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1 Introduction

Forecasting conditional quantiles of time series has a large number of applications in

economics and �nance. A recent popular example is the computation of Growth-at-Risk

forecasts, i.e. the 5% quantile of the distribution of real gross domestic product growth

given past information. Among the di�erent methodologies proposed to forecast quan-

tiles, the Conditional Autoregressive Value-at-Risk (CAViaR) of Engle and Manganelli

(2004) stands out as one of the leading approaches in the literature due to its �exibil-

ity, parsimony and relative ease of estimation. Moreover, the CAViaR methodology is

semi-parametric in the sense that it imposes mild assumptions on the data generating

process (DGP) (White, Kim, and Manganelli, 2015). Despite the fact that forecasting

quantiles is of obvious interest to economic agents, the theory in those papers is tailored

to estimation under correct speci�cation of the quantile dynamics, and less attention is

paid to forecasting under misspeci�cation.

This paper establishes theoretical performance guarantees for out-of-sample fore-

casting with a multivariate version of the CAViaR model. In practical terms, the class

of forecasts is equivalent to the one-lag version of the vector autoregressive model for

Value-at-Risk (VAR for VaR or VFV) of White et al. (2015) with a single quantile. The

guarantees are obtained by deriving an oracle inequality, i.e. a probabilistic bound that

relates the performance of an estimator to that of an ideal estimator that has best per-

formance in the class, also known as the �oracle� (Donoho and Johnstone, 1994; Candes,

2006). The oracle inequality implies that the VFV that minimizes the in-sample average

check loss achieves the oracle's out-of-sample performance in terms of the check loss at

a near optimal rate, even when the model is fully misspeci�ed. The paper allows for full

misspeci�cation in that it su�ces to make nonparametric assumptions on the DGP, such

as existence of a certain number of moments of the innovations and stable dynamics on

the time series. This result translates into optimal out-of-sample quantile forecasting if

the researcher believes that the class contains the true conditional quantile of the time

series.

The theoretical framework of this paper builds upon the literature on statistical

learning theory. This framework has at least three important highlights. First, the main

result holds without assuming identi�cation nor correct speci�cation of the quantile dy-

namics, which are critical assumptions in the CAViaR literature (Engle and Manganelli,
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2004; White et al., 2015). Second, the result holds in �nite samples with high probability,

as opposed to being asymptotic, and it provides a speci�c rate of convergence for the

predictive performance. Third, the theory allows to derive transparent constraints on

the parameter space where the class of forecasts is stationary and ergodic. In contrast,

(White et al., 2015) assume the existence of some set over which the VFV is stationary

and ergodic.

The proof of the main result can be broken down in three main steps. The �rst

step is to establish existence of moments and strong mixing conditions for the loss and

a �dominating process� which is similar in spirit to the domination conditions often

used to obtain uniform laws of large numbers (Andrews, 1987; Pötscher and Prucha,

1989). This is accomplished through Markov chain theory (Meyn and Tweedie, 1993,

Ch. 15). The novelty of the approach consists of proving that a Markov chain whose

components are the DGP, the forecast, and the dominating process is V -geometrically

ergodic (Liebscher, 2005; Meitz and Saikkonen, 2008a). Importantly, the strong mixing

coe�cients are bounded by a function with geometric decay uniformly over the parameter

space, which is established using results by Roberts and Rosenthal (2004). The second

step is to establish a general inequality that states that the performance of the VFV

that minimizes the in-sample average check loss can be controlled by the sum of piq the

supremum of an average of di�erences between conditional and unconditional expected

losses and piiq the supremum of the empirical process associated with the prediction loss.

In the third step, suitable bounds are derived for these two terms using, respectively,

an inequality from Ibragimov (1962) and a concentration inequality for strong mixing

processes (Liebscher, 1996).

The merits of the methodology are illustrated in an empirical contribution to the

recent Growth-at-Risk (GaR) literature popularized by Adrian, Boyarchenko, and Gi-

annone (2019). An out-of-sample GaR forecasting exercise shows that the past of GDP

growth seems to be the key driver of the time variation in the conditional distribution

of GDP growth, see also Brownlees and Souza (2021) and Catania, Luati, and Vallarino

(2021). Furthermore, the results of the exercise suggest that a combination of generalized

autoregressive conditionally heteroskedastic forecasts (GARCH) and VFV performs best

out-of-sample. The combination exploits the dynamics on the quantiles of the standard-

ized residuals from the AR-GARCH procedure. Although asymmetries in the conditional

volatility of GDP growth do not appear to play an important role, the empirical results

3



of this work suggest that other types of asymmetries do still matter for the quantiles.

This paper is mainly related to three strands of the literature which share more in

common than it may appear at �rst sight.

Dynamic Quantile Models. In a time series context, quantile regression approaches

need to be adapted to account for the dependence induced by the time-ordering of the

data. A natural extension is the quantile autoregressive approach developed by Koenker

and Xiao (2006) and, as pointed out above, one of the most successful dynamic quantile

models is the CAViaR speci�cation by Engle and Manganelli (2004). When considering

multiple quantiles of a random variable, a drawback of these approaches is the lack of

an internal mechanism that avoids the quantile crossing problem. This drawback can be

addressed ex-post, see Chernozhukov, Fernández-Val, and Galichon (2010), or ex-ante,

see Gouriéroux and Jasiak (2008). Important contributions to the dynamic quantile

literature also include White, Kim, and Manganelli (2015); Chavleishvili and Manganelli

(2019); Catania and Luati (2019); Catania, Luati, and Mikkelsen (2022). Empirical

illustrations as well as novel CAViaR speci�cations are presented in Kuester, Mittnik,

and Paolella (2006); Bao, Lee, and Saltoglu (2006) for �nancial data and Huang, Yu,

Fabozzi, and Fukushima (2009) for oil price data.

The theory in the CAViaR literature is developed under the general framework of

M-estimation for dependent data. For example, the assumptions of White et al. (2015)

� which are tailored to the goals of estimation and inference � provide an interesting

benchmark to compare against the assumptions of the current paper. Overall, their

assumptions can be regarded as semi-parametric in the sense that the innovation distri-

bution may be misspeci�ed. However, a key assumption in that paper is that there exists

a unique parameter that characterizes the dynamics of the true conditional quantile of

the data, i.e. identi�cation and correct speci�cation. In contrast, in the framework of

this paper, identi�cation and correct speci�cation assumptions are not required.

Quasi-maximum likelihood. The oracle inequality derived in this paper can be re-

garded as a prediction analog of the consistency of quasi-maximum likelihood estimators.

Results of this type date back to Akaike (1973) and White (1982), which studied the

properties of maximum likelihood estimation for misspeci�ed models. The main lesson

from those papers is that under mild assumptions, the (quasi-) maximum likelihood
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estimator (strongly) converges to the minimizer of the Kullback-Leibler Information Cri-

terion (KLIC), which measures the discrepancy between the density of the true DGP

vs the pseudo-true density (the Gaussian being the classical choice). As put by White

(1982), the KLIC can be interpreted as a measure of our ignorance about the true struc-

ture of the DGP. Extensions of this type of result to M-estimators with dependent data

appeared almost simultaneously in the econometrics literature (Domowitz and White,

1982; White and Domowitz, 1984).

Statistical learning theory for time series. The theory of M-estimation is able to

provide useful answers to the problems of estimation and inference, but is less suitable to

study the question of prediction. But seeing CAViaR as a �learning� algorithm instead

of a model may prove useful. In fact, a vast literature � under the rubric of statistical

learning theory � is devoted to study the prediction properties of learning algorithms.

This literature is interested in a number of questions, and this paper is concerned with

the following two: piq to �nd conditions for consistency of learning processes, i.e. uniform

convergence of a class of forecasts (Vapnik and Chervonenkis, 1971), and piiq to determine

the rate of convergence of the learning process (Vapnik, 1999).

An interesting feature in the learning literature is that the relationship between algo-

rithm and data need not be speci�ed. However, most results coming from the statistical

learning literature rely on a number of assumptions that do not apply to the CAViaR

models mentioned above, where data (and corresponding loss function) is non-i.i.d., un-

bounded, and prediction algorithms may depend on the entire past of the data. Although

several e�orts have been made in that literature to extend their results to time series fore-

casting applications, none of those provides oracle inequalities for out-of-sample forecasts

based on the models cited above, nor their multivariate extensions.

The quest for forecasting performance guarantees for time series can probably be

traced back to Yu (1994), which established rates of convergence for empirical processes

of stationary mixing sequences � for families of predictors suitably bounded by an envelop

function, which is similar in spirit to the dominating assumptions in Andrews (1987) �

and Meir (2000), who provided the �rst generalization bounds for nonparametric time

series prediction based on such results. The contributions that are probably most related

to the current paper are McDonald, Shalizi, and Schervish (2017) and Kuznetsov and

Mohri (2017), which provide generalization bounds under assumptions that allow for
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mixing data and unbounded losses. It must be emphasized that generalization bounds

do not imply oracle inequalities (but that the reverse implication is true); thus, the results

in the current paper are not implied by the ones obtained in those papers. Kuznetsov

and Mohri (2017) extend the notion of prediction performance, which is typically de�ned

with an unconditional expectation, to path-dependent performance, which instead uses

the expected loss conditional on past information. This is similar in spirit to the notion

of conditional risk de�ned in the current paper.

This paper is not the �rst to use the framework of statistical learning theory in econo-

metrics. Examples of this include Jiang and Tanner (2010), which studies the properties

of empirical risk minimization for time series binary choice, Kock and Callot (2015),

which establishes oracle inequalities for high-dimensional vector autoregressions, Brown-

lees and Guðmundsson (2021), which analyzes the performance of empirical risk mini-

mization for linear regression with dependent data and Brownlees and Llorens-Terrazas

(2021), which establishes similar results for a class of recursive threshold models that

include as special cases the forecasts induced by ARMA(1,1) and GARCH(1,1) models.

Finally, note that the framework can also be adapted to deal with policy decisions such

as the allocation of treatments to individuals based on covariates (Manski, 2004; Kita-

gawa and Tetenov, 2018), which has recently been adapted to deal with multivariate

time series (Kitagawa, Wang, and Xu, 2022).

Outline of the paper. The rest of this paper is structured as follows. Section 2

lays out the notation and presents the class of forecasts and the estimation procedure.

Section 3 introduces the theoretical framework under which the main result is derived,

and section 4 highlights the main steps followed to prove the claim. Section 5 contains

the empirical application to Growth-at-Risk, and section 6 concludes. All proofs are

relegated to the Appendix, and the more technical results and additional tables are

gathered in the Online Appendix.

