??? 14.249 2.213
DAX Germany −0.187 −8.411??? 3.810 1.302 −0.327 −16.253??? 11.711 2.811 −0.085 −3.899??? 0.325 16.627??? 14.228 3.606
CAC-40 France −0.170 −7.968??? 3.554 −0.808 −0.301 −15.998??? 11.151 1.449 −0.074 −3.553??? 0.303 16.742??? 13.689 2.424
STOXX Eurozone −0.177 −7.899??? 3.709 −0.870 −0.296 −14.904??? 10.368 0.252 −0.088 −3.971??? 0.281 15.040??? 12.160 1.835
IBEX Spain −0.079 −3.792??? 0.807 −2.699 −0.187 −10.316??? 4.461 −0.423 −0.007 −0.341 0.229 13.291??? 6.821 0.817
Nikkei Japan −0.156 −7.218??? 3.376 1.229 −0.276 −13.960??? 10.487 3.910 −0.070 −3.282??? 0.277 15.756??? 12.823 4.661
SSEC Shanghai −0.152 −7.410??? 3.298 0.382 −0.264 −14.243??? 9.966 2.782 −0.070 −3.475??? 0.261 15.916??? 12.034 3.722

Panel C: One-Month (h = 22)
FTSE U.K. −0.123 −3.937??? 2.042 −1.536 −0.247 −8.766??? 8.203 0.419 −0.037 −1.225 0.274 11.648??? 11.117 2.152
DAX Germany −0.145 −4.462??? 2.609 2.347 −0.276 −9.240??? 9.408 3.334 −0.053 −1.698? 0.293 11.299??? 12.171 5.011
CAC-40 France −0.121 −3.888??? 2.024 −0.750 −0.241 −8.750??? 8.025 0.801 −0.037 −1.215 0.266 11.484??? 10.809 2.614
STOXX Eurozone −0.123 −3.768??? 2.082 −0.870 −0.232 −7.894??? 7.379 0.252 −0.046 −1.425 0.245 9.857??? 9.498 1.835
IBEX Spain −0.042 −1.333 0.251 −3.264 −0.135 −5.079??? 2.633 −1.723 0.018 0.574 0.191 8.600??? 4.948 0.214
Nikkei Japan −0.105 −3.228??? 1.809 1.281 −0.214 −7.134??? 7.514 3.519 −0.030 −0.933 0.241 10.027??? 10.307 5.306
SSEC Shanghai −0.107 −3.514??? 2.028 1.092 −0.208 −7.448??? 7.576 3.173 −0.037 −1.242 0.223 9.963??? 9.946 5.123

Note: The table reports the results for univariate and bivariate predictive regressions for the realized variance (RV) of international market indices over one-day (h = 1),
one-week (h = 5), and one-month (h = 22). The RVs are constructed from high-frequency data sampled every 5-min. For forecasting horizons larger than 1 day, we
aggregate the realized variance from t + 1 to t + h. The t-statistics are computed using Newey-West robust standard errors with a lag length equal to h. The R2

is is
the OLS R-squared and the last column of each sub-panel reports the out-of-sample R2. The out-of-sample exercise is based on a rolling window of 500 days and R2

oos =

1 −
∑

t

(
Ft+1:t+h − F̂t+1:t+h|t

)2/∑
t

(
Ft+1:t+h − F t+1:t+h|t

)2, where F̂t+1:t+h|t is the out-of-sample forecast of the realized measure based on only data through t, and F t+1:t+h|t

is the historical mean estimated through period t. A negative R2
oos implies that the prediction performs worse than setting a forecast equal to the sample mean. ?, ?? and ???

indicate statistical significance at respectively the 10%, 5% and 1% level. Bold numbers highlight the best out-of-sample performance in terms of the R2
oos for each horizon. The

sample ranges from January, 2000 to December, 2020.
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Table 5: Monthly sorted portfolios

