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Abstract
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1 Introduction

Forecasting conditional quantiles of time series has a large number of applications in
economics and finance. A recent popular example is the computation of Growth-at-Risk
forecasts, i.e. the 5% quantile of the distribution of real gross domestic product growth
given past information. Among the different methodologies proposed to forecast quan-
tiles, the Conditional Autoregressive Value-at-Risk (CAViaR) of Engle and Manganelli
(2004) stands out as one of the leading approaches in the literature due to its flexibil-
ity, parsimony and relative ease of estimation. Moreover, the CAViaR methodology is
semi-parametric in the sense that it imposes mild assumptions on the data generating
process (DGP) (White, Kim, and Manganelli, 2015). Despite the fact that forecasting
quantiles is of obvious interest to economic agents, the theory in those papers is tailored
to estimation under correct specification of the quantile dynamics, and less attention is
paid to forecasting under misspecification.

This paper establishes theoretical performance guarantees for out-of-sample fore-
casting with a multivariate version of the CAViaR model. In practical terms, the class
of forecasts is equivalent to the one-lag version of the vector autoregressive model for
Value-at-Risk (VAR for VaR or VFV) of White et al|(2015) with a single quantile. The
guarantees are obtained by deriving an oracle inequality, i.e. a probabilistic bound that
relates the performance of an estimator to that of an ideal estimator that has best per-
formance in the class, also known as the “oracle” (Donoho and Johnstone, [1994; (Candes),
2006). The oracle inequality implies that the VFV that minimizes the in-sample average
check loss achieves the oracle’s out-of-sample performance in terms of the check loss at
a near optimal rate, even when the model is fully misspecified. The paper allows for full
misspecification in that it suffices to make nonparametric assumptions on the DGP, such
as existence of a certain number of moments of the innovations and stable dynamics on
the time series. This result translates into optimal out-of-sample quantile forecasting if
the researcher believes that the class contains the true conditional quantile of the time
series.

The theoretical framework of this paper builds upon the literature on statistical
learning theory. This framework has at least three important highlights. First, the main
result holds without assuming identification nor correct specification of the quantile dy-

namics, which are critical assumptions in the CAViaR literature (Engle and Manganelli,



2004; White et al.,[2015)). Second, the result holds in finite samples with high probability,
as opposed to being asymptotic, and it provides a specific rate of convergence for the
predictive performance. Third, the theory allows to derive transparent constraints on
the parameter space where the class of forecasts is stationary and ergodic. In contrast,
(White et al., [2015) assume the existence of some set over which the VFV is stationary
and ergodic.

The proof of the main result can be broken down in three main steps. The first
step is to establish existence of moments and strong mixing conditions for the loss and
a “dominating process” which is similar in spirit to the domination conditions often
used to obtain uniform laws of large numbers (Andrews, 1987; Potscher and Pruchal
1989). This is accomplished through Markov chain theory (Meyn and Tweedie, 1993
Ch. 15). The novelty of the approach consists of proving that a Markov chain whose
components are the DGP, the forecast, and the dominating process is V-geometrically
ergodic (Liebscher, 2005; Meitz and Saikkonen, |2008al). Importantly, the strong mixing
coefficients are bounded by a function with geometric decay uniformly over the parameter
space, which is established using results by Roberts and Rosenthal (2004). The second
step is to establish a general inequality that states that the performance of the VFV
that minimizes the in-sample average check loss can be controlled by the sum of (i) the
supremum of an average of differences between conditional and unconditional expected
losses and (i7) the supremum of the empirical process associated with the prediction loss.
In the third step, suitable bounds are derived for these two terms using, respectively,
an inequality from [Ibragimov| (1962) and a concentration inequality for strong mixing
processes (Liebscher, |1996).

The merits of the methodology are illustrated in an empirical contribution to the
recent Growth-at-Risk (GaR) literature popularized by |Adrian, Boyarchenko, and Gi-
annone, (2019)). An out-of-sample GaR forecasting exercise shows that the past of GDP
growth seems to be the key driver of the time variation in the conditional distribution
of GDP growth, see also |[Brownlees and Souza| (2021) and |Catania, Luati, and Vallarino
(2021). Furthermore, the results of the exercise suggest that a combination of generalized
autoregressive conditionally heteroskedastic forecasts (GARCH) and VFV performs best
out-of-sample. The combination exploits the dynamics on the quantiles of the standard-
ized residuals from the AR-GARCH procedure. Although asymmetries in the conditional

volatility of GDP growth do not appear to play an important role, the empirical results



of this work suggest that other types of asymmetries do still matter for the quantiles.
This paper is mainly related to three strands of the literature which share more in

common than it may appear at first sight.

Dynamic Quantile Models. In a time series context, quantile regression approaches
need to be adapted to account for the dependence induced by the time-ordering of the
data. A natural extension is the quantile autoregressive approach developed by [Koenker
and Xiaol| (2006) and, as pointed out above, one of the most successful dynamic quantile
models is the CAViaR specification by Engle and Manganelli (2004)). When considering
multiple quantiles of a random variable, a drawback of these approaches is the lack of
an internal mechanism that avoids the quantile crossing problem. This drawback can be
addressed ex-post, see |Chernozhukov, Fernandez-Val, and Galichon| (2010]), or ex-ante,
see (Gouriéroux and Jasiak (2008). Important contributions to the dynamic quantile
literature also include White, Kim, and Manganelli (2015)); Chavleishvili and Manganelli
(2019); |Catania and Luati (2019); Catania, Luati, and Mikkelsen| (2022). Empirical
illustrations as well as novel CAViaR specifications are presented in [Kuester, Mittnik,
and Paolella; (2006); Bao, Lee, and Saltoglul (2006) for financial data and [Huang, Yu,
Fabozzi, and Fukushimal (2009)) for oil price data.

The theory in the CAViaR literature is developed under the general framework of
M-estimation for dependent data. For example, the assumptions of White et al.| (2015)
— which are tailored to the goals of estimation and inference — provide an interesting
benchmark to compare against the assumptions of the current paper. Overall, their
assumptions can be regarded as semi-parametric in the sense that the innovation distri-
bution may be misspecified. However, a key assumption in that paper is that there exists
a unique parameter that characterizes the dynamics of the true conditional quantile of
the data, i.e. identification and correct specification. In contrast, in the framework of

this paper, identification and correct specification assumptions are not required.

Quasi-maximum likelihood. The oracle inequality derived in this paper can be re-
garded as a prediction analog of the consistency of quasi-maximum likelihood estimators.
Results of this type date back to |Akaike (1973) and [White (1982)), which studied the
properties of maximum likelihood estimation for misspecified models. The main lesson

from those papers is that under mild assumptions, the (quasi-) maximum likelihood



estimator (strongly) converges to the minimizer of the Kullback-Leibler Information Cri-
terion (KLIC), which measures the discrepancy between the density of the true DGP
vs the pseudo-true density (the Gaussian being the classical choice). As put by [White
(1982), the KLIC can be interpreted as a measure of our ignorance about the true struc-
ture of the DGP. Extensions of this type of result to M-estimators with dependent data
appeared almost simultaneously in the econometrics literature (Domowitz and White,

1982; White and Domowitz, |1984).

Statistical learning theory for time series. The theory of M-estimation is able to
provide useful answers to the problems of estimation and inference, but is less suitable to
study the question of prediction. But seeing CAViaR as a “learning” algorithm instead
of a model may prove useful. In fact, a vast literature — under the rubric of statistical
learning theory — is devoted to study the prediction properties of learning algorithms.
This literature is interested in a number of questions, and this paper is concerned with
the following two: (7) to find conditions for consistency of learning processes, i.e. uniform
convergence of a class of forecasts (Vapnik and Chervonenkis||1971)), and (i7) to determine
the rate of convergence of the learning process (Vapnik, 1999)).

An interesting feature in the learning literature is that the relationship between algo-
rithm and data need not be specified. However, most results coming from the statistical
learning literature rely on a number of assumptions that do not apply to the CAViaR
models mentioned above, where data (and corresponding loss function) is non-i.i.d., un-
bounded, and prediction algorithms may depend on the entire past of the data. Although
several efforts have been made in that literature to extend their results to time series fore-
casting applications, none of those provides oracle inequalities for out-of-sample forecasts
based on the models cited above, nor their multivariate extensions.

The quest for forecasting performance guarantees for time series can probably be
traced back to [Yu| (1994)), which established rates of convergence for empirical processes
of stationary mixing sequences — for families of predictors suitably bounded by an envelop
function, which is similar in spirit to the dominating assumptions in |Andrews (1987)) —
and Meir| (2000), who provided the first generalization bounds for nonparametric time
series prediction based on such results. The contributions that are probably most related
to the current paper are McDonald, Shalizi, and Schervish| (2017) and Kuznetsov and

Mohri| (2017)), which provide generalization bounds under assumptions that allow for



mixing data and unbounded losses. It must be emphasized that generalization bounds
do not imply oracle inequalities (but that the reverse implication is true); thus, the results
in the current paper are not implied by the ones obtained in those papers. |Kuznetsov
and Mohri (2017) extend the notion of prediction performance, which is typically defined
with an unconditional expectation, to path-dependent performance, which instead uses
the expected loss conditional on past information. This is similar in spirit to the notion
of conditional risk defined in the current paper.