2 Methodology

Notation. For an n ˆ 1 real vector x, }x}r “ p
řn

i“1 |xi|
rq

1{r, where r ě 1, and x´i “

px1, . . . , xi´1, xi`1, . . . , xnq1, i.e. x´i denotes removal of the ith entry of x, i “ 1, . . . , n.

For an m ˆ n real matrix A, ~A~1 “ max1ďjďn
řm

i“1 |ai j |, i.e. the maximum absolute
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column sum of the matrix, and if A is square, Abr “ A b ¨ ¨ ¨ b A, i.e. the Kronecker

product taken r times. The notation vecpAq represents a long vector that stacks the

columns of the matrix A from left to right. For a random variable X, let }X}Lr “

pE|X|rq
1{r, where r ě 1, and }X}L8

“ infta : Prp|X| ą aq “ 0u for r “ 8. For two

real numbers a and b, denote a ^ b “ minta, bu and a _ b “ maxta, bu. In this paper,

Ip¨q denotes the indicator function, while I is used for the identity matrix. For a time

series tXtu, where t is a non-negative integer, let Etp¨q “ Ep¨|Xt´1, . . . , X0q. For real x,

the notation txu is used to denote the largest integer lower than or equal to x, and rxs

denotes the smallest integer greater than or equal to x.

2.1 De�nition of the multivariate CAViaR class.

The main goal of this paper is out-of-sample conditional quantile forecasting of a sta-

tionary, multivariate time series tYtu taking values in RN . In the sequel, the focus is

on one-step-ahead forecasting, but the results apply to h-step ahead forecasting as well

(see section OA.4 in the Online Appendix). More speci�cally, for some τi P r0, 1s and

i “ 1, . . . , N , let qτii t denote the conditional τi-quantile of Yi t given information up to

time t ´ 1. That is, qi t is implicitly de�ned as PrpYi t ď qτii t|Yt´1, . . . , Y0q “ τi. The

following class of recursive forecasts indexed by θ P Θω ˆ ΘA ˆ ΘB ˆ Θλ “ Θ Ă Rp is

available to the forecaster, and can be written in matrix notation as

fθ t “ ω ` AsλpYt´1q ` Bfθ t´1 , (1)

where fθ t P RN , θ “ pω1, vecpAq1, vecpBq1, λ1q1, ω P Θω Ă Rpω , vecpAq P ΘA Ă RpA ,

vecpBq P ΘB Ă RpB , λ P Θλ Ă Rpλ , p “ pω ` pA ` pB ` pλ and sλp¨q is shorthand for

sp¨, λq, where s : RN ˆRpλ Ñ RN .1 The precise assumptions on the parameters and the

function sλ are spelled out in what follows. In practice, the forecaster chooses a value

fθ 0 “ f0 (which does not depend on θ) to start the recursion.

For example, a simple bivariate version of the above relates the conditional quantile

1To keep the theoretical analysis as simple as possible, the function sλ is assumed to be di�erentiable,
but the theoretical framework can accommodate arbitrarily good approximations to popularly used non-
di�erentiable functions such as the absolute value.

7



forecasts of both random variables according to a vector autoregressive structure (VAR)2

fθ 1 t “ X 1
tβ1 ` b11fθ 1 t´1 ` b12fθ 2 t´1 ,

fθ 2 t “ X 1
tβ2 ` b21fθ 1 t´1 ` b22fθ 2 t´1 ,

where Xt represents predictors belonging to the information set up to t ´ 1, which

typically includes lagged values of Yi t (White et al., 2015).

A number of remarks are in order. First, note that sλ need not be di�erentiable as

a function of λ. Second, the assumptions are general enough to accommodate multi-

variate versions of the symmetric and asymmetric absolute value speci�cations of Engle

and Manganelli (2004).3 Third, a distinguishing feature with respect to the CAViaR

literature is that the relationship between Yt and fθ t is not speci�ed. In particular,

qτt :“ pqτ11 t, . . . , q
τN
N tq

1 need not be equal to fθ t. Fourth, the class can only handle a single

quantile for each variable, although the quantiles may di�er for each variable.4

2.2 Loss function.

The focus of this paper is on forecasting under the check loss

ρτ puq “ upτ ´ Ipu ă 0qq , τ P r0, 1s .

The check loss (also known as tick loss) can be interpreted as an asymmetric generaliza-

tion of the absolute error. Setting τ “ 1{2 leads to the absolute error scaled by 1/2. This

allows the forecaster to incorporate the relative costs of under vs over-prediction.5 It is

well known that this loss function elicits the τ -quantile of a random variable. Techni-

cally, the forecasting problem in this paper (and in the CAViaR literature) is formulated

as forecasting Yt with respect to the check loss, even though the end goal is to forecast

the unobservable qτt . The question of evaluating quantile forecasts is a di�erent and

interesting problem, but it falls out of the scope of this paper. The interested reader can

2This example follows the terminology used in White et al. (2015). Arguably, the forecasting equa-
tions look more similar to the forecasts induced by a vector autoregressive moving average (VARMA).

3Section OA.1 in the Online Appendix provides a list of examples of data transformations allowed
by Assumption A.2.

4The extension to multiple quantiles for each variable is possible but at the expense of more tedious
proofs.

5Similar results to those derived in this paper also apply to asymmetric least squares Newey and
Powell (1987).
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refer to Engle and Manganelli (2004); Giacomini and Komunjer (2005); Komunjer (2013)

for more details. It should be noted that the check loss is commonly used to assess the

accuracy of quantile forecasts (Giacomini and Komunjer, 2005).

Note that standard asymptotic results for (Q)MLE require that the log-likelihood be

twice di�erentiable, which is not the case with the check loss. Extension of the results to

nonsmooth objective functions is of course feasible, and the intuition is that smoothness

of the objective function can be replaced by smoothness of the limit if certain remainder

terms are small. However, a proper formalization of this intuition requires proofs that

are somewhat technical and lengthy (Newey and McFadden, 1994, Sec. 7.4). In contrast,

the present paper does not need to deal with such technicalities since the results hold

without requiring di�erentiability of the loss function.

2.3 Estimation.

As usual in the CAViaR literature, the parameter θ in (1) is unknown to the forecaster

and needs to be estimated from the data. Let τ “ pτ1, . . . , τN q1 P r0, 1sN . The estimation

problem is formulated as6

θ̂T,τ P argmin
Θ

RT pθ, τq , RT pθ, τq “
1

T

T
ÿ

t“1

ltpθ, τq , (2)

and

ltpθ, τq “
1

N

N
ÿ

i“1

ρτipYi t ´ fθ i tq. (3)

Note that as in most quantile estimation problems, θ̂T,τ need not be unique, and in

that case one may choose θ̂T,τ arbitrarily among the set of candidate minimizers of

the criterion. Problem (2) is a special case of an extremum estimator, or M-estimator.

While the theory of M-estimation is (obviously) focused on estimation and inference,

this paper is concerned with deriving theoretical guarantees for one-step-ahead out-of-

sample forecasting with θ̂T,τ . An important remark is that unlike in classical parametric

statistics, θ P Θ is not indexing the family of distributions that generate tYtu. Instead,

it only indexes the class of forecasts.

6In practice, the forecaster needs to choose a suitable initial value fθ 0 “ f0 to initiate the recursion.
A typical choice is the unconditional quantiles of Yt.
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3 Theory

As it is clear from section 2, the relationship between fθ t and Yt is left unspeci�ed. In

particular, fθ t need not represent the true conditional quantiles of Yt. Nevertheless, the

main result in this section states that fθ t achieves the optimal performance within its

class in the check loss sense at a near optimal rate.

3.1 Framework

Conditional risk. This section starts by formally de�ning the notion of performance.

Let M “ rγT s for some γ ą 0. The conditional risk of θ̂T,τ is de�ned as

Rpθ̂T,τ , τq :“ E

«

1

M

T`M
ÿ

t“T`1

ltpθ̂T,τ , τq

ˇ

ˇ

ˇ

ˇ

ˇ

YT , . . . , Y0, f0

ff

. (4)

It is important to remark that Rpθ̂T,τ , τq is a natural metric of out-of-sample performance

for time series forecasting: it measures the expected average loss in one-step-ahead out-

of-sample forecasting using θ̂T,τ given a sample path of in-sample observations and an

initial value fθ 0 “ f0 chosen by the forecaster. Conditioning on the initial value allows

us to analyze the properties of the conditional quasi-maximum likelihood rather than

the exact maximum likelihood method (Hamilton, 1994, Ch. 5), which is typically more

di�cult to implement, and particularly so in misspeci�ed settings.

Note that if the data is independent, it is simpler to de�ne performance by taking

an independent copy of the in-sample data, since the dynamics do not play any role for

future forecasting, but this is not satisfactory in time series applications (Kuznetsov and

Mohri, 2015). Naturally, Rpθ̂T,τ , τq is a random variable.

Dominating process. A key step in the proof of the main result is to �nd a process

tdθ tu such that }θ ´ 9θ}1 ď δ implies that }fθ t ´ f 9θ t}1 ď δd 9θ t for every pair θ, 9θ P Θ with

probability 1. The dominating process in question is given by the following recursion

dθ t “ 1 ` Cs

`

1 ` A
˘

}Yt´1}1 ` }fθ t´1}1 ` Bdθ t´1 ` ϵd t , (5)
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where dθ 0 is drawn from the stationary distribution7 and Cs and A are positive �nite

constants, and tϵd tu is an i.i.d. sequence of non-negative random variables. It follows

that

ˇ

ˇ

ˇ
ltpθ, τq ´ ltp 9θ, τq

ˇ

ˇ

ˇ
ď

1

N
δd 9θ t (6)

holds with probability 1. The construction of the dominating process is closely related

to the smoothness conditions used to turn pointwise laws of large numbers (LLNs) into

uniform LLNs over compact sets. For instance, Assumption A3 in Andrews (1987)

requires that

lim
δÑ0

sup
Tě1

1

T

T
ÿ

t“1

E sup
θPBp 9θ,δq

|ltpθ, τq ´ ltp 9θ, τq| “ 0 ,

where Bp 9θ, δq “ tθ P Θ : ϱp 9θ, θq ď δu and ϱ can be any metric de�ned on Θ. It is easy

to see that inequality (6) together with a suitable uniform moment requirement on dθ t

are enough to verify the smoothness condition A3.