Low 2 3 4 High High−Low t-stat

Panel A: λPt
Average Return 0.038 0.188 0.021 0.245 −0.266 −0.304 −1.135
CAPM alpha −0.394 −0.194 −0.408 −0.214 −0.840 −0.446 −1.361
FF3 alpha −0.423 −0.195 −0.405 −0.222 −0.868 −0.445 −1.492
FF5 alpha −0.492 −0.363 −0.459 −0.278 −0.840 −0.348 −1.238
FF5 + Mom alpha −0.488 −0.363 −0.455 −0.276 −0.836 −0.349 −1.239
FF5 + Mom + Liq alpha −0.467 −0.334 −0.428 −0.259 −0.833 −0.367 −1.336

Panel B: λQt
Average Return 0.230 0.178 0.173 0.083 −0.438 −0.667 −2.179?

CAPM alpha −0.092 −0.168 −0.258 −0.416 −1.117 −1.025 −3.397?

FF3 alpha −0.074 −0.155 −0.260 −0.443 −1.181 −1.107 −3.875?

FF5 alpha −0.276 −0.380 −0.383 −0.484 −0.914 −0.638 −2.226?

FF5 + Mom alpha −0.278 −0.379 −0.377 −0.479 −0.906 −0.628 −2.104?

FF5 + Mom + Liq alpha −0.258 −0.352 −0.349 −0.464 −0.897 −0.639 −2.143?

Panel C: TRPt
Average Return −0.564 0.109 0.167 0.213 0.302 0.866 2.423?

CAPM alpha −1.291 −0.401 −0.253 −0.135 0.029 1.320 3.931?

FF3 alpha −1.361 −0.436 −0.254 −0.119 0.058 1.419 4.435?

FF5 alpha −1.075 −0.444 −0.407 −0.295 −0.212 0.863 2.805?

FF5 + Mom alpha −1.065 −0.439 −0.406 −0.295 −0.213 0.852 2.715?

FF5 + Mom + Liq alpha −1.048 −0.431 −0.383 −0.266 −0.192 0.856 2.722?

Panel D: Monotonic Relation (MR) Test
MR MR Up MR Down

λPt 0.781 0.213 0.056

λQt 0.031 0.964 0.036
TRPt 0.005 0.011 0.974

Note: The table reports the results of univariate portfolio analyses of the relation between the tail risk measures and the
cross-section of returns. Monthly portfolios are formed by sorting the 100 stocks into portfolios using quintile breakpoints
calculated based on the given sort variable using the 100 stocks. The table also reports portfolios alphas from regressions of
portfolio excess returns using the Fama-French three and five factors as well as extended models controlling for momentum
(Carhart, 1997) and liquidity (Pástor and Stambaugh, 2003) factors. Returns and alphas are in percentage terms. The last two
columns report the high minus low zero net investment portfolio and associated t-statistics, which are estimated using Newey-
West robust standard errors with a lag length equal to 5. The star (?) besides the t-statistic denotes statistical significance
at the 5% or better. Panel D presents the p-values from various tests of the monotonicity (Patton and Timmermann, 2010)
of average returns across the 5 quintile portfolios reported in Panels A–C. All tests have a null hypothesis of a flat pattern
(no relation). While the MR Up and MR Down tests have alternative hypotheses of an increasing and decreasing pattern,
the MR test is unrestricted. Bold p-values indicate significance at the 5% or better. The tests are estimated using 10,000
bootstrap replications and a block length equal to 10 months. The sample ranges from August, 2000 to December, 2020.
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Table 6: High minus low tail risk factor regressions

λP λQ TRPt

α −0.445 −0.348 −0.367 −1.107 −0.637 −0.639 1.419 0.863 0.856
t-stat −1.492 −1.237 −1.336 −3.875? −2.226? −2.143? 4.435? 2.805? 2.722?