This paper is not the first to use the framework of statistical learning theory in econo-
metrics. Examples of this include Jiang and Tanner| (2010), which studies the properties
of empirical risk minimization for time series binary choice, Kock and Callot| (2015),
which establishes oracle inequalities for high-dimensional vector autoregressions, Brown-
lees and Guomundsson| (2021)), which analyzes the performance of empirical risk mini-
mization for linear regression with dependent data and |Brownlees and Llorens-Terrazas
(2021), which establishes similar results for a class of recursive threshold models that
include as special cases the forecasts induced by ARMA(1,1) and GARCH(1,1) models.
Finally, note that the framework can also be adapted to deal with policy decisions such
as the allocation of treatments to individuals based on covariates (Manski|, 2004; |Kita-
gawa and Tetenov, [2018), which has recently been adapted to deal with multivariate

time series (Kitagawa, Wang, and Xu, [2022).

Outline of the paper. The rest of this paper is structured as follows. Section
lays out the notation and presents the class of forecasts and the estimation procedure.
Section |3| introduces the theoretical framework under which the main result is derived,
and section [4] highlights the main steps followed to prove the claim. Section [5| contains
the empirical application to Growth-at-Risk, and section [6] concludes. All proofs are
relegated to the Appendix, and the more technical results and additional tables are

gathered in the Online Appendix.

2 Methodology

. 1
Notation. For an n x 1 real vector z, |z|, = (3;—; [2i]") /" where r > 1, and _; =
(T1y. o Tio1, Tig1, - - -, Tp)', 1.e. x_; denotes removal of the ith entry of z, i =1,...,n.

For an m x n real matrix A, ||A||1 = maxi<j<n Doy |aijl, i-e. the maximum absolute



column sum of the matrix, and if A is square, A" = A®---® A, i.e. the Kronecker
product taken r times. The notation vec(A) represents a long vector that stacks the
columns of the matrix A from left to right. For a random variable X, let | X|, =
(E|X|T)1/T, where > 1, and | Xz, = inf{a : Pr(|X| > a) = 0} for r = 0. For two
real numbers a and b, denote a A b = min{a,b} and a v b = max{a,b}. In this paper,
I(-) denotes the indicator function, while I is used for the identity matrix. For a time
series { X}, where t is a non-negative integer, let E(-) = E(:|Xy_1,..., Xo). For real z,
the notation |z| is used to denote the largest integer lower than or equal to z, and [z]

denotes the smallest integer greater than or equal to x.

2.1 Definition of the multivariate CAViaR class.

The main goal of this paper is out-of-sample conditional quantile forecasting of a sta-
tionary, multivariate time series {Y;} taking values in RY. In the sequel, the focus is
on one-step-ahead forecasting, but the results apply to h-step ahead forecasting as well
(see section in the Online Appendix). More specifically, for some 7; € [0,1] and
i =1,...,N, let ¢/} denote the conditional 7;-quantile of Y;; given information up to
time ¢t — 1. That is, ¢;¢ is implicitly defined as Pr(Y;; < ¢;i|Yi—1,...,Yy) = 7. The
following class of recursive forecasts indexed by # € ©, x ©4 x O x Oy = © c RP is

available to the forecaster, and can be written in matrix notation as

for =w+ Asx(Yi—1) + Bfor—1 , (1)

where fo € RY, 0 = (W, vec(A),vec(B), XY, w e O, < RP* vec(A) € O4 c RPA,
vec(B) e Op c RPB X e Oy c RPX p =p, +pa + pp + py and sy(-) is shorthand for
s(+, A), where s : RY x RPA — RN The precise assumptions on the parameters and the
function sy are spelled out in what follows. In practice, the forecaster chooses a value
foo = fo (which does not depend on ) to start the recursion.

For example, a simple bivariate version of the above relates the conditional quantile

1To keep the theoretical analysis as simple as possible, the function sy is assumed to be differentiable,
but the theoretical framework can accommodate arbitrarily good approximations to popularly used non-
differentiable functions such as the absolute value.



forecasts of both random variables according to a vector autoregressive structure (VAR)EI

fo1t = X{B1 +biifore—1 + biafoor1 ,

foor = X{B2 +baifor1e—1 + bazafoai—1

where X; represents predictors belonging to the information set up to t — 1, which
typically includes lagged values of Y;; (White et all 2015).

A number of remarks are in order. First, note that sy need not be differentiable as
a function of A\. Second, the assumptions are general enough to accommodate multi-
variate versions of the symmetric and asymmetric absolute value specifications of [Engle
and Manganelli (2004)@ Third, a distinguishing feature with respect to the CAViaR
literature is that the relationship between Y; and fy; is not specified. In particular,
af = (q7%,---,qp,) need not be equal to fg;. Fourth, the class can only handle a single

quantile for each variable, although the quantiles may differ for each variableE]

2.2 Loss function.

The focus of this paper is on forecasting under the check loss
pr(u) =u(r —I(u<0)), 7€l0,1].

The check loss (also known as tick loss) can be interpreted as an asymmetric generaliza-
tion of the absolute error. Setting 7 = 1/2 leads to the absolute error scaled by 1/2. This
allows the forecaster to incorporate the relative costs of under vs over—predictionﬂ It is
well known that this loss function elicits the 7-quantile of a random variable. Techni-
cally, the forecasting problem in this paper (and in the CAViaR literature) is formulated
as forecasting Y; with respect to the check loss, even though the end goal is to forecast
the unobservable ¢f. The question of evaluating quantile forecasts is a different and

interesting problem, but it falls out of the scope of this paper. The interested reader can

2This example follows the terminology used in [White et al. (2015). Arguably, the forecasting equa-
tions look more similar to the forecasts induced by a vector autoregressive moving average (VARMA).

3Section in the Online Appendix provides a list of examples of data transformations allowed
by Assumption

4The extension to multiple quantiles for each variable is possible but at the expense of more tedious
proofs.

5Similar results to those derived in this paper also apply to asymmetric least squares Newey and
Powell| (1987)).



refer to Engle and Manganelli (2004)); Giacomini and Komunjer| (2005); | Komunjer| (2013))
for more details. It should be noted that the check loss is commonly used to assess the
accuracy of quantile forecasts (Giacomini and Komunjer, 2005)).

Note that standard asymptotic results for (Q)MLE require that the log-likelihood be
twice differentiable, which is not the case with the check loss. Extension of the results to
nonsmooth objective functions is of course feasible, and the intuition is that smoothness
of the objective function can be replaced by smoothness of the limit if certain remainder
terms are small. However, a proper formalization of this intuition requires proofs that
are somewhat technical and lengthy (Newey and McFadden) (1994, Sec. 7.4). In contrast,
the present paper does not need to deal with such technicalities since the results hold

without requiring differentiability of the loss function.

2.3 Estimation.

As usual in the CAViaR literature, the parameter 6 in is unknown to the forecaster
and needs to be estimated from the data. Let 7 = (1,...,7n)" € [0, 1]"¥. The estimation

problem is formulated ag’|

A 1
Or - i 0,7), 0, 7)== )Y L(0,7), 2
T, EargngnRT( T) Ry (6,71) T;t( T) (2)
and
1 N
(0, 7) = N;Pn(yn — foit)- (3)

Note that as in most quantile estimation problems, éT’T need not be unique, and in
that case one may choose éT’T arbitrarily among the set of candidate minimizers of
the criterion. Problem is a special case of an extremum estimator, or M-estimator.
While the theory of M-estimation is (obviously) focused on estimation and inference,
this paper is concerned with deriving theoretical guarantees for one-step-ahead out-of-
sample forecasting with éT,T. An important remark is that unlike in classical parametric
statistics, 6 € © is not indexing the family of distributions that generate {Y;}. Instead,

it only indexes the class of forecasts.

5Tn practice, the forecaster needs to choose a suitable initial value foo = fo to initiate the recursion.
A typical choice is the unconditional quantiles of Y;.



3 Theory

As it is clear from section [2| the relationship between fy; and Y; is left unspecified. In
particular, fyp: need not represent the true conditional quantiles of Y;. Nevertheless, the
main result in this section states that fy; achieves the optimal performance within its

class in the check loss sense at a near optimal rate.

3.1 Framework

Conditional risk. This section starts by formally defining the notion of performance.

Let M = [T for some v > 0. The conditional risk of 7, is defined as

. 1 T+M A
R(07,,7):=E [Mt_;ﬂlt(%"ﬂ Yo, ..., Yo, fo (4)

It is important to remark that R(éT,T, 7) is a natural metric of out-of-sample performance
for time series forecasting: it measures the expected average loss in one-step-ahead out-
of-sample forecasting using HATJ given a sample path of in-sample observations and an
initial value fypg = fo chosen by the forecaster. Conditioning on the initial value allows
us to analyze the properties of the conditional quasi-maximum likelihood rather than
the ezact maximum likelihood method (Hamilton| 1994, Ch. 5), which is typically more
difficult to implement, and particularly so in misspecified settings.