Oracle inequality. An oracle inequality is a probabilistic bound that relates the per-

formance of an estimator to that of an ideal estimator that has best performance in the

class, also known as the �oracle� (Donoho and Johnstone, 1994; Candes, 2006). Following

Lecué and Mendelson (2016), the M-estimator θ̂T,τ satis�es an oracle inequality if the

following bound

Rpθ̂T,τ , τq ď inf
Θ

Rpθ, τq ` rT pN, pq

holds with high probability, where rT pN, pq is a term which converges to zero at a rate

that depends on the sample size T , size of the cross-section N , and the complexity of

the class of forecasts (quanti�ed by p). Notice that the term does not depend on τ ,

suggesting that the result holds uniformly over all τ P r0, 1sN .

The following condition is key to establish an oracle inequality for the class of mul-

tivariate CAViaR forecasts considered in this paper.

7Note that assumptions A.1, A.2 and A.3 are su�cient to guarantee the existence of the stationary
distribution.
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Condition 1 (Moments and mixing). The following conditions are satis�ed by tltpθ, τqu

and tdθ tu, which are given by (2) and (5):

(i) θ P Θ Ď Rp, where Θ is compact.

(ii) tltpθ, τqu and tdθ tu are strictly stationary and α-mixing with α-mixing coe�cients

such that αpmq ď expp´Cαm
rαq for some Cα ą 0 and rα ą 0 that do not depend

on θ.8

(iii) There exists CL ă 8 such that supΘ }ltpθ, τq}Lk
ď CL and supΘ }dθ t}Lk

ď CL, for

some k ą p ` 2.

(iv) The (conditional and unconditional) distribution of Yt is supported on Y Ď RN ,

where Y has positive Lebesgue measure in RN .

Condition 1 deserves some discussion.

The �rst thing to note is that Condition 1 can be veri�ed for a large class of parameter-

driven DGP's (Cox, 1981). For instance, Assumptions A.1, A.2 and A.3 imply Condition

1. This is established in this paper via a rather novel application of Markov chain theory.

The novelty of the approach consists of deriving V -geometric ergodicity (Liebscher, 2005;

Meitz and Saikkonen, 2008a) of the Markov chain given by the DGP, fθ t and dθ t, which

in turn implies the mixing and moment properties described in Condition 1 (Brownlees

and Llorens-Terrazas, 2021). Appendix B contains a full derivation of these results.

Condition 1piq is a standard compactness requirement on the parameter space. While

compactness is typically required to guarantee the existence of a minimizer of the cri-

terion function both in sample and in population, this paper requires compactness only

to guarantee existence of a minimizer in sample. Condition 1piiq is a strong mixing

assumption (Doukhan, 1994). Although strong mixing assumptions are not the most

general type of condition, they are still satis�ed by a large number of models such as

�stable� Markov chains with absolutely continuous innovations. An interesting example

is the class of hidden Markov models given by (7) and (8). Condition 1piiiq is a moment

requirement on the loss and the dominating process, which involves Yt, fθ t and dθ t. The

requirement k ą p ` 2 follows from the choice of the proof techniques used to derive

concentration inequalities for the terms on the right-hand side of (9). Condition 1pivq

8See De�nition 2 for a formal de�nition of αpmq. tXtu is said to be strongly mixing or α-mixing, if
αpmq Ñ 0 as m Ñ 8. While the α-mixing coe�cients of tltpθ, τqu and tdθ tu could be di�erent, the
condition means that they have a common upper bound.
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ensures that the distribution of Yt is su�ciently well-behaved. In particular, it rules out

that Yt might only take values in some lower-dimensional subspace of RN .

The assumptions in Engle and Manganelli (2004) and White et al. (2015) provide a

reasonable benchmark to establish a comparison with Condition 1. In that literature, it

is assumed that there exists θ0,τ P Θ such that fθ0,τ t “ qτt , while in this paper this is

not required. The CAViaR literature assumes (inter alia) that the loss process satis�es

a uniform law of large numbers (ULLN). Instead, Condition 1 can be seen as a su�cient

condition to obtain the assumed ULLN from the CAViaR literature. Furthermore, Con-

dition 1 is su�cient to establish a rate of convergence. In summary, Condition 1 is easier

to verify and tailored to the goal of this paper � which is out-of-sample forecasting.

3.2 Assumptions

This sub-section gives a list of su�cient conditions under which Condition 1 holds.

Data generating process. Suppose that the data generating mechanism is given by

the following hidden Markov model

Yt “ gy1pHtq ` gy2pHtqϵY t (7)

Ht “ gh1pHt´1q ` gh2pHt´1qϵH t , (8)

where Yt takes values in Y Ď RN and Ht takes values in H Ď Rph ; gy1, gy2, gh1 and

gh2 are Borel-measurable functions, and tϵY tu and tϵH tu are i.i.d. sequences of random

variables supported in Y and H, respectively. The process is initialized at the station-

ary distribution, and assumption A.1 below is su�cient to guarantee its existence. To

simplify notation, take Y “ RN and H “ Rph .

A.1. The process given by equations (7) and (8) satis�es the following:

(i) The functions gh1 and gh2 are bounded on bounded subsets of Rph. Moreover,

}gh1phq}1 ď ah}h}1 ` op}h}1q and ~gh2phq~1 ď bh}h}1 ` op}h}1q as }h}1 Ñ 8. The

matrix function gh2phq is non-singular for all h P Rph, and infhPRph | detpgh2phqq| ą

0.

(ii) The functions gy1 and gy2 are bounded on bounded subsets of Rph. Moreover,

}gy1phq}1 ď Cy}h}1 and ~gy2phq~1 ď Cy}h}1 for some Cy ă 8. The matrix
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function gy2phq is non-singular for all h P Rph, and infhPRph | detpgy2phqq| ą 0.

(iii) tϵY tu and tϵH tu are i.i.d. sequences of random variables with absolutely continuous

distributions w.r.t. Lebesgue measure on RN and Rph (resp.) and are supported in

RN and Rph (resp.), with densities ϕY and ϕH that are bounded away from zero on

compact subsets of Rph and RN (resp.). The random variables ϵY t and ϵH t satisfy

}ϵY t}Lk
ă 8 and }ϵH t}Lk

ă 8 (resp.) for some k ą p ` 2.

(iv) Epah ` bh}ϵH t}1qk ă 1.

Class of forecasts

A.2. The class of forecasts given by (1) satis�es the following:

(i) ~B~1 ď B ă 1.

(ii) detpAq ‰ 0 and ~A~1 ď A ă 8.

(iii) For each h P Rph, there exists some z P RN such that det
´

Bs̃λph,zq

Bz

¯

‰ 0, where

s̃λph, zq :“ sλpgy1phq ` gy2phqzq.

(iv) There exists some Cs ă 8 such that }sλpuq}1 ď Cs}u}1 and }sλpuq ´ s 9λpuq}1 ď

Cs}u}1}λ ´ 9λ}1 for every u, where Cs does not depend on λ nor 9λ.

(v) θ “ pω1, vecpAq1, vecpBq1, λ1q1 P Θ Ď Rp, where Θ is compact.

(vi) There exists Df Ď RN such that sλ is a di�eomorphism in Df .

Dominating process

A.3. The dominating process given by (5) satis�es the following:

(i) tϵd tu is an i.i.d. sequence of random variables with absolutely continuous distribu-

tions w.r.t. Lebesgue measure on R and are supported in r0, 1s, with density ϕd that

is bounded away from zero on compact subsets of r0, 1s.

Remarks. Assumption A.1 is a multivariate extension of standard assumptions used

to establish geometric ergodicity of nonlinear time series models (Masry and Tjøstheim,

1995; Lu and Jiang, 2001; Lanne and Saikkonen, 2005; Meitz and Saikkonen, 2008a;
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Brownlees and Llorens-Terrazas, 2021) and it allows for a fairly broad class of parameter-

driven processes. Assumption A.1piq is similar to Assumption 3.2 in Masry and Tjøs-

theim (1995) and it implies that (8) is dominated asymptotically by a stable linear model.

As Masry and Tjøstheim (1995) emphasize, such a requirement is mild, since functions

that grow everywhere faster than a stable linear model are nonstationary. Assumption

A.1piiq allows for a fair amount of �exibility in equation (7). In particular, it requires

}Yt}1 to be bounded from above by a linear function of }Ht}1. Assumption A.1piiiq

imposes conditions on the random variables ϵH t and ϵY t that are analogous to standard

conditions used in the literature. Assumption A.1pivq is a stability condition analogous

to the one assumed in Masry and Tjøstheim (1995) or Lanne and Saikkonen (2005).

Assumption A.2piq is a stability condition for fθ t and dθ t. Intuitively, this assumption

ensures that the forecasts have a su�ciently �fading memory� (Pötscher and Prucha,

1997). Note that A.2piq implies that the spectral radius of B is strictly less than unity.

Assumption A.2piiq requires A to be non-singular, so Θ must avoid the region of the

parameter space where detpAq “ 0. For instance, we may require that |detpAq| ě A ą 0.

The upper bound A can be chosen arbitrarily by the forecaster, although higher values

of A have the e�ect of slowing down the geometric decay rate of the strong mixing

coe�cients. Assumptions A.2piiiq, pivq and pviq are relatively mild and allow for a broad

class of transformations sλ that include as special cases di�erentiable approximations to

symmetric and asymmetric absolute values (see the Online Appendix for examples of sλ

that satisfy Assumption A.2).

Assumption A.3 is an auxiliary assumption that is useful to simplify the proof of

irreducibility and aperiodicity of the �companion Markov chain� de�ned in (11). More

speci�cally, the assumption permits the use of proof techniques similar in spirit to Meitz

and Saikkonen (2008b, Lemma 2) and Meyn and Tweedie (1993, Ch. 7).

Condition 1 leads to an oracle inequality for the class of forecasts introduced in (1),

with out-of-sample performance de�ned as in equation (4).

Theorem 1. Suppose Condition 1 holds. Then, there exists a positive constant σ (uni-

formly over τ) such that, for all T su�ciently large, it holds that

Rpθ̂T , τq ď inf
Θ

Rpθ, τq ` 2σ

c

p log T

NT

with probability at least 1 ´ log´1 T ´ oplog´1 T q.
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Some remarks are in order. First, if the forecaster believes that there exists θ0,τ P Θ

such that fθ0,τ t “ qτt , then we have the analogous result of the consistency of CAViaR

for out-of-sample forecasting in �nite samples and with a rate of convergence. Second, if

there is no θ P Θ such that fθ t “ qτt , Theorem 1 still provides �nite-sample performance

guarantees for out-of-sample forecasting in the check loss sense.