MKT 0.245 0.207 0.192 0.506 0.327 0.222 −0.647 −0.434 −0.323
t-stat 2.950 2.412 2.077 5.867 3.495 2.525 −7.386 −4.826 −3.925
SMB −0.042 −0.066 −0.111 0.505 0.373 0.351 −0.610 −0.464 −0.460
t-stat −0.423 −0.629 −1.068 4.272 3.069 3.363 −5.416 −3.980 −4.264
HML 0.234 0.307 0.321 0.114 0.421 0.294 −0.162 −0.558 −0.407
t-stat 1.656 1.799 1.735 0.797 3.370 2.281 −0.913 −3.396 −2.467
RMW −0.122 −0.154 −0.667 −0.520 0.736 0.552
t-stat −0.695 −0.826 −3.400 −2.992 3.447 3.312
CMA −0.109 −0.097 −0.338 −0.225 0.525 0.401
t-stat −0.423 −0.355 −1.405 −1.094 1.728 1.586
Mom 0.014 −0.292 0.341
t-stat 0.153 −3.602 5.152
Liq 10.207 6.148 −2.166
t-stat 1.213 0.725 −0.271

R2
adj 8.592 8.329 8.306 32.515 39.040 44.285 40.726 47.860 53.484

Note: The table reports the regression results of the high minus low tail factor on the Fama-French three
and five factor models, as well as extended models controlling for momentum (Carhart, 1997) and liquidity
(Pástor and Stambaugh, 2003) factors. The t-statistics are estimated using Newey-West robust standard
errors with a lag length equal to 5, and a star (?) besides the α’s t-statistic denotes statistical significance
at the 5% or better. The sample ranges from August, 2000 to December, 2020.
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Table 7: Momentum anomaly and the tail risk factor

FF5 + Liq FF5 + Liq+λP FF5 + Liq+λQ FF5 + Liq+TRP

α 0.022 0.028 −0.183 −0.270
t-stat 0.078 0.099 −0.551 −0.810
MKT −0.328 −0.331 −0.227 −0.181
t-stat −3.533? −3.394? −2.707? −2.114?

SMB −0.012 −0.010 0.100 0.145
t-stat −0.081 −0.069 0.783 1.139
HML −0.443 −0.449 −0.309 −0.255
t-stat −3.088? −2.901? −2.241? −1.980?

RMW 0.540 0.543 0.325 0.291
t-stat 2.441? 2.476? 1.522 1.396
CMA 0.365 0.367 0.260 0.188
t-stat 1.124 1.120 0.952 0.770
Liq 6.530 6.356 7.876 6.510
t-stat 0.685 0.689 0.817 0.716
Tail Risk Factor 0.017 −0.317 0.338
t-stat 0.154 −2.784? 3.305?

R2
adj 25.339 25.042 31.965 33.671

Note: The table reports the regression results of the momentum factor on the Fama-
French five factor models plus the liquidity factor (Pástor and Stambaugh, 2003), as
well as extended models controlling for the tail risk factor. A star (?) denotes statistical
significance at the 5% or better. The t-statistics are estimated using Newey-West robust
standard errors with a lag length equal to 5. The sample ranges from August, 2000 to
December, 2020.
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B Robustness Results

Table 8: Market excess return predictability with control variables

One-day (h = 1) One-week (h = 5) One-month (h = 22)

λP −0.026 −0.026 −0.036 −0.057 −0.099 −0.159
t-stat −1.855? −1.769? −0.898 −1.349 −0.812 −1.201
λQ −0.023 0.008 0.028
t-stat −1.585 0.183 0.238
TRP 0.000 −0.082 −0.240
t-stat −0.006 −1.862? −1.777?

RV −0.007 −0.009 −0.007 0.028 0.033 0.041 −0.311 −0.297 −0.274
t-stat −0.252 −0.297 −0.248 0.353 0.412 0.502 −1.550 −1.499 −1.413
JV −0.028 −0.029 −0.028 −0.033 −0.032 −0.030 0.022 0.025 0.032
t-stat −1.055 −1.079 −1.056 −0.658 −0.642 −0.597 0.219 0.239 0.309
LTV 0.092 0.092 0.092 0.315 0.320 0.322 0.712 0.726 0.732
t-stat 4.089??? 4.052??? 4.062??? 4.340??? 4.397??? 4.439??? 3.134??? 3.138??? 3.209???