Note that if the data is independent, it is simpler to define performance by taking
an independent copy of the in-sample data, since the dynamics do not play any role for
future forecasting, but this is not satisfactory in time series applications (Kuznetsov and

Mohri, [2015). Naturally, R(éTﬂ-,T) is a random variable.

Dominating process. A key step in the proof of the main result is to find a process
{dg} such that |§ — 6], < & implies that | fp, — fs,l1 < ddy, for every pair 0,0 € © with

probability 1. The dominating process in question is given by the following recursion

dgr =14 Cs (1 + A) |Ysea|1 + | for—1]1 + Bdot—1 + €ar (5)

10



where dgg is drawn from the stationary distributio and C, and A are positive finite
constants, and {egq;} is an i.i.d. sequence of non-negative random variables. It follows
that

. 1
1(0,7) = 1:(0,7)| < -0, (6)

holds with probability 1. The construction of the dominating process is closely related
to the smoothness conditions used to turn pointwise laws of large numbers (LLNs) into
uniform LLNs over compact sets. For instance, Assumption A3 in |Andrews| (1987)

requires that

T
1 .
lim sup — Z E sup [l:(0,7)—1(0,7)]=0,
0201214 {3 peB(6.0)
where B(6,0) = {# € © : 9(,0) < 6} and o can be any metric defined on ©. It is easy
to see that inequality @ together with a suitable uniform moment requirement on dy

are enough to verify the smoothness condition A3.

Oracle inequality. An oracle inequality is a probabilistic bound that relates the per-
formance of an estimator to that of an ideal estimator that has best performance in the
class, also known as the “oracle” (Donoho and Johnstone, 1994; Candes, 2006). Following
Lecué and Mendelson| (2016), the M-estimator éTJ satisfies an oracle inequality if the

following bound
R(Or.,7) < inf R(0,7) + (N, p)

holds with high probability, where r7 (N, p) is a term which converges to zero at a rate
that depends on the sample size T, size of the cross-section N, and the complexity of
the class of forecasts (quantified by p). Notice that the term does not depend on 7,
suggesting that the result holds uniformly over all 7 € [0,1]V.

The following condition is key to establish an oracle inequality for the class of mul-

tivariate CAViaR forecasts considered in this paper.

"Note that assumptions and are sufficient to guarantee the existence of the stationary
distribution.

11



Condition 1 (Moments and mixing). The following conditions are satisfied by {l,(6,7)}
and {dg+}, which are given by and (B)):

(i) 6 € © < RP, where O is compact.

(ii) {l;(0,7)} and {dg:} are strictly stationary and a-mizing with a-mizing coefficients
such that a(m) < exp(—Cym’™) for some Co > 0 and ro > 0 that do not depend

on 68

(1it) There ezists Cp, < o such that supg ||l;(0, 7)1, < CL and supg |do¢|1, < CrL, for

some k > p+ 2.

(iv) The (conditional and unconditional) distribution of Y; is supported on Y < RY,

where Y has positive Lebesque measure in RY.

Condition [1] deserves some discussion.

The first thing to note is that Condition[I]can be verified for a large class of parameter-

driven DGP’s (Cox],|1981)). For instance, Assumptions[A.1} [A.2]and [A.3|imply Condition

[[} This is established in this paper via a rather novel application of Markov chain theory.
The novelty of the approach consists of deriving V-geometric ergodicity (Liebscher, |2005;
Meitz and Saikkonen, 2008a) of the Markov chain given by the DGP, fy; and dy, which
in turn implies the mixing and moment properties described in Condition [1| (Brownlees
and Llorens-Terrazas| 2021). Appendix [B|contains a full derivation of these results.
Condition (z) is a standard compactness requirement on the parameter space. While
compactness is typically required to guarantee the existence of a minimizer of the cri-
terion function both in sample and in population, this paper requires compactness only
to guarantee existence of a minimizer in sample. Condition [I|(é¢) is a strong mixing
assumption (Doukhan| 1994). Although strong mixing assumptions are not the most
general type of condition, they are still satisfied by a large number of models such as
“stable” Markov chains with absolutely continuous innovations. An interesting example
is the class of hidden Markov models given by and . Condition (zzz) is a moment
requirement on the loss and the dominating process, which involves Y;, fg: and dg;. The
requirement k > p + 2 follows from the choice of the proof techniques used to derive

concentration inequalities for the terms on the right-hand side of @ Condition (w)

8See Definition [2| for a formal definition of a(m). {X:} is said to be strongly mizing or a-mizing, if
a(m) — 0 as m — oo. While the a-mixing coefficients of {l:(6,7)} and {d¢+:} could be different, the
condition means that they have a common upper bound.

12



ensures that the distribution of Y; is sufficiently well-behaved. In particular, it rules out
that Y; might only take values in some lower-dimensional subspace of RY

The assumptions in [Engle and Manganelli| (2004) and [White et al.| (2015)) provide a
reasonable benchmark to establish a comparison with Condition [I} In that literature, it
is assumed that there exists 6y, € © such that fy, .+ = ¢f, while in this paper this is
not required. The CAViaR literature assumes (inter alia) that the loss process satisfies
a uniform law of large numbers (ULLN). Instead, Condition [I{can be seen as a sufficient
condition to obtain the assumed ULLN from the CAViaR literature. Furthermore, Con-
dition [I]is sufficient to establish a rate of convergence. In summary, Condition [1)is easier

to verify and tailored to the goal of this paper — which is out-of-sample forecasting.

3.2 Assumptions

This sub-section gives a list of sufficient conditions under which Condition [1] holds.

Data generating process. Suppose that the data generating mechanism is given by

the following hidden Markov model

Ye = gy1(Hy) + gy2(Hi)ey s (7)

Hy = gni(Hi—1) + gno(Hi—1)ens (8)

where Y; takes values in ¥ < RY and H, takes values in H < RP»; 9y1, Gy2, gn1 and
gno are Borel-measurable functions, and {ey} and {ep,} are i.i.d. sequences of random
variables supported in Y and H, respectively. The process is initialized at the station-
ary distribution, and assumption below is sufficient to guarantee its existence. To

simplify notation, take Y = RY and H = RP».
A.1. The process given by equations and satisfies the following:

(i) The functions gp1 and gpa are bounded on bounded subsets of RPh.  Moreover,
lgn1 (M)l < anlhfy + o([hl) and |[gnz(h)|lx < balhly + o[[h]1) as [Aly — co. The
matriz function gpa(h) is non-singular for all h € RPh | and infycres | det(gpa(h))| >

0.

(i) The functions gy1 and gyo are bounded on bounded subsets of RP*. Moreover,

lgy1(R)|1 < Cylhlli and ||gy2(h)|1 < Cyl|hlli for some Cy < . The matriz

13



function gya(h) is non-singular for all h € RP* | and infcgpen | det(gy2(h))| > 0.

(iii) {ey ¢} and {€m} are i.i.d. sequences of random variables with absolutely continuous
distributions w.r.t. Lebesgue measure on RY and RP» (resp.) and are supported in
RY and RP» (resp.), with densities ¢y and ¢p that are bounded away from zero on
compact subsets of RP* and RY (resp.). The random variables ey ¢ and ey satisfy

ley ¢z, < oo and ||eqt|r, < oo (resp.) for some k> p+ 2.

(z'v) E(ah + bhHthH1>k < 1.

Class of forecasts
A.2. The class of forecasts given by satisfies the following:
() 1Bl <B <1.
(ii) det(A) # 0 and ||A|]; < A < 0.
(iii) For each h € RP:, there exists some z € RN such that det (%) # 0, where

8x(h, 2) := sx(gy1(h) + gy2(h)z).

(iv) There erists some Cs < o0 such that |sy(u)|1 < Csllul1 and ||sx(u) — s;(u)|1 <

CylullL|A = A1 for every u, where Cs does not depend on X nor .
(v) 0 = (W', vec(A),vec(B)',\') € © < RP, where O is compact.

(vi) There exists Dy € RN such that sy is a diffeomorphism in Dj.

Dominating process
A.3. The dominating process given by satisfies the following:

(i) {€qt} is an i.i.d. sequence of random variables with absolutely continuous distribu-
tions w.r.t. Lebesque measure on R and are supported in [0, 1], with density ¢4 that

is bounded away from zero on compact subsets of [0,1].