The constant σ2 is application-speci�c and may be interpreted as an upper bound

for the long run variance of the loss process. See Proposition 3 for a precise de�nition

of σ2. The rate of convergence
a

log T {T is sometimes referred to as the classical rate

of convergence of empirical risk minimization in the learning literature for classi�cation

with i.i.d. data (Devroye et al., 1996, Ch. 12). With �xed N , the theorem implies

that the M-estimator is consistent with respect to the class of forecasts indexed by Θ,

meaning that |Rpθ̂T,τ , τq´ infΘRpθ, τq|
p

Ñ 0 as T Ñ 8. In other words, the M-estimator

achieves asymptotically the optimal forecasting performance attainable within the class

of algorithms considered.

One can interpret NT as the �e�ective� sample size, i.e. the number of time series

multiplied by the sample size for each series. However, it should be noted that the proof

techniques employed in this paper do not allow p nor N to diverge to in�nity. This limits

the extent to which Theorem 1 can be regarded as a �high-dimensional� result, in the

sense that it cannot be used to draw conclusions about speci�cations for which p Ñ 8 as

N Ñ 8. Still, it is a useful result for speci�cations that rely on �commonalities� on the

parameters such as composite likelihood (Pakel, Shephard, and Sheppard, 2011), where

p is �xed and the performance of θ̂T,τ can improve by pooling information across series.

An example of such a procedure is used in the empirical section.

It is important to emphasize that Theorem 1 is stronger than a consistency result for

the prediction performance of the M-estimator since it is non-asymptotic (it holds for

each su�ciently large T ) and it provides a speci�c rate of convergence for the performance

of the M-estimator. As will be noted in section 4, oracle inequalities can be proved with

techniques similar to those used to obtain ULLNs, or �uniform convergence over a class

of functions� (Vapnik and Chervonenkis, 1971). However, the oracle inequality stated

in this paper is stronger than a ULLN, since it also provides information about the

rate at which the performance of the forecast is approaching its optimal level (Vapnik,

1999). Lastly, we emphasize that the existence of an optimal prediction rule θ0,τ “

argminΘRpθ, τq is not required by the theorem.
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3.3 Additional Discussion

This paper studies the properties of the M-estimator when the time series is generated by

a parameter-driven process. Clearly, an observation-driven process may be entertained

instead. In this case, the analysis of the performance of the M-estimator can be carried

out using the same strategy developed in this paper. However, some of the proofs will

di�er and the analysis of this case is left for future research.

The theoretical framework of this paper does not require the class of algorithms to

have special approximation properties or to include the optimal forecast associated with

the data generating process and the loss function. What is key in the framework is that,

loosely speaking, forecasts forget the past exponentially fast.

Instead of comparing the performance of the M-estimator against the optimal risk

attainable in the class, one may wish to compare against the risk of the optimal 1-step-

ahead forecast. For the check loss, the optimal 1-step-ahead forecast is the conditional

quantile (assuming it exists) (Giacomini and Komunjer, 2005). Thus, the risk of the

optimal 1-step-ahead forecast may be de�ned as

R˚pτq “ E

«

1

M

1

N

T`M
ÿ

t“T`1

N
ÿ

i“1

ρτipYi t ´ qτii tq

ˇ

ˇ

ˇ

ˇ

ˇ

YT , . . . , Y0, f0

ff

.

The performance of the M-estimator relative to the risk of the optimal 1-step-ahead

forecast may be expressed as

Rpθ̂T,τ , τq ´ R˚pτq “

„

inf
Θ

Rpθ, τq ´ R˚pτq

ȷ

`

„

Rpθ̂T,τ , τq ´ inf
Θ

Rpθ, τq

ȷ

.

The �rst term is called the approximation error and the second term is called the esti-

mation error (Devroye et al., 1996, Ch. 12). Notice that oracle inequalities control the

estimation error. The approximation error is typically di�cult to control, especially in a

time series setting. There are a number of contributions that, in some sense, attempt to

control the approximation error (Nelson, 1992). In general, the analysis of the approxi-

mation error requires additional assumptions. For this reason learning theory typically

focuses on studying the estimation error, as it is done in this paper.

The focus of this paper is on quantile forecasting, and as such the theory is derived for

the check loss function. Notwithstanding, inspection of the proof strategy reveals that

similar results can be derived for other loss functions, so long as they satisfy dominance
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requirements akin to (6) above. This is the case for the (asymmetric) least squares

criterion proposed by Newey and Powell (1987), that is, ϱτipuq “ u2|τi ´ Ipu ă 0q|. Note

that with ltpθ, τq “ 1
N

řN
i“1 ϱτipYi t ´ fθ i tq, it holds that

|ltpθ, τq ´ ltp 9θ, τq| ď
1

N

›

›fθ t ´ f 9θ t

›

›

2

2
`

2

N

N
ÿ

i“1

|Yi t ´ f 9θ i t||fθ i t ´ f 9θ i t| ,

and it is not di�cult to verify that a dominating process dθ t analogous to (5) can be

derived so that }θ ´ 9θ}2 ď δ implies that
›

›fθ t ´ f 9θ t

›

›

2
ď δd 9θ t for every pair θ, 9θ P Θ

with probability 1. However, notation and proofs do require modi�cations which are not

pursued here.

4 Sketch of proof of Theorem 1

This section explains the main steps to derive the proof of Theorem 1, which are broken

down in four di�erent propositions. Proofs can be found in Appendix A.

Step 1: Basic inequality. The �rst step consists of noting that the discrepancy

between Rpθ̂T , τq and infΘRpθ, τq � also known as �regret� in the learning literature �

can be upper bounded by two key terms.

Proposition 1. Let Rpθ, τq “ Eltpθ, τq. Then,

Rpθ̂T,τ , τq ´ inf
Θ

Rpθ, τq ď 2 sup
Θ

|RT pθ, τq ´ Rpθ, τq| ` 2 sup
Θ

|Rpθ, τq ´ Rpθ, τq| . (9)

It is important to emphasize that Proposition 1 is a general result that only requires

the loss process to be stationary.9 Note that when the data is i.i.d., Rpθ, τq “ Rpθ, τq and

the inequality in Proposition 1 corresponds to the classic inequality derived in Vapnik

and Chervonenkis (1974) (Devroye et al., 1996), which is routinely used to derive bounds

on the performance of empirical risk minimization.

The �rst term on the right hand side of (9) is the supremum of the empirical process

associated with the prediction loss ltpθ, τq. The second term is the supremum of the

average di�erence between conditional and unconditional expectations of the prediction

9To clarify, θ̂T,τ is obtained by �xing an initial value f0, but the analysis can be carried out with the
process fθ t initialized at the stationary distribution because Proposition 1 only involves the conditional
expectation de�ned in (4), which is already conditioned on f0.
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loss over the out-of-sample period.

Step 2: Covering. The second step is summarized in the following.

Proposition 2. Suppose Condition 1 is satis�ed. Then, for any ε ą 0 it holds that

Pr

ˆ

sup
Θ

|RT pθ, τq ´ Rpθ, τq| ą
ε

2

˙

ď

ˆ

1 `
24CΘCd

Nε

˙p

sup
Θ

”

P T
1

´

ltpθ, τq,
ε

4

¯

` P T
1 pdθ t, Cdq

ı

,

where P b
apUt, εq “ Pr

´ˇ

ˇ

ˇ

1
b´a`1

řb
t“a Ut ´ EUt

ˇ

ˇ

ˇ
ą ε

¯

, and

Pr

ˆ

sup
Θ

|Rpθ, τq ´ Rpθ, τq| ą
ε

2

˙

ď

ˆ

1 `
24CΘCd

Nε

˙p

sup
Θ

”

P T`M
T`1

´

ET ltpθ, τq,
ε

4

¯

` P T`M
T`1 pETdθ t, Cdq

ı

,

where CΘ “ supΘ }θ}1 and Cd “ supΘ }dθ t}L1.

Proposition 2 relies on a �covering argument� which has appeared in the literature

to establish uniform laws of large numbers (Amemiya, 1985; Davidson, 1994) and in

empirical risk minimization for time series (Jiang and Tanner, 2010).

Step 3: Concentration inequality (part I). The third step uses a slight modi�ca-

tion of a well known concentration inequality for sums of α-mixing processes (Liebscher,

1996). Proposition 3 formalizes the result.

Proposition 3. Suppose Condition 1 is satis�ed. Then, for all T su�ciently large and

for εT “ σ
b

p log T
NT , it holds that

ˆ

1 `
24CΘCd

NεT

˙p

sup
Θ

Pr

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

ltpθ, τq ´ Eltpθ, τq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
εT
4

¸

ď
1

log T
and

ˆ

1 `
24CΘCd

NεT

˙p

sup
Θ

Pr

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

dθ t ´ Edθ t

ˇ

ˇ

ˇ

ˇ

ˇ

ą Cd

¸

ď o

ˆ

1

log T

˙

as T Ñ 8 ,

where σ2 “ 8p21´1{k ` 1qC2
L

´

1
41´2{k ` 2

ř8
m“1 exp p´Cαm

rαq
1´ 2

k

¯

.

Step 4: Concentration inequality (part II). The fourth step � summarized in

Proposition 4 � uses a well known result by Ibragimov (1962) that establishes a bound
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on the Lp-norm of the discrepancy between conditional and unconditional expectations

of α-mixing processes.

Proposition 4. Suppose Condition 1 is satis�ed. Then, for all T su�ciently large and

for εT “ σ
b

p log T
NT , it holds that

ˆ

1 `
24CΘCd

NεT

˙p

sup
Θ

Pr

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

M

T`M
ÿ

t“T`1

ET ltpθ, τq ´ Eltpθ, τq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
εT
4

¸

ď
1

log T
and

ˆ

1 `
24CΘCd

NεT

˙p

sup
Θ

Pr

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

M

T`M
ÿ

t“T`1

ETdθ t ´ Edθ t

ˇ

ˇ

ˇ

ˇ

ˇ

ą Cd

¸

ď o

ˆ

1

log T

˙

as T Ñ 8 ,

where σ2 is de�ned in Proposition 3.

It follows from Propositions 2, 3 and 4 that, for all T su�ciently large,

2 sup
Θ

|Rpθ, τq ´ Rpθ, τq| ` 2 sup
Θ

|RT pθ, τq ´ Rpθ, τq| ď 2σ

c

p log T

NT

holds with high probability. This fact and Proposition 1 imply Theorem 1.