RSK −0.002 0.004 −0.002 −0.008 −0.010 −0.043 −0.058 −0.063 −0.159
t-stat −0.117 0.341 −0.104 −0.329 −0.361 −1.355 −1.160 −1.068 −1.989??

RK 0.021 0.021 0.021 −0.031 −0.040 −0.037 0.020 −0.006 0.002
t-stat 1.452 1.413 1.446 −0.915 −1.205 −1.125 0.243 −0.073 0.025
V RP −0.046 −0.045 −0.046 −0.218 −0.216 −0.219 −0.373 −0.369 −0.378
t-stat −2.054?? −2.027?? −2.052?? −2.808??? −2.793??? −2.841??? −1.727? −1.713? −1.749?

R2
is 0.912 0.890 0.912 2.233 2.202 2.354 3.079 3.020 3.350

Note: The table reports the multivariate predictive regressions for the market excess returns over one-day
(h = 1), one-week (h = 5), and one-month (h = 22). For forecasting horizons larger than 1 day, we
consider the excess market returns from t + 1 to t + h. We compute the t statistics using Newey-West
robust standard errors with a lag length equal to h. The control variables are the realized variance (RV ),
the jump variation (JV ), the left tail variation (LTV ) of Bollerslev et al. (2015), realized skewness (RSK),
realized kurtosis (RK), and the variance risk premium (V RP ) (Bollerslev et al., 2009). JV is estimated as
JV = (RV −BV )+, and BV is the bipower variation measure proposed by Barndorff-Nielsen and Shephard
(2004). ?, ?? and ??? indicate statistical significance at respectively the 10%, 5% and 1% level. The sample
ranges from January, 2000 to December, 2020.
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Table 9: Predicting risk measures with λPt and control variables

Ft t-stat JVt t-stat λPt t-stat R2
is

Panel A: One-day (h = 1)
V IX2 0.606 7.726??? −0.011 −0.496 −0.066 −4.678??? 67.298
RV 0.610 10.760??? −0.064 −1.198 −0.269 −16.814??? 35.249
LTV 0.623 85.683??? 0.012 2.597??? −0.003 −0.746 86.822
RSK −0.034 −2.913??? 0.020 1.732? −0.042 −3.981??? 0.517
RK 0.143 3.609??? −0.096 −1.881? 0.192 5.565??? 1.087

Panel B: One-week (h = 5)
V IX2 0.593 7.424??? −0.005 −0.228 −0.056 −3.803??? 65.379
RV 0.573 8.478??? −0.055 −1.104 −0.215 −11.082??? 34.066
LTV 2.776 40.028??? 0.090 3.404??? 0.000 0.012 76.605
RSK −0.083 −3.799??? 0.039 2.038??? −0.157 −4.801??? 1.192
RK 0.619 4.941??? −0.590 −3.996??? 0.658 4.921??? 2.880

Panel C: One-month (h = 22)
V IX2 0.547 6.724??? 0.003 0.141 −0.034 −1.949? 58.042
RV 0.492 6.459??? −0.034 −0.680 −0.146 −5.116??? 27.385
LTV 9.669 21.064??? 0.806 2.038?? 0.420 2.230?? 60.921
RSK −0.008 −0.164 0.115 2.038?? −0.446 −3.456??? 1.732
RK 1.990 4.818??? −2.055 −4.290??? 2.458 3.845??? 5.515