Remarks. Assumption is a multivariate extension of standard assumptions used
to establish geometric ergodicity of nonlinear time series models (Masry and Tjgstheim,

1995; |Lu and Jiang, 2001} |[Lanne and Saikkonen| 2005} [Meitz and Saikkonen| [2008a};
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Brownlees and Llorens-Terrazas|, 2021) and it allows for a fairly broad class of parameter-
driven processes. Assumption (z) is similar to Assumption 3.2 in [Masry and Tjgs-
theim|(1995) and it implies that (8]) is dominated asymptotically by a stable linear model.
As Masry and Tjoestheim| (1995) emphasize, such a requirement is mild, since functions
that grow everywhere faster than a stable linear model are nonstationary. Assumption
[A.1féi) allows for a fair amount of flexibility in equation (7)). In particular, it requires
Y[+ to be bounded from above by a linear function of ||Hy|;. Assumption [A.T|444)
imposes conditions on the random variables ef; and ey, that are analogous to standard
conditions used in the literature. Assumption (w) is a stability condition analogous
to the one assumed in Masry and Tjgstheim| (1995) or Lanne and Saikkonen (2005).

Assumption[A.2]7) is a stability condition for fy; and dg;. Intuitively, this assumption
ensures that the forecasts have a sufficiently “fading memory” (Potscher and Pruchal
1997). Note that [A.2)(7) implies that the spectral radius of B is strictly less than unity.
Assumption [A.2](ii) requires A to be non-singular, so © must avoid the region of the
parameter space where det(A) = 0. For instance, we may require that |det(A)| = A > 0.
The upper bound A can be chosen arbitrarily by the forecaster, although higher values
of A have the effect of slowing down the geometric decay rate of the strong mixing
coefficients. Assumptions[A.2(444), (iv) and (vi) are relatively mild and allow for a broad
class of transformations sy that include as special cases differentiable approximations to
symmetric and asymmetric absolute values (see the Online Appendix for examples of sy
that satisfy Assumption [A.2)).

Assumption is an auxiliary assumption that is useful to simplify the proof of
irreducibility and aperiodicity of the “companion Markov chain” defined in . More
specifically, the assumption permits the use of proof techniques similar in spirit to [Meitz
and Saikkonen| (2008bl, Lemma 2) and Meyn and Tweedie (1993 Ch. 7).

Condition 1| leads to an oracle inequality for the class of forecasts introduced in (L)),

with out-of-sample performance defined as in equation (4)).

Theorem 1. Suppose C’ondition holds. Then, there exists a positive constant o (uni-
formly over T) such that, for all T sufficiently large, it holds that

plogT
NT

R(Op,7) < i%f R0, 1) + 20

with probability at least 1 —log™' T — o(log™! T).
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Some remarks are in order. First, if the forecaster believes that there exists 6y, € ©
such that fg, + = g, then we have the analogous result of the consistency of CAViaR
for out-of-sample forecasting in finite samples and with a rate of convergence. Second, if
there is no 0 € © such that fp; = ¢f, Theorem [1]still provides finite-sample performance
guarantees for out-of-sample forecasting in the check loss sense.

The constant o2 is application-specific and may be interpreted as an upper bound
for the long run variance of the loss process. See Proposition [3] for a precise definition
of o2, The rate of convergence \/W is sometimes referred to as the classical rate
of convergence of empirical risk minimization in the learning literature for classification
with i.i.d. data (Devroye et al, 1996, Ch. 12). With fixed N, the theorem implies
that the M-estimator is consistent with respect to the class of forecasts indexed by O,
meaning that |R(f7,,7) —infe R(A,7)| > 0 as T — oo. In other words, the M-estimator
achieves asymptotically the optimal forecasting performance attainable within the class
of algorithms considered.

One can interpret NT as the “effective” sample size, i.e. the number of time series
multiplied by the sample size for each series. However, it should be noted that the proof
techniques employed in this paper do not allow p nor N to diverge to infinity. This limits
the extent to which Theorem (1| can be regarded as a “high-dimensional” result, in the
sense that it cannot be used to draw conclusions about specifications for which p — oo as
N — o0. Still, it is a useful result for specifications that rely on “commonalities” on the
parameters such as composite likelihood (Pakel, Shephard, and Sheppard}, 2011)), where
p is fixed and the performance of éTJ can improve by pooling information across series.
An example of such a procedure is used in the empirical section.

It is important to emphasize that Theorem [I]is stronger than a consistency result for
the prediction performance of the M-estimator since it is non-asymptotic (it holds for
each sufficiently large T") and it provides a specific rate of convergence for the performance
of the M-estimator. As will be noted in section [d] oracle inequalities can be proved with
techniques similar to those used to obtain ULLNs, or “uniform convergence over a class
of functions” (Vapnik and Chervonenkis, [1971). However, the oracle inequality stated
in this paper is stronger than a ULLN, since it also provides information about the
rate at which the performance of the forecast is approaching its optimal level (Vapnik,
1999)). Lastly, we emphasize that the existence of an optimal prediction rule 6y, =

arg ming R(#, 7) is not required by the theorem.
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3.3 Additional Discussion

This paper studies the properties of the M-estimator when the time series is generated by
a parameter-driven process. Clearly, an observation-driven process may be entertained
instead. In this case, the analysis of the performance of the M-estimator can be carried
out using the same strategy developed in this paper. However, some of the proofs will
differ and the analysis of this case is left for future research.

The theoretical framework of this paper does not require the class of algorithms to
have special approximation properties or to include the optimal forecast associated with
the data generating process and the loss function. What is key in the framework is that,
loosely speaking, forecasts forget the past exponentially fast.

Instead of comparing the performance of the M-estimator against the optimal risk
attainable in the class, one may wish to compare against the risk of the optimal 1-step-
ahead forecast. For the check loss, the optimal 1-step-ahead forecast is the conditional
quantile (assuming it exists) (Giacomini and Komunjer, 2005). Thus, the risk of the

optimal 1-step-ahead forecast may be defined as

11 T+M N
k _ 4T
R (T)_E[MNt;Jrli_leﬂ(}/Zt q@t) YTa"'aYOafO .

The performance of the M-estimator relative to the risk of the optimal 1-step-ahead

forecast may be expressed as
R(éT7T, 7)— R*(1) = [iréf RO, 1) — R*(T>] + [R(HATJ,T) - iréf R(#, 7'):| .

The first term is called the approximation error and the second term is called the esti-
mation error (Devroye et all (1996, Ch. 12). Notice that oracle inequalities control the
estimation error. The approximation error is typically difficult to control, especially in a
time series setting. There are a number of contributions that, in some sense, attempt to
control the approximation error (Nelson, [1992). In general, the analysis of the approxi-
mation error requires additional assumptions. For this reason learning theory typically
focuses on studying the estimation error, as it is done in this paper.

The focus of this paper is on quantile forecasting, and as such the theory is derived for
the check loss function. Notwithstanding, inspection of the proof strategy reveals that

similar results can be derived for other loss functions, so long as they satisfy dominance
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requirements akin to @ above. This is the case for the (asymmetric) least squares
criterion proposed by Newey and Powell (1987), that is, or, (u) = u?|7; — I(u < 0)]. Note
that with 1,(0,7) = & 3N | 05, (Yi¢e — fait), it holds that

N
. 1 2 2
1140, 7) — 1:(0,7)] < I | for — f‘g‘tHQ t v Z \Yit — fo;llfoie — fo:0l
i=1

and it is not difficult to verify that a dominating process dy; analogous to can be
derived so that [0 — 0y < & implies that | for — fét”z < éd,, for every pair 0,0 € ©
with probability 1. However, notation and proofs do require modifications which are not

pursued here.

4 Sketch of proof of Theorem

This section explains the main steps to derive the proof of Theorem [I| which are broken

down in four different propositions. Proofs can be found in Appendix [A]

Step 1: Basic inequality. The first step consists of noting that the discrepancy
between R(07,7) and infg R(6,7) — also known as “regret” in the learning literature

can be upper bounded by two key terms.

Proposition 1. Let R(0,7) = El,(0,7). Then,
R(0r7,7) —inf R(0,7) < 2sup |Rr(0,7) = R(0,7)| + 2sup |R(0,7) = R(6,7)| . (9)
(S} (S}

It is important to emphasize that Proposition [I]is a general result that only requires
the loss process to be stationary.ﬂ Note that when the data isi.i.d., R(,7) = R(0,7) and
the inequality in Proposition [1| corresponds to the classic inequality derived in [Vapnik
and Chervonenkis| (1974) (Devroye et al.l[1996)), which is routinely used to derive bounds
on the performance of empirical risk minimization.

The first term on the right hand side of @ is the supremum of the empirical process
associated with the prediction loss (6, 7). The second term is the supremum of the

average difference between conditional and unconditional expectations of the prediction

9To clarify, éT,T is obtained by fixing an initial value fo, but the analysis can be carried out with the
process fg; initialized at the stationary distribution because Proposition [I] only involves the conditional
expectation defined in , which is already conditioned on fo.
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loss over the out-of-sample period.

Step 2: Covering. The second step is summarized in the following.

Proposition 2. Suppose Condition (1] is satisfied. Then, for any € > 0 it holds that

Pr <sup \Rr(0,7) — R(0,7)| > ;)
©

240@0(1 P T
< <1+N€> sup [Pl (zt(e ), 4) + P (dgt,Cd)] ,

where PY(Uy, ) = Pr (‘ﬁ YU - EUt‘ > e), and

Pr <sgp IR(0,7) — R(0,7)| > ;)

< <1 + W’) [PITLM (Eth(e 7,
9

= =)+ PEEM (Brdgi, Ca)|

4

where Cg = supg |0]1 and Cy = supg |dg¢| 1, -

Proposition 2] relies on a “covering argument” which has appeared in the literature
to establish uniform laws of large numbers (Amemiyal [1985; Davidson, |1994)) and in

empirical risk minimization for time series (Jiang and Tanner, [2010).