Proof of Theorem 1. Follows by Condition 1 and Propositions 1, 2, 3 and 4.

5 Application to backtesting global Growth-at-Risk

The International Monetary Fund (IMF) has recently popularized a risk measure for

GDP growth called Growth-at-Risk (GaR), which is the worst-case scenario GDP growth

at a given coverage level and is the analog of the classic Value-at-Risk (VaR) used in

risk management. Several institutions such as the IMF or the European Central Bank

publish GaR for major world economies on a routine basis. One of the appealing features

of quantile regression is that it allows direct linkage of downside risk predictors to the

quantiles of GDP growth.

This application explores the use of the multivariate CAViaR class de�ned in the

theoretical framework of this paper. The CAViaR class is closely related to the quantile

regression techniques put forward by Adrian et al. (2019). A key di�erence is the recursive

nature of the CAViaR forecasts, which rely on the entire past of GDP growth � similarly

to GARCH models. In fact, GARCH forecasts that use no information other than

the past of GDP growth exhibit better performance than quantile regressions that use
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external information such as the national �nancial conditions index (NFCI) (Brownlees

and Souza, 2021). This suggests that � quite remarkably � the (entire) past of GDP

growth seems to be the key driver of the time variation in the conditional distribution of

GDP growth. The present paper also investigates the �synergies� between GARCH and

CAViaR.

Description of the exercise. The data consists of a balanced panel of GDP growth

rates for 24 OECD countries that spans from 1961Q1 to 2019Q1. The sample comprises

all countries for which GDP data are available since at least 1973Q1 to match some of

the predictors used in the quantile regression analysis. GDP growth rates are de�ned as

the quarterly percentage change in seasonally adjusted real GDP and are obtained from

the OECD database.

The speci�cations considered in the exercise can be classi�ed in three broad types.

First, a class of GARCH(1,1) models is entertained, estimated via the pooled GARCH

procedure proposed by (Pakel, Shephard, and Sheppard, 2011). The pooled GARCH

procedure relies on a speci�cation where the dynamic parameters of the GARCH recur-

sion are common for all countries and are estimated via composite (quasi) maximum

likelihood, while the intercept parameter is country-speci�c and estimated via variance

targeting. This is done because in relatively short time series such as GDP growth, it

is challenging to obtain stable parameter estimates (Brownlees et al., 2011). Results are

reported for both GARCH models estimated on GDP growth � labeled as GARCH in

Table 5 � and on the residuals of an AR(1) � labeled as AR-GARCH.

Second, a number of quantile regression models (QR) are implemented following

Adrian et al. (2019). Quantile regression requires specifying a set of downside risk pre-

dictors. The list of variables includes country-speci�c variables such as the national

�nancial conditions index (NFCI), credit-to-GDP gap and growth (CG and CR), term

spread (TS), housing prices (HP), the World Uncertainty Index (WUI), and economic

policy uncertainty (EPU), as well as global predictors such as the global real activity

factor (GF), stock variance (SV), credit spread (CS), and the geopolitical risk index

(GPR). The details on the data availability, construction and imputation can be found

in Brownlees and Souza (2021).

Third, a number of special cases of (1) are implemented, labeled as pooled VFV in
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Table 5. All pooled VFV speci�cations take the form

fθ i t “ ωi ` αsλpYi t´1q ` βfθ i t´1, i “ 1, . . . , N,

where sλpuq “ bp
a

1 ` pu{bq2 ´ 1q |τ ´ Ipu ă 0q|, τ P r0, 1s, b P rb, bs, b ą 0 and

λ “ pτ, bq1. Note that sλpuq is an arbitrarily good approximation of |u||τ ´ Ipu ă 0q|

as b Ñ 0`, which corresponds to the symmetric absolute value (Sym) and asymmetric

slope (Asym) speci�cations introduced by Engle and Manganelli (2004) if τ “ 1{2 and

τ ‰ 1{2, respectively. In the asymmetric speci�cation, τ is set to 0.05. See Example 3 in

the Online Appendix for a veri�cation of Assumption A.2 for this choice of the function

sλ. The restrictions on the parameters α, β and ω1, . . . , ωN are naturally deduced from

Assumption A.2.

The pooled VFV speci�cations impose that the dynamic parameters α and β are

common for all countries and are estimated with the procedure described in equation

(2). This procedure is analogous to the composite likelihood approach mentioned above

� but with the check loss instead of the Gaussian (quasi) likelihood. Results are reported

for VFV speci�cations estimated on piq GDP growth, labeled as VFV in Table 5; piiq

the residuals of an AR(1) (VFV-AR); and piiiq on the standardized residuals of the

pooled GARCH, both on GDP growth and on the AR(1) residuals (GARCH-VFV and

AR-GARCH-VFV, respectively).

Recursive estimation is carried out for all speci�cations under consideration for each

quarter from 1973Q1 to 2016Q4 and out-of-sample forecasts are computed starting from

1983Q4. Starting the forecasting exercise from 1983Q4 implies that the out-of-sample

period is based on approximately 75% of the available data.

Marginal GaR forecasts are evaluated using the check loss over the out-of-sample

period, that is,

CL “
1

M

T`M
ÿ

t“T`1

N
ÿ

i“1

ρτ pYi t ´ fθ i tq. (10)

For completeness, Table 5 also reports Coverage and Length, which are de�ned as

Cov “
1

MN

T`M
ÿ

t“T`1

N
ÿ

i“1

I
´

Yi t ą fθ̂T,τ i t

¯

, Len “
1

MN

T`M
ÿ

t“T`1

N
ÿ

i“1

´

Q̂0.99pYiq ´ fθ̂T,τ i t

¯

,
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where Q̂0.99pYiq denotes the unconditional 99% empirical quantile of the ith series esti-

mated on the entire sample. All else being equal, GaR forecasts with a smaller length

are typically preferred.

Table 1: 95% GaR Marginal Forecast Evaluation

Method Speci�cation Cov Len Check

Benchmark Historical 94.41 5.42 0.14

Pooled GARCH GARCH 93.28 5.17 4.56
Pooled GARCH AR-GARCH 93.12 5.07 11.66

Pooled VFV Sym 93.59 5.28 ´0.22
Pooled VFV Asym 94.82 5.37 8.45
Pooled VFV AR-VFV Sym 93.94 5.20 11.52
Pooled VFV AR-VFV Asym 95.36 5.40 2.87

Pooled GARCH-VFV GARCH-VFV Sym 93.09 5.18 4.55
Pooled GARCH-VFV GARCH-VFV Asym 94.07 5.24 12.60
Pooled GARCH-VFV AR-GARCH-VFV Sym 93.06 5.09 12.87
Pooled GARCH-VFV AR-GARCH-VFV Asym 93.53 5.12 12.51

QR NFCI 92.77 5.17 3.85
QR NFCI + TS 91.13 5.08 ´0.13
QR NFCI + TS + GF 90.72 5.09 ´1.23
QR Full 89.39 5.15 ´19.18

Cov: Average empirical coverage; Len: average empirical length; Check: �rst row:
average check loss of the historical benchmark; remaining rows: percentage

improvement in average check loss relative to historical benchmark.

The results of the exercise can be summarized as follows. First, the VFV speci�ca-

tions on the standardized residuals of (AR-) GARCH perform best out-of-sample. The

approach exploits non-obvious dynamics of the standardized residuals of the GARCH

procedure. The dynamics are not obvious in the sense that they are not captured by

inspection of the autocorrelation function of the standardized residuals nor their abso-

lute values or squares. In addition, empirical support in favor of AR-GARCH-CAViaR

methodologies has been documented in Kuester et al. (2006), which use more than 30

years of daily return data on the NASDAQ Composite Index. Panel Diebold-Mariano

tests statistics of superior predictive ability based on the check loss are reported in Table

OA.6.

Second, a comparison between GARCH versus the VFV reveals that the GARCH

speci�cation outperforms the VFV in terms of the check loss, whereas the VFV speci�ca-
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tion provides better out-of-sample coverage. This is perhaps surprising in the sense that

the VFV speci�cation is designed to minimize the check loss function. This suggests that

the approach to GaR forecasting using conditional volatility is particularly useful in this

dataset. Another possible explanation may be that the GARCH speci�cation bene�ts

more from exploiting �commonalities� in conditional variance with respect to the VFV

speci�cation, which exploits commonalities in conditional quantiles.

Third, asymmetries in conditional volatility of GDP growth do not play an important

role, but they still matter for the quantiles. The results from the speci�cations Pooled

VFV (Sym) vs Pooled VFV (Asym) in Table 5 suggest that negative growth rates have

more predictive power for conditional quantiles than positive ones in the check loss sense.

However, the narrative changes when the VFV speci�cations are run on the residuals of

AR or AR-GARCH. This is perhaps not surprising since the relevant asymmetries are

found at the zero growth level.

To sum up, these forecasting results suggest that using the entire past of GDP growth

provides a benchmark that is easy to implement and hard to beat even by cross-sectional

quantile regression approaches based on external information such as the NFCI.

6 Concluding Remarks

This paper establishes theoretical guarantees for out-of-sample multivariate dynamic

quantile forecasts. A key feature of the analysis is that the relationship between the data

generating process and the class of algorithms is unspeci�ed. The main result implies that

the predictor that minimizes the in-sample average check loss achieves asymptotically

the optimal predictive performance that is attainable within the class, even when it is

fully misspeci�ed.

To put it di�erently, this paper shows that the conditional quasi-maximum likelihood

estimator achieves the oracle's out-of-sample predictive performance within the class of

VAR for VaR speci�cations considered here. A crucial condition to obtain this type of

result is that the data and the forecast forget their past su�ciently fast and that enough

moments exist. The paper also gives a set of primitive assumptions that are su�cient to

validate this condition.