Note: The table reports the multivariate predictive regressions for the measures of risk
of the S&P 500 index over one-day (h = 1), one-week (h = 5), and one-month (h = 22).
We consider the squared VIX (V IX2), realized variance (RV ), left tail variation (LTV ),
realized skewness (RSK), and realized kurtosis (RK). For forecasting horizons larger
than 1 day, we aggregate the risk measures from t + 1 to t + h. The t-statistics are
computed using Newey-West robust standard errors with a lag length equal to h. Ft, in
the first column, denotes the lagged value of the variable of interest. JV is estimated as
JV = (RV − BV )+, and BV is the bipower variation measure proposed by Barndorff-
Nielsen and Shephard (2004). ?, ?? and ??? indicate statistical significance at respectively
the 10%, 5% and 1% level. The sample ranges from January, 2000 to December, 2020.
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Table 10: Predicting risk measures with λQt and control variables

Ft t-stat JVt t-stat λQt t-stat R2
is

Panel A: One-day (h = 1)
V IX2 0.581 7.581??? −0.008 −0.383 −0.126 −8.483??? 69.109
RV 0.546 10.577??? −0.045 −0.918 −0.413 −25.479??? 42.252
LTV 0.622 86.019??? 0.012 2.572?? −0.006 −1.516 86.828
RSK −0.019 −1.570 0.016 1.405 −0.056 −5.038??? 0.686
RK 0.123 3.132??? −0.081 −1.657? 0.233 6.916??? 1.333

Panel B: One-week (h = 5)
V IX2 0.568 7.279??? −0.002 −0.099 −0.116 −7.356??? 67.041
RV 0.515 8.413??? −0.037 −0.823 −0.354 −18.952??? 40.675
LTV 2.775 40.111??? 0.090 3.402??? −0.002 −0.087 76.605
RSK −0.040 −1.664? 0.029 1.602 −0.169 −5.260??? 1.248
RK 0.522 4.349??? −0.524 −3.990??? 0.906 7.816??? 3.787

Panel C: One-month (h = 22)
V IX2 0.525 6.572??? 0.006 0.334 −0.094 −5.102??? 59.346
RV 0.442 6.437??? −0.018 −0.406 −0.277 −10.329??? 32.659
LTV 9.650 21.140??? 0.814 2.029??? 0.253 1.636 60.852
RSK 0.117 1.759? 0.084 1.656? −0.492 −4.057??? 1.928
RK 1.689 4.337??? −1.841 −4.503??? 3.175 5.911??? 6.959

Note: The table reports the multivariate predictive regressions for the measures of risk
of the S&P 500 index over one-day (h = 1), one-week (h = 5), and one-month (h = 22).
We consider the squared VIX (V IX2), realized variance (RV ), left tail variation (LTV ),
realized skewness (RSK), and realized kurtosis (RK). For forecasting horizons larger
than 1 day, we aggregate the risk measures from t + 1 to t + h. The t-statistics are
computed using Newey-West robust standard errors with a lag length equal to h. Ft, in
the first column, denotes the lagged value of the variable of interest. JV is estimated as
JV = (RV − BV )+, and BV is the bipower variation measure proposed by Barndorff-
Nielsen and Shephard (2004). ?, ?? and ??? indicate statistical significance at respectively
the 10%, 5% and 1% level. The sample ranges from January, 2000 to December, 2020.
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Table 11: Predicting risk measures with TRPt and control variables

Ft t-stat JVt t-stat λPt t-stat TRPt t-stat R2
is

Panel A: One-day (h = 1)
V IX2 0.575 7.676??? −0.008 −0.402 −0.031 −2.291?? 0.129 8.229??? 69.766
RV 0.536 10.557??? −0.044 −0.913 −0.171 −11.360??? 0.345 19.631??? 43.291
LTV 0.622 86.063??? 0.012 2.538??? −0.001 −0.246 0.007 1.769? 86.830
RSK −0.016 −1.227 0.015 1.343 −0.030 −2.672??? 0.040 3.142??? 0.693
RK 0.123 3.128??? −0.082 −1.659? 0.154 4.240??? −0.134 −3.817??? 1.333