Step 3: Concentration inequality (part I). The third step uses a slight modifica-
tion of a well known concentration inequality for sums of a-mixing processes (Liebscher,

1996). Proposition |3| formalizes the result.

Proposition 3. Suppose Condition (1| is satisfied. Then, for all T sufficiently large and

forer = o4/ pﬁgTT, it holds that
240@Cd er 1
1+ —— P —E — | <
< Ner > sup Pr (‘ Z 1y (0 L(0,7) > 1 > g T and
24CeCy 1 1
1+ Pr(|= SN dp — Rdps| > €y | < T,
< Ner > stép T (‘T; 01 0t > d) ) <10gT> as o0

where 02 = §(2' 1k + 1)0% (ﬁ +23° _exp (—Cam“*)l_%>.

Step 4: Concentration inequality (part II). The fourth step — summarized in

Proposition 4| — uses a well known result by [Ibragimov]| (1962)) that establishes a bound
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on the L,-norm of the discrepancy between conditional and unconditional expectations

of a-mixing processes.

Proposition 4. Suppose Condition (1] is satisfied. Then, for all T sufficiently large and

forer = a«/p}\‘;gT, it holds that

<1 + N5T> sgpPr i Z Erli(0,7) — El:(6,7)| > ]S log T and
t=T+1
24 P LN :
1+M supPr | |— Z Erdgr —Edpe| > Cy | <o —7 ) as T — 0,
Ner e M, st

where o2 is defined in Proposition [3
It follows from Propositions [ [3] and [ that, for all T sufficiently large,

plogT
NT

2Sllp ‘R(G,T) - §(977)‘ + 2Sllp |RT(07T) - R(ea T)‘ <20
€] (S)

holds with high probability. This fact and Proposition [I] imply Theorem [I}

Proof of Theorem[1l Follows by Condition [I] and Propositions and O

5 Application to backtesting global Growth-at-Risk

The International Monetary Fund (IMF) has recently popularized a risk measure for
GDP growth called Growth-at-Risk (GaR), which is the worst-case scenario GDP growth
at a given coverage level and is the analog of the classic Value-at-Risk (VaR) used in
risk management. Several institutions such as the IMF or the European Central Bank
publish GaR for major world economies on a routine basis. One of the appealing features
of quantile regression is that it allows direct linkage of downside risk predictors to the
quantiles of GDP growth.

This application explores the use of the multivariate CAViaR class defined in the
theoretical framework of this paper. The CAViaR class is closely related to the quantile
regression techniques put forward by |Adrian et al. (2019). A key difference is the recursive
nature of the CAViaR forecasts, which rely on the entire past of GDP growth — similarly
to GARCH models. In fact, GARCH forecasts that use no information other than

the past of GDP growth exhibit better performance than quantile regressions that use
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external information such as the national financial conditions index (NFCI) (Brownlees
and Souzaj, 2021)). This suggests that — quite remarkably — the (entire) past of GDP
growth seems to be the key driver of the time variation in the conditional distribution of
GDP growth. The present paper also investigates the “synergies” between GARCH and
CAViaR.

Description of the exercise. The data consists of a balanced panel of GDP growth
rates for 24 OECD countries that spans from 1961Q1 to 2019Q1. The sample comprises
all countries for which GDP data are available since at least 1973Q1 to match some of
the predictors used in the quantile regression analysis. GDP growth rates are defined as
the quarterly percentage change in seasonally adjusted real GDP and are obtained from
the OECD database.

The specifications considered in the exercise can be classified in three broad types.
First, a class of GARCH(1,1) models is entertained, estimated via the pooled GARCH
procedure proposed by (Pakel, Shephard, and Sheppard, [2011). The pooled GARCH
procedure relies on a specification where the dynamic parameters of the GARCH recur-
sion are common for all countries and are estimated via composite (quasi) maximum
likelihood, while the intercept parameter is country-specific and estimated via variance
targeting. This is done because in relatively short time series such as GDP growth, it
is challenging to obtain stable parameter estimates (Brownlees et al) 2011). Results are
reported for both GARCH models estimated on GDP growth — labeled as GARCH in
Table |5| - and on the residuals of an AR(1) — labeled as AR-GARCH.

Second, a number of quantile regression models (QR) are implemented following
Adrian et al|(2019). Quantile regression requires specifying a set of downside risk pre-
dictors. The list of variables includes country-specific variables such as the national
financial conditions index (NFCI), credit-to-GDP gap and growth (CG and CR), term
spread (TS), housing prices (HP), the World Uncertainty Index (WUT), and economic
policy uncertainty (EPU), as well as global predictors such as the global real activity
factor (GF), stock variance (SV), credit spread (CS), and the geopolitical risk index
(GPR). The details on the data availability, construction and imputation can be found
in Brownlees and Souza| (2021)).

Third, a number of special cases of are implemented, labeled as pooled VFV in

21



Table pl All pooled VFV specifications take the form

f&’it:wi+as)\(yvit—l)+ﬁf9it—la 7:=1,...,N,

where sy(u) = b(x/1+ (u/b)?2 —1) |t = I(u < 0)|, T € [0,1], b € [b,b], b > 0 and
A = (t,b)'. Note that sy(u) is an arbitrarily good approximation of |u||T — I(u < 0)|
as b — 07, which corresponds to the symmetric absolute value (Sym) and asymmetric
slope (Asym) specifications introduced by [Engle and Manganelli (2004) if T = 1/2 and
T # 1/2, respectively. In the asymmetric specification, T is set to 0.05. See Example [3|in
the Online Appendix for a verification of Assumption for this choice of the function
sx. The restrictions on the parameters «, § and wi,...,wy are naturally deduced from
Assumption

The pooled VFV specifications impose that the dynamic parameters o and 3 are
common for all countries and are estimated with the procedure described in equation
. This procedure is analogous to the composite likelihood approach mentioned above
— but with the check loss instead of the Gaussian (quasi) likelihood. Results are reported
for VFV specifications estimated on (i) GDP growth, labeled as VFV in Table [5} (i)
the residuals of an AR(1) (VFV-AR); and (4i7) on the standardized residuals of the
pooled GARCH, both on GDP growth and on the AR(1) residuals (GARCH-VFV and
AR-GARCH-VFV, respectively).

Recursive estimation is carried out for all specifications under consideration for each
quarter from 1973Q1 to 2016QQ4 and out-of-sample forecasts are computed starting from
1983Q4. Starting the forecasting exercise from 1983Q4 implies that the out-of-sample
period is based on approximately 75% of the available data.

Marginal GaR forecasts are evaluated using the check loss over the out-of-sample

period, that is,

1 T+M N
CL =7 23 2 pr(Yie = foir), (10)
t=T+11i=1

For completeness, Table [5] also reports Coverage and Length, which are defined as

T+M N T+M N

. 1
Cov = 35 D ZI(Y”>féT,Tz’t>’ Len = 57y 21 2,

t=T+11i=1 t=T+11i=1

/N

Qo.00(Y;) — fe%;it) ,
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where Qo_gg(Yi) denotes the unconditional 99% empirical quantile of the " series esti-
mated on the entire sample. All else being equal, GaR forecasts with a smaller length

are typically preferred.

Table 1: 95% GaR Marginal Forecast Evaluation

Method Specification Cov  Len Check
Benchmark Historical 94.41  5.42 0.14
Pooled GARCH GARCH 93.28  5.17 4.56
Pooled GARCH AR-GARCH 93.12  5.07 11.66
Pooled VFV Sym 93.59 528 —0.22
Pooled VFV Asym 94.82  5.37 8.45
Pooled VFV AR-VFV Sym 93.94  5.20 11.52
Pooled VFV AR-VFV Asym 95.36  5.40 2.87
Pooled GARCH-VFV GARCH-VFV Sym 93.09 5.18 4.55
Pooled GARCH-VFV  GARCH-VFV Asym 94.07 5.24 12.60

Pooled GARCH-VFV AR-GARCH-VFV Sym  93.06  5.09 12.87
Pooled GARCH-VFV AR-GARCH-VFV Asym 93.53  5.12 12.51

QR NFCI 92.77  5.17 3.85
QR NFCI + TS 91.13 5.08 —0.13
QR NFCI + TS + GF 90.72  5.09 —-1.23
QR Full 89.39 5.15 —19.18

Cov: Average empirical coverage; Len: average empirical length; Check: first row:
average check loss of the historical benchmark; remaining rows: percentage
improvement in average check loss relative to historical benchmark.