This work exempli�es how to combine the tools of statistical learning theory and non-

linear time series to obtain performance guarantees for time series forecasting. Following
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the �algorithmic modeling� culture fostered by Breiman (2001), this paper hopefully

paves the way for the development of new forecasting strategies for time series applica-

tions with minimal assumptions on how the data is generated.
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A Proofs

A.1 Main Result

Proof of Proposition 1. Let tlGt pθ, τqu be an independent copy of tltpθ, τqu (initialized

at the stationary distribution). De�ne Rpθ̂T,τ , τq “ ElGt pθ̂T,τ , τq. By the properties of

in�mum and supremum and the de�nition of empirical risk minimizer (i.e. RT pθ, τq ě

RT pθ̂T,τ , τq for all θ P Θ), we have that

Rpθ̂T,τ , τq ´ inf
Θ

Rpθ, τq

“ Rpθ̂T,τ , τq ´ Rpθ̂T,τ , τq ` Rpθ̂T,τ , τq ´ inf
Θ

“

Rpθ, τq ` Rpθ, τq ´ Rpθ, τq
‰

ď

”

Rpθ̂T,τ , τq ´ Rpθ̂T,τ , τq

ı

`

„

Rpθ̂T,τ , τq ´ inf
Θ

Rpθ, τq

ȷ

´ inf
Θ

“

Rpθ, τq ´ Rpθ, τq
‰

ď 2 sup
Θ

|Rpθ, τq ´ Rpθ, τq| `

„

Rpθ̂T,τ , τq ´ inf
Θ

Rpθ, τq

ȷ

ď 2 sup
Θ

|Rpθ, τq ´ Rpθ, τq| ` 2 sup
Θ

|RT pθ, τq ´ Rpθ, τq| ,

where the last inequality follows by Lemma 8.2 in Devroye, Györ�, and Lugosi (1996).

Proof of Proposition 2. The proof is based on a covering argument similar in spirit to

Jiang and Tanner (2010, Prop. 2). Let tΘju
Nδ
j“1, where Θj “ tθ : }θ´θj}1 ď δ, θj P Θu be

a δ-covering of Θ and Nδ is the covering number. The choice of δ ą 0 will be determined

in what follows. By the union bound it follows that

Pr

˜

sup
θPΘ

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

ltpθ, τq ´ Eltpθ, τq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

2

¸

ď

Nδ
ÿ

j“1

Pr

˜

sup
θPΘj

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

ltpθ, τq ´ Eltpθ, τq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

2

¸

.

Add and subtract ltpθj , τq´Eltpθj , τq, use the fact that if |a`b| ą ε, then either |a| ą ε{2

or |b| ą ε{2, and again by the union bound we can write

Pr

˜

sup
θPΘj

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

ltpθ, τq ´ Eltpθ, τq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

2

¸

ď Pr

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

ltpθj , τq ´ Eltpθj , τq

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

4

¸

` Pr

˜

sup
θPΘj

ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

rltpθ, τq ´ ltpθj , τqs ´ Erltpθ, τq ´ ltpθj , τqs

ˇ

ˇ

ˇ

ˇ

ˇ

ą
ε

4

¸

.

Now, by (6) we have that |ltpθ, τq´ ltpθj , τq| ď δ
N dθj t with probability 1, which is proven

in Lemma OA.2 (see Online Appendix). By the triangular inequality, the second term
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is bounded above by

Pr

˜

sup
θPΘj

1

T

T
ÿ

t“1

|ltpθ, τq ´ ltpθj , τq| ` |Erltpθ, τq ´ ltpθj , τqs| ą
ε

4

¸

ď Pr

˜

1

T

T
ÿ

t“1

dθj t ` Edθj t ą
Nε

4δ

¸

.

Furthermore, since supΘ Epdθj tq ď Cd for some Cd ă 8, by choosing δ “ Nε{p12Cdq it

follows that

Pr

˜

1

T

T
ÿ

t“1

dθj t ` Edθj t ą 3Cd

¸

“ Pr

˜

1

T

T
ÿ

t“1

dθj t ´ Edθj t ą 3Cd ´ 2Edθj t

¸

ď Pr

˜

1

T

T
ÿ

t“1

dθj t ´ Edθj t ą Cd

¸

.

Finally, the claim follows by noting that

Nδ ď

ˆ

1 `
2CΘ

δ

˙p

“

ˆ

1 `
24CΘCd

Nε

˙p

.

The same covering argument applies to the second part of the claim with ltpθ, τq and dθ t

replaced by ET ltpθ, τq and ETdθ t, respectively. This is because |ET ltpθ, τq´ET ltpθj , τq| ď

ET |ltpθ, τq ´ ltpθj , τq| ď 2
N δETdθj t by Jensen's inequality and the order-preserving prop-

erty of the conditional expectation.

Proof of Proposition 3. Let rUθ t “ ltpθ, τq ´ Eltpθ, τq and rVθ t “ dθ t ´ Edθ t. To simplify

notation, the subscript θ in t rUθ tu is omitted. De�ne MT “ tT
1
2

´
p`1

2pk´1q log´ 1
2 T u and

bT “ CbT
p`1

2pk´1q plog T q
´

p´1
2pk´1q where Cb is a positive constant to be chosen in what follows.

Let rUt “ U 1
t ` U2

t where U 1
t “ ltpθ, τqIpltpθ, τq ď bT q ´ E pltpθ, τqIpltpθ, τq ď bT qq and

U2
t “ ltpθ, τqIpltpθ, τq ą bT q ´ E pltpθ, τqIpltpθ, τq ą bT qq. Then,

Pr

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

T

T
ÿ

t“1

rUt

ˇ

ˇ

ˇ

ˇ

ˇ

ą
εT
4

¸

ď Pr

˜ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U 1
t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
TεT
8

¸

` Pr

˜ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
TεT
8

¸

.

The sequence tU 1
tu has the same mixing properties as t rUtu and }U 1

t}L8
ă bT since

ltpθ, τq ě 0. Then for all T su�ciently large and p ă k ´ 2 the conditions of Theorem

2.1 in Liebscher (1996) are satis�ed since MT P t1, . . . , T u and TεT {8 ą 4MT bT . By

application of that theorem and noting that tltpθ, τqu is stationary and non-negative,

Pr

˜ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U 1
t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
TεT
8

¸

ď 4 exp

¨

˚

˝

´
Tε2T

4096
MT

E
´

řMT
t“1 U

1
t

¯2
` 64

3 MT bT εT

˛

‹

‚

` 4
T

MT
exp

`

´CαM
rα
T

˘

.
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Let γpmq “ |CovpU 1
t , U

1
t`mq| for m “ 0, . . . , T ´ 1. Then, E

´

řMT
t“1 U

1
t

¯2
ď MT pγp0q `

2
ř8

m“1 γpmqq. Noting that ltpθ, τq ě 0 and k ě 2, Davydov's inequality (Davidson,

1994, Corollary 14.3) implies

γpmq ď 2p21´1{k ` 1qαpmq1´2{k}U 1
t}Lk

}U 1
t`m}Lk

“ 2p21´1{k ` 1qαpmq1´2{k}U 1
t}

2
Lk

(by stationarity)

for m “ 0, . . . , T ´ 1. Also note that for any k ą 1 we have

}U 1
t}Lk

ď 2}ltpθ, τq}Lk
ď 2CL

by Jensen's inequality, and the last inequality holds by Condition 1piiiq. Thus,

E

˜

MT
ÿ

t“1

U 1
t

¸2

ď MT 8p21´1{k ` 1qC2
L

˜

1

41´2{k
` 2

8
ÿ

m“1

exp p´Cαm
rαq

1´ 2
k

¸

:“ MTσ
2.

Then, for all T su�ciently large, since p, k ą 1 are such that p ă k ´ 2, it holds that

ˆ

1 `
24CΘCd

NεT

˙p

Pr

˜ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U 1
t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
TεT
8

¸

“ oplog´1 T q .

Furthermore,

ˆ

1 `
24CΘCd

NεT

˙p

Pr

˜
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ą
TεT
8

¸

paq

ď

ˆ

1 `
24CΘCd

NεT

˙p 8

TεT
E

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

U2
t

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˆ

1 `
24CΘCd

NεT

˙p 16

εT
E rltpθ, τqIpltpθ, τq ą bT qs

pbq

ď

ˆ

1 `
24CΘCd

NεT

˙p 16

εT

Ck
L

bk´1
T

pcq

ď log´1 T ,

where paq follows from Markov's inequality pbq because Ep|X|Ip|X| ą bqq ď Ep|X|rq{br´1

for any random variableX with �nite r-th moment and positive constant b and Condition

1piiiq, and pcq from a su�ciently large choice of the constant Cb, for su�ciently large T

and noting that N , p and k are �xed. The sequence tṼθ tu can be analysed using the

same strategy (using the exact same choice of MT and bT used for Ũt).

Proof of Proposition 4. By Proposition 2, we have that

Pr

ˆ

sup
Θ

ˇ

ˇRpθ, τq ´ Rpθ, τq
ˇ

ˇ ą
ε

2

˙

ď

ˆ

1 `
24CΘCd

ε

˙p

sup
Θ

!

P T`M
T`1

´

ET ltpθ, τq,
ε

4

¯

` P T`M
T`1 pETdθ t, Cdq

)

.
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By Markov's inequality,

sup
Θ

Pr

˜ˇ

ˇ

ˇ

ˇ

ˇ

1

M

T`M
ÿ

t“T`1

ET ltpθ, τq ´ Eltpθ, τq

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

¸

ď

supΘ E
ˇ

ˇ

ˇ

1
M

řT`M
t“T`1 ET ltpθ, τq ´ Eltpθ, τq

ˇ

ˇ

ˇ

p

εp
.

By Ibragimov's inequality (Davidson, 1994, Theorem 14.2), we have that for k ą p ě 1,

sup
Θ

}ET ltpθ, τq ´ Eltpθ, τq}Lp
ď 2p21{p ` 1qαpmq1{p´1{k sup

Θ
}ltpθ, τq}Lk

, m “ t ´ T ,

where supΘ }ltpθ, τq}Lk
ă CL ă 8 by Condition 1. Consequently, and because of the

exponential decay of the α-mixing coe�cients,

sup
Θ

E

ˇ

ˇ

ˇ

ˇ

ˇ

1

M

T`M
ÿ

t“T`1

ET ltpθ, τq ´ Eltpθ, τq

ˇ

ˇ

ˇ

ˇ

ˇ

p

ď
σ2p

γpT p
,

where we have used that M “ rγT s. Let εT “ σ
b

p log T
NT . It follows that

ˆ

1 `
24CΘCd

NεT

˙p

sup
Θ

P T`M
T`1

´

ET ltpθ, τq,
εT
4

¯

ď
C

γpNpT pε2pT
“ O

`

log´p T
˘

.

for some C ă 8. By Condition 1, dθ t is also α-mixing with exponentially decaying

coe�cients and supΘ }dθ t}Lk
ă 8. The same arguments as above lead to the bound

ˆ

1 `
24CΘCd

NεT

˙p

sup
Θ

P T`M
T`1 pETdθ t, Cdq ď

C

γpNpT pεpT
“ oplog´p T q

for all T su�ciently large.