Panel B: One-week (h = 5)
V IX2 0.561 7.388??? −0.002 −0.112 −0.022 −1.558 0.126 7.718??? 67.784
RV 0.505 8.419??? −0.036 −0.813 −0.123 −6.816??? 0.322 17.580??? 42.153
LTV 2.775 40.106??? 0.090 3.406??? 0.002 0.059 0.005 0.178 76.605
RSK −0.056 −2.120?? 0.032 1.738? −0.138 −3.979??? 0.063 1.904? 1.293
RK 0.524 4.373??? −0.520 −4.007??? 0.475 3.347??? −0.646 −6.037??? 3.831

Panel C: One-month (h = 22)
V IX2 0.518 6.697??? 0.006 0.321 −0.002 −0.110 0.120 6.472??? 60.318
RV 0.431 6.545??? −0.017 −0.389 −0.065 −2.344??? 0.285 11.849??? 34.597
LTV 9.648 21.124??? 0.801 2.051?? 0.473 2.163?? 0.177 0.868 60.938
RSK 0.082 1.134 0.092 1.795? −0.383 −2.801??? 0.208 1.770? 1.980
RK 1.692 4.358??? −1.835 −4.509??? 1.882 2.815??? −2.039 −5.014??? 6.974

Note: The table reports the multivariate predictive regressions for the measures of risk of the S&P 500 index
over one-day (h = 1), one-week (h = 5), and one-month (h = 22). We consider the squared VIX (V IX2),
realized variance (RV ), left tail variation (LTV ), realized skewness (RSK), and realized kurtosis (RK). For
forecasting horizons larger than 1 day, we aggregate the risk measures from t + 1 to t + h. The t-statistics
are computed using Newey-West robust standard errors with a lag length equal to h. Ft, in the first column,
denotes the lagged value of the variable of interest. JV is estimated as JV = (RV − BV )+, and BV is
the bipower variation measure proposed by Barndorff-Nielsen and Shephard (2004). ?, ?? and ??? indicate
statistical significance at respectively the 10%, 5% and 1% level. The sample ranges from January, 2000 to
December, 2020.
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Table 12: Predicting variance risk premium (V RP ) with control variables

One-day (h = 1) One-week (h = 5) One-month (h = 22)

RV 0.081 0.072 0.071 −0.021 −0.061 −0.069 −1.353 −1.449 −1.480
t-stat 2.289??? 2.030?? 1.980?? −0.090 −0.256 −0.284 −1.876? −2.010?? −2.051??

JV 0.003 0.006 0.006 0.018 0.031 0.031 0.609 0.645 0.644
t-stat 0.090 0.172 0.171 0.187 0.326 0.325 1.720? 1.805? 1.812?

LTV 0.251 0.248 0.249 1.312 1.297 1.300 5.878 5.835 5.846
t-stat 8.620??? 8.580??? 8.632??? 6.888??? 6.840??? 6.898??? 5.893??? 5.843??? 5.901???

λP −0.045 −0.029 −0.200 −0.122 −0.264 −0.056
t-stat −4.688??? −2.894??? −3.509??? −2.056?? −0.843 −0.165
λQ −0.070 −0.320 −0.629
t-stat −7.330??? −5.244??? −2.186??

TRP 0.058 0.279 0.744
t-stat 6.061??? 4.075??? 2.504??

R2
is 24.825 25.455 25.548 22.435 23.123 23.250 27.271 27.547 27.711

Note: The table reports the multivariate predictive regressions for the variance risk premium (V RP )
(Bollerslev et al., 2009) over one-day (h = 1), one-week (h = 5), and one-month (h = 22). For forecasting
horizons larger than 1 day, we aggregate the risk measures from t+1 to t+h. The t-statistics are computed
using Newey-West robust standard errors with a lag length equal to h. The control variables are the
realized variance (RV ), jump variation (JV ), and left tail variation (LTV ) of Bollerslev et al. (2015). JV is
estimated as JV = (RV −BV )+, and BV is the bipower variation measure proposed by Barndorff-Nielsen
and Shephard (2004). ?, ?? and ??? indicate statistical significance at respectively the 10%, 5% and 1% level.
The sample ranges from January, 2000 to December, 2020.
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