The results of the exercise can be summarized as follows. First, the VFV specifica-
tions on the standardized residuals of (AR-) GARCH perform best out-of-sample. The
approach exploits non-obvious dynamics of the standardized residuals of the GARCH
procedure. The dynamics are not obvious in the sense that they are not captured by
inspection of the autocorrelation function of the standardized residuals nor their abso-
lute values or squares. In addition, empirical support in favor of AR-GARCH-CAViaR
methodologies has been documented in Kuester et al.| (2006), which use more than 30
years of daily return data on the NASDAQ Composite Index. Panel Diebold-Mariano
tests statistics of superior predictive ability based on the check loss are reported in Table
[OA.6l

Second, a comparison between GARCH versus the VFV reveals that the GARCH

specification outperforms the VFV in terms of the check loss, whereas the VFV specifica-
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tion provides better out-of-sample coverage. This is perhaps surprising in the sense that
the VFV specification is designed to minimize the check loss function. This suggests that
the approach to GaR forecasting using conditional volatility is particularly useful in this
dataset. Another possible explanation may be that the GARCH specification benefits
more from exploiting “commonalities” in conditional variance with respect to the VFV
specification, which exploits commonalities in conditional quantiles.

Third, asymmetries in conditional volatility of GDP growth do not play an important
role, but they still matter for the quantiles. The results from the specifications Pooled
VFEV (Sym) vs Pooled VFV (Asym) in Table [5 suggest that negative growth rates have
more predictive power for conditional quantiles than positive ones in the check loss sense.
However, the narrative changes when the VFV specifications are run on the residuals of
AR or AR-GARCH. This is perhaps not surprising since the relevant asymmetries are
found at the zero growth level.

To sum up, these forecasting results suggest that using the entire past of GDP growth
provides a benchmark that is easy to implement and hard to beat even by cross-sectional

quantile regression approaches based on external information such as the NFCI.

6 Concluding Remarks

This paper establishes theoretical guarantees for out-of-sample multivariate dynamic
quantile forecasts. A key feature of the analysis is that the relationship between the data
generating process and the class of algorithimns is unspecified. The main result implies that
the predictor that minimizes the in-sample average check loss achieves asymptotically
the optimal predictive performance that is attainable within the class, even when it is
fully misspecified.

To put it differently, this paper shows that the conditional quasi-maximum likelihood
estimator achieves the oracle’s out-of-sample predictive performance within the class of
VAR for VaR specifications considered here. A crucial condition to obtain this type of
result is that the data and the forecast forget their past sufficiently fast and that enough
moments exist. The paper also gives a set of primitive assumptions that are sufficient to
validate this condition.

This work exemplifies how to combine the tools of statistical learning theory and non-

linear time series to obtain performance guarantees for time series forecasting. Following
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the “algorithmic modeling” culture fostered by Breiman| (2001), this paper hopefully
paves the way for the development of new forecasting strategies for time series applica-

tions with minimal assumptions on how the data is generated.
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A Proofs

A.1 Main Result

Proof of Proposition[] Let {I%(,7)} be an independent copy of {I;(f,7)} (initialized
at the stationary distribution). Define R(Ar.,,7) = EI(07.,,7). By the properties of
infimum and supremum and the definition of empirical risk minimizer (i.e. Rp(0,7) >
RT(GA;QT, 7) for all € ©), we have that

R(Or.,7) — inf R(0, 7)
= R(0rr.7) = R(br,7) + R(0r7,7) —inf [R(0,7) + R(0,7) — R(0,7)]
< [R(éTJ, 7) — R(0r.7, T)] + [R(éT,T, 7) — inf R(?, 7)} — inf [R(0,7) — R(6,7)]
< 2Slép|R(0,T) RO, 7)| + [ (QTT, T) — iIéfR(a,T):|
< 25161)p |R(,7) — R(6,7)| + QSlép |Rr(0,7) — R(0,7)| ,
where the last inequality follows by Lemma 8.2 in Devroye, Gyorfi, and Lugosi (1996)). [

Proof of Proposition[9 The proof is based on a covering argument similar in spirit to
Jiang and Tanner| (2010, Prop. 2). Let {©; }Vs. | where ©; ={0:]0—6;]1 <6,0; € O} be

a 0-covering of © and Nj is the covering number. The choice of § > 0 will be determined

3

T
TZ (0,7) — Ely(0,7)| >

Jj=1

in what follows. By the union bound it follows that

ther —ElL,(0,7)| >

-3

Add and subtract l;(6;, 7) —El: (0}, 7), use the fact that if |a+b| > ¢, then either |a| > /2

or |b| > ¢/2, and again by the union bound we can write

€

Pr | sup —
(06@ 2)

.

4

1< €
+ Pr (956132 T ;[lt(eaT) =10, 7)] — E[l:(0,7) — (65, 7)]| > 4> :

Now, by (6] we have that |I,(0,7) —1:(8;,7)| < %dgjt with probability 1, which is proven
in Lemma (see Online Appendix). By the triangular inequality, the second term

T

D110, 7) — EBL(0,7)| >

t=1

T_
Z (0;,7) — El;(6;,7)

'ﬂ \
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is bounded above by
e
Pr | sup — Z (0, 7) — 1,(0;, T)| + [E[1:(0, 7) — 1:(0;,7)]| > ~
60, 4

Ne
<P ( Zd9t+Ed9t> 45> .

Furthermore, since supg E(dp; ) < Cq for some Cy < o0, by choosing § = Ne/(12Cy) it
follows that

T T
1 1
Pr (T E dgjt + Edgjt > 3Cd> = Pr (T § dejt - Edejt > 3Cg — QEde t>
t=1
<P ( E d@ t— Ed@ t > Cd>

t=1

Finally, the claim follows by noting that

2Cq 24CeCy\P
Ns<(|[1+——) =1+ ——
<(1+70) = (7%
The same covering argument applies to the second part of the claim with [,(0,7) and dg
replaced by E7l;(0, 7) and Epdy, respectively. This is because [Erli (0, 7)—Erl: (05, 7)| <

Er|le(0,7) —1:(6;,7)| < %&Engjt by Jensen’s inequality and the order-preserving prop-

erty of the conditional expectation. O

Proof of Proposition[3 Let ffgt =1(0,7) — El4(0,7) and V@t = dgt — Ed@t To smlphfy
notation, the subscript 0 1n {Uy,} is omitted. Define My = [T2 =) log™ 2 T| and
br = CT G (logT) -1 where C} is a positive constant to be chosen in what follows.
Let U; = Ul + U/ where U/ = 1,(0,7)I(1;(8,7) < br) — E (I,(8, 7)I(1,(0,7) < br)) and
Ul = 1,(0,7)I(1(0,7) > br) — E (1,0, 7)I(1s(0, 7) > by)). Then,

TET>

elr5o]- ) <m (g e (B

Z [th >
The sequence {U/} has the same mixing properties as {U;} and |U}|z,. < br since

S~

l¢(0,7) = 0. Then for all T" sufficiently large and p < k — 2 the conditions of Theorem
2.1 in |Liebscher| (1996)) are satisfied since My € {1,...,T} and Tep/8 > 4Mrpbyp. By
application of that theorem and noting that {l;(0,7)} is stationary and non-negative,

o

T 2
TeT

<dexp | —
8 )
4056, (31 Ut> + 84 Mybrer

t=1

T .
+ 4@ exp (_CaMT ) .

27



Let v(m) = |Cov(U{, U/, )| for m = 0,...,T —1. Then, E (ZMT ) < Mp(~(0) +
232 _v(m)). Noting that [;(6,7) = 0 and k > 2, Davydov’s inequality (Davidson)
1994) Corollary 14.3) implies

y(m) < 22 YF + Da(m) U] |1 | U 2
=22""Y* + Da(m)'"2*|U]|3,  (by stationarity)

for m =0,...,T — 1. Also note that for any £ > 1 we have
1|z, < 20ie(0,7)]z, <2CL

by Jensen’s inequality, and the last inequality holds by Condition [Lj(¢i¢). Thus,

t=1 m=1

MT 2 o0
E (2 U{) < Mp8(27VF 4 1)C? ( % 2 D ex )1—13) .= Mrpo>.

Then, for all T sufficiently large, since p, k > 1 are such that p < k — 2, it holds that

T
§T> =o(log™'T) .