B Veri�cation of Condition 1

This section starts by recalling a number of notions from Markov chain theory. Notation

and de�nitions are based on Meyn and Tweedie (1993). The discrete-time process tXtu

is a time-homogeneous Markov chain with state space X Ď Rpx and equipped with a

Borel σ-algebra BpX q if for each n P N there exists an n-step transition probability

kernel Pn
X : X ˆ BpX q Ñ r0, 1s such that Pn

Xpx,Aq “ PrpXt`n P A|Xt “ xq for all

t P Z`. As customary, P 1
Xpx,Aq is denoted by PXpx,Aq. Let πX : BpX q Ñ r0, 1s denote

the invariant measure of the Markov chain (assuming it exists), that is, the probability

measure such that for each A P BpX q it holds that πXpAq “
ş

X πXpdxqPXpx,Aq.
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B.1 Companion Markov chain

Let Xt “ pX 1
1 t, X

1
2 t, X3 tq

1 be de�ned as

»

—

–

X1 t

X2 t

X3 t

fi

ffi

fl

“

»

—

–

gh1pX1 t´1q ` gh2pX1 t´1qZ1 t

ω ` As̃λpX1 t´1, Z2 tq ` BX2 t´1

1 ` Cs

`

1 ` A
˘

}Ỹ pX1 t´1, Z2 tq}1 ` }X2 t´1}1 ` BX3 t´1 ` Z3 t

fi

ffi

fl

, (11)

where

s̃λpX1 t´1, Z2 tq “ sλpỸ pX1 t´1, Z2 tqq

Ỹ pX1 t´1, Z2 tq “ gy1pX1 t´1q ` gy2pX1 t´1qZ2 t,

and Z1 t “ ϵH t, Z2 t “ ϵY t´1, and Z3 t “ ϵd t. The state space of the companion Markov

chain is X :“ Rph ˆRN ˆr1,8q Ă Rpx , where px “ ph ` N ` 1.

B.2 V-geometric ergodicity

The concept of V -geometric ergodicity used in this paper is the same as in Meitz and

Saikkonen (2008a). Note that this is stronger than Q-geometric ergodicity (Liebscher,

2005).

De�nition 1 (VX -geometric ergodicity). A Markov chain tXtu is VX-geometrically er-

godic if there exists a real valued function VX : X Ñ r1,8q, a probability measure πX on

BpX q, and constants ρ ă 1 and Mx ă 8 (depending on x) such that

sup
v:|v|ďVX

ˇ

ˇ

ˇ

ˇ

ż

X
Pn
Xpx, dxnqvpxnq ´

ż

X
πXpdxnqvpxnq

ˇ

ˇ

ˇ

ˇ

ď ρnMx , (12)

for all x P X and all n ě 1.

Veri�cation of Condition 1 begins by establishing the V -geometric ergodicity of the

companion Markov chain tXtu. The proof follows by Lemmas B.1 and B.2 (Meyn and

Tweedie, 1993).

Lemma B.1 (Irreducibility and Aperiodicity ofXt.). Let Xt be the Markov chain de�ned

in (11). Then, Xt is irreducible and aperiodic.

Proof. Start by noting that Xt in (11) can be cast as a nonlinear state space model

NSS(F ) (Meyn and Tweedie, 1993), i.e. Xt “ F pXt´1, pZ 1
1 t, Z

1
2 t, Z3 tq

1q with F de�ned

in an obvious way.10 For the chain to be irreducible we �rst need that the controllability

matrix has full rank. More speci�cally, the rank condition states that for each initial

value x P X Ď Rpx , there exists some n P Z` and a sequence Z˚ “ pZ˚
1 , . . . , Z

˚
nq P

10Note that in our derivation it is only required that F be di�erentiable with respect to Z and not
the states or the parameters.
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Śn
i“1pRph ˆRN ˆR`q such that rankCn

x pZ˚q “ px (Meyn and Tweedie, 1993, Eq. 7.13).

The controllability matrix for n “ 1 is de�ned as the derivative of the transition function

with respect to the vector of innovations, i.e.

C1
xpZ˚q “

BF

BZ 1
“

»

—

–

gh2px1q 0 0

0 ABs̃λpx1,Z2q

BZ2
0

0 ‚ 1

fi

ffi

fl

.

By Assumptions A.1piq and A.2piiq-piiiq, we have that for every x P X we can �nd a

Z˚ P Rph ˆRN ˆR` such that

detpC1
xpZ˚qq “ detpgh2px1qqdetpAqdet

ˆ

Bs̃λpx1, Z2q

BZ2

˙

‰ 0 .

The claim follows after �nding a globally attracting state (Meyn and Tweedie, 1993; Meitz

and Saikkonen, 2008b). To do this, the �rst step is to �nd a �xed point of the map. It is

enough to do this for a choice of Z. Let Z˚
1 “ gh2px˚

1q´1rx˚
1 ´ gh1px˚

1qs, for an arbitrary

x˚
1 P Rph . Note that Z1 exists by Assumption A.1piq. Choose Z “ Z˚ “ pZ˚1

1 , 01, 0q.

Then, x˚
1 is a �xed point for the �rst component of the map (F1).

x˚
2 “ pI ´ Bq´1 rω ` Asλpgy1px˚

1qqs

is a �xed point for the second component of the map (F2), and by Assumption A.2piq it

is clear that x˚
2 P RN . Finally, given x˚

1 and x˚
2 , we have that

x˚
3 “

1 ` Csp1 ` Aq}Ỹ px˚
1 , 0q}1 ` }x˚

2}1

1 ´ B

is a �xed point for the third component of the map (F3), where x˚
3 P r1,8q. It follows

that x˚ “ px˚1

1 , x˚1

2 , x˚
3q1 is a �xed point of the map F . Next, one needs to show that the

�xed point is attainable for a choice of shock sequence. But this is also accomplished by

setting the shocks to zero and noting that X1 t Ñ x˚
1 as t Ñ 8, and the same conclusion

holds for X2 t and X3 t. It follows that the companion Markov chain is both irreducible

and aperiodic.

Lemma B.2 (Drift Criterion for Xt). Let Xt be the Markov chain de�ned in (11). Then,

EpVXpXtq|Xt´1 “ xq ď p1 ´ γ1qVXpxq ` γ2Ipx P Sq,

where VXpxq “ 1 ` }x}k1, γ1 ą 0, γ2 ă 8 and S is a compact set.

Proof. First, since Xt is a T-chain, it follows that every compact set is small (Meyn

and Tweedie, 1993). Let qXpxq “ 1 ` pκ1 9xqk where κ “ pκ1, κ2, κ3q1 P
Ś3

i“1p0, 1q and

9x “ p}x1}1, }x2}1, |x3|q1. Note that VXpxq ď qXpxq{κk, where κ denotes the minimum of

the components of κ. Thus, it su�ces to show that the drift criterion holds with qXpxq
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with the compact set S2 ϵ de�ned below (Lanne and Saikkonen, 2005, Appendix A). By

Assumption A.1piq, for every ϵ ą 0 there exists M 1
ϵ ă 8 such that

}gh1px1q ` gh2px1qZ1 t}1 ď pah ` bϵh}Z1 t}1 ` ϵq }x1}1

holds for all }x1}1 ą M 1
ϵ, where bϵh “ bh ` ϵ. In particular, ϵ ą 0 is chosen small enough

such that Epah ` bϵh}Z1 t}1 ` ϵqk ă 1 and B ` ϵ ă 1. Such a choice is possible by

Assumptions A.1pivq and A.2piq, respectively.

Now, let S2 ϵ “ tx P X : κ1 9x ď Mϵu, which is compact, and S1 ϵ “ X zS2 ϵ.
11 The

proof proceeds by analyzing the cases }x1}1 ą M 1
ϵ and }x1}1 ď M 1

ϵ separately.
12

Case }x1}1 ą M 1
ϵ. By Assumptions A.2pivq and A.1piiq,

}ω ` As̃px1, Z2 tq ` Bx2}1 ď }ω}1 ` ~A~1CsCyp1 ` }Z2 t}1q}x1}1 ` ~B~1}x2}1 .

Note that M 1
ϵ may be enlarged if necessary so that

}ω}1 ` ~A~1CsCyp1 ` }Z2 t}1q}x1}1 ` ~B~1}x2}1

ď ACsCyp1 ` ϵ ` }Z2 t}1q}x1}1 ` B}x2}1 ,

where A ă 8 is a uniform upper bound for ~A~1 over Θ by Assumption A.2pvq. Also

note that ~B~1 ď B ă 1 by Assumption A.2piq. Similarly,

1 ` Cs

`

1 ` A
˘

}gy1px1q ` gy2px1qZ2 t}1 ` }x2}1 ` B|x3| ` Z3 t

ď 2 ` Cs

`

1 ` A
˘

}gy1px1q ` gy2px1qZ2 t}1 ` }x2}1 ` B|x3|

ď Cs

`

1 ` A
˘

Cyp1 ` ϵ ` }Z2 t}1q}x1}1 ` }x2}1 ` B|x3| ,

where the �rst inequality uses Assumption A.3piq. Let ρZ ϵ “ ah ` bϵh}Z1 t}1 ` ϵ, and

Cϵ
y Z “ Cyp1 ` ϵ ` }Z2 t}1q. It follows that13

1 ` pκ1 9Xtq
k ď pκ1CϵpZtq 9Xt´1qk ,

where the 3 ˆ 3 matrix CϵpZtq is de�ned as

CϵpZtq “

»

—

–

ρZ ϵ 0 0

ACsC
ϵ
y Z B ` ϵ 0

Cs

`

1 ` A
˘

Cϵ
y Z 1 B ` ϵ

fi

ffi

fl

.

11Note that Mϵ is larger than M 1
ϵ. In particular, Mϵ “ }Cz ϵ}Lk{ϵ ` M 1

ϵ with Cz ϵ de�ned below.
12Note that the conclusions in both cases hold for any choice of κ P

Ś3
i“1p0, 1q.

13Note that M 1
ϵ can be enlarged if necessary to absorb the constant 1.
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Note that for the chosen ϵ, the spectral radius of E
`

CϵpZtq
bk

˘

is strictly less than one.