Furthermore,
24C@Cd L o TaT (a) 24CoCy\P 8 )
1 — | <1+ U,
<+ Ner (; ¢ Ner Ter ,; ‘
24CeCy\? 16 (b) 24CeCy\* 16 C¥
< (1 — < [1+ 22222
( + e ) B[O, 7)1((6,7) > br)] Ner ) T
(©)
<log™'T,

where (a) follows from Markov’s inequality (b) because E(| X |I(|X| > b)) < E(|X|")/b" !
for any random variable X with finite r-th moment and positive constant b and Condition
[L(éii), and (c) from a sufficiently large choice of the constant Cp, for sufficiently large T
and noting that N, p and k are fixed. The sequence {Vgt} can be analysed using the

same strategy (using the exact same choice of My and by used for U't) O

Proof of Proposition[{] By Proposition [2| we have that

Pr (Sgp R(6,7) — R(6,7)| > ;)

24C@Cd T+ M 3 T+M
< (1 29 s (P (Br10,7). ) + P (Brdar, €}
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By Markov’s inequality,

1 T+M
Sl@lp Pr (‘M Z Erl(0,7) — El,(0,7)| >
t=T+1

8)
p
supe E | X2 Erla(0,7) — Elu(6,7)

ep

By Ibragimov’s inequality (Davidson) 1994) Theorem 14.2), we have that for k > p > 1,

sup [E71:(0,7) = ELy(6, )|, < 2(2"7 + La(m) /=" sup [0, D)y s m=t-T,

where supg [:(0, 7)1, < Cr < o by Condition |I[ Consequently, and because of the

exponential decay of the a-mixing coefficients,

p

T+M 2P
SupE Z Erli(0,7) — ElL(0,7)] < oTP
t T+1

where we have used that M = [yT]. Let ep = o4/ 55+ logT It follows that

24C@Cd T+M ET C _
1+ —— pP Erl: (6 S ——————5 = log™?T) .
< + Ner > @ T+1 ( rl(0,7), 1 ) PyprTp&q%p o ( og )

for some C' < o0. By Condition [l dg; is also a-mixing with exponentially decaying

coefficients and supg ||dg¢|, < 0. The same arguments as above lead to the bound

24CoCy T4 M C . —p
<1 + ]\75T> @ PT+1 (ETth, Cd) m = O(lOg T)
for all T' sufficiently large. O

B Verification of Condition [1I

This section starts by recalling a number of notions from Markov chain theory. Notation
and definitions are based on Meyn and Tweedie| (1993). The discrete-time process {X;}
is a time-homogeneous Markov chain with state space X € RP* and equipped with a
Borel o-algebra B(X) if for each n € N there exists an n-step transition probability
kernel PY : X x B(X) — [0,1] such that PY(z, A) = Pr(X¢yyn € A|Xy = ) for all
t € Z. As customary, Py (z,.A) is denoted by Px(z,.A). Let mx : B(X) — [0, 1] denote
the invariant measure of the Markov chain (assuming it exists), that is, the probability
measure such that for each A € B(X) it holds that mx (A) = {, mx (dz)Px(z, A).
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B.1 Companion Markov chain

Let X = (X1,, X4;, X3¢) be defined as

X1t gn1(X1e-1) + gn2(X1¢-1)Z1¢
Xo¢ | = w+ A5)\(X1¢-1,Z2¢) + BXoi1 , (11)
X3t 1+Cs (1+A) [Y(X14-1, Zoo) |1 + [ X211 + BX3-1 + Z34

where

5x(X1¢-1, Z21) = sx(Y (X141, Z2t))

Y (X1¢-1,Z21) = gy1 (X11—1) + 9y2(X14-1) Zoy,

and Z1¢ = €g¢, Lot = €y 1, and Z3¢ = €4¢. The state space of the companion Markov
chain is X := RP" x RN x[1,0) c RP, where p, = py + N + 1.

B.2 V-geometric ergodicity

The concept of V-geometric ergodicity used in this paper is the same as in |Meitz and
Saikkonen (2008al). Note that this is stronger than Q-geometric ergodicity (Liebscher,
2005)).

Definition 1 (Vx-geometric ergodicity). A Markov chain {X;} is Vx-geometrically er-
godic if there exists a real valued function Vx : X — [1,0), a probability measure wx on

B(X), and constants p <1 and M, < oo (depending on x) such that

sup
vilu|<Vyx

< "M, | (12)

L PL(x, dzn)o(an) — L x(dzn)o(zn)

forallxe X and all n > 1.

Verification of Condition [1] begins by establishing the V-geometric ergodicity of the
companion Markov chain {X;}. The proof follows by Lemmas and (Meyn and
Tweedie, 1993).

Lemma B.1 (Irreducibility and Aperiodicity of X;.). Let Xy be the Markov chain defined
mn . Then, X; is irreducible and aperiodic.

Proof. Start by noting that X in can be cast as a nonlinear state space model
NSS(F) (Meyn and Tweediel 1993), i.e. Xy = F(Xy—1,(Z]4, Z4,, Z3¢)") with F defined
in an obvious Wayr_gl For the chain to be irreducible we first need that the controllability
matriz has full rank. More specifically, the rank condition states that for each initial

value x € X < RP*, there exists some n € Z, and a sequence Z* = (Z7,...,Z}) €

0Note that in our derivation it is only required that F be differentiable with respect to Z and not
the states or the parameters.
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X (RPE x RN x R, such that rankC?(Z*) = p, (Meyn and Tweedie, 1993, Eq. 7.13).
The controllability matrix for n = 1 is defined as the derivative of the transition function

with respect to the vector of innovations, i.e.

gna(r1) 0 0

oF 5 (2
Ciz)==| 0  AREAE o
0 ° 1

By Assumptions [A.1}(¢) and [A.2|(ii)-(iii), we have that for every x € X we can find a
Z* e RP» x RN x R such that

det(C3(Z*)) = det(gn2(21)) det(A) det <W> £0 .

The claim follows after finding a globally attracting state (Meyn and Tweedie, 1993; |Meitz
and Saikkonen, [2008b)). To do this, the first step is to find a fixed point of the map. It is
enough to do this for a choice of Z. Let ZF = gpo(2¥) [z} — gn1(z¥)], for an arbitrary
x} € RPh. Note that Z; exists by Assumption (z) Choose Z = Z* = (Z¥,0/,0).
Then, x7 is a fixed point for the first component of the map (F}).

w3 = (= B)7! [w+ Asx(gy1(27))]

is a fixed point for the second component of the map (F), and by Assumption [A.2]i) it
is clear that 2% € RY. Finally, given 2% and 3, we have that
L+ C(1+ A)|Y (aF,0) 1 + |5

xh = 1

1-B

is a fixed point for the third component of the map (F3), where x} € [1,00). It follows
that z* = (x’l"/, x}‘/, z3)" is a fixed point of the map F. Next, one needs to show that the
fixed point is attainable for a choice of shock sequence. But this is also accomplished by
setting the shocks to zero and noting that X;+ — 27 as t — o0, and the same conclusion
holds for X9, and X3;. It follows that the companion Markov chain is both irreducible

and aperiodic. O

Lemma B.2 (Drift Criterion for X;). Let X; be the Markov chain defined in (11)). Then,
E(Vx(X)|Xi—1 =2) < (1 —7)Vx(x) + 2l(xz € S),

where Vyx (z) = 1+ ||z}, 71 > 0, 72 < 00 and S is a compact set.

Proof. First, since X; is a T-chain, it follows that every compact set is small (Meyn
and Tweedie, [1993). Let gx(z) = 1+ (#'2)* where k = (k1,52,43) € Xo_,(0,1) and
& = (|@1]1, |z2]1, lz3]). Note that Vx(z) < gx(z)/", where k denotes the minimum of

the components of k. Thus, it suffices to show that the drift criterion holds with gx ()
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with the compact set S, defined below (Lanne and Saikkonen, |2005, Appendix A). By
Assumption [A.1](7), for every e > 0 there exists M/ < oo such that

lgn1(w1) + gne(z1)Z1¢l1 < (an + b, Z1¢]1 + €) [21]1

holds for all |z1[; > M, where b5, = by, + €. In particular, e > 0 is chosen small enough
such that E(aj, + b5 Z1¢|1 + €)* < 1 and B + ¢ < 1. Such a choice is possible by

Assumptions [A.I|(iv) and [A.2](7), respectively.
Now, let Sy = {z € X : k& < M.}, which is compact, and Si. = X\Sge.[:r] The
proof proceeds by analyzing the cases ||z1]1 > M/ and |z1]; < M! separately[?]

Case |z1/1 > M/. By Assumptions [A.2|iv) and [A.T|(i4),
lw + A3(x1, Z21) + Baa|1 < |wli + A1 CsCy (1 + [ Zae 1) [zl + [ B2y -
Note that M/ may be enlarged if necessary so that

lwllr + [[Al1CsCy (1 + [ Za|1) |21l + | Bll1]22]1
< ACCy(1 + €+ | Zag|1) 1] + Blla2|r

where A < o0 is a uniform upper bound for ||A]|; over © by Assumption (v) Also
note that ||B]|1 < B < 1 by Assumption (z) Similarly,

1+ Cs (1+ A) gy (1) + gy2(x1) Zoly + |@2]1 + Blas| + Zs,
<24 Cs (14 A) gy1(z1) + gy2(@1) Zot|1 + |w2]1 + Blas]
<C (1+A) Cy(1 + e+ [ Zalh)|wi]1 + |a2]1 + Blas] ,

where the first inequality uses Assumption [A.3{4). Let pzc = ap + 03[ Z1¢]1 + €, and
Cyz =Cy(l+ e+ |Z21). It follows thaﬂ

1+ (5 X)" < (W Ce(Zy) Xi—1)F
where the 3 x 3 matrix C¢(Z;) is defined as
PZe 0 0

C.(Z) = ACCy B+e 0
Cs(1+A4)Cy, 1 B+e

HUNote that M. is larger than M. In particular, M. = HézeﬂLk /e + M. with C', . defined below.
!?Note that the conclusions in both cases hold for any choice of k € X°_,(0,1).
13Note that M, can be enlarged if necessary to absorb the constant 1.
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Note that for the chosen ¢, the spectral radius of E (CE(Zt)®k) is strictly less than one.
By properties of Kronecker products, it holds that

Elqx (X0)| Xe-1 = 2) < (%)E (C.(2)%F) " . (13)
Case |z1]l1 < M/. Note that by Assumption [A.1]4),

lgr1 (1) + gn2(z1) Z1elt <5, (1 + | Z1¢]1) ,
—_
1

where gj, := supyy [lgn1(@1)[1 v supag |gn2(z1)|[1 and supy, is the supremum over the

set {1 € RPh : ||zq]|; < M!}. Moreover,

|w + A3(x1, Z21) + Bao|y < ||y + A gy (1 + || Z2t]1) + B2l

Cy
and

1+ Cs (1 + A) gy (z1) + gy2(21) Zaelh + |2]1 + Blas| + Zse
<2+ Cs (1+A) gy (1+ [ Zael1) + |22]1 + Blas]

Cs
where g5 = supu; ||gy1(x1)|1 Vv supz o(z1)]|1. From the previous inequalities one
Iy M! 19y M 19y

obtains

— — - k
E (gx (X)|Xi—1 = 2) S E(C.e + r2B|x2|1 + k3|21 + wsBas1)

- . k
< (HCZGHLk + ”,—1B$71) )

where C,. = C1 + Cy + C3 + C4, where C; < o is a constant that absorbs the 1 in
gx and B is a 2 x 2 lower triangular matrix with diagonal entries B;; = Boy = B and
off-diagonal entry Bo; = 1. The first inequality uses the fact that « € X?zl(O, 1), and
the second uses Minkowski’s inequality. B

Note that &1 |z1]1 + k&1 > M, is true whenever = € S;.. Choose M, = 19z ellzy, +

€
M!. Since, k1|lz1]l1 < |z1]1 < M., it follows that

: : C
M! + K 21 > k1|21 + K21 > |z€€Lk + M.,

so ek’ 121 > |Cuelln,. Thus, [|Cyelr, + 1 Bi_1 < k(B + el)i_; := " Bei_1.
Notice that B, is the 2 x 2 lower diagonal block of C(Z;), so one can write

kK Bet_1 < K'C(Zy) .
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Again by properties of the Kronecker product it follows that the bound in also
holds in this case. Therefore, in both cases ||z1]1 > M/ and |z1|1 < M! we obtain
the same bound for any x € X;_;(0,1) whenever « € Sj.. Thus, by Lemma A.2. of
Ling and McAleer| (2003) it follows that we can choose k € X_;(0,1) such that v =
(I—E(Cc(Z)®%))'k®* has positive components One can now conclude that for all
T € S1, it holds that

E (gx (X3)|Xi—1 = ) < (1 — 71)(s®F) 3%

where v; € (0,1) is the minimum of the components of v.
On the other hand, it follows from Assumptions[A.1] [A.2] and [A.3] that

sup E(gx(X3)| X1 =2) <v2 <o, z€ S,
xeesée
€

where the expectation exists and it is bounded over © for every x € Sy, provided that
|Z1¢]1 and || Z2¢]1 have k moments. Since (1 —y1)gx () is positive, the claim holds when

x € Sa¢, which completes the proof. O

Lemmas [B.3] and Proposition [5] below are slight modifications of Lemmas
2, 3, 4 and Proposition 1 of Brownlees and Llorens-Terrazas| (2021)). For completeness,
full derivations of the proofs are available in the Online Appendix. The following lemma
establishes that the constants p and M, in Definition [Iin the case of geometric ergodicity
(that is, when Vx = 1) can be chosen so that they do not depend on 6.

Lemma B.3. Suppose Assumptions|[A.1], [A.9 and [A.5 are satisfied. Then, there exist
positive constants p € (0,1) and R < o that do not depend on 0 such that {X,} satisfies

sup < RVx(z)p"™ ,

viv|<1

JX P%(z, dxy)v(z,) — f wx (dzp)v(zy)

X

forallze X and alln =1, and Vx(z) = 1 + |-

The proof of Lemma is based on an application of Theorem 12 of Roberts and
Rosenthal| (2004). The MCMC literature has developed a number of results that allow
to establish explicit geometric ergodicity convergence rates (Rosenthal, [1995). The im-
portant implication of Lemma is that the dependence properties of the companion
Markov chain {X;} can be characterized independently of 6.

The next step of the analysis consists of using the properties of the companion
Markov chain {X;} to establish the properties of the joint process Wy = {(Y/,S})'} =

"Recall that E (Ce(Zt)®k) has a spectral radius strictly less than 1. As noted by|Lanne and Saikkonen
(2005)), inspection of the proof of Lemma A.2. in [Ling and McAleer| (2003) reveals that it means no loss
of generality to assume that the components of x are bounded by unity.
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{(Y/, H{, fy,,do t)’}.E] The following lemma establishes the connection between the tran-
sition kernels of {X;} and {WW;}.

Lemma B.4. Consider the Markov chain {W,}. Let my|g(dy|S) denote the (invariant)

conditional distribution of Y; given Sy = s;. Then, its n-step transition kernel is given

by
1
Pl (w, dwy) = my 15 (dynlsn) J f P (&, dsn) Prg (b, dhy) Pr(deat), n > 2,
0 JH

where Py is the transition kernel of {H}, and
i =F(w, h1,€q1) = (h1,w+ Asx(y) + Bf, 1+ Cs (1 + A) |yl + | f|1 + Bd + €q1)".

The proof of the lemma builds upon the analysis of GARCH models of Meitz and
Saikkonen| (2008a)). The structure given by equations , , and admits casting
{W,} as a Markov chain.

The following lemma establishes that {W,;} inherits the moment and dependence

properties of the companion Markov chain {X;}.

Lemma B.5. Suppose Assumptions |A.1], [A.2 and |A.5 are satisfied. Then (i) {W;} is
Viy-geometrically ergodic with Viy(w) = 1+ |y|¥ + |s|¥; and (ii) there exist positive
constants p € (0,1) and R < o that do not depend on 0 such that {W;} salisfies

sup
vilv|<1

J [PI (w, dwy) — 7w (dwn)]o(wn)| < RVx (5)p,
YxX

forallwe Y x X and for alln = 2, and
5= (h,w+ ACs|yl1 + Bl fl1,2+ Cs (1 + A) |yl + | £l + Bd)".

Finally, the moment and dependence properties of {W;} are established.

Definition 2. For a stationary process {X;}, its a-mizing coefficients are defined by

1/4 m =0

a(m) =
Sup gcrs perz, |Pr(AM B) —Pr(A)Pr(B)] m=>1

where s € Z, and Fj§ and FJ,, denote the o-algebras generated by {X;:0 <t < s} and

s+m

{X; s +m <t <o} respectively.

Proposition 5. Suppose Assumptions|A.1], |[A.9 and |A.5 are satisfied. Then, the pro-

cess {Wi} (i) satisfies ||[Yililz, < oo, |[Hililz, < oo, supe [l foclilr, < o and
supg |dotllr, < oo; and (it) if Wo ~ mw, it is strictly stationary and a-mizing with

15The subscript @ is omitted from S; and W; to simplify the notation, but the dependence on @ is
understood.
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a-mizing coefficients that satisfy a(m) < exp (—Cqm'*) for some Cy > 0 and ro > 0

that do not depend on 6.

The verification of Condition [If concludes with the following result.
Lemma B.6. Suppose Proposition [5 holds. Then, Condition [1] holds.

Proof. Condition [I|7) is verified by finding a suitable compact set © < RP compatible
with Assumptions [A.2|7) and (iz). For example, let © = O, x ©4 x Op x O, where

O, = {weRP : |w) <@ < o0}
O4 = {vec(A) e RP4 : 0 < A < |det(A)], [ Al < A},
Op = {vec(B) e R”" . || B||, < B},

Oy ={AeRP: A} <A<},

and p = py,+pa+pp+py. Note that O, @A, Op, and ©) are compact and nonemptym
Condition (m) holds because ;(6,7) = « ZZ 1P (Yie — foit) and dp; are both mea-
surable functions of Wy, which is strictly stationary and a-mixing with coefficients that

satisfy a(m) < exp(—Cym'*) for some C, and r, > 0 that do not depend on 6 by
Proposition [f| To verify Condition [I#), note that by (3), one can write

N
1
\NZ Yie| + — Z!fan! \Yt\h+ Hf&tHl-

Thus,
1 1 1
100, D)2y < 57 W¥ell + Wfoelillz, < 5 W¥elal, + & Woelilz,

but by Proposition i [[|Yz]1]|z, < o, supe [ fo¢l1]z, < oo and supe |dg¢|z, < oo, which

completes the proof. O

6The fact that © 4 is compact and nonempty is verified in the Online Appendix.
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