By properties of Kronecker products, it holds that

EpqXpXtq|Xt´1 “ xq ď pκbkq1E
´

CϵpZtq
bk

¯

9xbk . (13)

Case }x1}1 ď M 1
ϵ. Note that by Assumption A.1piq,

}gh1px1q ` gh2px1qZ1 t}1 ď gϵh p1 ` }Z1 t}1q
loooooooomoooooooon

C1

,

where gϵh :“ supM 1
ϵ

}gh1px1q}1 _ supM 1
ϵ

~gh2px1q~1 and supM 1
ϵ
is the supremum over the

set tx1 P Rph : }x1}1 ď M 1
ϵu. Moreover,

}ω ` As̃px1, Z2 tq ` Bx2}1 ď }ω}1 ` A gϵy p1 ` }Z2 t}1q
looooooooooooooomooooooooooooooon

C2

` B}x2}1

and

1 ` Cs

`

1 ` A
˘

}gy1px1q ` gy2px1qZ2 t}1 ` }x2}1 ` B|x3| ` Z3 t

ď 2 ` Cs

`

1 ` A
˘

gϵy p1 ` }Z2 t}1q ` }x2}1
looooooooooooooooooooooooomooooooooooooooooooooooooon

C3

` B|x3|

where gϵy “ supM 1
ϵ

}gy1px1q}1 _ supM 1
ϵ

~gy2px1q~1. From the previous inequalities one

obtains

E pqXpXtq|Xt´1 “ xq ď E
`

Cz ϵ ` κ2B}x2}1 ` κ3}x2}1 ` κ3B}x3}1
˘k

ď
`

}Cz ϵ}Lk
` κ1

´1B 9x´1

˘k
,

where Cz ϵ “ C1 ` C2 ` C3 ` C4, where C4 ă 8 is a constant that absorbs the 1 in

qX and B is a 2 ˆ 2 lower triangular matrix with diagonal entries B11 “ B22 “ B and

o�-diagonal entry B21 “ 1. The �rst inequality uses the fact that κ P
Ś3

i“1p0, 1q, and

the second uses Minkowski's inequality.

Note that κ1}x1}1 `κ1
´1 9x´1 ą Mϵ is true whenever x P S1 ϵ. Choose Mϵ “

}Cz ϵ}Lk
ϵ `

M 1
ϵ. Since, κ1}x1}1 ă }x1}1 ď M 1

ϵ, it follows that

M 1
ϵ ` κ1

´1 9x´1 ą κ1}x1}1 ` κ1
´1 9x´1 ą

}Cz ϵ}Lk

ϵ
` M 1

ϵ ,

so ϵκ1
´1 9x´1 ą }Cz ϵ}Lk

. Thus, }Cz ϵ}Lk
` κ1

´1B 9x´1 ă κ1
´1pB ` ϵIq 9x´1 :“ κ1

´1Bϵ 9x´1.

Notice that Bϵ is the 2 ˆ 2 lower diagonal block of CϵpZtq, so one can write

κ1
´1Bϵ 9x´1 ď κ1CϵpZtq 9x .
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Again by properties of the Kronecker product it follows that the bound in (13) also

holds in this case. Therefore, in both cases }x1}1 ą M 1
ϵ and }x1}1 ď M 1

ϵ we obtain

the same bound for any κ P
Śn

i“1p0, 1q whenever x P S1 ϵ. Thus, by Lemma A.2. of

Ling and McAleer (2003) it follows that we can choose κ P
Śn

i“1p0, 1q such that v “

pI ´ E
`

CϵpZtq
bk

˘

q1κbk has positive components.14 One can now conclude that for all

x P S1 ϵ, it holds that

E pqXpXtq|Xt´1 “ xq ď p1 ´ γ1qpκbkq1 9xbk ,

where γ1 P p0, 1q is the minimum of the components of v.

On the other hand, it follows from Assumptions A.1, A.2 and A.3 that

sup
xPS2 ϵ
θPΘ

EpqXpXtq|Xt´1 “ xq ď γ2 ă 8, x P S2 ϵ ,

where the expectation exists and it is bounded over Θ for every x P S2 ϵ provided that

}Z1 t}1 and }Z2 t}1 have k moments. Since p1´γ1qqXpxq is positive, the claim holds when

x P S2 ϵ, which completes the proof.

Lemmas B.3, B.4, B.5 and Proposition 5 below are slight modi�cations of Lemmas

2, 3, 4 and Proposition 1 of Brownlees and Llorens-Terrazas (2021). For completeness,

full derivations of the proofs are available in the Online Appendix. The following lemma

establishes that the constants ρ andMx in De�nition 1 in the case of geometric ergodicity

(that is, when VX “ 1) can be chosen so that they do not depend on θ.

Lemma B.3. Suppose Assumptions A.1, A.2 and A.3 are satis�ed. Then, there exist

positive constants ρ P p0, 1q and R ă 8 that do not depend on θ such that tXtu satis�es

sup
v:|v|ď1

ˇ

ˇ

ˇ

ˇ

ż

X
Pn
Xpx, dxnqvpxnq ´

ż

X
πXpdxnqvpxnq

ˇ

ˇ

ˇ

ˇ

ď RṼXpxqρn ,

for all x P X and all n ě 1, and ṼXpxq “ 1 ` }x}1.

The proof of Lemma B.3 is based on an application of Theorem 12 of Roberts and

Rosenthal (2004). The MCMC literature has developed a number of results that allow

to establish explicit geometric ergodicity convergence rates (Rosenthal, 1995). The im-

portant implication of Lemma B.3 is that the dependence properties of the companion

Markov chain tXtu can be characterized independently of θ.

The next step of the analysis consists of using the properties of the companion

Markov chain tXtu to establish the properties of the joint process Wt “ tpY 1
t , S

1
tq

1u “

14Recall that E
`

CϵpZtq
bk

˘

has a spectral radius strictly less than 1. As noted by Lanne and Saikkonen
(2005), inspection of the proof of Lemma A.2. in Ling and McAleer (2003) reveals that it means no loss
of generality to assume that the components of κ are bounded by unity.
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tpY 1
t , H

1
t, f

1
θ t, dθ tq

1u.15 The following lemma establishes the connection between the tran-

sition kernels of tXtu and tWtu.

Lemma B.4. Consider the Markov chain tWtu. Let πY |Spdy|Sq denote the (invariant)

conditional distribution of Yt given St “ st. Then, its n-step transition kernel is given

by

Pn
W pw, dwnq “ πY |Spdyn|snq

ż 1

0

ż

H
Pn´1
X px̃, dsnqPHph, dh1qPrpdϵd 1q, n ě 2,

where PH is the transition kernel of tHtu, and

x̃ “ x̃pw, h1, ϵd 1q “ ph1, ω ` Asλpyq ` Bf, 1 ` Cs

`

1 ` A
˘

}y}1 ` }f}1 ` Bd ` ϵd 1q1.

The proof of the lemma builds upon the analysis of GARCH models of Meitz and

Saikkonen (2008a). The structure given by equations (1), (5), (7) and (8) admits casting

tWtu as a Markov chain.

The following lemma establishes that tWtu inherits the moment and dependence

properties of the companion Markov chain tXtu.

Lemma B.5. Suppose Assumptions A.1, A.2 and A.3 are satis�ed. Then piq tWtu is

VW -geometrically ergodic with VW pwq “ 1 ` }y}k1 ` }s}k1; and piiq there exist positive

constants ρ P p0, 1q and R ă 8 that do not depend on θ such that tWtu satis�es

sup
v:|v|ď1

∣∣∣∣ż
YˆX

rPn
W pw, dwnq ´ πW pdwnqsvpwnq

∣∣∣∣ ď RṼXpšqρn,

for all w P Y ˆ X and for all n ě 2, and

š “ ph, ω ` ACs}y}1 ` B}f}1, 2 ` Cs

`

1 ` A
˘

}y}1 ` }f}1 ` Bdq1.

Finally, the moment and dependence properties of tWtu are established.

De�nition 2. For a stationary process tXtu, its α-mixing coe�cients are de�ned by

αpmq “

$

&

%

1{4 m “ 0

supAPFs
0 ,BPF8

s`m
|Pr pA X Bq ´ Pr pAqPr pBq| m ě 1

where s P Z, and Fs
0 and F8

s`m denote the σ-algebras generated by tXt : 0 ď t ď su and

tXt : s ` m ď t ď 8u respectively.

Proposition 5. Suppose Assumptions A.1, A.2 and A.3 are satis�ed. Then, the pro-

cess tWtu piq satis�es }}Yt}1}Lk
ă 8, }}Ht}1}Lk

ă 8, supΘ }}fθ t}1}Lk
ă 8 and

supΘ }dθ t}Lk
ă 8; and piiq if W0 „ πW , it is strictly stationary and α-mixing with

15The subscript θ is omitted from St and Wt to simplify the notation, but the dependence on θ is
understood.
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α-mixing coe�cients that satisfy αpmq ď exp p´Cαm
rαq for some Cα ą 0 and rα ą 0

that do not depend on θ.

The veri�cation of Condition 1 concludes with the following result.

Lemma B.6. Suppose Proposition 5 holds. Then, Condition 1 holds.

Proof. Condition 1piq is veri�ed by �nding a suitable compact set Θ Ă Rp compatible

with Assumptions A.2piq and piiq. For example, let Θ “ Θω ˆ ΘA ˆ ΘB ˆ Θλ, where

Θω “ tω P Rpω : }ω}1 ď ω ă 8u ,

ΘA “ tvecpAq P RpA : 0 ă A ď |detpAq|,~A~1 ď Au ,

ΘB “ tvecpBq P RpB : ~B~1 ď Bu ,

Θλ “ tλ P Rpλ : }λ}1 ď λ ă 8u ,

and p “ pω `pA`pB `pλ. Note that Θω, ΘA, ΘB, and Θλ are compact and nonempty.16

Condition 1piiq holds because ltpθ, τq “ 1
N

řN
i“1 ρτipYi t ´ fθ i tq and dθ t are both mea-

surable functions of Wt, which is strictly stationary and α-mixing with coe�cients that

satisfy αpmq ď expp´Cαm
rαq for some Cα and rα ą 0 that do not depend on θ by

Proposition 5. To verify Condition 1piiiq, note that by (3), one can write

ltpθ, τq ď
1

N

N
ÿ

i“1

|Yi t| `
1

N

N
ÿ

i“1

|fθ i t| “
1

N
}Yt}1 `

1

N
}fθ t}1 .

Thus,

}ltpθ, τq}Lk
ď

1

N
}}Yt}1 ` }fθ t}1}Lk

ď
1

N
}}Yt}1}Lk

`
1

N
}}fθ t}1}Lk

,

but by Proposition 5, }}Yt}1}Lk
ă 8, supΘ }}fθ t}1}Lk

ă 8 and supΘ }dθ t}Lk
ă 8, which

completes the proof.

16The fact that ΘA is compact and nonempty is veri�ed in the Online Appendix.
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